Home
About
Articles on COVID-19
Browse
Browse by Year
Browse by Subject
Browse by Type
Browse by Faculty, Institute, Centre
Corporate Memory
e-Archive
UNIMAS Niche Areas
Biodiversity and Environmental Conservation
Sustainable Community Transformation
Information, Communication and Creative Technology
Statistics
How to Upload Article
Login
Browse by Reference
Please select a value to browse from the list below.
-
(1)
[1] A. A. Aldarmahi, "The impact of problem Based Learning versus Conventional education on Students in the Aspect of Clinical Reasoning and problem Solving," Education in Medicine Journal, vol. 8, (2016). [2] L. C. Sern and K. M. Salleh, "Comparison of Example-Based Learning and Problem-Based Learning in Engineering Domain," Universal Journal of Educational Research, vol. 3, pp. 39-45, (2015). [3] A. M. Clyne and K. L. Billiar, "Problem-Based Learning in Biomechanics: Advantages, Challenges, and Implementation Strategies," Journal of Biomechanical Engineering, vol. 138, pp. 070804-070804-9, (2016). [4] S. S. Desai, B. S. Hungund, and S. D. Desai, "Assessment of Program Outcome by Open-Ended Experiment in Enzyme Technology Laboratory Course," New Delhi pp. 617-618, (2015). [5] Z. Haron, S. Mohammad, and A. R. Sam, "The Implementation of an Open-Ended Experiment in the Civil Engineering Laboratory," Procedia-Social and Behavioral Sciences, vol. 102, pp. 548-559, (2013). [6] M. Hastie and J. Haelssig, "AN OPEN-ENDED DESIGN-BASED LAB EXERCISE FOR A FIRST THERMOFLUIDS COURSE," Proceedings of the Canadian Engineering Education Association, (2017).
(1)
[1] A. Bandura, “Guide for constructing self-efficacy scales,” in Self-efficacy beliefs of adolescents (F. Pajares and T. Urdan, eds.), pp. 307-337, Greenwich, CT : Information Age Publishing, 2006. [2] A, Bandura, “The explanatory and predictive scope of self-efficacy theory,” Journal of Social and Clinical Psychology, vol.4, no.3, pp. 359-373. 1986. [3] A. Bandura, Self-efficacy: The exercise of control. New York: W. H. Freeman & Co, 1997. [4] A. Zajacova, S. M. Lynch and T. J. Espenshade, “Self-efficacy, stress, and academic success in college,” Research in Higher Education, vol.46, no.6, pp. 677-706, 2005. [5] B. Alexander, C. R. Brewin, S. Vearnals, G. Wolff, and J. Leff, “An investigation of shame and guilt in depressed sample,” British Journal of Medical Psychology, vol.72, pp. 323-338, 1999. [6] C. W. Loo and J. L. F. Choy, “Sources of self-efficacy influencing academic performance of Engineering students,” American Journal of Educational Research, vol.1, no.3, pp.86-92, 2013. [7] C. S. Dweck and E. L. Leggett, “ A Social-cognitive approach to motivation and personality. Psychological Review, Vol.95, no. 2, pp. 256-273. 1988. [8] E. A. Turner, M. Chandler and R. W, “ The influence of parenting styles, achievement, motivation, and self-efficacy on academic performance in college students,” Journal of College Student Development, vol,50, no,3, pp. 337-346, 2009. [9] F. T. Tilfarlioğlu and F. S. Ciftci, “Supporting self-efficacy and learner autonomy in relation to academic success in EFL classrooms (A Case Study,)” Theory and Practice in Language Studies, vol. 10, no. 1, pp.1284 -1294, 2011. [10] H. R. Greve, “Performance, aspirations, and risky organizational change,” Administrative Science Quarterly, vol.43, no.1, pp. 58-86, 1998. [11] I. Hairuzila, S. Rohani and T. L. A . Muhammad Ridhuan, “Oral communication ability in English: an essential skill for engineering graduates”, Asia Pasific Journal of Educators and Education, vol.26, no.1, pp. 107-123, 2011. [12] I. Hairuzila and S. Subarna, “Perceived self-efficacy of ESL students with regard to their oral communication ability,” Contemporary Issues of Education, Development and Security, pp. 74-86, 2010. [13] J. A. C. Baum, T.J. Rowley, A. V. Shipilov and Y. T. Chung, “Dancing with strangers: aspiration performance and the Search for underwriting syndicate partners,” Administrative Science Quarterly, vol.50, no.4, pp. 536-375, 2005. [14] Jr. Hair, Multivariate data analysis with readings. Englewood Cliffs, NJ: Prentice-Hall, 1998. [15] Jr. Hair, G. T. M. Hult, C. M. Ringle and M. Sarstedf, A primer on Partial Least Squares Structural Equation Modeling (PLS-SEM)(2nd ed.), USA: SAGE, 2017. [16] K. P. Meera and M. K. Jumana, “Self-efficacy and academic performance
(1)
1. Abdullahi, R., Lihan, S., Carlos, B. S., Bilung, M. K., Mikal, M. K. and Collick, F. (2013). Detection of oprL gene and antibiotic resistance of Pseudomonas aeruginosa from aquaculture environment. European Journal of Experimental Biology 3(6), 148-152. 2. Allen, H. K., Donato, J., Wang, H. H., Cloud-Hansen, K. A., Davies, J. and Handelsman, J. (2010). Call of the wild: Antibiotic resistance genes in natural environments. Nature Reviews Microbiology 8(4), 251259. 3. Barton, J. R. and Fløysand, A. (2010). The political ecology of Chilean salmon aquaculture, 1982-2010: A trajectory from economic development to global sustainability. Global Environmental Change 20(4), 739-752. 4. Bhullar, K., Waglechner, N., Pawlowski, A., Koteva, K., Banks, E. D., Johnston, M. D., Barton H. A. and Wright, G. D. (2012). Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS ONE 7(4), 1-11. 5. Bostock, J., Mcandrew, B., Richards, R., Jauncey, K., Telfer, T., Lorenzen, K., Little, D., Ross, L., Handisyde, N., Gatward, I. and Corner, R. (2010). Aquaculture : Global status and trends. Philosophical Transactions of The Royal Society B (365), 28972912.
(1)
[1] Aboh, R. "Slang and Multiple Methods of Interpreting Sex and Sexual Identity in the Nigerian Novel." The African Symposium: An online journal of the African Educational Research Network, vol. 15, no. 1, 2015, pp. 91-97. [2] Ahmad, Ismail, and Dania Dirani. Orang Macam Kita. Matahari Books Publisher, 2010. [3] Arua, A. E., and Modupe M. A. "The Creation of Students' Academic Slang Expressions in the University of Botswana." Linguistik Online, vol. 9, no. 4, 2009, pp. 15-28. [4] Gan, K. L. "Strategi Penukaran Kod di Kalangan Guru-Guru Cina Berpendidikan Cina dan Bukan Berpendidikan Cina: Satu Kajian Kes." 2000. Universiti Malaya, Kuala Lumpur, Malaysia, MA thesis. [5] Gay, L R, and Airasian P. W. Student Guide for Educational Research: Competencies for Analysis and Application, Third Edition. Merrill Pub. Co, 2003. [6] Julaina, Nopiah, et al. "Elemen Dualisme dalam Peribahasa: Pendekatan Semantik Inkuisitif." MELAYU: Jurnal Antarabangsa Dunia Melayu, vol. 10, no. 1, 2017, pp. 67-89. [7] Julaina, Nopiah, et al. "Refleksi Dualisme ‘Durian-Timun’ dalam Peribahasa Melayu: Pendekatan Semantik Inkuisitif." Jurnal Linguistik, vol. 21, no. 2, Dec. 2017, pp. 001-014. [8] Junaini, Kasdan, and Nor Hashimah Jalaluddin. "Unsur Asam dan Akal Budi Melayu: Analisis Semantik Inkuisitif." 2015, Seminar Meja Bulat: Simpulan Bahasa dan Kognitif Penutur. Kuala Lumpur: Institut Alam dan Tamadun Melayu (ATMA), Universiti Kebangsaan Malaysia. [9] Junaini, Kasdan, et al. "Ikan (Pisces) dalam Peribahasa Melayu: Analisis Semantik Inkuisitif." International Journal of the Malay World and Civilisation (Iman), vol. 4, no. 1, 2016, pp. 31-41. [10] Kamus Pelajar Bahasa Melayu Dewan. 2nd ed., Kuala Lumpur: Dewan Bahasa dan Pustaka, 2016. [11] Kheren Kezia Adolof. "Slang dalam Lagu Black Eyed Peas." 2014. Universitas Sam Ratulangi, Indonesia, MA thesis. [12] Mary Fatimah, Subet, and Muhammad Zaid Daud. "“Giler” Atau “Gile”: Slanga Kata Penguat." Jurnal Bahasa, vol. 16, no. 2, 2016, pp. 293-306, jurnalbahasa.dbp.my/wordpress/wp- content/uploads/2016/12/6-Giler.pdf. [13] Mary Fatimah, Subet, and Muhammad Zaid Daud. "Semantik dan Makna Konotasi dalam Slanga Pelacur." 2017, The International Conference on Language Studies (iCLS) 2017. Kuching (Riverside Majestic Hotel). [14] Mary Fatimah, Subet, and Muhammad Zaid Daud. "Makna Denotatif dan Konotatif dalam Slanga Pelacur." MALTESAS Multi-Disciplinary Research Journal (MIRJO), vol. 3, no. 1, 2018, pp. 29-43. [15] Mohammad Shahrul Nizam Abd Wahid, and Muhammad Zaid Daud. "Individu dan Pemilihan Dialek: Kajian Kes di Kota Samarahan, Sarawak." MALTESAS Multi-Disciplinary Research Journal (MIRJO), vol. 3, no. 3, 2018. [16] Muhammad Zaid, Daud, Mohammad Shahrul Nizam Abd Wahid, & Remmy Gedat. "Eufemisme dalam Bahasa Iban: Satu Kajian Kes di Kampung Lebor, Serian, Sarawak." Borneo Research Journal, vol. 11, no. 1, 2017, pp. 87-105, ajap.um.edu.my [17] Muhammad Zaid, Daud, Mohammad Shahrul Nizam Abd Wahid, & Remmy Gedat. "Penggunaan eufemisme dalam kalangan penutur Iban." International Journal of Language Education and Applied Linguistics (IJLEAL), vol. 8, no. 1, 2018, pp. 27-40. [18] Muhammad Zaid Daud, and Mary Fatimah Subet. "Ayam (Gallus Gallus Domesticus) Dalam Peribahasa Melayu: Analisis Semantik Inkuisitif." Jurnal Kemanusiaan, vol. 16, no. 2, 2018. [19] Muhammad Zaid, Daud. "Domain Rezeki Dalam Peribahasa Melayu Berorientasikan Aves Melalui Perspektif Semantik Inkuisitif." MALTESAS Multi-Disciplinary Research Journal (MIRJO), vol. 3, no. 1, 2018, pp. 19-28. [20] Muhammad Zaid, Daud. "Gallus Gallus Domesticus Dan Paradoxurus Hermaphroditus Dalam Peribahasa Melayu: Analisis Semantik Inkuisitif." Sains Humanika, vol. 10, no. 2, 2018, pp. 41-51. [21] Muhammad Zaid, Daud. "Slanga Kedai Kopi: Satu Analisis Semantik Inkuisitif." 2017. Universiti Malaysia Sarawak, Malaysia, Unpublished final year project. doi:10.31229/osf.io/upt8j [22] Nadia, Suboh. "Aspek Bahasa Melayu dalam Penulisan Blog Berdasarkan Perisisan Pengukuran NEMD Versi 2.0." 2013. Universiti Putra Malaysia, Serdang, Malaysia, MA thesis. [23] Nor Hashimah, Jalaluddin. Pemugaran Penyelidikan Untuk Pemerkasaan Bahasa. 2014. eseminar.dbp.go v.my/ceramahnj/kertas_kerja _norhashimah_jalaluddin.pdf-. Accessed 5 Feb. 2016. [24] Nor Hashimah, Jalaluddin. Semantik Dan Akal Budi Melayu. Penerbit UKM, 2014. [25] Norsimah, Mat Awal. "Semantik." Pengenalan Linguistik: Teoretis dan Aplikasi, Dewan Bahasa dan Pustaka. [26] Nur Afiqah, Wan Mansor, and Nor Hashimah Jalaluddin. "Deria Rasa Dalam Kiasan Melayu: Analisis Semantik Inkuisitif." Journal Pertanika Mahawangsa, vol. 2, no. 1, 2015, pp. 1-16. [27] Oxford, Dictionaries. Colour Oxford Dictionary & Thesaurus. Oxford Univ P, 2011. [28] Setiawan, Nugroho. "Pembentukan Kosakata Slang dalam Komunitas JKBOSS Pada Akun Twitter @JakartaKeras." 2015. Universitas Negeri Yogyakarta, Indonesia, MA thesis. [29] Shahraki, Sara H., and Abbass E. Rasekh. "Check This One out: Analyzing Slang Usage among Iranian Male and Female Teenagers." English Language Teaching, vol. 4, no. 2, 2011, p. 198. [30] Tangaprabu Murthy, Mary Fatimah Subet, & Muhammad Zaid Daud. "Kajian Semantik Inkuisitif dalam Peribahasa Tamil: Imej Tumbuhan." Sains Humanika, vol. 11, no. 1, 2019, p. 73–80. [31] Tay, M. G. "Analisis Linguistik Terhadap Penggunaan Bahasa SMS dalam Kalangan Guru Pelatih." Jurnal Penyelidikan IPG Kampus Batu Lintang, vol. 10, no. 1, 2010, pp. 1-26. [32] Za’ba. Ilmu mengarang Melayu. Dewan Bahasa dan Pustaka. 1965. [33] Zhou, Yanchun, and Yanhong Fan. "A Sociolinguistic Study of American Slang." Theory and Practice in Language Studies, vol. 3, no. 12, 2013. [34] Zuraidah, Mohd Sulaiman, et al. "Slanga Remaja Melayu Dan Cina: Analisis Awal Berdasarkan Teori Relevan." 2012, International Conference On Arts, Social Sciences, And Technology (ICAST2012).
(1)
1. Adeleke, E. O., & Omafuvbe, B. O. (2011). Antibiotic resistance of aerobic mesophilic bacteria isolated from poultry faeces. Research Journal of Microbiology, 6(4), 356-365. 2. Ahmed, W., Sidhu, J. P. S., & Toze, S. (2012). Speciation and frequency of virulence genes of Enterococcus spp. isolated from rainwater tank samples in southeast Queensland, Australia. Environmental Science and Technology, 46(20), 6843-6850. 3. Al-Talib, H., Zuraina, N., Kamarudin, B., & Yean, C. Y. (2015). Genotypic variations of virulent genes in Enterococcus faecium and Enterococcus faecalis isolated from three hospitals in Malaysia. Advances in Clinical and Experimental Medicine, 24(1), 121-127. 4. Arias, C. A., & Murray, B. E. (2012). The rise of the Enterococcus: beyond vancomycin resistance. Nature Reviews Microbiology, 10(4), 266-278. 5. Baldassarri, L., Cecchini, R., Bertuccini, L., Ammendolia, M. G., Iosi, F., Arciola, C. R, … & Creti, R. (2001). Enterococcus spp. produces slime and survives in rat peritoneal macrophages. Medical Microbiology and Immunology, 190(3), 113-120.
(1)
1. Adler, G. H., & Levins, R. (1994). The island syndrome in rodent populations. Quarterly Review of Biology, 69, 473–490. 2. Amat, F. (2008). Exploring female reproductive tactics: Trade-offs between clutch size, egg mass and newborn size in lacertid lizards. Herpetological Journal, 18, 147–153. 3. Andrews, R. M., & Rand, A. S. (1974). Reproductive effort in anoline lizards. Ecology, 55, 1317–1327. 4. Ashmole, N. P. (1963). The regulation of numbers of tropical oceanic birds. Ibis, 103, 458–473. 5. Ashton, K. G. (2005). Life history of a fossorial lizard, Neoseps reynoldsi. Journal of Herpetology, 39, 389–395.
(1)
1. Adriaenssens, E. M., & Cowan, D. A. (2014). Using signature genes as tools to assess environmental viral ecology and diversity. Applied and Environmental Microbiology, 80(15), 4470–4480. https:// doi.org/10.1128/AEM.00878-14 2. Antonova, N. P., Vasina, D. V., Lendel, A. M., Usachev, E. V., Makarov, V. V., Gintsburg, A. L., … Gushchin, V. A. (2019). Broad bactericidal activity of the myoviridae bacteriophage Lysins LysAm24, LysECD7, and LysSi3 against Gram-Negative ESKAPE Pathogens. Viruses, 11(3), 1–16. https://doi.org/10.3390/v11030284 3. Carlton, R. M. (1999). Phage therapy: past history and future prospects. Archivum Immunologiae et Therapiae Experimentalis, 47(5), 267–274. https://doi.org/10.2217/ fvl.15.3 4. Chadha, P., Katare, O. P., & Chhibber, S. (2016). In vivo efficacy of single phage versus phage cocktail in resolving burn wound infection in BALB/c mice. Microbial Pathogenesis, 99, 68–77. https://doi.org/10.1016/j. micpath.2016.08.001 5. Clancy, C. J., Hao, B., Shields, R. K., Chen, L., Perlin, D. S., Kreiswirth, B. N., & Nguyen, M. H. (2014). Doripenem, gentamicin, and colistin, alone and in combinations, against gentamicin-susceptible, kpc-producing Klebsiella pneumoniae strains with various ompk36 genotypes. Antimicrobial Agents and Chemotherapy, 58(6), 3521–3525. https://doi.org/10.1128/AAC.01949-13
(1)
1. Afthanorhan, A., Nazim, A. and Ahmad, S. (2015). Permutation Test, Non-Parametric, and Confidence Set Approaches to Multigroup Analysis for Comparing 2 Groups Using Partial Least Square Structural Equation Modeling (PLS-SEM). International Journal of Mathematics and Statistics Studies, 3(4), 18–34. https://doi.org/10.9734/ AIR/2015/15218 2. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50, 179–211. https:// doi.org/10.1016/0749-5978(91)90020-T 3. Ajzen, I. (2002). Perceived Behavioral Control, SelfEfficacy, Locus of Control, and the Theory of Planned Behavior. Journal of Applied Social Psychology, 32(4), 665–683. https://doi.org/10.1111/ j.1559-1816.2002.tb00236.x 4. Al-Shabib, N.A., Husain, F.M. and Khan, J.M. (2016). Study on food safety concerns, knowledge and practices among university students in Saudi Arabia. Food Control, 73(Part B), 202–208. https://doi.org/10.1016/j.foodcont.2016.08.005 5. Alrabadi, N.I., Al-Massad, M. and Alboqai, O. (2013). Food Safety: A Study of Jordanian Consumer’s Knowledge and Practices. World Applied Sciences Journal, 22(1), 35–40. https://doi.org/10.5829/ idosi.wasj.2013.22.01.2949
(1)
1. Agenda 21 – Projekt Kindergesundheit. Handbuch mit erfolgreichen Bewegungs-, Ernährungsund Mobilitätsbeispielen für Kindergärten und Schulen. Karlsruhe; 2005. (Physical activity sessions 1, 6, 7, 17) 2. Bappert S, Bork Ch, Chounard D, Dreher-Mansur S, Horn A. & Kromer R. Bewegung, Spiel und Sport im Vorschulalter – Erfahren und Begreifen durch Spielen und Sich-Bewegen. Weilheim/ Teck: Bräuer GmbH; 2004. (Physical activity sessions 2, 7, 9, 13-16, 18–22, 25, 26) 3. Blumenthal E. Bewegungsspiele für Vorschulkinder – Ein Beitrag zur Entwicklungsförderung der 3- bis 5-Jährigen. Band 70: Schriftenreihe zur Praxis der Leibeserziehung und des Sports. Schorndorf: Hofmann; 1973. (Physical activity sessions 4, 16, 24) 4. Bundesarbeitsgemeinschaft für Haltungs- und Bewegungsförderung e. V. Bewegungshits für Vorschulkids. 3. Auflage. Wiesbaden: Bundesarbeitsgemeinschaft für Haltungs- und Bewegungsförderung e. V.; 2005. (Physical activity sessions 3, 6, 8, 10, 14, 17, 21, 26). 5. Stein G. Spielgeschichten – wir reisen ins Bewegungsland. Aachen: Meyer & Meyer; 2004. (Physical activity sessions 4, 8, 11, 15) 6. Stiftung Kindergesundheit. Tiger Kids – Bewegungsspiele für den Kindergarten. Remagen: AOK Verlag GmbH; 2004. (Physical activity sessions 4, 24, 25) 7. Zimmer R. Sport und Spiel im Kindergarten. Aachen: Meyer & Meyer; 1992. (Physical activity sessions 5, 12, 13, 23) 8. Zimmer R. Toben macht schlau! Bewegung statt Verkopfung. Freiburg: Herder; 2004. (Physical activity sessions 5, 10, 18, 25) 9. Brustad RJ. Youth in sport: Psychological considerations. In Handbook of Research on Sport Psychology. LK Tennant, editor. New York: Macmillan; 1993. pp. 695-717.
(1)
1. aid e.V. und Deutsche Gesellschaft für Ernährung (DGE). Das beste Essen für Kinder – Empfehlungen für die Ernährung von Kindern.Köln; 2009. 2. aid e.V. Die aid-Ernährungspyramide – Richtig essen lehren undlernen. 4. überarbeitete Auflage. Bonn: aid infodienst Verbraucherschutz,Ernährung, Landwirtschaft e.V.; 2009. 3. aid e.V. Der Pausenbrot-Check für Kita und Schule – damit alle Kinderclever frühstücke. Bonn: aid infodienst Verbraucherschutz, Ernährung,Landwirtschaft e.V.; 2009. 4. aid e.V. und DGE. Essen und Trinken in Tageseinrichtungen für Kinder.3. überarbeitete Auflage. Bonn: aid infodienst Verbraucherschutz,Ernährung, Landwirtschaft e.V. und Deutsche Gesellschaft für Ernährung(DGE)e.V.; 2008. 5. aid e.V. Esspedition Kindergarten – Ernährungserziehung für die Praxis.Stuttgart: Ministerium für Ernährung und Ländlichen Raum und aid infodienst Verbraucherschutz, Ernährung, Landwirtschaft e.V.; 2007. 6. aid e.V. Über Milchpiraten und Limokönige – Ernährungsund Bewegungskartei für den Übergang vom Kindergarten zur Grundschule.2. überarbeitete Auflage. Bonn; 2010. 7. Bayer O, Kries R. von, Strauss A, Mitschek C, Toschke A.M, Hose A, Koletzko B.V. Short- and mid-term effects of a setting based prevention program to reduce obesity risk factors in children: A cluster-randomized trial. Clinical Nutrition. 2009; 28: 122-128. 8. Benton D. Role of parents in the determination of the food preferences of children and the development of obesity. International journal of obesity. 2004; 28: 858-869. 9. European Food Safety Authority (EFSA) - Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific Opinion on establishing Food-Based Dietary Guidelines. EFSA Journal. 2010; 8(3):1460. 10. Eufic Review. Food Based Dietary Guidelines in Europe. Reference Paper of the European Food Information Council. [Internet] 2011 [cited: ] Available from: www.eufic.org. 11. Forschungsinstitut für Kinderernährung Dortmund, Institut an der Rheinischen Friedrich-Wilhelms-Universität Bonn. Empfehlungen für die Ernährung von Kindern und Jugendlichen – Die optimierte Mischkost optimiX®.
(1)
1. Aid e.V. Und Deutsche Gesellschaft für Ernährung (DGE). Das beste Essen für Kinder – Empfehlungen für die Ernährung von Kindern. Köln; 2009. 2. Aid e.V. Die aid-Ernährungspyramide – Richtig essen lehren und lernen. 4. Überarbeitete Auflage. Bonn: aid infodienst Verbraucherschutz, Ernährung, Landwirtschaft e.V.; 2009. 3. Aid e.V. Der Pausenbrot-Check für Kita und Schule – damit alle Kinder clever frühstücken. Bonn: aid infodienst Verbraucherschutz, Ernährung, Landwirtschaft e.V.; 2009. 4. Aid e.V. Und DGE. Essen und Trinken in Tageseinrichtungen für Kinder. 3. Überarbeitete Auflage. Bonn: aid infodienst Verbraucherschutz, Ernährung, Landwirtschaft e.V. Und Deutsche Gesellschaft für Ernährung (DGE)e.V.; 2008. 5. Aid e.V. Esspedition Kindergarten – Ernährungserziehung für die Praxis. Stuttgart: Ministerium für Ernährung und Ländlichen Raum und aid infodienst Verbraucherschutz, Ernährung, Landwirtschaft e.V.; 2007. 6. Aid e.V. Clevere Durstlöscher – Getränke, Baustein zur Ernährungsbildung in der Grundschule. Bonn: aid infodienst Verbraucherschutz, Ernährung, Landwirtschaft e.V.; 2009. 7. Alexy U, Clausen K, Kersting M. Die Ernährung gesunder Kinder und Jugendlicher nach dem Konzept der Optimierten Mischkost. Ernährungs Umschau. Ausgabe 3/08; 2008. 8. Bayer O, Kries R. Von, Strauss A, Mitschek C, Toschke A.M, Hose A, Koletzko B.V. Short- and mid-term effects of a setting based prevention program to reduce obesity risk factors in children: A cluster-randomized trial. Clinical Nutrition. 2009; 28: 122-128. 9. Forschungsinstitut für Kinderernährung Dortmund. Empfehlungen für die Ernährung von Kindern und Jugendlichen – Die optimierte Mischkost optimix®. 5. Aktualisierte Auflage. Dortmund: Institut an der Rheinischen Friedrich-Wilhelms-Universität Bonn; 2010. 10. German Nutrition Society (DGE). Reference values for nutrient intake. 1st edition in English. Frankfurt/Main: Umschau/Braus; 2002. 11. Heseker H, Heseker B. Die Nährwerttabelle. Neustadt an der Weinstraße: Neuer Umschau Buchverlag; 2010. 12. Lobstein T, Baur L, Uauy R. Obesity in children and young people: a crisis in public health. The International Association for the Study of Obesity. Obesity reviews. 2004; 5, suppl. 1: 4-85. 13. Puder JJ, Marques-Vidal P, Schindler C, Zahner L, Niederer I, Bürgi F, Ebeneggern V, Nydegger A, Kriemler S. Effect of multidimensional lifestyle intervention on fitness and adiposity in predominantly migrant preschool children (Ballabeina): cluster randomised controlled trial. BMJ; 2011; 343:d6195. 14. Scaglioni S, Salvioni M, Galimberti C. Influence of parental attitudes in the development of children eating behaviour. British Journal of Nutrition. 2008; 99, Suppl.1: 22-25. 15. Stiftung Kindergesundheit. Tigerkids Kindergarten aktiv Heft 3 – Praxis Teil 1 – Viele Ideen für den Kindergartenalltag, wie Sie den Kindern gesunde Ernährung näherbringen können. 5. Auflage. Remagen: AOK Verlag gmbh; 2010. 16. Stiftung Kindergesundheit. Tigerkids Kindergarten aktiv Heft 4 – Praxis Teil 2 – Viele Ideen für den Kindergartenalltag, wie Sie den Kindern gesunde Ernährung näherbringen können. 5. Auflage. Remagen: AOK Verlag gmbh; 2010.
(1)
[1] Aisyah, A., & Krishnasamy, P. K. N. (2015, June 18). Knowledge transfer via Japanese language: Mechanism for innovations. Retrieved from https://ukm.pure.elsevier.com/en/publications/knowledge-transfer-via-japanese-language-mechanism-for-innovation. [2] Firebase. (2019, November 27). Retrieved from https://en.wikipedia.org/wiki/Firebase. [3] Heil, C. R., Wu, J. S., Lee, J. J., & Schmidt, T. (n.d.). A Review of Mobile Language Learning Applications: Trends, Challenges, and Opportunities. Retrieved from https://polipapers.upv.es/index.php/eurocall/article/view/6402/7213. [4] Introduction to XML. (n.d.). Retrieved from https://www.w3schools.com/xml/xml_whatis.asp. [5] Powell-Morse, A. (2017, November 2). What Is Rapid Application Development (RAD) and How Do You Use It? Retrieved from https://airbrake.io/blog/sdlc/rapid-application- development#targetText=Rapid application development (RAD) describes, planning and sequential design practices. [6] Rouse, M., Walter, D., Rouse, M., & Rouse, M. (n.d.). What is Android Studio? - Definition from WhatIs.com. Retrieved from https://searchmobilecomputing.techtarget.com/definition/Android-Studio
(1)
1. Akhsan N, Sutisna M & Mardji D. 2012. Pengujian model inokulasi Fusarium sp. pada pohon gaharu (Aquilaria microcarpa). Jurnal Kehutanan Tropika Humida 5: 48–55. 2. Azah MAN, Husni SS, Mailina J, Sahrim L, Majid JA & Faridz ZM. 2013. Classification of agarwood (gaharu) by resin content. Journal of Tropical Forest Science 25: 213–219. 3. Barden A, Awang AN, Mulliken T & Song M. 2000. Heart of the Matter. Agarwood Use and Trade and CITES Implementation for Aquilaria malaccensis. TRAFFIC, Cambride. 4. Battacharyya B, Datta A & Barauah HK. 1952. On the formation and development of gaharu in Aquilaria agallocha. Science and Culture 18: 240–243. 5. Chhipa H & Kaushik N. 2017. Fungal and bacterial diversity isolated from Aquilaria malaccensis tree and soil, induces agarospirol formation within 3 months after artificial infection. Frontiers in Microbiology 8: 1–12. https://doi.org/10.3389/fmicb.2017.01286.
(1)
1. Alderwerelt Van Rosenburgh CRWK. 1922. New or noteworthy Malayan Araceae II. Bulletin du Jardin botanique de Buitenzorg ser. 3, 4: 163–229. 2. Boyce PC & Wong SY. 2012. Studies on Homalomeneae (Araceae) of Sumatera I: Homalomena hypsiantha, a distinctive new species of the Chamaecladon Supergroup. Webbia 67(2): 147–150. 3. Boyce PC & Wong SY. 2013. Studies on Homalomeneae (Araceae) of Sumatera II: Homalomena limnogena, a novel species from Pulau Belitung, and the first record of colonial helophytism in the Homalomena Chamaecladon Supergroup. Webbia 68(2): 77–79. 4. Boyce PC & Wong SY. 2016a. Studies on Homalomeneae (Araceae) of Sumatera IV: Three new species of ornamental Homalomena [Chamaecladon clade]. Willdenowia 46(2): 253–260. 5. Boyce PC & Wong SY. 2016b. Studies on Homalomeneae (Araceae) of Sumatera V – Homalomena squamisdraconis, a new species for the Chamaecladon Clade. Aroideana 39(2): 121–125.
(1)
1. Ali, I.; Peng, C.; Khan, Z.M.; Naz, I.; Sultan, M.; Ali, M.; Abbasi, I.A.; Islam, T.; Ye, T. Overview of microbes based fabricated biogenic nanoparticles for water and wastewater treatment. Journal Environmental Management 2019, 230, 128-150, https://doi.org/10.1016/j.jenvman.2018.09.073. 2. Zhu, L.; Li, H.; Xia, P.; Liu, Z.; Xiong, D. Hierarchical ZnO Decorated with CeO2 Nanoparticles as the Direct Z-Scheme Heterojunction for Enhanced Photocatalytic Activity. ACS Applied Materials & Interfaces 2018, 10, 39679-39687, https://doi.org/10.1021/acsami.8b13782. 3. Hoang Thi, T.T.; Cao, V.D.; Nguyen, T.N.Q.; Hoang, D.T.; Ngo, V.C.; Nguyen, D.H. Functionalized mesoporous silica nanoparticles and biomedical applications. Materials Science and Engineering: C 2019, 99, 631-656, https://doi.org/10.1016/j.msec.2019.01.129. 4. Pang, W.Y.; Ahmad, A.L.; Zaulkiflee, N.D. Antifouling and antibacterial evaluation of ZnO/MWCNT dual nanofiller polyethersulfone mixed matrix membrane. Journal Environmental Management 2019, 249, 109358, https://doi.org/10.1016/j.jenvman.2019.109358. 5. Besha, A.T.; Liu, Y.; Bekele, D.N.; Dong, Z.; Naidu, R.; Gebremariam, G.N. Sustainability and environmental ethics for the application of engineered nanoparticles. Environmental Science & Policy 2020, 103, 85-98, https://doi.org/10.1016/j.envsci.2019.10.013. 6. Yu, J.; Jiang, C.; Guan, Q.; Ning, P.; Gu, J.; Chen, Q.; Zhang, J.; Miao, R. Enhanced removal of Cr(VI) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth. Chemosphere 2018, 195, 632-640, https://doi.org/10.1016/j.chemosphere.2017.12.12. 7. Danielsson, K.; Gallego-Urrea, J.A.; Hassellov, M.; Gustafsson, S.; Jonsson, C.M. Influence of organic molecules on the aggregation of TiO2 nanoparticles in acidic conditions. Journal of Nanoparticle Research 2017, 19, 133, http://doi.org/10.1007/s11051-017-3807-9. 8. Arenas-Lago, D.; Monikh, F.A.; Vijver, M.G.; Peijnenburg, W.J. Dissolution and aggregation kinetics of zero valent copper nanoparticles in (simulated) natural surface waters: Simultaneous effects of pH, NOM and ionic strength. Chemosphere 2019, 226, 841-850, https://doi.org/10.1016/j.chemosphere.2019.03.190. 9. Najim, N.; Rusdi, R.; Hamzah, A.S.; Shaameri, Z.; Mat Zain, M.; Kamarulzaman, N. Effects of the absorption behaviour of ZnO nanoparticles on cytotoxicity measurements. Journal of Nanomaterials 2014, 2014, http://doi.org/10.1155/2014/694737. 10. Carbery, M.; O’Connor, W.; Palanisami, T. Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environment International 2018, 115, 400-409, https://doi.org/10.1016/j.envint.2018.03.007. 11. Jia, H.-R.; Zhu, Y.-X.; Duan, Q.-Y.; Chen, Z.; Wu, F.-G. Nanomaterials meet zebrafish: Toxicity evaluation and drug delivery applications. Journal Controlled Release 2019, 311-312, 301-318, https://doi.org/10.1016/j.jconrel.2019.08.022. 12. Dekkers, S.; Ma-Hock, L.; Lynch, I.; Russ, M.; Miller, M.R.; Schins, R.P.F.; Keller, J.; Römer, I.; Küttler, K.; Strauss, V.; De Jong, W.H.; Landsiedel, R.; Cassee, F.R. Differences in the toxicity of cerium dioxide nanomaterials after inhalation can be explained by lung deposition, animal species and nanoforms. Inhalation Toxicology. 2018, 30, 273-286, https://doi.org/10.1080/08958378.2018.1516834. 13. Oliveira, A.G.; Andrade, J.d.L.; Montanha, M.C.; Lima, S.M.; Andrade, L.H.d.C.; Winkler Hechenleitner, A.A.; Pineda, E.A.G.; Oliveira, D.M.F.d. Decontamination and disinfection of wastewater by photocatalysis under UV/visible light using nano-catalysts based on Ca-doped ZnO. Journal of Environmental Management 2019, 240, 485-493, https://doi.org/10.1016/j.jenvman.2019.03.124. 14. Liu, Z.; Wang, C.; Hou, J.; Wang, P.; Miao, L.; Lv, B.; Yang, Y.; You, G.; Xu, Y.; Zhang, M.; Ci, H. Aggregation, sedimentation, and dissolution of CuO and ZnO nanoparticles in five waters. Environmental Science and Pollution Research 2018, 25, 31240-31249, https://doi.org/10.1007/s11356-018-3123-7. 15. Sengul, A.B.; Asmatulu, E. Toxicity of metal and metal oxide nanoparticles: a review. Environmental Chemistry Letters 2020, 18, 1659–1683, https://doi.org/10.1007/s10311-020-01033-6. 16. Wahab, R.; Khan, F.; Lutfullah; Singh, R.B.; Kaushik, N.K.; Ahmad, J.; Siddiqui, M.A.; Saquib, Q.; Ali, B.A.; Khan, S.T.; Musarrat, J.; Al-Khedhairy, A.A. Utilization of photocatalytic ZnO nanoparticles for deactivation of safranine dye and their applications for statistical analysis. Physica E: Low-dimensional Systems and Nanostructures 2015, 69, 101-108, https://doi.org/10.1016/j.physe.2015.01.005. 17. Jiang, J.; Pi, J.; Cai, J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorganic Chemistry & Applications 2018, 2018, https://doi.org/10.1155/2018/1062562. 18. Wahab, R.; Khan, F.; Mishra, Y.K.; Musarrat, J.; Al-Khedhairy, A.A. Antibacterial studies and statistical design set data of quasi zinc oxide nanostructures. RSC Advances 2016, 6, 32328-32339, https://doi.org/10.1039/C6RA05297E. 19. Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Letters 2015, 7, 219-242, https://doi.org/10.1007/s40820-0150040-x. 20. Areerachakul, N.; Sakulkhaemaruethai, S.; Johir, M. A. H.; Kandasamy, J.; Vigneswaran, S. Photocatalytic degradation of organic pollutants from wastewater using aluminium doped titanium dioxide. Journal of Water Process Engineering 2019, 27, 177-184, https://doi.org/10.1016/j.jwpe.2018.12.006. 21. Birben, N.C.; Paganini, M.C.; Calza, P.; Bekbolet, M. Photocatalytic degradation of humic acid using a novel photocatalyst: Ce-doped ZnO. Photochemical & Photobiological Sciences 2017, 16, 24-30, https://doi.org/10.1039/C6PP00216A. 22. Bel Hadjltaief, H.; Ben Zina, M.; Galvez, M.E.; Da Costa, P. Photocatalytic degradation of methyl green dye in aqueous solution over natural clay-supported ZnO–TiO2 catalysts. Journal of Photochemistry & Photobiology A: Chemistry 2016, 315, 25-33, https://doi.org/10.1016/j.jphotochem.2015.09.008. 23. Philippe, A.; Schaumann, G.E. Interactions of Dissolved Organic Matter with Natural and Engineered Inorganic Colloids: A Review. Environmental Science & Technology 2014, 48, 8946-8962, http://doi.org/10.1021/es502342r. 24. Dziedzic, J.; Wodka, D.; Nowak, P.; Warszyński, P.; Simon, C.; Kumakiri, I. Photocatalytic degradation of the humic species as a method of their removal from water - comparison of UV and artificial sunlight irradiation. Physicochemical Problems of Mineral Processing 2010, 45(1), 15-28. 25. Ghaneian, M.T.; Morovati, P.; Ehrampoush, M.H.; Tabatabaee, M. Humic acid degradation by the synthesized flower-like Ag/ZnO nanostructure as an efficient photocatalyst. Journal of Environmental Health Science and Engineering 2014, 12, 138, http://doi.org/10.1186/s40201-014-0138-y. 26. Tang, W.-W.; Zeng, G.-M.; Gong, J.-L.; Liang, J.; Xu, P.; Zhang, C.; Huang, B.-B. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review. Science of the Total Environment 2014, 468-469, 1014-1027, http://dx.doi.org/10.1016/j.scitotenv.2013.09.044. 27. Wang, J.; Zhou, Y.; Li, A.; Xu, L. Adsorption of humic acid by bi-functional resin JN-10 and the effect of alkali-earth metal ions on the adsorption. Journal of Hazardous Materials 2010, 176, 1018-1026, https://doi.org/10.1016/j.jhazmat.2009.11.142. 28. Maiga, D.T.; Nyoni, H.; Nkambule, T.T.; Mamba, B.B.; Msagati, T.A.M. Impact of zinc oxide nanoparticles in aqueous environments: influence of concentrations, natural organic matter and ionic strength. Inorganic and Nano-Metal Chemistry 2020, 50, 680-692, https://doi.org/10.1080/24701556.2020.1724145. 29. Zhao, Y.; Zhou, W.; Wang, Y.; Gao, B.; Xu, X.; Zhao, Y. The effect of humic acid and bovine serum albumin on the adsorption and stability of ZnO nanoparticles on powdered activated carbon. Journal of Cleaner Production 2020, 251, 119695, https://doi.org/10.1016/j.jclepro.2019.119695. 30. Huang, J.; Liu, S.; Kuang, L.; Zhao, Y.; Jiang, T.; Liu, S.; Xu, X. Enhanced photocatalytic activity of quantum-dot-sensitized one-dimensionally-ordered ZnO nanorod photocatalyst. Journal of Environmental Sciences 2013, 25, 2487-2491, http://doi.org/10.1016/S1001-0742(12)60330-1. 31. Shirzad Siboni, M.; Samadi, M.T.; Yang, J.K.; Lee, S.M. Photocatalytic reduction of Cr(VI) and Ni(II) in aqueous solution by synthesized nanoparticle ZnO under ultraviolet light irradiation: a kinetic study. Environmental Technology 2011, 32, 1573-1579, http://doi.org/10.1080/09593330.201. 32. Zhou, J.; Xu, N.S.; Wang, Z.L. Dissolving Behavior and Stability of ZnO Wires in Biofluids: A Study on Biodegradability and Biocompatibility of ZnO Nanostructures. Advanced Materials 2006, 18, 2432-2435, https://doi.org/10.1002/adma.200600200. 33. Liu, W.; Li, Y.; Liu, F.; Jiang, W.; Zhang, D.; Liang, J. Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C3N4: Mechanisms, degradation pathway and DFT calculation. Water Research 2019, 151, 8-19, https://doi.org/10.1016/j.watres.2018.11.084. 34. Ma, H.; Brennan, A.; Diamond, S.A. Photocatalytic reactive oxygen species production and phototoxicity of titanium dioxide nanoparticles are dependent on the solar ultraviolet radiation spectrum. Environmental Toxicology & Chemistry 2012, 31, 2099-2107, http://doi.org/10.1002/etc.1916. 35. Bian, S.-W.; Mudunkotuwa, I.A.; Rupasinghe, T.; Grassian, V.H. Aggregation and Dissolution of 4 nm ZnO Nanoparticles in Aqueous Environments: Influence of pH, Ionic Strength, Size, and Adsorption of Humic Acid. Langmuir 2011, 27, 6059-6068, https://doi.org/10.1021/la200570n. 36. Neale, P.A.; Jämting, Å.K.; O’Malley, E.; Herrmann, J.; Escher, B.I. Behaviour of titanium dioxide and zinc oxide nanoparticles in the presence of wastewater-derived organic matter and implications for algal toxicity. Environmental Science: Nano 2015, 2, 86-93, http://doi.org/10.1039/C4EN00161C. 37. Peng, Y.-H.; Tso, C.-p.; Tsai, Y.-c.; Zhuang, C.-m.; Shih, Y.-h. The effect of electrolytes on the aggregation kinetics of three different ZnO nanoparticles in water. Science of the Total Environment 2015, 530-531, 183-190, http://doi.org/10.1016/j.scitotenv.2015.05.059, 38. Peng, Y.-H.; Tsai, Y.-C.; Hsiung, C.-E.; Lin, Y.-H.; Shih, Y.-h. Influence of water chemistry on the environmental behaviors of commercial ZnO nanoparticles in various water and wastewater samples. Journal of Hazardous Materials 2017, 322, 348-356, http://doi.org/10.1016/j.jhazmat.2016.10.003. 39. Degenkolb, L.; Kaupenjohann, M.; Klitzke, S. The Variable Fate of Ag and TiO 2 Nanoparticles in Natural Soil Solutions—Sorption of Organic Matter and Nanoparticle Stability. Water, Air, & Soil Pollution 2019, 230, 1-14, https://doi.org/10.1007/s11270-019-4123-z. 40. Velintine, V.; Siong, W.B.; Chin, S.; Kok, K.Y. Transformation of zinc oxide nanoparticles under environmentally relevant conditions: influence of pH and ionic strength. Transactions on Science and Technology 2017, 4(2), 123-136, http://tost.unise.org/pdfs/vol4/no2/4x2x123x136.pdf 41. Zhu, M.; Wang, H.; Keller, A.A.; Wang, T.; Li, F. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths. Science of the Total Environment 2014, 487, 375-380, https://doi.org/10.1016/j.scitotenv.2014.04.036. 42. Wang, Z.; Cao, M.; Cai, W.; Zeng, H. The effect of humic acid and fulvic acid on adsorption-desorption behavior of copper and zinc in the yellow soil. AIP Conference Proceedings. 2017, 1820, 040027, https://doi.org/10.1063/1.4977299. 43. Asgari, G.; Ebrahimi, A.; Mohammadi, A.; Ghanizadeh, G. The investigation of humic acid adsorption from aqueous solutions onto modified pumice with hexadecyl trimethyl ammonium bromide. International Journal of Environmental Health Engineering 2013, 2, 20-20, https://doi.org/10.4103/2277-9183.110176. 44. Javanshah, A.; Saidi, A. Determination of humic acid by spectrophotometric analysis in the soils. International Journal of Advanced Biotechnology and Research 2016, 7, 19-23. 45. Herbert, N.; Affonso Celso, G.; Marcelo Angelo, C.; Gustavo Ferreira, C.; Daniel, S.; Marcelo Gonçalves dos, S.; Dionir Luiz, B.; Juliano, Z. Adsorption of Cu (II) and Zn (II) from Water by Jatropha curcas L. as Biosorbent. Open Chemistry 2016, 14, 103-117, https://doi.org/10.1515/chem-2016-0010. 46. Şentürk, İ.; Alzein, M. Adsorption of Acid Violet 17 Onto Acid-Activated Pistachio Shell: Isotherm, Kinetic and Thermodynamic Studies. Acta Chimica Slovenica 2020, 67, 55-69, http://doi.org/10.17344/acsi.2019.5195. 47. Weber, T.W.; Chakravorti, R.K. Pore and solid diffusion models for fixed-bed adsorbers. AICHE Journal 1974, 20, 228-238, https://doi.org/10.1002/aic.690200204. 48. Desta, M.B. Batch sorption experiments: Langmuir and Freundlich isotherm studies for the adsorption of textile metal ions onto teff straw (Eragrostis tef) agricultural waste. Journal of Thermodynamics 2013, 2013, 375830, https://doi.org/10.1155/2013/375830. 49. Domingos, R.F.; Rafiei, Z.; Monteiro, C.E.; Khan, M.A.K.; Wilkinson, K.J. Agglomeration and dissolution of zinc oxide nanoparticles: role of pH, ionic strength and fulvic acid. Environmental Chemistry 2013, 10, 306-312, http://doi.org/10.1071/EN12202. 50. Dai, H.; Sun, T.; Han, T.; Guo, Z.; Wang, X.; Chen, Y. Aggregation behavior of zinc oxide nanoparticles and their biotoxicity to Daphnia magna: Influence of humic acid and sodium alginate. Environmental Research 2020, 191, 110086, https://doi.org/10.1016/j.envres.2020.110086. 51. Gasim, M.B.; Khalid, N.A.; Muhamad, H. The influence of tidal activities on water quality of Paka River Terengganu, Malaysia. Malaysian Journal of Analytical Sciences 2015, 19, 979-990, http://www.ukm.my/mjas/v19_n5/pdf/MuhammadBarzani_19_5_9.pdf 52. Dong, Y.-n.; Li, X.; Huang, Y.; Wang, H.; Li, F. Coagulation and Dissolution of Zinc Oxide Nanoparticles in the Presence of Humic Acid Under Different pH Values. Environmental Engineering Science 2016, 33, 347-353, http://doi.org/10.1089/ees.2015.0396. 53. Wang, X.; Sun, T.; Zhu, H.; Han, T.; Wang, J.; Dai, H. Roles of pH, cation valence, and ionic strength in the stability and aggregation behavior of zinc oxide nanoparticles. Journal of Environmental Management. 2020, 267, 110656, https://doi.org/10.1016/j.jenvman.2020.110656. 54. Singh, R.; Dutta, S. The role of pH and nitrate concentration in the wet chemical growth of nano-rods shaped ZnO photocatalyst. Nano-Structures & Nano-Objects 2019, 18, 100250, https://doi.org/10.1016/j.nanoso.2019.01.009. 55. Han, J.; Qiu, W.; Gao, W. Potential dissolution and photo-dissolution of ZnO thin films. Journal of Hazardous Materials 2010, 178, 115-122, http://doi.org/10.1016/j.jhazmat.2010.01.050. 56. Han, Y.; Kim, D.; Hwang, G.; Lee, B.; Eom, I.; Kim, P.J.; Tong, M.; Kim, H. Aggregation and dissolution of ZnO nanoparticles synthesized by different methods: Influence of ionic strength and humic acid. Colloids and Surfaces: Physicochemical Engineering Aspects 2014, 451, 7-15, http://doi.org/10.1016/j.colsurfa.2014.03.030. 57. Oskoei, V.; Dehghani, M.H.; Nazmara, S.; Heibati, B.; Asif, M.; Tyagi, I.; Agarwal, S.; Gupta, V.K. Removal of humic acid from aqueous solution using UV/ZnO nano-photocatalysis and adsorption. Journal of Molecular Liquids 2016, 213, 374-380, http://dx.doi.org/10.1016/j.molliq.2015.07.052. 58. Khan, R.; Inam, M.A.; Park, D.R.; Zam Zam, S.; Shin, S.; Khan, S.; Akram, M.; Yeom, I.T. Influence of Organic Ligands on the Colloidal Stability and Removal of ZnO Nanoparticles from Synthetic Waters by Coagulation. Processes 2018, 6, 170, http://dx.doi.org/10.3390/pr6090170. 59. Mekonnen, E.; Yitbarek, M.; Soreta, T.R. Kinetic and thermodynamic studies of the adsorption of Cr(VI) onto some selected local adsorbents. South African Journal of Chemistry 2015, 68, 45-52, http://doi.org/10.17159/0379-4350/2015/v68a7. 60. Odzak, N.; Kistler, D.; Sigg, L. Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments. Environmental Pollution 2017, 226, 1-11, http://doi.org/10.1016/j.envpol.2017.04.006. 61. Li, M.; Lin, D.; Zhu, L. Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environmental Pollution 2013, 173, 97-102, http://doi.org/10.1016/j.envpol.2012.10.026. 62. Pansamut, G.; Charinpanitkul, T.; Suriyawong, A. Removal of humic acid by photocatalytic process: effect of light intensity. Engineering Journal 2013, 17, 25-32, http://doi.org/10.4186/ej.2013.17.3.25. 63. Goodhead, R.M.; Johnston, B.D.; Cole, P.A.; Baalousha, M.; Hodgson, D.; Iguchi, T.; Lead, J.R.; Tyler, C.R. Does natural organic matter increase the bioavailability of cerium dioxide nanoparticles to fish? Environmental Chemistry 2015, 12, 673-682, http://doi.org/10.1071/EN15003.
(1)
[1] American Cancer Society. (2016). Cancer facts & figure 2016. American Cancer Society, 1-72. [2] Health Ministry and World Health Organization. (2015). Cancer facts and figures in Malaysia. [Online]. Available: http://www.themalaymailonline.com. [Accessed: 2-Nov-2017]. [3] Siegel, R. L., Miller, K. D., & Jemal, A. (2016). Cancer statistics, 2016. A Cancer Journal for Clinicians, 66, 7-30. [4] American Cancer Society. (2018). Cancer facts & figures 2018. [Online]. Available: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts -figures-2018.html. [Accessed: 6-Jun-2017]. [5] Cancer Research Malaysia. (2015). Facts and figure for breast cancer. [Online]. Available: http://www.cancerresearch.my/research/breast-cancer/. [Accessed: 6-Jun-2017]. [6] The Start News Online. (2016). About 100,000 Malaysians suffer from cancer each year. [Online]. Available: http://www.thestar.com.my/news/nation/2016/04/03 /about-100000-malaysians-suffer-from-cancer-each-year/. [Accessed: 3-Apr-2016]. [7] Ministry of Health Malaysia. (2017). National Strategic Plan for Cancer Control Programme 2016-2020. Putrajaya, Malaysia, 1-122. [8] Komen, S. G. (2013). Facts for life: what is breast cancer? [Online]. Available: http://ww5.komen.org/uploadedFiles/_Komen/Content/About_Breast_Cancer/Tools_and_Resources/Fact_Sheets_and_Breast_Self_Awareness_Cards/What%20is%20Breast%20Cancer.pdf. [Accessed: 2-Jul-2017]. [9] Radiological Society of North America Inc. (2017). Mammography. [Online]. Available: https://www.radiologyinfo.org/en/info.cfm?pg=mammo. [Accessed: 2-Jul-2017]. [10] Brennan, M., & Houssami, N. (2016). Discussing the benefits and harms of screening mammography. Maturitas, 92, 150-153. [11] Tartar, M., Comstock, C. E., & Kipper, M. S. (2008). Breast cancer imaging: a multidisciplinary, multimodality approach. Philadelphia, United States of America: Elsevier Health Sciences. [12] Hang, J. A., Sim, L., & Zakaria, Z. (2017). Non-invasive breast cancer assessment using magnetic induction spectroscopy technique. International Journal of Integrated Engineering, 9(2), 54-60. [13] Personal Health Cart. (2012). Different types of breast lumps. [Online]. Available: http://www.personalhealthcart.com/different-types-of-breast-lumps/. [Accessed: 24-Sep-2016]. [14] Winters, D. W., Shea, J. D., Kosmas, P., Van Veen, B. D., & Hagness, S. C. (2009). Three-dimensional microwave breast imaging: Dispersive dielectric properties estimation using patient-specific basis functions. IEEE Transactions on Medical Imaging, 28(7), 969-981. doi: 10.1109/tmi.2008.2008959 [15] Mashal, A., Sitharaman, B., Li, X., Avti, P. K., Sahakian, A. V., Booske, J. H., & Hagness, S. C. (2010). Toward carbon-nanotube-based theranostic agents for microwave detection and treatment of breast cancer: Enhanced dielectric and heating response of tissue-mimicking materials. IEEE Transactions on Biomedical Engineering, 57(8), 1831-1834. doi: 10.1109/tbme.2010.2042597 [16] Takenaka, T., Moriyama, T., Ping, K. A. H., & Yamasaki, T. (2010). Microwave breast imaging by the filtered forward-backward time-stepping method. Paper presented at the URSI International Symposium on Electromagnetic Theory. [17] Li, Y., Porter, E., Santorelli, A., Popović, M., & Coates, M. (2017). Microwave breast cancer detection via cost-sensitive ensemble classifiers: Phantom and patient investigation. Biomedical Signal Processing and Control, 31, 366-376. [18] Neira, L. M., Van Veen, B. D., & Hagness, S. C. (2017). High-resolution microwave breast imaging using a 3-D inverse scattering algorithm with a variable-strength spatial prior constraint. IEEE Transactions on Antennas and Propagation, 65(11), 6002-6014. [19] Gao, F., Van Veen, B. D., & Hagness, S. C. (2015). Sensitivity of the distorted born iterative method to the initial guess in microwave breast imaging. IEEE Transactions on Antennas and Propagation, 63(8), 3540-3547. [20] Fhager, A., Hashemzadeh, P., & Persson, M. (2006). Reconstruction quality and spectral content of an electromagnetic time-domain inversion algorithm. IEEE Transactions on Biomedical Engineering, 53(8), 1594-1604. doi: 10.1109/tbme.2006.878079 [21] Maponi, P., Recchioni, M. C., & Zirilli, F. (1997). The use of optimization in the reconstruction of obstacles from acoustic or electromagnetic scattering data. In Biegler, L. T., Coleman, T. F., Conn, A. R., & Santosa, F. N. (Eds.), Large-scale optimization with applications (pp. 81-100). New York: Springer. [22] Takenaka, T., Jia, H., & Tanaka, T. (2000). Microwave imaging of electrical property distributions by a forward-backward time-stepping method. Journal of Electromagnetic Waves and Applications, 14(12), 1609-1626. [23] Ping, K. A. H., Moriyama, T., Takenaka,T., & Tanaka, T. (2009). Two-dimensional Forward-Backward Time-Stepping approach for tumor detection in dispersive breast tissues. Paper presented at the Mediterrannean Microwave Symposium. [24] Ng, S. W., Ping, K. A. H., Sahrani, S., Marhaban, M. H., Sariphan, M. I., Moriyama, T., & Takenaka, T. (2016). Preliminary results on estimation of the dispersive dielectric properties of an object utilizing Frequency-Dependent Forward-Backward Time-Stepping technique. Progress In Electromagnetics Research 49, 61-68. [25] Yong, G., Ping, K. A. H., Chie, A. S. C., Ng, S. W., & Masri, T. (2015). Preliminary study of Forward-Backward Time-Stepping technique with edge-preserving regularization for object detection applications. Paper presented at the International Conference on BioSignal Analysis, Processing and Systems. [26] Yee, K. S. (1966). Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Transactions on Antennas and Propagation, 14(3), 302-307. [27] Schneide, J. B. (2016). Understanding the finite-difference time-domain method. School of electrical engineering and computer science, Washington State University. [28] Okada, N., & Cole, J. B. (2014). Electromagnetic imaging of two-dimensional geometries by multipulse interference using the inverse FDTD method. Advances in Optical Technologies, 2014, 1-10. [29] Narayan, S., Divya, K. M., & Kanth, V. K. (2017). FDTD modeling of EM field inside microwave cavities. Singapore: Springer Nature Singapore Pte Ltd. [30] De Boor, C. (1978). A practical guide to spline. New York: Springer-Verlag. [31] Späth, H. (1995). Two dimensional spline interpolation algorithms. Wellesley, United States: AK Peters. [32] Schumaker, L. L. (2015). Spline functions: Computational methods. Philadelphia, United Staes of America: Society for Industrial and Applied Mathematics. [33] Han, D. Y. (2013). Comparison of commonly used image interpolation methods. Paper presented at the Proceedings of the 2nd International Conference on Computer Science and Electronics Engineerings. [34] Singh, M. R., & Bhide, A. S. (2016). A review of image retrieval using different types of interpolation techniques. International Research Journal of Engineering and Technology, 3(12), 1423-1426. [35] Feinberg, B. (2005). Breast cancer answer: Understanding and fighting breast cancer. Canada: Joney and Bartlett Publishers. [36] Mammary gland. (2017). Mammary gland. [Online]. Available: https://en.wikipedia. org /wiki/Mammary_gland. [Accessed: 26-Jun-2017]. [37] Thibodeau, G. A., & Patton, K. T. (1992). Structure & function of the body. United States of America: Elsevier Health Sciences. [38] Stöppler, M. C. (2015). Breast cancer prevention. [Online]. Available: http://www.medicine net.com/breast_cancer_prevention/article.htm. [Accessed: 27-Jun-2017]. [39] Sauter, E. R., & Daly, M. B. (2010). Breast cancer risk reduction and early detection. Boston, United States of America: Springer. [40] Byrne, C., Schairer, C., Brinton, L. A., Wolfe, J., Parekh, N., Salane, M., Carter, C., & Hoover, R. (2001). Effects of mammographic density and benign breast disease on breast cancer risk (United States). Cancer Causes & Control, 12(2), 103-110. [41] Hartmann, L. C., Sellers, T. A., Frost, M. H., Lingle, W. L., Degnim, A. C., Ghosh, K., Vierkant, R. A., Maloney, S. D., Pankratz, V. S., Hillman, D. W., & Suman, V. J. (2005). Benign breast disease and the risk of breast cancer. New England Journal of Medicine, 353(3), 229-237. [42] Lewison, E. F., & Lyons, J. G. (1953). Relationship between benign breast disease and cancer. AMA archives of surgery, 66(1), 94-114. [43] Boyd, N. F., Rommens, J. M., Vogt, K., Lee, V., Hopper, J. L., Yaffe, M. J., & Paterson, A. D. (2005). Mammographic breast density as an intermediate phenotype for breast cancer. The Lancet Oncology, 6(10), 798-808. [44] Van der Waal, D., Ripping, T. M., Verbeek, A. L., & Broeders, M. J. (2017). Breast cancer screening effect across breast density strata: A case–control study. International Journal of Cancer, 140(1), 41-49. [45] Silva, W. R., & Menotti, D. (2012). Classification of mammograms by the breast composition. Paper presented at the Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition. [46] Boyd, N. F., Lockwood, G. A., Byng, J. W., Tritchler, D .L., & Yaffe, M. J. (1998). Mammographic densities and breast cancer risk. Cancer Epidemiology and Prevention Biomarkers, 7(12), 1133-1144. [47] Masala, G., Ambrogetti, D., Assedi, M., Bendinelli, B., Caini, S., & Palli, D. (2017). Mammographic breast density and breast cancer risk in a Mediterranean population: a nested case–control study in the EPIC Florence cohort. Breast Cancer Research and Treatment, 1-7. [48] Jones, B. A., Claye, E., Philpotts, L., Hooley, R., Silber, A., & Epstein, L. (2017). Risk Factors for high risk breast density patterns in Hispanic/Latinas living in the Northeast, US. [Online]. Available: http://cancerres.aacrjournals.org/content/77/4_ Supplement/P2-13-02. [Accessed: 24-Sep-2018]. [49] Ng, K. H., & Lau, S. (2015). Vision 20/20: Mammographic breast density and its clinical applications. Medical Physics, 42(12), 7059-7077. [50] Wolfe, J. N. (1976). Breast patterns as an index of risk for developing breast cancer. American Journal of Roentgenology, 126(6), 1130-1137. [51] Wolfe, J. N. (1976). Risk for breast cancer development determined by mammographic parenchymal pattern. Cancer, 37(5), 2486-2492. [52] D’orsi, C. J., Bassett, L. W., & Feig, S. (1998). Breast imaging reporting and data system (BI-RADS). In Lee, C. I., Lehman, C. D., & Bassett, L. W. (Eds.), Breast imaging (pp. 85-108). New York, United States of America: Oxford University Press. [53] Sonnenschein, M., & Waldherr, C. (2017). BI-RADS reporting for breast tomosynthesis (3D-mammography). In Atlas of Breast Tomosynthesis (pp. 7-57). Switzerland: Springer. [54] Liberman, L., & Menell, J. H. (2002). Breast imaging reporting and data system (BI-RADS). Radiologic Clinics of North America, 40(3), 409-430. [55] Bell, D. J., & Weerakkody, Y. (2015). Breast imaging-reporting and data system (BIRADS). [Online]. Available: https://radiopaedia.org/articles/breast-imaging-reporting-and-data-sys tem-birads. [Accessed: 28-Jun-2017]. [56] Strigel, R. M., Burnside, E. S., Elezaby, M., Fowler, A. M., Kelcz, F., Salkowski, L. R., & DeMartini, W. B. (2017). Utility of BI-RADS assessment category 4 subdivisions for screening breast MRI. American Journal of Roentgenology, 208(6), 1392-1399. [57] Taplin, S. H., Ichikawa, L. E., Kerlikowske, K., Ernster, V. L., Rosenberg, R. D., Yankaskas, B. C., Carney, P. A., Geller, B. M., Urban, N., Dignan, M. B., & Barlow, W. E. (2002). Concordance of breast imaging reporting and data system assessments and management recommendations in screening mammography. Radiology, 222(2), 529-535. [58] Berg, W. A., D'Orsl, C. J., Bassett, L. W., Beam, C. A., Lewls, R. S., & Crewson, P. E. (2002). Does training in the Breast Imaging Reporting and Data System (BI-RADS) improve biopsy recommendations or feature analysis agreement with experienced breast imagers at mammography? Radiology, 224(3), 871-880. [59] De Oliveira, J. E., Machado, A. M., Chavez, G. C., Lopes, A. P. B., Deserno, T. M., & Araújo, A. D. A. (2010). MammoSys: A content-based image retrieval system using breast density patterns. Computer Methods and Programs in Biomedicine, 99(3), 289-297. [60] Conceicao, R. C., O'Halloran, M., Glavin, M., & Jones, E. (2011). Numerical modelling for ultra wideband radar breast cancer detection and classification. Progress In Electromagnetics Research B, 34, 145-171. [61] Dixon, J. M. (Ed.). (2012). ABC of breast diseases (3rd ed.). Edinburgh, Scotland: John Wiley & Sons. [62] Mariotti, C., & Sánchez, L. J. (2013). Non-invasive and invasive breast cancer. In Valeri, A., Bergamini, C., Agresta, F., & Martellucci, J. (Eds.), What’s new in surgical oncology (pp. 229-254). Italy: Springer. [63] West, A. K. V., Wullkopf, L., Christensen, A., Leijnse, N., Tarp, J. M., Mathiesen, J., Erler, J. T., & Oddershede, L. B. (2017). Division induced dynamics in non-invasive and invasive breast cancer. Biophysical Journal, 112(3), 123a. [64] American Cancer Society. (2017). Breast cancer. [Online]. Available: https://www.cancer.org/cancer/breast-cancer.html. [Accessed: 29-Jun-2017]. [65] Visual Dictionary. (2017). Breast cancer: be well informed for a rosy future! [Online]. Available: http://www.ikonet.com/en/visualdictionary/static/us/breast_cancer_1. [Accessed: 28-Jun-2017]. [66] Amin, M. B., Greene, F. L., Edge, S. B., Compton, C. C., Gershenwald, J. E., Brookland, R. K., Meyer, L., Gress, D. M., Byrd, D. R., & Winchester, D. P. (2017). The eighth edition AJCC cancer staging manual: Continuing to build a bridge from a population based to a more “personalized” approach to cancer staging. A Cancer Journal for Clinicians, 67(2), 93-99. [67] National Breast Cancer Foundation. (2017). Breast cancer stages. [Online]. Available: http://www.nationalbreastcancer.org/breast-cancer-stages. [Accessed: 29-Jun-2017]. [68] BreastCancer.org. (2017). Breast cancer. [Online]. Available: https://www. breastcancer. org/. [Accessed: 29-Jun-2017]. [69] Harmer, V. (2011). Breast cancer nursing care and management. London, United Kingdom: John Wiley & Sons. [70] Jatoi, I., & Kaufmann, M. (2010). Management of breast diseases. Heidelberg, Germany: Springer. [71] National Cancer Institute. (2017). Types of cancer treatment. [Online]. Available: https://www.cancer.gov/about-cancer/treatment/types. [Accessed: 2-Jul-2017]. [72] Hong Kong Baptist Hospital. (2010). Breast cancer screening: The current recommendations. [Online]. Available: http://www.hkbh.org.hk/doc/monthly_ newsletter/newsletter_02_2010. pdf. [Accessed: 3-Jul-2017]. [73] Bevers, T. B., Helvie, M., Bonaccio, E., Calhoun, K. E., Daly, M. B., Farrar, W. B., Garber, J. E., Gray, R., Greenberg, C. C., Greenup, R., & Hansen, N. M. (2018). Breast cancer screening and diagnosis, version 3.2018, NCCN clinical practice guidelines in oncology. Journal of the National Comprehensive Cancer Network, 16(11), 1362-1389. [74] National Institute for Health and Clinical Excellence (NICE). (2008). Review of Clinical Guideline (CG80) – Breast cancer (early & locally advanced): Diagnosis and Treatment. [Online]. Available: https://www.nice.org.uk/guidance/cg80/documents/ early-and-locally-advanced-breast-cancer-consultation-document2. [Accessed: 3-Jul-2017]. [75] Moore, S. K. (2001). Better breast cancer detection. IEEE Spectrum, 38(5), 50-54. [76] Nelson, H. D., O'meara, E. S., Kerlikowske, K., Balch, S., & Miglioretti, D. (2016). Factors associated with rates of false-positive and false-negative results from digital mammography screening: An analysis of registry data false-positive and false-negative digital mammography screening results. Annals of Internal Medicine, 164(4), 226-235. [77] Gowri, D. S., & Amudha, T. (2014). A review on mammogram image enhancement techniques for breast cancer detection. Paper presented at the International Conference on Intelligent Computing Applications. [78] Radiological Society of North America Inc. (2016). Ultrasound breast. [Online]. Available: https://www.radiologyinfo.org/en/info.cfm?pg=breastus. [Accessed: 3-Jul-2017]. [79] Redman, A., Lowes, S., & Leaver, A. (2016). Imaging techniques in breast cancer. Surgery (Oxford), 34(1), 8-18. [80] Ladycare health. (2016). Advantages and disadvantages of breast ultrasound. [Online]. Available: http://ladycarehealth.com. [Accessed: 3-Jul-2017]. [81] Radiological Society of North America Inc. (2016). Magnetic Resonance Imaging (MRI)-Breast. [Online]. Available: https://www.radiologyinfo.org/en/info.cfm? pg=breastmr. [Accessed: 4-Jul-2017]. [82] Orel, S. G., & Schnall, M. D. (2001). MR imaging of the breast for the detection, diagnosis, and staging of breast cancer. Radiology, 220(1), 13-30. [83] Clifford, E. J., & Lugo-Zamudio, C. (1996). Scintimammography in the diagnosis of breast cancer. The American Journal of Surgery, 172(5), 483-486. [84] The Women's Health Resource. (2017). Nuclear medicine breast imaging (scintimammography). [Online]. Available: http://www.imaginis.com/nuclear-medicine/ nuclear-medicine-breast-imaging-scintimammography. [Accessed: 4-Jul-2017]. [85] Radiological Society of North America Inc. (2017). Scintimammography. [Online]. Available: https://www.radiologyinfo.org/en/info.cfm?pg=Scintimammo. [Accessed: 4-Jul-2017]. [86] Brem, R. F., Rapelyea, J. A., Zisman, G., Mohtashemi, K., Raub, J., Teal, C. B., Majewski, S., & Welch, B. L. (2005). Occult breast cancer: Scintimammography with high-resolution breast-specific gamma camera in women at high risk for breast cancer. Radiology, 237(1), 274-280. [87] Liu, L., Song, Y., Gao, S., Ji, T., Zhang, H., Ji, B., Chen, B., Jia, B., Wang, F., Xu, Z., & Ma, Q. (2014). 99mTc-3PRGD2 scintimammography in palpable and nonpalpable breast lesions. Molecular Imaging, 13(5), 7290.2014. 00010. [88] Benson, J. R., Gui, G.P., & Tuttle, T. (Eds.). (2013). Early breast cancer: from screening to multidisciplinary management (3rd Ed.). London, England: CRC Press. [89] Das, B. K., Biswal, B. M., & Bhavaraju, M. (2006). Role of scintimammography in the diagnosis of breast cancer. The Malaysian Journal of Medical Sciences, 13(1), 52-57. [90] Health Quality Ontario (2007). Scintimammography as an adjunctive breast imaging technology: An evidence-based analysis. Ontario Health Technology Assessment Series, 7(2), 1-46. [91] Islam, M. S., Kaabouch, N., & Hu, W. C. (2013). A survey of medical imaging techniques used for breast cancer detection. Paper presented at the IEEE International Conference on Electro-Information Technology. [92] Elsdon, M., Yurduseven, O., & Smith, D. (2013). Early stage breast cancer detection using indirect microwave holography. Progress In Electromagnetics Research, 143, 405-419. [93] Baran, A., Kurrant, D.J., Zakaria, A., Fear, E.C., & LoVetri, J. (2014). Breast imaging using microwave tomography with radar-based tissue-regions estimation. Progress In Electromagnetics Research, 149, 161-171. [94] Biçer, M. B., Akdağlı, A., & Özdemir, C. (2015). Breast cancer detection using inverse radon transform with microwave image technique. Paper presented at the 23nd Signal Processing and Communications Applications Conference. [95] Mohamed, T. M. (2015). Efficient breast cancer detection using sequential feature selection techniques. Paper presented at the IEEE Seventh International Conference on Intelligent Computing and Information Systems. [96] Gu, D., Gu, C., Zhou, G., & Wang, S. (2015). Early breast cancer detection based on multicarrier techniques. Paper presented at the IET International Radar Conference. [97] Ambrosanio, M., Kosmas, P., & Pascazio, V. (2017). Exploiting wavelet decomposition to enhance sparse recovery in microwave imaging. Paper presented at the 11th European Conference on Antennas and Propagation. [98] Bucci, O. M., Bellizzi, G., Costanzo, S., Crocco, L., Di Massa, G., & Scapaticci, R. (2017). Towards the assessment of detection limits in magnetic nanoparticle enhanced microwave imaging of breast cancer. Paper presented at the 11th European Conference on Antennas and Propagation. [99] Pavithra, P., Ravichandran, K., Sekar, K., & Manikandan, R. (2018). The effect of thermography on breast cancer detection. Systematic Reviews in Pharmacy, 9(1), 10-16. [100] Shahzad, A. (2018). Fast ultra wideband microwave imaging for early stage breast cancer detection (Doctoral dissertation, The National University of Ireland, Galway). Retrieved from https://aran.library.nuigalway.ie/handle/10379/7078?show=full [101] Hinrikus, H., & Riipulk, J. (2006). Microwave Imaging. Wiley Encyclopedia of Biomedical Engineering, 1-13. [102] Almeida, E. R., Porsani, J. L., Catapano, I., Gennarelli, G., & Soldovieri, F. (2014). GPR data analysis enhanced by microwave tomography for forensic archaeology. Paper presented at the 15th International Conference on Ground Penetrating Radar. [103] Persico, R., Pochanin, G., Ruban, V., Orlenko, A., Catapano, I., & Soldovieri, F. (2016). Performances of a microwave tomographic algorithm for GPR systems working in differential configuration. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(4), 1343-1356. [104] Fedeli, A., Pastorino, M. & Randazzo, A. (2016). A two-step multifrequency imaging technique for ground penetrating radar. Paper presented at the 10th European Conference on Antennas and Propagation. [105] Benedetti, M., Donelli, M., Martini, A., Pastorino, M., Rosani, A., & Massa, A. (2006). An innovative microwave-imaging technique for nondestructive evaluation: Applications to civil structures monitoring and biological bodies inspection. IEEE Transactions on Instrumentation and Measurement, 55(6), 1878-1884. [106] Kharkovsky, S., & Zoughi, R. (2007). Microwave and millimeter wave nondestructive testing and evaluation-Overview and recent advances. IEEE Instrumentation & Measurement Magazine, 10(2), 26-38. [107] Deng, Y., & Liu, X. (2011). Electromagnetic imaging methods for nondestructive evaluation applications. Sensors, 11(12), 11774-11808. [108] Santamaría-Artigas, A., Mattar, C., & Wigneron, J. P. (2016). Application of a combined optical–passive microwave method to retrieve soil moisture at regional scale over Chile. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(4), 1493-1504. [109] Estatico, C., Fedeli, A., Pastorino, M., & Randazzo, A. (2015). Buried object detection by means of a Lp Banach-space inversion procedure. Radio Science, 50(1), 41-51. [110] Ibrahim, P. M., Ping, K. A. H., Wei, N. S., Guang, Y., Rajaee, N., & Anyi, M. (2016). Elliptic filter and iterative inversion method for buried object detection applications. Applied Mechanics and Materials, 833, 164-169. [111] Shah, S. A., Zhang, Z., Ren, A., Zhao, N., Yang, X., Zhao, W., Yang, J., Zhao, J., Sun, W., & Hao, Y. (2017). Buried object sensing considering curved pipeline. IEEE Antennas and Wireless Propagation Letters. [112] Elizabeth, M. A., Ping, K. A. H., Rajaee, N. B., & Moriyama, T. (2015). Chebyshev filter applied to an inversion technique for breast tumour detection International Journal of Research in Engineering and Technology, 4(6), 210-218. [113] Porter, E., Coates, M., & Popović, M. (2016). An early clinical study of time-domain microwave radar for breast health monitoring. IEEE Transactions on Biomedical Engineering, 63(3), 530-539. [114] Vemulapalli, S. (2017). Early Breast Cancer Diagnosis Using Microwave Imaging via Space-Frequency Algorithm (Master dissertation, The University of Missouri, Kansas City, Missouri). Retrieved from https://mospace.umsystem.edu/xmlui /handle/10355/60585 [115] Carr, K. L. (1989). Microwave radiometry: Its importance to the detection of cancer. IEEE Transactions on Microwave Theory and Techniques, 37(12), 1862-1869. [116] Jackson, T. J., Le Vine, D. M., Hsu, A. Y., Oldak, A., Starks, P. J., Swift, C. T., Isham, J. D., & Haken, M. (1999). Soil moisture mapping at regional scales using microwave radiometry: The southern great plains hydrology experiment. IEEE Transactions on Geoscience and Remote Sensing, 37(5), 2136-2151. [117] Rodrigues, D. B., Maccarini, P. F., Salahi, S., Oliveira, T. R., Pereira, P. J., Limão-Vieira, P., Snow, B. W., Reudink, D., & Stauffer, P. R. (2014). Design and optimization of an ultra wideband and compact microwave antenna for radiometric monitoring of brain temperature. IEEE Transactions on Biomedical Engineering, 61(7), 2154-2160. [118] Barrera-Verdejo, M., Crewell, S., Löhnert, U., Orlandi, E., & Girolamo, P. D. (2016). Ground-based lidar and microwave radiometry synergy for high vertical resolution absolute humidity profiling. Atmospheric Measurement Techniques, 9(8), 4013-4028. [119] Dolant, C., Langlois, A., Montpetit, B., Brucker, L., Roy, A., & Royer, A. (2016). Development of a rain-on-snow detection algorithm using passive microwave radiometry. Hydrological Processes, 30(18), 3184-3196. [120] Barrett, A. H., Myers, P. C., & Sadowsky, N. L. (1977). Detection of breast cancer by microwave radiometry. Radio Science, 12(6S), 167-171. [121] Carr, K. (1989). Microwave radiometry: Its importance to the detection of cancer. IEEE Transactions on Microwave Theory and Techniques, 37(12), 1862-1869. [122] Bocquet, B., Van de Velde, J. C., Mamouni, A., Leroy, Y., Giaux, G., Delannoy, J., & Delvalee, D. (1990). Microwave radiometric imaging at 3 GHz for the exploration of breast tumors. IEEE Transactions on Microwave Theory and Techniques, 38(6), 791-793. [123] Zhurbenko, V. (2011). Challenges in the design of microwave imaging systems for breast cancer detection. Advances in Electrical and Computer Engineering, 11(1), 91-96. [124] Stec, B., Dobrowolski, A., & Susek, W. (2002). Estimation of deep-seated profile of temperature distribution inside biological tissues by means of multifrequency microwave thermograph. Paper presented at the IEEE MTT-S International Microwave Symposium Digest. [125] Jacobi, J. H., Larsen, L. E., & Hast, C. T. (1979). Water-immersed microwave antennas and their application to microwave interrogation of biological targets. IEEE Transactions on Microwave Theory and Techniques, 27(1), 70-78. doi: 10.1109/tmtt.1979.1129561 [126] Larsen, L. E., & Jacobi, J. H. (1979). Microwave scattering parameter imagery of an isolated canine kidney. Medical physics, 6(5), 394-403. [127] Pichot, C., Jofre, L., Peronnet, G., & Bolomey, J. (1985). Active microwave imaging of inhomogeneous bodies. IEEE Transactions on Antennas and Propagation, 33(4), 416-425. [128] Bolomey, J. C., Izadnegahdar, A., Jofre Roca, L., Pichot, CH., Peronnet, G., & Solaimani, M. (1982). Microwave diffraction tomography for biomedical applications. IEEE Transactions on Microwave Theory and Techniques, 30(11), 1998-2000. [129] Liu, Q. H., Zhang, Z. Q., Wang, T. T., Bryan, J. A., Ybarra, G. A., Nolte, L. W., & Joines, W. T. (2002). Active microwave imaging. I. 2-D forward and inverse scattering methods. IEEE Transactions on Microwave Theory and Techniques, 50(1), 123-133. [130] Zhang, Z. Q., Liu, Q. H., Xiao, C., Ward, E., Ybarra, G., & Joines, W. T. (2003). Microwave breast imaging: 3-D forward scattering simulation. IEEE Transactions on Biomedical Engineering, 50(10), 1180-1189. doi: 10.1109/tbme.2003.817634 [131] Foudazi, A., Donnell, K. M., & Ghasr, M. T. (2014). Application of active microwave thermography to delamination detection. Paper presented at the IEEE International Conference on Instrumentation and Measurement Technology. [132] Selvaraj, V., Srinivasan, P., Kumar, J., Krishnan, R., & Annamalai, K. (2017). Highly directional microstrip ultra wide band antenna for microwave imaging system. Acta graphica: znanstveni časopis za tiskarstvo i grafičke komunikacije, 28(1), 35-40. [133] Larsen, L. E., & Jacobi, J. H. (1985). Medical applications of microwave imaging. New York: IEEE Press. [134] Nikolova, N. K. (2011). Microwave imaging for breast cancer. IEEE Microwave Magazine, 12(7), 78-94. [135] Noghanian, S., Sabouni, A., Desell, T., & Ashtari, A. (2014). Micorwave tomography. London: Springer. [136] Kosmas, P., & Rappaport, C. M. (2006). FDTD-based time reversal for microwave breast cancer Detection-localization in three dimensions. IEEE Transactions on Microwave Theory and Techniques, 54(4), 1921-1927. doi: 10.1109/tmtt.2006. 871994 [137] Qing Huo, L., Zhong Qing, Z., Wang, T. T., Bryan, J. A., Ybarra, G. A., Nolte, L. W., & Joines, W. T. (2002). Active microwave imaging. I. 2-D forward and inverse scattering methods. IEEE Transactions on Microwave Theory and Techniques, 50(1), 123-133. doi: 10.1109/22.981256 [138] Henriksson, T., Joachimowicz, N., Conessa, C., & Bolomey, J. C. (2010). Quantitative microwave imaging for breast cancer detection using a planar 2.45 GHz system. IEEE Transactions on Instrumentation and Measurement, 59(10), 2691-2699. doi: 10.1109/tim. 2010.2045540 [139] Colton, D., & Kress, R. (1998). Inverse acoustic and electromagnetic scattering theory (3rd ed.). New York: Springer. [140] Mur, G. (1981). Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations. IEEE transactions on Electromagnetic Compatibility, 23(4), 377-382. [141] Taflove, A. (1988). Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures. Wave Motion, 10(6), 547-582. [142] Luebbers, R. J., Kunz, K. S., Schneider, M., & Hunsberger, F. (1991). A finite-difference time-domain near zone to far zone transformation (electromagnetic scattering). IEEE Transactions on Antennas and Propagation, 39(4), 429-433. [143] Zainud-Deen, S. H., Botros, A. Z., & Ibrahim, M. S. (2008). Scattering from bodies coated with metamaterial using FDFD method. Paper presented at the National Conference of Radio Science. [144] Goldak, J., Chakravarti, A., & Bibby, M. (1984). A new finite element model for welding heat sources. Metallurgical and Materials Transactions B, 15(2), 299-305. [145] Wu, J. Y., Kingsland, D. M., Lee, J. F., & Lee, R. (1997). A comparison of anisotropic PML to Berenger's PML and its application to the finite-element method for EM scattering. IEEE Transactions on Antennas and Propagation, 45(1), 40-50. [146] Coggon, J. H. (1971). Electromagnetic and electrical modeling by the finite element method. Geophysics, 36(1), 132-155. [147] Cai, H., Xiong, B., Han, M., & Zhdanov, M. (2014). 3D controlled-source electromagnetic modeling in anisotropic medium using edge-based finite element method. Computers & Geosciences, 73, 164-176. [148] Franchois, A., & Pichot, C. (1997). Microwave imaging-complex permittivity reconstruction with a Levenberg-Marquardt method. IEEE Transactions on Antennas and Propagation, 45(2), 203-215. [149] Caorsi, S., Gragnani,G. L., & Pastorino, M. (1990). Two-dimensional microwave imaging by a numerical inverse scattering solution. IEEE Transactions on Microwave Theory and Techniques, 38(8), 981-980. [150] Lakhtakia, A. (1992). Strong and weak forms of the method of moments and the coupled dipole method for scattering of time-harmonic electromagnetic fields. International Journal of Modern Physics C, 3(3), 583-603. [151] Wu, R., Yang, P., Zhao, Y., Ren, X., & Zhang, Y. (2017). Study of scattering from two-layered soil surfaces with object buried between two rough interfaces. Paper presented at the International Symposium of Applied Computational Electromagnetics Society. [152] Ekman, J. (2003). Electromagnetic modeling using the partial element equivalent circuit method (Doctoral Dissertation, The University of Technology, Lulea, Sweden). Retrieved from http://www.diva-portal.org/smash/get/diva2:990875/ FULLTEXT01.pdf [153] Cao, Y. S., Jiang, L. J., & Ruehli, A. E. (2015). Distributive radiation and transfer characterization based on the PEEC method. IEEE transactions on Electromagnetic Compatibility, 57(4), 734-742. [154] Abreu, R., Stich, D., & Morales, J. (2015). The Complex-Step-Finite-Difference method. Geophysical Journal International, 202(1), 72-93. [155] Liszka, T., & Orkisz, J. (1980). The finite difference method at arbitrary irregular grids and its application in applied mechanics. Computers & Structures, 11(1-2), 83-95. [156] Dong, Q., & Rappaport, C. M. (2009). Microwave subsurface imaging using direct finite-difference frequency-domain-based inversion. IEEE Transactions on Geoscience and Remote Sensing, 47(11), 3664-3670. [157] Zainud-Deen, S. H., Hassen, W. M., Ali, E. M., Awadalla, K. H., & Sharshar, H. A. (2008). Breast cancer detection using a hybrid Finite difference frequency domain and particle swarm optimization techniques. Paper presented at the National Radio Science Conference. [158] Sun, S., Kooij, B. J., Jin, T., & Yarovoy, A. (2015). Simultaneous multi-frequency TE/TM polarization inversion based on FDFD for ground penetrating radar. Paper presented at the 8th International Workshop on Advanced Ground Penetrating Radar. [159] VonNeumann, J., & Richtmyer, R. D. (1950). A method for the numerical calculation of hydrodynamic shocks. Journal of Applied Physics, 21(3), 232-237. [160] Taflove, A., & Brodwin, M. E. (1975). Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations. IEEE Transactions on Microwave Theory and Techniques, 23(8), 623-630. [161] Taflove, A. (1980). Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems. IEEE transactions on Electromagnetic Compatibility(3), 191-202. [162] Taflove, A., & Hagness, S.C. (2005). Computational electrodynamics: the finite-difference time-domain method: Artech house. [163] Giannakis, I., Giannopoulos, A., & Warren, C. (2015). A realistic FDTD numerical modeling framework of ground penetrating radar for landmine detection. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(1), 37-51. [164] Rufus, E., & Alex, Z. C. (2013). FDTD based EM modeling and analysis for microwave imaging of biological tissues. Paper presented at the International Conference on Smart Structures and Systems, IEEE. [165] Zhang, M., Liao, C., Xiong, X.Z., & Xu, X. (2017). Scattering Analysis of Buried Objects by Using FDTD with Nonuniform Meshes. Progress In Electromagnetics Research, 54, 83-90. [166] Wang, F. F., Zhong, S., Wu, H., Qin, T., & Hong, W. (2018). FDTD Based Dictionary Matrix for Sparsity-Based Through-Wall Radar Imaging. Progress In Electromagnetics Research, 75, 21-28. [167] Oskooi, A. F., Roundy, D., Ibanescu, M., Bermel, P., Joannopoulos, J. D., & Johnson, S. G. (2010). MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method. Computer Physics Communications, 181(3), 687-702. [168] Holland, R. (1993). Pitfalls of staircase meshing. IEEE transactions on Electromagnetic Compatibility, 35(4), 434-439. [169] Burkhardt, M. R. (1999). Contributions toward uncertainty assessments and error minimization of FDTD simulations involving complex dielectric bodies. ETH Zurich. [170] Nilavalan, R., Craddock, I. J., & Railton, C. J. (2002). Quantifying numerical dispersion in non-orthogonal FDTD meshes. IEEE Proceedings-Microwaves, Antennas and Propagation, 149(1), 23-27. [171] Jiménez-Mejía, E., & Herrera-Murcia, J. (2015). Validation of a non-uniform meshing algorithm for the 3D-FDTD method by means of a two-wire crosstalk experimental set-up. Ingeniería e Investigación, 35, 98-103. [172] Colton, D., & Kress, R. (2012). Inverse acoustic and electromagnetic scattering theory. New York: Springer Science & Business Media. [173] Perry, W. (1974). On the Bojarski-Lewis inverse scattering method. IEEE Transactions on Antennas and Propagation, 22(6), 826-829. [174] Colton, D., Haddar, H., & Piana, M. (2003). The linear sampling method in inverse electromagnetic scattering theory. Inverse Problems, 19(6), S105. [175] Erramshetty, M., & Bhattacharya, A. (2019). Shape Reconstruction of Dielectric and Conducting Objects using Linear Sampling Method and Limitations. Paper presented at the URSI Asia-Pacific Radio Science Conference. [176] Semnani, A., Rekanos, I. T., Kamyab, M., & Moghaddam, M. (2012). Solving inverse scattering problems based on truncated cosine Fourier and cubic B-spline expansions. IEEE Transactions on Antennas and Propagation, 60(12), 5914-5923. [177] Takenaka, T., Jia, H., & Tanaka, T. (2015). Microwave imaging of electrical property distributions by a Foward-Backward Time-Stepping method. Journal of Electromagnetic Waves and Applications, 14, 1609-1626. [178] Nawawi, J., Sahrani, S., Ping, K. A. H., Mat, D. A. A., & Zaidel, D. N. A. (2016). Iterative refinement in inverse scattering technique with median filter. Paper presented at the IEEE Asia-Pacific Conference on Applied Electromagnetics. [179] Ping, K. A. H., Soetarman, A. S., Wee, B. S., Sahrani, S., Zaidel, D. N. A., Mat, D. A. A., Islam, M. T., Mahmud, M. Z. & Moriyama, T. (2018). Detection of Breast Tumor in Scattered Fibroglandular Breast Tissue Using Inverse Scattering Technique. Paper presented at the International Conference on Computational Approach in Smart Systems Design and Applications. [180] Moriyama, T., Meng, Z. & Takenaka, T. (2011). Forward–backward time‐stepping method combined with genetic algorithm applied to breast cancer detection. Microwave and Optical Technology Letters, 53(2), 438-442. [181] Jia, H., & Yasumoto, K. (2004). Time domain inverse scattering analysis of stratified lossy media using a forward-backward time-stepping method. Paper presented at the 3rd International Conference on Computational Electromagnetics and Its Applications. [182] Shea, J. D., Kosmas, P., Hagness, S. C., & Van Veen, B. D. (2010). Three‐dimensional microwave imaging of realistic numerical breast phantoms via a multiple‐frequency inverse scattering technique. Medical Physics, 37(8), 4210-4226. [183] Moriyama, T., Oliveri, G., Salucci, M., & Takenaka, T. (2014). A multi-scaling forward-backward time-stepping method for microwave imaging. IEICE Electronics Express, 1-12. [184] Moriyama, T., Yamaguchi, Y., Hong Ping, K. A., Tanaka, T., & Takenaka, T. (2008). Parallel processing of forward-backward time-stepping method for time domain inverse scattering. PIERS Online, 4(6), 695-700. [185] Henshaw, W. D. (1996). Automatic grid generation. Acta Numerica, 5, 121-148. [186] Liseikin, V. D. (2017). Grid generation methods. Netherlands: Springer. [187] Rubin, S., & Khosla, P. (1977). Polynomial interpolation methods for viscous flow calculations. Journal of Computational Physics, 24(3), 217-244. [188] Thompson, J. F., Warsi, Z. U., & Mastin, C. W. (1985). Numerical grid generation: foundations and applications. New York, United States: Elsevier North-Holland. [189] Thompson, J. F., Soni, B. K., & Weatherill, N. P. (1998). Handbook of grid generation. Boca Raton, Florida, United State: CRC press. [190] Garnero, G., & Godone, D. (2013). Comparisons between different interpolation techniques. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W3, 139-144. [191] Burrough, P. A., McDonnell, R. A., & Lloyd, C. D. (2015). Principles of geographical information systems (3rd ed.). United Kingdom: Oxford University Press. [192] Chand, K. K. (2005). Component-based hybrid mesh generation. International Journal for Numerical Methods in Engineering, 62(6), 747-773. [193] Chesshire, G., & Henshaw, W. D. (1990). Composite overlapping meshes for the solution of partial differential equations. Journal of Computational Physics, 90(1), 1-64. [194] Meakin, R. L. (1996). The chimera method of simulation for unsteady three-dimensional viscous flow. In Hafez, M., & Oshima, K. (Eds.), Computational fluid dynamics review (pp. 70-86). Moffett Field, California: NASA Ames Research Center. [195] Kauffman, J. A., Sheldon, J. P., Miller, S. T. (2017). Overset meshing coupled with hybridizable discontinuous Galerkin finite elements. International Journal for Numerical Methods in Engineering, 112(5), 1-32. [196] Lin, C. W., Smith, G.D., & Fisher, S. C. (1991). Application of a Multiblock Grid Generation Approach to Ship Configuration. Paper presented at the 3rd International Conference on Numerical Grid Generation in CFD, Spain. [197] Henshaw, W. (2002). Overture: An object-oriented framework for overlapping grid applications. Paper presented at the 32nd AIAA Fluid Dynamics Conference and Exhibit. [198] Peron, S. (2016). A Review of Overset Grid Technology. Paper presented at the 13th Overset Grid Symposium, Future of Flight Aviation Center, Mukilteo, WA, USA. [199] Carrier, G., Atinault, O., Dequand, S., Hantrais-Gervois, J. L., Liauzun, C., Paluch, B., Rodde, A. M., & Toussaint, C. (2012). Investigation of a strut-braced wing configuration for future commercial transport. Paper presented at the 28th Congress of the International Council of the Aeronautical Sciences. [200] Castillon, L., & Legras, G. (2013). Overset Grid Method for Simulation of Compressors With Nonaxisymmetric Casing Treatment. Journal of Propulsion and Power, 29(2), 460-465. [201] Renaud, T., Pape, A. L., & Péron, S. (2013). Numerical analysis of hub and fuselage drag breakdown of a helicopter configuration. CEAS Aeronautical Journal, 4(4), 409-419. [202] Castillon, L., Billonnet, G., Riou, J., Péron, S., & Benoit, C. (2014). A technological effect modeling on complex turbomachinery applications with an overset grid numerical method. Journal of Turbomachinery, 136(10), 101005. [203] Wiart, L., Atinault, O., Hue, D., Grenon, R., & Paluch, B. (2015). Development of NOVA Aircraft Configurations for Large Engine Integration Studies. Paper presented at the 33rd AIAA Applied Aerodynamics Conference. [204] Zanotti, A., Droandi, G., Gibertini, G., Auteri, F., Boniface, J. C., Gavériaux, R., & Pape, A. L. (2016). A Computational framework for helicopter fuselage drag reduction using vortex generators. Journal of the American Helicopter Society, 61(3), 1-13. [205] Chan, W. M., Gomez, R. J., Rogers, S. E., & Buning, P. G. (2002). Best practices in overset grid generation. American Institute of Aeronautics and Astronautics Paper, 3191, 2002. [206] Chan, W. M. (2016). Progress in Automation of Overset Structured Surface Grid Generation. Paper presented at the 13th Symposium on Overset Composite Grids and Solution Technology, Mukilteo, Washington. [207] Michler, A. K. (2011). Aircraft control surface deflection using RBF‐based mesh deformation. International Journal for Numerical Methods in Engineering, 88(10), 986-1007. [208] Eiseman, P. R., & Erlebacher, G. (1987). Grid generation for the solution of partial differential equations. Hampton, Virginia: NASA Langley Research Center. [209] Cali, P., & Couaillier, V. (2000). Conservative interfacing for overset grids. Paper presented at the 38th Aerospace Sciences Meeting and Exhibit. [210] Rai, M. M. (1986). An implicit, conservative, zonal-boundary scheme for Euler equation calculations. Computers & Fluids, 14(3), 295-319. [211] Lee, K. R., Park, J. H., & Kim, K. H. (2009). High order interpolation method for Overset Grid using FVM. Paper presented at the 19th American Institute of Aeronautics and Astronautics Computational Fluid Dynamics, San Antonio, Texas. [212] Sahrani, S., & Kuroda, M. (2013). FDTD analysis with Overset Grid Generation method for rotating body and evaluation of its accuracy. IEICE Transactions on Electronics, 96(1), 35-41. [213] Mahajan, S. H., & Harpale, V. K. (2015). Adaptive and non-adaptive image interpolation techniques. Paper presented at the International Conference on Computing Communication Control and Automation. [214] Sinha, A., Kumar, M., Jaiswal, A. K., & Saxena, R. (2014). Performance analysis of high resolution images using interpolation techniques in multimedia communication system. Signal & Image Processing, 5(2), 39-39. [215] Gupta, R. B., Lee, B. G., & Lee, J. J. (2007). A new image interpolation technique using exponential B-spline. Paper presented at the 15th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision. [216] Moler, C. B. (2004). Numerical computing with MATLAB. [Online]. Available: https://www.mathworks.com/moler/chapters.html. [Accessed: 23-Jun-2018]. [217] Szabados, J., & Vértesi, P. (1990). Interpolation of functions. Totteridge, London: World Scientific. [218] Acharya, T., & Ray, A. K. (2005). Image processing: principles and applications. Hoboken, New Jersey: John Wiley & Sons. [219] Lehmann, T. M., Gonner, C., & Spitzer, K. (1999). Survey: Interpolation methods in medical image processing. IEEE Transactions on Medical Imaging, 18(11), 1049-1075. [220] Sinha, A. (2015). Study of interpolation techniques in multimedia communication system - A review. International Journal of Current Engineering and Technology, 5(3), 1871-1873. [221] Al-Ayyoub, A. E. (1996). Pipelined algorithm for Newton's divided difference interpolation. Computers & Structures, 58(4), 689-701. [222] Stoer, J., & Bulirsch, R. (2013). Introduction to numerical analysis (2nd ed.). New York, United States of America: Springer Science & Business Media. [223] Milne, W. E. (2015). Numerical calculus. Princeton, New Jersey: Princeton University Press. [224] Davis, P. J. (1975). Interpolation and approximation. Mineola, New York, United States of America: Courier Corporation. [225] Mastroianni, G., & Milovanovic, G. (2008). Interpolation processes: Basic theory and applications. New York, United States of America: Springer Science & Business Media. [226] Olivier, R., & Hanqiang, C. (2012). Nearest neighbor value interpolation. International Journal of Advanced Computer Science and Applications, 3(4), 1-6. [227] Kahaner, D., Moler, C., & Nash, S. (1989). Numerical methods and software. United States of America: Prentice-Hall, Inc. [228] Maeland, E. (1988). On the comparison of interpolation methods. IEEE Transactions on Medical Imaging, 7(3), 213-217. [229] Fritsch, F. N., & Carlson, R. E. (1980). Monotone piecewise cubic interpolation. SIAM Journal on Numerical Analysis, 17(2), 238-246. [230] Unser, M. (1999). Splines: A perfect fit for signal and image processing. IEEE Signal Processing Magazine, 16(6), 22-38. [231] Aldroubi, A., Unser, M., & Eden, M. (1993). B-spline signal processing. IEEE Transactions on Signal Processing, 41(2), 821-833. [232] Parker, J. A., Kenyon, R. V., & Troxel, D. E. (1983). Comparison of interpolating methods for image resampling. IEEE Transactions on Medical Imaging, 2(1), 31-39. [233] Skillen, A. (2012). The overset grid method, applied to the solution of the incompressible Navier-Stokes equations in two and three spatial dimensions (Doctoral dissertation). University of Manchester, Manchester, England. [234] Salomon, D. (2007). Curves and surfaces for computer graphics. New York, United States of America: Springer Science & Business Media. [235] Hou, H., & Andrews, H. (1978). Cubic splines for image interpolation and digital filtering. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(6), 508-517. [236] Mihalik, J., Zavacky, J., & Kuba, I. (1995). Spline interpolation of image. Radioengineering, 4(1), 221-230. [237] Jiang, N., & Wang, J. (2015). Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum Information Processing, 14(11), 4001-4026. [238] Warbhe, S., & Gomes, J. (2016). Interpolation technique using non-linear Partial Differential Equation with Edge Directed Bicubic. International Journal of Image Processing (IJIP), 10(4), 205-213. [239] Iwamatsu, H., Fukumoto, R., Ishihara, M., & Kuroda, M. (2008). Comparative study of over set grid generation method and body fitted grid generation method with moving boundaries. Paper presented at the Antennas and Propagation Society International Symposium, IEEE. [240] Spath, H. (1995). Two dimensional spline interpolation algorithms. United States of America: A K Peters, Wellesley, Massachusetts. [241] Xia, P., Tahara, T., Kakue, T., Awatsuji, Y., Nishio, K., Ura, S., Kubota, T., & Matoba, O. (2013). Performance comparison of bilinear interpolation, bicubic interpolation, and B-spline interpolation in parallel phase-shifting digital holography. Optical Review, 20(2), 193-197. [242] Wikimedia Commons. (2016). Comparison of 1D and 2D interpolation. [Online]. Available: https://commons.wikimedia.org/wiki/File:Comparison_of_1D_and_2D_ interpolation.svg. [Accessed: 3-Jul-2017]. [243] Matiu-Iovan, L. (2013). A cubic spline interpolation algorithm implemented on a system with digital signal processor. Paper presented at the Signal Processing: Algorithms, Architectures, Arrangements, and Applications, 2013. [244] Lee, J. H., Lee, K. S., & Jo, G. S. (2013). Representation method of the moving object trajectories by interpolation with dynamic sampling. Paper presented at the International Conference on Information Science and Applications. [245] Rasti, P., Demirel, H., & Anbarjafari, G. (2013). Image resolution enhancement by using interpolation followed by iterative back projection. Paper presented at the Signal Processing and Communications Applications Conference. [246] Huang, C. H., Chen, C. H., Wu, J. J., & Liu, D. S. (2015). Microwave imaging of multiple dielectric objects by FDTD and APSO. Computer Science & Information Technology, 35-42. [247] Emigh, M. S., Kriminger, E. G., Brockmeier, A. J., Príncipe, J. C., & Pardalos, P. M. (2016). Reinforcement learning in video games using nearest neighbor interpolation and metric learning. IEEE Transactions on Computational Intelligence and AI in Games, 8(1), 56-66. [248] Mu, L., Yang, L., & Chen, Y. (2016). Reconstruction of underground coal seam surface based on B-spline surface interpolation. Journal of Computational and Theoretical Nanoscience, 13(5), 3507-3510. [249] Dubey, A., Lohiya, A., Narwal, V., Jha, A. K., Agarwal, P., & Schaefer, G. (2016). Natural image interpolation using extreme learning machine. Paper presented at the International Conference on Soft Computing and Pattern Recognition. [250] Pérez, J. S., Chicote, M. A., Díez, F. V., & Gómez, E. V. (2017). A new method for calculating conduction response factors for multilayer constructions based on frequency–Domain spline interpolation (FDSI) and asymptotic analysis. Energy and Buildings, 148, 280-297. [251] Azman, A., Sahrani, S., Ping, K.H, & Mat, D.A.A. (2017). A new approach for solving inverse scattering problems with Overset Grid Generation method. TELKOMNIKA (Telecommunication Computing Electronics and Control), 15(1), 820-828. [252] Kuorda, M. (2017). FDTD method for the analysis of moving boundary problems-over set grid generation method and body fitted grid generation method with moving boundaries. Paper presented at the International Conference on Electromagnetics in Advanced Applications. [253] Zong, X., Xu, M., Xu, J., & Lv, X. (2018). Improvement of the ocean pollutant transport model by using the surface spline interpolation. Tellus A: Dynamic Meteorology and Oceanography, 1-13. [254] Gupta, B., & Singh, A. K. (2018). A new cartoon--texture image decomposition approach with smoothing spline interpolation. Optik, 159, 39-49. [255] Patel, V., & Mistree. K. (2013). A review on different image interpolation techniques for image enhancement. International Journal of Emerging Technology and Advanced Engineering, 3, 129-133. [256] Meijering, E. H. (2000). Spline interpolation in medical imaging: comparison with other convolution-based approaches. Paper presented at the 10th European Signal Processing Conference. [257] Guo, Z., Pan, H., Fan, W., & Lv, X. (2017). Application of surface spline interpolation in inversion of bottom friction coefficients. Journal of Atmospheric and Oceanic Technology, 34(9), 2021-2028. [258] Boor, C. D. (2001). A Practical Guide to Spline. New York: Springer-Verlag. [259] Schumaker, L. L. (1980). Spline functions: Basic theory (3rd ed.). New York: John Wiley. [260] Johnson, J. E., Takenaka, T., Ping, K. A. H., Honda, S., & Tanaka, T. (2009). Advances in the 3-D Forward-Backward Time-Stepping (FBTS) inverse scattering technique for breast cancer detection. IEEE Transactions on Biomedical Engineering, 56(9), 2232-2243. [261] Taflove, A., & Hagness, S. C. (2000). Computational electrodynamics. London: Artech house publishers. [262] Yavuz, E., & Balik, H. H. (2008). A new approach to analysis of rectangular waveguides. Journal of Science and Technology, 2(2), 177-193. [263] Kunz, K. S., & Luebbers, R. J. (1993). The finite difference time domain method for electromagnetics. London, New York: CRC Press. [264] Courant, R., Friedrichs, K., & Lewy, H. (1928). On the partial difference equations of mathematical physics. Mathematische Annalen, 100(1), 32-74. [265] Stutzman, W. L., & Thiele, G. A. (2012). Antenna theory and design (3rd ed.). New Jersey, United State: John Wiley & Sons. [266] Costen, F., Bérenger, J. P., & Brown, A. K. (2009). Comparison of FDTD hard source with FDTD soft source and accuracy assessment in Debye media. IEEE Transactions on Antennas and Propagation, 57(7), 2014-2022. [267] Berenger, J. P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2), 185-200. [268] Roden, J. A., & Gedney, S. D. (2000). Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media. Microwave and Optical Technology Letters, 27(5), 334-338. [269] Rao, S. S. (2009). Engineering optimization: Theory and practice (4th ed.). New Jersey, United State: John Wiley & Sons. [270] Kelley, C. T. (1999). Iterative methods for optimization. Philadelphia, Pennsylvania: Society for Industrial and Applied Mathematics. [271] Kiranyaz, S., Ince, T., & Gabbouj, M. (2014). Multidimensional particle swarm optimization for machine learning and pattern recognition. New York: Springer-Verlag. [272] Venter, G. (2010). Review of optimization techniques. Encyclopedia of Aerospace Engineering, 1-9. [273] Wei, Z. X., Li, G. Y., & Qi, L. Q. (2008). Global convergence of the Polak-Ribiere-Polyak conjugate gradient method with an Armijo-type inexact line search for nonconvex unconstrained optimization problems. Mathematics of Computation, 77(264), 2173-2193. [274] Nazareth, J. L. (2009). Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics, 1(3), 348-353. [275] Fletcher, R., & Reeves, C. M. (1964). Function minimization by conjugate gradients. The Computer Journal, 7(2), 149-154. [276] Polak, E., & Ribiere, G. (1969). Note Sur la convergence de directions conjug`ees, Rev. Francaise Informat Recherche Operationelle. Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique, 3(R1), 35-43. [277] Polyak, B. T. (1969). The conjugate gradient method in extremal problems. USSR Computational Mathematics and Mathematical Physics, 9(4), 94-112. [278] Hestenes, M. R., & Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 49(6), 409-436. [279] Lasdon, L., Mitter, S., & Waren, A. (1967). The conjugate gradient method for optimal control problems. IEEE Transactions on Automatic Control, 12(2), 132-138. [280] Johnson, J. E., Takenaka, T., Ping, K. A. H., Honda, S., & Tanaka, T. (2009). Advances in the 3-D Forward-Backward Time-Stepping (FBTS) inverse scattering technique for breast cancer detection. IEEE Transactions on Biomedical Engineering, 56(9), 2232-2243. doi: 10.1109/tbme.2009.2022635
(1)
[1] A. Nanthanasit, “Approach Augmented Reality Real - time Rendering for Understand-ing Light and Shade in Art Education,” 2018 Int. Conf. Digit. Arts, Media Technol., pp. 71–74, 2018. https://doi.org/10.1109/icdamt.2018.8376498 [2] A. A. Kamal and S. N. Junaini, “The effects of design-based learning in teaching aug-mented reality for pre-university students in the ict competency course,” Int. J. Sci. Technol. Res., vol. 8, no. 12, pp. 2726–2730, 2019. http://www.ijstr.org/final-print/dec2019/The-Effects-Of-Design-based-Learning-In-Teaching-Augmented-Reality-For-Pre-university-Students-In-The-Ict-Competency-Course.pdf [3] M. K. Bekele, R. Pierdicca, E. Frontoni, E. S. Malinverni, and J. Gain, “A survey of augmented, virtual, and mixed reality for cultural heritage,” Journal on Computing and Cultural Heritage, vol. 11, no. 2. 2018. https://doi.org/10.1145/3145534 [4] M. Wang, V. Callaghan, J. Bernhardt, et al., “Augmented reality in education and train-ing : pedagogical approaches and illustrative case studies,” J. Ambient Intell. Humaniz. Comput., vol. 9, no. 5, pp. 1391–1402, 2018. https://doi.org/10.1007/s12652-017-0547-8 [5] N. F. Saidin, N. D. A. Halim, and N. Yahaya, “A review of research on augmented re-ality in education: Advantages and applications,” Int. Educ. Stud., vol. 8, no. 13, pp. 1–8, 2015. https://doi.org/10.5539/ies.v8n13p1 [6] M. Ibáñez and C. Delgado-kloos, “Computers & Education Augmented reality for STEM learning : A systematic review,” Comput. Educ., vol. 123, no. April, pp. 109–123, 2018. https://doi.org/10.1016/j.compedu.2018.05.002 [7] M. M. O. da Silva, J. M. X. N. Teixeira, P. S. Cavalcante, and V. Teichrieb, “Perspec-tives on how to evaluate augmented reality technology tools for education: a systematic review,” J. Brazilian Comput. Soc., vol. 25, no. 1, 2019. https://doi.org/10.1186/s13173-019-0084-8 [8] A. Liberati et al., “The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elabora-tion.,” BMJ, vol. 339, 2009. http://doi.org/10.1371/journal.pmed.1000100 [9] E. Ibili, D. Resnyansky, and M. Billinghurst, “Applying the technology acceptance model to understand maths teachers’ perceptions towards an augmented reality tutoring system,” Educ. Inf. Technol., vol. 24, no. 5, pp. 2653–2675, 2019. https://doi.org/10.1007/s10639-019-09925-z [10] Z. Gecu-Parmaksiz and O. Delialioglu, “Augmented reality-based virtual manipulatives versus physical manipulatives for teaching geometric shapes to preschool children,” Br. J. Educ. Technol., vol. 50, no. 6, pp. 3376–3390, 2019. https://doi.org/10.1111/bjet.12740 [11] H. C. K. Lin, M. C. Chen, and C. K. Chang, “Assessing the effectiveness of learning solid geometry by using an augmented reality-assisted learning system,” Interact. Learn. Environ., vol. 23, no. 6, pp. 799–810, 2015. https://doi.org/10.1080/10494820.2013.817435 [12] Y. C. Chen, “Effect of Mobile Augmented Reality on Learning Performance, Motiva-tion, and Math Anxiety in a Math Course,” J. Educ. Comput. Res., vol. 57, no. 7, pp. 1695-1722, 2019. https://doi.org/10.1177/0735633119854036 [13] J. J. Nagata, J. García-Bermejo Giner, and F. M. Abad, “Augmented reality in pedestri-an navigation applied in a context of mobile learning: Resources for enhanced compre-hension of science, Technology, engineering and mathematics,” International Journal of Engineering Education, vol. 33, no. 2. pp. 768–780, 2017. https://www.ijee.ie/covers/covandabs33-2B.pdf [14] A. Cascales-Martínez, M. J. Martínez-Segura, D. Pérez-López, and M. Contero, “Using an augmented reality enhanced tabletop system to promote learning of mathematics: A case study with students with special educational needs,” Eurasia J. Math. Sci. Technol. Educ., vol. 13, no. 2, pp. 355–380, 2017. https://doi.org/10.12973/eurasia.2017.00621a [15] E. G. de Ravé, F. J. Jiménez-Hornero, A. B. Ariza-Villaverde, and J. Taguas-Ruiz, “DiedricAR: a mobile augmented reality system designed for the ubiquitous descriptive geometry learning,” Multimed. Tools Appl., vol. 75, no. 16, pp. 9641–9663, 2016. https://doi.org/10.1007/s11042-016-3384-4 [16] H. F. Hanafi, N. A. Zainuddin, M. F. N. L. Abdullah, and M. H. Ibrahim, “The effec-tiveness of teaching aid for a mathematics subject via mobile augmented reality (Mar) for standard six students,” Int. J. Recent Technol. Eng., vol. 7, no. 6, pp. 121–125, 2019. https://www.ijrte.org/wp-content/uploads/papers/v7i6s2/F10180476S219.pdf [17] I. Kazanidis and N. Pellas, “Developing and Assessing Augmented Reality Applications for Mathematics with Trainee Instructional Media Designers: An Exploratory Study on User Experience,” J. Univers. Comput. Sci. (J.UCS). Spec. issue “Immersive Learn. Technol. Res. Futur. Dir., vol. 25, no. 5, pp. 489–514, 2019. https://doi.org/10.3217/jucs-025-05-0489 [18] J. C. Sanabria and J. Arámburo-Lizárraga, “Enhancing 21st century skills with AR: Us-ing the gradual immersion method to develop collaborative creativity,” Eurasia J. Math. Sci. Technol. Educ., vol. 13, no. 2, pp. 487–501, 2017. https://doi.org/10.12973/eurasia.2017.00627a [19] A. Martin-Gonzalez, A. Chi-Poot, and V. Uc-Cetina, “Usability evaluation of an aug-mented reality system for teaching Euclidean vectors,” Innov. Educ. Teach. Int., vol. 53, no. 6, pp. 627–636, 2016. https://doi.org/10.1080/14703297.2015.1108856 [20] L. Medina Herrera, J. Castro Pérez, and S. Juárez Ordóñez, “Developing spatial math-ematical skills through 3D tools: augmented reality, virtual environments and 3D print-ing,” Int. J. Interact. Des. Manuf., vol. 13, no. 4, pp. 1385–1399, 2019. https://doi.org/10.1007/s12008-019-00595-2 [21] A. Buchori, P. Setyosari, I. Wayan Dasna, and S. Ulfa, “Mobile augmented reality me-dia design with waterfall model for learning geometry in college,” Int. J. Appl. Eng. Res., vol. 12, no. 13, pp. 3773–3780, 2017. https://www.ripublication.com/ijaer17/ijaerv12n13_29.pdf [22] R. Andrea, S. Lailiyah, F. Agus, and Ramadiani, “‘Magic Boosed’ an elementary school geometry textbook with marker-based augmented reality,” Telkomnika (Telecommuni-cation Comput. Electron. Control., vol. 17, no. 3, pp. 1242–1249, 2019. http://dx.doi.org/10.12928/telkomnika.v17i3.11559 [23] E. Demitriadou, K. Stavroulia, and A. Lanitis, “Comparative evaluation of virtual and augmented reality for teaching mathematics in primary education,” vol. 25, no. 1, pp. 381–401. Educ. Inf. Technol., 2019. https://doi.org/10.1007/s10639-019-09973-5 [24] R. O. Kellems, G. Cacciatore, and K. Osborne, “Using an Augmented Reality–Based Teaching Strategy to Teach Mathematics to Secondary Students With Disabilities,” Ca-reer Dev. Transit. Except. Individ., vol. 42, no. 4, pp. 253–258, 2019. https://doi.org/10.1177/2165143418822800 [25] S. Cai, E. Liu, Y. Yang, and J. C. Liang, “Tablet-based AR technology: Impacts on stu-dents’ conceptions and approaches to learning mathematics according to their self-efficacy,” Br. J. Educ. Technol., vol. 50, no. 1, pp. 248–263, 2019. https://doi.org/10.1111/bjet.12718 [26] M. C. Hsieh and S. H. Chen, “Intelligence augmented reality tutoring system for math-ematics teaching and learning,” J. Internet Technol., vol. 20, no. 5, pp. 1673–1681, 2019. http://doi.org/10.3966/160792642019092005031 [27] S. Cai, E. Liu, Y. Shen, C. Liu, S. Li, and Y. Shen, “Probability learning in mathematics using augmented reality: impact on student’s learning gains and attitudes,” Interact. Learn. Environ., vol. 0, no. 0, pp. 1–14, 2019. https://doi.org/10.1080/10494820.2019.1696839 [28] M. Hernández-Ordoñez, M. A. Nuño-Maganda, C. A. Calles-Arriaga, O. Montaño-Rivas, and K. E. Bautista Hernández, “An Education Application for Teaching Robot Arm Manipulator Concepts Using Augmented Reality,” Mob. Inf. Syst., vol. 2018, pp. 2653–2675, 2018. https://doi.org/10.1155/2018/6047034 [29] O. M. Aldalalah, Z. Ababneh, A. Bawaneh, and W. Alzubi, “Effect of Augmented Re-ality and Simulation on the Achievement of Mathematics and Visual Thinking Among Students,” Int. J. Emerg. Technol. Learn., vol. 14, no. 18, p. 164, 2019. https://doi.org/10.3991/ijet.v14i18.10748 [30] S. Nuanmeesri, “The augmented reality for teaching Thai students about the human heart,” Int. J. Emerg. Technol. Learn., vol. 13, no. 6, pp. 203–213, 2018. https://doi.org/10.3991/ijet.v13i06.8506 [31] L. D. Pratama and W. Setyaningrum, “GBL in math problem solving: Is it effective?,” Int. J. Interact. Mob. Technol., vol. 12, no. 6, pp. 101–111, 2018. https://doi.org/10.3991/ijim.v12i6.8658
(1)
1. Angarita, F., Valls, J., Almenar, V., & Torres, V. (2014). Reduced-complexity min-sum algorithm for decoding ldpc codes with low error-floor. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(7), 2150–2158. 2. Chen, J., Member, S., Fossorier, M. P. C., & Member, S. (2002). Near optimum universal belief propagation based decoding of low-density parity check codes. IEEE Transactions on Communications, 50(3), 406–414. 3. Ullah, W., Tao, J., & Fengfan, Y. (2011) Two-way normalization of min-sum decoding algorithm for medium and short length low density parity check codes, pp. 2–6. 4. Zhang, J., Fossorier, M., & Gu, D. (2006). Two-dimensional correction for min-sum decoding of irregular LDPC codes. IEEE Communications Letters, 10(3), 180–182. 5. Lechner, G., & Sayir, J. (2004). Improved sum-min decoding of LDPC codes, pp. 3–6. 6. Emran, A. A., & Elsabrouty, M. (2014). Simplified variablescaled min sum LDPC decoder for irregular LDPC codes. In Consum. Commun. Netw. Conf., pp. 526–531. 7. Wang, C. L., Chen, X., Li, Z., & Yang, S. (2013). A simplified min-sum decoding algorithm for non-binary LDPC codes. IEEE Transactions on Communications, 61(1), 24–32. 8. Xu, Y., Member, S., Szczecinski, L., Member, S., & Rong, B. (2014). Variable LLR scaling in min-sum decoding for irregular LDPC codes. IEEE Transactions on Broadcasting, 60(4), 606–613. 9. Chen, J. C. J., & Fossorier, P. M. C. (2002). Density evolution for BP-based decoding algorithms of LDPC codes and their quantized versions. In Glob. Telecommun. Conf. 2002. GLOBECOM’02 (Vol. 2, no. 5, pp. 1378–1382). IEEE. 10. Cheng, C. C., Yang, J. D., Lee, H. C., Yang, C. H., & Ueng, Y. L. (2014). A fully parallel LDPC decoder architecture using probabilistic min-sum algorithm for high-throughput applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(9), 2738–2746. 11. Lechner, G. (2006). Improved sum-min decoding for irregular LDPC codes. 12. Jung, Y., Jung, Y., Lee, S., & Kim, J. (2014). New min-sum LDPC decoding algorithm using SNR-considered adaptive scaling factors. Electronics and Telecommunications Research Institute Journal, 36(4), 591–598. 13. Islam, M. R., Shafiullah, D. S., Mostafa, M., Faisal, A., & Rahman, I. (2012). Optimized min-sum decoding algorithm for low density parity check codes. In 14th International Conference on Advanced Communication Technology, Vol. 2, no. 12, pp. 168–174. 14. Li, Y., Vucetic, B., Wong, T. F., Member, S., & Dohler, M. (2006). Distributed turbo coding with soft information relaying in multihop relay networks. IEEE Journal on Selected Areas in Communications, 24(11), 2040–2050. 15. Benjillali, M., & Szczecinski, L. (2009). A simple detect-andforward scheme in fading channels. IEEE Communications Letters, 13(5), 309–311. 16. Wang, H., Ma, S., & Ng, T. (2011). ‘‘On performance of cooperative communication systems with spatial random relays. IEEE Transactions on Communications, 59(4), 1190–1199. 17. Like, P., & W. Communications. (2003). Wireless antennas— making wireless communications, pp. 47–73. 18. Rappaport, T. S., et al. (1996). Wireless communications: principles and practice, Vol. 207, p. 736. 19. Bansal, J. C., Singh, P. K., Saraswat, M., Verma, A., Jadon, S. S., & Abraham, A. (2011). Inertia weight strategies in particle swarm, pp. 640–647. 20. Xu, M., Wu, J., & Zhang, M. (2010). A modified offset min-sum decoding algorithm for LDPC codes. In 2010 3rd International Conference on Computer Science and Information Technology, November, pp. 19–22.
(1)
1. Anonymous (2017) Indonesian man found dead in belly of 7m-long python. The Jakarta Post. Available on line at http://www.thejakartapost.com/news/2017/03/29/indonesian-man-founddead-in-belly-of-7m-long-python-.html. Accessed 8 Oct 2017 2. Anonymous (2018) Pope Francis compares fake news to snake in Garden of Eden. The Guardian, 24 January 2018. Accessed at https://www.theguardian.com/world/2018/jan/24/pope-francisfake-news-snake-garden-of-eden on 5 Dec 2018 3. Antoniou SA, Antoniou GA, Learney R, Granderath FA, Antoniou A (2011) The rod and the serpent: history’s ultimate healing symbol. World J Surg 35:217–221 4. Arizona Poison Control Center (2017). http://azpoison.com/venom/rattlesnakes. Accessed 19 June 2017 5. Bahá’í Reference Library (1976) Available via http://reference.bahai.org/en/t/c/BWF/bwf-72. html. Accessed 26 Sept 2017
(1)
[1] Aroian, K. J., Hough, E.S., Templin, T. N., and Kaskiri, E. A. (2008) Development and psychometric evaluation of an Arab version of the Family Peer Relationship Questionnaire. Research in Nursing and Health, 31:402–416. [PubMed: 18389498] [2] Aronson, M. A. (1953). A study of the relationships between certain counsellor and client characteristics in client-centered therapy. In W. U. Snyder (Ed.), Report of a Program of Research in Psychotherapy, 39-54. [3] Othman, A., and Abdullah, S. S. (2015). Counselling in Malaysia: Trends and practice with the Malays. International Journal of Business and Applied Social Science, 1(1), 1 – 10. [4] Bandura, A., (1977). Self-efficacy: Toward a theory of behavioural change. Psychological Review 84(2), 191-215. [5] Board of Counselor. (2011). Code of Ethics: Kuala Lumpur: Publishers of Malaysian Board of Counselor [6] Counsellor Act 1998 (Act 580) and Regulations. (1998). Kuala Lumpur: Law Revision Commissioner of Malaysia in Collaboration with the Malaysian National Printing Bhd. [7] Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297-334. [8] Eriksen, K., and McAuliffe, G. (2003). A measure of counselor competency. Counselor Education and Supervision, 43(2), 120-133. [9] Gonzalez, V. M., Stewart, A., Ritter, P. L., and Lorig, K. (1995). Translation and validation of arthritis outcome measures into Spanish. Arthritis and Rheumatism 38, 1429–1446. [PubMed: 7575693] [10] Green, M., and Piel, J. A. (2009). Theories of human development: A comparative approach (2nd ed.). Prentice-Hall
(1)
1. Asad S, Mathai J, Laird D, Ong N, Buckingham L (2015) Preliminary herpetofaunal inventory of a logging concession in the Upper Baram, Sarawak, Borneo. Herpetological Review 46: 64–68. 2. Brygoo ER (1987): Les Ophisaurus (Sauria: Anguidae) d’Asie orientale. Bulletin du Muséum National d’Histoire Naturelle, Paris, 4e ser., 9: 727–752. 3. Büttikofer J (1897) Zoological results of the Dutch scientific expedition to central Borneo. Notes Leyden Mus. 19: 1–25. [1 map] 4. Chua EK (2004) Borneo’s tropical Eden. Sabah. Simply Green, Singapore, 255 pp. 5. Chua EK, Kon B (1996) The heath forests of Sabah’s Long Pasia. Nature Watch, Singapore 4(3): 14–19.
(1)
1. Ashton PS. 1963. Taxonomic notes on Bornean Dipterocarpaceae. Gardens’ Bulletin Singapore 20(3): 229–284. 2. Ashton PS. 1982. Dipterocarpaceae. In: van Steenis CGGJ [ed.], Flora Malesiana, Series I, Spermatophyta 9(2): 237–552 & 561–562. The Hague, Nijhoff, 3. Ashton PS. 2004. Dipterocarpaceae. In: E. Soepadmo, L.G. Saw & RCK. Chung [eds], The Tree Flora of Sabah and Sarawak 5, 62–388 & 485–486. Forest Research Institute Malaysia (FRIM), Sabah Forestry Department, Malaysia, Sarawak Forestry Department, Malaysia. 4. Balgooy MMJ van, Low YW, Wong KM. 2015. SpotCharacters for the Identification of Malesian Seed Plants, A Guide. Kota Kinabalu, Natural History Publications (Borneo). 5. Beccari O 1884–1886. Piante ospitatrici, ossia piante formicarie della Malesia e della Papuasia. Malesia (Genoa) vol. II, fasc. 1–2 (1884), fasc. 3 (1885), fasc. 2 (1886).
(1)
[1] Awang, S. (2004). Teras pendidikan bahasa Melayu: Asas pegangan guru [Core of Malay language education: Teachers’ foundation beliefs]. Betong: PTS Publications Sdn Bhd. [2] Bruck, M., & Waters, G. (1990). Effects of reading skill on component spelling skills. Applied Psycholinguistics, 11, 425-437 [3] Carreker, S. (2011). Teaching spelling. In J. R. Birsh (Ed.), Multisensory teaching of basic language skills (pp. 251-291). Baltimore, MD: Brookes. [4] Craig, S. A. (2006). The effects of an adapted interactive writing intervention on kindergarten children's phonological awareness, spelling, and early reading development: A contextualized approach to instruction. Journal of Educational Psychology, 98(4), 714-731. [5] Deno, S. L., Mirkin, P., & Marston, D. (1980). Relationships among simple measures of spelling and performance on standardized achievement tests (Vol. IRLD-RR-22). Minneapolis: University of Minnesota, Institute for Research on Learning Disabilities. [6] Department of Statistics Malaysia. (2011). Preliminary count report, population and housing census, Malaysia (updated: 16/09/2018). Retrieved from https://www.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=117&bul_id=Wk81WnBvbXdtQzdJRjdmM2hSNHM3Zz09&menu_id=L0pheU43NWJwRWVSZklWdzQ4TlhUUT09 (accessed 16/09/2018). [7] Ehri, L. C. (2015). How children learn to read words. In A. Pollatsek & R. Treiman (Eds.), The Oxford handbook of reading (pp. 293-310). New York: Oxford University Press. [8] Ehri, L.C. (2000). Learning to read and learning to spell: Two sides of a coin. Topics in Language Disorder, 20(3), 19-36. [9] Frith, U. (1980). Unexpected spelling problems. In U. Frith (Ed.), Cognitive processes in spelling (pp. 495-515). New York: Academic Press [10] Fuchs, L. S., Fuchs, D., Hamlett, C. L., Walz, L., & Germann, G. (1993). Formative evaluation of academic progress: How much growth can we expect? School Psychology Review, 22, 27-48. [11] Gomez, C., & Reason, R. (2002). Cross-linguistic transfer of phonological skills: A Malaysian perspective. Dyslexia, 8(1), 22-33. [12] Goodman, K. S. (1967). Reading: A psycholinguistic guessing game. Journal of the Reading Specialist, 6(4), 126-135. [13] Gough, P. B. (1972). One second of reading. In J. F. Kavanagh and I. G. Mattingly (eds.), Language by ear and by eye (pp.331-358). Cambridge, MA: MIT Press. [14] Hamdan, H. A. R. (1988). Dasar pendeskripsian sistem fonologi bahasa Melayu [Basic description of Malay phonology]. In M. O. Farid (Ed.), Bunga rampai fonologi bahasa Melayu. PJ: Penerbit Fajar Bakti Sdn. Bhd. [15] Henry, M.K. (2003). Unlocking literacy: Effective decoding and spelling instruction. Baltimore: Paul H. Brookes Publishing Co. [16] Hosp, M. K., Hosp, J. L., & Howell, K. W. (2007). The ABCs of CBM: A practical guide to curriculum-based measurement. New York: The Guilford Press. [17] Isahak, H. (1990). Mengajar membaca peringkat permulaan [Teaching beginning reading]. In O. Safiah (Ed.) Membaca: Satu Pengenalan, (pp. 46-58). Kuala Lumpur: Berita Publishing Sdn. Bhd. [18] Jones, S. (2009). The importance of spelling. Retrieved from http://www.spellingcity.com/importance-of-spelling.html (accessed 16/09/2018). [19] Lee, J. A. C., & Al Otaiba, S. (2017). End-of-Kindergarten spelling outcomes: How can spelling error analysis data inform beginning reading instruction? Reading &Writing Quarterly, 33(3), 226-238. [20] Lee, L. C., Liow, S. J. R., & Wee, M. L. O. (1998). Morphological structure of Malay: Using psycholinguistic analyses of rated familiarity. SEALS VIII, 109-119. [21] Lee, L. W. (2008). Development and validation of a reading-related assessment battery in Malay for the purpose of dyslexia assessment. Annals of Dyslexia, 58(1), 37-57. [22] McCardle, P., Chhabra, V., & Kapinus, B. (2008). Reading research in action: A teacher's guide for student success. Maryland, US: Paul H. Brookes Pub Co. [23] Mehta, P. D., Foorman, B. R., Branum-Martin, L., & Taylor, W. P. (2005). Literacy as a unidimensional multilevel construct: Validation, sources of influence, and implications in a longitudinal study in grades 1 to 4. Scientific Studies of Reading, 9(2), 85-116. [24] National Reading Panel. (2000). Teaching children to read: An evidence-based assessment of the scientific research literature on reading and its implications for reading instruction. Washington, DC: National Institute of Child Health and Human Development. [25] Ritchey, K. D., Coker, D. L., & McCraw, S. B. (2010). A comparison of metrics for scoring beginning spelling. Assessment for Effective Intervention, 25, 78-88. [26] Smith, F. (1971). Understanding reading: A psycholinguistic analysis of reading and learning to read. New York: Holt, Rinehart and Winston. [27] Snow, C. E., Griffin, P., and Burns, M. S. (Eds.) (2005). Knowledge to Support the Teaching of Reading: Preparing Teachers for a Changing Wold. San Francisco: Jossey-Bass. [28] Tangel, D.M. & Blachman, B. A. (1992). Effect of phoneme awareness instruction on kindergarten children’s invented spelling. Journal of Reading Behavior, 24, 233- 261. [29] Treiman, R. (1993). Beginning to spell: A study of first-grade children. New York: Oxford University Press. [30] Treiman, R. (1998). Why spelling? The benefits of incorporating spelling into beginning reading instruction. In J.L. Metsala, & L. Ehri (Eds.), Word recognition in beginning literacy (pp.289-313). Mahwah, NJ: Erlbaum. [31] Treiman, R. (2001). Reading. In M. Aronoff and J. Rees-Miller (Eds.), Blackwell Handbook of Linguistics (pp. 664-672). Oxford, England: Blackwell. [32] Treiman, R., Kessler, B., & Caravolas, M. (2018). What methods of scoring young children's spelling best predict later spelling performance?. Journal of Research in Reading, 00(00), 1-17. [33] Wright, J. (1992). Curriculum-based measurement: A manual for teachers. Syracuse City Schools.
(1)
1. Bashir, M., S.G. Mustafa, and J. Ulfat. 2009. Diet and diet choice in the common Kashmir lizard, Laudakia tuberculata: Gray. Ecology Environment and Conservation 15(2): 397–402. 2. Eremchenko, V. and W. Kästle. 2002. Agamidae, pp. 574–783. In: H.-H. Schleich and W. Kästle (eds.), Amphibians and reptiles of Nepal. Biology, Systematics, Field Guide. Koeltz Scientific Books, Koenigstein. 3. Khan, M.S. 2006. Amphibians and Reptiles of Pakistan. Krieger Publishing Company, Malabar, Florida. 4. Lal, O.P. 1991. Distribution, habits, habitats and feeding behaviour of common rock lizard, Agama tuberculata Gray (Reptilia: Agamidae) in Kullu Valley, western Himalayas. Journal of Entomological Research, New Delhi 15(4): 248–250. 5. Minton, S.A. 1966. A contribution to the herpetology of West Pakistan. Bulletin of the American Museum of Natural History 134: 27–184. 6. Vishwakarma, R., D. Sengupta, L. Gomes, and A.C. Momin. 2019. Notes on Kashmir Rock Agamas, Laudakia tuberculata (Gray, 1827), from the Kalesar Wildlife Sanctuary in northern India. Reptiles & Amphibians 26(1): 75–76. 7. Waltner, R.C. 1991. Altitudinal ecology of Agama tuberculata Gray in the Western Himalayas. University of Kansas Museum of Natural History, Miscellaneous Publications 83(3): 1–74.
(1)
[1] “Benefits of Nuclear Energy Power on Malaysian Society Engineering Essay”, Available from: https://www.ukessays.com/essays/engineering/benefits-of-nuclearenergy-power-on-malaysian-society-engineering-essay.php?vref=1. Accessed on 07 Dec 2019. [2] E. Triantaphyllou and S. H. Mann, “Using the Analytic Hierarchy Process for Decision Making in Engineering Applications: Some Challenges,” J. Ind. Eng. Appl. Pract., vol. 2, no. 1, pp. 35–44, 1995. [3] R. W. Saaty, “The analytic hierarchy process-what it is and how it is used,” Math. Model., vol. 9, no. 3–5, pp. 161–176, 1987. [4] Y. Murayama, 2014. “Progress in geospatial analysis,” Prog. Geospatial Anal., vol. 9784431540, no. April 2012, pp. 1–291. [5] S. A. Azeez, O. R. Nandagopan, and V. M. Dhiwakar, “Application of Analytic Hierarchy Process for Optimal Design Decisions in Product Development,” no. 3, pp. 47–54, 2013.. [6] R. Idris and Z. Abd. Latif, 2012. “GIS multi-criteria for power plant site selection,” Proc. - 2012 IEEE Control Syst. Grad. Res. Colloquium, ICSGRC 2012, no. Icsgrc, pp. 203–206. [7] “PRIS - Home.” Available from: https://pris.iaea.org/PRIS/home.aspx. Accessed on 19 Jul 2020. [8] H. M. Sungguh et al., “Application of the Analytic Hierarchy Process (AHP) in the Selection of River Basin Organizations Models in Toba Asahan River Basin - Indonesia,” vol. 3, no. 8, pp. 65–77, 2013. [9] Z. B. H. Ibrahim, “Thesis_A Comparative Study of The AHP and Topsis Methods For Implementing Load Shedding Scheme In A Pulp Mill System”, 2014. [10] B. Khwanruthai, “How to do AHP analysis in Excel,” pp. 1–21, 2012. [11] I.The AHP and A. Hierarchy, “The Analytic Hierarchy Process (AHP),” no. 1980, pp. 1–11, 2004.
(1)
1. Bertrands, E., De Medts, C., & Descheppere, G. (2003). Kleuterstappen in beweging. Leuven: Acco. 2. Cardon, G., Geldhof, E., Cnockaert, B. & Janda, I. (2007). De kinderrugschool, een multifactorieel programma voor een rugvriendelijke levensstijl. Acco Leuven/ Voorburg. (p. 96-106) 3. De Medts, C., Coens, H. & van Damme, E. (2008). Hop pompom! Bewegingsontwikkeling voor kleuters. Uitgeverij Zwijsen.be, Antwerpen. 4. Dennison, A.D., Russo, T.J., Burdick, P.A. & Jenkins, P.L. (2004). An intervention to reduce television viewing by preschool children. Arch Pediatr Adolesc Med, 158: 170-176. 5. Florquin V. & Bertrands E. (1995). Speelkriebels voor kleuters. Acco Leuven/Den Haag. (p. 149, 153, 156, 158-159, 175, 177, 198, 244, 393) 6. Sherwood, N.A., Russo, T.J. & Dennison, B.A. (2004). Fit 5 Kids: Reduction of TV viewing (preschool curriculum). 7. Vlaams verbond katholiek basisonderwijs (1998). Bewegingsopvoeding in de basisschool: leerplan. CRKLKO. 8. Vlaams verbond katholiek basisonderwijs (2000). Ontwikkelingsplan voor de katholieke kleuterschool. CRKLKO.
(1)
[1] Bonjar, GH Sahidi, and P. Rashid Farrokhi. "Anti-bacillus activity of some plants used in traditional medicine of Iran." Nigerian Journal of Natural Products and Medicine 8, no. 1 (2004): 34-39. [2] Centers for Disease Control and Prevention (CDC). Vibrio cholerae Outbreak online Databases. Retrieved on December 2, 2016, from http://www.cdc.gov/cholera/index.html. [3] Choudhury, S., A. Sree, S. C. Mukherjee, P. Pattnaik, and M. Bapuji. "In vitro antibacterial activity of extracts of selected marine algae and mangroves against fish pathogens." Asian fisheries science 18, no. 3/4 (2005): 285. [4] Costerton, J. William, Philip S. Stewart, and E. Peter Greenberg. "Bacterial biofilms: a common cause of persistent infections." Science 284, no. 5418 (1999): 1318-1322. [5] Dalsgaard, Anders, Anita Forslund, Andreas Petersen, Derek J. Brown, Francisco Dias, Serifo Monteiro, Kåre Mølbak, Peter Aaby, Amabelia Rodrigues, and Anita Sandström. "Class 1 integron-borne, multiple-antibiotic resistance encoded by a 150-kilobase conjugative plasmid in epidemic Vibrio cholerae O1 strains isolated in Guinea-Bissau." Journal of clinical microbiology 38, no. 10 (2000): 3774-3779. [6] Davey, Mary Ellen, and George A. O'toole. "Microbial biofilms: from ecology to molecular genetics." Microbiology and molecular biology reviews 64, no. 4 (2000): 847-867. [7] Donlan, R. M., W. O. Pipes, and T. L. Yohe. "Biofilm formation on cast iron substrata in water distribution systems." Water Research 28, no. 6 (1994): 1497-1503. [8] Elexson, N., R. Son, Y. Rukayadi, T. T. Zainazor, M. Nor Ainy, Y. Nakaguchi, and N. Mitsuaki. "Biosafety of Vibrio Parahaemolyticus biofilm from seafood using herbs and spices." Journal of Life Medicine 1, no. 3 (2013): 71-82. [9] Finkelstein, R. A. Cholera, Vibrio cholerae O1 and O139, and other pathogenic vibrios (2002). Medical Microbiology (4th ed). University of Texas Medical Branch at Galveston. Guarrera, P. M. 2005. Traditional phytotherapy in central Italy. Fitoterapia, 76, 1–25. [10] Guarrera P. M. Traditional phytotherapy in Central Italy (Marche, Abruzzo, and Latium)(2005). Fitoterapia , pp.1- 25. [11] Inamdar, Nazma, Shima Edalat, Vikram B. Kotwal, and Sunita Pawar. "Herbal drugs in milieu of modern drugs." International Journal of Green Pharmacy (IJGP) 2, no. 1 (2008). [12] Jeremy Veno. Cholera outbreak in Limbang under control (2016). Borneo Post . March 16, [13] Kiuchi, Fumiyuki, NORIO NAKAMURA, YOSHISUKE TSUDA, Kaoru Kondo, and Hiroyuki Yoshimura. "Studies on crude drugs effective on visceral larva migrans. II.: Larvicidal principles in Kaempferiae rhizoma." Chemical and pharmaceutical bulletin 36, no. 1 (1988): 412-415. [14] Larsen, Kai, Halijah Ibrahim, S. H. Khaw, and L. G. Saw. Gingers of peninsular Malaysia and Singapore. Natural History Publications (Borneo), 1999. [15] Mandal, Shyamapada, Manisha DebMandal, Nishith Kumar Pal, and Krishnendu Saha. "Synergistic antiStaphylococcus aureus activity of amoxicillin in combination with Emblica officinalis and Nymphae odorata extracts." Asian Pacific Journal of Tropical Medicine 3, no. 9 (2010): 711-714. [16] Patel, Robin. "Biofilms and antimicrobial resistance." Clinical Orthopaedics and Related Research® 437 (2005): 41- 47. [17] Seeley, H. W., Vandemark, P. J., & Lee, J. J. . Microbes in action: A laboratory manual of microbiology (4th ed) (2001). New York, NY: W.H. Freeman and Company. [18] Sunayana, V., P. Vadivukkarasi, A. Rajendran, T. Francis Xavier, and E. Natarajan. "Antibacterial potential of Plectranthus amboinicus (Lour) Spreng." A study in vitro. J Swamy Bot Club 20 (2003): 55-58. [19] Watnick, Paula I., Crystal M. Lauriano, Karl E. Klose, Laura Croal, and Roberto Kolter. "The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139." Molecular microbiology 39, no. 2 (2001): 223-235. [20] World Health Organization. "The Legal Status of Traditional and Complementary/Alternative Medicine: a Worldwide Review." Geneva, WHO-Verlag (2001).
(1)
1. Boyce PC. 2007. Studies on the Alocasia Schott (Araceae – Colocasieae) of Borneo: I. Two new species from Sarawak, Malaysian Borneo. Gardens’ Bulletin Singapore 58: 141–154. 2. Hay A. 1998. The genus Alocasia (Araceae-Colocasieae) in West Malesia and Sulawesi. Gardens’ Bulletin Singapore 50: 221–334 3. Hay A. 2000. Alocasia nebula. Botanical Magazine, n.s. 17(1): 14–18, pl. 381 4. Kurniawan A, Boyce PC. 2011. Studies on the Alocasia Schott (Araceae–Colocasieae) of Borneo II: Alocasia baginda, a new species from East Kalimantan, Indonesian Borneo. Acta Phytotaxonomica et Geobotanica 60(3): 123–126. 5. Tate RB. 2001. The geology of Borneo island CDROM. – Kuala Lumpur: Persatuan Geologi Malaysia / Geological Society of Malaysia. 6. Wong KM, Boyce PC. 2016. Novitates Bruneienses, 6. Alocasia azlanii (Araceae), a new species from Brunei. Acta Phytotaxonomica et Geobotanica 67(3): 185–189.
(1)
1. Boyce PC 2017. Studies on Schismatoglottideae (Araceae) of Borneo LXIII: Three new species for the Schismatoglottis Patentinervia Clade. Borneo Journal of Resource Science and Technology 7(2): 84–92. 2. Furtado CX. 1935. Araceae Malesicae. The Gardens’ Bulletin, Straits Settlements 8: 145–158. 3. Oldfield M. 2014. The Green Heart of Sabah. Scubazoo Publications. 255pp. 4. Tate RB. 2001. The geology of Borneo island CDROM. - Kuala Lumpur: Persatuan Geologi Malaysia / Geological Society of Malaysia. 5. Wong SY, Aisahtul binti W, Boyce PC. 2017. Studies on Schismatoglottis (Araceae) of Borneo LX: Preliminary notes on the Schismatoglottis Patentinervia Clade, including descriptions of three new species. Aroideana 40(1): 4–28. 6. Wong SY, Aisahtul binti W, Boyce PC. 2018. Studies on Schismatoglottis (Araceae) of Borneo LXIV: Another new species for Schismatoglottis Patentinervia Clade from the Rejang Basin, Sarawak. Aroideana 41(1): 139–148. 7. Wong SY, Boyce PC, Aisahtul binti Wardi, Chai SK. 2019. Araceae of Mulu National Park I: Four new species of Schismatoglottis (Araceae). Nordic Journal of Botany 37: doi 10.1111/njb.02566.
(1)
1. Boyce PC & Hay A. 2001. A taxonomic revision of Araceae tribe Potheae (Pothos, Pothoidium and Pedicellarum) for Malesia, Australia and the tropical Western Pacific. Telopea 9(3): 449–457. 2. Grayum MH. 1984. Palynology and phylogeny of the Araceae. Ph.D. Dissertation. Univ. Massachusetts, Amherst, Massachusetts. 3. Grayum MH. 1990. Evolution and phylogeny of the Araceae. Annals of the Missouri Botanical Garden 77(4): 628–697. 4. Hay A. 2019. Durianology, discovery, and saltation: the evolution of aroids. Gardens’ Bulletin Singapore 71(Suppl. 2): 257–313. 5. Hay A & Mabberley DJ. 1991. ‘Transference of function’ and the origin of aroids: their significance in early angiosperm evolution. Botanische Jahrbücher fur Systematik, Pflanzengeschichte und Pflanzengeographie. 113: 330–428.
(1)
[1]Bradford MA,Pi Y-L.Elastic flexural–torsional buckling of discretely restrained arches.Journal of Structural Engineering,ASCE 2002;128(6):719–27. [2]Chen WF, Lui EM.Stability design of steel frames.Boca Raton, FL:CRC Press;1991 [3]Trahair NS,Bradford MA,Nethercot DA,Gardner L.The behaviour and design of steel structures to EC3.4th ed.London:Taylor and Francis;2008. [4]Chan BH.Non-linear analysis of steel frames under non-proportional and fire loadings. Ph.D. thesis. Hong Kong: The Hong Kong Polytechnic University;2002. [5]Iu CK, Chan SL. A simulation-based large deflection and inelastic analysis of steel frames under fire. Journal of Constructional Steel Research 2004;60:1495–524. [6]Heidarpour A, Bradford MA. Generic non-linear modelling of a bi-material composite beam with partial shear interaction. International Journal of Non-Linear Mechanics 2009;44:290–7. [7]Song L,Izzuddin BA,Elnashai AS,Dowling PJ.An integrated adaptive environment for fire and explosion analysis of steel frames—PartI:Analytical models.Journal of Constructional Steel Research 2000;53:63–85. [8]Izzuddin BA,Song L,Elnashai AS,Dowling PJ.An integrated adaptive environment for fire and explosion analysis of steel frames—Part II: Verification and application. Journal of Constructional Steel Research 2000;53:87–111. [9]Wood RD, Zienkiewicz OC. Geometrically nonlinear finite element analysis of beams,frames,arches and axisymmetric shells. Computers and Structures 1976;7:725–35. [10]Noor AM,Greene WH,Hartley SJ.Nonlinear finite element analysis of curved beams. Computer Methods in Applied Mechanics and Engineering 1976;12:289–307. [11]Noor AK,Peters JM. Mixed models and reduced/selective integration displace-ment models for nonlinear analysis of curved beams. International Journal for Numerical Methods in Engineering 1981;17:615–31. [12]Stolarski H, Belytschko T. Membrane locking and reduced integration for curved elements. Journal of Applied Mechanics 1982;49:172–6. [13]Pi Y-L,Bradford MA,Uy B.A rational elasto-plastic spatially curved thin-walled beam element. International Journal for Numerical Methods in Engineering 2007;70:253–90.[14]Calhoun PR, DaDeppo DA. Nonlinear finite element analysis of clamped arches.Journal of Structural Engineering,ASCE 1983;109:599–612. [15]Elias ZM,Chen KL.Nonlinear shallow curved-beam finite element.Journal of Engineering Mechanics,ASCE 1988;114:1076–87. [16]Wen RK, Suhendro B. Nonlinear curved-beam element for arch structures.Journal of Structural Engineering,ASCE 1991;117:599–612. [17]Bradford MA, Uy B, Pi Y-L. In-plane elastic stability of arches under a central concentrated load.Journal of Engineering Mechanics,ASCE 2002;128:710–9. [18]Pi Y-L,Bradford MA,Uy B.In-plane stability of arches. International Journal of Solids and Structures 2002;39:105–25. [19]Bradford MA. In-plane nonlinear behaviour of circular pinned arches with elastic restraints under thermal loading. International Journal of Structural Stability and Dynamics 2006;6:163–77. [20]Bradford MA. Buckling of circular steel arches subjected to fire loading. Welding in the World 2006;50:394–9. [21]Bradford MA. Long span shallow steel arches subjected to fire loading. In:International symposium on innovations in structural steel;2008. [22]Moon J, Yoon K-Y, Lee T-H, Lee H-E. In-plane elastic buckling of pin-ended shallow parabolic arches.Engineering Structures 2007;29:2611–7. [23]Dimopoulos CA, Gantes CJ. Nonlinear in-plane behaviour of circular steel arches with hollow circular cross-section. Journal of Constructional Steel Research 2008;64:1436–45. [24] ADINA system 8.3. Release notes. Watertown,MA: ADINA R&D Inc.;2005. [25]ABAQUS. User’s manual—Version6.1.1. Pawtucket,RI: Abaqus Inc.;2006. [26]ECCS—T3. European recommendations for the fire safety of steel structures.Amsterdam:Elsevier;1983. [27]British Standards Institution. Eurocode 3: Design of steel structures: Part 1.2 general rules—Structural fire design.London: BSI;2005. [28]Lie TT. Structural fire protection.New York: ASCE;1992.[29]Standards Australia. AS4100 Steel Structures.1998.[30]Heidarpour A,Bradford MA.Generic non-linear modelling of restrained steel beams at elevated temperatures. Engineering structures[Published online 17 July 2009]. [31]Heidarpour A,Bradford MA.Non-discretisation formulation for the non-linear analysis of semi-rigid steel frames at elevated temperatures. Computers and Structures[inpress].[32]Waterloo maple software.Waterloo,ON: Maplesoft;2008.[33]Broken hill proprietary limited.Hot rolled products.Melbourne: BHP;1998. [34]Pi Y-L,Bradford MA.Thermo elastic lateral-torsional buckling of fixed slender beams under linear moment gradient. International Journal of Mechanical Sciences 2008;50(7):1183–93.
(1)
1. BREITFIELD, H. T., HALL, R., GALIN, T. & BOUDAGHER-FADEL, M. K. (2018). Unravelling the stratigraphy and sedimentation history of the uppermost Cretaceous to Eocene sediments of the Kuching Zone in West Sarawak (Malaysia), Borneo. Journal of Asian Earth Sciences, 160: 200 – 223. 2. BROWN, A. & BROWN, B. (1987). A survey of freshwater fishes of the family Belontiidae in Sarawak. Sarawak Museum Journal, 37: 155 – 170, 3 pls. 3. BROWN, B. (1987). Special announcement – two new anabantoid species. Aquarist and Pondkeeper, 1987 (June): 34. 4. FINKE, P. (2013). Special issue 1 – The Licorice Gouramis. Labyrinth, Anabantoid Association of Great Britain, UK. 47 pp. 5. FINKE, P. & HALLMANN, M. (2013). Prachtguramis: Juwelen des Urwalds in der Natur und im Aquarium (German). Aqualog Animalbook GmbH, 200 p.
(1)
1. Chiappini E, Stival A, Galli L, de Martino M. Pertussis re-emergence in the post-vaccination era. BMC Infect Dis [Internet]. 2013 Dec [cited 2018 Oct 1];13(1). Available from: http://bmcinfectdis.biomedcentral.com/ articles/10.1186/1471-2334-13-151 2. World Health Organization (WHO). Pertussis, update 2017. In: The immonological basis for Immunization series [Internet]. 2017 [cited 2018 Nov 17]. (Module 4). Available from: http://apps. who.int/iris/handle/10665/259388 3. World Health Organization (WHO). Data, statistics and graphics [Internet]. 2019 Dec [cited 2020 Jan 25]. Available from: https://www.who.int/ immunization/monitoring_surveillance/data/en/ 4. World Health Organization (WHO). Vaccinepreventable diseases: monitoring system. 2019 Global summary. [Internet]. 2019 Oct [cited 2020 Jan 25]. Available from: https://apps.who. int/immunization_monitoring/globalsummary/ c o u n t r i e s ? c o u n t r y c r i t e r i a % 5 B c o u n t r y % 5D%5B%5D=MYS&commit=OK 5. Randi BA, Sejas ONE, Miyaji KT, Infante V, Lara AN, Ibrahim KY, et al. A systematic review of adult tetanus-diphtheria-acellular (Tdap) coverage among healthcare workers. Vaccine. 2019 Feb;37(8):1030–7. 6. Meng Q, Li L, Shi W, Wang Q, Ding M, Liu Y, et al. Seroprevalence of diphtheria and pertussis immunoglobulin G among children with pneumonia in Ji’nan, China. BMC Pediatr [Internet]. 2018 Dec [cited 2019 Jun 26];18(1). Available from: https://bmcpediatr.biomedcentral. com/articles/10.1186/s12887-018-1337-y 7. Sigera S, Perera J, Rasarathinam J, Samaranayake D, Ediriweera D. Seroprevalence of Bordetella pertussis specific Immunoglobulin G antibody levels among asymptomatic individuals aged 4 to 24 years: a descriptive cross sectional study from Sri Lanka. BMC Infect Dis [Internet]. 2016 Dec [cited 2019 Jun 26];16(1). Available from: http:// bmcinfectdis.biomedcentral.com/articles/10.1186/ s12879-016-2068-z 8. Shimizu H, Seki K, Shiga K, Nakayama T, Mori M. Safety and efficacy of DTaP-IPV vaccine use in healthcare workers for prevention of pertussis. Vaccine. 2018 Sep;36(40):5935–9. 9. World Health Organization (WHO). Health Worker Occupational Health [Internet]. Occupational Health. 2018 [cited 2018 Nov 17]. Available from: http://www.who.int/occupational_health/topics/ hcworkers/en/ 10. Liang JL, Tiwari T, Moro P, Messonnier NE, Reingold A, Sawyer M, et al. Prevention of Pertussis, Tetanus, and Diphtheria with Vaccines in the United States: Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2018 Apr 27;67(2):1–44. 11. Haviari S, Bénet T, Saadatian-Elahi M, André P, Loulergue P, Vanhems P. Vaccination of healthcare workers: A review. Hum Vaccines Immunother. 2015 Nov 2;11(11):2522–37. 12. Russi M, Behrman A, Buchta WG, Budnick LD, Hodgson MJ, Spillmann SJ, et al. Pertussis Vaccination of Health Care Workers. 2013 Sep;55(9):3. 13. Ryser A-J, Heininger U. Comparative acceptance of pertussis and influenza immunization among health-care personnel. Vaccine. 2015 Oct;33(41):5350–6. 14. Greer AL, Fisman DN. Use of Models to Identify Cost-effective Interventions: Pertussis Vaccination for Pediatric Health Care Workers. PEDIATRICS [Internet]. 2011 Aug 15 [cited 2018 Oct 1]; Available from: http://pediatrics.aappublications. org/cgi/doi/10.1542/peds.2010-0796 15. Ministry of Health Malaysia. Case Definitions For Infectious Diseases in Malaysia. Third. 2017. 16. Hudu SA. Influenza vaccination among Malaysian healthcare workers: a survey of coverage and attitudes. 2016;71(5):7. 17. Hope K, Butler M, Massey PD, Cashman P, Durrheim DN, Stephenson J, et al. Pertussis vaccination in Child Care Workers: room for improvement in coverage, policy and practice. BMC Pediatr [Internet]. 2012 Dec [cited 2018 Oct 1];12(1). Available from: http://bmcpediatr.biomedcentral. com/articles/10.1186/1471-2431-12-98 18. Lu P, Graitcer SB, O’Halloran A, Liang JL. Tetanus, diphtheria and acellular pertussis (Tdap) vaccination among healthcare personnel—United States, 2011. Vaccine. 2014 Jan;32(5):572–8. 19. Paranthaman K, McCarthy N, Rew V, van Zoelen S, Cockerill L. Pertussis vaccination for healthcare workers: staff attitudes and perceptions associated with high coverage vaccination programmes in England. Public Health. 2016 Aug;137:196–9. 20. Ferrer RA, Klein WM. Risk perceptions and health behavior. Curr Opin Psychol. 2015 Oct;5:85–9. 21. National Safety Council. Risk Perception: Theories, Strategies and next steps [Internet]. Campbell Institute; 2014 [cited 2018 Nov 17]. Available from: www.thecampbellinstitute.org 22. Nabizadeh SM, Taymoori P, Hazhir MS, Shirazi M, Roshani D, Shahmoradi B. Predicting vitamin E and C consumption intentions and behaviors among factory workers based on protection motivation theory. Environ Health Prev Med [Internet]. 2018 Dec [cited 2019 Jun 24];23(1). Available from: https://environhealthprevmed.biomedcentral.com/ articles/10.1186/s12199-018-0742-z 23. Lawrence S. Meyers, Glenn C. Gamst, A.J.Guarino. Performing Data Analysis Using IBM SPSS. John Wiley & Sons; 2013. 24. WarpPLS [Internet]. 2017. Available from: http:// www.warppls.com/ 25. Ned Kock. WarpPLS User Manual Version 6.0 [Internet]. 2010 [cited 2019 Jun 26]. Available from: http://cits.tamiu.edu/WarpPLS/ UserManual_v_6_0.pdf#page=26 26. Kock N, Gaskins L. The Mediating Role of Voice and Accountability in the Relationship Between Internet Diffusion and Government Corruption in Latin America and Sub-Saharan Africa. Inf Technol Dev. 2014 Jan 2;20(1):23–43. 27. Tuckerman JL, Collins JE, Marshall HS. Factors affecting uptake of recommended immunizations among health care workers in South Australia. Hum Vaccines Immunother. 2015 Mar 4;11(3):704–12. 28. Yuan Q, Wang F, Zheng H, Zhang G, Miao N, Sun X, et al. Hepatitis B vaccination coverage among health care workers in China. Chemin I, editor. PLOS ONE. 2019 May 7;14(5):e0216598. 29. La Torre G, Scalingi S, Garruto V, Siclari M, Chiarini M, Mannocci A. Knowledge, Attitude and Behaviours towards Recommended Vaccinations among Healthcare Workers. Healthcare. 2017 Mar 7;5(1):13. 30. Xiao H, Li S, Chen X, Yu B, Gao M, Yan H, et al. Protection Motivation Theory in Predicting Intention to Engage in Protective Behaviors against Schistosomiasis among Middle School Students in Rural China. Hotez PJ, editor. PLoS Negl Trop Dis. 2014 Oct 16;8(10):e3246. 31. MacDougall DM, Halperin BA, MacKinnonCameron D, Li L, McNeil SA, Langley JM, et al. The challenge of vaccinating adults: attitudes and beliefs of the Canadian public and healthcare providers. BMJ Open. 2015 Sep;5(9):e009062. 32. Loulergue P, Launay O. Vaccinations among medical and nursing students: Coverage and opportunities. Vaccine. 2014 Aug;32(38):4855–9. 33. Tuckerman J, Thomas N, Marshall HS. Should professionals caring for children be vaccinated? Community perspectives on health care and child care worker immunisation. Vaccine. 2016 Mar;34(14):1726–32. 34. Maltezou HC, Katerelos P, Poufta S, Pavli A, Maragos A, Theodoridou M. Attitudes toward mandatory occupational vaccinations and vaccination coverage against vaccine-preventable diseases of health care workers in primary health care centers. Am J Infect Control. 2013 Jan;41(1):66–70. 35. Maltezou HC, Poland GA. Vaccination policies for healthcare workers in Europe. Vaccine. 2014 Aug;32(38):4876–80. 36. Visser O, Hautvast JLA, van der Velden K, Hulscher MEJL. Intention to Accept Pertussis Vaccination for Cocooning: A Qualitative Study of the Determinants. Hozbor DF, editor. PLOS ONE. 2016 Jun 2;11(6):e0155861. 37. Visser O, Hulscher MEJL, Antonise-Kamp L, Akkermans R, van der Velden K, Ruiter RAC, et al. Assessing determinants of the intention to accept a pertussis cocooning vaccination: A survey among healthcare workers in maternity and paediatric care. Vaccine. 2018 Jan;36(5):736–43. 38. Tariq L, Mangen M-JJ, Hövels A, Frijstein G, de Boer H. Modelling the return on investment of preventively vaccinating healthcare workers against pertussis. BMC Infect Dis [Internet]. 2015 Dec [cited 2018 Oct 1];15(1). Available from: http:// bmcinfectdis.biomedcentral.com/articles/10.1186/ s12879-015-0800-8 39. MacDonell K. A Protection Motivation TheoryBased Scale for Tobacco Research among Chinese Youth. J Addict Res Ther [Internet]. 2013 [cited 2018 Nov 17];04(03). Available from: https://www. omicsonline.org/a-protection-motivation-theorybased-scale-for-tobacco-research-among-chineseyouth-2155-6105.1000154.php?aid=15632 40. Plotnikoff RC, Trinh L. Protection Motivation Theory: Is This a Worthwhile Theory for Physical Activity Promotion? Exerc Sport Sci Rev. 2010 Apr;38(2):91–8.
(1)
1. Choudhury I. and Chuan P. Experimental evaluation of laser cut quality of glass fibre reinforced plastic composite. Optics and Lasers in Engineering 51(10) (2013), 1125-1132. 2. Riveiro A., Quintero F., Lusquiños F., Del Val J., Comesaña R., Boutinguiza M., and Pou J. Experimental study on the CO2 laser cutting of carbon fiber reinforced plastic composite. Composites Part A: Applied Science and Manufacturing 43(8) (2012), 1400-1409. 3. Salama A., Li L., Mativenga P., and Whitehead D. TEA CO 2 laser machining of CFRP composite. Applied Physics A 122(5) (2016), 497. 4. Fürst A., Hipp D., Klotzbach A., Hauptmann J., Wetzig A., and Beyer E. Increased Cutting Efficiency due to Multi‐ Wavelength Remote‐ Laser‐ Ablation of Fiber‐ Reinforced Polymers. Advanced Engineering Materials 18(3) (2016), 403-408. 5. Tamrin K.F., Nukman Y., Choudhury I., and Shirley S. Multiple-objective optimization in precision laser cutting of different thermoplastics. Optics and Lasers in Engineering 67 (2015), 57-65. 6. Nisar S., Sheikh M., Li L., and Safdar S. Effect of thermal stresses on chip-free diode laser cutting of glass. Optics & Laser Technology 41(3) (2009), 318-327. 7. Negarestani R., Sundar M., Sheikh M., Mativenga P., Li L., Li Z., Chu P., Khin C., Zheng H., and Lim G. Numerical simulation of laser machining of carbon-fibre-reinforced composites. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 224(7) (2010), 1017-1027. 8. Nattapat M., Marimuthu S., Kamara A., and Esfahani M.N. Laser surface modification of carbon fiber reinforced composites. Materials and Manufacturing Processes 30(12) (2015), 1450-1456. 9. Liu Y.-C., Wu C.-W., Huang Y.-H., Song H.-W., and Huang C.-G. Interlaminar damage of carbon fiber reinforced polymer composite laminate under continuous wave laser irradiation. Optics and Lasers in Engineering 88 (2017), 91-101. 10. Wu C.-W., Wu X.-Q., and Huang C.-G. Ablation behaviors of carbon reinforced polymer composites by laser of different operation modes. Optics & Laser Technology 73 (2015), 23-28. 11. Choudhury I., Chong W., and Vahid G. Hole qualities in laser trepanning of polymeric materials. Optics and lasers in engineering 50(9) (2012), 1297-1305. 12. Hakimian E. and Sulong A.B. Analysis of warpage and shrinkage properties of injection-molded micro gears polymer composites using numerical simulations assisted by the Taguchi method. Materials & Design 42 (2012), 62-71. 13. Nalbant M., Gökkaya H., and Sur G. Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning. Materials & design 28(4) (2007), 1379-1385. 14. Azhikannickal E., Bates P.J., and Zak G. Use of thermal imaging to characterize laser light reflection from thermoplastics as a function of thickness, laser incidence angle and surface roughness. Optics & Laser Technology 44(5) (2012), 1491-1496. 15. Leone C., Genna S., and Tagliaferri V. Fibre laser cutting of CFRP thin sheets by multi-passes scan technique. Optics and Lasers in Engineering 53 (2014), 43-50. 16. Moghadasi K. and Tamrin K. Experimental investigation and parameter optimization of low-power CO2 laser cutting of a carbon/Kevlar fiber-reinforced hybrid composite. Lasers in Engineering (Old City Publishing) 45(1-3) (2020), 85-108. 17. Wei Q., Li S., Han C., Li W., Cheng L., Hao L., and Shi Y. Selective laser melting of stainlesssteel/ nano-hydroxyapatite composites for medical applications: microstructure, element distribution, crack and mechanical properties. Journal of Materials Processing Technology 222 (2015), 444-453. 18. Alavudeen A., Rajini N., Karthikeyan S., Thiruchitrambalam M., and Venkateshwaren N. Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: Effect of woven fabric and random orientation. Materials & Design (1980-2015) 66 (2015), 246-257. 19. Patel P., Gohil P., and Rajpurohit S. Laser machining of polymer matrix composites: scope, limitation and application. International Journal of Engineering Trends and Technology (IJETT) 4(6) (2013), 2391-2399. 20. Tamrin K., Nukman Y., Sheikh N., and Harizam M. Determination of optimum parameters using grey relational analysis for multi-performance characteristics in CO2 laser joining of dissimilar materials. Optics and Lasers in Engineering 57 (2014), 40-47. 21. Sheng P.S. and Joshi V.S. Analysis of heat-affected zone formation for laser cutting of stainless steel. Journal of materials processing technology 53(3-4) (1995), 879-892. 22. Goldak J., Chakravarti A., and Bibby M. A new finite element model for welding heat sources. Metallurgical transactions B 15(2) (1984), 299-305. 23. Hyer M.W. and White S.R. Stress analysis of fiber-reinforced composite materials. DEStech Publications, Inc. 2009. p. 170. 24. Mivehchi H. and Varvani-Farahani A. The effect of temperature on fatigue strength and cumulativefatigue damage of FRP composites. Procedia engineering 2(1) (2010), 2011-2020. 25. Hashin Z. Failure criteria for unidirectional fiber composites. Journal of Applied Mechanics 47(2) (1980), 329-334. 26. Kim H.S., Wang W.-X., and Takao Y. Evaluation by FEM of temperature-dependent damage behavior in quasi-isotropic carbon/epoxy laminates. Advanced Composite Materials 8(3) (1999), 247-257. 27. Matzenmiller A., Lubliner J., and Taylor R. A constitutive model for anisotropic damage in fibercomposites. Mechanics of materials 20(2) (1995), 125-152. 28. Lapczyk I. and Hurtado J.A. Progressive damage modeling in fiber-reinforced materials. Composites Part A: Applied Science and Manufacturing 38(11) (2007), 2333-2341.
(1)
[1] C. W. Fetter (1988). Applied Hydrogeology. Columbus, Merrill Publishing Company. p. 592. [2] D. Hinrichsen (2007). Ocean Planet in Decline. http://www.peopleandplanet.net/?lid=26188&topic=44§ion=35. Accessed April 23 2013. [3] M. S. Kornis, D. M. Bilkovic, L. A. Davias, S. Giordano, D. L. Breitburg (2017). Shoreline Hardening Affects Nekton Biomass, Size Structure, and Taxonomic Diversity in Nearshore Waters, with Responses Mediated by Functional Species Groups. Estuaries and Coast, Vol. 41, pp 159-179. [4] Q. Zhang, R. E. Volker, and D. A. Lockington (2002). Experimental investigation of contaminant transport in coastal groundwater. Advances in Environmental Research, Vol.6 (3), p. 229–237. [5] S. S. Mehdizadeh, S. E. Karamalipour, R. Asoodeh (2017). Sea level rise effect on seawater intrusion into layered coastal aquifers (simulation using dispersive and sharp-interface approaches). Ocean & Coastal Management. Vol. 138, pp 11-18. [6] R. E. Volker, and K. R. Rushton (1982). An assessment of the importance of some parameters for sea water intrusion in aquifers and a comparison of depressive and sharp interface modelling approaches. Journal of Hydrology, Vol.56, 239-250. [7] Solinst (2012). Pump/recharge rate affects saltwater intrusion: groundwater monitoring, management and conservation keep saltwater intrusion under control. http://www.solinst. com/Res/papers/101C4Salt.html. Accessed April 28 2013. [8] A. Szymkiewicz, A. Gumula-Kawecka, J. Simunek, B. Leterme, S. Beegum, B. Jaworska-Szulc, M. Pruszkowska-Caceres, W. Gorczewska-Langner, R. Angulo-Jaramillo, D. Jacques (2017). Simulations of freshwater lens recharge and salt/freshwater interfaces using the HYDRUS and SWI2 packages for MODFLOW. J. Hydrol. Hydromech., 66, 2018, 2, 246-256. [9] P. M. Barlow (2003). Groundwater in Freshwater-Saltwater Environments of the Atlantic Coast. U.S. Geological Survey Circular, p. 1262. [10] R. E. Glover (1959). The pattern of freshwater flow in a coastal aquifer. Journal of Geophysical Research, Vol. 64 (4), 457-459. [11] R. Pedreira, A. Kallioras F. Pliakas, I. Gkiougkis, C. Schuth (2015). Groundwater vulnerability assessment of a coastal aquifer system at River Nestos eastern Delta, Greece. Environmental Earth Sciences. Vol. 73(10), pp 6387-6415. [12] H. R. Henry (1959). Salt intrusion into freshwater aquifers. Journal of Geophysical Research, Vol. 64, 1911-1919. [13] H. Ketabchi, D. Mahmoodzadeh, B. Ataie-Ashitani, C. T. Simmons (2016). Sea-level rise impacts on seawater intrusion in coastal aquifers: Review and integration. Journal of Hydrology. Vol. 535, pp 235-255. [14] T. E. Reilly and A.S. Goodman (1985). Quantitative analysis of saltwater-freshwater relationships in groundwater systems-a historical prospective. Journal of Hydrology, Vol.80, 125-160. [15] D. M. Allen, D. C. Mackie, and M. Wei (2003). Groundwater and climate change: a sensitivity analysis for the Grand Forks aquifer, southern British Columbia, Canada. Hydrogeology Journal, Vol.12, pp. 270–290. [16] Z. W. Kundzewicz and P. Doll (2009). Will groundwater ease freshwater stress under climate change? Hydrological Sciences Journal, Vol.54 (4), 665-675. [17] A. F. V. Loon (2015). Hydrological drought explained. WIREs Water2015, 2:359–392. [18] A. G. Bobba (1993). Mathematical models for saltwater intrusion in coastal aquifers. Water Resources Management, Vol.7, 3–37. [19] S. H. Hong, H. D. Kim, N. Kumar, H. J. Kim, and N. Park (2005). Experimental Investigations on Groundwater Flow in Coastal Aquifers. Groundwater and Saline Intrusion, Vol.15, p.21. [20] C. Robinson, L. Li, and D. A. Barry (2007). Effect of tidal forcing on a subterranean estuary. Advances in Water Resources, Vol.30, 851–865. [21] H. Li, M. C. Boufadel, and J. W. Weaver (2008). Tide-induced seawater-groundwater circulation in shallow beach aquifers. Journal of Hydrology, Vol.352 (1), 211-224. [22] S. W. Chang, T. P. Clement, M. J. Simpson, and K. K. Lee (2011). Does sea-level rise have an impact on saltwater intrusion? Advances in water resources, Vol.34 (10), 1283-1291. [23] W. K. Kuan, G. Q. Jin, P. Xin, C. Robinson, B. Gibbes, and L. Li (2012). Tidal influence on seawater intrusion in unconfined coastal aquifers. Water Resources Research, Vol.48 (2), 1-11. [24] R. R. Goswami and T. P. Clement (2007). Laboratory-scale investigation of saltwater intrusion dynamics. Water Resources Research, p. 43. [25] R. Luyun, K. Momii, and K. Nakagawa (2009), Laboratory-scale saltwater behavior due to subsurface cutoff wall. Journal of Hydrology, Vol.377, 227–236. [26] IPCC (2007). Climate change 2001: impacts, adaptation and vulnerability. Summary for policymakers. The Intergovernmental Panel on Climate Change. Cambridge University Press: Cambridge. [27] M. Vermeer and S. Rahmstorf (2009). Global sea level linked to global temperature. Proceedings of the National Academy of Sciences, Vol.106 (51), p. 21527-21532. [28] R. G. Shepherd (1989). Correlations of permeability and grain size. Groundwater, Vol.27 (5), 633-638. [29] M. S. Alyamani and Z. Şen (1993). Determination of Hydraulic Conductivity from Complete Grain‐Size Distribution Curves. Groundwater, Vol.31 (4), 551-555. [30] J. Odong (2007). Evaluation of empirical formulae for determination of hydraulic conductivity based on grain-size analysis. Journal of American Science, Vol.3 (3), 54-60. [31] A. F. Salarashayeri and M. Siosemarde (2012). Prediction of Soil Hydraulic Conductivity from Particle-Size Distribution. World Academy of Science, Engineering and Technology, Vol.6 (1), 454-458. [32] P. Xin, C. Robinson, L. Li, D. A. Barry, and R. Bakhtyar (2010). Effects of wave forcing on a subterranean estuary. Water Resources Research, p. 46.
(1)
1. Dryden R et al What do we know about who does and does not attend general health checks? Findings from a narrative scoping review BMC Public Health 2012 12 1 723 doi 10 1186 1471 2458 12 723 2. Wantland DJ et al The effectiveness of Web based vs non Web based interventions a meta analysis of behavioral change outcomes J Med Internet Res 2004 6 4 e 40 3. Powell BJ, et al A refined compilation of implementation strategies results from the Expert Recommendations for Implementing Change ( project Implementation Science 2015 10 1 21 4. Webb MJ et al Experiences of General Practitioners and Practice Support Staff Using a Health and Lifestyle Screening App in Primary Health Care Implementation Case Study JMIR mHealth and uHealth 2018 6 4 e 105 5. Diez Canseco F et al Integration of a Technology Based Mental Health Screening Program Into Routine Practices of Primary Health Care Services in Peru (The Allillanchu Project) Development and Implementation Journal of medical Internet research 2018 20 3 e 100 6. Krist AH et al Adoption, reach, implementation, and maintenance of a behavioral and mental health assessment in primary care Annals of family medicine 2014 12 6 525 33 7. Scribano PV et al Feasibility of computerized screening for intimate partner violence in a pediatric emergency department Pediatric emergency care 2011 27 8 710 6
(1)
1. Dryden R et al. What do we know about who does and does not attend general health checks? Findings from a narrative scoping review. BMC Public Health. 2012. 2. Tachakra S et al. Mobile e-health: the unwired evolution of telemedicine. Telemed J E Health. 2003. 3. Brownson RC et al. Designing for dissemination among public health researchers: findings from a national survey in the United States. Am J Public Health. 2013. 4. Johnson HM,et al. My Hypertension Education and Reaching Target (MyHEART): Development and Dissemination of a Patient-Centered Website for Young Adults with Hypertension. JMIR Cardio. 2017. 5. Ordunez, P. et al. Disseminating cardiovascular disease risk assessment with a PAHO mobile app: a public eHealth intervention. Rev Panam Salud Publica. 2015.
(1)
1.Elvir-Lazo OL, White PF. Postoperative Pain Management After Ambulatory Surgery: Role of Multimodal Analgesia. Anesthesiol Clin 2010;28(2):217-224. doi:10.1016/j. anclin.2010.02.011 2. Joshi GP, Ogunnaike BO. Consequences of inadequate postoperative pain relief and chronic persistent postoperative pain. Anesthesiol Clin North America 2005;23(1):21-36. doi:10.1016/j.atc.2004.11.013 3. Peck TE, Sue H. Pharmacology for Anaesthesia and Intensive Care. doi:10.1017/CB09780511722172.011 4. Paul K. Sikka, Shawn T. Beaman JAS. Basic Clinical Anesthesia.; 2015. doi:10.1007/978-1-4939-1737-2 5. Lee CY. 2006. Manual of Anaesthesia. Singapore: McGrawHill Education (Asia) 6. Ip HYV, Abrishami A, Peng PWH, Wong J, Chung F. Predictors of postoperative pain and analgesic consumption: a qualitative systematic review. Anesthesiology 2009;111(3):657-677. doi:10.1097/ ALN.0b013e3181aae87a 7. Raja. Predicting Postoperative Pain Based on Preoperative (editorial). Anesthesiology 2010;(6):1311-1312. doi:10.1097/ ALN.0b013e3181dcd5cc 8. Ganzberg S. The Opioid Challenge. Anesth Prog 2016;63:113-115 9. Clarke H, Soneji N, Ko DT, Yun L, Wijeysundera DN. Rates and risk factors for prolonged opioid use after major surgery: population based cohort study. Br Med J 2014;348:g1251-g1251. doi:10.1136/bmj.g1251 10. Buvanendran A, Kroin JS. Multimodal analgesia for controlling acute postoperative pain. Curr Opin Anaesthesiol 2009;22(5):588-593. doi:10.1097/ACO.0b013e328330373a 11. Schug SA. Choice of Opioid for Acute Pain Management. Pain Med 2008;9(6):773-774. doi:https://doi-org.ezproxy. anzca.edu.au/10.1111/j.1526-4637.2008.00505.x 12. Tan E choo, Lim Y, Teo Y ying, Goh R, Law H yang, Sia AT. Ethnic Differences in Pain Perception and PatientControlled Analgesia Usage for Postoperative Pain. J Pain 2008;9(9):849-855. doi:10.1016/j.jpain.2008.04.004 13. Rathmell JP, Wu CL, Sinatra RS, et al. Acute Post-Surgical Pain Management: A Critical Appraisal of Current Practice. Reg Anesth Pain Med 2006;31(4 SUPPL.):1-42. doi:10.1016/j.rapm.2006.05.002 14. ASA Task Force. Practice Guidelines For Acute Pain Management In The Perioperative Setting. Anesthesiology 2012;116(2):248-273. doi:10.1097/ALN.0b013e31823c1030
(1)
[1] F. Grigioni, M. Enriquez-Sarano, L. H. Ling, K. R. Bailey, J. B. Seward, A. J. Tajik, et al., "Sudden death in mitral regurgitation due to flail leaflet," Journal of the American College of Cardiology, vol. 34, pp. 2078-2085, (1999). [2] B. Baccani, F. Domenichini, and G. Pedrizzetti, "Model and influence of mitral valve opening during the left ventricular filling," Journal of Biomechanics, vol. 36, pp. 355-61, (2003). [3] D. H. Adams, R. Rosenhek, and V. Falk, "Degenerative mitral valve regurgitation: best practice revolution," European Heart Journal, vol. 31, pp. 1958-1966, (2010). [4] J. Sathananthan, P. Raudkivi, and A. Kerr, "Mitral Valve Repair for Mitral Valve Prolapse: The Auckland Experience," Heart, Lung and Circulation, vol. 22, Supplement 1, p. S238, (2013). [5] Z. G. Turi, "Mitral Valve Disease," Circulation, vol. 109, pp. e38-e41, (2004). [6] C. Loardi, F. Alamanni, M. Trezzi, S. Kassem, L. Cavallotti, E. Tremoli, et al., "Biology of mitral valve prolapse: The harvest is big, but the workers are few," International Journal of Cardiology, vol. 151, pp. 129-135, (2011). [7] L. Waite, J. Fine, G. Veres, and G. Szabó, "A Lumped-Parameter Model of Mitral Valve Blood Flow for Assessment of Diastolic Left Ventricular Filling," in World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany pp. 1984-1987, (2010). [8] C. S. Lam, I. Anand, S. Zhang, W. Shimizu, C. Narasimhan, S. W. Park, et al., "Asian Sudden Cardiac Death in Heart Failure (ASIAN‐HF) registry," European journal of heart failure, vol. 15, pp. 928-936, (2013). [9] P. Hammer, P. Nido, and R. Howe, "Anisotropic Mass-Spring Method Accurately Simulates Mitral Valve Closure from Image-Based Models," in Functional Imaging and Modeling of the Heart. vol. 6666, D. Metaxas and L. Axel, Eds., ed: Springer Berlin Heidelberg, pp. 233-240, (2011) [10] J. S. Grashow, A. P. Yoganathan, and M. S. Sacks, "Biaixal stress-stretch behavior of the mitral valve anterior leaflet at physiologic strain rates," Annals of Biomedical Engineering, vol. 34, pp. 315-25, (2006). [11] F. N. Delling, L. L. Kang, S. B. Yeon, K. V. Kissinger, B. Goddu, W. J. Manning, et al., "CMR Predictors of Mitral Regurgitation in Mitral Valve Prolapse," JACC: Cardiovascular Imaging, vol. 3, pp. 1037-1045, (2010). [12] M. Al-Atabi, D. M. Espino, and D. W. L. Hukins, "Computer and Experimental Modelling of Blood Flow through the Mitral Valve of the Heart," Journal of Biomechanical Science and Engineering, vol. 5, pp. 78-84, (2010). [13] A. Avanzini and G. Donzella, "Coupled Fluid-Structural Analysis of Heart Mitral Valve," in COMSOL Conference 2008, Hannover, Germany, (2008). [14] D. Adams, A. Anyanwu, P. Rahmanian, and F. Filsoufi, "Current concepts in mitral valve repair for degenerative disease," Heart Failure Reviews, vol. 11, pp. 241-257, (2006). [15] D. Adams, A. Anyanwu, L. Sugeng, and R. Lang, "Degenerative mitral valve regurgitation: Surgical echocardiography," Current Cardiology Reports, vol. 10, pp. 226-232, (2008). [16] D. M. Espino, D. W. L. Hukins, D. E. T. Shepherd, M. A. Watson, and K. Buchan, "Determination of the pressure required to cause mitral valve failure," Medical Engineering & Physics, vol. 28, pp. 36-41, (2006). [17] E. L. FOSTER, "Evaluation of Mitral Valve Regurgitation: Implications for Percutaneous Mitral Valve Repair," (2005). [18] M. Enriquez-Sarano and T. M. Sundt, "Early Surgery Is Recommended for Mitral Regurgitation," Circulation, vol. 121, pp. 804-812, (2010). [19] M. De Bonis and S. F. Bolling, "Mitral valve surgery: wait and see vs. early operation," European Heart Journal, (2012). [20] R. M. Suri, J. Vanoverschelde, F. Grigioni, and et al., "Association between early surgical intervention vs watchful waiting and outcomes for mitral regurgitation due to flail mitral valve leaflets," The Journal of American Medical Association, vol. 310, pp. 609-616, (2013). [21] H. V. Schaff, R. M. Suri, and M. Enriquez-Sarano, "Indications for Surgery in Degenerative Mitral Valve Disease," Seminars in Thoracic and Cardiovascular Surgery, vol. 19, pp. 97-102, (2007). [22] H. Baumgartner, J. Hung, J. Bermejo, J. B. Chambers, A. Evangelista, B. P. Griffin, et al., "Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice," European Journal of Echocardiography, vol. 10, pp. 1-25, (2009). [23] P. A. Grayburn and P. Bhella, "Grading Severity of Mitral Regurgitation by Echocardiography: Science or Art?," JACC: Cardiovascular Imaging, vol. 3, pp. 244-246, (2010). [24] X. Ma, H. Gao, B. E. Griffith, C. Berry, and X. Luo, "Image-based fluid–structure interaction model of the human mitral valve," Computers & Fluids, vol. 71, pp. 417-425, (2013). [25] J. M. Richards, E. J. Farrar, B. G. Kornreich, N. Moїse, and J. T. Butcher, "The mechanobiology of mitral valve function, degeneration, and repair," Journal of Veterinary Cardiology, vol. 14, pp. 47-58, (2012). [26] M. Vermeulen, B. Van Der Smissen, T. Claessens, R. Kaminsky, P. Segers, P. Verdonck, et al., "Mitral Valve Leakage Quantification by Means of Experimental and Numerical Flow Modeling," in Acta Mechanica Slovaca vol. 14, ed, 2010, p. 18. [27] N. Stergiopulos, B. E. Westerhof, J. J. Meister, and N. Westerhof, "The four-element Windkessel model," in Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine. Proceedings of the 18th Annual International Conference of the IEEE pp. 1715-1716 vol.4, (1996). [28] D. Burkhoff and K. Sagawa, "Ventricular efficiency predicted by an analytical model," Am J Physiol, vol. 250, pp. R1021-7, (1986). [29] B. W. Smith, J. G. Chase, R. I. Nokes, G. M. Shaw, and G. Wake, "Minimal haemodynamic system model including ventricular interaction and valve dynamics," Medical Engineering & Physics, vol. 26, pp. 131-139, (2004). [30] S. Paeme, K. Moorhead, J. G. Chase, B. Lambermont, P. Kolh, V. D'orio, et al., "Mathematical multi-scale model of the cardiovascular system including mitral valve dynamics. Application to ischemic mitral insufficiency," BioMedical Engineering OnLine, vol. 10, p. 86, (2011). [31] B. W. Smith, J. Geoffrey Chase, G. M. Shaw, and R. I. Nokes, "Experimentally verified minimal cardiovascular system model for rapid diagnostic assistance," Control Engineering Practice, vol. 13, pp. 1183-1193, (2005). [32] S. Paeme, K. Moorhead, J. G. Chase, B. Lambermont, P. Kolh, P. Lancellotti, et al., "Structural model of the mitral valve included in a cardiovascular closed-loop model: Static and dynamic validation," (2012). [33] K. T. Moorhead, S. Paeme, J. G. Chase, P. Kolh, L. Pierard, C. E. Hann, et al., "A simplified model for mitral valve dynamics," Comput Methods Programs Biomed, vol. 109, pp. 190-6, (2013). [34] K. Hemalatha, M. Manivannan, and S. Thanikachalam, "Numerical simulation of cardiac valve flow velocity patterns in normal and abnormal conditions," in Communication Control and Computing Technologies (ICCCCT), 2010 IEEE International Conference on pp. 536-539, (2010). [35] W. P. Santamore and D. Burkhoff, "Hemodynamic consequences of ventricular interaction as assessed by model analysis," Am J Physiol, vol. 260, pp. H146-57, (1991). [36] D. Burkhoff, I. Mirsky, and H. Suga, "Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers," American Journal of Physiology - Heart and Circulatory Physiology, vol. 289, pp. H501-H512, (2005). [37] C. E. Hann, J. G. Chase, T. Desaive, C. Froissart, J. Revie, D. Stevenson, et al., "Unique parameter identification for cardiac diagnosis in critical care using minimal data sets," Computer methods and programs in biomedicine, vol. 99, pp. 75-87, (2010). [38] W. S. Bram, J. G. Chase, M. S. Geoff, and I. N. Roger, "Simulating transient ventricular interaction using a minimal cardiovascular system model," Physiological Measurement, vol. 27, p. 165, (2006). [39] P. Segers, N. Stergiopulos, J. J. Schreuder, B. E. Westerhof, and N. Westerhof, "Left ventricular wall stress normalization in chronic pressure-overloaded heart: a mathematical model study," Am J Physiol Heart Circ Physiol, vol. 279, pp. H1120-7, (2000). [40] P. Antoine, C. D. Pierre, P. Sabine, K. Sarah, J. G. Chase, and D. Thomas, "Simulation of Left Atrial Function Using a Multi-Scale Model of the Cardiovascular System," PLoS ONE, vol. 8, (2013). [41] D. J. Stevenson, C. E. Hann, G. J. Chase, J. Revie, G. M. Shaw, T. Desaive, et al., "Estimating the driver function of a cardiovascular system model," in UKACC International Conference on Control 2010 pp. 1-6, (2010). [42] P. A. Grayburn, "How to measure severity of mitral regurgitation," Postgraduate medical journal, vol. 84, pp. 395-402, (2008). [43] P. A. Grayburn, "The Importance of Regurgitant Orifice Shape in Mitral Regurgitation⁎," JACC: Cardiovascular Imaging, vol. 4, pp. 1097-1099, (2011). [44] A.-H. Hakki, A. S. Iskandrian, C. E. Bemis, D. Kimbiris, G. S. Mintz, B. L. Segal, et al., "A simplified valve formula for the calculation of stenotic cardiac valve areas," Circulation, vol. 63, pp. 1050-1055, (1981). [45] M. Grigioni, C. Daniele, G. D'Avenio, U. Morbiducci, C. Del Gaudio, and V. Barbaro, "A study of discharge coefficient in bileaflet valves," in Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE pp. 127-130, (2001). [46] R. P. Jong, K. Osman, and M. A. H. M. Adib, "Determination of correlation between backflow volume and mitral valve leaflet young modulus from two dimensional echocardiogram images," AIP Conference Proceedings, vol. 1440, pp. 604-611, (2012). [47] C. E. Hann, J. G. Chase, and G. M. Shaw, "Efficient implementation of non-linear valve law and ventricular interaction dynamics in the minimal cardiac model," Computer Methods and Programs in Biomedicine, vol. 80, pp. 65-74, (2005). [48] S. Paeme, K. Moorhead, J. G. Chase, C. E. Hann, B. Lambermont, P. Kolh, et al., "Mathematical model of the mitral valve and the cardiovascular system Application for studying and monitoring valvular pathologies," in Control 2010, UKACC International Conference on pp. 1-6, (2010). [49] R. P. Jong, K. Osman, and M. A. H. M. Adib, "Determination of correlation between backflow volume and mitral valve leaflet young modulus from two dimensional echocardiogram images," AIP Conference Proceedings, vol. 1440, pp. 604-611, (2012).
(1)
1. Gaubert, P., A. Antunes, H. Meng, L. Miao, S. Peigné, F. Justy, F. Njiokou, S. Dufour, E. Danquah, J. Alahakoon, E. Verheyen, W.T. Stanley, S.J. O'Brien, W.E. Johnson and S.J. Luo. 2018. “The complete phylogeny of pangolins: scaling up resources for the molecular tracing of the most trafficked mammals on earth,” Journal of Heredity Vol. 109, pp. 347–359. 2. Gaudin, T. 2009. “The phylogeny of living and extinct pangolins (Mammalia, Pholidota) and associated taxa: a morphology based analysis,” Journal of Mammalian Evolution Vol. 16, pp. 235–305. 3. Gaudin, T.J., R.J. Emry and B. Pogue. 2006. “A new genus and species of pangolin (Mammalia, Pholidota) from the Late Eocene of Inner Mongolia, China,” Journal of Vertebrate Paleontology Vol. 26, pp. 146–159.
(1)
1. Gee, G.V.A. & I. Das. 2019a. Extreme philately. The most unusual stamps of the World. Part 1. Journal of the Philatelic Society of Kuching, Sarawak 11(1):27–66. Gee, G.V.A. & I. Das. 2019b. Extreme philately. The most unusual stamps of the World. Part2. Journal of the Philatelic Society of Kuching, Sarawak 11(2):50–90.
(1)
[1] Giacomo Degli Antoni, Giuseppe Vittucci Marzetti, Recycling and Waste Generation (2019). An Estimate of the Source Reduction Effect of Recycling Programs, Ecological Economics, Volume 161, p.p 321-329, [2] Relationship between recycling rate and air pollution (2015). Waste management in the state of Massachusetts, Waste Management, Volume 40, Pages 192-203 [3] Ziraba, A. K., Haregu, T. N., & Mberu, B. (2016). A review and framework for understanding the potential impact of poor solid waste management on health in developing countries. Archives of public health = Archives belges de sante publique, 74, 55. https://doi.org/10.1186/s13690-016-0166-4 [4] Dodbiba, G., Fujita, T., 2004. Progress in separating plastic materials for recycling. Phys. Sep. Sci. Eng. 13 (3–4), 165–182. [5] Wu, G., Li, J., Xu, Z., 2013. Triboelectrostatic separation for granular plastic waste recycling: A review. Waste Manage. 33 (3), 585–597. [6] Rahman, M.O., Hussain, A., Basri, H., 2014. A critical review on wastepaper sorting techniques. Int. J. Environ. Sci. Technol. 11 (2), 551–564 [7] Gundupalli et al., 2017, S.P. Gundupalli, S. Hait, A. Thakur A review on automated sorting of source-separated municipal solid waste for recycling Waste Manag., 60 (2017), pp. 56-74 [8] S. Wahidah and A. Ghafar, “Food Waste in Malaysia : Trends , Current Practices and Key Challenges,” pp. 1–10, 2017 [9] Hoornweg D, Bhada-Tata P. Urban development series, knowledge papers. Washington: World Bank; 2012. What a Waste: A Global Review of Solid Waste Management. [10] Elsaid, S. and Aghezzaf, E. (2015), "A framework for sustainable waste management: challenges and opportunities", Management Research Review, Vol. 38 No. 10, pp. 1086-1097. [11] Lim, W. J., Chin, N. L., Yusof, A. Y., Yahya, A., & Tee, T. P. (2016). Food waste handling in Malaysia and comparison with other Asian countries. International Food Research Journal, 23, S1–S6. [12] Adam Conner-Simons, 2019 April,16. Robots that can sort recycling: CSAIL’s "RoCycle" system uses in-hand sensors to detect if an object is paper, metal or plastic, Retrieved date: 2020, April 1, http://news.mit.edu/2019/mit-robots-can-sort-recycling-0416. [13] K. Chahine and B. Ghazal, Automatic sorting of solid wastes using sensor fusion, International Journal of Engineering and Technology 9 (6) :4408-4414 [14] S. Z. Diya et al., "Developing an Intelligent Waste Sorting System with Robotic Arm: A Step towards Green Environment," 2018 International Conference on Innovation in Engineering and Technology (ICIET), Dhaka, Bangladesh, 2018, pp. 1-6. [15] S. Kulkarni and S. Junghare, "Robot based indoor autonomous trash detection algorithm using ultrasonic sensors," 2013 International Conference on Control, Automation, Robotics and Embedded Systems (CARE), Jabalpur, 2013, pp. 1-5. [16] J. Huang, T. Pretz and Z. Bian, "Intelligent solid waste processing using optical sensor-based sorting technology," 2010 3rd International Congress on Image and Signal Processing, Yantai, 2010, pp. 1657-1661. [17] ZenRobotics Recycler–Robotic sorting using machine learning TJ Lukka, T Tossavainen, JV Kujala, T Raiko Proceedings of the International Conference on Sensor-Based Sorting (SBS). [18] Sathish Paulraj Gundupalli, Subrata Hait, Atul Thakur, Multi-material classification of dry recyclables from municipal solid waste based on thermal imaging, Waste Management, Volume 70, 2017, Pages 13-21. [19] Sathish Paulraj Gundupalli, Subrata Hait, Atul Thakur, Classification of metallic and non-metallic fractions of e-waste using thermal imaging-based technique, Process Safety and Environmental Protection, Volume 118, 2018, Pages 32-39. [20] B. M. Chinnathurai, R. Sivakumar, S. Sadagopan and J. M. Conrad, "Design and implementation of a semi-autonomous waste segregation robot," SoutheastCon 2016, Norfolk, VA, 2016, pp. 1-6. [21] Artzai Picon, Aranzazu Bereciartua, Jone Echazarra, Ovidiu Ghita, Paul F. Whelan, Pedro M. Iriondo, "Real-time hyperspectral processing for automatic nonferrous material sorting," J. Electron. Imag. 21(1) 013018 (4 April 2012) [22] Guérin, J., Thiery, S., Nyiri, E., & Gibaru, O. (2018). Unsupervised robotic sorting: Towards autonomous decision-making robots, Journal of Artificial Intelligence and Applications (IJAIA), March 2018, Volume 9, Number 2. [23] S.T. Wagland, F. Veltre, P.J. Longhurst, Development of an image-based analysis method to determine the physical composition of a mixed waste material, Waste Management, Volume 32, Issue 2, 2012, Pages 245-248. [24] Wen Xiao, Jianhong Yang, Huaiying Fang, Jiangteng Zhuang, Yuedong Ku, A robust classification algorithm for separation of construction waste using NIR hyperspectral system, Waste Management, Volume 90, 2019, Pages 1-9. [25] Chao Wang, Zhili Hu, Qiu Pang, Lin Hua, Research on the classification algorithm and operation parameters optimization of the system for separating non-ferrous metals from end-of-life vehicles based on machine vision, Waste Management, Volume 100, 2019, Pages 10-17. [26] R. Mattone, G. Campagiorni, F. Galati, Sorting of items on a moving conveyor belt. Part 1: a technique for detecting and classifying objects, Robotics and Computer-Integrated Manufacturing, Volume 16, Issues 2–3, 2000, Pages 73-80. [27] Aziz, F., Arof, H., Mokhtar, N., Shah, N. M., Khairuddin, A. S. M., Hanafi, E., & Talip, M. S. A. (2018). Waste level detection and HMM based collection scheduling of multiple bins. PLoS ONE, 13(8), 1–14. https://doi.org/10.1371/journal.pone.0202092 [28] Hannan, M. A., Zaila, W. A., Arebey, M., Begum, R. A., & Basri, H. (2014). Feature extraction using Hough transform for solid waste bin level detection and classification. Environmental Monitoring and Assessment, 186(9), 5381–5391. https://doi.org/10.1007/s10661-014-3786-6 [29] Bai, J., Lian, S., Liu, Z., Wang, K., & Liu, D. (2018). Deep Learning Based Robot for Automatically Picking up Garbage on the Grass. IEEE Transactions on Consumer Electronics, PP(c), 1. https://doi.org/10.1109/TCE.2018.2859629 [30] Zhang, P., Zhao, Q., Gao, J., Li, W., & Lu, J. (2019). Urban Street Cleanliness Assessment Using Mobile Edge Computing and Deep Learning. IEEE Access, 7, 63550–63563. https://doi.org/10.1109/ACCESS.2019.2914270 [31] Shylo, S., & Harmer, S. W. (2016). Millimeter-wave imaging for recycled paper classification. IEEE Sensors Journal, 16(8), 2361–2366. https://doi.org/10.1109/JSEN.2015.2512106\[34] [32] C. Bircanoğlu, M. Atay, F. Beşer, Ö. Genç and M. A. Kızrak, "RecycleNet: Intelligent Waste Sorting Using Deep Neural Networks," 2018 Innovations in Intelligent Systems and Applications (INISTA), Thessaloniki, 2018, pp. 1-7. [33] C. Zhihong, Z. Hebin, W. Yanbo, L. Binyan and L. Yu, "A vision-based robotic grasping system using deep learning for garbage sorting," 2017 36th Chinese Control Conference (CCC), Dalian, 2017, pp. 11223-11226. [34] Sarc, R., Curtis, A., Kandlbauer, L., Khodier, K., Lorber, K.E. and Pomberger, R. (2019), “Digitalisation and intelligent robotics in value chain of circular economy oriented waste management – a review”, Waste Management, Vol. 95 No. 7, pp. 476-492. [35] Srivasta, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research, 15(1), 1929–1958. [36] Rawat, W., & Wang, Z. (2017). Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review. Neural Computation, 29(9), 2352–2449. [37] Van Engelen, J. E., & Hoos, H. H. (2020). A survey on semi-supervised learning. Machine Learning, 109(2), 373–440. [38] Li, N., Zhao, X., Yang, Y., & Zou, X. (2016). Objects Classification by Learning-Based Visual Saliency Model and Convolutional Neural Network. Computational Intelligence and Neuroscience, 2016, 12. [39] Ramalingam, B., Lakshmanan, A. K., Ilyas, M., Le, A. V., & Elara, M. R. (2018). Cascaded Machine-Learning Technique for Debris Classification in Floor-Cleaning Robot Application. Applied Sciences (Switzerland), 8(12), 1–19. [40] Michelucci, U. (2018). Applied deep learning: a case-based approach to understanding deep neural networks. Apress.
(1)
1. Gnanajobitha G, Paulkumar K, Vanaja M (2013) Fruit-mediated synthesis of silver nanoparticles using Vitis vinifera and evaluation of their antimicrobial efficacy. Nanostructure Chemistry 3(67):1–6 2. Duran N, Marcato PD, Alves OL (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Nanotechnology 3:1–7 3. Ingle A, Gade A, Pierrat S (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Current Nanoscience 4:141–144 4. Taylor PL (2005) Usher AL. Burrell RE. Impact of heat on nanocrystalline silver dressings. Part I: chemical and biological properties. Biomaterials 26: 7221–7229 5. Yang M, Pang G, Jiang L, Feng S (2005) Hydrothermal synthesis of onedimensional zinc oxides with different precursors. Nanotechnology 17:206–212 6. Hasanpoor M, Aliofkhazraei M, Delavari H (2015) Microwave-assisted synthesis of zinc oxide nanoparticle. 5th International Biennial Conference on Ultrafine Grained and Nanostructured Materials, UFGNSM15. Procedia Material Science 11:320–325 7. Xu HY, Wang H (2004) Hydrothermal synthesis of zinc oxide powders with controllable morphology. Ceramics International 30:93–97 8. Kılıç B, Gür E, Tüzemen S (2012) Nanoporous ZnO photoelectrode for dyesensitized solar cell. J Nanomater DOI. https://doi.org/10.1155/2012/ 474656 9. Li B, Wang Y (2011) Hierarchically assembled porous ZnO microstructures and applications in a gas sensor. Superlattice Microst 49:433–440 10. Vimala K, Sundarraj S, Paulpandi M, Vengatesan S, Kannan S (2013) Green synthesized doxorubicin loaded zinc oxide nanoparticles regulate the Bax and Bcl-2 expression in breast and colon carcinoma. Process Biochem 49: 160–172 11. Venkatachalam P, Jayaraj M, Manikandan R, Geetha N, Rene ER, Sharma NC et al (2016) Zinc oxide nanoparticles (ZnO NPs) alleviate heavy metalinduced toxicity in Leucaena leucocephala seedlings: a physiochemical analysis. Plant Physiol Biochem 110:59–69 12. Elumalai K, Velmurugan S (2015) Green synthesis, characterization and antibacterial activities of zinc oxide nanoparticles from the leaf extract of Azadirachtaindica (L.). Applied Surface Science 345:329–336 13. Matinise N, Fuku XG, Kaviyarasu K, Mayedwa N, Maaza M (2017) ZnO nanoparticles via Moringa oleifera green synthesis: physical properties and mechanism of formation. Applied Surface Science 406:339–347 14. Mohamad NAN, Arham NA, Jai J, Hadi A (2014) Plant extract as reducing agent in synthesis of metallic nanoparticles: a review. Advanced Materials Research 832(2014):350–355 15. Dubey SP, Lahtinen M, Sarkka H, Sillanpaa M (2010) Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids. Colloids Surf B 80(2010):26–33 16. Christensen L, Vivekanandhan S, Misra M, Mohanty AK (2011) Biosynthesis of silver nanoparticles using Murraya Koenigii: an investigation on the effect of broth concentration in reduction mechanism and particle size. Advanced Materials Letters 2(2011):429–434 17. Dwivedi AD, Gopal K (2010) Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids and Surf A 369(2010):27–33 18. Sathishkumar M, Sneha K, Yun Y-S (2010) Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresource Technology 101(2010): 7958–7965 19. Michiels JA, Kevers C, Pincemail J, Defraigne JO, Dommes J (2012) Extraction conditions can greatly influence antioxidant capacity assays in plant food matrices. Food Chem 130(2012):986–993 20. Gunalana S, Sivaraja R, Rajendranb V (2012) Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Program of Natural Science Material International 22(6):693–700 21. Akinpelu DA (2001) Antimicrobial activity of Anarcardium occidentale bark. Fitoterapia 72:286–287 22. Doss VA, Thangavel KP (2011) Antioxidant and antimicrobial activity using different extracts of Anacardium occidentale L. International Journal of Applied Biology and Pharmaceutical Technology 2:436–443 23. Souza NC, Oliveira JM, Morrone MS, Albanus RD, Amarante MSM, Camillo CS, Langassner SMZ, Gelain DP, Moreira JCF, Dalmolin RJS, Pasquali MAB (2017) Antioxidant and anti-inflammatory properties of Anacardium occidentale leaf extract. Evidence-Based. Complementary and Alternative Medicine Article ID 2787308, 8 pages. 24. Dahake AP, Joshi VD, Joshi AB (2009) Antimicrobial screening of different extract of Anacardium occidentale Linn. leaves. Interdisciplinary Journal of Contemporary Research in Business 1:856–858 25. Varghese J, Tumkur VK, Ballal V, Bhat GS (2013) Antimicrobial effect of Anacardium occidentale leaf extract against pathogens causing periodontal disease. Advances in Bioscience and Biotechnology 4:15–18 26. Srisawat S, Teanpaisan R, Wattanapiromsakul C, Worapamorn W (2005) Antibacterial activity of some Thai plants against Porphymonas gingivalis. International Association for Dental Research, 20th Southeast Asia Division & Southeast Asia Association for Dental Education, 16th Annual Scientific Meeting, Malacca 1-4 27. Ojezele MO, Agunbiade S (2013) Phytochemical constituents and medicinal properties of different extracts of Anacardium Occidentale and Psidium Guajava. Asian Journal of Biomedical and Pharmaceutical Sciences 3(16):20– 23 28. Fadeyi OE, Olatunji GA, Ogundele VA (2015) Isolation and characterization of the chemical constituents of Anacardium occidentale cracked bark. Nat Prod Chem Res 3(5):1000192 29. Bastos TM, Russo HM, Moretti NS, Schenkman S, Marcourt L, Gupta MP, Wolfender J-L, Queiroz EF, Soares MBP (2019) Chemical constituents ofAnacardium occidentale as inhibitors of Trypanosoma cruzi Sirtuins. Molecules 24:1299 30. Heny DS, Philip D, Mathew J (2013) Synthesis of platinum nanoparticles using dried Anacardium occidentale leaf and its catalytic and thermal applications. Spectrochemica Acta Part A: Molecular and Biomolecular Spectroscopy 114:267–271 31. Droepenu EK, Asare EA (2019) Morphology of green synthesized ZnO nanoparticles using low temperature hydrothermal technique from aqueous Carica papaya extract. Nanoscience and Nanotechnology 9(1):29– 36 32. Trease GE, Evans WC (1989). Pharmacognosy. 13th. ELBS/Bailliere Tindall, London. 345-346, 535-536, 772-773. 33. Moazzen MAM, Borghei SM, Taleshi T (2012) Change in the morphology of ZnO nanoparticles upon changing the reactant concentration. Appl Nanosci 3:295–302 34. Droepenu EK, Boon SW, Chin SF, Kuan YK, Zaini BA, Asare EA (2019) Comparative evaluation of antibacterial efficacy of biological synthesis of ZnO nanoparticles using fresh leaf extract and fresh stem-bark of Carica papaya. Nano Biomed Eng 11(3):264–271 35. Umaru IJ, Badruddin FA, Assim ZB, Umaru HA (2018b) Antibacterial and cytotoxic actions of chloroform crude extract of Leptadenia hastata(pers)Decnee. Clinical Medical Biochemistry 4:1–4 36. Umaru IJ, Badruddin FA, Assim ZB, Umaru HA (2018) Antimicrobial properties of Leptadenia hastata(pers)decne leaves extract. International Journal of Pharmacy and Pharmaceutical Sciences 10(2):149–152 37. Sharmila G, Thirumarimurugan M, Muthukumaran C (2019) Green synthesis of ZnO nanoparticles using Tecoma castanifolia leaf extract: characterization and evaluation of its antioxidant, bactericidal and anticancer activities. Microchemical Journal 145:578–587 38. Sharma H, Kumar K, Choudhary C, Mishra PK, Vaidya B (2016) Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug. Artificial cells, nanomedicine, and biotechnology 44(2):672– 679 39. Jain P, Singh SK, Sharma HP, Basri F (2014). Phytochemical screening and antifungal activity of Semecarpus anacardium L. (an anti-cancer plant). Int. J. Pharm. Sci. Res. (IJPSR), 5(5), 1884-1891. 40. Socrates G (2001) Infrared and Raman characteristic group frequencies, tables and charts, 3rd edn. Wiley, Ltd. Chichester. New York. Weinheim. Toronto. Brisbane. Singapore 41. Dobrucka R, Dugaszewska J (2015) Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J Biological Sci 23(4):517–523 42. Gopal VVR, Kamila S (2017) Effect of temperature on the morphology of ZnO nanoparticles: a comparative study. Applied Nanoscience 7(3-4):75–82 43. Rao MD, Guatam P (2016) Synthesis and characterization of ZnO nanoflowers using Chlamydomonas reinhardtii: a green approach. Environ Prog Sustain Energy:1–7 44. Zheng Y, Fu L, Han F, Wang A, Cai W, Yu J, Yang J, Peng F (2015) Green biosynthesis and characterization of zinc oxide nanoparticles using Corymbia citriodora leaf extract and their photocatalytic activity. Green Chemistry Letters and Reviews 8(2):59–63 45. Tripathi RM, Bhadwal AS, Gupta RK, Singh P, Shrivastav A, Shrivastav BR (2014) ZnO nanoflowers: novel biogenic synthesis and enhanced photocatalytic activity. J Photochem Photobiol B Biol 141:288–295 46. Mohammadi-Aloucheh R, Habibi-Yangjeh A, Bayrami A, Latifi-Navid S, Asadi A (2018) Enhanced anti-bacterial activities of ZnO nanoparticles and ZnO/ CuO nanocomposites synthesized using Vaccinium arctostaphylos L. fruit extract. Artificial Cells Nanomedicine and Biotechnology 46(1):1200–1209 47. Gupta A, Srivastava P, Bahadur L, Amalnerkar DP, Chauhan R (2014) Comparison of physical and electrochemical properties of ZnO prepared via different surfactant-assisted precipitation routes. Appl Nanosci 5(7):787–794 48. Imran K (2013) Structural and optical properties of Zr doped ZnO nano particles. Opt Mater 35:1189–1193 49. Mornani EG, Mosayebian P, Dorranian D, Behzad K (2016) Effect of calcination temperature on the size and optical properties of synthesized ZnO nanoparticles. Journal of Ovonic Research 12(2):75–80 50. Yung MMN, Mouneyrac C, Leung KMY (2014) Ecotoxicity of zinc oxide nanoparticles in the marine environment. Encyclopedia of Nanotechnology:1–17 51. Talam S, Karumuri SR, Gunnam N (2012) Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. ISRN Nano Article ID 372505: 1–6 52. Akhil K, Khan SS (2017) Effect of humic acid on the toxicity of bare and capped ZnO nanoparticles on bacteria, algal and crustacean systems. J Photochem Photobio B 167:136–149 53. Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ (2015) Green synthesis of metallic nanoparticles via biological entities. Materials 8(11): 7278–7308 54. Stankic S, Suman S, Haque F, Vidic J (2016) Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. J Nanobiotechnol 14(1):73 55. Ayepola OO, Ishola RO (2009) Evaluation of antimicrobial activity of Anacardium occidentale L. Advances in Medical and Dental Sciences 3:1–3 56. Chung KT, Wong TY, Huang YW, Lin Y (1998) Tannins and human health: a review. Critical Reviews in Food Science and Nutrition. 38:421–464
(1)
1.G. Quincot, M. Azenha, J. Barros and R. Faria, Projetos De Investigação Cientifica E Desenvolvimento Tecnologico Portugal, 2011. Show Context Google Scholar 2.K. DeAngelis, "Methods of Soil Analysis: Part I Physical and mineralogical properties; American Society of Agronomy Madison Wisconsin USA", Meas. soil moisture content by Gravim. method, pp. 1-2, 2007. Show Context Google Scholar 3.J. Hu, Using Moisture Sensor to Monitor Fresh Concrete Uniformity, vol. 6, 2005. Show Context Google Scholar 4.M. Jamil, M. K. Hassan, H. M. A. Al-Mattarneh and M. F. M. Zain, "Concrete dielectric properties investigation using microwave nondestructive techniques", Materials and Structures/Materiaux et Constructions, vol. 46, no. 1-2, pp. 77-87, 2013. Show Context CrossRef Google Scholar 5.M. Nazmul A, "Concrete Moisture Content Measurement Using Interdigitated Near-Field Sensors", Story Hear. Blog, vol. 10, no. 7, pp. 1243-1248, 2014. Show Context Google Scholar 6.Q. Kong, Q. Feng and G. Song, "Water presence detection in a concrete crack using smart aggregates", International Journal of Smart and Nano Materials, vol. 6, no. 3, pp. 149-161, 2015. Show Context CrossRef Google Scholar 7.S. Zhou, F. Deng, L. Yu, B. Li, X. Wu and B. Yin, "A novel passive wireless sensor for concrete humidity monitoring", Sensors (Switzerland), vol. 16, no. 9, 2016. Show Context CrossRef Google Scholar 8.C. Strangfeld, S. Johann, M. Muller and M. Bartholmai, "Embedded passive RFID-based sensors for moisture monitoring in concrete", Proc. IEEE Sensors, vol. 2017-Decem, pp. 1-3, 2017. Show Context View Article Full Text: PDF (489KB) Google Scholar 9.A. Hasan, R. Bhattacharyya and S. Sarma, "Towards pervasive soil moisture sensing using RFID tag antenna-based sensors", 2015 IEEE Int. Conf. RFID Techno!. Appl. RFID-TA 2015 pp, pp. 165-170, 2016. Show Context View Article Full Text: PDF (807KB) Google Scholar 10.S. G. N. Murthy, "Batteryless Wireless RFID based Embedded Sensors for Long Term Monitoring of Reinforced Concrete Structures", 2015 Int. Symp. Non-Destructive Test. Civ. Eng., pp. 1-8, 2015. Show Context Google Scholar 11.P. Sinhmar, "Specified Density Concrete - A Transition", Int. J. Adv. Technol. Eng. Res., vol. 1, no. 1, pp. 30-35, 2012. Show Context Google Scholar 12.M. Jamil, M. K. Hassan, H. M. A. Al-Mattarneh and M. F. M. Zain, "Concrete dielectric properties investigation using microwave nondestructive techniques", Mater. Struct. Constr., vol. 46, no. 1-2, pp. 77-87, 2013. Show Context CrossRef Google Scholar
(1)
[1] HEALE, R. and TWYCROSS, A. (2015) Validity and reliability in quantitative research. Evidence-Based Nursing, 18, pp. 66–67. [2] FRAENKEL, J.R., WALLEN, N.E., and HYUN, H. (2009) How to Design and Evaluate Research in Education. 8th ed. New York: McGraw-Hill. [3] ENGINEERING ACCREDITATION COUNCIL MALAYSIA (2010) [Online] Available from: http://www.eac.org.my/web/about_EAC.html [Accessed 13/09/20]. [4] INTERNATIONAL ENGINEERING ALLIANCE (2014) 25 years Washington accord, 1989-2014: Celebrating international engineering education standards and recognition. [Online] Available from: https://www.ieagreements.org/assets/Uploads/Documents/History/25YearsWashingtonAccord-A5booklet-FINAL.pdf [Accessed 13/09/20]. [5] SPADY, W.G. (1994) Outcome-Based Education: Critical Issues and Answers. Arlington, Virginia: American Association of School Administration. [6] ANUAR, A., SHUAIB, N.H., SAHARI, K.S.M., and ABIDIN, I.Z. (2009) Continual for Mechanical Engineering Programme in UNITEN. In: Proceedings of the International Conference on Engineering Education, Kuala Lumpur, December 2009. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, pp. 19–24. [7] DAHARI, Z., NGAH, U.K., and MOHAMAD, N. (2012) Continuous quality improvement (CQI) implementation in electrical & electronic engineering final year projects. In: Proceedings of the 4th International Congress on Engineering Education, Georgetown, December 2012. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, pp. 1–5. [8] EL-MAADDAWY, T., EL-HASSAN, H., AL JASSMI, H., and KAMAREDDINE, L. (2019) Applying Outcomes-Based Learning in Civil Engineering Education. In: Proceedings of the IEEE Global Engineering Education Conference, Dubai, April 2019. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, pp. 986–989. [9] JANGALI, S.G. and GAITONDE, V.N. (2020) Attaining competencies in Programme Outcomes through Open-Ended Experiments. Africa Education Review, 17 (1), pp. 116–140. [10] KARMAN, S., HASIKIN, K., TING, H., NG, S., ABDUL WAHAB, A., LIM, E., HAMZAID, N., and ABAS, W. (2011) OBE Implementation and Design of Continual Quality Improvement (CQI) for Accreditation of Biomedical Engineering Program University of Malaya. In: OSMAN, N.A.A., ABAS, W.A.B.W., WAHAB, A.K.A., and TING, H.N. (eds.) 5th Kuala Lumpur International Conference on Biomedical Engineering 2011. IFMBE Proceedings, Vol. 35. Berlin, Heidelberg: Springer, pp. 20-24. [11] LONG, C.Y. and JERN, K.P. (2014) Proposed new strategy in CQI at course module level through students’ feedbacks in UNITEN. In: Proceedings of the IEEE 6th Conference on Engineering Education, Kuala Lumpur, December 2014. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, pp. 95–98. [12] MISRAN, N., MOKRI, S.S., HUSAIN, H., and ZAKI, W.M.D.W. (2011) Continual Quality Improvement Process for Undergraduate Programs. Procedia - Social and Behavioral Sciences, 18, pp. 565–574. [13] SIKANDER, T., AZIZ, H., WASIM, A., HUSSAIN, S., and JAHANZAIB, M. (2017) Continuous Quality Improvement Framework: a Case of Industrial Engineering Department. International Journal of Cognitive Research in Science, Engineering and Education, 5 (1), pp. 107-119. [14] TAKRIFF, M.S., ABDULLAH, S.R.S., MOHAMMAD, A.B., and ANUAR, N. (2011) Students’ feedback in the continuous quality improvement cycle of engineering education. In: Proceedings of the IEEE Global Engineering Education Conference, Amman, April 2011. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, pp. 374–377. [15] TSHAI, K.Y., HO, J.-H., YAP, E.H., and NG, H.K. (2014) Outcome-based Education – The Assessment of Programme Educational Objectives for an Engineering Undergraduate Degree. Engineering Education, 9 (1), pp. 74–85. [16] ZEYNAL, H., ZAKARIA, Z., ANISSEH, M., and MANSOORZADEH, S. (2017) Strategic implementation of outcome-based education system in Buein-Zahra Technical University of Iran. In: Proceedings of the IEEE 9th International Conference on Engineering Education, Kanazawa, November 2017. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, pp. 122-127. [17] ENGINEERING ACCREDITATION COUNCIL (2017) Engineering Programme Accreditation Manual. [Online] Available from: http://www.eac.org.my/web/document/EAC Manual 2017.pdf [Accessed 13/09/20]. [18] AZIZ, A., MEGAT MOHD NOOR, M., ABANG ALI, A., and JAAFAR, M. (2005) A Malaysian outcome-based engineering education model. International Journal of Engineering and Technology, 2 (1), pp. 14–21. [19] PHELAN, C. and WREN, J. (2007) Exploring Reliability in Academic Assessment. [Online] Available from: https://www.uni.edu/chfasoa/reliabilityandvalidity.htm [Accessed 13/09/20]. [20] CRESWELL, J.W. (2012) Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research. 4th ed. Boston, Massachusetts: Pearson Education. [21] THE GRAIDE NETWORK (2018) Importance of Validity and Reliability in Classroom Assessments. [Online] Available from: https://www.thegraidenetwork.com/blog-all/2018/8/1/the-two-keys-to-quality-testing-reliability-and-validity [Accessed 13/09/20]. [22] CENTER ON STANDARDS AND ASSESSMENT IMPLEMENTATION (2018) CSAI Update: Valid and Reliable Assessments. [Online] Available from: https://files.eric.ed.gov/fulltext/ED588476.pdf [Accessed 13/09/20]. [23] THE MATHWORKS (n.d.) Boxplot. [Online] Available from: https://www.mathworks.com/help/stats/boxplot.html [Accessed 13/09/20]. [24] TAVAKOL, M. and DENNICK, R. (2011) Making sense of Cronbach’s alpha. International Journal of Medical Education, 2, pp. 53–55. [25] UCLA: STATISTICAL CONSULTING GROUP (n.d.) What does Cronbach’s alpha mean? [Online] Available from: https://stats.idre.ucla.edu/spss/faq/what-does-cronbachs-alpha-mean/ [Accessed 13/09/20]. [26] GOFORTH, C. (2015) Using and Interpreting Cronbach’s Alpha. [Online] Available from: https://data.library.virginia.edu/using-and-interpreting-cronbachs-alpha/ [Accessed 13/09/20].
(1)
1. How to Properly Use Sublingual and Buccal Tablets by USC Clinical Pharmacy available at https://www.youtube.com/watch?v=vKrSEuEbp8I 2. How to Inject Insulin by My Doctor - Kaiser Permanente available at https://www.youtube.com/watch?v=cmUXo4Crrm0 3. Droplet Pen Needles Instruction For Use by HTL-STREFA available at https://www.youtube.com/watch?v=gpHhBMLvHDw&t=8s
(1)
[1] Iijima, Sumio. "Carbon nanotubes: past, present, and future." Physica B: Condensed Matter 323, no. 1-4 (2002): 1-5. [2] Hu, J. L., C. C. Yang, and J. H. Huang. "Vertically-aligned carbon nanotubes prepared by water-assisted chemical vapor deposition." Diamond and related materials 17, no. 12 (2008): 2084-2088. [3] Liu, Hao, Yong Zhang, Ruying Li, Xueliang Sun, Fengping Wang, Zhifeng Ding, Philippe Mérel, and Sylvain Desilets. "Aligned synthesis of multi-walled carbon nanotubes with high purity by aerosol assisted chemical vapor deposition: Effect of water vapor." Applied surface science 256, no. 14 (2010): 4692-4696. [4] Zainal, Muhammad Thalhah, Mohd Fairus Mohd Yasin, and Mazlan Abdul Wahid. "Optimizing flame synthesis of carbon nanotubes: experimental and modelling perspectives." Jurnal Teknologi 78, no. 8-4 (2016). [5] Zainal, Muhammad Thalhah, Mohd Fairus Mohd Yasin, and Mazlan Abdul Wahid. "Optimizing flame synthesis of carbon nanotubes: experimental and modelling perspectives." Jurnal Teknologi 78, no. 8-4 (2016). [6] Bower, Chris, Otto Zhou, Wei Zhu, D. J. Werder, and Sungho Jin. "Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition." Applied Physics Letters 77, no. 17 (2000): 2767-2769. [7] Lee, Cheol Jin, Jeunghee Park, and A. Yu Jeong. "Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition." Chemical Physics Letters 360, no. 3-4 (2002): 250-255. [8] Suriani, A. B., N. A. Asli, M. Salina, M. H. Mamat, A. A. Aziz, A. N. Falina, M. Maryam et al. "Effect of iron and cobalt catalysts on the growth of carbon nanotubes from palm oil precursor." In IOP Conference Series: Materials Science and Engineering, vol. 46, no. 1, p. 012014. IOP Publishing, 2013. [9] Hou, Shuhn-Shyurng, De-Hua Chung, and Ta-Hui Lin. "High-yield synthesis of carbon nano-onions in counterflow diffusion flames." Carbon 47, no. 4 (2009): 938-947. [10] Ferguson, Selina C., Ambarish Dahale, Babak Shotorban, Shankar Mahalingam, and David R. Weise. "The role of moisture on combustion of pyrolysis gases in wildland fires." Combustion science and technology 185, no. 3 (2013): 435-453.
(1)
1. INDONESIA ENERGY OUTLOOK 2018, Badan Pengkajian dan Penerapan Teknologi, ISBN 978-602-1328-05-7, 2018. 2. Undang-Undang No. 10 tahun 1997 tentang Ketenaganukliran, 10 April 1997. 3. Sekretariat Kabinet Republik Indonesia, “Penggunaan Tenaga Nuklir di Indonesia: Aspek Hukum”, 10 Agustus 2015. 4. Undang-Undang No. 30 tahun 2007 tentang Energi, 10 Agustus 2007. 5. Benny D. Setianto, Benturan UU dalam Pendirian PLTN 6. Undang-Undang No. 17, tahun 2007: Rencana Pembangunan Jangka Panjang Nasional (RPJPN) 2005-2025. 7. Peraturan Pemerintah No. 79, tahun 2014: Kebijakan Energi Nasional. 8. Peraturan Presiden Republik Indonesia Nomor 22 Tahun 2017 Tentang Rencana Umum Energi Nasional. 9. Peraturan Presiden No. 2, tahun 2015: Rencana Pembangunan Jangka Menengah Nasional 2015-2019. 10. Keputusan Menteri ESDM No. 1567K/21/MEM/2018 tentang Rencana Usaha Penyediaan Tenaga Listrik PT PLN (Persero) 2018-2027, 13 Maret 2018. 11. N. Soraya, “Surplus Daya 169 MW, PLN Dukung Investasi Masuk Kalbar”, Tribun News, 15 Mei 2018. 12. H. B. Pratomo, “80 Persen listrik Kalimantan Barat masih diimpor dari Malaysia”, Merdeka.com, 4 Oktober 2018. 13. Peraturan Menteri Energi Dan Sumber Daya Mineral Republik Indonesia nomor 4 Tahun 2017 tentang Objek Vital Nasional Bidang Energi dan Sumber Daya Mineral, 11 Januari 2017. 14. “2 Pembangkit di Kalbar Beroperasi”, Bisnis.com, 8 Mei 2017.
(1)
1. J. Alotaibi and B. Yousif, Biolubricants and the potential of waste cooking oil, in Ecotribology. 2016, Springer. p. 125-143. 2. S. Debnath, M.M. Reddy, and Q.S. Yi, Environmental friendly cutting fluids and cooling techniques in machining: a review. J. Cleaner Prod., 2014. 83: p. 33-47. 3. R. Katna, K. Singh, N. Agrawal, and S. Jain, Green manufacturing—performance of a biodegradable cutting fluid. Mater Manuf Process, 2017. 32(13): p. 1522-1527. 4. E. Rahim and H. Sasahara, A study of the effect of palm oil as MQL lubricant on high speed drilling of titanium alloys. Tribology Int, 2011. 44(3): p. 309-317. 5. K. Wickramasinghe, G. Perera, and H. Herath, Formulation and performance evaluation of a novel coconut oil–based metalworking fluid. Mater Manuf Process, 2017. 32(9): p. 1026-1033. 6. M. Bermingham, W. Sim, D. Kent, S. Gardiner, and M. Dargusch, Tool life and wear mechanisms in laser assisted milling Ti–6Al–4V. Wear, 2015. 322: p. 151-163. 7. Y. Luo, L. Yang, and M. Tian, Influence of bio-lubricants on the tribological properties of Ti6Al4V alloy. Journal of Bionic Engineering, 2013. 10(1): p. 84-89. 8. R. Kreivaitis, M. Gumbytė, K. Kazancev, J. Padgurskas, and V. Makarevičienė, A comparison of pure and natural antioxidant modified rapeseed oil storage properties. Industrial Crops and Products, 2013. 43: p. 511-516. 9. C. Martin-Rios, C. Demen-Meier, S. Gössling, and C. Cornuz, Food waste management innovations in the foodservice industry. Waste management, 2018. 79: p. 196-206. 10. H.S. Hafid, A.R. Nor'Aini, M.N. Mokhtar, A.T. Talib, A.S. Baharuddin, and M.S.U. Kalsom, Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment. Waste Management, 2017. 67: p. 95-105. 11. H.S. Ng, P.E. Kee, H.S. Yim, P.-T. Chen, Y.-H. Wei, and J.C.-W. Lan, Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts. Bioresource technology, 2020. 302: p. 1-37. 12. K. Tamrin, S. Zakariyah, and N. Sheikh, Multi-criteria optimization in CO2 laser ablation of multimode polymer waveguides. Optics and Lasers in Engineering, 2015. 75: p. 48-56. 13. K. Tamrin and A. Zahrim, Determination of optimum polymeric coagulant in palm oil mill effluent coagulation using multiple-objective optimisation on the basis of ratio analysis (MOORA). Environmental Science and Pollution Research, 2017. 24(19): p. 15863-15869. 14. K. Tamrin, S. Zakariyah, K. Hossain, and N. Sheikh, Experiment and prediction of ablation depth in excimer laser micromachining of optical polymer waveguides. Advances in Materials Science and Engineering, 2018. vol. 2018: p. 1-9. 15. N. Ahmad and T.V. Janahiraman, Modelling and prediction of surface roughness and power consumption using parallel extreme learning machine based particle swarm optimization, in Proc ELM-2014 Vol 2. 2015, Springer. p. 321-329. 16. M. Dashtbayazi, Artificial neural network-based multiobjective optimization of mechanical alloying process for synthesizing of metal matrix nanocomposite powder. Mater Manuf Process, 2012. 27(1): p. 33-42. 17. G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, Extreme learning machine: theory and applications. Neurocomputing, 2006. 70(1-3): p. 489-501. 18. A. Mustafa, Modelling of the hole quality characteristics by Extreme Learning Machine in fiber laser drilling of Ti-6Al-4V. J Manuf Process, 2018. 36: p. 138-148. 19. O. Anicic, S. Jović, H. Skrijelj, and B. Nedić, Prediction of laser cutting heat affected zone by extreme learning machine. Optics Lasers Eng., 2017. 88: p. 1-4. 20. Ž. Ćojbašić, D. Petković, S. Shamshirband, C.W. Tong, S. Ch, P. Janković, N. Dučić, and J. Baralić, Surface roughness prediction by extreme learning machine constructed with abrasive water jet. Precis. Eng., 2016. 43: p. 86-92. 21. G. Quintana, X. Gomez, J. Delgado, and J. Ciurana, Influence of cutting parameters on cycle time, surface roughness, dimensional error and cutting forces in milling operations on aluminium 6082 sculptured surface geometry. Int J Machining Machinability Mater, 2010. 8(3-4): p. 339-355. 22. H. Ding, N. Shen, and Y.C. Shin, Thermal and mechanical modeling analysis of laser-assisted micro-milling of difficult-to-machine alloys. J Mater Process Tech, 2012. 212(3): p. 601-613. 23. Z. Ullah, M.A. Bustam, and Z. Man, Characterization of waste palm cooking oil for biodiesel production. International Journal of Chemical Engineering and Applications, 2014. 5(2): p. 134-137. 24. F. Ucar, O. Alcin, B. Dandil, and F. Ata, Power quality event detection using a fast extreme learning machine. Energies, 2018. 11(1): p. 1-14. 25. G. Feng, G.-B. Huang, Q. Lin, and R. Gay, Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans. Neural Netw, 2009. 20(8): p. 1352-1357.
(1)
[1] Japan Aerospace Exploration Agency (JAXA) (2019) Digital Surface Model “ALOS World 3D - 30m” (AW3D30). https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm (Accessed in January 2019) [2] Jabatan Pengairan dan Saliran (JPS) (2019) SELANGOR : On-Line River Level Data (m) - above Mean Sea Level. http://publicinfobanjir.water.gov.my/View/OnlineFloodInfo/ PublicWaterLevel.aspx?scode=SEL (Accessed in March 2019) [3] Lembaga Urus Air Selangor (LUAS) (2019) Dam profile. https://iwrims.luas.gov.my/main.cfm?lang=2 (Accessed in April 2019) [4] Jabatan Pengairan dan Saliran (JPS) (2017) SELANGOR : Rainfall On-Line Data (mm). http://publicinfobanjir.water.gov.my/View/OnlineFloodInfo/ PublicWaterLevel.aspx?scode=SEL (Accessed in November 2017) [5] Jabatan Mineral dan Geosains Malaysia (JMG) (1985) Geological map of Peninsular Malaysia. Scale 1:750,000 [6] Jabatan Mineral dan Geosains Malaysia (JMG) (2008) Hydrogeological map of Peninsular Malaysia. Scale 1:500,000 [7] Jabatan Perancangan Bandar dan Desa Negeri Selangor (JPBD) (2018) Laporan Tinjauan – Kajian Rancangan Struktur Negeri Selangor 2035 (B101.1: Bekalan Air). [8] L. C. Peng, M. S. Leman, K. Hassa, B. M. Nasib, and R. Karim (2004) Stratigraphic lexicon of Malaysia. Geological Society of Malaysia. Kuala Lumpur. [9] C. S. Hutchison and D. N. K. Tan (2009) Geology of Peninsular Malaysia. Geological Society of Malaysia. Kuala Lumpur. [10] S. M. S. Tan (2005) Karstic features of Kuala Lumpur limestone. Jurutera. Number 6 June 2005. [11] N. Roslan (2017) The potential susceptibility of urban hardrock aquifers to hydraulic and contaminant stresses: The case of Shah Alam, Malaysia. PhD Thesis. University of Birmingham. Published [12] Top Glove Sdn. Bhd. (TGSB) (2015a) Report on soil investigation works for Lot 5105 (Beside F14) warehouse project, Mukim, Kapar, Daerah Klang, Selangor Darul Ehsan. Unpublished [13] Top Glove Sdn. Bhd. (TGSB) (2015b) Report on soil investigation works for proposed 1 unit glove manufacturing factory (F30) and 1 unit TNB SSU 33KV at Lot 4983 and 4984, Klang, Selangor for Top Glove Sdn. Bhd. Unpublished [14] Top Glove Sdn. Bhd. (TGSB) (2016) Soil investigation report for Factory 19, Lot 5094, Mukim Kapar, Daerah Klang, Selangor Darul Ehsan. Unpublished [15] P. E. Stek (2008) Urban groundwater extraction in Kuala Lumpur, Malaysia. Master Thesis. University of Twene (Published) [16] W. M. Z. W. Ismail, I. Yusoff, and B. E. A. Rahim (2013). Simulation of horizontal well performance using Visual MODFLOW. Environ Earth Sci., 68:1119-1126
(1)
[1] J. Flöck, K. Friedrich, Q. Yuan, On the friction and wear behaviour of PAN-and pitch-carbon fiber reinforced PEEK composites, Wear, 225 (1999) 304-311. [2] F. Mata, V. Gaitonde, S. Karnik, J.P. Davim, Influence of cutting conditions on machinability aspects of PEEK, PEEK CF 30 and PEEK GF 30 composites using PCD tools, Journal of materials processing technology, 209 (2009) 1980-1987. [3] N.P. Padture, Advanced structural ceramics in aerospace propulsion, Nature materials, 15 (2016) 804. [4] M. Grujicic, B. Pandurangan, B. d’Entremont, The role of adhesive in the ballistic/structural performance of ceramic/polymer–matrix composite hybrid armor, Materials & Design, 41 (2012) 380-393. [5] Z. Stadler, K. Krnel, T. Kosmač, Friction and wear of sintered metallic brake linings on a C/C-SiC composite brake disc, Wear, 265 (2008) 278-285. [6] W. Krenkel, F. Berndt, C/C–SiC composites for space applications and advanced friction systems, Materials Science and Engineering: A, 412 (2005) 177-181. [7] K. Tamrin, Y. Nukman, N. Sheikh, M. Harizam, Determination of optimum parameters using grey relational analysis for multi-performance characteristics in CO 2 laser joining of dissimilar materials, Optics and Lasers in Engineering, 57 (2014) 40-47. [8] K. Tamrin, Y. Nukman, S. Zakariyah, Laser lap joining of dissimilar materials: a review of factors affecting joint strength, Materials and Manufacturing Processes, 28 (2013) 857-871. [9] K. Tamrin, Y. Nukman, N. Sheikh, Laser spot welding of thermoplastic and ceramic: An experimental investigation, Materials and Manufacturing Processes, 30 (2015) 1138-1145. [10] K. Tamrin, S. Zakariyah, N. Sheikh, Multi-criteria optimization in CO 2 laser ablation of multimode polymer waveguides, Optics and Lasers in Engineering, 75 (2015) 48-56. [11] K. Tamrin, S. Zakariyah, K. Hossain, N. Sheikh, Experiment and Prediction of Ablation Depth in Excimer Laser Micromachining of Optical Polymer Waveguides, Advances in Materials Science and Engineering, 2018 (2018). [12] S.S. Zakariyah, P.P. Conway, D.A. Hutt, D.R. Selviah, K. Wang, J. Rygate, J. Calver, W. Kandulski, Fabrication of polymer waveguides by laser ablation using a 355 nm wavelength Nd: YAG laser, Journal of Lightwave Technology, 29 (2011) 3566-3576. [13] K. Tamrin, Y. Nukman, I. Choudhury, S. Shirley, Multiple-objective optimization in laser cutting of different thermoplastics, Optics and Lasers in Engineering, 67 (2014) 57-65. [14] I. Choudhury, P. Chuan, Experimental evaluation of laser cut quality of glass fibre reinforced plastic composite, Optics and Lasers in Engineering, 51 (2013) 1125-1132. [15] I. Choudhury, S. Shirley, Laser cutting of polymeric materials: an experimental investigation, Optics & Laser Technology, 42 (2010) 503-508. [16] I. Choudhury, W. Chong, G. Vahid, Hole qualities in laser trepanning of polymeric materials, Optics and Lasers in Engineering, 50 (2012) 1297-1305. [17] M. Imran, P. Mativenga, A. Gholinia, P. Withers, Assessment of surface integrity of Ni superalloy after electrical-discharge, laser and mechanical micro-drilling processes, The International Journal of Advanced Manufacturing Technology, 79 (2015) 1303-1311. [18] H. Sezer, L. Li, M. Schmidt, A. Pinkerton, B. Anderson, P. Williams, Effect of beam angle on HAZ, recast and oxide layer characteristics in laser drilling of TBC nickel superalloys, International Journal of Machine Tools and Manufacture, 46 (2006) 1972-1982. [19] R.S. Bunker, A review of shaped hole turbine film-cooling technology, Journal of heat transfer, 127 (2005) 441-453. [20] L. Romoli, F. Fischer, R. Kling, A study on UV laser drilling of PEEK reinforced with carbon fibers, Optics and lasers in Engineering, 50 (2012) 449-457. [21] L. Romoli, C. Rashed, G. Lovicu, G. Dini, F. Tantussi, F. Fuso, M. Fiaschi, Ultrashort pulsed laser drilling and surface structuring of microholes in stainless steels, CIRP Annals-Manufacturing Technology, 63 (2014) 229-232. [22] S. Aoyagi, H. Izumi, Y. Isono, M. Fukuda, H. Ogawa, Laser fabrication of high aspect ratio thin holes on biodegradable polymer and its application to a microneedle, Sensors and Actuators A: Physical, 139 (2007) 293-302. [23] J. Oh, K. Liu, T. Medina, F. Kralick, H.M. Noh, A novel microneedle array for the treatment of hydrocephalus, Microsystem Technologies, 20 (2014) 1169-1179. [24] H. Hocheng, C. Tsao, The path towards delamination-free drilling of composite materials, Journal of materials processing technology, 167 (2005) 251-264. [25] F. Makhdum, V.A. Phadnis, A. Roy, V.V. Silberschmidt, Effect of ultrasonically-assisted drilling on carbon-fibre-reinforced plastics, Journal of Sound and Vibration, 333 (2014) 5939-5952. [26] D. Herzog, P. Jaeschke, O. Meier, H. Haferkamp, Investigations on the thermal effect caused by laser cutting with respect to static strength of CFRP, International journal of machine tools and manufacture, 48 (2008) 1464-1473. [27] R. Biswas, A. Kuar, S. Sarkar, S. Mitra, A parametric study of pulsed Nd: YAG laser micro-drilling of gamma-titanium aluminide, Optics & Laser Technology, 42 (2010) 23-31. [28] M. Hanon, E. Akman, B.G. Oztoprak, M. Gunes, Z. Taha, K. Hajim, E. Kacar, O. Gundogdu, A. Demir, Experimental and theoretical investigation of the drilling of alumina ceramic using Nd: YAG pulsed laser, Optics & Laser Technology, 44 (2012) 913-922. [29] A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, A. Tünnermann, High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system, Optics express, 16 (2008) 8958-8968. [30] W. Li, R. Zhang, Y. Liu, C. Wang, J. Wang, X. Yang, L. Cheng, Effect of different parameters on machining of SiC/SiC composites via pico-second laser, Applied Surface Science, 364 (2016) 378-387. [31] F. Al-Sulaiman, B. Yilbas, M. Ahsan, CO 2 laser cutting of a carbon/carbon multi-lamelled plain-weave structure, Journal of materials processing technology, 173 (2006) 345-351. [32] J. Mathew, G. Goswami, N. Ramakrishnan, N. Naik, Parametric studies on pulsed Nd: YAG laser cutting of carbon fibre reinforced plastic composites, Journal of Materials Processing Technology, 89 (1999) 198-203. [33] A. Salama, L. Li, P. Mativenga, A. Sabli, High-power picosecond laser drilling/machining of carbon fibre-reinforced polymer (CFRP) composites, Applied Physics A, 122 (2016) 73. [34] M. Okasha, P. Mativenga, N. Driver, L. Li, Sequential laser and mechanical micro-drilling of Ni superalloy for aerospace application, CIRP Annals-Manufacturing Technology, 59 (2010) 199-202. [35] K. Voisey, S. Fouquet, D. Roy, T. Clyne, Fibre swelling during laser drilling of carbon fibre composites, Optics and lasers in engineering, 44 (2006) 1185-1197. [36] W. Rodden, S. Kudesia, D. Hand, J. Jones, A comprehensive study of the long pulse Nd: YAG laser drilling of multi-layer carbon fibre composites, Optics Communications, 210 (2002) 319-328. [37] P. Moreno, C. Méndez, A. García, I. Arias, L. Roso, Femtosecond laser ablation of carbon reinforced polymers, Applied Surface Science, 252 (2006) 4110-4119. [38] Z. Li, H. Zheng, G. Lim, P. Chu, L. Li, Study on UV laser machining quality of carbon fibre reinforced composites, Composites Part A: Applied Science and Manufacturing, 41 (2010) 1403-1408. [39] O. Yalukova, I. Sarady, Investigation of interaction mechanisms in laser drilling of thermoplastic and thermoset polymers using different wavelengths, Composites science and technology, 66 (2006) 1289-1296. [40] N. Ren, L. Jiang, D. Liu, L. Lv, Q. Wang, Comparison of the simulation and experimental of hole characteristics during nanosecond-pulsed laser drilling of thin titanium sheets, The International Journal of Advanced Manufacturing Technology, 76 (2015) 735-743. [41] F. Brandi, N. Burdet, R. Carzino, A. Diaspro, Very large spot size effect in nanosecond laser drilling efficiency of silicon, Optics Express, 18 (2010) 23488-23494. [42] T. Canel, A.U. Kaya, B. Celik, Parameter optimization of nanosecond laser for microdrilling on PVC by Taguchi method, Optics & Laser Technology, 44 (2012) 2347-2353. [43] W. Hu, Y.C. Shin, G.B. King, Micromachining of metals, alloys, and ceramics by picosecond laser ablation, Journal of manufacturing science and engineering, 132 (2010) 011009. [44] A. Spiro, M. Lowe, G. Pasmanik, Drilling rate of five metals with picosecond laser pulses at 355, 532, and 1064 nm, Applied Physics A, 107 (2012) 801-808. [45] N. Muhammad, D. Whitehead, A. Boor, W. Oppenlander, Z. Liu, L. Li, Picosecond laser micromachining of nitinol and platinum–iridium alloy for coronary stent applications, Applied Physics A, 106 (2012) 607-617. [46] Y. Liu, C. Wang, W. Li, L. Zhang, X. Yang, G. Cheng, Q. Zhang, Effect of energy density and feeding speed on micro-hole drilling in C/SiC composites by picosecond laser, Journal of Materials Processing Technology, 214 (2014) 3131-3140. [47] R. Zhang, W. Li, Y. Liu, C. Wang, J. Wang, X. Yang, L. Cheng, Machining parameter optimization of C/SiC composites using high power picosecond laser, Applied Surface Science, 330 (2015) 321-331. [48] C. Wang, L. Zhang, Y. Liu, G. Cheng, Q. Zhang, K. Hua, Ultra-short pulse laser deep drilling of C/SiC composites in air, Applied Physics A, 111 (2013) 1213-1219. [49] N. Krstulović, S. Shannon, R. Stefanuik, C. Fanara, Underwater-laser drilling of aluminum, The International Journal of Advanced Manufacturing Technology, 69 (2013) 1765-1773. [50] A. Nath, D. Hansdah, S. Roy, A.R. Choudhury, A study on laser drilling of thin steel sheet in air and underwater, Journal of Applied Physics, 107 (2010) 123103. [51] N. Iwatani, H.D. Doan, K. Fushinobu, Optimization of near-infrared laser drilling of silicon carbide under water, International Journal of Heat and Mass Transfer, 71 (2014) 515-520. [52] Y. Yan, L. Li, K. Sezer, W. Wang, D. Whitehead, L. Ji, Y. Bao, Y. Jiang, CO 2 laser underwater machining of deep cavities in alumina, Journal of the European Ceramic Society, 31 (2011) 2793-2807.
(1)
[1] Johnson, J. E., Takenaka, T., Ping, K. A. H., Honda, S., & Tanaka, T. (2009). Advances in the 3-D forward–backward time-stepping (FBTS) inverse scattering technique for breast cancer detection. IEEE Transactions on Biomedical Engineering, 56(9), 2232-2243. [2] Scapaticci, R., Bucci, O. M., Catapano, I., & Crocco, L. (2014). Differential microwave imaging for brain stroke followup. International Journal of Antennas and Propagation, 2014, 1-11. [3] Moriyama, T., Salucci, M., Oliveri, G., Tenuti, L., Rocca, P., & Massa, A. (2014). Multi-scaling deterministic imaging for GPR survey. In Antenna Measurements & Applications, 2014 IEEE Conference on (pp. 1-3). IEEE. [4] Salucci, M., Tenuti, L., Poli, L., & Massa, A. (2017). Buried object detection and imaging through innovative processing of GPR data. In Antennas and Propagation, 2017 11th European Conference on (pp. 1703-1706). IEEE. [5] Catapano, I., Affinito, A., Gennarelli, G., di Maio, F., Loperte, A., & Soldovieri, F. (2014). Full three-dimensional imaging via ground penetrating radar: Assessment in controlled conditions and on field for archaeological prospecting. Applied Physics A, 115(4), 1415-1422. [6] Lai, J., Li, M., Li, P., & Li, W. (2017). A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. arXiv preprint arXiv:1706.06949. [7] Hu, G., Salo, M., & Vesalainen, E. V. (2016). Shape identification in inverse medium scattering problems with a single far-field pattern. SIAM Journal on Mathematical Analysis, 48(1), 152-165. [8] Li, P. A. N. (2011). Electromagnetic inverse scattering problems (Doctoral dissertation). Zhejiang University. [9] Aramini, R. (2011). Computational inverse scattering via qualitative methods (Doctoral dissertation). University of Trento. [10] Tanaka, T., Kuroki, N., & Takenaka, T. (2003). Filtered forward-backward time-stepping method applied to reconstruction of dielectric cylinders. Journal of Electromagnetic Waves and Applications, 17(2), 253-270. [11] Moriyama, T., Oliveri, G., Salucci, M., & Takenaka, T. (2014). A multi-scaling forward-backward time-stepping method for microwave imaging. IEICE Electronics Express, 11(16), 1-12. [12] Rocca, P., Benedetti, M., Donelli, M., Franceschini, D., & Massa, A. (2009). Evolutionary optimization as applied to inverse scattering problems. Inverse Problems, 25(12), 1-61. [13] Belkebir, K., Baussard, A., & Premel, D. (2005). Edge-preserving regularization scheme applied to modified gradient method to reconstruct two-dimensional targets from data laboratory-controlled. Progress in Electromagnetics Research, 54, 1-17. [14] Zakaria, A., Gilmore, C., & LoVetri, J. (2010). Finite-element contrast source inversion method for microwave imaging. Inverse Problems, 26(11), 1-21. [15] Chen, X., Xu, K., Shen, F., Ran, L., & Zhong, Y. (2015). Subspace-based optimization method coupled with multiplicative regularization for edge-preserving inversion. In Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2015 IEEE International Symposium on (pp. 898-899). IEEE. [16] Ye, X., Poli, L., Oliveri, G., Zhong, Y., Agarwal, K., Massa, A., & Chen, X. (2015). Multi-resolution subspace-based optimization method for solving three-dimensional inverse scattering problems. Journal of the Optical Society of America A, 32(11), 2218-2226. [17] Zhong, Y., Lambert, M., Lesselier, D., & Chen, X. (2016). A new integral equation method to solve highly nonlinear inverse scattering problems. IEEE Transactions on Antennas and Propagation, 64(5), 1788-1799. [18] Yong, G., Ping, K. A. H., Sahrani, S., Marhaban, M. H., Saripan, M. I., Moriyama, T., & Takenaka, T. (2017). Profile Reconstruction Utilizing Forward-Backward Time-Stepping with the Integration of Automated Edge-Preserving Regularization Technique for Object Detection Applications. Progress in Electromagnetics Research, 54, 125-135. [19] Ng, S. W., Ping, K. A. H., Sahrani, S., Marhaban, M. H., Saripan, M. I., Moriyama, T., & Takenaka, T. (2016). Preliminary results on estimation of the dispersive dielectric properties of an object utilizing frequency-dependent forward-backward time-stepping technique. Progress in Electromagnetics Research, 49, 61-68. [20] Rekanos, I. T., Yioultsis, T. V., & Tsiboukis, T. D. (1999). Inverse scattering using the finite-element method and a nonlinear optimization technique. IEEE Transactions on Microwave Theory and Techniques, 47(3), 336-344. [21] Moriyama, T., & Takenaka, T. (2015). Filtered forward-backward time-stepping method without information on incident field. In Microwave Symposium, 2015 IEEE 15th Mediterranean (pp. 1-4). IEEE. [22] Pastorino, M. (2007). Stochastic optimization methods applied to microwave imaging: A review. IEEE Transactions on Antennas and Propagation, 55(3), 538-548. [23] Garcia-Fernandez, M., Garcia, C., Alvarez, Y., & Las-Heras, F. (2015). Influence of contour smoothness and electric size on the profile reconstruction of metallic objects using hybrid optimization. In EUROCON 2015-International Conference on Computer as a Tool, IEEE (pp. 1-6). IEEE. [24] Moriyama, T., Salucci, M., Tanaka, T., & Takenaka, T. (2016). Image reconstruction from total electric field data with no information on incident field. Journal of Electromagnetic Waves and Applications, 30(9), 1162-1170. [25] Rekanos, I. T. (2008). Shape reconstruction of a perfectly conducting scatterer using differential evolution and particle swarm optimization. IEEE Transactions on Geoscience and Remote Sensing, 46(7), 1967-1974. [26] Donelli, M., Franceschini, G., Martini, A., & Massa, A. (2006). An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems. IEEE Transactions on Geoscience and Remote Sensing, 44(2), 298-312. [27] Karaboga, N. (2005). Digital IIR filter design using differential evolution algorithm. EURASIP Journal on Applied Signal Processing, 2005, 1269-1276. [28] Takenaka, T., Tanaka, T., Harada, H., & He, S. (1997). FDTD approach to time‐domain inverse scattering problem for stratified lossy media. Microwave and Optical Technology Letters, 16(5), 292-296. [29] Takenaka, T., Jia, H., & Tanaka, T. (2000). Microwave imaging of electrical property distributions by a forward-backward time-stepping method. Journal of Electromagnetic Waves and Applications, 14(12), 1609-1626. [30] Sun, J., Zhang, Q., & Tsang, E. P. (2005). DE/EDA: A new evolutionary algorithm for global optimization. Information Sciences, 169(3-4), 249-262. [31] Gürbüz, T. U., Aslanyürek, B., Yapar, A., Şahintürk, H., & Akduman, I. (2014). A nonlinear microwave breast cancer imaging approach through realistic body–breast modeling. IEEE Transactions on Antennas and Propagation, 62(5), 2596-2605. [32] Scapaticci, R., Di Donato, L., Catapano, I., & Crocco, L. (2012). A feasibility study on microwave imaging for brain stroke monitoring. Progress in Electromagnetics Research, 40, 305-324. [33] Bao, G., Li, P., Lin, J., & Triki, F. (2015). Inverse scattering problems with multi-frequencies. Inverse Problems, 31(9), 1-21. [34] Russell Luke, D., & Potthast, R. (2006). The point source method for inverse scattering in the time domain. Mathematical Methods in The Applied Sciences, 29(13), 1501-1521. [35] Elizabeth, M. A, Ping, K. A. H., Wei, N. S., Wan Zainal Abidin, W. A., Masri, T., Othman, A. K., Moriyama, T., & Takenaka, T. (2012). 2-D reconstruction of breast image using Forward-Backward Time-Stepping method for breast tumour detection. In Applied Electromagnetics, 2012 IEEE Asia-Pacific Conference on (pp. 70-73). IEEE. [36] Zhou, H., & Zhang, H. J. (2011). Increasing the efficiency of forward–backward time-stepping reconstruction method. In Proceedings of Progress in Electromagnetics Research Symposium (pp. 878-881). [37] Takenaka, T., Moriyama, T., Ping, K. A. H., & Yamasaki, T. (2010). Microwave breast imaging by the filtered forward-backward time-stepping method. In Electromagnetic Theory, 2010 URSI International Symposium on (pp. 946-949). IEEE. [38] Ibrahim, P. M., Ping, K. A. H., Wei, N. S., Guang, Y., Rajaee, N., & Anyi, M. (2016). Elliptic filter and iterative inversion method for buried object detection applications. Applied Mechanics and Materials, 833, 164–169. [39] Jamali, N. H., Ping, K. A. H., Sahrani, S., Mat, D. A. A., Marhaban, M. H., Saripan, M. I., & Takenaka, T. (2017). Image reconstruction based on combination of inverse scattering technique and total variation regularization method. Indonesian Journal of Electrical Engineering and Computer Science, 5(3), 569-576. [40] Chie, A. S. C., Ping, K. A. H., Guang, Y., Wei, N. S., & Rajaee, N. (2016). Preliminary results of integrating Tikhonov’s regularization in Forward-Backward Time-Stepping technique for object detection. Applied Mechanics and Materials, 833, 170-175. [41] Ping, K. A. H., Moriyama, T., Takenaka, T., & Tanaka, T. (2009). Two-dimensional Forward-Backward Time-Stepping approach for tumor detection in dispersive breast tissues. In 2009 Mediterrannean Microwave Symposium (pp. 1-4). IEEE. [42] Moriyama, T., & Takenaka, T. (2015). Inverse scattering approach with measurement of only total electric field. Microwave and Optical Technology Letters, 57(1), 137-141. [43] Moriyama, T., Oliveri, G., Massa, A., & Takenaka, T. (2011). Iterative multiscaling strategy incorporated into time domain inverse scattering method for cross-borehole imaging. In Geoscience and Remote Sensing Symposium, 2011 IEEE International (pp. 846-849). IEEE. [44] Caorsi, S., Donelli, M., Franceschini, D., & Massa, A. (2002). An iterative multiresolution approach for microwave imaging applications. Microwave and Optical Technology Letters, 32(5), 352-356. [45] Caorsi, S., Donelli, M., Franceschini, D., & Massa, A. (2003). A new methodology based on an iterative multiscaling for microwave imaging. IEEE Transactions on Microwave Theory and Techniques, 51(4), 1162-1173. [46] Caorsi, S., Donelli, M., & Massa, A. (2004). Detection, location, and imaging of multiple scatterers by means of the iterative multiscaling method. IEEE Transactions on Microwave Theory and Techniques, 52(4), 1217-1228. [47] Brown, J.Q., Bydlon, T.M., Richards, L.M., Yu, B., Kennedy, S.A., Geradts, J., Wilke, L.G., Junker, M.K., Gallagher, J., Barry, W.T. and Ramanujam, N. (2010). Optical assesssment of tumor resection margins in the breast. IEEE Journal of Selected Topics in Quantum Electronics, 16(3), 530-544. [48] Grzegorczyk, T. M., Meaney, P. M., & Paulsen, K. D. (2014). Microwave tomographic imaging for breast cancer chemotherapy monitoring. In Antennas and Propagation, 2014 8th European Conference on (pp. 702-703). IEEE. [49] Yong, G., Ping, K. A. H., Chie, A. S. C., Ng, S. W., & Masri, T. (2015). Preliminary study of Forward-Backward Time-Stepping technique with edge-preserving regularization for object detection applications. In BioSignal Analysis, Processing and Systems, 2015 International Conference on (pp. 77-81). IEEE. [50] Charbonnier, P., Blanc-Féraud, L., Aubert, G., & Barlaud, M. (1997). Deterministic edge-preserving regularization in computed imaging. IEEE Transactions on Image Processing, 6(2), 298-311. [51] Siang, K. C. and John, C. K. M. (2016). A review of lung cancer research in Malaysia. Medical J Malaysia, 71(1), 70–78. [52] Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424. [53] Tanaka, T., Takenaka, T., & He, S. (1999). An FDTD approach to the time‐domain inverse scattering problem for an inhomogeneous cylindrical object. Microwave and Optical Technology Letters, 20(1), 72-77. [54] Johnson, J. E., Takenaka, T., & Tanaka, T. (2008). Two-dimensional time-domain inverse scattering for quantitative analysis of breast composition. IEEE Transactions on Biomedical Engineering, 55(8), 1941-1945. [55] Elizabeth, M. A., Ping, K. A. H., Rajaee, N. B., & Moriyama, T. (2015). Chebyshev filter applied to an inversion technique for breast tumour detection. International Journal of Research in Engineering & Technology, 4(6), 210–218. [56] Qiu, D., Zhou, H., Takenaka, T., & Tanaka, T. (2006). Source‐group method to speed up the reconstruction of objects from radar data by using the FBTS method. Microwave and Optical Technology Letters, 48(1), 67-71. [57] Moriyama, T., Yamaguchi, Y., Ping, K. A. H., Tanaka, T., & Takenaka, T. (2008). Parallel processing of forward-backward time-stepping method for time domain inverse scattering. PIERS Online, 4(6), 695-700. [58] Nawawi, J., Sahrani, S., Ping, K. A. H., Awang Mat, D. A., & Abang Zaidel, D. N. (2016). Iterative refinement in inverse scattering technique with median filter. In Applied Electromagnetics, 2016 IEEE Asia-Pacific Conference on (pp. 62-67). IEEE. [59] Azman, A., Sahrani, S., Ping, K. A. H., & Mat, D. A. A. (2017). A New Approach for Solving Inverse Scattering Problems with Overset Grid Generation Method. Telecommunication Computing Electronics and Control, 15(2), 820-828. [60] Yee, K. (1966). Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on Antennas and Propagation, 14(3), 302-307. [61] Schneider, J. B. (2017). Understanding the finite-difference time-domain method. School of Electrical Engineering and Computer Science Washington State University. Retrieved from https://www.eecs.wsu.edu/~schneidj/ufdtd/ufdtd [62] Chevalier, M. W., Luebbers, R. J., & Cable, V. P. (1997). FDTD local grid with material traverse. IEEE Transactions on Antennas and Propagation, 45(3), 411-421. [63] Samimi, A., & Simpson, J. J. (2016). Parallelization of 3-D Global FDTD Earth-Ionosphere Waveguide Models at Resolutions on the Order of∼ 1 km and Higher. IEEE Antennas and Wireless Propagation Letters, 15, 1959-1962. [64] Shankar, V., Mohammadian, A. H., & Hall, W. F. (1990). A time-domain, finite-volume treatment for the Maxwell equations. Electromagnetics, 10(1-2), 127-145. [65] Chen, Z., Fan, W., & Yang, S. (2016). Towards the wave-equation based explicit FDTD method without numerical instability. In Computational Electromagnetics, 2016 IEEE International Conference on (pp. 265-267). IEEE. [66] Nieter, C., Cary, J. R., Werner, G. R., Smithe, D. N., & Stoltz, P. H. (2009). Application of Dey–Mittra conformal boundary algorithm to 3D electromagnetic modeling. Journal of Computational Physics, 228(21), 7902-7916. [67] Shi, R., Yang, H., & Gao, L. (2015). An Adaptive Time Step FDTD Method for Maxwell’s Equations. IEEE Antennas and Wireless Propagation Letters, 14, 1706-1709. [68] Sarris, C. D. (2011). Extending the stability limit of the FDTD method with spatial filtering. IEEE Microwave and Wireless Components Letters, 21(4), 176-178. [69] Wei, X. K., Diamanti, N., Zhang, X., Annan, A. P., & Sarris, C. D. (2017). Spatially-filtered FDTD subgridding for ground penetrating radar numerical modeling. In Advanced Ground Penetrating Radar, 2017 9th International Workshop on (pp. 1-4). IEEE. [70] Berenger, J. P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2), 185-200. [71] Reuter, C. E., Joseph, R. M., Thiele, E. T., Katz, D. S., & Taflove, A. (1994). Ultrawideband absorbing boundary condition for termination of waveguiding structures in FD-TD simulations. IEEE Microwave and Guided Wave Letters, 4(10), 344-346. [72] Salmasi, M., & Potter, M. E. (2016). FDTD discretization of Maxwell's equations on a face-centered-cubic grid. In Antennas and Propagation, 2016 IEEE International Symposium on (pp. 2017-2018). IEEE. [73] Zygiridis, T. T., Kantartzis, N. V., & Tsiboukis, T. D. (2016). Development of optimized operators based on spherical-harmonic expansions for 3D FDTD schemes. International Journal of Applied Electromagnetics and Mechanics, 51(s1), S57-S66. [74] Van Londersele, A., De Zutter, D., & Ginste, D. V. (2016). A new hybrid implicit–explicit FDTD method for local subgridding in multiscale 2-D TE scattering problems. IEEE Transactions on Antennas and Propagation, 64(8), 3509-3520. [75] Sandeep, S., & Gasiewski, A. J. (2012). Electromagnetic analysis of radiometer calibration targets using dispersive 3D FDTD. IEEE Transactions on Antennas and Propagation, 60(6), 2821-2828. [76] Wanjun, S., & Hou, Z. (2016). Analysis of electromagnetic wave propagation and scattering characteristics of plasma shealth via high order ADE-ADI FDTD. Journal of Electromagnetic Waves and Applications, 30(10), 1321-1333. [77] Mo, Q., Yeh, H., Lin, M., & Manocha, D. (2017). Outdoor sound propagation with analytic ray curve tracer and Gaussian beam. The Journal of the Acoustical Society of America, 141(3), 2289-2299. [78] Chen, J., Hao, G., & Liu, Q. H. (2017). Using the ADI-FDTD method to simulate graphene-based FSS at terahertz frequency. IEEE Transactions on Electromagnetic Compatibility, 59(4), 1218-1223. [79] Chungang, J., Lixin, G., & Wei, L. (2016). Parallel FDTD method for EM scattering from a rough surface with a target. In Antennas, Propagation and EM Theory, 2016 11th International Symposium on (pp. 569-572). IEEE. [80] Kourtzanidis, K., Rogier, F., & Boeuf, J. P. (2015). ADI-FDTD modeling of microwave plasma discharges in air towards fully three-dimensional simulations. Computer Physics Communications, 195, 49-60. [81] Ireland, D., & Abbosh, A. (2013). Modeling human head at microwave frequencies using optimized Debye models and FDTD method. IEEE Transactions on Antennas and Propagation, 61(4), 2352-2355. [82] Luo, Z., Fan, D., Farmer, P., & Martin, G. (2017). Obtaining geologically conformable tomographic models through anisotropic-diffusion preconditioning. In SEG Technical Program Expanded Abstracts 2017 (pp. 5691-5695). Society of Exploration Geophysicists. [83] Blackledge, J., Hamalainen, T., & Joutsensalo, J. (2009). Inverse Scattering Solutions with Applications to Electromagnetic Signal Processing. ISAST Transactions on Electronics and Signal Processing, 1(4), 1-18. [84] Shrestha, S. (2014). Image denoising using new adaptive based median filters. Signal & Image Processing : An International Journal, 5(4), 1-13. [85] Zhu, J., Wen, J., & Zhang, Y. (2013). A new algorithm for SAR image despeckling using an enhanced lee filter and median filter. In Image and Signal Processing, 2013 6th International Congress on (1, pp. 224-228). IEEE. [86] Fan, W., Wang, K., Cayre, F., & Xiong, Z. (2015). Median filtered image quality enhancement and anti-forensics via variational deconvolution. IEEE Transactions on Information Forensics and Security, 10(5), 1076-1091. [87] Chou, H. H., Lin, H. W., & Chang, J. R. (2014). A sparsity-ranking edge-preservation filter for removal of high-density impulse noises. AEU-International Journal of Electronics and Communications, 68(11), 1129-1135. [88] Gir, R., Jain, L., & Rai, R. (2015). Speckle reduction of synthetic aperture radar images using median filter and savitzky-golay filter. International Journal of Computer Applications, 113(11), 38-43. [89] Zheng, Y., Zhang, X., Hou, B., & Liu, G. (2014). Using combined difference image and k-Means clustering for SAR image change detection. IEEE Geoscience and Remote Sensing Letters, 11(3), 691-695. [90] Hong, G., Zhang, A., Zhou, F., & Brisco, B. (2014). Integration of optical and synthetic aperture radar (SAR) images to differentiate grassland and alfalfa in Prairie area. International Journal of Applied Earth Observation and Geoinformation, 28, 12-19. [91] Zhao, Y., Liu, J. G., Zhang, B., Hong, W., & Wu, Y. R. (2015). Adaptive total variation regularization based SAR image despeckling and despeckling evaluation index. IEEE Transactions on Geoscience and Remote Sensing, 53(5), 2765-2774. [92] Agrawal, A., & Mishra, P. K. (2016). Restoration and de-noising of digital image based on non-linear diffusion filter for different type of noises. International Journal of Engineering Science and Computing, 6(10), 2608-2610. [93] Moll, J., Kelly, T. N., Byrne, D., Sarafianou, M., Krozer, V., & Craddock, I. J. (2014). Microwave radar imaging of heterogeneous breast tissue integrating a priori information. Journal of Biomedical Imaging, 2014(17), 1-10. [94] Khare, C., & Nagwanshi, K. K. (2012). Image restoration technique with non linear filter. International Journal of Advanced Science and Technology, 39, 67-74. [95] Ma, Z., He, K., Wei, Y., Sun, J., & Wu, E. (2013). Constant time weighted median filtering for stereo matching and beyond. In Proceedings of the IEEE International Conference on Computer Vision (pp. 49-56). [96] Pang, J., Zhang, S., & Zhang, S. (2016). A median filter based on the proportion of the image variance. In Information Technology, Networking, Electronic and Automation Control Conference, IEEE (pp. 123-127). IEEE. [97] Agarwal, S., Singh, O. P., & Nagaria, D. (2017). Encrypted Image Denoising using Adaptive Weighted Median Filter. Indian Journal of Science and Technology, 10(18), 1-8. [98] Bhateja, V., Tripathi, A., & Gupta, A. (2014). An improved local statistics filter for denoising of SAR images. In Recent Advances in Intelligent Informatics (pp. 23-29). Springer, Cham. [99] Rahimi, M., & Yazdi, M. (2015). A new hybrid algorithm for speckle noise reduction of SAR images based on mean-median filter and SRAD method. In Pattern Recognition and Image Analysis, 2015 2nd International Conference on (pp. 1-6). IEEE. [100] Zhang, Q., Xu, L., & Jia, J. (2014). 100+ times faster weighted median filter (WMF). In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2830-2837). [101] Kulkarni, R. N., & Bhaskar, P. C. (2014). Decision based median filter algorithm using resource optimized FPGA to extract impulse noise. International Journal of Reconfigurable and Embedded Systems, 3(1), 1-10. [102] Bhateja, V., Rastogi, K., Verma, A., & Malhotra, C. (2014). A non-iterative adaptive median filter for image denoising. In Signal Processing and Integrated Networks, 2014 International Conference on (pp. 113-118). IEEE. [103] Bhateja, V., Verma, A., Rastogi, K., Malhotra, C., & Satapathy, S. C. (2014). Performance improvement of decision median filter for suppression of salt and pepper noise. In Advances in Signal Processing and Intelligent Recognition Systems (pp. 287-297). Springer, Cham. [104] Liang, J., He, W., Ji, D., & Wang, L. (2015). Image reconstruction algorithm for modified SART based on PM model. In Computational Intelligence and Security, 2015 11th International Conference on (pp. 175-178). IEEE. [105] Correia, T., & Arridge, S. (2016). Patch-based anisotropic diffusion scheme for fluorescence diffuse optical tomography—part 1: technical principles. Physics in Medicine & Biology, 61(4), 1439-1451. [106] Tsiotsios, C., & Petrou, M. (2013). On the choice of the parameters for anisotropic diffusion in image processing. Pattern Recognition, 46(5), 1369-1381. [107] Ji, D., Hu, C., & Yang, H. (2015). Image reconstruction algorithm for in-line phase contrast imaging computed tomography with an improved anisotropic diffusion model. Journal of X-ray Science and Technology, 23(3), 311-320. [108] Guan, F., Ton, P., Ge, S., & Zhao, L. (2014). Anisotropic diffusion filtering for ultrasound speckle reduction. Science China Technological Sciences, 57(3), 607-614. [109] Zhang, X., Feng, X., Wang, W., Zhang, S., & Dong, Q. (2013). Gradient-based Wiener filter for image denoising. Computers & Electrical Engineering, 39(3), 934-944. [110] Xu, J., Jia, Y., Shi, Z., & Pang, K. (2016). An improved anisotropic diffusion filter with semi-adaptive threshold for edge preservation. Signal Processing, 119, 80-91. [111] Rafati, M., Arabfard, M., Zadeh, M. R. R., & Maghsoudloo, M. (2016). Assessment of noise reduction in ultrasound images of common carotid and brachial arteries. IET Computer Vision, 10(1), 1-8. [112] Mendrik, A. M., Vonken, E. J., Witkamp, T., Prokop, M., Van Ginneken, B., & Viergever, M. A. (2014). Using the fourth dimension to distinguish between structures for anisotropic diffusion filtering in 4D CT perfusion scans. In International Workshop on Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data (pp. 79-87). Springer, Cham. [113] Abdallah, M. B., Malek, J., Azar, A. T., Belmabrouk, H., Monreal, J. E., & Krissian, K. (2016). Adaptive noise-reducing anisotropic diffusion filter. Neural Computing and Applications, 27(5), 1273-1300. [114] Garg, A., & Goyal, K. (2014). Regularization Methods to Solve Various Inverse Problems. International Journal of Science and Research, 3(8), 1840–1845. [115] Niu, S., Gao, Y., Bian, Z., Huang, J., Chen, W., Yu, G., Liang, Z. and Ma, J. (2014). Sparse-view x-ray CT reconstruction via total generalized variation regularization. Physics in Medicine & Biology, 59(12), 2997–3017. [116] Zhuge, X., Palenstijn, W. J., & Batenburg, K. J. (2016). TVR-DART: a more robust algorithm for discrete tomography from limited projection data with automated gray value estimation. IEEE Transactions on Image Processing, 25(1), 455-468. [117] Sanders, T., Gelb, A., Platte, R. B., Arslan, I., & Landskron, K. (2017). Recovering fine details from under-resolved electron tomography data using higher order total variation ℓ1 regularization. Ultramicroscopy, 174, 97-105. [118] Mehranian, A., Rahmim, A., Ay, M. R., Kotasidis, F., & Zaidi, H. (2013). An ordered‐subsets proximal preconditioned gradient algorithm for edge‐preserving PET image reconstruction. Medical Physics, 40(5), 1-14. [119] Gerace, I., Martinelli, F., & Tonazzini, A. (2014). Demosaicing of noisy color images through edge-preserving regularization. In Computational Intelligence for Multimedia Understanding, 2014 International Workshop on (pp. 1-5). IEEE. [120] Gong, G., Zhang, H., & Yao, M. (2014). Construction model for total variation regularization parameter. Optics Express, 22(9), 10500-10508. [121] Gu, X., & Gao, L. (2009). A new method for parameter estimation of edge-preserving regularization in image restoration. Journal of Computational and Applied Mathematics, 225(2), 478-486. [122] Bahy, R. M., Salama, G. I., & Mahmoud, T. A. (2014). Adaptive regularization-based super resolution reconstruction technique for multi-focus low-resolution images. Signal Processing, 103, 155-167. [123] Cho, W., Seo, S., & You, J. (2014). Edge-preserving denoising method using variation approach and gradient distribution. In Big Data and Smart Computing, 2014 International Conference on (pp. 139-144). IEEE. [124] Boudaoud, A., Burian, A., Borowska-Wykręt, D., Uyttewaal, M., Wrzalik, R., Kwiatkowska, D., & Hamant, O. (2014). FibrilTool, an ImageJ plug-in to quantify fibrillar structures in raw microscopy images. Nature Protocols, 9(2), 457-463. [125] Chen, L. Y., Pan, M. C., & Pan, M. C. (2013). Flexible near-infrared diffuse optical tomography with varied weighting functions of edge-preserving regularization. Applied Optics, 52(6), 1173-1182. [126] Jung, J. E., & Lee, S. J. (2015). Edge-preserving iterative reconstruction for transmission tomography using convex weighted median priors. In Nuclear Science Symposium and Medical Imaging Conference, 2015 IEEE (pp. 1-3). IEEE. [127] Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1-4), 259-268. [128] Zhang, J., Liu, S., Xiong, R., Ma, S., & Zhao, D. (2013). Improved total variation based image compressive sensing recovery by nonlocal regularization. In Circuits and Systems, 2013 IEEE International Symposium on (pp. 2836-2839). IEEE. [129] Tourbier, S., Bresson, X., Hagmann, P., Thiran, J. P., Meuli, R., & Cuadra, M. B. (2014). Efficient total variation algorithm for fetal brain MRI reconstruction. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 252-259). Springer, Cham. [130] Matakos, A., Ramani, S., & Fessler, J. A. (2013). Accelerated edge-preserving image restoration without boundary artifacts. IEEE Transactions on Image Processing, 22(5), 2019-2029. [131] Bhujle, H., & Chaudhuri, S. (2014). Novel speed-up strategies for non-local means denoising with patch and edge patch based dictionaries. IEEE Transactions on Image Processing, 23(1), 356-365. [132] Chan, R. H., Liang, H., Wei, S., Nikolova, M., & Tai, X. C. (2015). High-order total variation regularization approach for axially symmetric object tomography from a single radiograph. Inverse Problems & Imaging, 9(1), 55–77. [133] Dong, W., Zhang, L., Shi, G., & Li, X. (2013). Nonlocally centralized sparse representation for image restoration. IEEE Transactions on Image Processing, 22(4), 1620-1630. [134] Zhang, K., Tao, D., Gao, X., Li, X., & Xiong, Z. (2015). Learning multiple linear mappings for efficient single image super-resolution. IEEE Transactions on Image Processing, 24(3), 846-861. [135] Khan, A., Waqas, M., Ali, M. R., Altalhi, A., Alshomrani, S., & Shim, S. O. (2016). Image de-noising using noise ratio estimation, K-means clustering and non-local means-based estimator. Computers & Electrical Engineering, 54, 370-381. [136] Jia, L., Li, M., Zhang, P., Wu, Y., & Zhu, H. (2016). SAR image change detection based on multiple kernel K-means clustering with local-neighborhood information. IEEE Geoscience and Remote Sensing Letters, 13(6), 856-860. [137] Salucci, M., Sartori, D., Anselmi, N., Randazzo, A., Oliveri, G., & Massa, A. (2013). Imaging buried objects within the second-order Born approximation through a multiresolution-regularized inexact-Newton method. In Electromagnetic Theory, Proceedings of 2013 URSI International Symposium on (pp. 116-118). IEEE. [138] Salucci, M., Rocca, P., Oliveri, G., & Massa, A. (2014). An innovative Frequency Hopping multi-zoom inversion strategy for GPR subsurface imaging. In Ground Penetrating Radar, 2014 15th International Conference on (pp. 619-623). IEEE. [139] Salucci, M., Poli, L., Anselmi, N., & Massa, A. (2017). Multifrequency particle swarm optimization for enhanced multiresolution GPR microwave imaging. IEEE Transactions on Geoscience and Remote Sensing, 55(3), 1305-1317. [140] Dixit, A. (2014). Adaptive Kmeans Clustering for Color and Gray Image [Source Code]. Retrieved from https://www.mathworks.com/matlabcentral/fileexchange/45057-adaptive-kmeans-clustering-for-color-and-gray-image [141] Bhatia, S. K. (2004). Adaptive K-Means Clustering. In FLAIRS Conference (pp. 695-699). [142] Grove, O., Berglund, A. E., Schabath, M. B., Aerts, H. J., Dekker, A., Wang, H., & Gillies, R. J. (2015). Data from: Quantitative computed tomographic descriptors associate tumour shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma. The Cancer Imaging Archive. [143] Anderson, V., & Rowley, J. (1998). Tissue dielectric properties calculator. Clayton, Victoria, Australia: Telstra Research Laboratories. [144] Holman, B. F., Cuplov, V., Millner, L., Hutton, B. F., Maher, T. M., Groves, A. M., & Thielemans, K. (2015). Improved correction for the tissue fraction effect in lung PET/CT imaging. Physics in Medicine & Biology, 60(18), 7387-7402. [145] Hartsgrove, G., Kraszewski, A., & Surowiec, A. (1987). Simulated biological materials for electromagnetic radiation absorption studies. Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association, 8(1), 29-36. [146] Chen, X., Wang, H., Zhao, B., & Shi, X. (2009). Lung ventilation functional monitoring based on electrical impedance tomography. Transactions of Tianjin University, 15(1), 7-12. [147] Ketata, M., Dhieb, M., Hmida, G. B., Ghariani, H., & Lahiani, M. (2015). UWB pulse propagation in human tissue: Comparison between Gaussian and square waves shape. In Sciences and Techniques of Automatic Control and Computer Engineering, 2015 16th International Conference on (pp. 158-162). IEEE. [148] Babarinde, O. J., Jamlos, M. F., Soh, P. J., Schreurs, D. P., & Beyer, A. (2016). Microwave imaging technique for lung tumour detection. In Microwave Conference, 2016 German (pp. 100-103). IEEE. [149] Wang, J. R., Sun, B. Y., Wang, H. X., Pang, S., Xu, X., & Sun, Q. (2014). Experimental study of dielectric properties of human lung tissue in vitro. Journal of Medical and Biological Engineering, 34(6), 598-604. [150] Nawawi, J., Sahrani, S., & Ping, K. A. H. (2017). Automated Scaling Region of Interest (AS-ROI) in inverse scattering method for tomographic image reconstruction. In Progress in Electromagnetics Research Symposium-Fall, 2017 (pp. 1648-1653). IEEE. [151] Joseph, E. J., Ping, K. A. H., Kipli, K., Awang Mat, D. A., Sahrani, S., Abang Zaidel, D. N., ... & Marhaban, M. H. (2017). Integration of Image Segmentation Method in Inverse Scattering for Brain Tumour Detection. Progress in Electromagnetics Research, 61, 111-122. [152] Komarov, V., Wang, S., & Tang, J. (2005). Permittivity and measurements. Encyclopedia of RF and Microwave Engineering. Hoboken, N.J.: John Wiley & Sons, Inc. [153] Lee, H., & Um, S. W. (2015). Probability of lung cancer based on the size threshold and volume-doubling time for lung nodules detected in low-dose CT screening. Annals of Translational Medicine, 3(2), 1-2.
(1)
1. Justinger C., Schlüter C., Oliviera-Frick V., Kopp B.,Rubie C., Schilling M.K. Increased growth factor expression after hepatic and pancreatic resection. Oncol Rep 2008; 20(6):1527–1531. 2. Ong K.H., Huang S.K.-H., Yen C.-S., Tian Y.-F., Sun D.-P.Simultaneous retroperitoneal robotic partial nephrectomy and hepatectomy for synchronous renal-cell carcinoma and hepatocellular carcinoma in a cirrhotic patient. J Endourol Case Rep 2016; 2(1): 215–217, https://doi.org/10.1089/cren.2016.0096. 3. Sun J., Yang T., Yang Y., Liu W., Song J. Synchronous double primary malignancies of the liver and kidney: a case report. Oncol Lett 2016; 11(3): 2057–2060, https://doi.org/10.3892/ol.2016.4194. 4. Murodov A.I., Kadyrov Z.A. Simultaneous videoendoscopic surgery in comorbid diseases of abdominal organs and retroperitoneal space. Meditsinskiy vestnik Bashkortostana 2017; 12(3): 129–134. 5. Forni Е., Meriggi F. Liver autotransplantation: technique and results. Annaly khirurgicheskoy gepatologii 1998; 3(2):24–29. 6. Filin A.V., Dydykin S.S., Scherbyuk A.N., Gulyaev V.A.Method of transient multiple removal and subsequent reimplantation of abdominal and retroperitoneal organs with multisystemic neoplastic lesions in experiment. Patent RU 2601100. 2017. 7. Brekhov E.I., Gulyaev V.A., Dydykin S.S., Pavlov A.V. Method of multiple removal of abdominal and retroperitoneal organs for transplantation. Patent RU 1819579. 1993.
(1)
1. Lu M. Recommendations for preconception care. Am Fam Physician. 2007;76(3):397–400. 2. Centre for Disease Control and Prevention. Preventing and Managing Chronic Disease to Improve the Health of Women and Infants [Fact sheet]. 2006. Retrieved from http://www.idph.state.ia.us/hpcdp/common/pdf/family_health/2012_cdc_factsheet.pdf. Accessed 2 Jan 2015. 3. World Health Organization. Preconception care: Maximising the gains for maternal and child health. 2013. Retrieved from the World Wide Web: http://www.who.int/maternal_child_adolescent/documents/preconception_care_policy_brief.pdf. Accessed 6 Jan 2015. 4. Abu Talib R, Idris IB, Sutan R, Ahmad N, Bakar NA. Exploring the determinant of pre-pregnancy care services usage, reproductive ages women in Kedah, Malaysia. Int J Public Health Res. 2016;6(2):719–26. 5. Muhammad NM, Ruziaton H, Nuraini D, Izan HI, Norizzati BIB, Mohamad RI, Mimi O. Risk factors for women attending pre-pregnancy screening in selected clinics in Selangor. Malays Family Physician. 2014;9(3):20–6. 6. Heyes T, Long S, Mathers N. Preconception care: practice and beliefs of primary care workers. Fam Pract. 2004;21(1):22–7. 7. Mazza D, Chapman A, Michie S. Barriers to the implementation of preconception care guidelines as perceived by general practitioners: a qualitative study. BMC Health Serv Res. 2013;13(1):36. Retrieved from https://doi.org/10.1186/1472-6963-13-36. Accessed on January 8, 2015 8. Talib RA. Exploring the determinant of pre-pregnancy care services usage among reproductive ages women in Kedah, Malaysia. Int J Pub Health Res. 2016;6(2);719–26. 9. Rosliza AM, Majdah M. Male participation and sharing of responsibility in strengthening family planning activities in Malaysia. Malays J Pub Health Med. 2010;10(1):23–7. 10. Singh, D., Lample, M., & Earnest, J. (2014). The involvement of men in maternal health care: cross-sectional, pilot case studies from Maligita and Kibibi, Uganda. Reproductive Health, 11(1), 68. Retrieved February 8, 2015 from the world wide web doi:10.1186/1742-4755-11-68. 11. Kronfol NM. Access and barriers to health care delivery in Arab countries: a review. East Mediterr Health J. 2012;18(12):1239–46. 12. Olayinka OA, Achi OT, Amos AO, Chiedu EM. Awareness and barriers to utilization of maternal health care services among reproductive women in Amassoma community, Bayelsa State. Int J Nurs Midwifery. 2014;6(1):10–15. doi:10.5897/ijnm2013.0108. Accessed 10 Feb 2015. 13. Bakeera SK, Wamala SP, Galea S, State A, Peterson S, Pariyo GW. Community perceptions and factors influencing utilisation of health services in Uganda. Int J Equity Health. 2009;8(25. Retrieved from doi: 10.1186/1475-9276-8-25) Accessed on February 17 2015 14. Otiniano A. D., Muthengi, E., Wakeel, F., Doan, L. C., Ramos D. E. (2006). Perceived Barriers to Preconception Care: Findings from Los Angeles Mommy and Baby (LAMB) Survey. Retrieved from http://publichealth.lacounty.gov/mch/lamb/Results/2007Results/APHABarrierstoPreconception%20Care_101208.pdf. Accessed 3 Jan 2015. 15. Jack BW, Culpepper L. Preconception care. J Family Pract. 1991;32(3):306–15. 16. Okigbo C. Provider education: key to improving young women’s use of reproductive health services in urban Nigeria. Population Reference Bureau (PRB). Policy Fellows Working Papers Series; 2014. Retrieved from http://www.prb.org/pdf14/provider-education-in-nigeria.pdf. Accessed 30 Oct 2016. 17. Bronstein, J. M., Felix, H. C., Bursac, Z., Stewart, M. K., Foushee, H. R., & Klapow, J. (2012). Providing general and preconception health care to low-income women in family planning settings: perception of providers and clients. Maternal and Child. 18. Bayrami R, Roudsari R.L, Hamid Allahverdipour H, Mojgan Javadnoori M, Habibollah Esmaily H. Experiences of women regarding gaps in preconception care services in the Iranian reproductive health care system: a qualitative study. Electron Physician. 2016;8(11):3279–88. 19. Kasim R, Draman N, Kadir AA. Knowledge , Attitudes and Practice of Preconception Care among Women Attending Maternal Health Clinic in Kelantan. 2016;8(4):57–68. 20. M’hamdi, H. I., van Voorst, S. F., Pinxten, W., Hilhorst, M. T., & Steegers, E. A. P. (2016). Barriers in the uptake and delivery of preconception care: exploring the views of care providers. Matern Child Health J, 21(1), 1–8. Retrieved from doi:10.1007/s10995-016-2089-7 21. Ojukwu O, Patel D, Stephenson J, Howden B, Shawe J. General practitioners’ knowledge, attitudes and views of providing preconception care: a qualitative investigation. Ups J Med Sci. 2016;121(4):256–63. Retrieved from doi: 10.1080/03009734.2016.1215853 View ArticlePubMed CentralGoogle Scholar 22. Mazza D, Chapman A. Improving the uptake of preconception care and periconceptional folate supplementation: what do women think? BMC Public Health. 2010;10(1):786. Retrieved from https://doi.org/10.1186/1471-2458-10-786 23. Tuomainen H, Cross-Bardell L, Bhoday M, Qureshi N, Kai J. Opportunities and challenges for enhancing preconception health in primary care: qualitative study with women from ethnically diverse communities. BMJ Open. 2013;3(7):1–10. 24. Van der Zee B, de Beaufort ID, Steegers EAP, Denktaş S. Perceptions of preconception counselling among women planning a pregnancy: a qualitative study. Fam Pract. 2013;30(3):341–6. 25. Rosliza AM, Majdah M. Male participation and sharing of responsibility in strengthening family planning activities in Malaysia. Malays J Public Health Med. 2010;10(1):23–7. 26. Singh, D., Lample, M., & Earnest, J. (2014). The involvement of men in maternal health care: cross-sectional, pilot case studies from Maligita and Kibibi, Uganda. Reproductive Health, 11(1), 68. Retrieved February 8, 2015 from the World Wide Web doi:10.1186/1742-4755-11-68 27. Narang, H., & Singhal, S. (2013). Men as partners in maternal health: an analysis of male awareness and attitude. International Journal of Reproduction, Contraception, Obstetrics and Gynecology, 2(3), 388. Retrieved January 4, 2015 from the World Wide Web doi: 10.5455/2320-1770.ijrcog20130925 28. Kabagenyi A, Jennings L, Reid A, Nalwadda G, Ntozi J, Atuyambe L. Barriers to male involvement in contraceptive uptake and reproductive health services: a qualitative study of men and women’s perceptions in two rural districts in Uganda. Reprod Health. 2014;11(1):21. Retrieved from doi: 10.1186/1742-4755-11-21. Accessed on January 10, 2015 29. Murphy P, Phillips G, Hall A, Brooks S. Women’s Health Stats and Facts. [Fact sheet]. 2011. Retrieved from http://www.acog.org//media/NewsRoom/MediaKit.pdf. 30. Tokunbo O, Abimbola O, Polite I, Gbemiga O. Awareness and perception of preconception care among health workers in Ahmadu Bello University teaching university, Zaria. Trop J Obstet Gynaecol. 2016;33(2):149. Retrieved from https://doi.org/10.4103/0189-5117.192215 31. Dehne KL, Riedner G. Sexually transmitted infections among adolescents: the need for adequate health services. Reprod Health Matters. 2001;9(17):170–83. 32. Ghafari M, Shamsuddin K, Amiri M. Barriers to utilization of health services: perception of postsecondary school Malaysian urban youth. Int J Prev Med. 2014;5(7):805–6. 33. Temel S, Birnie E, Sonneveld HM, Voorham AJJ, Bonsel GJ, Steegers EAP, Denktaş S. Determinants of the intention of preconception care use: lessons from a multi-ethnic urban population in the Netherlands. Int J Pub Health. 2013;58(2):295–304. 34. Chiang C, Labeeb SA, Higuchi M, Mohamed AG, Aoyama A. Barriers to the use of basic health services among women in rural southern Egypt (upper Egypt). Nagoya J Med Sci. 2013;75(3–4):225–31. 35. Scheppers E, van Dongen E, Dekker J, Geertzen J, Dekker J. Potential barriers to the use of health services among ethnic minorities: a review. Fam Pract. 2006;23(3):325–48.
(1)
[1] M. Meinshausen, N. Meinshausen, W. Hare, S.C.B. Raper, K. Frieler, R. Knutti, D.J. Frame and M.Y. Allen, “Greenhouse-gas emission targets for limiting global warming to 2°C,” Nature, vol. 458, pp 1158–1162, April 2009. [2] P.P. Edwards, V.L. Kuznetsov, W.I.F. David and N.P. Brandon, “Hydrogen and fuel cells: Towards a sustainable energy future,” Energy Policy, vol. 36, pp. 4356–4362, December 2008. [3] P.D. Vaidya and A.E. Rodrigues, “Insight into steam reforming of ethanol to produce hydrogen for fuel cells,” Chem. Eng. J., vol. 117, pp. 39–49, March 2006. [4] H. Barton, “The reversed fortunes of sago and rice, Oryza sativa, in the rainforests of Sarawak, Borneo,” Quaternary Int., vol. 249, pp. 96–104, February 2012. [5] D.S. Awg-Adeni, S. Abd-Aziz, K. Bujang and M.A. Hassan, “Bioconversion of sago residue into value added products,” Afr. J. Biotechnol., vol. 9, pp. 2016–2021, November 2009. [6] T. Jafary, W.R.W. Daud, M. Ghasemi, B.H. Kim, J. Md Jahim, M. Ismail, and S.S. Lim, “Biocathode in microbial electrolysis cell; Present status and future prospects,” Renewable and Sustainable Energy Rev., vol. 47, pp. 23–33, July 2015. [7] N. Wrana, R. Sparling, N. Cicek and D.B. Levin, “Hydrogen gas production in a microbial electrolysis cell by electrohydrogenesis,” J. Cleaner Prod., vol. 18, pp. S105–S111, December 2010. [8] B.E. Logan, D. Call, S. Cheng, H.V.M. Hamelers, T.H.J. Sleutels, A.W. Jeremiasse and R.A. Rozendal, “Microbial electrolysis cells for high yield hydrogen gas production from organic matter,” Environ. Sci. Technol., vol. 42, pp. 8630–8640, October 2008. [9] M. Zhou, H. Wang, D.J. Hassett and T. Gu, (2013) “Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts,” J. Chem. Technol. Biotechnol., vol. 88, pp. 508–518, November 2012. [10] L. Lu and Z.J. Ren, “Microbial electrolysis cells for waste biorefinery: A state of the art review,” Bioresour. Technol., vol. 215, pp. 254–264, September 2016. [11] V. Gadhamshetty, A. Sukumaran, N. Nirmalakhandan and M. Thein Myint, “Photofermentation of malate for biohydrogen production - A modeling approach,” Int. J. Hydrogen Energy, vol. 33, pp. 2138–2146, May 2008. [12] Y. Azwar, A.K. Abdul-Wahab and M.A. Hussain, (2013). “Optimal production of biohydrogen gas via microbial electrolysis cells (mec) in a controlled batch reactor system,” Chem. Eng. Trans., vol. 32, pp. 727–732, January 2013. [13] R.P. Pinto, B. Srinivasan, S.R. Guiot and B. Tartakovsky B, 2011, “The Effect of Real-Time External Resistance Optimization on Microbial Fuel Cell Performance,” Water Res., vol. 45, pp. 1571-1578, February 2011.
(1)
[1] M. Potthast, J. Kiesel, K. Reinartz, J. Bevendorff and B. Stein, " A Stylometric inquiry into hyperpartisan and fake news," in 56th Annual Meeting of the Association for Computational Linguistics (ACL 2018), 2018. [2] J. Kiesel, M. Mestre, R. Shukla, E. Vincent, P. Adineh, D. Corney, B. Stein and M. Potthast, "SemEval2019 task 4: Hyperpartisan news detection," in The 13th International Workshop on Semantic Evaluation (SemEval 2019), 2019. [3] J. Devlin, M. W. Chang, K. Lee and K. Toutanova, "BERT: Pretraining of deep bidirectional transformers for Language Understanding," in arXiv e-prints, 2018. [4] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee and L. Zettlemoyer, "Deep contextualized word representations," in arXiv:1802.05365, 2018. [5] N. Lee, C. S. Wu and P. Fung, "Improving large-scale fact-checking using decomposable attention models and lexical tagging," in 2018 Conference on Empirical Methods in Natural Language Processing, 2018. [6] W. Y. Wang, " " liar, liar pants on fire”: A new benchmark dataset for fake news detection.," in arXiv preprint arXiv:1705.00648, 2017. [7] V. Kulkarni, J. Ye, S. Skiena and W. Y. Wang, "Multi-view models for political ideology detection of news articles," in 2018 Conference on Empirical Methods in Natural Language Processing, 2018. [8] Y. Kim, "Convolutional neural networks for sentence classification," in 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014. [9] A. Grover and J. Leskovec, "Node2vec: Scalable feature learning for networks," in 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, 2016. [10] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola and E. Hovy, "Hierarchical attention networks for document classification," in Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, California, 2016. [11] S. Kwon, M. Cha, K. Jung, W. Chen and Y. Wang, "Prominent features of rumor propagation in online social media," IEEE 13th International Conference on Data Mining (ICDM), pp. 1103-1108, 2013. [12] X. Zhou, J. Cao, Z. Jin, F. Xie, Y. Su, J. Zhang, D. Chu and X. Cao, "Real-time news certification system on Sina Weibo," in Rumors and Deception in Social Media: Detection, Tracking, and Visualization Workshop, Florence, 2015. [13] S. Sun, H. Liu, J. He and X. Du, "Detecting event rumors on Sina Weibo automatically," in Web Technologies and Applications. APWeb 2013. Lecture Notes in Computer Science, vol. 7808, Ishikawa Y., Li J., Wang W., Zhang R., and Zhang W., Eds. Berlin, Heidelberg: Springer, 2013, pp. 120-131. [14] Y. Long, Q. Lu, R. Xiang, M. Li and C. R. Huang, "Fake news detection through multiperspective speaker profiles," in Eighth International Joint Conference on Natural Language Processing, IJCNLP 2017, 2017. [15] B. D. Horne and S. Adali, "This just in: Fake news packs a lot in title, uses simpler, repetitive content in text body, more similar to satire than real news," in arXiv:1703.09398, 2017. [16] Y. Jiang, J. Petrak, X. Song, K. Bontcheva and D. Maynard, "Team Bertha von Suttner at SemEval-2019 Task 4: Hyperpartisan News Detection using ELMo Sentence Representation Convolutional Network," in The 13th International Workshop on Semantic Evaluation, 2019. [17] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So and J. Kang, "BioBERT: A pre-trained biomedical language representation model for biomedical text mining," in arXiv:1901.08746, 2019.
(1)
[1] M. U. Chapra, “Ibn Khaldun’s theory of development: Does it help explain the low performance of the present-day Muslim world?,” J. Socio. Econ., vol. 37, no. 2, pp. 836–863, 2008. [2] F. L. Pryor, “The economic impact of Islam on developing countries,” World Dev., vol. 35, no. 11, pp. 1815–1835, 2007. [3] V. K. Borooah and M. Paldam, “Why is the world short of democracy?: A cross-country analysis of barriers to representative government,” Eur. J. Polit. Econ., vol. 23, no. 3, pp. 582–604, 2007. [4] M. Kriger and Y. Seng, “Leadership with inner meaning: A contingency theory of leadership based on the worldviews of five religions,” Leadersh. Q., vol. 16, no. 5, pp. 771–806, 2005. [5] M. Noland, “Religion and economic performance,” World Dev., vol. 33, no. 8, pp. 1215–1232, 2005. [6] B. Maddox, “Secular and Koranic literacies in South Asia: From colonisation to contemporary practice,” Int. J. Educ. Dev., vol. 27, no. 6, pp. 661–668, 2007. [7] R. M. Amin, S. A. Yusof, and M. A. M. Haneef, “Values, social problems and balanced development in Malaysia,” J. Socio. Econ., vol. 35, no. 1, pp. 151–163, 2006. [8] N. Zainul, F. Osman, and S. H. Mazlan, “E-Commerce from an Islamic perspective,” Electron. Commer. Res. Appl., vol. 3, no. 3, pp. 280–293, 2004. [9] D. A. King, “The sacred geography of Islam,” Math. Des. A Hist. Study, T. Koetsier L. Bergmans, Eds. Elsevier, pp. 163–178, 2005. [10] R. Y. Afifi, “Biomedical research ethics: An Islamic view part II.” Elsevier, 2007. [11] R. R. Hanks, “Dynamics of Islam, identity, and institutional rule in Uzbekistan: Constructing a paradigm for conflict resolution,” Communist Post-Communist Stud., vol. 40, no. 2, pp. 209–221, 2007.
(1)
1. Nanomaterials state of the market Q3 2008: Stealth Success, broad impact. Lux Research, 2008. Lux Research Inc New York. 2. Sargent, J. F., “Nanotechnology: A Policy Primer”, Congressional Research Service, 2016. http://eprints.internano.org/id/eprint/ 2357. 3. Federici, G., Shaw, B. J., and Handy, R. R., “Toxicity of Titanium Dioxide Nanoparticles to Rainbow Trout (Oncorhynchus mykiss): Gill Injury, Oxidative Stress, and Other Physiological Effects”, Aquatic Toxicology, 2007, 84, 415-430. 4. Liu, H., Ma, L., Zhao, J., Liu, J., Yan, J., and Ruan, J., Hong, F., “Biochemical Toxicity of Nano-anatase TiO2 Particles in Mice”, Biological Trace Element Research, 2009, 129 (1-3), 170-180. 5. Nel, A., Xia, T., Madler, L., and Li, N., “Toxic Potential of Materials at the Nanolevel”, Science, 2006, 311(5761), 622-627. 6. Mortensen, L. J., Oberdorster, G., Pentland, A. P., and Delouise, L. A., “In Vivo Skin Penetration of Quantum Dot Nanoparticles in the Murine Model: The effect of UVR”, Nano Letters, 2008, 8 (9), 2779-2787. 7. Piccinno, F., Gottschalk, F., Seeger, S., and Nowack, B., “Industrial production quantities and uses of ten engineered nanomaterials for Europe and the world”, J. Nanopart. Res. 2012, 14, 1109–1120. 8. Handy, R. D., Kammer, F. V. D., Lead, J. R., Hassello ¨v, M., Owen, R., and Crane, M., “The ecotoxicity and chemistry of manufactured nanoparticles”, Ecotoxicology, 2008, 17, 287–314. 9. Nowack, B., “The behavior and effects of nanoparticles in the environment”, Environmental Pollution, 2009, 157, 1063– 1064. 10. Kahru, A., Ivask, A., Kasemets, K., Pollumaa, L., Kurvet, I., Francois, M., and Dubourguier, H-C., “Biotests and biosensors in ecotoxicological risk assessment of field soils polluted with zinc, lead and cadmium”, Environmental Toxicology and Chemistry: An International Journal, 2005, 24(11), 2973-2982. 11. Lock, K., and Janssen, C. R., “Comparative toxicity of zinc salt, zinc powder and zinc oxide to Eisenia, fetida, Enchytraeus albidus and Folsomia candida”, Chemosphere, 2003, 53 (8), 851–856. 12. Piao, F., Yokoyama, K., Ma, N., and Yamauchi, T., “Subacute toxic effects of zinc on various tissues and organs of rats”, Toxicol. Lett. 2003, 145 (1), 28–35. 13. Gottschalk, F., Kost, E., and Nowack, B., “Engineered nanomaterials in water and soils: a risk quantification based on probalistic exposure and effect modelling”, Environ. Toxicol. 2013, Chem. 32(6), 1278-1287. 14. Wang, X. S., Li, Z. Z., and Tao, S. R., “Removal of chromium (VI) from aqueous solution using walnut hull”, Journal of Environmental Management, 2009, 90(2), 721-729. 15. Vijayalakshmi, K., Devi, B. M., Latha, S., Gomathi, T., Sudha, P. N., Venkatesan, J., and Anil, S., “Batch adsorption and desorption studies on the removal of lead (II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads”, International Journal of Biological Macromolecules, 2017, S0141-8130(16) 32016-5. 16. Aslam, M., Rais, S., Alam, M. and Pugazhendi, A. “Adsorption of Hg(II) from Aqueous Solution Using Adulsa (Justicia adhatoda) Leaves Powder: Kinetic and Equilibrium Studies”, Journal of Chemistry, 2013, ArticleID174807,1-11. 17. Wahi, R., Kanakaraju, D., and Yusuf, N. A., “Preliminary Study on Zinc Removal from Aqueous Solution by Sago Wastes”, Global Journal of Environmental Research, 2010, 4 (2), 127-134. 18. Hiroshi, E., Yukio, T., and Dennis, V. J., “Sago Palm: multiple contributions to food security and sustainable livelihoods”, Published by Springer Nature, 2018, 11-13. 19. Amin, N., Sabli, N., Izhar, S., and Yoshida, H., “Sago Wastes and Its Applications”, Pertanika J. Sci. & Technol., 2019, 27(4), 1841-1862. 20. Singhal, R. S., Kennedy, J. F., Gopalakrishnan, S. M., Kaczmarek, A., Knill, C. J., and Akmar, P. F., “Industrial Production, Processing and Utilization of Sago Palm-derived Products”, Carbohydrate Polymer, 2008, 72: 1-20. 21. Wahi, R., Luqman, C. A., Mohsen, N. M., Ngaini, Z., and Thomas, C. S. Y., “Utilization of esterified sago bark fibre waste for removal of oil from palm oil effluent”, Journal of environmental chemical engineering, 2017, 5, 170-177. 22. Droepenu, E. K., Asare, E. A., “Morphology of green synthesized ZnO nanoparticles using low temperature hydrothermal technique from aqueous Carica papaya extract”, Nanoscience and Nanotechnology, 2019, 9 (1), 29-36. 23. Droepenu, E. K., Boon, S. W., Chin, S. F., Kuan, Y. K., Zaini, B. A., and Asare, E. A., “Comparative evaluation of antibacterial efficacy of biological synthesis of ZnO nanoparticles using fresh leaf extract and fresh stem bark of Carica papaya”, Nano Biomed. Eng. 2019, 11 (3), 264-271. 24. Droepenu, E. K., Asare, E. A., Dampare, S. B., Adotey, D. K., Gyampoh, A. O., and Kumi-Arhin, E., “Laboratory and Commercial Synthesized Zinc Oxide Nanoparticles Adsorption onto Coconut Husk: Characterization, Isotherm, Kinetic, and Thermodynamic Studies”, Biointerface Research in Applied Chemistry, 2021, 11(1), 7871-7889. 25. Zhou, M., Wei, Z., Qiao, H., Zhu, L., Yang, H., and Xia, T., “Particle size and pore structure characterization of silver nanoparticles prepared by confined arc plasma”, J. Nanomater, 2009, 1-5. http://doi:10.1155/2009/968058. 26. Langmuir, I., “The constitution and fundamental properties of solids and liquids”, J. Am. Chem. Soc., 1916, 38(11), 2221-2295. 27. Webber, T. W., and Chakkravorti, R. K., “Pore and solid diffusion models for fixed bed adsorbers”, AIChE J. 1974, 20, 228-238. 28. Freundlich, H. M. F., “Over the adsorption in solution”, J. Phys. Chem., 1906, 57, 385-471. 29. Temkin, M. I., and Pyzhev, V., “Kinetics of ammonia synthesis on promoted iron catalyst”, Acta Phys. Chim., USSR, 1940, 12, 327-356. 30. Akkaya, G., and Ozer, A., “Adsorption of acid red 274 (AR 274) on Dicranella varia: Determination of equilibrium and kinetic model parameters”, Process Biochem, 2005, 40, 3559–3568. 31. Pearce, C. I., Lloyd, J. R., and Guthrie, J. T., “The removal of colour from textile wastewater using whole bacterial cells: A review”, Dyes Pigments, 2003, 58, 179–196. 32. Lakshmipathy, R., and Sarada, N. C., “Methylene blue adsorption onto native watermelon rind: batch and fixed bed column studies”, Desalin. Water. Treat. 2016, 57(23), 10632-45. 33. Zareie, C., Najafpoura, G., and Baei, M. S., “Preparation of nanochitosan as an effective sorbent for the removal of copper ions from aqueous solutions”, IJE Transac. B: Appl. 2013, 26, 829-836. 34. Rao, M. M., Ready, D. D. K. K., Venkateswarl, P., and Seshaiah, K., “Removal of mercury from aqueous solution using activated carbon prepared from agriculture by-product/waste”, J. Environmental Management, 2008, 90(1):634-643. 35. Lim, T. T., and Huang, X., “Evaluation of hydrophobicity/oleophilicity of kapok and its performance in oily water filtration: comparison of raw and solvent-treated fibers”, Ind. Crops Prod., 2007, 26, 125–134. 36. Tserki, V., Zafeiropoulos, N. E., Simon, F., and Panayiotou, C., “A study on the effect of acetylation and propionylation surface treatments on natural fibers”, Compos. A: Appl. Sci. Manuf. 2005, 36, 1110–1118. 37. Adebajo, M. O., and Frost, R. L., “Infra-red and 13-C MAS nuclear magnetic resonance spectroscopic study of acetylation of cotton”, Spectrochim. Acta A, 2004, 60, 449–453. 38. Banerjee, M., Basu, R.K., and Das, S.K., “Cr(VI) adsorption by a green adsorbent walnut shell: adsorption studies, regeneration studies, scale-up design and economic feasibility”, Process Safety and Environment Protection, 2018, 116, 693-702. 39. Kanthasamy, S., Hadibarata, T., Hidayat, T., Alamri, S. A., and Al-Ghamdi, A. A., “Adsorption of azo and anthraquinone dye by using watermelon peel powder and corn peel powder: equilibrium and kinetic studies”, Biointerface Research in Applied Chemistry, 2020, 10(1), 4706 – 4713. 40. Malik, R., Ramteke, D., and Wate, S.R., 2006 “Physico-chemical and surface characterization of adsorbent prepared from groundnut shell by ZnCl2 activation and its ability to absorb colour”. Indian Journal of Chemical Technology, 13(4), 319-328. 41. Zhang, X., and Wang, X., “Adsorption and Desorption of Nickel (II) Ions from Aqueous Solution by a Lignocellulose/ Montmorillonite Nanocomposite”, PLoS ONE, 2015, 10(2), 1-21. 42. Makeswari, M., Santhi, T., Aswini, P. K., “Adsorption of nickel ions by using binary metal oxides from aqueous solution”, Int. J. Adv. Res., 2016, 4, 542-553. 43. Putra, W. P., Kamari, A., Yusoff, S. N. M., Ishak, C. F., Mohamed, A., Hashim, N., and Isa, I.Md., “Biosorption of Cu(II), Pb(II) and Zn(II) ions from aqueous solutions using selected waste materials: Adsorption and characterisation studies”, J. Encapsul. Adsorp. Sci., 2014, 4, 25-35. 44. Bhatti, H. N., Mumtaz, B., Muhammad, A. H., and Nadeem, R., “Removal of Zn (II) ions from aqueous solution using Moringa oleifera Lam (Horseradish Tree) biomass”, Process Biochemistry, 2007, 42: 547-553. 45. Velintine, V. A., Wee, B. S., Chin, S. F., and Kok, K. Y., “Transformation of zinc oxide nanoparticles under environmentally relevant conditions: influence of pH and ionic strength”, Transactions on Science and Technology, 2017, 4(2), 123-136. 46. Piplai, T., Kumar, A., and Alappat, B. J., “Removal of mixture of ZnO and CuO nanoparticles (NPs) from water using activated carbon in batch kinetic studies”, Water Science & Technology, 2017, 75.4, 1-21. 47. Chandrasekaran, T., Arunkumar, A., and RiazAhamed, K., “Removal of Pb (II) ions from aqueous solutions using activated carbon prepared from plant Glycosmis mauritiana”, J. Chem. Pharm. Res. 2016, 8, 704-711. 48. Al-Jariri, J. S., and Khalili, F., “Adsorption of Zn(II), Pb(II), Cr(III) and Mn(II) from water by Jordanian Bentonite”, Desalin. Water. Treat., 2012, 21, 308-322. 49. Reddy, D., Seshaiah, K., Reddy, A. V. R., and Lee, S. M., “Optimization of Cd(II), Cu(II) and Ni(II) biosorption by chemically modified Moringa oleifera leaves powder”, Carbohydr. Polym., 2010, 88, 1077-1086. 50. Harikumar, P. S., and Anisha Aravind, B. P., “Heavy metal removal from waste water using Copper alumina Nanocomposite”, Int. J. Innov. Appl. Res., 2016, 4, 35- 44. 51. Abdel-Ghani, N. T., Hefny, M., and El- Chaghaby, G. A. F., “Removal of lead from aqueous solution using low cost abundantly available adsorbents”, Int. J. Environ. Sci. Tech., 2007, 4(1), 67–73. 52. Bishnoi, N. R., “Biosorption of Cu (II) from aqueous solution using algal biomass”, J. Sci. Ind. Res., 2004, 63, 813–816. 53. Gong, R., Ding, Y., Liu, H., Chen, Q., and Liu, Z., “Lead biosorption and desorption by intact and pretreated spirulina maxima biomass”, Chemosphere, 2005, 58 (1), 125–30. 54. Saifuddin, N., and Raziah, A. Z., “Removal of heavy metals from industrial effluent using Saccharomyces cerevisiae (Baker’s yeast) immobilized in chitosan / lignosulphonate matrix”, Journal of Applied Science Research, 2007, 3, 2091–2099. 55. Aydin, H., Bulut, Y., and Yerlikaya, C., “Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents”, J. Environmental Management, 2008, 87, 37-5. 56. Akar, S. T., Ozcan, A. S., Akar, T., Ozcan, A., and Kaynak, Z., “Biosorption of a reactive textile dye from aqueous solutions utilizing an agrowaste”, Desalination, 2009, 249(2), 757–761. 57. Srivastava, V. C., Mall, I. D., and Mishra, I. M., “Characterization of mesoporous rice husk ash (RHA) and adsorption kinetics of metal ions from aqueous solution onto RHA”, J. Hazard. Mater. B, 2006, 134, 257. 58. Deepa, C. N., and Suresha, S., “Biosorption of Ni(II) in aqueous solution and industrial wastewater by leaves of Araucaria cookie”, Int. J. Res. Chem. Environ., 2014, 4, 101- 108. 59. Lakherwal, D., Rattan, V. K., and Singh, H. P., “Studies on adsorption of nickel by activated carbon in a liquid fluidised bed reactor”, Canadian. Chem. Trans., 2016, 4, 121-132. 60. Zhang, P., Ding, W., Zhang, Y., Dai, K., and Liu, W., “Heavy metal ions removal from water using modified zeolite”, J. Chem. Pharm. Res., 2014, 6, 507-514. 61. Ozer, A., and Ozer, D., “Comparative study of the biosorption of Pb (II), Ni (II) and Cr (VI) ions onto S. cerevisiae: determination of biosorption heats”, J. Hazard Mater., 2003, 100, 219–229. 62. Rajakovic-Ognjanovic, V., Aleksic, G., and Rajakovic, Lj., “Governing factors for motor oil removal from water with different sorption materials”, J. Hazard. Mater., 2007, 154(1-3), 558-563. 63. Kumar, D., Pandey, K., and Gaur, P., “Evaluation of various isotherm models, and metal sorption potential of cyanobacterial mats in single and multi-metal systems”, Colloids and Surfaces B: Journal of Biointerfaces, 2010, 81(2), 476-485. 64. Quek, S. Y., Wase, D. A. J., and Forster, C. F., “The use of sago waste for the sorption of lead and copper”, Water Sa., 1998, 24(3), 251-256. 65. Wahi, R., Luqman, C. A., Mohsen, N. M., Ngaini, Z., and Thomas, C. S. Y., “Utilization of esterified sago bark fibre waste for removal of oil from palm oil mill effluent”, Journal of Environmental Chemical Engineering, 2016, 5, 170–177. 66. Maheswari, P., Venilamani, N., Madhavakrishnan, S., Shabudeen, P. S. S., Venckatesh, R., and Pattabhi, S., “Utilization of Sago Waste as an Adsorbent for the Removal of Cu(II) Ion from Aqueous Solution”, E-Journal of Chemistry, 2008, 5(2), 233-242. 67. Wahi, R., Kanakaraju, D., and Yusuf, N. A., “Preliminary Study on Zinc Removal from Aqueous Solution by Sago Wastes”. Global Journal of Environmental Research 4 (2): 127-134, 2010.
(1)
1. P. Kotler, D.H. Haider, and I. Rein, Marketing places: Attracting investment, industry, and tourism to cities, states, and nations, The Free Press, New York (1993). 2. R. Sharpley, Tourism Management, 23, 233–244 (2002). 3. A. Liu, Tourism Management, 27, 5, 878-89 (2006). 4. Y. Ekinci, and S. Hosany, Journal of Travel Research, 45, 127-139 (2006). 5. L. Murphy, G. Moscardo,and P. Benckendorff, Journal of Travel Research, 46, 5-14 (2007). 6. K.M. Garren, Rethinking the marketing of rural destinations: a comprehensive model and case study of Gunnison County, Colorado, Bachelor thesis, Regis University, Colorado, US (2012). 7. S. Choi, X.Y. Lehto, and A.M. Morrison, Tourism Management, 28, 1, 118-129 (2007). 8. N. Greaves, and H. Skinner, Marketing Intelligence & Planning, 28, 4, 486-507 (2010). 9. S. Aubrey, Digital transformation of state economy crucial for its people – Abang Johari. Borneo Post Online (2017, May 1). 10. S.T. Siew, A.W. Yeo, J.C.L. Phoa, M.C. Lo, N. Kulathuramaiyer, and V.Nair, in Proceedings of International Conference on Tourism Development: Building the Future of Tourism, Edited M. Badaruddin and A. Bahauddin, Sustainable Tourism Research Cluster, Universiti Sains Malaysia, Penang, Malaysia (2013), (pp. 323-331). 11. S. Falak, M.C.Lo, and A.W. Yeo, Tourism, 64, 3, 311-327 (2016). 12. C. Richards, and A. Yeo, The Journal of Governance and Development, 10, 121-139 (2014). 13. T. Zaman, Smart Villages: New thinking for off-grid villages worldwide (2016, September 15). 14. M.A. Bonn, H.L. Furr, and A.M. Susskind, Journal of Hospitality & Tourism Research, 22, 3, 303-317 (1998). 15. B. Bai, C. Hu, J. Elsworth, and C. Countryman, Journal of Travel & Tourism Marketing, 17, 2/3, 79-91 (2004). 16. M. Luo, R. Feng, and L.A. Cai, Journal of Travel & Tourism Marketing, 17, 2/3, 15-25 (2004). 17. H. El-Gohary, Tourism Management, 33, 5, 1256-1269 (2012). 18. H. El-Gohary and R. Eid, Tourism Analysis, 17, 523-532 (2012). 19. M.A. Abou-Shouk, W.M. Lim, and P. Megicks, Tourism Management, 52, 327-339 (2016). 20. S. Yiamjanya, Journal of Economics, Business and Management, 4, 1, 40-46 (2016). 21. Z. Andreopoulou, G. Tsekouropoulos, C. Koliouska, and T. Koutroumanidis, International Journal of Business Information Systems, 16, 4, 446-461 (2014). 22. S. Duffy, Paper presented at Tourism and Hospitality Research in Ireland Conference, Shannon College of Hotel Management Ireland (2010, June). 23. S. Reino, A.J. Frew, and C. Albacete‐Sáez, Journal of Hospitality and Tourism Technology, 2, 1, 66-80 (2011). 24. T. Nkosana, J. Skinner, and C. Goodier, African Journal of Hospitality, Tourism and Leisure, 5, 4, 1-11 (2016). 25. W. Cheah, A.B. Masli, and E. Mit, in Proceedings of 2013 International Conference on Informatics and Creative Multimedia, Kuala Lumpur, Malaysia (2013), (pp. 282-287). 26. W.S. Cheah, A. Abdul Halin, A., M. Lu, and G.W. Chee, The Electronic Journal of Information Systems in Developing Countries, 75, 5, 1-22 (2016). 27. Z. Guo, and L. Sun, Tourism Management, 56, 52-62 (2016). 28. J. Gao, and B. Wu, Tourism Management, 63, 223-233 (2017). 29. L. Zhou, E. Chan, and H. Song, Tourism Management, 63, 338-350 (2017). 30. M. Patton, Qualitative Research and Evaluation Methods (3rd ed.), Sage Publications, Thousand Oaks (2002). 31. G. Jengan, Personal interview (2017, February 7).
(1)
[1] Pradhan, S. K., and Subudhi, B., “Nonlinear Adaptive Model Predictive Controller for a Flexible Manipulator: An Experimental Study,” IEEE Transaction on Control System Technology, 22(5), pp,1754–1768, 2014. [2] Sasaki, M., Asai, A., Shimizu, T., and Ito, S., “Self-Tuning Control of a Two-Link Flexible Manipulator using Neural Networks,” In ICROSSICE International Joint Conference, pp.2468–2473, 2009. [3] Pereira, E., Trapero, J. R., Díaz, I. M. and Feliu, V., “Adaptive input shaping for manoeuvring flexible structures using an algebraic identification technique,” Control Engineering Practice, 20, pp.138–147. 2009. [4] Becedas, J., Trapero, J. R., Feliu, V., and Sira-Ramirez, H., “Adaptive controller for single-link flexible manipulators based on algebraic identification and generalized proportional integral control,” IEEE Transactions on Systems, Man, and Cybernetics Society, 39(3), pp.735– 51, 2009. [5] Mute, D., Ghosh, S., and Subudhi, B., “Iterative Learning Control of a SingleLink Flexible Manipulator Based on an Identified Adaptive NARX Model,” InAnnual IEEE Indian Conference, 2013. [6] Zain, B.A., Tokhi, M.O. and Toha, S.F., “PID-based control of a singlelink flexible manipulator in vertical motion with genetic optimisation,” In 2009 3rd European Symposium on Computer Modelling and Simulation, pp.355–360, 2009. [7] Zhang, L., and Liu, S., “Basis Function Based Adaptive Iterative Learning Control for Non-Minimum Phase Systems,” In World Congress on Intelligent Control and Automation, pp.828–833, 2014. [8] Jain, S., and Garg, M., “Identification and Iterative Learning Control of Piezoelectric Actuator Based Nano-positioning System,” International Journal of Advance in Engineering Sciences, 3(3), pp.88–93, 2013. [9] Wang, Y., Chien, C., and Chuang, C., “Adaptive iterative learning control of robotic systems using back-stepping design,” Transaction of Canadian Society for Mechanical Engineering, 37(3), pp.591–601, 2012. [10] Al-Mola, M., Mailah, M., Muhaimin, A. H., Abdullah, M. Y. and Samin, P. M., “Fuzzy-based PID with iterative learning active force controller for an anti-lock brake system,” International Journal of Simulation: Systems, Science and Technology, 13(3 A), pp. 35–41, 2012. [11] Shaharuddin, N. M. R., and Mat Darus, I. Z., “Active Vibration Control of Marine Riser. In Conference on Control,” Systems and Industrial Informatics, pp. 114–119, 2012. [12] Pitowarno, E., and Mailah, M. “Robust Motion Control for Mobile Manipulator Using Resolved Acceleration and Proportional-Integral Active Force Control,” International Review of Mechanical Engineering, 1(5), pp. 549–558, 2007. [13] Jamali, A., Darus, I. Z., Mat Samin, P. P., Mohd; Tokhi, M. O., “Intelligent modeling of double link flexible robotic manipulator using artificial neural network.,” Journal of Vibroengineering, Vol. 20 Issue 2, pp.1021-1034, Mar 2018. [14] Saad, M. S., “Evolutionary optimization and real-time self-tuning active vibration control of a flexible beam system,” Ph.D. thesis, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 2014.
(1)
[1] Proakis, J. G. (2001). Digital Communications, 4th ed. New York: McGraw-Hill. [2] Chen, D., & Laneman, J. N. (2004). Noncoherent demodulation for cooperative diversity in wireless systems. In Global Telecommunications Conference, 2004. IEEE on (pp. 31–35). IEEE. [3] Pabst, R., Walke, B. H., Schultz, D. C., Herhold, P., Yanikomeroglu, H., Mukherjee, S., Viswanathan, H., Lott, M., Zirwas, W., Dohler, M., Aghvami, H., Falconer, D. D., & Fettweis, G. P. (2004). Relay-based deployment concepts for wireless and mobile broadband radio. IEEE Communication Magazine, 42(9), 80–89. [4] Xu, C., Ternon, E., Suguira, S., Ng, S. X., & Hanzo, L. (2011). Multiple-symbol differential sphere decoding aided cooperative differential space-time spreading for the asynchronous CDMA uplink. In Global Telecommunications Conference, 2011 on (pp. 1–5). IEEE. [5] Nosratinia, A., Hunter, T. E., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communication Magazine, 42(10), 74–80. [6] Laneman, J. N., Wornell, G. W., & Tse, D. N. C. (2001). An efficient protocol for realizing cooperative diversity in wireless networks. In Information Theory, 2001. Proceedings. 2001 IEEE International Symposium on (pp. 294). IEEE. [7] Yang, Y., Hu, H., Xu, J., & Mao, G. (2009). Relay technologies for WiMAX and LTE-advanced mobile systems. IEEE Commnications Magazine, 47(10), 100–105. [8] Laneman, J. N., & Wornell, G. W. (2003). Distributed space – time-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transaction Information Theory, 49(10), 2415–2425. [9] Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transaction Information Theory, 50(12), 3062–3080. [10] Farhadi, G., & Beaulieu, N. C. (2010). A low complexity receiver for noncoherent amplify-and-forward cooperative systems. IEEE Transaction Communication, 58(9), 2499–2504. [11] Chen, D., & Laneman, J. N. (2006). Modulation and demodulation for cooperative diversity in wireless systems. IEEE Transaction Wireless Communication, 5(7), 1785–1794. [12] Himsoon, T., Su, W., & Liu, K. R. (2005). Differential transmission for amplify-and-forward cooperative communications. IEEE signal processing letters, 12(9), 597–600. [13] Wu, Y., & Patzold, M. (2009). Performance analysis of cooperative communication systems with imperfect channel estimation. In Communications, 2009 IEEE International Conference on (pp. 1–6). IEEE. [14] Han, S., Ahn, S., Oh, E., & Hong, D. (2009). Effect of channel-estimation error on BER performance in cooperative transmission. IEEE Transactions on Vehicular Technology, 58(4), 2083–2088. [15] Tarokh V., & Jafarkhani, H. (2000). A differential detection scheme for transmit diversity. IEEE Journal on Selected Areas in Communications, 18(7), 1169–1174. [16] Zhao, Q., & Li, H. (2005). Performance of differential modulation with wireless relays in Rayleigh fading channels. IEEE Communications Letters, 9(4), 343–345. [17] Fang, Z., Li, L., Bao, X., & Wang, Z. (2009). Generalized differential modulation for amplify-and-forward wireless relay networks. IEEE Transactions on Vehicular Technology, 58(6), 3058–3062. [18] Liu, P., Gazor, S., Kim, I.-M., & Kim, D. I. (2013). Noncoherent amplify-and-forward cooperative networks: robust detection and performance analysis. IEEE Transactions on Communications, 61(9), 3644–3659. [19] Liu, P., Kim, I. M., & Gazor, S. (2013). Maximum-likelihood detector for differential amplify-and-forward cooperative networks. IEEE Transactions on Vehicular Technology, 62(8), 4097–4104. [20] Liu, Z., Giannakis, G. B., & Hughes, B. L. (2001). Double differential space – time block coding for time-selective fading channels. IEEE Transactions on Communications, 49(9), 1529–1539. [21] Liu, J., Stoica, P., Simon, M., & Li, J. (2006). Single differential modulation and detection for MPSK in the presence of unknown frequency offset. In Signals, Systems and Computers, 2006 Fortieth Asilomar Conference on (pp. 1440–1444). IEEE. [22] Stoica, P., Liu, J. L. J., & Li, J. L. J. (2003). Maximum likelihood double differential detection clarified. IEEE Transactions on Information Theory, 50(3), 572–576. [23] Rabiei, A. M., & Beaulieu, N. C. (2011). Frequency offset invariant multiple symbol differential detection of MPSK. IEEE Transactions on Communications, 59(3), 652–657. [24] Cano, A., Morgado, E., Caama, A., & Ramos, F. J. (2007). Distributed double-differential modulation for cooperative communications under CFO. In Global Telecommunications Conference, 2007 IEEE Conference on (pp. 3437–3441). IEEE. [25] Simon, M. K., & Divsalar, D. (1992). On the implementation and performance of single and double differential detection schemes. IEEE Transactions on Communications, 40(2), 278–291. [26] Bhatnagar, M. R., & Hjørungnes, A. (2007). SER expressions for double differential modulation. In Information Theory for Wireless Networks, 2007 IEEE Information Theory Workshop on (pp. 1–5). IEEE. [27] Gao, Z., Sun, L., Wang, Y., & Liao, X. (2014). Double differential transmission for amplify-and-forward two-way relay systems. IEEE Communications Letters, 18(10), 1839–1842. [28] Gomadam, K. S. and Jafar, S. A. (2006). Impact of mobility on cooperative communication. In Wireless Communications and Networking Conference, 2006 (pp. 908–913). IEEE. [29] Tian, J., Zhang, Q., & Yu, F. (2011). Non-coherent detection for two-way AF cooperative communications in fast rayleigh fading channels. IEEE Transactions on Communications, 59(10), 2753–2762. [30] Lampe. L., Schober R., Pauli, V., & Windpassinger, C. (2005). Multiple-symbol differential sphere decoding. IEEE Transactions on Communications, 53(12), 1981–1985. [31] Ong, S., Zen, H., Othman, A.K., Hamid, K. (2017). Multiple symbol double differential transmission for amplify-and-forward cooperative diversity networks in time-varying channel. Journal of Telecommunication Electronic and Computer Engineering, 9(4), 27–35. [32] Ong, S., Zen, H., Othman, A.K., Hamid, K. (2018). Distributed double differential space-time coding with amplify-and-forward relaying in cooperative communication system. Journal of Telecommunication Electronic and Computer Engineering, 10(1–12), 45–50. [33] Tse, D. & Viswanath, P. (2005). Fundamentals of Wireless Communication. Cambridge University Press. [34] Hadzi-Velkov, Z., Zlatanov, N., & Karagiannidis, G. (2009). On the second order statistics of the multihop rayleigh fading channel. IEEE Transactions on Communications, 57(6), 1815–1823. [35] Wu, Z., Li, G., & Wang, T. (2014). Differential modulation for amplify-and-forward two-way relaying with carrier offsets. In Communications, 2014 IEEE International Conference on (pp. 4501–4506). IEEE. [36] Liao, J., Wang, F., Yao, D., & Wang, M. (2014). Which is better : one-way or two-way relaying with an amplify-and-forward relay? In Wireless Communications and Networking Conference 2014 on (pp. 1087–1092). IEEE. [37] Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space-time codes for high data rate wireless communication: performance analysis and code construction. IEEE Transaction on Information Theory, 44(2), 765–774. [38] Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas Communications, 16(8), 1451–1458. [39] Yiu, S., Schober, R., & Lampe, L. (2005). Distributed space-time block coding for cooperative networks with multiple-antenna nodes. In Computational Advances in Multi-Sensor Adaptive Processing, 2005 1st IEEE International Workshop on (pp. 52–55). IEEE. [40] Brennan, D. G. (2003). Linear diversity combining techniques. Proceedings of the IRE, 47(6), 1075–1102. [41] Van Der Meulen, R. C. (1971). Three-terminal communication channels. Advances in Applied Probability, 3(1), 120–154. [42] Cover, T. & Gamal, A. E. (1979). Capacity theorems for the relay channel. IEEE Transactions on Information Theory, 25(5), 572–584. [43] Schein, B. (2000). The Gaussian parallel relay network. In Information Theory, 2000 Proceedings. IEEE International Symposium on (pp. 22). IEEE. [44] Gupta P., & Kumar, P. (2003). Towards an information theory of large networks: An achievable rate region. IEEE Transactions on Information Theory, 49(8), 1877–1894. [45] Khojastepour, M. A., Sabharwal, A., & Aazhang, B. (2004). Improved achievable rates for user cooperation and relay channels. In Information Theory, 2004 Proceedings. International Symposium on (pp. 4). IEEE. [46] Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity. Part I: System description. IEEE Transactions on communications, 51(11), 1927–1938. [47] Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity – Part II: Implementation aspects and performance analysis. IEEE Transaction of Communications, 51(11), 1939–1948. [48] Nabar, R. U., Bolcskei, H., & Kneubuhler, F. W. (2004). Fading relay channels: Performance limits and space-time signal design. IEEE Journal on Selected Areas in Communications, 22(6), 1099–1109. [49] Annavajjala, R., Cosman, P. C., & Milstein, L. B. (2005). On the performance of optimum noncoherent amplify-and-forward reception for cooperative diversity. In Military Communications Conference, 2005 on (pp. 3280–3288). IEEE. [50] El-Hajjar, M., & Hanzo, L. (2010). Dispensing with channel estimation... IEEE Vehicular Technology Magazine, 5(2), 42–48. [51] Tarasak, P., Minn, H., & Bhargava, V. K. (2005). Differential modulation for two-user cooperative diversity systems. IEEE journal on Selected Areas in Communications, 23(9), 1891–1900. [52] Zhao, Q., & Li, H. (2007). Differential modulation for cooperative wireless systems. IEEE Transactions on Signal Processing, 55(5), 2273–2283. [53] Himsoon, T., Siriwongpairat, W. P., Su, W., & Liu, K. J. R. (2008). Differential modulations for multinode cooperative communications. IEEE Transactions on Signal Processing, 56(7), 2941–2956. [54] Hasna, M. O., & Alouini, M. S. (2002). Performance analysis of two-hop relayed transmissions over Rayleigh fading channels. In Vehicular Technology Conference, 2002 IEEE 56th on (pp. 1992–1996). IEEE. [55] Divsalar, D., & Simon, M. K. (1990). Multiple-symbol differential detection of MPSK. IEEE Transactions of Communications, 38(3), 300–308. [56] Ho, P., & Fung, D. (1991). Error performance of multiple symbol differential detection of PSK signals transmitted over correlated rayleigh fading channels. In Communications, 1991. IEEE International Conference on (pp. 568–574). IEEE. [57] Pauli, V., & Lampe, L. (2007). Tree-search multiple-symbol differential decoding for initary space-time modulation. IEEE transactioncs on communications, 55(8), 1567–1576. [58] Zhao, K., Pan, K., & Zhang, B. (2014). Cooperative transmission in mobile wireless sensor networks with multiple carrier frequency offsets : A double-differential approach. Mathematical Problems in Engineering, 2014, 1–13. [59] Yi, N., Ma, Y., & Tafazolli, R. (2008). Doubly differential communication assisted with cooperative relay. In Vehicular Technology Conference, 2008 on (pp. 644–647). IEEE. [60] Mehrpouyan, H., & Blostein, S. D., (2011). Bounds and algorithms for multiple frequency offset estimation in cooperative networks. IEEE Transactions on Wireless Communications, 10(4), 1300–1311. [61] Liu, T., & Zhu, S. (2012). Joint CFO and channel estimation for asynchronous cooperative communication systems. IEEE Signal Processing Letters, 19(10), 643–646. [62] Liu, M., Zhang, J., Shen, C., & Zhang, P. (2013). Estimation of synchronization impairments in multi-relay DF cooperative networks. The Journal of China Universities of Posts and Telecommunication, 20(6), 18–23. [63] Bhatnagar, M. R., & Tirkkonen, O. (2013). PL decoding in double differential modulation based decode-and-forward cooperative system. IEEE Communications Letters, 17(5), 860–863. [64] Nasir, A. A., Mehrpouyan, H., Durrani, S., Blostein, S. D., Kennedy, R. A., & Ottersten, B. (2013). Transceiver design for distributed STBC based AF cooperative networks in the presence of timing and frequency offsets. IEEE Transactions on Signal Processing, 61(12), 3143–3158. [65] Cano, A., Morgado, E., Ramos, J., & Caamaño, A. J. (2014). Robust differential modulations for asynchronous cooperative systems. Signal Processing, 105, 30–42. [66] Bhatnagar, M. R., Hjrongnes, A., & Song, L. (2008). Cooperative communications over flat fading channels with carrier offsets: A double-differential modulation approach. European Association for Signal Processing Journal on Advances in Signal Processing, 2008(1), 1–11. [67] Bhatnagar, M. R., Hjørungnes, A., Song, L., & Bose, R. (2008). Double-differential decode-and-forward cooperative communications over Nakagami-m channels with carrier offsets. In Sarnoff Symposium, 2008 IEEE on (pp. 1–5). IEEE. [68] Wilson, S. G., Freebersyen, J., & Marchsall, C. (1989). Multi-symbol detection of M-DPSK. In Global Telecommunications Conference and Exhibition 'Communications Technology for the 1990s and Beyond’, 1989. IEEE on (pp. 1692–1697). IEEE. [69] Makrakis, D., & Feher, K. (1990). Optimal noncoherent detection of PSK signals. Electronics Letters, 26(6), 398–400. [70] Divsalar, D., & Simon, M. K. (1994). Maximum-likelihood differential detection of uncoded and trellis coded amplitude phase modulation over AWGN and fading channels: Metrics and performance. IEEE Transactions on Communications, 42(1), 76–89. [71] Machkenthun, K. M. (1994). A fast algorithm for multiple-symbol differential detection of MPSK. IEEE Transactions on Communications, 42(234), 1471–1474. [72] Peleg, M., & Shamai, S. (1997). Iterative decoding of coded and interleaved noncoherent multiple symbol detected DPSK. Electronics Letters, 33(12), 1018–1020. [73] Pauli, V., Lampe, L., & Schober, R. (2006). "Turbo DPSK" using soft multiple-symbol differential sphere decoding,” IEEE Transactions on Information Theory, 52(4), 1385–1398. [74] Xiaofu, W., & Songgeng, S. (1998). Low complexity multi symbol differential detection of MDPSK over flat correlated rayleigh fading channels. Electronics Letters, 34(21), 2008–2009. [75] Tarasak, P., & Bhargava, V. K. (2002). Reduced complexity multiple symbol differential detection of space-time block code. In Wireless Communications and Networking Conference, 2002 on (pp. 505–509). IEEE. [76] Nie, Y., Shen, Y., & Guo, M. (2012). A new reduced-complexity algorithm for multiple-symbol differential detection of m-ary DDPSK. In Communication Technology, 2012 IEEE 14th International Conference on (pp. 756–760). IEEE. [77] Wang, L., & Hanzo, L. (2009). The amplify-and-forward cooperative uplink using multiple-symbol differential sphere-detection. IEEE Signal Processing Letters, 16(10), 913–916. [78] Simon, M., Liu, J., Stoica, P., & and Li, J. (2004). Multiple-symbol double-differential detection based on least-squares and generalized-likelihood ratio criteria. IEEE Transactions on Communications, 52(1), 46–49. [79] Dimitrijevi, B. R., Stošovi, S. N., Member, S., Miloševi, N. D. & Nikoli, Z. B. (2012). MDPSK signal reception using a modified multiple symbol differential detection in the presence of carrier frequency offset. In Telecommunications Forum, 2012 on (pp. 456–459). IEEE. [80] Hughes, B. L. (2000). Differential space-time modulation. IEEE Transactions on Information Theory, 46(7), 2567–2578. [81] Shao, X., & Yuan, J. (2002). A new differential space time block coding scheme, In Communication Systems, 2002. The 8th International Conference on (pp. 183–187). IEEE. [82] Gao, C., Haimovich, A. M., & Lao, D. (2006). Multiple-symbol differential detection for MPSK space-time block codes: decision metric and performance analysis. IEEE Transactions on Communications, 54(8), 1502–1510. [83] Jing, Y., & Hassibi, B. (2006). Distributed space-time coding in wireless relay networks. IEEE Transactions on Wireless Communications, 5(12), 3524–3526. [84] Kiran, T., & Rajan, B. S. (2006). Distributed space-time codes with reduced decoding complexity. In Information Theory, 2006 IEEE International Symposium on (pp. 542–546). IEEE. [85] Azarian, K., El Gamal, H., & Schniter, P. (2005). On the achievable diversity-multiplexing tradeoff in half-duplex cooperative channels. IEEE Transaction on Information Theory, 51(12), 4152–4172. [86] Rajan G. S., & Rajan, B. S. (2007). Distributed space-time codes for cooperative networks with partial CSI. Wireless Communications and Networking Conference, 2007 IEEE on (pp. 902–906). IEEE. [87] Kiran, T., & Rajan, B. S. (2007). Partially-coherent distributed space-time codes with differential encoder and decoder. IEEE Journal on Selected Areas in Communications, 25(2), 426–433. [88] Jing, Y., & Jafarkhani, H. (2008). Distributed differential space-time coding for wireless relay networks. IEEE Transactions on Communications, 56(7), 1092–1100. [89] Rajan, G. S., & Rajan, B. S. (2010). Multigroup ML decodable collocated and distributed space time block codes. IEEE Transactions on Information Theory, 56(7), 3221–3247. [90] Hua, Y., Mei, Y., & Chang, Y. (2003). Wireless antennas-making wireless communications perform like wireline communications. In Wireless Communication Technology, 2003. IEEE Topical Conference on (pp. 47–73). IEEE. [91] Bhatnagar, M. R., & Hjorungnes, A. (2008). Distributed double-differential orthogonal space-time coding for cooperative networks. In Global Telecommunications Conference, 2008 IEEE on (pp. 1–5). IEEE. [92] Anghel, P. A., Leus, G., & Kaveh, M. (2003). Multi-user space-time coding in cooperative networks. In Acoustics, Speech, and Signal Processing, 2003. Proceedings, 2003 IEEE International Conference on (pp. 70–73). IEEE. [93] Bhatnagar, M. R., Hjørungnes, A., & Member, S. (2010). Double-differential orthogonal space-time block codes for arbitrarily correlated rayleigh channels with carrier offsets. IEEE Transactions on Wireless Communications, 9(1), 145–155. [94] Patel, C. S., Stuber, G. L., & Pratt, T. G. (2005). Simulation of rayleigh-faded mobile-to-mobile communication channels. IEEE Transactions on Communications, 53(11), 1876–1884. [95] Pätzold, M., Hogstad, B., & Youssef, N. (2008). Modeling, analysis, and simulation of MIMO mobile-to-mobile fading channels. IEEE Transactions on Wireless Communications, 7(2), 510–520. [96] Jakes, W. C. (1994). Microwave Mobile Communications. Piscataway, NJ, USA: Wiley-IEEE Press. [97] Emamian, V., Anghel P., and Kaveh, M. (2002). Multi-user spatial diversity in a shadow-fading environment. In Vehicular Technology Conference, 2002 Proceedings. IEEE 56th on (pp. 573–576). IEEE. [98] Hasna, M. O., & Alouini, M. S. (2003). End-to-end performance of transmission systems with relays over Rayleigh-fading channels. IEEE Transactions on Wireless Communications, 2(6), 1126–1131. [99] Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of Integrals, Series, and Products, 6th ed. San Diego: Academic Press. [100] Brychkov, Y. A., & Prudnikov, A. P. (2001). Whittaker function. Hazewnkel, Michiel, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4. [101] Ding, Y., Zhang, J. K., & Wong, K. M. (2007). The amplify-and-forward half-duplex cooperative system: Pairwise error probability and precoder design. IEEE Transactions on Signal Processing, 55(2), 605–617. [102] Craig, J. W. (1991). A new, simple and exact result for calculating the probability of error for two-dimensional signal constellations. In Military Communications Conference, 1991. Conference Record, Military Communications in a Changing World, IEEE (pp. 571–575) IEEE. [103] Zhao, Y., Adve, R., & Lim, T. J. (2006). Improving amplify-and-forward relay networks: Optimal power allocation versus selection. In Information Theory, 2006 IEEE International Symposium on (pp. 1234–1238). IEEE. [104] Wang, L., & Hanzo, L. (2009). The resource-optimized differentially modulated hybrid AF/DF cooperative cellular uplink using multiple-symbol differential sphere detection. IEEE Signal Processing Letters, 16(11), 965–968. [105] Gomadam, K. S., & Jafar, S. A. (2006). Partially coherent detection in rapidly time varying channels. In Wireless Communications and Networking Conference, 2006. (pp. 2127–2132). IEEE. [106] Hasna, M. O., & Alouini, M. S. (2004). Optimal power allocation for relayed transmissions over rayleigh fading channels. IEEE Transactions on Wireless Communications, 3(6), 1999–2004. [107] Zhang, K. Q. T., (2015). Wireless Communications: Principles, Theory and Methodology. USA: John Wiley & Sons, Ltd. [108] Simon, M. K., & Aluini, M. S. (2005). Digital Communications Over Fading Channels, 2nd edition. Hoboken, NJ, USA: John Wiley & Sons. [109] Ikki, S. S., & Ahmed, M. H. (2008). Performance of multiple-relay cooperative diversity systems with best relay selection over rayleigh fading channels. European Association for Signal Processing Journal on Advances in Signal Process, 2008(1), 1–7. [110] Fu, H., & Kam, P. Y. (2005). Performance comparison of selection combining schemes for binary DPSK on nonselective rayleigh-fading channels with interference. IEEE Transactions on Wireless Communications, 4(1), 192–201. [111] Draper, S. C., Liu, L., Molisch, A. F., & Yedidia, J. S. (2011). Cooperative transmission for wireless networks using mutual-information accumulation. IEEE Transactions on Information Theory, 57(8), 5151–5162. [112] Souryal, M. R. (2010). Non-coherent amplify-and-forward generalized likelihood ratio test receiver. IEEE Transactions on Wireless Communications, 9(7), 2320–2327.
(1)
1. Pusat Kebudayaan Universiti Malaya. 2. Institut Seni Indonesia Padangpanjang, Sumatra Barat, Indonesia. 3. Universitas Negeri Padang, Sumatra Barat, Indonesia.
(1)
[1] R. D. P. Wong, J. D. Posner, and V. J. Santos, "Flexible microfluidic normal force sensor skin for tactile feedback," Sensors and Actuators A: Physical, vol. 179, pp. 62-69, 2012. [2] C. Pang et al., "A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres," Nature Materials, vol. 11, no. 9, p. 795, 2012. [3] F. C. Cabrera et al., "Natural-rubber-based flexible microfluidic device," Rsc Advances, vol. 4, no. 67, p. 35467-35475, 2014. [4] K. Tamrin et al., "Experiment and prediction of ablation depth in excimer laser micromachining of optical polymer waveguides," Advances in Materials Science and Engineering, 2018. [5] M. Harizam et al., "Effect of process parameters on the laser joining of stainless steel with three-dimensional (3-D) printed polymer sheet," Lasers in Engineering, vol. 41, 2018. [6] K. F. Tamrin, S. Zakariyah, and N. Sheikh, "Multi-criteria optimization in CO2 laser ablation of multimode polymer waveguides," Optics and Lasers in Engineering, vol. 75, pp. 48-56, 2015. [7] R. Suriano et al., "Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels," Applied Surface Science, vol. 257, no. 14, pp. 6243-6250, 2011. [8] D. Teixidor et al., "Effect of process parameters in nanosecond pulsed laser micromachining of PMMA-based microchannels at near-infrared and ultraviolet wavelengths," The International Journal of Advanced Manufacturing Technology, vol. 67, no. 5-8, pp. 1651-1664, 2013. [9] R. Rahimi et al., "Highly stretchable potentiometric pH sensor fabricated via laser carbonization and machining of carbon−polyaniline composite," ACS applied Materials & Interfaces, vol. 9, no. 10, pp. 9015-9023, 2017. [10] Y. Liao et al., "Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing," Lab on a Chip, vol. 12, no. 4, pp. 746-749, 2012. [11] A. A. Ibrahim and M. F. Hassan, "Study the mechanical properties of epoxy resin reinforced with silica (quartz) and alumina particles," Iraqi Journal of Mechanical and Material Engineering, vol. 11, no. 3, pp. 486-506, 2011. [12] K. F. Tamrin et al., "Multiple-objective optimization in precision laser cutting of different thermoplastics," Optics and Lasers in Engineering, vol. 67, pp. 57-65, 2015. [13] K. Tamrin and A. Zahrim, "Determination of optimum polymeric coagulant in palm oil mill effluent coagulation using multiple-objective optimisation on the basis of ratio analysis (MOORA)," Environmental Science and Pollution Research, vol. 24, no. 19, pp. 15863-15869, 2017. [14] N. W. Galwey, Introduction to Mixed Modelling: Beyond Regression and Analysis of Variance, John Wiley & Sons, 2014.
(1)
[1] R. Medjoudj, H. Bediaf, and D. Aissani, “Power System Reliability: Mathematical Models and Applications,” in System Reliability, London: IntechOpen, 2017. DOI: 10.5772/intechopen.71926 [2] J. Collins and N. Ali, “10 Ways to Increase Power System Availability in Data Centers Strategies for ensuring clean, continuous power to essential IT systems,” EATON Powering Business Worldwide, 2013. [3] A. M. Al-Shaalan, “Reliability Evaluation of Power Systems,” in System Reliability, London: IntechOpen, 2019. [4] M. Ram, Modeling and Simulation Based Analysis in Reliability Engineering. Boca Raton: CRC Press, 2019. [5] H. Eteruddin, A. A. Mohd Zin, and B. Belyamin, “Line Differential Protection Modeling with Composite Current and Voltage Signal Comparison Method,” TELKOMNIKA, vol. 12, no. 1, March 2014. DOI: 10.12928/TELKOMNIKA.v12i1.1966 [6] M. Kezunovic, “Fundamentals of power system protection,” in The Electrical Engineering Handbook, London: Elsevier, 2005, pp. 787–803. [7] P. Dehghanian, B. Wang, and M. Tasdighi, “New Protection Schemes in Smarter Power Grids with Higher Penetration of Renewable Energy Systems,” Pathways to a Smarter Power System, Elsevier, pp. 317–342, 2019. DOI: 10.1016/B978-0-08-102592-5.00011-9 [8] C. Lins, L. E. Williamson, S. Leitner, and S. Teske, “The First Decade: 2004-2014: 10 years of Renewable Energy Progress,” Renewable Energy Policy Network for 21st Century, vol. 20, pp. 1-48, 2014. [9] S. C. Capareda, Introduction to Renewable Energy Conversions. CRC Press, 2019. [10] A. Zervos and R. Adib, Renewables 2019 Global Status Report, Paris, 2019. [11] P. Simamora, E. Mursanti, J. Giwangkara, D. Arinaldo, A. P. Tampubolon, and J. C. Adiatma, Igniting a Rapid Deployment of Renewable Energy in Indonesia: Lessons Learned from Three Countries, Jakarta, May 2019. [12] D. Arisaktiwardhana and I. Akbar, “Reducing Economic Disparity in the Outermost and Border Regions: Assessing Barriers and Opportunities in the Electricity Sector,” in The 3rd International Conference on Energy, Environmental and Information System (ICENIS 2018), 2018, vol. 73, p. 1001. DOI: 10.1051/e3sconf/20187301001 [13] I. Akbar, “Understanding the Partnership Landscape for Renewable Energy Development in Indonesia,” Jurnal Universitas Paramadina, vol. 14, pp. 1549–1562, 2017. [14] M. Vaqueiro-Contreras et al., “Identification of the mechanism responsible for the boron oxygen light induced degradation in silicon photovoltaic cells,” Journal of Applied Physic, vol. 125, no. 18, p. 185704, May 2019. DOI: 10.1063/1.5091759 [15] X. Li, S. Zhang, Y. Guo, F. Wang, and Q. Wang, “Physical Properties and Photovoltaic Application of Semiconducting Pd2Se3 Monolayer,” Nanomaterials, vol. 8, no. 10, p. 832, October 2018. DOI: 10.3390/nano8100832 [16] A. M. Bagher, M. M. A. Vahid, and M. Mohsen, “Types of Solar Cells and Application,” American Journal of Optics and Photonics, vol. 3, no. 5, pp. 94-113, August 2015. DOI: 10.11648/j.ajop.20150305.17 [17] B. W. Huang, J. G. Tseng, and D. R. Hsiao, “Sun Intensity and Angle on Efficiency of Solar Cell System,” Applied Mechanics and Material, vol. 627, pp. 182–186, September 2014. DOI: 10.4028/www.scientific.net/AMM.627.182 [18] K. Soga and H. Akasaka, “Influences of Solar Incident Angle on Power Generation Efficiency of PV Modules under Field Conditions,” Journal of Asian Architecture and Building Engineering, vol. 2, no. 2, pp. 43–48, 2003. DOI: 10.3130/jaabe/2/b43 [19] V. J. Fesharaki, M. Dehghani, J. J. Fesharaki, and H. Tavasoli, “The Effect of Temperature on Photovoltaic Cell Efficiency,” in the 1st International Conference on Emerging Trends in Energy Conservation - ETEC, November 2011, pp. 1–6. [20] S. Dubey, J. N. Sarvaiya, and B. Seshadri, “Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World – A Review,” Energy Procedia, vol. 33, pp. 311–321, 2013. DOI: 10.1016/j.egypro.2013.05.072 [21] Z. Hua, C. Ma, J. Lian, X. Pang, and W. Yang, “Optimal Capacity Allocation of Multiple Solar Trackers and Storage Capacity for Utility-scale Photovoltaic Plants Considering Output Characteristics and Complementary Demand,” Applied Energy, vol. 238, pp. 721–733, March 2019. DOI: 10.1016/j.apenergy.2019.01.099 [22] I. H. Rosma, I. M. Putra, D. Y. Sukma, E. Safrianti, A. A. Zakri, and A. Abdulkarim, “Analysis of Single Axis Sun Tracker System to Increase Solar Photovoltaic Energy Production in the Tropics,” in 2nd International Conference on Electrical Engineering and Informatics (ICon EEI): Toward the Most Efficient Way of Making and Dealing with Future Electrical Power System and Big Data Analysis, Batam, Indonesia, October 2018, pp. 183–186. DOI: 10.1109/Icon-EEI.2018.8784311 [23] T. Zheng, F. Zheng, X. Rui, X. Ji, and K. Niu, “A Novel Ultralight Dish System Based on a Three-Extensible-Rod Solar Tracker,” Solar Energy, vol. 193, pp. 335–359, November 2019. DOI: 10.1016/j.solener.2019.09.026 [24] Z. Hua, C. Ma, M. Ma, L. Bin, and X. Pang, “Operation Characteristics of Multiple Solar Trackers Under Typical Weather Conditions in a Large-Scale Photovoltaic Base,” Energy Procedia, vol. 158, pp. 6242–6247, February 2019. DOI: 10.1016/j.egypro.2019.01.463 [25] P. Singh and N. M. Ravindra, “Temperature Dependence of Solar Cell Performance - An analysis Solar Energy Materials & Solar Cells Temperature Dependence of Solar Cell Performance — an Analysis,” Solar Energy Material and Solar Cells, vol. 101, pp. 36–45, June 2012. DOI: 10.1016/j.solmat.2012.02.019 [26] S. Chander, A. Purohit, A. Sharma, S. P. Nehra, and M. S. Dhaka, “Impact of Temperature on Performance of Series and Parallel Connected Mono-Crystalline Silicon Solar Cells,” Energy Reports, vol. 1, pp. 175–180, November 2015. DOI: 10.1016/j.egyr.2015.09.001 [27] Krismadinata, N. A. Rahim, H. W. Ping, and J. Selvaraj, “Photovoltaic Module Modeling using Simulink/Matlab,” Procedia Environmental Sciences, vol. 17, pp. 537–546, 2013. DOI: 10.1016/j.proenv.2013.02.069 [28] M. S. Hossain, N. K. Roy, and M. O. Ali, “Modeling of Solar Photovoltaic System using Matlab/Simulink,” in 19th International Conference on Computer and Information Technology (ICCIT), Dhaka, India, 2016, pp. 128–133. DOI: 10.1109/ICCTECHN.2016.7860182 [29] A. A. Zakri, N. Nurhalim, D. P. H. Simanulang, and I. Tribowo, “Photovoltaic Modeling Methods Based on Matlab Simulink Implementation,” SINERGI, vol. 22, no. 1, p. 1-6, February 2018. DOI: 10.22441/sinergi.2018.1.001 [30] SNI 04-6392-2000, Cell and Secondary Battery for Individual Photovoltaic Electrical Power Generation – General Requirement and Testing Method. 2000. [31] A. Sudradjat, “Indonesian Effort to Better Quality of Solar Home System,” in Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, New Orleans, LA, US, 2002, pp. 1489–1492. DOI: 10.1109/PVSC.2002.1190892 [32] A. S. Dasuki and M. Djamin, “Fifty Mega Watt Peak (50 MWp) Photovoltaic Rural Electrification in Indonesia,” in IEEE Photovoltaic Specialists Conference Photovoltaic Energy Conversion, Waikoloa, HI, 1994, pp. 2379–2382, vol. 2. DOI: 10.1109/WCPEC.1994.521704
(1)
[1] R. O. Kellems, G. Cacciatore, and K. Osborne, “Using an Augmented Reality–Based Teaching Strategy to Teach Mathematics to Secondary Students With Disabilities,” Career Dev. Transit. Except. Individ., vol. 42, no. 4, pp. 253–258, 2019. [2] W. Chao, C. Yang and R. Chang, "A Study of the Interactive Mathematics Mobile Application Development," 2018 1st IEEE International Conference on Knowledge Innovation and Invention (ICKII), 2018, pp. 248-249. doi: 10.1109/IC KII.2018.8569126. [3] R. H. A. Rahim, A. Baharum, and H. Hijazi, “Evaluation on effectiveness of learning linear algebra using gamification,” Indones. J. Electr. Eng. Comput. Sci., vol. 17, no. 2, pp. 997–1004, 2019. [4] A. Baharum et al., “Mobile learning application: Flipped classroom,” Indones. J. Electr. Eng. Comput. Sci., vol. 17, no. 2, pp. 1084–1090, 2020. [5] J. M. Namkung, L. S. Fuchs, and N. Koziol, “Does initial learning about the meaning of fractions present similar challenges for students with and without adequate whole-number skill?,” Learn. Individ. Differ., vol. 61, pp. 151–157, 2018. [6] P. J. McFeetors and K. Palfy, “Educative experiences in a games context: Supporting emerging reasoning in elementary school mathematics,” J. Math. Behav., vol. 50, pp. 103–125, 2018. [7] E. L. Zippert, E. N. Daubert, N. R. Scalise, G. D. Noreen, and G. B. Ramani, “Tap space number three’: Promoting math talk during parent-child tablet play,” Dev. Psychol., vol. 55, no. 8, pp. 1605–1614, 2019. [8] B. Taspinar, W. Schmidt, and H. Schuhbauer, “Gamification in education: A board game approach to knowledge acquisition,” Procedia Comput. Sci., vol. 99, pp. 101–116, 2016. [9] P. S. Moyer-Packenham et al., “How design features in digital math games support learning and mathematics connections,” Comput. Human Behav., vol. 91, pp. 316–332, 2019. [10] G. B. Ramani and N. R. Scalise, “It’s more than just fun and games: Play-based mathematics activities for Head Start families,” Early Child. Res. Q., vol. 50, pp. 78–89, 2020. [11] D. Vlachopoulos and A. Makri, “The effect of games and simulations on higher education: a systematic literature review,” Int. J. Educ. Technol. High. Educ., vol. 14, pp. 1-23, 2017. [12] F. A. Pritami and I. Muhimmah, “Digital game based learning using augmented reality for math ematics learning,” ACM Int. Conf. Proceeding Ser., pp. 254–258, 2018. [13] S. M. M. de Mooij, et al., “Should online math learning environments be tailored to individuals’ cognitive profiles?,” J. Exp. Child Psychol., vol. 191, p. 1-15, 2020. [14] M. R. Novriani and E. Surya, “Analysis of student difficulties in mathematics problem solving ability at MTs SWASTA IRA Medan,” Int. J. Sci. Basic Appl. Res., vol. 33, no. 3, pp. 63-75, 2017. [15] Ann Dowker, “Chapter Seven-Interventions for Primary School Children With Difficulties in Mathematics,” in Advances in Child Development and Behavior, vol. 53, pp. 255–287, 2017. [16] K. Awang, et al., “The usability analysis of using augmented reality for linus students,” Indones. J. Electr. Eng. Comput. Sci., vol. 13, no. 1, pp. 58–64, 2019. [17] F. Fisher, J. Warner, and N. Mickelson, “Cardboard Cities, Real Mathematics: Employing Quantitative Literacy to Study Gentrification in NYC,” Primus, vol. 29, no. 9, pp. 908–927, 2019. [18] R. A. Majid and J. C. Hasim, “The effectiveness of frog VLE implementation: Students’ perspective,” Indones. J. Electr. Eng. Comput. Sci., vol. 14, no. 1, pp. 381–387, 2019. [19] K. Tabassum, “Using wireless and mobile technologies to enhance teaching and learning strategies,” Indones. J. Electr. Eng. Comput. Sci., vol. 17, no. 3, pp. 1555–1561, 2020. [20] M. Gasah, A. Baharum, and N. H. M. Zain, “Measure learning effectiveness among children using EEG device and mobile application,” Indones. J. Electr. Eng. Comput. Sci., vol. 17, no. 1, pp. 191–196, 2019. [21] L. P. Madrid and F. Lorenzi, “Mathboard: An intelligent object for use in educational activities,” Acta Sci., vol. 21, no. 3, pp. 59–74, 2019. [22] S. H. Lee and D. H. Song, “Functional usability analysis of top korean mobile role playing games based on user interface design,” Indones. J. Electr. Eng. Comput. Sci., vol. 13, no. 1, pp. 123–128, 2019. [23] M. R. Bin Husin, H. Bin Ahmad, and M. Bin Hamzah, “Video application to accommodate students’ learning style for moral education in teacher education institutes,” Indones. J. Electr. Eng. Comput. Sci., vol. 16, no. 1, pp. 349–354, 2019. [24] D. Połap, K. Kęsik, A. Winnicka, and M. Woźniak, “Strengthening the perception of the virtual worlds in a virtual reality environment,” ISA Trans., vol. 102, pp. 397-406, 2020. [25] K. Schenke, et al., “Does ‘Measure Up!’ measure up? Evaluation of an iPad app to teach preschoolers measurement concepts,” Comput. Educ., vol. 146, 2020.
(1)
1. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N,et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract. 2019;157:107843. 2. World Health Organization. Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: report of a World Health Organization/International Diabetes Federation consultation. Geneva: World Health Organization; 2006. 3. Aronoff SL, Berkowitz K, Shreiner B, Want L. Glucose metabolism and regulation: beyond insulin and glucagon. Diabetes Spectrum. 2004;17(3):183–90. 4. Thomas D, Elliott EJ. Low glycaemic index, or low glycaemic load, diets for diabetes mellitus. Cochrane Database Syst Rev. 2009;1:CD006296. 5. Marsh K, Barclay A, Colagiuri S, Brand-Miller J. Glycemic index and glycemic load of carbohydrates in the diabetes diet. Curr Diab Rep. 2011;11(2):120–7. 6. Jenkins DJ, Kendall CW, Augustin LS, Franceschi S, Hamidi M, Marchie A, et al. Glycemic index: overview of implications in health and disease. Am J Clin Nutr. 2002;76(1):266S–73S. 7. Bin Y, Danping Z, Jingting S, Mun WC, Philip C, Shao QL, et al. Characteristics of calamansi (Citrus microcarpa). Part 2: volatiles, physicochemical properties and non-volatiles in the juice. Food Chem. 2012;134(2):696–703. 8. Morte MYT, Acero LH. Potential of calamansi (Citrofortunella microcarpa) fruit peels extract in lowering the glucose level of streptozotocin induced albino rats (Rattus albus). Int J Food Eng. 2017;1(3):29–34. 9. Abu-gabal NS, Abd-alla HI, Mohamed NZ, Aly HF, Shalaby NMM. Phytophenolics composition, hypolipidemic, hypoglycemic, and antioxidant effects of the leaves of Fortunella japonica (Thunb.) Swingle. Int J Pharm Pharm Sci. 2015;7(12):55–63. 10. Tee ES, Yap RWK. Type 2 diabetes mellitus in Malaysia: current trends and risk factors. Eur J Clin Nutr. 2017;71(7):844–9. 11. Carbohydrates in human nutrition. Report of a Joint Food and Agriculture Organization/World Health Organisation Expert Consultation. Rome; 1998. Report No.: 0254-4725 (Print) 0254-4725 (Linking). 12. Azmi MY Jr, Junidah R, Siti Mariam A, Safiah MY, Fatimah S, Norimah AK, et al. Body mass index (BMI) of adults: findings of the Malaysian Adult Nutrition Survey (MANS). Malays J Nutr. 2009;15(2):97–119. 13. World Health Organisation. Waist circumference and waist–hip ratio: report of a WHO expert consultation. Geneva: World Health Organisation;2008. 14. MoH Malaysia. Section 2: screening and diagnosis. 5th ed. Malaysia: Ministry of Health Malaysia; 2015. p. 3–7. 15. Passos TU, Alves H, Sampaio DC, Olganê M, Sabry D, Luisa M, et al. Glycemic index and glycemic load of tropical fruits and the potential risk for chronic diseases. Food Sci Technol Int. 2015;35(1):66–73. 16. Robert SD, Ismail AA, Winn T, Wolever TM. Glycemic index of common Malaysian fruits. Asia Pac J Clin Nutr. 2008;17(1):35–9. 17. Ludwig DS. The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA. 2002;287(18):2414–23. 18. Jenkins DJ, Wolever TM, Taylor RH, Ghafari H, Jenkins AL, Barker H, et al. Rate of digestion of foods and postprandial glycaemia in normal and diabetic subjects. Br Med J. 1980;281(6232):14–7. 19. Zafar MI, Mills KE, Zheng J, Regmi A, Hu SQ, Gou L, et al. Low-glycemic index diets as an intervention for diabetes: a systematic review and metaanalysis. Am J Clin Nutr. 2019;110(4):891–902. 20. Delport E. A comparison of the glycemic index (GI) results obtained from two techniques on a group of healthy and a group of mixed subjects. Pretoria: University Van Pretoria; 2006. 21. Muller M, Canfora EE, Blaak EE. Gastrointestinal transit time, glucose homeostasis and metabolic health: modulation by dietary fibers. Nutrients. 2018;10(3):275. 22. Foster-Powell K, Holt SH, Brand-Miller JC. International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr. 2002;76(1):5–56. 23. Lou S-N, Hsu Y-S, Ho C-T. Flavonoid compositions and antioxidant activity of calamondin extracts prepared using different solvents. J Food Drug Anal. 2014;22(3):290–5. 24. Lim SM, Loh SP. In vitro antioxidant capacities and antidiabetic properties of phenolic extracts from selected citrus peels. Int Food Res J. 2016;23(1):211–9. 25. Cherbut C. Role of gastrointestinal motility in the delay of absorption by dietary fibre. Eur J Clin Nutr. 1995;49(Suppl 3):S74–80.
(1)
[1] Sidi, J., Fa, L. W., & Junaini, S. N. (2009). Simulatio of Traffic Congestion at the Tourist Attraction Spot of Kuching Waterfront, Sarawak. 2009 International Conference on Computer Technology and Development. doi:10.1109/icctd.2009.225 [2] Sidi, J., Fa, L. W., & Junaini, S. N. (2009). Shortest Path Simulation Using Interactive SVG Map. 2009 International Conference on Computer Technology and Development. doi:10.1109/icctd.2009.204 [3] "JomParking® - A quick and convenient way to pay for parking", Web.jomparking.com, 2019. [Online]. Available: https://web.jomparking.com/. [Accessed: 30-Oct- 2019]. [4] "Julia Ali: Cara Bayar Kupon Parking di Melaka (MBMB dan MPHTJ)", Julia Ali, 2019. [Online]. Available: https://juliaali.blogspot.com/2019/05/cara-bayar-kupon-parking-dimelaka-mbmb.html. [Accessed: 30- Oct- 2019]. [5] O. NATHAN, "Scratch-and-display parking system in Subang Jaya met with mixed reactions", The Star Online, 2019. [Online]. Retrieve 25 October 2019 from https://www.thestar.com.my/metro/focus/2015/02/05/coupons-makea-comeback-scratchanddisplay-parking-system-in-subang-jaya-metwith-mixed-reactions.
(1)
[1] Stimper K, Ackerman G, Ehrler J, Scheibe, K. “Transient overvoltages in low-voltage systems-A field study in Germany”, IEEE Electrical Insulation Magazine, 1998, vol. 14, pp.15–22, April 1998. [2] Standler, R.B. “Transients on the mains in a residential environment, ”IEEE Transactions on Electromagnetic Compatibility, vol. 31. pp. 170–176, February 1989. [3] S.B Smith and R. B. Standler, “The effects of surges on electronic appliances,” IEEE Transactions on Power Delivery, vol. 7, Issue 3, pp. 1275–1282, July 1992. [4] Lightning and surge protection, http://www.msystem.co.jp/mssenglish/service/emmrester.pdf [5] Henry W. Ott, Henry Ott Consultants, Electromagnetic Compatibility Engineering. EMC notebook. 2009. [6] Lightning and surge protection, http://www.msystem.co.jp/mssenglish/service/emmrester.pdf [7] K. Ermeler, W. Pfeiffer, D. Schoen and M. Schocke, “Surge immunity of electronic equipment”. IEEE Electrical Insulation Magazine, vol. 16, pp. 12–16, February 2000. [8] IEC 61000-4-5:2005, Electromagnetic compatibility (EMC)-Part 4-5:Testing and measurement techniques - Surge immunity test.
(1)
[1] Tamrin, K. F., Zakariyah, S., & Sheikh, N. A. (2015). Multi-criteria optimization in CO2 laser ablation of multimode polymer waveguides. Optics and Lasers in Engineering, 75, 48-56. [2] Tamrin, K. F., Zakariyah, S., Hossain, K., & Sheikh, N. A. (2018). Experiment and prediction of ablation depth in excimer laser micromachining of optical polymer waveguides. Advances in Materials Science and Engineering, 2018, 9. [3] Tamrin, K., Sheikh, N., Ridzuan, M., & Nadirah, A. (2018). Multiple-Objective Optimization Techniques in Laser Joining of Dissimilar Materials Classes: A Comparison between Grey and Ratio Analyses. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 10(1-12), 13-18. [4] Rao, S., Sethi, A., Das, A. K., Mandal, N., Kiran, P., Ghosh, R., Dixit, A., & Mandal, A. (2017). Fiber laser cutting of CFRP composites and process optimization through response surface methodology. Materials and Manufacturing Processes, 32(14), 1612-1621. [5] Ali, A. H. & Bidin, N. (2009). Study of Laser-Induced Plasma Using Two Focusing Techniques. Journal of Science and Technology, 1(1). [6] Kononenko, T., Freitag, C., Komlenok, M., Weber, R., Graf, T., & Konov, V. (2018). Heat accumulation between scans during multi-pass cutting of carbon fiber reinforced plastics. Applied Physics A, 124(2), 217. [7] Hu, J. & Zhu, D. (2018). Experimental study on the picosecond pulsed laser cutting of carbon fiber- reinforced plastics. Journal of Reinforced Plastics and Composites, 37(15), 993-1003. [8] Hejjaji, A., Singh, D., Kubher, S., Kalyanasundaram, D., & Gururaja, S. (2016). Machining damage in FRPs: Laser versus conventional drilling. Composites Part A: Applied Science and Manufacturing, 82, 42-52. [9] Sapuan, S., Tamrin, K., Nukman, Y., El-Shekeil, Y., Hussin, M., & Aziz, S. (2016). 1.8 Natural Fiber-Reinforced Composites: Types, Development, Manufacturing Process, and Measurement. Comprehensive Materials Finishing, 203. [10] Tamrin, K., Sheikh, N., & Sapuan, S. (2019). Laser drilling of composite material: A review, in Hole-Making and Drilling Technology for Composites. Elsevier. p. 89-100. [11] Wahab, M., Dalgarno, K., & Cochrane, R. (2009). Development of polymer nanocomposites for rapid manufacturing application. International Journal of Integrated Engineering, 1(1). [12] Huang, H., Yang, L.-M., & Liu, J. (2014). Micro-hole drilling and cutting using femtosecond fiber laser. Optical Engineering, 53(5), 051513. [13] Hof, L. & Abou Ziki, J. (2017). Micro-hole drilling on glass substrates—A review. Micromachines, 8(2), 53. [14] Mishra, S., Sridhara, N., Mitra, A., Yougandar, B., Dash, S. K., Agarwal, S., & Dey, A. (2017). CO2 laser cutting of ultra thin (75 µm) glass based rigid optical solar reflector (OSR) for spacecraft application. Optics and Lasers in Engineering, 90, 128-138. [15] Sen, A., Doloi, B., & Bhattacharyya, B. (2017). Fiber Laser Micro-machining of Engineering Materials, in Non-traditional Micromachining Processes. Springer. p. 227-252. [16] Shumon, M. R. H., Ahmed, S., & Islam, M. T. (2014). Electronic waste: present status and future perspectives of sustainable management practices in Malaysia. Environmental earth sciences, 72(7), 2239-2249. [17] Norhazni, M. S. (2016). Household e-waste management in Malaysia: The existing practice and future direction. institution Household e-waste management in Malaysia: The existing practice and future direction, 8. [18] Goyal, R. & Dubey, A. K. (2016). Modeling and optimization of geometrical characteristics in laser trepan drilling of titanium alloy. Journal of Mechanical Science and Technology, 30(3), 1281-1293. [19] Tamrin, K. F., Nukman, Y., & Sheikh, N. (2015). Laser spot welding of thermoplastic and ceramic: An experimental investigation. Materials and Manufacturing Processes, 30(9), 1138-1145. [20] Mishra, S. & Yadava, V. (2015). Finite Element (FE) Simulation to Investigate the Effect of Sheet Thickness on Hole Taper and Heat Affected Zone (HAZ) During Laser Beam Percussion Drilling of Thin Aluminium Sheet. Lasers in Engineering (Old City Publishing), 30. [21] Herzog, D., Schmidt-Lehr, M., Canisius, M., Oberlander, M., Tasche, J.-P., & Emmelmann, C. (2015). Laser cutting of carbon fiber reinforced plastic using a 30 kW fiber laser. Journal of Laser Applications, 27(S2), S28001. [22] Kononenko, T., Freitag, C., Komlenok, M., Onuseit, V., Weber, R., Graf, T., & Konov, V. (2015). Heat accumulation effects in short-pulse multi-pass cutting of carbon fiber reinforced plastics. Journal of Applied Physics, 118(10), 103105.
(1)
1. Tarlochan, F., & Hamouda, A. M. (2016). A framework for developing innovative problem-solving and creativity skills for engineering undergraduates. In Advances in Engineering Education in the Middle East and North Africa (pp. 161-186). Cham, Switzerland: Springer International Publishing. 2. Voogt, J., & Roblin, N. P. (2012). A comparative analysis of international frameworks for 21st century competences: Implications for national curriculum policies. Journal of curriculum studies, 44(3), 299-321. 3. Griffin, P., & Care, E. (Eds.). (2014). Assessment and teaching of 21st century skills: Methods and approach. London, UK: Springer. 4. Shively, K., Stith, K. M., & Rubenstein, L. D. (2018). Measuring what matters: Assessing creativity, critical thinking, and the design process. Gifted Child Today, 41(3), 149-158. 5. Belski, I., Baglin, J., & Harlim, J. (2013). Teaching TRIZ at university: A longitudinal study. International Journal of Engineering Education, 29, 346-354 6. Chung, C. C., Dzan, W. Y, & Lou, S. J. (2017). Applying TRIZ instructional strategies to vocational students’ imaginative learning and practice. EURASIA Journal of Mathematics, Science and Technology Education, 3(11), 7147-7160 7. Keong, C. S., Yip, M. W., Swee, S.L.N., Toh, G. G., & Tai, S. C. (2017), A review of TRIZ and its beneϐits & challenges in stimulating creativity in problem solving of pre-university students: A TARUC case study. Journal of Advances in Humanities and Social Sciences, 3(5), 247-263. 8. Lou, S. J., Dzan, W. Y., Lee, C. Y., & Chung, C. C. (2014). Learning effectiveness of applying TRIZ-Integrated BOPPPS. International Journal of Engineering Education, 30,(5), 1303–1312. 9. Hala´sz, G., & Michel, A. (2011) Key competences in Europe: implementation, interpretation, policy formulation and implementation. European Journal of Education, 46(3), 289–306. 10. Schleicher, A. (2012). Preparing teachers and developing school leaders for the 21st century: Lessons from around the world. Paris, France: OECD Publishing. 11. Silva, E. (2009). Measuring skills for 21st-century learning. Phi Delta Kappan, 90(9), 630-634. 12. Kivunja, C. (2015). Exploring the Pedagogical Meaning and Implications of the 4Cs" Super Skills" for the 21st Century through Bruner's 5E Lenses of Knowledge Construction to Improve Pedagogies of the New Learning Paradigm. Creative Education, 6, 224-239 13. Rotherham, A. J., & Willingham, D. T. (2010). 21st-century” skills: Not new, but a worthy challenge. American Educator, 17(1), 17-20. 14. Snyder, L. G., & Snyder, M. J. (2008). Teaching critical thinking and problem solving skills. The Journal of Research in Business Education, 50(2), 90. 15. Brookhart, S. M. (2013). How to create and use rubrics for formative assessment and grading. Alexandria, VA: ASCD. 16. Andrade, H. G. (2000). Using rubrics to promote thinking and learning. Educational Leadership, 57(5), 13-19. 17. Hilton, M. (2010). Exploring the intersection of science education and 21st century skills: A workshop summary. Washington, D.C: National Academies Press. 18. Chu S. K. W., Reynolds R. B., Tavares N. J., Notari, M., Lee C. W. Y. (2017). Assessment instruments for twenty-first century skills. In 21st Century Skills Development Through Inquiry- Based Learning. Springer, Singapore. 19. Xu, J. (2011). The application of critical thinking in teaching English reading. Theory and Practice in Language Studies, 1(2), 136-141. 20. Ralston, P. A., Larson, A. E., & Bays, C. L. (2011). An assessment of undergraduate engineering students’ critical thinking skills guided by the Paul-Elder critical thinking framework. INQUIRY: Critical Thinking Across the Disciplines, 26(3), 25-32. 21. Bissell, A. N., & Lemons, P. P. (2006). A new method for assessing critical thinking in the classroom. BioScience, 56(1), 66-72. 22. Sharef, N., Hamdan, H., & Madzin, H. (2014). Innovation-enhanced rubrics assessment for final year projects. Global Journal of Engineering Education, 16(3), 129-135. 23. Rusman, E., & Dirkx, K. (2017). Developing Rubrics to Assess Complex (Generic) Skills in the Classroom: How to Distinguish Skills’ Mastery Levels? Practical Assessment, Research, and Evaluation, 22(1), 12. 24. Rochford, L., & Borchert, P. S. (2011). Assessing higher level learning: Developing rubrics for case analysis. Journal of Education for Business, 86(5), 258-265. 25. Petkov, D., & Petkova, O. (2006). Development of scoring rubrics for IS projects as an assessment tool. Issues in Informing Science & Information Technology, 3, 499–510. 26. Wiggins, G. (1998). Educative assessment designing assessments to inform and improve student performance. San Francisco, CA: Jossey Bass 27. Ministry of Education Malaysia. (2015). Malaysia Education Blueprint 2015-2025 (Higher Education). Putrajaya, Malaysia: Kementerian Pendidikan Malaysia. 28. Baker, M., Rudd, R., & Pomeroy, C. (2001). Relationships between critical and creative thinking. Journal of Southern Agricultural Education Research, 51(1), 173-188. 29. Paul, R., & Elder, L. (2019). A guide for educators to critical thinking competency standards: Standards, principles, performance indicators, and outcomes with a critical thinking master rubric. Rowman & Littlefield. 30. Scriven, M. (1976). Reasoning. New York City, NY: McGraw-Hill. 31. Allen, D., & Tanner, K. (2006). Rubrics: Tools for making learning goals and evaluation criteria explicit for both teachers and learners. CBE—Life Sciences Education, 5(3), 197-203. 32. Stevens, C. D., & Levi, A. J. (2005). Introductions to rubrics: An assessment tool to save grading time, convey effective feedback and promote effective feedback and promote student learning. Sterling, VA: Stylus Publishing. 33. Wilkerson, J. R. (2019). Rubrics meeting quality assurance and improvement needs in the accreditation context. Quality Assurance in Education, 28(1), 19-32. 34. Andrade, H., & Du, Y. (2005). Student perspectives on rubric-referenced assessment. Practical Assessment, Research & Evaluation, 10(3), 1-11. 35. Wechsler, S. M., Saiz, C., Rivas, S. F., Vendramini, C. M. M., Almeida, L. S., Mundim, M. C., & Franco, A. (2018). Creative and critical thinking: Independent or overlapping components? Thinking Skills and Creativity, 27, 114-122. 36. Finn, T., Cennamo, K., Baum, L., & Newbill, P. (2012, March). Creative Collaboration: Transdisciplinary Methods to Enhance Critical and Creative Thinking. In Society for Information Technology & Teacher education International Conference (pp. 2781-2785). Association for the Advancement of Computing in Education (AACE).
(1)
[1] T. Khengwee et al., “A review of sarawak off-grid renewable energy potential and challenges,” J. Telecommun. Electron. Comput. Eng., vol. 9, no. 3–10, pp. 29–33, 2017. [2] User Manual, “LABVIEW user manual, Ed 320999E-01. National Instruments, Austin, Texas, USA, Apr. 2008,” no. 320999, 2008. [3] S. S. Abd Wahid et al., “Evaluation of Residential Grid-Connected Photovoltaic System as the Potential Energy Source in Malaysia,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 14, no. 4, p. 1235, 2016. [4] P. D. Abd. Aziz, S. S. A. Wahid, Y. Z. Arief, and N. Ab. Aziz, “Evaluation of solar energy potential in Malaysia,” Trends Bioinforma., vol. 9, no. 2, pp. 35–43, 2016. [5] M. S. Ismail, M. Moghavvemi, and T. M. . Mahlia, “Techno-economic analysis of an optimized photovoltaic and diesel generator hybrid renewable power system for remote houses in tropical climate,” Energy Convers. Manag., vol. 69, pp. 163–173, 2013. [6] H. Efficiency and M. Perc, “High efficiency mono perc module,” no. 1, 2015. [7] A. . Fallis, “MLU series photovoltaic modules,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2013. [8] O. Power, “SINGLE PHASE STRING,” pp. 0–1. [9] M. Uddin, M. F. Romlie, and M. F. Abdullah, “Feasibility study of grid connected solar home system: The perspective of Malaysia,” IET Conf. Publ., vol. 2016, no. CP688, pp. 2–7, 2016.
(1)
1. Tsigos C, Hainer V, Basdevant A, Finer N, Fried M, Mathus-Vliegen E, et al. Management of obesity in adults: European clinical practice guidelines. Obes Facts. 2008;1(2):106–116. [PMC free article] [PubMed] [Google Scholar] 2. World Health Organization . Obesity and overweight [Internet] Geneva (CH): World Health Organization; 2006. [cited 2009 Nov 15]. Available from: http://www.who.int/mediacentre/factsheets/fs311/en/index.html. [Google Scholar] 3. International Obesity Taskforce . Childhood obesity [Internet] London (GB): International Obesity Taskforce; 2002. [cited 2009 Nov 15]. Available from: http://www.iotf.org/childhoodobesity.asp. [Google Scholar] 4. Centers for Disease Control and Prevention . Overweight and obesity [Internet] Atlanta (GA): Centers for Disease Control and Prevention; 2009. [cited 2009 Nov 15]. Available from: http://www.cdc.gov/obesity/childhood/consequences.html. [Google Scholar] 5. Li AM, Chan D, Wong E, Yin J, Nelson EAS, Fok TF. The effects of obesity on pulmonary function. Arch Dis Child. 2003;88(4):361–363. [PMC free article] [PubMed] [Google Scholar] 6. Lusky A, Barell V, Lubin F, Kaplan G, Layani V, Shohat Z, et al. Relationship between morbidity and extreme values of body mass index in adolescents. Int J Epidemiol. 1996;25(4):829–834. [PubMed] [Google Scholar] 7. Williams LB, Considine RV. Etiology of obesity. In: Gumbiner B, editor. Obesity. Philadelphia (PA): American College of Physicians; 2001. pp. 23–50. [Google Scholar] 8. Bellows B, Roach J. Childhood overweight [Internet] Colorado (US): Colorado State University Extension; 2009. [cited 2009 Oct 30]. Available from: http://www.extcolostate.edu/pubs/foodnut/09317.html. [Google Scholar] 9. Ministry of Health Malaysia . National and Health Morbidity Study III (NHMS III) 2006. Kuala Lumpur (MY): Institute for Public Health, National Institutes of Health, Ministry of Health Malaysia; 2008. [Google Scholar] 10. Proctor MH, Moore LL, Gao D, Cupples LA, Bradlee ML, Hood MY, et al. Television viewing and change in body fat from preschool to early adolescence: The Framingham Children’s Study. Int J Obes Relat Metab Disord. 2003;27(7):827–833. [PubMed] [Google Scholar] 11. Wang Y, Monteiro C, Popkin BM. Trends of obesity and underweight in older children and adolescents in the United States, Brazil, China, and Russia. Am J Clin Nutr. 2002;75(6):971–977. [PubMed] [Google Scholar] 12. Giammattei J, Blix G, Marshak HH, Wollitzer AO, Pettitt DJ. Television watching and soft drink consumption: Associations with obesity in 11- to 13-year-old schoolchildren. Arch Pediatr Adolesc Med [Internet] 2003;157(9):882–886. [cited 2010 Sep 13]; Available from: www.archpediatrics.com. [PubMed] [Google Scholar] 13. Wiecha JL, Peterson KE, Ludwig DS, Kim J, Sobol A, Gortmaker SL. When children eat what they watch: Impact of television viewing on dietary intake in youth. Arch Pediatr Adolesc Med [Internet] 2006;160(4):436–442. [cited 2010 Sep 13]; Available from: www.archpediatrics.com. [PubMed] [Google Scholar] 14. Temple JL, Giacomelli AM, Kent KM, Roemmich JN, Epstein LH. Television watching increases motivated responding for food and energy intake in children. Am J Clin Nutr. 2007;85(2):355–361. [PubMed] [Google Scholar] 15. Saelens BE, Sallis JF, Wilfley DE, Patrick K, Cella JA, Buchta R. Behavioural weight control for overweight adolescents initiated in primary care. Obes Res. 2002;10(1):22–32. [PubMed] [Google Scholar] 16. Eisenmann JC, Bartee RT, Wang MQ. Physical activity, TV viewing, and weight in U.S. youth: 1999 Youth Risk Behaviour Survey. Obes Res. 2002;10(5):379–385. [PubMed] [Google Scholar] 17. Dennison BA, Erb TA, Jenkins PL. Television viewing and television in bedroom associated with overweight risk among low-income preschool children. Pediatrics. 2002;109(6):1028–1035. [PubMed] [Google Scholar] 18. Zalilah MS, Khor GL, Mirnalini K, Norimah AK, Ang M. Dietary intake, physical activity and energy expenditure of Malaysian adolescents. Singapore Med J. 2006;47(6):491–498. [PubMed] [Google Scholar] 19. Khor GL, Zalilah MS, Phan YY, Ang M, Maznah B, Norimah AK. Perceptions of body image among Malaysian male and female adolescents. Singapore Med J. 2009;50(3):303–311. [PubMed] [Google Scholar] 20. Norimah AK, Ruzita AT, Poh BK, Nurunnajiha N, Wong JE, Raduan S, et al. Food habits and physical activity pattern among primary schoolchildren in Malaysia. Malaysian J Nutr. 2009;15(2):S5–S6. [Google Scholar] 21. Doustmohammadian A, Dorostymotlagh AR, Keshavarz A, Sadrzadehyeganeh H, Mohammadpour-Ahrangani B. Socio-demographic factors associated with body mass index of female adolescent students in Semnan City, Iran. Malaysian J Nutr. 2009;15(1):27–35. [PubMed] [Google Scholar] 22. Rahman M, Mostofa G, Nasrin SO. Nutritional status among children aged 24–59 months in rural Bangladesh: an assessment measured by BMI index. Internet J Biol Anthropol [Internet] 2009;3(1) [cited 2009 Oct 20]; Available from: http://www.ispub.com/journal/the_internet_journal_of_biological_anthropology/volume_3_number_1_63/article/nutritional-status-among-children-aged-24-59-months-in-rural-bangladesh-an-assessment-measured-by-bmi-index.html. [Google Scholar] 23. Wang Y. Cross-national comparison of childhood obesity: The epidemic and the relationship between obesity and socioeconomic status. Int J Epidemiol. 2001;30(5):1129–1136. [PubMed] [Google Scholar] 24. Giuogliano R, Carneiro EC. Factors associated with obesity in school children. J Pediatr (Rio J) 2004;80(1):17–22. [PubMed] [Google Scholar] 25. A2/M2 Three Screen Report: 1st Quarter 2009 [Internet] New York (US): The Nielsen Company; 2009. [cited 2009 Oct 20]. Available from: http://blog.nielsen.com/nielsenwire/wp-content/uploads/2009/05/nielsen_threescreenreport_q109.pdf. [Google Scholar] 26. Barr-Anderson DJ, van den Berg P, Neumark-Sztainer DR, Story MT. Characteristics associated with older adolescents who have a TV in their bedroom. Pediatrics. 2008;121(4):718–24. [PubMed] [Google Scholar] 27. Norman GJ, Schmid BA, Sallis JF, Calfas KJ, Patrick K. Psychosocial and environmental correlates of adolescent sedentary behaviours. Pediatrics. 2005;116(4):908–916. [PubMed] [Google Scholar] 28. Cummings HM, Vandewater EA. Relation of adolescent video game play to time spent in other activities. Arch Pediatr Adolesc Med. 2007;161(7):684–689. [PMC free article] [PubMed] [Google Scholar] 29. Andersen RE, Crespo CJ, Bartlett SJ, Cheskin LJ, Pratt M. Relationship of physical activity and television watching with body weight and level of fatness among children: Results from the Third National Health and Nutrition Examination Survey. JAMA. 1998;279(12):938–942. [PubMed] [Google Scholar] 30. Cruz VA, Hisa QZT, Imson MG, Mang-usan DA. Obesity in school-aged children: Prevalence and causes. U Cordilleras Res J. 2009;1(4):109–126. [Google Scholar] 31. Bere E, Lenthe FV, Klepp KI, Brug J. Why do parents’ education level and income affect the amount of fruits and vegetables adolescents eat? Eur J Public Health. 2009;18(6):611–615. [PubMed] [Google Scholar]
(1)
1. Ward, K. and Z.H. Fan, Mixing in microfluidic devices and enhancement methods. Journal of Micromechanics Microengineering, 2015. 25(9): p. 094001. 2. Lee, C.-Y. and L.-M. Fu, Recent advances and applications of micromixers. Sensors and Actuators B: Chemical, 2018. 259: p. 677-702. 3. Hessel, V., H. Löwe, and F. Schönfeld, Micromixers—a review on passive and active mixing principles. Chemical Engineering Science, 2005. 60(8-9): p. 2479-2501. 4. Lee, C.-Y., W.-T. Wang, C.-C. Liu, and L.-M. Fu, Passive mixers in microfluidic systems: A review. Chemical Engineering Journal, 2016. 288: p. 146-160. 5. Sarkar, S., K. Singh, V. Shankar, and K. Shenoy, Numerical simulation of mixing at 1–1 and 1–2 microfluidic junctions. Chemical Engineering and Processing: Process Intensification, 2014. 85: p. 227-240. 6. Shah, I., S.W. Kim, K. Kim, Y.H. Doh, and K.H. Choi, Experimental and numerical analysis of Y-shaped split and recombination micro-mixer with different mixing units. Chemical Engineering Journal, 2019. 358: p. 691-706. 7. Chen, X., T. Li, H. Zeng, Z. Hu, and B. Fu, Numerical and experimental investigation on micromixers with serpentine microchannels. International Journal of Heat and Mass Transfer, 2016. 98: p. 131-140. 8. Li, Y., D. Zhang, X. Feng, Y. Xu, and B.-F. Liu, A microsecond microfluidic mixer for characterizing fast biochemical reactions. Talanta, 2012. 88: p. 175-180. 9. Le The, H., H. Le Thanh, T. Dong, B.Q. Ta, N. Tran-Minh, and F. Karlsen, An effective passive micromixer with shifted trapezoidal blades using wide Reynolds number range. Chemical Engineering Research Design, 2015. 93: p. 1-11. 10. Sivashankar, S., S. Agambayev, Y. Mashraei, E.Q. Li, S.T. Thoroddsen, and K.N. Salama, A “twisted” microfluidic mixer suitable for a wide range of flow rate applications. Biomicrofluidics, 2016. 10(3): p. 034120. 11. Chen, X., J. Shen, and Z. Hu, Fabrication and performance evaluation of two multi-layer passive micromixers. Sensor Review, 2018. 38(3): p. 321-325. 12. Ansari, M.A., K.-Y. Kim, K. Anwar, and S.M. Kim, A novel passive micromixer based on unbalanced splits and collisions of fluid streams. Journal of Micromechanics and Microengineering, 2010. 20(5): p. 055007. 13. Nimafar, M., V. Viktorov, and M. Martinelli, Experimental comparative mixing performance of passive micromixers with H-shaped sub-channels. Chemical Engineering Science, 2012. 76: p. 37-44. 14. Wang, H., L. Shi, T. Zhou, C. Xu, and Y. Deng, A novel passive micromixer with modified asymmetric lateral wall structures. Asia‐Pacific Journal of Chemical Engineering, 2018. 13(3): p. e2202. 15. Jännig, O. and N.-T. Nguyen, A polymeric high-throughput pressure-driven micromixer using a nanoporous membrane. Microfluidics nanofluidics 2011. 10(3): p. 513-519. 16. ITU, RECOMMENDATION ITU-R BT.601-5 :Studio encoding parameters of digital television for standard 4: 3 and wide-screen 16: 9 aspect ratios. 17. Fu, H., X. Liu, and S. Li, Mixing indexes considering the combination of mean and dispersion information from intensity images for the performance estimation of micromixing. RSC Advances, 2017. 7(18): p. 10906-10914. 18. Johnson, T.J., D. Ross, and L.E. Locascio, Rapid microfluidic mixing. Analytical chemistry, 2002. 74(1): p. 45-51. 19. Chen, X. and X. Wang, Optimized modular design and experiment for staggered herringbone chaotic micromixer. International Journal of Chemical Reactor Engineering, 2015. 13(3): p. 305-309. 20. Yamamoto, D., T. Maki, S. Watanabe, H. Tanaka, M.T. Miyahara, and K. Mae, Synthesis and adsorption properties of ZIF-8 nanoparticles using a micromixer. Chemical engineering journal, 2013. 227: p. 145-150. 21. Surdo, S., A. Diaspro, and M. Duocastella, Micromixing with spark-generated cavitation bubbles. Microfluidics Nanofluidics, 2017. 21(5): p. 82. 22. Zha, L., X. Pu, M. Shang, G. Li, W. Xu, Q. Lu, and Y. Su, A study on the micromixing performance in microreactors for polymer solutions. AIChE Journal, 2018. 64(9): p. 3479-3490. 23. McDonough, J., M. Oates, R. Law, and A. Harvey, Micromixing in oscillatory baffled flows. Chemical Engineering Journal, 2019. 361: p. 508-518. 24. Rafeie, M., M. Welleweerd, A. Hassanzadeh-Barforoushi, M. Asadnia, W. Olthuis, and M. Ebrahimi Warkiani, An easily fabricated three-dimensional threaded lemniscate-shaped micromixer for a wide range of flow rates. Biomicrofluidics, 2017. 11(1): p. 014108. 25. Engler, M., N. Kockmann, T. Kiefer, and P. Woias, Numerical and experimental investigations on liquid mixing in static micromixers. Chemical Engineering Journal, 2004. 101(1-3): p. 315-322. 26. Luo, P., Y. Cheng, Z. Wang, Y. Jin, and W. Yang, Study on the mixing behavior of thin liquid-sheet impinging jets using the PLIF technique. Industrial engineering chemistry research, 2006. 45(2): p. 863-870. 27. Parsa, M.K., F. Hormozi, and D. Jafari, Mixing enhancement in a passive micromixer with convergent–divergent sinusoidal microchannels and different ratio of amplitude to wave length. Computers and Fluids, 2014. 105: p. 82-90. 28. Sudarsan, A.P. and V.M. Ugaz, Fluid mixing in planar spiral microchannels. Lab on a Chip, 2006. 6(1): p. 74-82. 29. Sudarsan, A.P. and V.M. Ugaz, Multivortex micromixing. Proceedings of the National Academy of Sciences, 2006. 103(19): p. 7228-7233. 30. Jeon, N.L., S.K. Dertinger, D.T. Chiu, I.S. Choi, A.D. Stroock, and G.M. Whitesides, Generation of solution and surface gradients using microfluidic systems. Langmuir, 2000. 16(22): p. 8311-8316. 31. Zhou, Y., Microfluidic Concentration Gradient Generation and Integrated Magnetic Sorting of Microparticles. 2013, Columbia University. 32. Faryadi, M., M. Rahimi, S. Safari, and N. Moradi, Effect of high frequency ultrasound on micromixing efficiency in microchannels. Chemical Engineering Processing: Process Intensification, 2014. 77: p. 13-21. 33. Karthikeyan, K. and L. Sujatha, Study of Permissible Flow Rate and Mixing Efficiency of the Micromixer Devices. International Journal of Chemical Reactor Engineering, 2019. 17(1). 34. Lin, C.-H., L.-M. Fu, and Y.-S. Chien, Microfluidic T-form mixer utilizing switching electroosmotic flow. Analytical chemistry, 2004. 76(18): p. 5265-5272. 35. Wang, L., D. Liu, X. Wang, and X. Han, Mixing enhancement of novel passive microfluidic mixers with cylindrical grooves. Chemical Engineering Science, 2012. 81: p. 157-163. 36. Scherr, T., C. Quitadamo, P. Tesvich, D.S.-W. Park, T. Tiersch, D. Hayes, J.-W. Choi, K. Nandakumar, and W.T. Monroe, A planar microfluidic mixer based on logarithmic spirals. Journal of Micromechanics and Microengineering, 2012. 22(5): p. 055019. 37. Yang, J.-T., K.-J. Huang, K.-Y. Tung, I.-C. Hu, and P.-C. Lyu, A chaotic micromixer modulated by constructive vortex agitation. Journal of Micromechanics and Microengineering, 2007. 17(10): p. 2084. 38. Hong, C.-C., J.-W. Choi, and C.H. Ahn, A novel in-plane passive microfluidic mixer with modified Tesla structures. Lab on a Chip, 2004. 4(2): p. 109-113. 39. Matsunaga, T., H.-J. Lee, and K. Nishino, An approach for accurate simulation of liquid mixing in a T-shaped micromixer. Lab on a Chip, 2013. 13(8): p. 1515-1521. 40. Rudyak, V. and A. Minakov, Modeling and optimization of Y-type micromixers. Micromachines, 2014. 5(4): p. 886-912. 41. Galletti, C., M. Roudgar, E. Brunazzi, and R. Mauri, Effect of inlet conditions on the engulfment pattern in a T-shaped micro-mixer. Chemical Engineering Journal, 2012. 185: p. 300-313.
(1)
1. World Health Organization (WHO). Pertussis, update 2017. In: The immonological basis for Immunization series [Internet]. 2017 [cited 2018 Nov 17]. (Module 4). Available from: http://apps.who.int/iris/handle/10665/259388 2. Haviari S, Bénet T, Saadatian-Elahi M, André P, Loulergue P, Vanhems P. Vaccination of healthcare workers: A review. Hum Vaccines Immunother. 2015 Nov 2;11(11):2522–37. 3. National Immunisation Advisory Committee. Pertussis. In: Immunisation Guideline [Internet].2016 [cited 2018 Nov 17]. (Chapter 15). Available from: https://www.hse.ie/eng/health/immunisation/hcpinfo/guidelines/ 4. Pertussis vaccines: WHO position paper, August 2015—Recommendations. Vaccine. 2016 Mar;34(12):1423–5. 5. Cunegundes KSA, de Moraes-Pinto MI, Takahashi TN, Kuramoto DAB, Weckx LY. Bordetella pertussis infection in paediatric healthcare workers. J Hosp Infect. 2015 Jun;90(2):163–6. 6. Liang JL, Tiwari T, Moro P, Messonnier NE, Reingold A, Sawyer M, et al. Prevention of Pertussis, Tetanus, and Diphtheria with Vaccines in the United States: Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2018 Apr 27;67(2):1–44. 7. Lu P, Graitcer SB, O’Halloran A, Liang JL. Tetanus, diphtheria and acellular pertussis (Tdap) vaccination among healthcare personnel—United States, 2011. Vaccine. 2014 Jan;32(5):572–8. 8. Hope K, Butler M, Massey PD, Cashman P, Durrheim DN, Stephenson J, et al. Pertussis vaccination in Child Care Workers: room for improvement in coverage, policy and practice. BMC Pediatr [Internet]. 2012 Dec [cited 2018 Oct 1];12(1). Available from: http://bmcpediatr.biomedcentral.com/articles/10.1186/1471-2431-12-98 9. Paranthaman K, McCarthy N, Rew V, van Zoelen S, Cockerill L. Pertussis vaccination for healthcare workers: staff attitudes and perceptions associated with high coverage vaccination programmes in England. Public Health. 2016 Aug;137:196–9. 10. National Safety Council. Risk Perception: Theories, Strategies and next steps [Internet]. Campbell Institute; 2014 [cited 2018 Nov 17]. Available from: www.thecampbellinstitute.org 11. Ferrer RA, Klein WM. Risk perceptions and health behavior. Curr Opin Psychol. 2015 Oct;5:85–9. 12. Rogers EM. Diffusion of innovations. 3rd ed. New York : London: Free Press ; Collier Macmillan; 1983. 453 p. 13. Xiao H, Li S, Chen X, Yu B, Gao M, Yan H, et al. Protection Motivation Theory in Predicting Intention to Engage in Protective Behaviors against Schistosomiasis among Middle School Students in Rural China. Hotez PJ, editor. PLoS Negl Trop Dis. 2014 Oct 16;8(10):e3246. 14. MacDonell K. A Protection Motivation Theory-Based Scale for Tobacco Research among Chinese Youth. J Addict Res Ther [Internet]. 2013 [cited 2018 Nov 17];04(03). Available from: https://www.omicsonline.org/a-protection-motivation-theory-based-scale-for-tobacco-research-among-chinese-youth-2155-6105.1000154.php?aid=15632 15. Taber KS. The Use of Cronbach’s Alpha When Developing and Reporting Research Instruments in Science Education. Res Sci Educ. 2018 Dec;48(6):1273–96. 16. Lawrence S. Meyers, Glenn C. Gamst, A.J.Guarino. Performing Data Analysis Using IBM SPSS. John Wiley & Sons; 2013. 17. Clark DA, Bowles RP. Model Fit and Item Factor Analysis: Overfactoring, Underfactoring, and a Program to Guide Interpretation. Multivar Behav Res. 2018 Jul 4;53(4):544–58. 18. Nematollahi M, Eslami AA. Development and Validation of Social Cognitive Theory Based Questionnaire for Physical Activity to Preventing Osteoporosis (PAQ-SCT). Iran J Psychiatry Behav Sci [Internet]. 2018 Aug 1 [cited 2019 Jul 17];In Press(In Press). Available from: http://ijpsychiatrybs.com/en/articles/12662.html 19. Nabizadeh SM, Taymoori P, Hazhir MS, Shirazi M, Roshani D, Shahmoradi B. Predicting vitamin E and C consumption intentions and behaviors among factory workers based on protection motivation theory. Environ Health Prev Med [Internet]. 2018 Dec [cited 2019 Jun 24];23(1). Available from: https://environhealthprevmed.biomedcentral.com/articles/10.1186/s12199-018-0742-z
(1)
[1] Y. Okamura et al., Free Standing Biodegradable Poly(lactic acid) Nanosheet for Sealing Operations in Surgery, ADVANCED MATERIALS, 2009;21(43), pp4388-4392. [2] T. Fujie et al., Ubiquitous Transference of a Free-Standing Polysaccharide Nanosheet with the Development of a Nano-Adhesive Plaster, Adv. Mater, 2007, 19, 3549-3553 [3] Y. Kai et al., Microstructure Fabrication on Poly (L-lactic acid) Nanosheets Using Micro Gravure Printing Method, Aachen, Germany, September, 17-19, 2017. [4] S. Zhang et al., Tactile Sliding Behavior of R2R Mass- Produced PLLA Nanosheet towards Biomedical Device in Skin Applications, nanomaterials, 2018;8(4),210. [5] Y. Mizutani, Ceramide biosynthesis in keratinocyte and its role in skin function, Biochimie, 2009; 91 (6), pp784-790
(1)
1. Young KS. Internet Addiction:A New Clinical Phenomenon and Its Consequences. American Behavioral Scientist. 2004;48(4):402-15. 2. Guan NC, Isa SM, Hashim AH, Pillai SK, Harbajan Singh MK. Validity of the Malay version of the Internet Addiction Test: a study on a group of medical students in Malaysia. Asia-Pacific journal of public health. 2015;27(2):Np2210-9. 3. Ching SM, Hamidin A, Vasudevan R, Sazlyna MS, Wan Aliaa WS, Foo YL, et al. Prevalence and factors associated with internet addiction among medical students - A cross-sectional study in Malaysia. The Medical journal of Malaysia. 2017;72(1):7-11. 4. Kim Y, Park JY, Kim SB, Jung I-K, Lim YS, Kim J-H. The effects of Internet addiction on the lifestyle and dietary behavior of Korean adolescents. Nutrition research and practice. 2010;4(1):51-7. 5. Shaohua H, Fengjuan S, editors. Influencing factors of adolescent internet addiction. 2010 IEEE 2nd Symposium on Web Society; 2010 16-17 Aug. 2010. 6. Lee JY, Kim SY, Bae KY, Kim JM, Shin IS, Yoon JS, et al. Prevalence and risk factors for problematic Internet use among rural adolescents in Korea. Asia-Pacific psychiatry : official journal of the Pacific Rim College of Psychiatrists. 2018;10(2):e12310. 7. Vigna-Taglianti F, Brambilla R, Priotto B, Angelino R, Cuomo G, Diecidue R. Problematic internet use among high school students: Prevalence, associated factors and gender differences. Psychiatry research. 2017;257:163-71.
(1)
Aakash, K., Muzzammil, A.M., Raghavendra, B., & Siddhant, A. (2016). Time, cost, productivity and quality analysis of precast concrete system. International Journal of Innovative Science, Engineering and Technology, 3(5), 252-257. Abdullah, M.R., Arif, M., Haron, T., Kamar, K.A.M., & Nawi, M.N.M. (2009). Industrialised Building System: A definition and concept. Proceeding in ARCOM Conference (pp. 45-52). Nottingham, United Kingdom. Abedi, M., Fathi, M.S., & Mirassa, A.K. (2011). Establishment and development of IBS in Malaysia. International Building and Infrastructure Technology Conference (pp. 404-412). Penang, Malaysia. Ahmad, M.S., Anuar, K., Azman, A., Hamid, Z.A., Sanusi, M., & Zuhairi, M.N.A. (2011). Industrialised Building System (IBS): Revisiting issues of definition and classification. International Journal of Emerging Science, 1(2), 120-132. Aini, J., Azmi, A.B., Napsiah, I., Rizan, A., & Rosnah, Y. (2012). Factors influencing the construction cost of Industrialised Building System (IBS) projects. Procedia - Social and Behavioral Sciences, 35, 689–696. Aishah, S., & Ali, M. (2012). Cost comparison for construction of house using conventional and interlocking block method. Project paper, Universiti Malaysia Pahang. Akash, L., & Venkateswarlu, D. (2016). Design, cost & time analysis of precast & RCC building. International Research Journal of Engineering and Technology, 3(6), 343- 350. Akintoye, A., & Takim, R. (2002). Performance indicators for successful construction project performance. 18th Annual ARCOM Conference (pp 545-555). University of Northumbria, United Kingdom. Alinaitwe, H.M., Hansoon, B., & Mwakali, J.A. (2006). Assessing the degree of Industrialisation in construction – A case of Uganda. Journal of Civil Engineering and Management, 12(3), 221-229. Amir, F., Amir, M., Kadir, M., Hossein, O., Masine, M.T., Saeed, R.M., & Sanaz, T. (2015). Economic comparison of Industrialised Building System and conventional construction system using Building Information Modeling. Journal of Technology, 78(1), 195-207. Andres, C.K., & Smith, R.C. (1998). Principal and practices of heavy construction (5th ed.). New York, United States: Prentice Hall. Angela, L., Herman, S.A., & Nasrun, M.N. (2013). A review of IBS Malaysia current and future study. International Journal of Engineering Research and Technology, 2(10), 2378-2383. Asiah, A.R., Ismail, Z., & Saodah, W. (2012). Users’ perception on housing using IBS in Malaysia: Case study in Klang Valley. Construction Industry Development Board, Kuala Lumpur. Asmah, A.M.B., Khairul, N.A., Martin, S., Melissa, T., Xia, B., & Xiaoling, Z. (2012). The path towards greening the Malaysian construction industry. Renewable and Sustainable Energy Reviews, 52, 1742-1748. Azam, N.H., & Zanarita, A.M. (2012). Construction cost variance for school project in Malaysia. European International Journal of Science and Technology, 1(1), 43-55. Azam, N., Haron, Rahim, M., & Syazwan, M. (2013). Construction cost comparison between conventional and formwork system for condominium project. International Journal of Advanced Studies in Computer Science and Engineering, 2(5), 19-25. Azhari, A., Kamarul, A.M.K, Khairolden, G., Maria, Z.M.Z, Sanusi, S., Taksiah A.M., & Zuhairi A.H. (2012), Drivers and barriers to Industrialised Building System (IBS)roadmaps in Malaysia. Malaysian Construction Research Journal, 9(1), 113-121. Azman, M.N.A., Hamid, Z.A., & Kamar, K.A.M. (2011). Industrialised Building System (IBS): Revisiting issue of definition and classification. International Journal of Emerging Sciences, 1(2), 120-132. Azman, M.N.A., Dzulkalnine, N., Hamid, Z.A., Kamar, K.A.M., & Nawi, M.N.M. (2013). Payment scenario in the Malaysian Construction Industry prior to CIPAA. Retrieved from https://jurnalteknologi.utm.my/index.php/jurnalteknologi/article/view/2804 Badir, Y.F., & Kadir, M.R.A. (1998). Theory of classification and Badir-Razali building systems classification. IJM International Journal of Multilingualism, 50-56. Bari, N., Ismail, N., Jaapar, A., & Yusuff, R. (2011). Factors influencing the construction cost of industrialised Building System Projects. Procedia of Social and Behavioral Science, 35(1), 689-696. Begum, R.A., Jaafar, A.H., Siwar, C., & Pereira, J.J. (2006). A benefit-cost analysis on the economic feasibility of construction waste minimisation: The case of Malaysia. Resources, Conservation and Recycling, 48(1), 86-98. Bhavani, B. (2014). The Indian precast industry- Gaining prominence, The Masterbuilder, p.94. Bouweentrum, P.R.C. (1995). A comparison of international building costs comparisons. A guide into the jungle of costs-and price-comparing studies for the Nertherlands, Belgium, UK, France and Germany. Retrieved from https://thescipub.com/pdf/ 10.3844/ ajassp. 2005. 819.823 Bubshait A.A., & Al-Juwairah, Y.A. (2002). Factors contributing to construction costs in Saudi Arabia. Cost Engineering, 44(5), 30-34. Chan, S.L., & Park M. (2005). Project cost estimation using principal component regression. Construction, Management & Economics, 23(3), 295-304. Chan, Yi., & Wen (2014). Critical review of labor productivity research in construction journals. Journal of Management in Engineering, 30, 214-225. Chan, P.C., & Osei-Kyei (2015). Review of studies on the critical success factors for public– private partnership (PPP) projects from 1990 to 2013. International Journal of Project Management, 33(6), 1335-1346. Chan, T.K. (2011). Comparison of precast construction costs – Case studies in Australia and Malaysia. Proceedings of the 27th Annual ARCOM Conference of the Association of Researchers in Construction Management (pp. 3-12). Bristol, United Kingdom. Chen, Y., Okudan, G.E., & Riley, D.R. (2010). Sustainable performance criteria for construction method selection in concrete buildings. Automation in Construction, 19(2), 235-244. Chung, L.P., & Kadir, A.M. (2007). Implementation strategy for Industrialised Building System (PhD’s thesis). Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia. Construction Industry Development Board (CIDB). (2013, October). Modular construction in construction industry. IBS Digest, 3, 34-37. Construction Industry Development Board (CIDB). (2016). CIDB technical report publication No: 82. Dynamism and sustainability through IBS. Retrieved from http://www.cidb.gov.my/ images/content/laporan-teknikal-pembinaan/Dynamism-- sustainability-through-IBS.pdf Construction Industry Development Board Malaysia (CIDB). (2016). Wage rate assumptions made for the major category of labour. Retrieved from http://myn3c.cidb.gov.my/ cidb_n3c/ progress/lwr.php?4# Construction Industry Development Board Malaysia (CIDB). (2017). IBS Catalogue for Precast Concrete Building System Revision 2017 [Catalogue]. Malaysia: Lembaga Pembangunan Industri Pembinaan Malaysia. Construction Industry Development Board (CIDB). (2017). Industrialised Building Systems (IBS) homepage, Construction Industry Development Board (CIDB). Retrieved from http://www. cidb.gov.my/cidbv3/ Construction Industry Development Board Malaysia (CIDB). (2017). Major materials pricing schedule. Retrieved from https://www.yumpu.com/en/document/view/ 5824795/cidb-average-price-of- building-materials-sm-bmdam Construction Industry Master Plan CIMP. (2007). Construction Industry Master Plan 2006- 2015 (CIMP 2006-2015), Construction Industry Development Board Malaysia (CIDB), Kuala Lumpur. Construction Research Institute of Malaysia (CREAM). (2010). 3rd IBS Roundtable Workshop Report. Construction Research Institute of Malaysia (CREAM), Malaysia. Construction Research Institute of Malaysia (CREAM). (2007). Development of a construction career path model in fulfilling future demands and inspiring youths to establish careers in construction Retrieved from http://www.cream.my/main/ index.php/research-development-r-d/productivity. Dabhade, U.D., Gupta, L.M., Hedaoo, N.A., & Ronghe, G.N. (2009). Time and cost evaluation of construction of steel framed composite floor with precast concrete floor structure. 26th International Symposium on Automation and Robotics in Construction (pp. 139-148), Austin Texas, United State America. Dani, S., Osman, W.N., Zulkifli, M.U. (2012). Adoption Level of Sustainable Construction Practices: A study on Malaysia’s construction stakeholders. The Journal of Southeast Asian Research, 2, 1-6, doi: 10.5171/2012.270273 Davis Langdon Management Consultant. (2010). Literature review of life cycle costing (LCC) and life cycle cost analysis (LCCA). Retrieved from https://www.tmb.org.tr/arastirma_yayinlar/ LCC_Literature_Review_Report.pdf Department of Statistics Malaysia. (2016). Official Portal. Retrieved from http://www.statistic.gov.my. Dineshkumar, N., & Kathirvel, P. (2015). Comparative study on prefabrication construction with cast in-situ construction of residential buildings. International Journal of Innovative Science, Engineering & Technology, 2(4), 527-532. Ding, D. (2008). Sustainable construction – The role of environmental assessment tools. Journal of Environmental Management, 86(3), 451-464. Eastman, C.M. (2008). Relative productivity in the AEC industries in the United States for on-site activities. Journal of Construction Engineering and Management, 134(7), 517-526. Egan, J. (1998). Rethinking construction, report of the construction task force on the scope for improving the quality and efficiency of UK construction industry. Retrieved from http://constructingexcellence.org.uk/wpcontent/uploads/2014/10/rethinking_constru ction_ report. pdf Ekholm, A., Lessing, J., & Stehn, L. (2005). Industrialised housing- Definition and categorization of the concept. Proceedings of the 13th International Group for Lean Construction (pp. 471-480). Sydney, Australia. Elhag, T.M.S., Boussabaine, A.H., & Ballal, T.M.A. (2005). Critical determinants of construction tendering costs: Quantity surveyor’s standpoint. International Journal of Project Management, 23, 538-545. Elias, M.E., Nasrun, M.N., Nadarajan, S., Nizamuddin, Z. (2017). Construction sustainability & awareness amongst contractors in the northern region of Malaysia. International Journal of Supply Chain Management, 6, 259-264. Eurostat. (1996). Pricing guidelines for construction projects. Official publications of the European communities, Luxemborg. Retrieved from Eurostat Publications and databases. Gibb, A. (1999). Offsite fabrication. Scotland, United Kingdom: Whittles Publishing. Gibb, A. & Goodier, C. (2006). Build offsite: Promoting construction offsite. United Kingdom: Loughborough University. Goodier, C., & Gibb, A. (2007). Future opportunities for offsite in the UK. Journal of Construction and Engineering Management, 25(6), 548-585. Hafiz, Z., Hafizal, H., Zainal, A., & Zakwan, R. (2016). Cost comparison on Industrialised Building System (IBS) and conventional method for school construction project. Journal of Scientific Research and Development, 3(4), 95-101. Hao, J.L., Hao, Y., Shen, L.Y., & Tam, Y. (2007). A checklist for assessing sustainability performance of construction projects. Journal of civil Engineering and Management, 14(4), 273-281. Haron, N.A., Hassim, S., Kadir, R., & Jaafar, S. (2005). Building cost comparison between conventional and formwork system: A case study of four-storey school buildings in Malaysia. American Journal of Applied Sciences, 2(4), 819-823. Haron, Nuzul, Syazwan, M.D., & Rahim, M. (2013). Construction cost comparison between conventional and formwork system for condominium project. International Journal of Advanced Studies in Computer Science and Engineering, 2(5), 19-25. Henk, M.V. and Peter, & H.V.M. (1999). Construction costs in the Netherlands in an international context. Construction Management and Economics, 17, 269-283. Idrus, N.F.K., & Utomo, C. (2008). Perception of Industrialised Building System (IBS) within the Malaysian Market. International Conference on Construction and Building Technology, 7, 75-92. Industry Building System (2014). IBS manufacturers in Malaysia. Retrieved from http://ibsportal.cidb.gov.my/Directory?cat=SUPPLIER. Institute of Engineer Malaysia (IEM). (2001, February). A need for new building technologies. Bulletin of Institution of Engineers, Malaysia, 7-8. Ismail, E., & Shaari, S.N. (2003). Promoting the usage of Industrialised Building System (IBS) and modular coordination (MC) in Malaysia Construction Industry. Bulletin of Institute Engineers Malaysia (IEM), 14-26. Ismail, F., Haharuddin, H.E.A., & Yusuwan, N.M. (2012). Management factors for successful IBS projects iImplementation. Procedia-Social and Behavioural Science, 68, 99-107. aafar, M.S., Kadir, M.R.A., Peng, L.W., Salit, M.S., & Thanoon, W.A.M. (2003). The experiences of Malaysia and other countries in Industrialized Building System. Proceeding of International Conference Industrialized building systems (pp. 255- 261). Kuala Lumpur, Malaysia. Jabar, I.L., Ismail, F., & Mustafa, A.A. (2013). Issues in managing construction phase of IBS projects. Procedia-Social Behavioural Science, 101, 81-89. Jabatan Kerja Raya. (2017). School building cost data from element cost analysis form ECA form.Retrieved from https://www.rics.org/globalassets/rics-website/media/ products /data-product/bcis-construction/bcis-elemental-standard-form-cost-analysis-4th-nrm-edition-2012.pdf Jailion, L., & Poon, C. (2008). Sustainable construction aspects of using prefabrication in dense urban environment: A Hong Kong case study. Construction Management Economic, 26(9), 953-966. doi: 10.1080/01446190802259043 Jaillon, L., & Poon, C. (2009). The evolution of prefabricated residential building systems in Hong Kong: A review of the public and the private sector. Automation in Construction, 18(3), 2239-2248. Junid, S.M.S. (1986). Industrialised Building System. Retrieved from https://pdfs.semantic scholar. org/d789/95881f53c69c28dc9495f44416e90a6286ef.pdf Kamar, K.A.M., Mustafa, A., & Zuhairi, A.H. (2009). Barriers to Industrialised Building System (IBS): The case of Malaysia. Proceeding in BuHu 9th International Postgraduate Research Conference (IPGRC) (pp. 29-30). Safford, United Kingdom. Khaiat, H., & Qaddumi, N. (1989). Technical views on the use of prefabricated building systems in Kuwait housing projects. International Journal of Housing Policy, 13, 243-250. Khalfan, M.M.A., & McDermott, P. (2009). The integration of suppliers and manufacturers within construction supply chains through innovative procurement strategies. International Journal of Value Chain Management, 2(3), 359-370. Kow, C.M. (2017). How can CIDB and industry players work hand in hand to promote usage of IBS. Industrialised Building Systems (IBS), Functional Designs, Cost Savings, & Sustainable Practices. Retrieved from http://rehdainstitut e.com/event/ibs-2017/ . Lai, K.W. (2005). Construction labour productivity study for conventional cast in-situ and precast construction methods (Master’s thesis). Malaysia University of Science and Technology, Malaysia. Laws of Malaysia (2018). Malaysian Employment Act 1955. Retrieved from https://www.ilo.org/dyn/natlex/docs/WEBTEXT/48055/66265/E55mys01.htm Lim, M.H., Maksat, O., Serdar, D., & Syuhaida, I. (2017). Significant contributors to cost overruns in construction projects of Cambodia. Cogent Engineering Journal, 4(1), 1-10. Lou, E.C.W., & Kamar, K.A.M. (2012). Industrialised Building Systems: Strategic outlook for manufactured construction in Malaysia. Journal of Architectural Engineering, 18(2), 69-74. Majid, T., Syarifah, A.S.Z., Shukri, Y., Shaharudin, S.Z., & Sanusi, S.A. (2011). Quantitative analysis on the level of IBS acceptance in the Malaysian Construction Industry. Journal of Engineering Science and Technology, 6(2), 179-190. Malaysia Architect Association. (2010). Architects (Scale of Minimum Fees) Rules 2010. Retrieved from https://theveritasdesigngroup.com/global_files/pdf/Architects_ Scale _of_Minimun_ Fees.pdf Malaysia Equity Research. (2014). Construction IBS practical solution to rising costs. Retrieved from http://www.midf.com.my/images /Downloads /Research /EqStrategy /SpecialReports/ Construction-IBS MIDF 140214.pdf. Marsono, A.K., Mokhtar, A.M., & Tap, M.M. (2006). Simulation of Industrialised Building System (IBS) components production. Proceedings of the 6th Asia-Pacific Structural Engineering and Construction Conference (APSEC 2006) (pp. 87-93). Kuala Lumpur, Malaysia. Martinez, S., Navarro, J.M., & Patricia, G. (2008). Building Industrialization: Robotics assembly of modular products. Assembly Automation, 28(2), 134-142. McCarthy, P. (2011). Measuring the size of the world economy: Construction (pp. 343-368). The World Bank Group, Washington, United States. Mcdermott, P. & Will, S. (2007). Building trust in construction projects: Supply chain management. An International Journal, 12, 385-391. Memon, A.H. & Rahman, L., (2010). Factors affecting construction cost in Mara large construction project: Perspective of project management consultant. International Journal of Sustainable Construction Engineering & Technology, 1(2), 41-54. Miller, J., Stephen, E.M., & William, I. (2000). Toward a new paradigm: Simultaneous use of multiple project delivery methods. Journal of Management in Engineering, 16(3), 58-67. Norazmi, A.B. (2008). Exploring the types of construction cost modelling for IBS projects in Malaysia. Conference Proceeding, 1st International Conference on Industrialised, Integrated Intelligent Construction (pp. 14-16). Loughborough, United Kingdom. Omar, W., & Rahman, A.B.A. (2006). Issues and challenge in the implementation of IBS in Malaysia. Proceeding of the 6th Asia-Pacific Structural Engineering and Construction Conference (pp. 45-53). Kuala Lumpur, Malaysia. Parid, W. (2003). Global trends in research, development and construction. Proceeding of The International Conference on Industrialised Building System (IBS 2003). Construction Industry Development Board, Kuala Lumpur, Malaysia. Retrieved from http://malcat.uum.edu.my/kip/Record/upm.239327/Details Phang A.T. (2017). Facilities and incentives for industrialised building systems in Malaysia. Modern construction technologies Industrialised Building Systems (IBS), functional designs, cost savings, & sustainable practices. Retrieved from http://rehdainstitute.com/event/ibs-2017/. Proverbs, D., & Xiao, H. (2002). The performances of contractors in Japan, the UK and the USA. A comparative evaluation of construction cost. Construction Management and Economics, 22, 425-435. Rahim, M., & Syazwan, M. (2013). Construction cost comparison between conventional and formwork system for condominium project. International Journal of Advanced Studies in Computer Science and Engineering, 2(5), 19-25. Rajendra, H.N. & Vivek. (2015). Case study on conventional and fast track construction techniques. International Journal of Science, Engineering and Technology, 3, 1232- 1235. Research Design and Standards Organisation. (2014). Report on cost comparison of precast vs. conventional system in Indian railways, Report No.: WKS-04-2014 (R-1) May 2014. Retrieved from Report on Prefabricated Buildings. Rohana, M., & Siti, S.K. (2013). Enhancing the quality of life by adopting IBS: An economic perspective on mechanisation and automation. Procedia - Social and Behavioral Sciences, 101, 71-80. Rozana, Z., Siti, M.S., & Sarajul, F.M. (2015). Economic attributes in Industrialised Building System in Malaysia. International Journal of Modern Trends in Engineering and Research, 2(7), 65-73. Sarja, A. (1998). Open and industrialised building, international council for building research, studies and documentation. London: E &FN Spoon. Shamsuddin, S.M., Zakaria, R., & Mohamed, S.F.Z. (2013). Economic attributes in Industrialised Building System in Malaysia. Procedia – Social and Behavioral Science, 105, 75-84. Sivapriya, C., Senhamilkumar, S., & Thanjavur. (2014). Time and cost management in precast concrete constructions. International Journal of Scientific Research, 3(4), 171-174 . Stapel, S. (2002). The Eurostat construction price surveys: History, current methodology and new ways for the future. International Conference on ICP, World Bank (pp. 175- 187). Washington, United States. Stoy, C., & Schalcher, H.R. (2007). Residential building projects: Building cost indicators and drivers. Journal of Construction Engineering and Management, 133(2), 139-145. Suyanto, H.O. (2017). Typical Malaysian contractor’s material wastage allowance. Retrieved from https://slideplayer.com/slide/6288022/ Trikha, D.N. (1999). Industrialised Building System: Prospects in Malaysia. Proceeding of World Engineering Congress, Kuala Lumpur, Malaysia. Retrieved from https://books. google.com.my/books?id=sqlqCAAAQBAJ&pg=PA97&lpg=PA97&dq=industriali sed+building+system:+prospects+in+malaysia+trikha&source Trikha, D.N. (2004). Industrialised Building Systems. Retrieved from http://psasir.upm.edu.My/id/ eprint/40368/ Virendravyas, V. (2015). Survey of precast concrete method and cast-in-situ concrete method. International Journal of Engineering and Technical Research, 3(11), 70-73. Walsh, K., & Sawhney, A. (2004). Process for implementation of the basket of construction components approach. Retrieved from http://pubdocs.worldbank.org/en/841101487 648/Construction-AS.pdf Warszawski, A.E.D. (1999). Industrialized and automated building systems: A managerial approach (2nd Edition). London, United Kingdom: E & FN Spon. Yang, J., & Yunus, R. (2011). Sustainability criteria for Industrialised Building Systems (IBS) in Malaysia. Procedia Engineering, 14, 1590-1598. Yong, T.N. (2010). Research project report. Feasibility of precast concrete construction system in Malaysia: A comparative study between Australia and Malaysia. Retrieved from The University of Melbourne, Australia. Zarim, A.B. (2017). Industrialised Building Systems. Modern construction technologies Industrialised Building Systems (IBS), functional designs, cost savings, & sustainable practices. Retrieved from http://rehdainstitute.com/event/ibs-2017/.
(1)
Aaker, D. A., & Jacobson, R. (2001). The Value Relevance of Brand Attitude in High-Technology Markets. Journal of Marketing Research, 38(4), 485–493. Abbasi, A. (2008). Categorization, analysis, and visualization of computer-mediated communication and electronic markets (PhD Thesis). University of Arizona, USA. Adelopo, I., Asante, J., Dart, E., & Rufai, I. (2017). Learning groups: The effects of group diversity on the quality of group reflection. Accounting Education, 26(5), 553–575. https://doi.org/10.1080/09639284.2017.1327360 Aguirre Garzón, E. A. (2018). Unlicensed EFL Teachers Co-constructing Knowledge and Transforming Curriculum Through Collaborative-Reflective Inquiry. Profile: Issues in Teachers´ Professional Development, 20(1), 73–87. Al-Buhairan, F. (2012). Persuasive design: An information-systems design-theory approach to persuade employment-seeking behavior among people with disabilities (PhD Thesis). Claremont Graduate University, USA. Ali, H. O., Rahman, A. Abdul., & Abidin, W. Z. (2012). Service Learning: An Investigation into its Viability as a Strategy to Achieve Institutional Goals. Procedia - Social and Behavioral Sciences, 56, 388–395. https://doi.org/10.1016/j.sbspro.2012.09.667 Alias, R., Alias, N. A., Luaran, J. E., Noor, H. M., & Rahenan, N. F. (2017). Service Learning for Inclusive Society in Malaysia: Driving Learning through Meaningful Experience. In Student-Driven Learning Strategies for the 21st Century Classroom (pp. 169-178). Al-Samarraie, H., Teng, B. K., Alzahrani, A. I., & Alalwan, N. (2017). E-learning continuance satisfaction in higher education: A unified perspective from instructors and students. Studies in Higher Education, 43(11), 2003–2019. https://doi.org/10.1080/03075079.2017.1298088 226 Alzahrani, A. I., Mahmud, I., Ramayah, T., Alfarraj, O., & Alalwan, N. (2017). Modelling digital library success using the DeLone and McLean information system success model. Journal of Librarianship and Information Science, 51(2), 291–306. Aparicio, M., Bacao, F., & Oliveira, T. (2016). An e-Learning Theoretical Framework. Journal of Educational Technology & Society, 19(1), 292–307. Aparicio, M., Bacao, F., & Oliveira, T. (2017). Grit in the path to e-learning success. Computers in Human Behavior, 66(1), 388–399. Arora, H. (2009). Building decision support for dynamic decision making: A design science approach. (PhD Thesis). Arizona State University, USA. Asghar, M., & Rowe, N. (2017). Reciprocity and critical reflection as the key to social justice in service learning: A case study. Innovations in Education and Teaching International, 54(2), 117–125. https://doi.org/10.1080/14703297.2016.1273788 Ash, S. L., & Clayton, P. H. (2004). The articulated learning: An approach to guided reflection and assessment. Innovative Higher Education, 29(2), 137–154. Ash, S. L., & Clayton, P. H. (2009). Generating, deepening, and documenting learning: The power of critical reflection in applied learning. Journal of Applied Learning in Higher Education, 1, 25-48. Ash, S. L., Clayton, P. H., & Atkinson, Maxine. P. (2005). Integrating Reflection and Assessment to Capture and Improve Student Learning. Michigan Journal of Community Service Learning, 11(2), 49–60. Asmawi, A., & Jaladin, R. A. M. (2017). Exploring Online Collaborative Reflective Practice for Teaching and Counseling Internship. In F. L. Gaol & F. D. Hutagalung (Eds.), Social Interactions and Networking in Cyber Society (pp. 93–107). 227 Baharom, S. S. (2013). Designing Mobile Learning Activities in the Malaysian HE Context: A Social Constructivist Approach (PhD Thesis). Salford Business School University of Salford, UK. Balaban, I., Mu, E., & Divjak, B. (2013). Development of an electronic Portfolio system success model: An information systems approach. Computers & Education, 60(1), 396–411. https://doi.org/10.1016/j.compedu.2012.06.013 Bartleet, B.-L., Bennett, D., Marsh, K., Power, A., & Sunderland, N. (2014). Reconciliation and Transformation through Mutual Learning: Outlining a Framework for Arts-based Service Learning with Indigenous Communities in Australia. International Journal of Education & the Arts, 15(8), 1–23. Bartleet, B.-L., Bennett, D., Power, A., & Sunderland, N. (2019). Service learning with First Peoples: A framework to support respectful and reciprocal learning. Intercultural Education, 30(1), 15–30. https://doi.org/10.1080/14675986.2018.1528526 Bayne, S. (2015). What’s the matter with ‘technology-enhanced learning’? Learning, Media and Technology, 40(1), 5–20. https://doi.org/10.1080/17439884.2014.915851 Becker, S., Cummins, M., Davis, A., Freeman, A., Brown, M., & Hanarayanan, V. (2017). NMC Horizon Report: 2017 Higher Education Edition (p. 60). Retrieved from Texas: The New Media Consortium website: http://cdn.nmc.org/media/2017-nmc-horizon-report-he-EN.pdf Beers, P. J., Boshuizen, H. P. A. (Els), Kirschner, P. A., & Gijselaers, W. H. (2005). Computer support for knowledge construction in collaborative learning environments. Computers in Human Behavior, 21(4), 623–643. Bell, A., Kelton, J., McDonagh, N., Mladenovic, R., & Morrison, K. (2011). A critical evaluation of the usefulness of a coding scheme to categorise levels of reflective 228 thinking. Assessment & Evaluation in Higher Education, 36(7), 797–815. https://doi.org/10.1080/02602938.2010.488795 Bentley-Williams, R. (2017). Engaging university casual tutors in collaborative reflection for improving student learning outcomes. Reflective Practice, 18(4), 540–553. https://doi.org/10.1080/14623943.2017.1323732 Bereiter, C. (2005). Education and mind in the knowledge age. Routledge. Biasutti, M., & Frate, S. (2018). Group metacognition in online collaborative learning: Validity and reliability of the group metacognition scale (GMS). Educational Technology Research and Development, 66(6), 1321–1338. Billig, S. H. (2011). Making the most of your time: Implementing the K-12 service-learning standards for quality practice. The Prevention Researcher, 18(1), 8–14. Birney, R. (2012). Reflective Writing: Quantitative Assessment and Identification of Linguistic Features. (PhD Thesis). Waterford Institute of Technology. Bloomquist, C. (2015). 169 Reflecting on Reflection as a Critical Component in Service Learning. Journal of Education for Library and Information Science Online, 56(2), 169–172. https://doi.org/10.12783/issn.2328-2967/56/2/1 Blunk, O., Prilla, M., & Attwell, G. (2016). Reflection Analytics in Online Communities: Guiding Users to become active in Collaborative Reflection. AR℡@ EC-℡, 27–33. Retrieved from http://ceur-ws.org/Vol-1736/paper2.pdf Boe, T., Gulbrandsen, B., & Sorebo, O. (2015). How to stimulate the continued use of ICT in higher education: Integrating Information Systems Continuance Theory and agency theory. Computers in Human Behavior, 50(1), 375–384. https://doi.org/10.1016/j.chb.2015.03.084 229 Bohoj, M., Borchorst, N. G., Bødker, S., Korn, M., & Zander, P.-O. (2011). Public deliberation in municipal planning: Supporting action and reflection with mobile technology. Proceedings of the 5th International Conference on Communities and Technologies, 88–97. Retrieved from http://dl.acm.org/citation.cfm?id=2103367 Boud, D., Keogh, R., & Walker, D. (1985). Reflection Turning experience into learning. Routledge. Bourelle, T. (2014). Adapting Service-Learning into the Online Technical Communication Classroom: A Framework and Model. Technical Communication Quarterly, 23(4), 247–264. https://doi.org/10.1080/10572252.2014.941782 Bowie, A., & Cassim, F. (2016). Linking classroom and community: A theoretical alignment of service learning and a human-centered design methodology in contemporary communication design education. Education as Change, 1(1), 1–23. Bringle, R., & Clayton, P. H. (2012). Civic Education through Service Learning: What, How, and Why? In L. McIlrath, A. Lyons, & R. Munck (Eds.), Higher Education and Civic Engagement (pp. 101–124). https://doi.org/10.1057/9781137074829_7 Bringle, R. G., & Hatcher, J. A. (1995). A Service-Learning Curriculum for Faculty. Michigan Journal of Community Service Learning, 2(1), 112–122. Bringle, R., & Hatcher, J. A. (1996). Implementing Service Learning in Higher Education. The Journal of Higher Education, 67(2), 221–239. https://doi.org/10.2307/2943981 Bringle, R., & Hatcher, J. A. (1999). Reflection in service learning: Making meaning or experience. Educational Horizons, 2(1), 179–185. Bringle, R., & Hatcher, J. A. (2000). Institutionalization of Service Learning in Higher Education. The Journal of Higher Education, 71(3), 273–290. 230 Bringle, R., & Hatcher, J. A. (2009). Innovative Practices in Service-Learning and Curricular Engagement. New Directions for Higher Education, 147(147), 37–46. Bringle, Robert G., & Hatcher, J. A. (1995). A service-learning curriculum for faculty. Michigan Journal of Community Service Learning, 2(1), 112–122. Brooks, D. C., & Jeffrey, P. (2017). ECAR Study of Undergraduates Students and Information Technology,2017 (p. 41) [Research Report]. Louisville. Brown, S. A., Dennis, A. R., & Venkatesh, V. (2010). Predicting Collaboration Technology Use: Integrating Technology Adoption and Collaboration Research. Journal of Management Information Systems, 27(2), 9–54. https://doi.org/10.2753/MIS0742-1222270201 Bryman, A., & Bell, E. (2011). Business Research Methods (3rd ed.). New York: NY: Oxford University Press, Inc. Burhan-Horasanlı, E., & Ortactepe, D. (2016). Reflective practice-oriented online discussions: A study on EFL teachers’ reflection-on, in and for-action. Teaching and Teacher Education, 59(1), 372–382. https://doi.org/10.1016/j.tate.2016.07.002 Caird, S., & Lane, A. (2015). Conceptualising the role of information and communication technologies in the design of higher education teaching models used in the UK: ICTs in higher education teaching models. British Journal of Educational Technology, 46(1), 58–70. https://doi.org/10.1111/bjet.12123 Carrington, S., Mercer, K. L., Iyer, R., & Selva, G. (2015). The impact of transformative learning in a critical service-learning program on teacher development: Building a foundation for inclusive teaching. Reflective Practice, 16(1), 61–72. https://doi.org/10.1080/14623943.2014.969696 231 Carver, R. L. (1997). Theoretical underpinnings of service learning. Theory Into Practice, 36(3), 143–149. https://doi.org/10.1080/00405849709543760 Cecil, A. (2012). A Framework for Service Learning in Hospitality and Tourism Management Education. Journal of Teaching in Travel & Tourism, 12(4), 313–331. https://doi.org/10.1080/15313220.2012.729452 Checkland, P. (1981). Systems thinking, systems practice. John Wiley & Sons. Cheng, G. (2017). The impact of online automated feedback on students’ reflective journal writing in an EFL course. The Internet and Higher Education, 34, 18–27. https://doi.org/10.1016/j.iheduc.2017.04.002 Chengjun, W. (2009). The analyses of Operating System structure. In Second International Symposium on Knowledge Acquisition and Modeling, 2, 354–357. IEEE. Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern Methods for Business Research, 295(2), 295–336. Chin, W. W., & Newsted, P. R. (1999). Structural Equation Modeling Analysis with Small Samples Using Partial Least Squares. In R. Hoyle (Ed.), Statistical Strategies for Small Sample Research (pp. 307–341). London; Thousand Oakes, Calif: Sage Publications Limited Inc. Chin, W. W. (2010). How to Write Up and Report PLS Analyses. In V. E. Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of Partial Least Squares: Concepts, Methods and Applications (pp. 655–690). https://doi.org/10.1007/978-3-540-32827-8_29 Chirema, K. D. (2007). The use of reflective journals in the promotion of reflection and learning in post-registration nursing students. Nurse Education Today, 27(3), 192–202. https://doi.org/10.1016/j.nedt.2006.04.007 232 Churchill, D. (2011). Web 2.0 in education: A study of the explorative use of blogs with a postgraduate class. Innovations in Education and Teaching International, 48(2), 149–158. https://doi.org/10.1080/14703297.2011.564009 Cidral, W. A., Oliveira, T., Di Felice, M., & Aparicio, M. (2018). E-learning success determinants: Brazilian empirical study. Computers & Education, 122(1), 273–290. https://doi.org/10.1016/j.compedu.2017.12.001 Clara, M., Kelly, N., Mauri, T., & Danaher, P. A. (2017). Can massive communities of teachers facilitate collaborative reflection? Fractal design as a possible answer. Asia-Pacific Journal of Teacher Education, 45(1), 86–98. Clara, M., Mauri, T., Colomina, R., & Onrubia, J. (2019). Supporting collaborative reflection in teacher education: A case study. European Journal of Teacher Education, 42(2), 175–191. https://doi.org/10.1080/02619768.2019.1576626 Costa, C. J., Ferreira, E., Bento, F., & Aparicio, M. (2016). Enterprise resource planning adoption and satisfaction determinants. Computers in Human Behavior, 63(1), 659–671. https://doi.org/10.1016/j.chb.2016.05.090 Coulson, D., & Harvey, M. (2013). Scaffolding student reflection for experience-based learning: A framework. Teaching in Higher Education, 18(4), 401–413. Cress, U., & Kimmerle, J. (2008). A systemic and cognitive view on collaborative knowledge building with wikis. International Journal of Computer-Supported Collaborative Learning, 3(2), 105–122. https://doi.org/10.1007/s11412-007-9035-z Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed., international student edition). Los Angeles London New Delhi Singapore Washington, DC: SAGE. 233 Crompton, H. (2017). Moving toward a mobile learning landscape: Presenting a mlearning integration framework. Interactive Technology and Smart Education, 14(2), 97–109. https://doi.org/10.1108/ITSE-02-2017-0018 Cupelli, L. (2016). An innovative service-learning project to develop cultural competency in undergraduate nursing students. Teaching and Learning in Nursing, 11(3), 113–117. https://doi.org/10.1016/j.teln.2016.01.004 Degeling, M., & Prilla, M. (2011). Modes of collaborative reflection. Organizational Dynamics, 25, 1-5. Retrieved from https://hal.archives-ouvertes.fr/hal-00836670/ Delano, J. D. (2011). Toward end-user specification and design of business systems (PhD Thesis). University of Wisconsin, Milwaukee, USA. DeLone, W. H., & McLean, E. R. (1992). Information Systems Success: The Quest for the Dependent Variable. Information Systems Research, 3(1), 60–95. DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean Model of Information Systems Success: A Ten-Year Update. Journal of Management Information Systems, 19(4), 9–30. https://doi.org/10.1080/07421222.2003.11045748 DeLone, W. H., & McLean, E. R. (2004). Measuring e-Commerce Success: Applying the DeLone & McLean Information Systems Success Model. International Journal of Electronic Commerce, 9(1), 31–47. Devaus, D. A. (2002). Survey in Social Research (4th ed.). London: UCL Press. Dewey, J. (1938). Experience and Education. New York: NY: MacMillan. Dickerson, C., Jarvis, J., Levy, R., & Thomas, K. (2017). Using action, reflection and modelling (ARM) in Malaysian primary schools: Connecting ‘the ARM theory’ with student teachers’ reported practice. Teachers and Teaching, 23(4), 494–514. https://doi.org/10.1080/13540602.2016.1211101 234 Dillman, D. A., Phelps, G., Tortora, R., Swift, K., Kohrell, J., Berck, J., & Messer, B. L. (2009). Response rate and measurement differences in mixed-mode surveys using mail, telephone, interactive voice response (IVR) and the Internet. Social Science Research, 38(1), 1–18. https://doi.org/10.1016/j.ssresearch.2008.03.007 Donnelly, R. (2006). Integrating Learning Technologies with Experiential Learning in a Postgraduate Teacher Education Course. Studying Teacher Education: A Journal of Self-Study of Teacher Education Practices, 2(1), 91–104. Doyle, C. (2016). Social media enabled collaborative learning environments: A design science research approach (PhD Thesis). University College Cork, Ireland. Dresch, A., Lacerda, D. P., & Antunes, J. A. V. (2015). Design Science Research. In Design Science Research (pp. 67–102). https://doi.org/10.1007/978-3-319-07374-3_4 Driessen, E. W., van Tartwijk, J., Overeem, K., Vermunt, J. D., & van der Vleuten, C. P. M. (2005). Conditions for successful reflective use of portfolios in undergraduate medical education. Medical Education, 39(12), 1230–1235. Durbin, D. J., & Marchel, C. A. (2015). Powerful Teaching: A Framework for Utilizing Service Learning in the Classroom. Journal of Teacher Education, 6, 1-17. Epler, C., Drape, T., Broyles, T., & Rudd, R. (2013). The Influence of Collaborative Reflection and Think-Aloud Protocols on Pre-Service Teachers’ Reflection: A Mixed Methods Approach. Journal of Agricultural Education, 54(1), 47–59. https://doi.org/10.5032/jae.2013.01047 Erdogan, F. (2019). Effect of Cooperative Learning Supported by Reflective Thinking Activities on Students’ Critical Thinking Skills. Eurasian Journal of Educational Research, 19(80), 1–24. https://doi.org/10.14689/ejer.2019.80.5 235 Ertmer, P. A., & Newby, T. J. (1993). Behaviorism, Cognitivism, Constructivism: Comparing Critical Features from an Instructional Design Perspective. Performance Improvement Quarterly, 6(4), 50–72. Ertmer, P. A., & Newby, T. J. (2013). Behaviorism, cognitivism, constructivism: Comparing critical features from an instructional design perspective. Performance Improvement Quarterly, 26(2), 43–71. Farooq, M. S., Salam, M., Fayolle, A., Jaafar, N., & Ayupp, K. (2018). Impact of service quality on customer satisfaction in Malaysia airlines: A PLS-SEM approach. Journal of Air Transport Management, 67(1), 169–180. Fessl, A., Blunk, O., Prilla, M., & Pammer, V. (2017). The known universe of reflection guidance. International Journal of Technology Enhanced Learning, 9(3), 103–125. Fleck, R, & Fitzpatrick, G. (2010). Reflecting on Reflection: Framing a Design Landscape. Proceedings of the 22nd Conference of the Computer-Human Interaction Special Interest Group of Australia on Computer-Human Interaction (OZCHI 2010), 216–223. Brisbane, Australia: ACM. Fleck, Rowanne, & Fitzpatrick, G. (2009). Teachers’ and tutors’ social reflection around SenseCam images. International Journal of Human-Computer Studies, 67(12), 1024–1036. https://doi.org/10.1016/j.ijhcs.2009.09.004 Foong, L. Y. Y., Nor, M. B. M., & Nolan, A. (2018). The influence of practicum supervisors’ facilitation styles on student teachers’ reflective thinking during collective reflection. Reflective Practice, 19(2), 225–242. Gable, G., Sedera, D., & Chan, T. (2008). Re-conceptualizing Information System Success: The IS-Impact Measurement Model. Journal of the Association for Information Systems, 9(7), 377–408. https://doi.org/10.17705/1jais.00164 236 Gao, Q., Dai, Y., Fan, Z., & Kang, R. (2010). Understanding factors affecting perceived sociability of social software. Computers in Human Behavior, 26(6), 1846–1861. https://doi.org/10.1016/j.chb.2010.07.022 Garrison, J. (1995). Deweyan pragmatism and the epistemology of contemporary social constructivism. American Educational Research Journal, 32(4), 716–740. Geerts, G. L. (2011). A design science research methodology and its application to accounting information systems research. International Journal of Accounting Information Systems, 12(2), 142–151. https://doi.org/10.1016/j.accinf.2011.02.004 Ghavifekr, S., Razak, A. Z. A., Ghani, A. M. F., & Ran, N. Y. (2015). ICT Integration In Education: Incorporation for Teaching & Learning Improvement. The Malaysian Online Journal of Educational Technology, 2(2), 22–45. Gibbs, G. (1988). Learning by doing: A guide to learning and teaching methods. Oxford Brookes University,Oxford. Gibson, A., Aitken, A., Sándor, Á., Buckingham Shum, S., Tsingos-Lucas, C., & Knight, S. (2017). Reflective writing analytics for actionable feedback. Learning Analytics and Knowledge, 153–162. https://doi.org/10.1145/3027385.3027436 Giles, Jr., Dwightr, E., & Janet, E. (1994). The Theoretical Roots of Service-Learning in John Dewey: Toward a Theory of Service-Learning. Michigan Journal of Community Service Learning, 1(1), 77–85. Graham, C. R., Borup, J., & Smith, N. B. (2012). Using TPACK as a framework to understand teacher candidates’ technology integration decisions: TPACK decision making. Journal of Computer Assisted Learning, 28(6), 530–546. 237 Grand, J. A., Braun, M. T., Kuljanin, G., Kozlowski, S. W. J., & Chao, G. T. (2016). The dynamics of team cognition: A process-oriented theory of knowledge emergence in teams. Journal of Applied Psychology, 101(10), 1353–1385. Gregor, S., & Hevner, A. R. (2013). Positioning and Presenting Design Science Research for Maximum Impact. MIS Quarterly, 37(2), 337–355. Gunawardena, C. N., & Zittle, F. J. (1997). Social presence as a predictor of satisfaction within a computer‐mediated conferencing environment. American Journal of Distance Education, 11(3), 8–26. https://doi.org/10.1080/08923649709526970 Gungor, M. N., & Gungor, M. A. (2019). Pre-service English language teachers’ collaborative development: The emergence of research, rehearsal and reflection (3R) model from an activity theory perspective. European Journal of Teacher Education, 42(1), 98–115. https://doi.org/10.1080/02619768.2018.1545016 Guo, F., Yao, M., Wang, C., Yan, W., & Zong, X. (2016). The Effects of Service Learning on Student Problem Solving: The Mediating Role of Classroom Engagement. Teaching of Psychology, 43(1), 16–21. Hair, J. F., Hollingsworth, C. L., Randolph, A. B., & Chong, A. Y. L. (2017). An updated and expanded assessment of PLS-SEM in information systems research. Industrial Management & Data Systems, 117(3), 442–458. Hair, J. F., Hult, Tomas. M. G., Ringle, C. M., & Sarstedt, M. (2014). A primer on partial least squares structural equation modeling (PLS-SEM). Sage. Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet. Journal of Marketing Theory and Practice, 19(2), 139–152. Hakkinen, P., Järvelä, S., Mäkitalo-Siegl, K., Ahonen, A., Näykki, P., & Valtonen, T. (2017). Preparing teacher-students for twenty-first-century learning practices (PREP 21): A 238 framework for enhancing collaborative problem-solving and strategic learning skills. Teachers and Teaching, 23(1), 25–41. Halberstadt, J., Schank, C., Euler, M., & Harms, R. (2019). Learning Sustainability Entrepreneurship by Doing: Providing a Lecturer-Oriented Service Learning Framework. Sustainability, 11(5), 1-22. https://doi.org/10.3390/su11051217 Haque, Md. M., Chin, H. C., & Huang, H. (2009). Modeling fault among motorcyclists involved in crashes. Accident Analysis & Prevention, 41(2), 327–335. Hart, S. (2015). Engaging the learner: The ABC’s of service–learning. Teaching and Learning in Nursing, 10(2), 76–79. https://doi.org/10.1016/j.teln.2015.01.001 Harvey, M., Baker, M., Semple, A.-L., & Lloyd, K. (2017). Reflection for Learning: A Holistic Approach to Disrupting the Text. In K. McLachlan, G. Walkerden, & V. Fredericks (Eds.), Learning Through Community Engagement (pp. 171–184). https://doi.org/10.1007/978-981-10-0999-0_11 Harvey, M., Coulson, D., & Mackaway, J. (2010). Aligning reflection in the cooperative education curriculum. International Journal of Work-Integrated Learning, 11(3), 137-152. Hassanzadeh, A., Kanaani, F., & Elahi, S. (2012). A model for measuring e-learning systems success in universities. Expert Systems with Applications, 39(12), 10959–10966. https://doi.org/10.1016/j.eswa.2012.03.028 Hatcher, J. A., & Bringle, R. (1997). Reflection: Bridging the Gap between Service and Learning. College Teaching, 45(4), 153–158. Hellmuth, W. (2015). Design Theory for innovation of classroom-based information systems (PhD Thesis). Queensland University of Technology, Queensland, Australia. 239 Helms, M. M., Rutti, R. M., Hervani, A. A., LaBonte, J., & Sarkarat, S. (2015). Implementing and Evaluating Online Service Learning Projects. Journal of Education for Business, 90(7), 369–378. Hennessy, S., Rojas-Drummond, S., Higham, R., Márquez, A. M., Maine, F., Ríos, R. M., … Barrera, M. J. (2016). Developing a coding scheme for analysing classroom dialogue across educational contexts. Learning, Culture and Social Interaction, 9(1), 16–44. https://doi.org/10.1016/j.lcsi.2015.12.001 Henseler, J., Ray, P. A., & Hubona, G. (2016). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management & Data Systems, 116(1), 2-20. https://doi.org/10.1108/IMDS-09-2015-0382 Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8 Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). Advances in International Marketing (20th ed.). Emerald. https://doi.org/10.1108/S1474-7979(2009)0000020014 Hevner, A. R., & Chatterjee, S. (2010). Design Research in Information Systems (2nd Ed.). Springer Science & Business Media. https://doi.org/10.1007/978-1-4419-5653-8 Hevner, A. R., March, S. T., & Ram, S. (2004). Design Science in Information Systems Research. MIS Quarterly, 28(1), 75–105. Hill, Y. Z., Renner, T., Acoba, F., Hiser, K., & Franco, R. W. (2014). Service-Larning’s Role in Achieving Institutional Outcomes: Engagement, Learning, and Achievement. In A. E. Traver & Z. P. Katz (Eds.), Service-Learning at the American Community College (pp. 169–182). 240 Hong, H.-Y., Lin, P.-Y., Chai, C. S., Hung, G.-T., & Zhang, Y. (2019). Fostering design-oriented collective reflection among preservice teachers through principle-based knowledge building activities. Computers & Education, 130, 105–120. https://doi.org/10.1016/j.compedu.2018.12.001 Hou, H.-T., & Wu, S.-Y. (2011). Analyzing the social knowledge construction behavioral patterns of an online synchronous collaborative discussion instructional activity using an instant messaging tool: A case study. Computers & Education, 57(2), 1459–1468. https://doi.org/10.1016/j.compedu.2011.02.012 Huggard, M., Boland, F., & Goldrick, C. M. (2014). Using cooperative learning to enhance critical reflection. Frontiers in Education Conference (FIE) Proceedings, 1–8. IEEE. Hulland, J. (1999). Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strategic Management Journal, 20(2), 195–204. Hullender, R., Hinck, S., Wood-Nartker, J., Burton, T., & Bowlby, S. (2015). Evidences of transformative learning in service-learning reflections. Journal of the Scholarship of Teaching and Learning, 15(4), 58–82. Hwang, H.-L., Wang, H.-H., Tu, C.-T., Chen, S., & Chang, S.-H. (2014). Reciprocity of service learning among students and paired residents in long-term care facilities. Nurse Education Today, 34(5), 854–859. https://doi.org/10.1016/j.nedt.2012.04.001 Isaacs, E., Konrad, A., Walendowski, A., Lennig, T., Hollis, V., & Whittaker, S. (2013). Echoes from the past: How technology mediated reflection improves well-being. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1071–1080. Retrieved from http://dl.acm.org/citation.cfm?id=2466137 Jeffrey, P., & Brooks, D. C. (2017). Faculty IT Study 2017 (p. 43) [Research Report]. Louisville. 241 Jonassen, D., Davidson, M., Collins, M., Campbell, J., & Haag, B. B. (1995). Constructivism and computer‐mediated communication in distance education. American Journal of Distance Education, 9(2), 7–26. https://doi.org/10.1080/08923649509526885 Julie, H. (2014). The development of an implementation framework for service-learning in the undergraduate nursing programme in the Western Cape (PhD Thesis, University of the Western Cape). Retrieved from http://etd.uwc.ac.za/xmlui/handle/11394/4117 Junglas, I., Goel, L., Abraham, C., & Ives, B. (2013). The Social Component of Information Systems—How Sociability Contributes to Technology Acceptance. Journal of the Association for Information Systems, 14(10), 585–616. Keane, T., Keane, W. F., & Blicblau, A. S. (2013). The use of educational technologies to equip students with 21st century skills. Presented at the In 10th IFIP World Conference on Computers in Education, Torun,Poland. Keane, T., Keane, W. F., & Blicblau, A. S. (2014). Beyond traditional literacy: Learning and transformative practices using ICT. Education and Information Technologies, 21(4), 769–781. https://doi.org/10.1007/s10639-014-9353-5 Khan, T. M., & Jacob, S. A. (2015). Service learning for pharmacy students: Experience of a home-grown Community Engagement Elective unit: Service learning for pharmacy students. Journal of Pharmacy Practice and Research, 45(3), 314–317. Kimmerle, J., Moskaliuk, J., Oeberst, A., & Cress, U. (2015). Learning and Collective Knowledge Construction With Social Media: A Process-Oriented Perspective. Educational Psychologist, 50(2), 120–137. Kirkwood, A., & Price, L. (2014). Technology-enhanced learning and teaching in higher education: What is ‘enhanced’ and how do we know? A critical literature review. Learning, Media and Technology, 39(1), 6–36. 242 Kohlbry, P., & Daugherty, J. (2013). Nursing Faculty Roles in International Service–Learning Projects. Journal of Professional Nursing, 29(3), 163–167. https://doi.org/10.1016/j.profnurs.2012.04.018 Kolb, D. A. (1984). Experiential Learning: Experience as the Source of Learning and Development. Englewood Cliffs: New Jersey: Prentice Hall. Kolb, D. A. (2014). Experiential Learning: Experience as the Source of Learning and Development. FT Press. Koo, C., Wati, Y., & Chung, N. (2013). A Study of Mobile and Internet Banking Service: Applying for IS Success Model. Asia Pacific Journal of Information Systems, 23(1), 65–86. Kothari, C. R. (2004). Research Methodology Methods and Techniques (2nd ed.). New Age International Limited, Publishers. Kreijns, K., & Kirschner, P. A. (2004). Designing Sociable CSCL Environments. In J.-W. Strijbos, P. A. Kirschner, & R. L. Martens (Eds.), What We Know About CSCL: And Implementing It In Higher Education (pp. 221–243). https://doi.org/10.1007/1-4020-7921-4_9 Kreijns, K., & Kirschner, P. A. (2018). Extending the SIPS-Model: A Research Framework for Online Collaborative Learning. In V. Pammer-Schindler, M. Pérez-Sanagustín, H. Drachsler, R. Elferink, & M. Scheffel (Eds.), Lifelong Technology-Enhanced Learning (Vol. 11082, pp. 277–290). https://doi.org/10.1007/978-3-319-98572-5_21 Kreijns, K., Kirschner, P. A., & Jochems, W. (2003). Identifying the pitfalls for social interaction in computer-supported collaborative learning environments: A review of the research. Computers in Human Behavior, 19(3), 335–353. 243 Kreijns, K., Kirschner, P. A., Jochems, W., & van Buuren, H. (2007). Measuring perceived sociability of computer-supported collaborative learning environments. Computers & Education, 49(2), 176–192. https://doi.org/10.1016/j.compedu.2005.05.004 Kreijns, K., Kirschner, P. A., & Vermeulen, M. (2013). Social Aspects of CSCL Environments: A Research Framework. Educational Psychologist, 48(4), 229–242. Kreijns, K., Van Acker, F., Vermeulen, M., & Van Buuren, H. (2014). Community of Inquiry: Social Presence Revisited. E-Learning and Digital Media, 11(1), 5–18. https://doi.org/10.2304/elea.2014.11.1.5 Krogstie, B. R., Prilla, M., Wessel, D., Knipfer, K., & Pammer, V. (2012). Computer Support for Reflective Learning in the Workplace: A Model. 2012 IEEE 12th International Conference on Advanced Learning Technologies, 151–153. Krutka, D. G., Bergman, D. J., Flores, R., Mason, K., & Jack, A. R. (2014). Microblogging about teaching: Nurturing participatory cultures through collaborative online reflection with pre-service teachers. Teaching and Teacher Education, 40(1), 83–93. https://doi.org/10.1016/j.tate.2014.02.002 Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174. Langlois, J. (2019). Self-Determined Service-Learning Framework: Enhancing Graduate Students’ Perceptions of Competence (PhD Thesis). University of St. Thomas, Minnesota, USA. Laylavi, F. (2017). A Framework for Adopting Twitter Data in Emergency Response (PhD Thesis). The University of Melbourne, Victoria, Australia. Le Grange, L. (2007). The ‘theoretical foundations’ of community service-learning: From taproots to rhizomes. Education as Change, 11(3), 3–13. 244 Le, Q. T., Pedro, A., & Park, C. S. (2015). A Social Virtual Reality Based Construction Safety Education System for Experiential Learning. Journal of Intelligent & Robotic Systems, 79(3–4), 487–506. https://doi.org/10.1007/s10846-014-0112-z Lee, S. M., & Lee, S. (2012). Success factors of open‐source enterprise information systems development. Industrial Management & Data Systems, 112(7), 1065–1084. Leino, J. (1995). Cooperative Reflection in Teacher Education: A Finish Perspective. Teacher Education Quarterly, 22(1), 31–38. Lim, C. P., Lee, J. C.-K., & Jia, N. (2016). E-portfolios in Pre-service Teacher Education: Sustainability and Lifelong Learning. In J. Chi-Kin Lee & C. Day (Eds.), Quality and Change in Teacher Education (pp. 163–174). Lin, H.-F. (2007). Measuring Online Learning Systems Success: Applying the Updated DeLone and McLean Model. CyberPsychology & Behavior, 10(6), 817–820. https://doi.org/10.1089/cpb.2007.9948 Lin, L. (2015). Exploring Collaborative Learning: Theoretical and Conceptual Perspectives. In L. Lin (Ed.), Investigating Chinese HE EFL Classrooms (pp. 11–28). https://doi.org/10.1007/978-3-662-44503-7_2 Lin, X., Hmelo, C., Kinzer, C. K., & Secules, T. J. (1999). Designing technology to support reflection. Educational Technology Research and Development, 47(3), 43–62. https://doi.org/10.1007/BF02299633 Longart, P., Wickens, E., Ocaña, W., & Llugsha, V. (2017). A stakeholder analysis of a service learning project for tourism development in An Ecuadorian Rural Community. Journal of Hospitality, Leisure, Sport & Tourism Education, 20, 87–100. https://doi.org/10.1016/j.jhlste.2017.04.002 245 Machado-Da-Silva, F. N., Meirelles, F. D. S., Filenga, D., & Filho, M. B. (2015). Student Satisfaction Process In Virtual Learning System: Considerations Based In Information And Service Quality From Brazil’s Experience. Turkish Online Journal of Distance Education, 15(3), 122–142. https://doi.org/10.17718/tojde.52605 March, S. T., & Smith, G. F. (1995). Design and natural science research on information technology. Decision Support Systems, 15(4), 251–266. Martins, J., Branco, F., Gonçalves, R., Au-Yong-Oliveira, M., Oliveira, T., Naranjo-Zolotov, M., & Cruz-Jesus, F. (2018). Assessing the success behind the use of education management information systems in higher education. Telematics and Informatics, 38(1), 182–193. https://doi.org/10.1016/j.tele.2018.10.001 Md-Ali, A. (2013). Web Interactive Multimedia Technology in University Learning Environments (PhD Thesis). RMIT University, Australia. Meyer, C. L., Harned, M., Schaad, A., Sunder, K., Palmer, J., & Tinch, C. (2016). Inmate Education as a Service Learning Opportunity for Students: Preparation, Benefits, and Lessons Learned. Teaching of Psychology, 43(2), 120–125. Mishra, P., & Koehler, M. J. (2006). Technological Pedagogical Content Knowledge: A Framework for Teacher Knowledge. Teachers College Record, 108(6), 1017–1054. Mitchell, T. D., Richard, F. D., Battistoni, R. M., Rost-Banik, C., Netz, R., & Zakoske, C. (2015). Reflective Practice That Persists: Connections between Reflection in Service-Learning Programs and in Current Life. Michigan Journal of Community Service Learning, 21(2), 49–63. MOEM. (2015). Malaysia Education Blueprint 2015-2025 (p. 40). Retrieved from Ministry of Education Malaysia website: www.mohe.gov.my 246 Mohammadi, H. (2015). Investigating users’ perspectives on e-learning: An integration of TAM and IS success model. Computers in Human Behavior, 45(1), 359–374. https://doi.org/10.1016/j.chb.2014.07.044 Mokko Ahonen. (2011). Designing an Information System for Open Innovation Bridging the Gap between Individual and Organisational Creativity (PhD Thesis). University of Tampere, Finland. Molee, L. M., Henry, M. E., Sessa, V. I., & McKinney-Prupis, E. R. (2010). Assessing Learning in Service-Learning Courses Through Critical Reflection. Journal of Experiential Education, 33(3), 239–257. https://doi.org/10.5193/JEE33.3.239 Molinillo, S., Aguilar-Illescas, R., Anaya-Sánchez, R., & Vallespín-Arán, M. (2018). Exploring the impacts of interactions, social presence and emotional engagement on active collaborative learning in a social web-based environment. Computers & Education, 123(1), 41–52. https://doi.org/10.1016/j.compedu.2018.04.012 Montgomery, S. E., Miller, W., Foss, P., Tallakson, D., & Howard, M. (2017). Banners for Books: “Mighty-Hearted” Kindergartners Take Action through Arts-Based Service Learning. Early Childhood Education Journal, 45(1), 1–14. Moon, J. A. (1999). Reflection in learning and professional development: Theory and practice. London: Kogan Page. Musa, N., Ibrahim, D. H. A., Abdullah, J., Saee, S., Ramli, F., Mat, A. R., & Khiri, M. J. A. (2017). A Methodology for Implementation of Service Learning in Higher Education Institution: A case study from Faculty of Computer Science and Information Technology, UNIMAS. Journal of Telecommunication, Electronic and Computer Engineering, 9(2–10), 101–109. 247 Myers, M. D., & Venable, J. R. (2014). A set of ethical principles for design science research in information systems. Information & Management, 51(6), 801–809. Nejmeh, B. A. (Ed.). (2012). Service-Learning in the Computer and Information Sciences: Practical Applications in Engineering Education. Nguyen, Q. H. (2015). Building a Web Application with Laravel 5. Oulu University of Applied Sciences. Nielsen, D. (2016). Facilitating Service Learning in the Online Technical Communication Classroom. Journal of Technical Writing and Communication, 46(2), 236–256. https://doi.org/10.1177/0047281616633600 Novakovich, J. (2016). Fostering critical thinking and reflection through blog-mediated peer feedback: Fostering critical thinking and reflection. Journal of Computer Assisted Learning, 32(1), 16–30. https://doi.org/10.1111/jcal.12114 Olfat, H. (2013). Automatic Spatial Metadata Updating and Enrichment (PhD Thesis). The University of Melbourne, Melbourne, Australia. O’Neil, C. A., Rietschel, M. J., & Fisher, C. A. (2013). Developing Online Learning Environments in Nursing Education (3rd ed.). Springer Publishing Company. Osman, K. (2011). The Inculcation of Generic Skills through Service Learning Experience among Science Student Teachers. Procedia - Social and Behavioral Sciences, 18(1), 148–153. https://doi.org/10.1016/j.sbspro.2011.05.022 Pallant, J. (2011). SPSS Survival Manual: A Step By Step Guide to Data Analysis Using SPSS (4th ed.). Retrieved from www.allenandunwin.com Peacock, C. (2012). Design science research toward designing/prototyping a repeatable model for testing location management (LM) algorithms for wireless networking (PhD Thesis). Capella University, USA. 248 Peffers, K., Rothenberger, M., & Kuechler, B. (2012). Design Science Research in Information Systems: Advances in Theory and Practice (1st ed.). Springer. https://doi.org/10.1007/978-3-642-29863-9 Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A Design Science Research Methodology for Information Systems Research. Journal of Management Information Systems, 24(3), 45–77. https://doi.org/10.2753/MIS0742-1222240302 Petkus, E. (2000). A Theoretical and Practical Framework for Service-Learning in Marketing: Kolb’s Experiential Learning Cycle. Journal of Marketing Education, 22(1), 64–70. https://doi.org/10.1177/0273475300221008 Petter, S., DeLone, W., & McLean, E. (2008). Measuring information systems success: Models, dimensions, measures, and interrelationships. European Journal of Information Systems, 17(3), 236–263. https://doi.org/10.1057/ejis.2008.15 Phielix, C., Prins, F. J., Kirschner, P. A., Erkens, G., & Jaspers, J. (2011). Group awareness of social and cognitive performance in a CSCL environment: Effects of a peer feedback and reflection tool. Computers in Human Behavior, 27(3), 1087–1102. https://doi.org/10.1016/j.chb.2010.06.024 Piaget, J. (1977). The development of thought: Equilibration of cognitive structures. New York: NY: Viking Press. Pianpeng, T., & Koraneekij, P. (2016). Development of a Model of Reflection Using Video Based on Gibbs’s Cycle in Electronic Portfolio to Enhance Level of Reflective Thinking of Teacher Students. International Journal of Social Science and Humanity, 6(1), 26–31. https://doi.org/10.7763/IJSSH.2016.V6.612 Plack, M. M., Driscoll, M., Blissett, S., McKenna, R., & Plack, T. P. (2005). A method for assessing reflective journal writing. Journal of Allied Health, 34(4), 199–208. 249 Poulova, P., & Simonova, I. (2014). E-learning Reflected in Research Studies in Czech Republic: Comparative Analyses. Procedia - Social and Behavioral Sciences, 116(1), 1298–1304. https://doi.org/10.1016/j.sbspro.2014.01.386 Price, L., & Kirkwood, A. (2014). Using technology for teaching and learning in higher education: A critical review of the role of evidence in informing practice. Higher Education Research & Development, 33(3), 549–564. Prilla, M. (2015). Supporting Collaborative Reflection at Work: A Socio-Technical Analysis. AIS Transactions on Human-Computer Interaction, 7(1), 1–17. Prilla, M., & Blunk, O. (2015). Reflective TEL: Augmenting Learning Tools with Reflection Support. In Lecture Notes in Computer Science. Design for Teaching and Learning in a Networked World (pp. 626–629). https://doi.org/10.1007/978-3-319-24258-3_74 Prilla, M., Degeling, M., & Herrmann, T. (2012). Collaborative reflection at work: Supporting informal learning at a healthcare workplace. Proceedings of the 17th ACM International Conference on Supporting Group Work, 55–64. Retrieved from http://dl.acm.org/citation.cfm?id=2389185 Prilla, M., Nolte, A., Blunk, O., Liedtke, D., & Renner, B. (2015). Analyzing collaborative reflection support: A content analysis approach. ECSCW 2015: Proceedings of the 14th European Conference on Computer Supported Cooperative Work, 19-23 September 2015, Oslo, Norway, 123–142. Prilla, M., Pammer, V., & Krogstie, B. (2013). Fostering collaborative redesign of work practice: Challenges for tools supporting reflection at work. ECSCW 2013: Proceedings of the 13th European Conference on Computer Supported Cooperative 250 Work, 21-25 September 2013, Paphos, Cyprus, 249–268. Retrieved from http://link.springer.com/chapter/10.1007/978-1-4471-5346-7_13 Prilla, M., & Renner, B. (2014). Supporting Collaborative Reflection at Work: A Comparative Case Analysis. 18th International Conference on Supporting Group Work, 182–193. https://doi.org/10.1145/2660398.2660400 Puentedura, R. R. (2009). As We May Teach: Educational Technology, From Theory Into Practice. Rashid, T., & Asghar, H. M. (2016). Technology use, self-directed learning, student engagement and academic performance: Examining the interrelations. Computers in Human Behavior, 63(1), 604–612. https://doi.org/10.1016/j.chb.2016.05.084 Richardson, S. M. (2006). Healthcare Information Systems: Design theory, principles and application’ (PhD Thesis). University of Central Florida, USA. Roakes, S. L., & Norris-Tirrell, D. (2000). Community Service Learning in Planning Education A Framework for Course Development. Journal of Planning Education and Research, 20(1), 100–110. https://doi.org/10.1177/073945600128992636 Rodriguez, M. A. (2014). Content Analysis as a Method to Assess Online Discussions for Learning. SAGE Open, 4(4), 1–14. https://doi.org/10.1177/2158244014559019 Rolfe, G., Freshwater, D., & Jasper, M. (2001). Critical reflection for nursing and the helping professions: A user’s guide. Palgrave Basingstoke. Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case study research in software engineering. Empirical Software Engineering, 14(2), 131–164. https://doi.org/10.1007/s10664-008-9102-8 251 Rutti, R. M., LaBonte, J., Helms, M. M., Hervani, A. A., & Sarkarat, S. (2016). The service learning projects: Stakeholder benefits and potential class topics. Education + Training, 58(4), 422–438. https://doi.org/10.1108/ET-06-2015-0050 Ryan, M. (2011). Improving reflective writing in higher education: A social semiotic perspective. Teaching in Higher Education, 16(1), 99–111. Ryan, M., & Ryan, M. (2013). Theorising a model for teaching and assessing reflective learning in higher education. Higher Education Research & Development, 32(2), 244–257. https://doi.org/10.1080/07294360.2012.661704 Salam, M., Awang Iskandar, D. N., Ibrahim, D. H. A., & Farooq, M. S. (2019). Service learning in higher education: A systematic literature review. Asia Pacific Education Review. 20(4), 573–593. https://doi.org/10.1007/s12564-019-09580-6 Salam, M., Iskandar, D. N. F. A., & Ibrahim, D. H. A. (2017). Service Learning Support for Academic Learning and Skills Development. Journal of Telecommunication, Electronic and Computer Engineering, 9(2–10), 111–117. Sam, A. (2016). A Framework for Micro Level Assessment and 3D Visualisation of Flood Damage to a Building (PhD Thesis). The University of Melbourne, Victoria, Australia. Samardzija, A. Ć. (2016). Measuring the Success of the Interactive Mobile Information Systems at the Individual Level of Use (PhD Thesis). University of Zagreb. Sanchez-Franco, M. J. (2009). The Moderating Effects of Involvement on the Relationships Between Satisfaction, Trust and Commitment in e-Banking. Journal of Interactive Marketing, 23(3), 247–258. https://doi.org/10.1016/j.intmar.2009.04.007 252 Scardamalia, M. (2002). Collective cognitive responsibility for the advancement of knowledge. In B. Smith & C. Bereiter (Eds.), Liberal education in a knowledge society (B. Simth). Chicago: Open Court. Scardamalia, M., & Bereiter, C. (1991). Higher Levels of Agency for Children in Knowledge Building: A Challenge for the Design of New Knowledge Media. Journal of the Learning Sciences, 1(1), 37–68. https://doi.org/10.1207/s15327809jls0101_3 Scardamalia, M., & Bereiter, C. (2006). Knowledge building: Theory, pedagogy, and technology. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (2nd ed., pp. 97–118). New York: Cambridge University Press. Schon, D. A. (1983). The reflective practitioner: How professionals think in action (Vols. 1–5126). New York: Basic Books. Schuh, K. L., & Barab, S. A. (2008). Philosophical Perspectives. In D. Jonassen, M. J. Spector, M. Driscoll, & M. D. Merrill (Eds.), Handbook of Research on Educational Communications and Technology, (pp. 67–82). New York: Routledge. Shanmugapriya, S., & Subramanian, K. (2015). Structural equation model to investigate the factors influencing quality performance in Indian construction projects. Sadhana, 40(6), 1975–1987. https://doi.org/10.1007/s12046-015-0421-3 Siegel, A. W., & Schraagen, J. M. (2017). Team reflection makes resilience-related knowledge explicit through collaborative sensemaking: Observation study at a rail post. Cognition, Technology & Work, 19(1), 127–142. Singh, G., Hawkins, L., & Whymark, G. (2009). Collaborative knowledge building process: An activity theory analysis. VINE, 39(3), 223–241. 253 Smit, E. M., & Tremethick, M. J. (2017). Value of Online Group Reflection After International Service-Learning Experiences: I Never Thought of That. Nurse Educator, 42(6), 286–289. https://doi.org/10.1097/NNE.0000000000000381 Sommerville, I. (2011). Software engineering (9th ed.). Addison-Wesley Educational Publishers Inc. Soria, K. M., & Weiner, B. (2013). A “Virtual Fieldtrip”: Service Learning in Distance Education Technical Writing Courses. Journal of Technical Writing and Communication, 43(2), 181–200. https://doi.org/10.2190/TW.43.2.e Stahl, G. (2000). A model of collaborative knowledge-building. Fourth International Conference of the Learning Sciences, 10, 70–77. Mahwah, NJ: Erlbaum, 2000a. Stahl, G. (2002). Contributions to a Theoretical Framework for CSCL. Proceedings of the Conference on Computer Support for Collaborative Learning: Foundations for a CSCL Community, 62–71. Stahl, G. (2005). Group cognition in computer-assisted collaborative learning. Journal of Computer Assisted Learning, 21(2), 79–90. Stahl, G. (2013). Theories of Cognition in Collaborative Learning. In C. E. Hmelo-Silver (Ed.), The international handbook of collaborative learning (1st ed., pp. 86–102). Routledge. Stahl, G., & Hesse, F. (2009). Practice perspectives in CSCL. International Journal of Computer-Supported Collaborative Learning, 4(2), 109–114. Stahl, G., Koschmann, T., & Suthers, D. (2006). Computer-supported collaborative learning. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (R. K. Sawyer). Cambridge, UK: Cambridge University Press. 254 Stale, W. (2012). Model-Driven Software Development for Continuity of Care Information Systems (PhD Thesis). University of Tromso, Norway. Stokes, J., McCormick, M., Farrell, V., & Bratsou, M.-L. (2017). Innovation through reflection and collaboration: Students and clinicians learn side by side. Bulletin: The Official Magazine of the Royal College of Speech and Language Therapists, 18–19. Stover, C. M. (2016). Reflection Promotes Transformation in a Service Learning Course. Metropolitan Universities, 27(1), 25–43. Sun, P., Tsai, R. J., Finger, G., Chen, Y.-Y., & Yeh, D. (2008). What drives a successful e-Learning? An empirical investigation of the critical factors influencing learner satisfaction. Computers & Education, 50(4), 1183–1202. Sun, Y.-C., & Yang, F.-Y. (2015). I help, therefore, I learn: Service learning on Web 2.0 in an EFL speaking class. Computer Assisted Language Learning, 28(3), 202–219. https://doi.org/10.1080/09588221.2013.818555 Talbot, P., & Bizzell, B. (2016). Teaching, Technology, and Transformation. In R. Papa & F. W. English (Eds.), Educational Leaders Without Borders (pp. 83–104). Tam, C., & Oliveira, T. (2016). Understanding the impact of m-banking on individual performance: DeLone & McLean and TTF perspective. Computers in Human Behavior, 61(1), 233–244. https://doi.org/10.1016/j.chb.2016.03.016 Tenenhaus, M., Vinzi, V. E., Chatelin, Y.-M., & Lauro, C. (2005). PLS path modeling. Computational Statistics & Data Analysis, 48(1), 159–205. Tracey, M. W., & Kacin, S. E. (2014). Graduate students in a service learning design case: The development of a parenting program. Journal of Computing in Higher Education, 26(3), 227–237. https://doi.org/10.1007/s12528-014-9086-x 255 Tu, C.-H., & McIsaac, M. (2002). The Relationship of Social Presence and Interaction in Online Classes. The American Journal of Distance Education, 16(3), 131–150. Turky, M. A. (2016). Promoting Reflective Thinking Skills by Using Web 2.0 Application. Electronic Journal Tanta University, Egypt, 1(1), 1-8. Retrieved from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2758239 Turnley, M. (2007). Integrating Critical Approaches to Technology and Service-Learning Projects. Technical Communication Quarterly, 16(1), 103–123. https://doi.org/10.1080/10572250709336579 Uppal, M. A., Ali, S., & Gulliver, S. R. (2017). Factors determining e-learning service quality. British Journal of Educational Technology, 49(3), 412–426. Urbach, N., Smolnik, S., & Riempp, G. (2010). An empirical investigation of employee portal success. The Journal of Strategic Information Systems, 19(3), 184–206. Veen, M., & dela-Croix, A. (2016). Collaborative Reflection Under the Microscope: Using Conversation Analysis to Study the Transition From Case Presentation to Discussion in GP Residents’ Experience Sharing Sessions. Teaching and Learning in Medicine, 28(1), 3–14. https://doi.org/10.1080/10401334.2015.1107486 Venable, J. (2006). A framework for design science research activities. In Emerging Trends and Challenges in Information Technology Management, 184–187. Washington, DC , USA: Idea Group Publishing. Venable, J., Pries-Heje, J., & Baskerville, R. (2012). A Comprehensive Framework for Evaluation in Design Science Research. In K. Peffers, M. Rothenberger, & B. Kuechler (Eds.), Design Science Research in Information Systems. Advances in Theory and Practice, (1st ed., pp. 423–438). https://doi.org/10.1007/978-3-642-29863-9_31 256 Venable, J., Pries-Heje, J., & Baskerville, R. (2016). FEDS: A Framework for Evaluation in Design Science Research. European Journal of Information Systems, 25(1), 77–89. https://doi.org/10.1057/ejis.2014.36 Venkatesh, W., Morris, M. G., Davis, G. B. & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425–478. Vinitha, P. G. (2015). The role of reflective learning, service-learning and social impact in the sustainability of Malaysian universities (PhD Thesis, Universiti Utara Malaysia). Retrieved from http://etd.uum.edu.my/5759/ Voss, H. C., Mathews, L. R., Fossen, T., Scott, G., & Schaefer, M. (2015). Community–Academic Partnerships: Developing a Service–Learning Framework. Journal of Professional Nursing, 31(5), 395–401. Vygotsky, L. (1980). Mind in society: The development of higher psychological processes. Cambridge: MA: Harvard University Press. Walker, R., Voce, J., & Jenkins, M. (2016). Charting the development of technology-enhanced learning developments across the UK higher education sector: A longitudinal perspective (2001–2012). Interactive Learning Environments, 24(3), 438–455. https://doi.org/10.1080/10494820.2013.867888 Wang, H. C., & Chiu, Y. F. (2011). Assessing e-learning 2.0 system success. Computers & Education, 57(2), 1790–1800. https://doi.org/10.1016/j.compedu.2011.03.009 Wang, Y.-S., & Liao, Y.-W. (2008). Assessing eGovernment systems success: A validation of the DeLone and McLean model of information systems success. Government Information Quarterly, 25(4), 717–733. https://doi.org/10.1016/j.giq.2007.06.002 257 Wasko, M. M., & Faraj, S. (2005). Why Should I Share? Examining Social Capital and Knowledge Contribution in Electronic Networks of Practice. MIS Quarterly, 29(1), 35–57. https://doi.org/10.2307/25148667 Weidlich, J., & Bastiaens, T. J. (2019). Designing sociable online learning environments and enhancing social presence: An affordance enrichment approach. Computers & Education, 142, 1-17. https://doi.org/10.1016/j.compedu.2019.103622 Wetzels, M., Odekerken-Schröder, G., & van Oppen, C. (2009). Using PLS Path Modeling for Assessing Hierarchical Construct Models: Guidelines and Empirical Illustration. MIS Quarterly, 33(1), 177–195. https://doi.org/10.2307/20650284 Whitley, M. A., & Walsh, D. S. (2014). A Framework for the Design and Implementation of Service-learning Courses. Journal of Physical Education, Recreation & Dance, 85(4), 34–39. https://doi.org/10.1080/07303084.2014.884835 Wixom, B. H., & Todd, P. A. (2005). A Theoretical Integration of User Satisfaction and Technology Acceptance. Information Systems Research, 16(1), 85–102. https://doi.org/10.1287/isre.1050.0042 Wright, N. (2010). Twittering in teacher education: Reflecting on practicum experiences. Open Learning: The Journal of Open, Distance and e-Learning, 25(3), 259–265. https://doi.org/10.1080/02680513.2010.512102 Yamada, M., & Goda, Y. (2012). Application of social presence principles to CSCL design for quality interactions. In J. Jia (Ed.), Educational stages and interactive learning: From kindergarten to workplace training (pp. 31–48). Retrieved from http://mark-lab.net/wp-content/uploads/2014/10/CALL20_1-1.pdf 258 Yamada, M., Goda, Y., Matsukawa, H., Hata, K., & Yasunami, S. (2016). A Computer-Supported Collaborative Learning Design for Quality Interaction. IEEE MultiMedia, 23(1), 48–59. https://doi.org/10.1109/MMUL.2015.95 Yin, Robert. K. (2003). Case Study Research Design and Methods (3rd ed.). London: Sage. Yoder, K. M. (2006). A Framework for Service-Learning in Dental Education. Journal of Dental Education, 70(2), 115–123. Yukawa, J. (2006). Co-reflection in online learning: Collaborative critical thinking as narrative. International Journal of Computer-Supported Collaborative Learning, 1(2), 203–228. https://doi.org/10.1007/s11412-006-8994-9 Zhang, G., Zeller, N., Griffith, R., Metcalf, D., Williams, J., Shea, C., & Misulis, K. (2011). Using the context, input, process, and product evaluation model (CIPP) as a comprehensive framework to guide the planning, implementation, and assessment of service-learning programs. Journal of Higher Education Outreach and Engagement, 15(4), 57–84. Zheng, L. (2017a). Analyzing Knowledge Convergence in CSCL: An Empirical Study. In L. Zheng (Ed.), Knowledge Building and Regulation in Computer-Supported Collaborative Learning (pp. 33–46). https://doi.org/10.1007/978-981-10-1972-2_3 Zheng, L. (2017b). Promoting Productive Collaborative Learning Using Concept Maps: A Case Study. In L. Zheng (Ed.), Knowledge Building and Regulation in Computer-Supported Collaborative Learning (pp. 99–114). https://doi.org/10.1007/978-981-10-1972-2_7
(1)