Non-viral, Tumor-free Induction of Transient Cell Reprogramming in Mouse Skeletal Muscle to Enhance Tissue Regeneration

Irene, de Lázaro and Acelya, Yilmazer and Yein, Nam and Sara, Qubisi and Maizatul Fazilah, Abd Razak and Hans, Degens and Giulio, Cossu and Kostas, Kostarelos (2018) Non-viral, Tumor-free Induction of Transient Cell Reprogramming in Mouse Skeletal Muscle to Enhance Tissue Regeneration. Molecular Therapy, 27 (1). pp. 59-75. ISSN 1525-0024

[img] PDF
1-s2.0-S1525001618305033-main.pdf

Download (3MB)
Official URL: https://www.sciencedirect.com/science/article/pii/...

Abstract

Overexpression of Oct3/4, Klf4, Sox2, and c-Myc (OKSM) transcription factors can de-differentiate adult cells in vivo. While sustained OKSM expression triggers tumorigenesis through uncontrolled proliferation of toti- and pluripotent cells, transient reprogramming induces pluripotency-like features and proliferation only temporarily, without teratomas. We sought to transiently reprogram cells within mouse skeletal muscle with a localized injection of plasmid DNA encoding OKSM (pOKSM),andwehypothesized that the generation of proliferative intermediates would enhance tissue regeneration after injury. Intramuscular pOKSM administration rapidly upregulated pluripotency (Nanog, Ecat1, and Rex1) and early myogenesis genes (Pax3) in the healthy gastrocnemius of various strains. Mononucleated cells expressing such markers appeared in clusters among myofibers, proliferated only transiently, and did not lead to dysplasia or tumorigenesis for at least 120 days. Nanog was also upregulated in the gastrocnemius when pOKSM was administered 7 days after surgically sectioning its medial head. Enhanced tissue regeneration after reprogramming was manifested by the accelerated appearance of centronucleated myofibers and reduced fibrosis. These results suggest that transient in vivo reprogramming could develop into a novel strategy toward the acceleration of tissue regeneration after injury, based on the induction of transiently proliferative, pluripotent-like cells in situ. Further research to achieve clinically meaningful functional regeneration is warranted.

Item Type: Article
Uncontrolled Keywords: Tumor-free Induction, tumorigenesis, Overexpression of Oct3/4, Klf4, Sox2, and c-Myc (OKSM), various strains.
Subjects: Q Science > Q Science (General)
Q Science > QP Physiology
Divisions: Academic Faculties, Institutes and Centres > Faculty of Medicine and Health Sciences
Faculties, Institutes, Centres > Faculty of Medicine and Health Sciences
Depositing User: Abd Razak
Date Deposited: 23 Aug 2024 07:32
Last Modified: 23 Aug 2024 07:32
URI: http://ir.unimas.my/id/eprint/45806

Actions (For repository members only: login required)

View Item View Item