Accuracy of advanced deep learning with tensorflow and keras for classifying teeth developmental stages in digital panoramic imaging

Norhasmira, Mohammad and Anuar Mikdad, Muad and Rohana, Ahmad and Mohd Yusmiaidil, Putera Mohd Yusof (2022) Accuracy of advanced deep learning with tensorflow and keras for classifying teeth developmental stages in digital panoramic imaging. BMC Medical Imaging, 22 (66). pp. 1-13. ISSN 1471-2342

[img] PDF
s12880-022-00794-6.pdf

Download (1MB)
Official URL: https://bmcmedimaging.biomedcentral.com/articles/1...

Abstract

Background: This study aims to propose the combinations of image processing and machine learning model to segment the maturity development of the mandibular premolars using a Keras-based deep learning convolutional neural networks (DCNN) model. Methods: A dataset consisting of 240 images (20 images per stage per sex) of retrospect digital dental panoramic imaging of patients between 5 and 14 years of age was retrieved. In image preprocessing, abounding box with a dimension of 250×250 pixels was assigned to the left mandibular frst (P1) and second (P2) permanent premolars. The implementation of dynamic programming of active contour (DP-AC) and convolutions neural network on images that require the procedure of image fltration using Python TensorFlow and Keras libraries were performed in image segmentation and classifcation, respectively. Results: Image segmentation using the DP-AC algorithm enhanced the visibility of the image features in the region of interest while suppressing the image’s background noise. The proposed model has an accuracy of 97.74%, 96.63% and 78.13% on the training, validation, and testing set, respectively. In addition, moderate agreement (Kappa value=0.58) between human observer and computer were identifed. Nonetheless, a robust DCNN model was achieved as there is no sign of the model’s over-or under-ftting upon the learning process. Conclusions: The application of digital imaging and deep learning techniques used by the DP-AC and convolutions neural network algorithms to segment and identify premolars provides promising results for semi-automated forensic dental staging in the future

Item Type: Article
Uncontrolled Keywords: Deep learning, Tooth segmentation, Premolar, Digital dental panoramic radiographs.
Subjects: Q Science > QA Mathematics > QA76 Computer software
R Medicine > RK Dentistry
Divisions: Academic Faculties, Institutes and Centres > Faculty of Cognitive Sciences and Human Development
Faculties, Institutes, Centres > Faculty of Cognitive Sciences and Human Development
Academic Faculties, Institutes and Centres > Faculty of Cognitive Sciences and Human Development
Depositing User: Mohammad
Date Deposited: 12 Sep 2024 06:22
Last Modified: 12 Sep 2024 06:22
URI: http://ir.unimas.my/id/eprint/46017

Actions (For repository members only: login required)

View Item View Item