Juntian, Si and Yang, Gao and Abadi, Chanik (2016) Slew Control of Prolate Spinners Using Single Magnetorquer. JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS, 39 (3). pp. 715-723. ISSN 1533-3884
PDF
Slew Control - Copy.pdf Download (199kB) |
Abstract
E XISTING research [1–5] on the prolate spinning spacecraft attitude maneuver has developed a series of slew algorithms using a single thruster in two categories: half-cone derived algorithms and pulse-train algorithms. Half-cone derived algorithms consist of half-cone (HC), multi-half-cone, dual-half-cone, extended half-cone, sector arc slew, and multisector arc slew, using the precession behavior of a spinning prolate spacecraft. Pulse-train algorithms consist of rhumb line and spin-synch algorithms, which use a train of uniform torque pulses to achieve the attitude maneuver. Pulse-train algorithms can also be used for oblate spacecraft. The existing slew algorithms have been initially developed for specific prolate spacecraft such as penetrators proposed in MoonLITE missions [6]. In the MoonLITE mission, a mothership releases missile-shaped penetrators equipped with thrusters for hard landing on the lunar surface from 100 km altitude. Before impact, a 90 deg spin axis attitude maneuver is required after spinning up the penetrator. The aforementioned slew algorithms can provide low-cost solutions to meet the required 90 deg attitude maneuver and within a small mass budget of the penetrator.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | prolate spinning, half-cone (HC), pulse-train algorithms, Magnetorquer-based. |
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering |
Divisions: | Academic Faculties, Institutes and Centres > Faculty of Engineering Faculties, Institutes, Centres > Faculty of Engineering |
Depositing User: | Chanik @ Azhar |
Date Deposited: | 08 Aug 2022 06:45 |
Last Modified: | 08 Aug 2022 06:45 |
URI: | http://ir.unimas.my/id/eprint/39136 |
Actions (For repository members only: login required)
View Item |