Home
About
Articles on COVID-19
Browse
Browse by Year
Browse by Subject
Browse by Type
Browse by Author
Browse by Faculty, Institute, Centre
e-Archive
UNIMAS Niche Areas
Biodiversity and Environmental Conservation
Sustainable Community Transformation
Information, Communication and Creative Technology
Corporate Memory
Accreditation
Agreement
Circular
Contract Document
Memorandum
Minutes of Meeting
Transcript
Statistics
How to Upload Article
Login
Browse by Reference
Please select a value to browse from the list below.
-
(2)
[1] [2] [3] [4] [5] [6] [7] [8] [9] N. Jee, “Gula apong local sales at RM3.38 million, import RM1.93 million in 2021,” New Sarawak Tribune, 2022. https://www.newsarawaktribune.com.my/gula-apong-local-sales-at-rm3-38-million-import-rm1-93-million-in-2021 (accessed Sep. 06, 2023). G. P. Pei, “Sarawak aims to modernise agriculture, Attract more young farmers,” New Straits Times, 2021. https://www.nst.com.my/news/nation/2021/09/727294/sarawak-aims-modernise-agriculture-attract-more-young-farmers (accessed Sep. 13, 2022). L. D. Williams, “Concepts of digital economy and industry 4.0 in intelligent and information systems,” International Journal of Intelligent Networks, vol. 2, pp. 122–129, 2021, doi: 10.1016/j.ijin.2021.09.002. S. Wolfert and G. Isakhanyan, “Sustainable agriculture by the internet of things – a practitioner’s approach to monitor sustainability progress,” Computers and Electronics in Agriculture, vol. 200, Sep. 2022, doi: 10.1016/j.compag.2022.107226. M. Dhanaraju, P. Chenniappan, K. Ramalingam, S. Pazhanivelan, and R. Kaliaperumal, “Smart farming: internet of things (IoT)based sustainable agriculture,” Agriculture, vol. 12, no. 10, Oct. 2022, doi: 10.3390/agriculture12101745. M. S. Farooq, S. Riaz, A. Abid, K. Abid, and M. A. Naeem, “A survey on the role of IoT in agriculture for the implementation of smart farming,” IEEE Access, vol. 7, pp. 156237–156271, 2019, doi: 10.1109/ACCESS.2019.2949703. A. Glaros, D. Thomas, E. Nost, E. Nelson, and T. Schumilas, “Digital technologies in local agri-food systems: opportunities for a more interoperable digital farmgate sector,” Frontiers in Sustainability, vol. 4, Feb. 2023, doi: 10.3389/frsus.2023.1073873. T. R. C. Konfo, F. M. C. Djouhou, M. H. Hounhouigan, E. Dahouenon-Ahoussi, F. Avlessi, and C. K. D. Sohounhloue, “Recent advances in the use of digital technologies in agri-food processing: a short review,” Applied Food Research, vol. 3, no. 2, Dec. 2023, doi: 10.1016/j.afres.2023.100329. F. Sahari, A. Durin, R. Hasan, S. A. Z. Adruce, and S. A. Rahman, “Adaptability to settlement pattern and choice of subsistence activities: emergence of material culture within the Saribas Malay in Betong, Sarawak,” SHS Web of Conferences, vol. 45, Jun. 2018, doi: 10.1051/shsconf/20184506001. [10] S. Sahrani, D. N. Abang Zaidel, D. A. Awang Mat, K. Hong Ping, J. Abdul Karim, and M. H. Md Saad, “Internet of things-enabled framework for gula apong industry,” Journal of Information System and Technology Management, vol. 8, no. 32, pp. 82–98, Sep. 2023, doi: 10.35631/JISTM.832006. [11] M. S. Abdullah et al., “The utilization of nypa fruticans palm sugar (gula apong) as an altervative sweetener in Kaya and its effects on physicochemical and sensory properties,” International Journal of Mechanical Engineering, vol. 7, no. 6, pp. 158–166, 2022. [12] V. Fong, “Gula apong - hard work, sweet rewards,” New Sarawak Tribune, 2022. https://www.newsarawaktribune.com.my/ameans-of-earning-full-of-uncertainties/ (accessed Sep. 12, 2022). [13] M. E. Pérez-Pons, M. Plaza-Hernández, R. S. Alonso, J. Parra-Domínguez, and J. Prieto, “Increasing profitability and monitoring environmental performance: a case study in the agri-food industry through an edge-IoT platform,” Sustainability, vol. 13, no. 1, Dec. 2020, doi: 10.3390/su13010283. [14] A. A. Laghari, K. Wu, R. A. Laghari, M. Ali, and A. A. Khan, “A review and state of art of internet of things (IoT),” Archives of Computational Methods in Engineering, vol. 29, no. 3, pp. 1395–1413, May 2022, doi: 10.1007/s11831-021-09622-6. [15] K. Shafique, B. A. Khawaja, F. Sabir, S. Qazi, and M. Mustaqim, “Internet of Things (IoT) for next-generation smart systems: a review of current challenges, future trends and prospects for emerging 5G-IoT scenarios,” IEEE Access, vol. 8, pp. 23022–23040, 2020, doi: 10.1109/ACCESS.2020.2970118. [16] K. Sekaran, M. N. Meqdad, P. Kumar, S. Rajan, and S. Kadry, “Smart agriculture management system using internet of things,” TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 18, no. 3, p. 1275, Jun. 2020, doi: 10.12928/telkomnika.v18i3.14029. [17] E.-K. Tan, Y.-W. Chong, M. Niswar, B.-Y. Ooi, and A. Basuki, “An IoT platform for urban farming,” in 2020 International Seminar on Intelligent Technology and Its Applications (ISITIA), Jul. 2020, pp. 51–55. doi: 10.1109/ISITIA49792.2020.9163781. [18] F. Kamaruddin, N. N. Nik Abd Malik, N. A. Murad, N. M. A. Latiff, S. K. S. Yusof, and S. A. Hamzah, “IoT-based intelligent irrigation management and monitoring system using arduino,” TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 17, no. 5, pp. 2378–2388, Oct. 2019, doi: 10.12928/telkomnika.v17i5.12818. [19] S. Mathi, R. Akshaya, and K. Sreejith, “An Internet of Things-based efficient solution for smart farming,” Procedia Computer Science, vol. 218, pp. 2806–2819, 2023, doi: 10.1016/j.procs.2023.01.252. [20] R. Aarthi, D. Sivakumar, and V. Mariappan, “Smart soil property analysis using IoT: a case study implementation in backyard gardening,” Procedia Computer Science, vol. 218, pp. 2842–2851, 2023, doi: 10.1016/j.procs.2023.01.255. [21] A. Povera and A. Yusof, “Malaysia aims to be a regional leader in the digital economy by 2030,” New Straits Times, 2021. https://www.nst.com.my/business/2021/02/667027/malaysia-aims-be- regional-leader-digital-economy-2030 (accessed Jul. 21, 2022). [22] A. Sakhno, I. Salkova, A. Broyaka, and N. Priamukhina, “Methodology for the impact assessment of the digital economy on agriculture development,” International Journal of Recent Technology and Engineering, vol. 8, no. 3C, pp. 160–164, Dec. 2019, doi: 10.35940/ijrte.C1027.1183C19. [23] M. van Hilten and S. Wolfert, “5G in agri-food - a review on current status, opportunities and challenges,” Computers and Electronics in Agriculture, vol. 201, Oct. 2022, doi: 10.1016/j.compag.2022.107291. [24] Kementerian Kewangan Malaysia, 2023 economic outlook (in malay: Tinjauan ekonomi 2023). Percerakan Nasional Malaysia Berhad Kuala Lumpur, 2022. [25] P. Choudhary, L. Bhargava, A. K. Suhag, M. Choudhary, and S. Singh, “An era of internet of things leads to smart cities initiatives towards urbanization,” in Digital Cities Roadmap, Wiley, 2021, pp. 319–350. doi: 10.1002/9781119792079.ch10. [26] W. Choi, J. Kim, S. Lee, and E. Park, “Smart home and internet of things: a bibliometric study,” Journal of Cleaner Production, vol. 301, Jun. 2021, doi: 10.1016/j.jclepro.2021.126908. [27] Y. Yang, H. Wang, R. Jiang, X. Guo, J. Cheng, and Y. Chen, “A review of IoT-enabled mobile healthcare: technologies, challenges, and future trends,” IEEE Internet of Things Journal, vol. 9, no. 12, pp. 9478–9502, Jun. 2022, doi: 10.1109/JIOT.2022.3144400. [28] A. da S. Cota, R. S. G.de Freitas, F. Lefèvre, and E. Stedefeldt, “Food handlers’ lack of knowledge, and misunderstanding of safe food temperatures: an analysis using the theory of social representations,” Food Research International, vol. 174, Dec. 2023, doi: 10.1016/j.foodres.2023.113486.
(1)
[1] A. A. Aldarmahi, "The impact of problem Based Learning versus Conventional education on Students in the Aspect of Clinical Reasoning and problem Solving," Education in Medicine Journal, vol. 8, (2016). [2] L. C. Sern and K. M. Salleh, "Comparison of Example-Based Learning and Problem-Based Learning in Engineering Domain," Universal Journal of Educational Research, vol. 3, pp. 39-45, (2015). [3] A. M. Clyne and K. L. Billiar, "Problem-Based Learning in Biomechanics: Advantages, Challenges, and Implementation Strategies," Journal of Biomechanical Engineering, vol. 138, pp. 070804-070804-9, (2016). [4] S. S. Desai, B. S. Hungund, and S. D. Desai, "Assessment of Program Outcome by Open-Ended Experiment in Enzyme Technology Laboratory Course," New Delhi pp. 617-618, (2015). [5] Z. Haron, S. Mohammad, and A. R. Sam, "The Implementation of an Open-Ended Experiment in the Civil Engineering Laboratory," Procedia-Social and Behavioral Sciences, vol. 102, pp. 548-559, (2013). [6] M. Hastie and J. Haelssig, "AN OPEN-ENDED DESIGN-BASED LAB EXERCISE FOR A FIRST THERMOFLUIDS COURSE," Proceedings of the Canadian Engineering Education Association, (2017).
(1)
1A. A. Mustafa, M. R. Derise, W. T. L. Yong, K. F. Rodrigues, Plants 2021, 10, 1897. View CAS Google Scholar 2N. M. Yusof, L. S. Hua, P. M. Tahir, R. M. S. James, S. S. O. Al-Edrus, R. Dahali, A. S. M. Roseley, W. Fatriasari, K. Lubos, M. A. R. Lubis, R. Reh, Forest 2023, 14, 196. Google Scholar 3M. H. F. Felisberto, A. L. Beraldo, M. S. Costa, F. V. Boas, C. M. L. Franco, M. T. P. S. Clerici, Food Res. 2019, Int. 124, 222–229. View Google Scholar 4Y. H. Zhang, H. X. Ma, Y. Qi, R. X. Zhu, X. W. Li, W. J. Yu, F. Rao, Npj Mater Degrad 2022, 6, 63. View CAS Google Scholar 5J. Liu, X. Li, J. Lu, Plant Dis. 2018, 102, 2380–2380. View Google Scholar 6I. Corkley, B. Fraaije, N. Hawkins, Plant Pathol. 2022, 71, 150–169. View Web of Science® Google Scholar 7T. J. Teng, M. N. M. Arip, E. P. Ng, H. L. Lee, Eur. J. Wood Wood Prod. 2021, 79, 499–508. View CAS Web of Science® Google Scholar 8R. Scussel, A. C. Feltrin, E. Angioletto, N. C. Galvani, M. Í. Fagundes, A. M. Bernardin, P. E. Feuser, R. A. M. Ávila, C. T. Pich, Enviro. Sci. Pollut. Res. 2022, 29, 41247–41260. View CAS PubMed Web of Science® Google Scholar 9P. S. Chauhan, Bioresour. Technol. 2020, 9,100374. Google Scholar 10L. Cui, Y. An, H. Xu, M. Jia, Y. Li, X. Jin, New J. Chem. 2021, 45, 21692–21700. View CAS Web of Science® Google Scholar 11H. Sun, X. Li, H. Li, D. Hui, M. Gaff, R. Lorenzo, Nanotechnol. Rev. 2022, 11, 1670–1695. View Web of Science® Google Scholar 12F. Zikeli, V. Vinciguerra, A. D'Annibale, D. Capitani, M. Romagnoli, G. Scarascia Mugnozza, Nanomater. 2019, 9, 281. View CAS PubMed Web of Science® Google Scholar 13A. N. Romainor, S. F. Chin, S. Lihan, Starch/Staerke 2022, 74, 2100207. View CAS Web of Science® Google Scholar 14G. Zhang, Y. Liu, H. Morikawa, Y. Chen, Cellulose. 2013, 20, 1877–1884. View CAS PubMed Web of Science® Google Scholar 15Z. Ju, T. Zhan, H. Zhang, Q. He, M. Yuan, X. Lu, Carbohydr. Polym. 2020, 250, 116936. View CAS PubMed Google Scholar 16M. Amat, S. F. Chin, M. E. Wasli, N. S. Ngieng, A. A. S. A. Husaini, Mater. Lett. 2023, 340, 134166. View CAS Google Scholar 17R. S. Granja-Travez, R. C. Wilkinson, G. F. Persinoti, F. M. Squina, V. Fülöp, T. D. Bugg, FEBS J. 2018, 285, 1684–1700. View CAS PubMed Web of Science® Google Scholar 18N. K. Prosper, S. Zhang, H. Wu, S. Yang, S. Li, F. Sun, B. Goodell, Wood Sci. Techol. 2018, 52, 619–635. View CAS Web of Science® Google Scholar 19J. Wang, H. Wang, Z. Ye, E. P. Chizaram, J. Jiang, T. Liu, F. Sun, S. Zhang, RSC Adv. 2020, 10, 7764–7770. View CAS PubMed Web of Science® Google Scholar 20S. Kawai, T. Umezawa, T. Higuchi, Arch. Biochem. Biophys. 1988, 262, 99–110. View CAS PubMed Web of Science® Google Scholar 21J. Kumla, N. Suwannarach, K. Sujarit, W. Penkhrue, P. Kakumyan, K. Jatuwong, S. Vadthanarat, S. Lumyong, Molecules. 2020, 25, 2811. View CAS PubMed Web of Science® Google Scholar 22J. O. Rich, A. M. Anderson, M. A. Berhow, Biocatal. Agric. Biotechnol. 2016, 5, 111–115. View Web of Science® Google Scholar 23Y. Zheng, M. Guo, Q. Zhuo, H. Liu, Ind. Crops Prod. 2019, 139, 111544. View CAS Google Scholar 24R. Hilgers, J. P. Vincken, H. Gruppen, M. A. Kabel, ACS Sustainable Chem. Eng. 2018, 6, 2037–2046. View CAS PubMed Web of Science® Google Scholar 25J. Houbraken, J. C. Frisvad, R. A. Samson, Stud. Mycol. 2011, 70, 53–138. View CAS PubMed Web of Science® Google Scholar 26C. V. Pham, H. T. Tran, Australas. Plant Dis. Notes. 2021, 16, 14. View CAS Google Scholar 27S. Mahdian, D. Zafari, Plant Dis. 2017, 101, 244–244. View Web of Science® Google Scholar 28J. Liu, X. Li, J. Lu, Plant Dis. 2018, 102, 2380–2380. View Google Scholar 29H. A. Ariyawansa, I. Tsai, K. M. Thambugala, W. Y. Chuang, S. R. Lin, W. N. Hozzein, R. Cheewangkoon, Sci. Rep. 2020, 10, 12762. View CAS PubMed Google Scholar 30Q. Borjihan, S. Meng, H. Bai, T. Chen, X. Hu, D. Xiao, I. Shi, A. Dong, Mater. Des. 2023, 231, 112051. View CAS Google Scholar
(1)
[1] A. Asadi, Q. Wing, and V. Mancuso, ‘‘A survey on device-todevice communication in cellular networks,’’ IEEE Commun. Surveys Tuts., vol. 16, no. 4, pp. 1801–1819, 4th Quart., 2014, doi: 10.1109/COMST.2014.2319555. [2] G. S. Gaba, G. Kumar, T.-H. Kim, H. Monga, and P. Kumar, ‘‘Secure device-to-device communications for 5G enabled Internet of Things applications,’’ Comput. Commun., vol. 169, pp. 114–128, Mar. 2021, doi: 10.1016/j.comcom.2021.01.010. [3] J. C. Song, M. A. Demir, J. J. Prevost, and P. Rad, ‘‘Blockchain design for trusted decentralized IoT networks,’’ in Proc. 13th Annu. Conf. Syst. Syst. Eng. (SoSE), Jun. 2018, pp. 169–174, doi: 10.1109/SYSOSE.2018.8428720. [4] C. Suraci, S. Pizzi, A. Molinaro, A. Iera, and G. Araniti, ‘‘An RSA-based algorithm for secure D2D-aided multicast delivery of multimedia services,’’ in Proc. IEEE Int. Symp. Broadband Multimedia Syst. Broadcast. (BMSB), Oct. 2020, pp. 1–6, doi: 10.1109/BMSB49480.2020.9379851. [5] J. Liu, L. Zhang, R. Sun, X. Du, and M. Guizani, ‘‘Mutual heterogeneous signcryption schemes for 5G network slicings,’’ 2018, arXiv:1811.03741. [6] A. S. Khan et al., ‘‘Trust-based lightweight security protocol for device to device multihop cellular communication (TLwS),’’ J. Ambient Intell. Hum. Comput., 2021, doi: 10.1007/s12652-021-02968-6. 31286 VOLUME 10, 20 A. S. Khan et al.: Lightweight Multifactor Authentication Scheme for NextGen Cellular Networks [7] N. Koblitz, ‘‘Elliptic curve cryptosystems, Math. Comput., vol. 48, no. 177, pp. 203–209, 1987. [8] C. Cheng, R. Lu, A. Petzoldt, and T. Takagi, ‘‘Securing the Internet of Things in a quantum world,’’ IEEE Commun. Mag., vol. 55, no. 2, pp. 116–120, Feb. 2017, doi: 10.1109/MCOM.2017.1600522CM. [9] B. Seok, J. C. S. Sicato, T. Erzhena, C. Xuan, Y. Pan, and J. H. Park, ‘‘Secure D2D communication for 5G IoT network based on lightweight cryptography,’’ Appl. Sci., vol. 10, no. 1, p. 217, Dec. 2019, doi: 10.3390/app10010217. [10] C. Suraci, S. Pizzi, D. Garompolo, G. Araniti, A. Molinaro, and A. Iera, ‘‘Trusted and secured D2D-aided communications in 5G networks,’’ Ad Hoc Netw., vol. 114, Apr. 2021, Art. no. 102403, doi: 10.1016/j.adhoc.2020.102403. [11] S. A. Vanstone, ‘‘Next generation security for wireless: Elliptic curve cryptography,’’ Comput. Secur., vol. 22, no. 5, pp. 412–415, 2003. [Online]. Available: http://dblp.uni-trier.de/db/ journals/compsec/compsec22.html#Vanstone03 [12] M. Wang, Z. Yan, and V. Niemi, ‘‘UAKA-D2D: Universal authentication and key agreement protocol in D2D communications,’’ Mobile Netw. Appl., vol. 22, no. 3, pp. 510–525, Jun. 2017, doi: 10.1007/s11036-017-0870-5. [13] M. Cao, L. Wang, H. Xu, D. Chen, C. Lou, N. Zhang, Y. Zhu, and Z. Qin, ‘‘Sec-D2D: A secure and lightweight D2D communication system with multiple sensors,’’ IEEE Access, vol. 7, pp. 33759–33770, 2019, doi: 10.1109/ACCESS.2019.2900727. [14] P. Gope, ‘‘LAAP: Lightweight anonymous authentication protocol for D2D-aided fog computing paradigm,’’ Comput. Secur., vol. 86, pp. 223–237, Sep. 2019, doi: 10.1016/j.cose.2019.06.003. [15] A. S. Khan, K. Balan, Y. Javed, S. Tarmizi, and J. Abdullah, ‘‘Secure trust-based blockchain architecture to prevent attacks in VANET,’’ Sensors, vol. 19, no. 22, p. 4954, Nov. 2019, doi: 10.3390/s19224954. [16] K. Park, Y. Park, Y. Park, and A. K. Das, ‘‘2PAKEP: Provably secure and efficient two-party authenticated key exchange protocol for mobile environment,’’ IEEE Access, vol. 6, pp. 30225–30241, 2018, doi: 10.1109/ACCESS.2018.2844190. [17] Y. Javed, A. Khan, A. Qahar, and J. Abdullah, ‘‘EEoP: A lightweight security scheme over PKI in D2D cellular networks,’’ J. Telecommun. Electron. Comput. Eng., vol. 9, nos. 3–11, pp. 99–105, 2017. [18] Z. Ahmad, A. Shahid Khan, K. Nisar, I. Haider, R. Hassan, M. R. Haque, S. Tarmizi, and J. J. P. C. Rodrigues, ‘‘Anomaly detection using deep neural network for IoT architecture,’’ Appl. Sci., vol. 11, no. 15, p. 7050, Jul. 2021, doi: 10.3390/APP11157050. [19] H. A. U. Mustafa, M. A. Imran, M. Z. Shakir, A. Imran, and R. Tafazolli, ‘‘Separation framework: An enabler for cooperative and D2D communication for future 5G networks,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 1, pp. 419–445, 1st Quart., 2016, doi: 10.1109/COMST.2015. 2459596. [20] V. Adat, I. Politis, C. Tselios, P. Galiotos, and S. Kotsopoulos, ‘‘On blockchain enhanced secure network coding for 5G deployments,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2018, pp. 1–7, doi: 10.1109/GLOCOM.2018.8647581. [21] F. Hu and N. K. Sharma, ‘‘Security considerations in ad hoc sensor networks,’’ Ad Hoc Netw., vol. 3, no. 1, pp. 69–89, 2005, doi: 10.1016/j.adhoc.2003.09.009. [22] F. Ahmad, Z. Ahmad, C. A. Kerrache, F. Kurugollu, A. Adnane, and E. Barka, ‘‘Blockchain in Internet-of-Things: Architecture, applications and research directions,’’ in Proc. Int. Conf. Comput. Inf. Sci. (ICCIS), Apr. 2019, pp. 1–6, doi: 10.1109/ICCISCI.2019.8716450. [23] S. O. Maikol, A. S. Khan, and Y. Javed, ‘‘A novel authentication and key agreement scheme for countering MITM and impersonation attack in medical facilities,’’ Int. J. Integr. Eng., vol. 13, no. 2, pp. 127–135, 2021. [24] S. Aqeel, A. S. Khan, Z. Ahmad, and J. Abdullah, ‘‘A comprehensive study on DNA based Security scheme using deep learning in healthcare,’’ EDPACS, pp. 1–7, Oct. 2021, doi: 10.1080/07366981. 2021.1958742. [25] R. Khan, P. Kumar, D. N. K. Jayakody, and M. Liyanage, ‘‘A survey on security and privacy of 5G technologies: Potential solutions, recent advancements, and future directions,’’ IEEE Commun. Surveys Tuts., vol. 22, no. 1, pp. 196–248, 1st Quart., 2020, doi: 10.1109/COMST.2019.2933899. [26] A. Zhang and X. Lin, ‘‘Security-aware and privacy-preserving D2D communications in 5G,’’ IEEE Netw., vol. 31, no. 4, pp. 70–77, Jul./Aug. 2017, doi: 10.1109/MNET.2017.1600290. [27] W. Xiong, F. Zhou, R. Wang, R. Lan, X. Sun, and X. Luo, ‘‘An efficient and secure two-factor password authentication scheme with card Reader(Terminal) verification,’’ IEEE Access, vol. 6, pp. 70707–70719, 2018, doi: 10.1109/ACCESS.2018.2869535. [28] M. Haus, M. Waqas, A. Y. Ding, Y. Li, S. Tarkoma, and J. Ott, ‘‘Security and privacy in device-to-device (D2D) communication: A review,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 2, pp. 1054–1079, 2nd Quart., 2017, doi: 10.1109/COMST.2017.2649687. [29] T. Balan, A. Balan, and F. Sandu, ‘‘SDR implementation of a D2D security cryptographic mechanism,’’ IEEE Access, vol. 7, pp. 38847–38855, 2019, doi: 10.1109/ACCESS.2019.2904909. [30] A. S. Khan, Y. Javed, J. Abdullah, J. Nazim, and N. Khan, ‘‘Security issues in 5G device to device communication,’’ Int. J. Comput. Sci. Netw. Secur., vol. 17, no. 5, p. 366, 2017. [31] D. Kim, S. Seo, H. Kim, W. G. Lim, and Y. K. Lee, ‘‘A study on the concept of using efficient lightweight hash chain to improve authentication in VMF military standard,’’ Appl. Sci., vol. 10, no. 24, p. 8999, 2020, doi: 10.3390/app10248999. [32] M. Amine Ferrag, L. Maglaras, A. Derhab, and H. Janicke, ‘‘Authentication schemes for smart mobile devices: Threat models, countermeasures, and open research issues,’’ 2018, arXiv:1803.10281. [33] M. Liyanage, I. Ahmad, A. B. Abro, A. Gurtov, and M. Ylianttila, ‘‘A comprehensive guide to 5G security,’’ in A Comprehensive Guide to 5G Security. Hoboken, NJ, USA: Wiley, 2018, pp. 1–440, doi: 10.1002/9781119293071. [34] J. Xiong, Y. Zhang, X. Li, M. Lin, Z. Yao, and G. Liu, ‘‘RSE-PoW: A role symmetric encryption PoW scheme with authorized deduplication for multimedia data,’’ Mobile Netw. Appl., vol. 23, no. 3, pp. 650–663, 2018, doi: 10.1007/s11036-017-0975-x. [35] M. Wang and Z. Yan, ‘‘A survey on security in D2D communications,’’ Mobile Netw. Appl., vol. 22, no. 2, pp. 195–208, Apr. 2017, doi: 10.1007/s11036-016-0741-5. [36] N. Khan, J. Abdullah, and A. S. Khan, ‘‘Defending malicious script attacks using machine learning classifiers,’’ Wireless Commun. Mobile Comput., vol. 2017, Feb. 2017, doi: 10.1155/2017/5360472. [37] C. Boyd and W. Mao, ‘‘On a limitation of BAN logic,’’ in Advances in Cryptology—EUROCRYPT’93 (Lecture Notes in Computer Science), vol. 765, T. Helleseth, Ed. Berlin, Germany: Springer, 1994, doi: 10.1007/3-540-48285-7_20. [38] K. Gupta and S. Silakari, ‘‘ECC over RSA for asymmetric encryption: A review,’’ Int. J. Comput. Sci. Issues, vol. 8, no. 2, p. 814, 2011. [Online]. Available: http://www.IJCSI.org. [39] R. Steinfeld and Y. Zheng, ‘‘A signcryption scheme based on integer factorization,’’ in Proc. Int. Workshop Inf. Secur. 2000, pp. 308–322, doi: 10.1007/3-540-44456-4_23. [40] R. Nohria and G. Santos, IBM Power System AC922–Technical Overview and Introduction. IBM Redbooks, 2018. [41] R. Mahmood Saqib, A. Shahid Khan, Y. Javed, S. Ahmad, K. Nisar, I. A. Abbasi, M. Reazul Haque, and A. Ahmadi Julaihi, ‘‘Analysis and intellectual structure of the multi-factor authentication in information security,’’ Intell. Autom. Soft Comput., vol. 32, no. 3, pp. 1633–1647, 2022, doi: 10.32604/IASC.2022.021786. [42] L. F. Abdulrazak, A. S. Khan, A. A. Julaihi, and S. Tarmizi, ‘‘RSSI and public key infrastructure based secure communication in autonomous vehicular networks,’’ Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 12, pp. 298–304, 2018. [43] M. S. Dildar, N. Khan, J. B. Abdullah, and A. S. Khan, ‘‘Effective way to defend the hypervisor attacks in cloud computing,’’ in Proc. 2nd Int. Conf. Anti-Cyber Crimes (ICACC), Mar. 2017, pp. 154–159, doi: 10.1109/ANTI-CYBERCRIME.2017.7905282. [44] J. Bos, M. Kaihara, and T. Kleinjung, ‘‘On the security of 1024-bit RSA and 160-bit elliptic curve cryptography,’’ IACR Cryptol. ePrint, vol. 57, no. 1, pp. 1–19, 2009. [Online]. Available: http://lacal.epfl. ch/files/content/sites/lacal/files/papers/ecdl2.pdf. [45] A. Zhang, J. Chen, R. Q. Hu, and Y. Qian, ‘‘SeDS: Secure data sharing strategy for D2D communication in LTE-advanced networks,’’ IEEE Trans. Veh. Technol., vol. 65, no. 4, pp. 2659–2672, Apr. 2016, doi: 10.1109/TVT.2015.2416002. [46] A. Zhang, L. Wang, X. Ye, and X. Lin, ‘‘Light-weight and robust securityaware D2D-assist data transmission protocol for mobile-health systems,’’ IEEE Trans. Inf. Forensics Security, vol. 12, no. 3, pp. 662–675, Mar. 2017. [47] J. Y. Kim, W. Hu, H. Shafagh, and S. Jha, ‘‘SEDA: Secure over-theair code dissemination protocol for the Internet of Things,’’ IEEE Trans. Dependable Secure Comput., vol. 15, no. 6, pp. 1041–1054, Nov. 2018, doi: 10.1109/TDSC.2016.2639503
(1)
1. A Aziz, M. M., Kassim, K. A., ElSergany, M., Anuar, S., Jorat, M. E., Yaacob, H., Ahsan, A., Imteaz, M. A., & Arifuzzaman. (2020). Recent advances on palm oil mill effluent (POME) pretreatment and anaerobic reactor for sustainable biogas production. Renewable and Sustainable Energy Reviews, 119. https://doi.org/10.1016/j.rser.2019.109603 2. Azad, S. Al, Chin, F. S., & Lal, M. T. B. M. (2019). Efficacy of Purple Non Sulphur Bacterium <i>Rhodobacter sphaeroides</i> Strain UMSFW1 in the Utilization of Palm Oil Mill Effluent. Journal of Geoscience and Environment Protection, 07(10), 1–12. https://doi.org/10.4236/gep.2019.710001 3. Bahadi, M. A., Japir, A.-W., Nadia, S., & Jumat, S. (2016). Free Fatty Acids Separation From Malaysian High Free. Malaysian Journal of Analytical Sciences, 20(5), 1042–1051. 4. Kaniapan, S., Hassan, S., Ya, H., Nesan, K. P., & Azeem, M. (2021). The utilisation of palm oil and oil palm residues and the related challenges as a sustainable alternative in biofuel, bioenergy, and transportation sector: A review. In Sustainability (Switzerland) (Vol. 13, Issue 6). MDPI AG. https://doi.org/10.3390/su13063110 5. Mclaughlin, J. L., Rogers, L. L., & Anderson, J. E. (1998). The use of biological assays to evaluate botanicals. Therapeutic Innovation & Regulatory Science, 32(2), 513–524. https://doi.org/10.1177/009286159803200223 6. Murphy, D. J., Goggin, K., & Paterson, R. R. M. (2021). Oil palm in the 2020s and beyond: challenges and solutions. CABI Agriculture and Bioscience, 2(1), 1–22. https://doi.org/10.1186/s43170-021-00058-3 7. Nuryanti, R., Emilia Agustina, T., & Indah Sari, T. (2019). The Utilization of Palm Oil Mill Effluent For Renewable Energy. Indonesian Journal of Fundamental and Applied Chemistry, 4(3), 116–121. https://doi.org/10.24845/ijfac.v4.i3.116
(2)
1. Abadi, E. 2018. Development and Application of Realistic Anatomical and Imaging Models for Virtual Clinical Trials in Computed Tomography. Tesis Duke University. 2. Abadi, E., Segars, W., Tsui, B. M., Kinahan, P., Bottenus, N., Frangi, A., Maidment, A., Lo, J. & Samei, E. 2020. Virtual clinical trials in medical imaging: a review. Journal of Medical Imaging 7(4): 042805. 3. Brito, Y. P. d. S., Santos, C. G. R. d., Mendonça, S. d. P., Aráujo, T. D., Freitas, A. A. d. & Meiguins, B. S. 2018. A Prototype Application to Generate Synthetic Datasets for Information Visualization Evaluations. 2018 22nd International Conference Information Visualisation (IV), hlm.153-158. 4. Dr. K Sree Kumar, S. S. A. D. 2020. Synthetic Data Generation Study. International Journal of Advanced Science and Technology 29(6s): 2014 - 2019. 5. Farrell, D. 2006. Investigation and demonstration of a technique in CT image reconstruction for use with truncated data. Tesis M.Sc. Physical Sciences in Medicine, Trinity College, University of Dublin. 6. Gach, H. M., Tanase, C. & Boada, F. 2008. 2D & 3D Shepp-Logan Phantom Standards for MRI. 2008 19th International Conference on Systems Engineering, hlm.521-526. 7. Gan, G. & Valdez, E. A. 2017. Valuation of large variable annuity portfolios: Monte Carlo simulation and synthetic datasets. Dependence Modeling 5(1): 354. 8. Høilund, C. 2007. The Radon Transform. Aalborg University. 9. Hoy, C. F. O. 2015. Cardiovascular Computed Tomography Phantom Fabrication and Characterization through the Tailored Properties of Polymeric Composites and Cellular Foams. Tesis University of Toronto (Canada). 10. Kasraie, N. 2012. Phantoms and methods for cardiovascular imaging. Tesis The University of Texas Health Science Center at San Antonio. 11. Mendonça, S. D. P., Brito, Y. P. D. S., Santos, C. G. R. D., Lima, R. D. A. D., Araújo, T. D. O. D. & Meiguins, B. S. 2020. Synthetic Datasets Generator for Testing Information Visualization and Machine Learning Techniques and Tools. IEEE Access 8: 82917-82928. 12. Price, R. G., Kim, J. P., Zheng, W., Chetty, I. J. & Glide-Hurst, C. 2016. Image Guided Radiation Therapy Using Synthetic Computed Tomography Images in Brain Cancer. International journal of radiation oncology, biology, physics 95(4): 1281-1289. 13. Quintana, D. S. 2020. A synthetic dataset primer for the biobehavioural sciences to promote reproducibility and hypothesis generation. eLife 9: e53275. 14. Raimbault, J. 2019. Second-order control of complex systems with correlated synthetic data. Complex Adaptive Systems Modeling 7(1): 4. 15. Sitek, A., Reutter, B. W., Huesman, R. H. & Gullberg, G. T. 2006. Method of Generating Multiple Sets of Experimental Phantom Data. Journal of Nuclear Medicine 47(7): 1187. 16. Stekl, I., Warner, M., Umpleby, A., Morgan, J., Pain, C. & Wang, Y. 2008. Practical 3D wavefield tomography on field datasets. 17. Toda, Y., Okura, F., Ito, J., Okada, S., Kinoshita, T., Tsuji, H. & Saisho, D. 2020. Training instance segmentation neural network with synthetic datasets for crop seed phenotyping. Communications Biology 3(1): 173. 18. Yang, X., De Andrade, V., Scullin, W., Dyer, E. L., Kasthuri, N., De Carlo, F. & Gürsoy, D. 2018. Low-dose x-ray tomography through a deep convolutional neural network. Scientific Reports 8(1): 2575. 19. Yu, Z., Noo, F., Dennerlein, F., Wunderlich, A., Lauritsch, G. & Hornegger, J. 2012. Simulation tools for two-dimensional experiments in x-ray computed tomography using the FORBILD head phantom. Phys Med Biol 57(13): N237-252.
(1)
[1] A. Bandura, “Guide for constructing self-efficacy scales,” in Self-efficacy beliefs of adolescents (F. Pajares and T. Urdan, eds.), pp. 307-337, Greenwich, CT : Information Age Publishing, 2006. [2] A, Bandura, “The explanatory and predictive scope of self-efficacy theory,” Journal of Social and Clinical Psychology, vol.4, no.3, pp. 359-373. 1986. [3] A. Bandura, Self-efficacy: The exercise of control. New York: W. H. Freeman & Co, 1997. [4] A. Zajacova, S. M. Lynch and T. J. Espenshade, “Self-efficacy, stress, and academic success in college,” Research in Higher Education, vol.46, no.6, pp. 677-706, 2005. [5] B. Alexander, C. R. Brewin, S. Vearnals, G. Wolff, and J. Leff, “An investigation of shame and guilt in depressed sample,” British Journal of Medical Psychology, vol.72, pp. 323-338, 1999. [6] C. W. Loo and J. L. F. Choy, “Sources of self-efficacy influencing academic performance of Engineering students,” American Journal of Educational Research, vol.1, no.3, pp.86-92, 2013. [7] C. S. Dweck and E. L. Leggett, “ A Social-cognitive approach to motivation and personality. Psychological Review, Vol.95, no. 2, pp. 256-273. 1988. [8] E. A. Turner, M. Chandler and R. W, “ The influence of parenting styles, achievement, motivation, and self-efficacy on academic performance in college students,” Journal of College Student Development, vol,50, no,3, pp. 337-346, 2009. [9] F. T. Tilfarlioğlu and F. S. Ciftci, “Supporting self-efficacy and learner autonomy in relation to academic success in EFL classrooms (A Case Study,)” Theory and Practice in Language Studies, vol. 10, no. 1, pp.1284 -1294, 2011. [10] H. R. Greve, “Performance, aspirations, and risky organizational change,” Administrative Science Quarterly, vol.43, no.1, pp. 58-86, 1998. [11] I. Hairuzila, S. Rohani and T. L. A . Muhammad Ridhuan, “Oral communication ability in English: an essential skill for engineering graduates”, Asia Pasific Journal of Educators and Education, vol.26, no.1, pp. 107-123, 2011. [12] I. Hairuzila and S. Subarna, “Perceived self-efficacy of ESL students with regard to their oral communication ability,” Contemporary Issues of Education, Development and Security, pp. 74-86, 2010. [13] J. A. C. Baum, T.J. Rowley, A. V. Shipilov and Y. T. Chung, “Dancing with strangers: aspiration performance and the Search for underwriting syndicate partners,” Administrative Science Quarterly, vol.50, no.4, pp. 536-375, 2005. [14] Jr. Hair, Multivariate data analysis with readings. Englewood Cliffs, NJ: Prentice-Hall, 1998. [15] Jr. Hair, G. T. M. Hult, C. M. Ringle and M. Sarstedf, A primer on Partial Least Squares Structural Equation Modeling (PLS-SEM)(2nd ed.), USA: SAGE, 2017. [16] K. P. Meera and M. K. Jumana, “Self-efficacy and academic performance
(1)
1. Abbas, J., Mubeen, R., Iorember, P. T., Raza, S., & Mamirkulova, G. (2021). Exploring the impact of COVID-19 on tourism: transformational potential and implications for a sustainable recovery of the travel and leisure industry. Current Research in Behavioral Sciences, 2, 100033. 2. Abramov, O. Y. (2015, September). TRIZ-based cause and effect chains analysis vs root cause analysis. In Proceedings of the TRIZfest-2015 International Conference, Seoul, South Korea (pp. 288-295). 3. Esri. 2022. What Can You Do with a Story Map?. [online] Available at: https://www.esri.com/about/newsroom/arcuser/what-can-you-do-with-a-story-map [Accessed 5 March 2022]. 4. Goh, C. H., & Kulathuramaiyer, N. (2020, December). TRIZ Based Conceptual Design Framework for Future Emoji System. In MyTRIZ Conference (p. 51). 5. Grant, K. A. (2020). Affective Collections: Exploring Care Practices in Digital Community Heritage Projects. 6. Janowski, M. (1998). Beads, prestige and life force among the Kelabit of Sarawak. 7. Joe, G., 2022. Announcing StoryMapJS developer release — a new tool for storytellers. [online] Northwestern University Knight Lab. Available at: https://knightlab.northwestern.edu/2013/10/17/announcing-storymapjs-developer-release-a-new-tool-for-storytellers [Accessed 18 March 2022]. 8. Kayumovich, K. O. (2020). Prospects of digital tourism development. Economics, (1 (44)). 9. Mail, Rintos (2 November 2014). "The Lun Bawangs are certainly worth their salt". The Borneo Post. Retrieved 2 April 2022 10. Marshall, D. J., Smaira, D., & Staeheli, L. A. (2022). Intergenerational place-based digital storytelling: A more-than-visual research method. Children's Geographies, 20(1), 109-121. 11. Matondang, F. (2021). Application of Story Maps Techniques in Visualizing the Tourism Potential of Lake Toba in North Sumatera Province. Sustainability: Theory, Practice and Policy, 1(2), 188-199. 12. Mínguez, C. (2020). Teaching tourism: urban routes design using GIS Story Map. 13. Muenzberg, C., Michl, K., Heigl, H., Jeck, T., & Lindemann, U. (2014). Further Development of TRIZ Function Analysis based on Applications in Projects. In International Design Conference-DESIGN 2014. 14. Rawat, P., Anuar, K. A., Yusuf, J. E. W., Loftis, J. D., & Blake, R. N. (2021). Communicating and co-producing information with stakeholders: Examples of participatory mapping approaches related to sea-level rise risks and impacts. In Communicating Climate Change (pp. 79-96). Routledge. 15. Royzen, Z. (1997). Solving contradictions in development of new generation products using TRIZ. The TRIZ Journal. 16. Saura, J. R., Reyes-Menendez, A., & Palos-Sanchez, P. R. (2020). The digital tourism business: A systematic review of essential digital marketing strategies and trends. Digital Marketing Strategies for Tourism, Hospitality, and Airline Industries, 1-22. 17. Scherf, K. (2021). Deep mapping as a cultural mapping process and a creative tourism driver: Two examples. Creative Tourism: Activating Cultural Resources and Engaging Creative Travellers, 111. 18. Solhee, H., & Langub, J. (1993). Challenges in extending development to the Penan community of Sarawak. In Restoration of Tropical Forest Ecosystems (pp. 239-250). Springer, Dordrecht.
(1)
1. Abdar, M.; Zomorodi-Moghadam, M.; Zhou, X.J.; Gururajan, R.; Tao, X.H.; Barua, P.D.; Gururajan, R. A new nested ensemble technique for automated diagnosis of breast cancer. Pattern Recog. Lett. 2020, 132, 123-131, https://doi.org/10.1016/j.patrec.2018.11.004. 2. DeSantis, C.E.; Ma, J.; Gaudet, M.M.; Newman, L.A.; Miller, K.D.; Goding Sauer, A.; Jemal, A.; Siegel, R.L. Breast cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 438-451, https://doi.org/10.3322/caac.21583. 3. Li, C.I.; Uribe, D.J.; Daling, J.R. Clinical characteristics of different histologic types of breast cancer. Br. J. Cancer. 2005, 93, 1046-1052, https://doi.org/10.1038/sj.bjc.6602787. 4. Williams, L.A.; Hoadley, K.A.; Nichols, H.B.; Geradts, J.; Perou, C.M.; Love, M.I.; Olshan, A.F.; Troester, M.A. Differences in race, molecular and tumor characteristics among women diagnosed with invasive ductal and lobular breast carcinomas. Cancer Causes Control. 2019, 30, 31-39, https://doi.org/10.1007/s10552-018- 1121-1. 5. Ullah, M.F. Breast cancer: Current perspectives on the disease status. Breast Cancer Metastasis and Drug Resistance: Challenges and Progress, 2nd Edition. 2019, 1152, 51-64, https://doi.org/10.1007/978-3-030- 20301-6_4. 6. Thamarajah, L. Complementary and alternative therapies for breast cancer worldwide. Lett. Health Biol. Sci. 2018, 4, 27-32. 7. Marconato, L.; Facchinetti, A.; Zanardello, C.; Rossi, E.; Vidotto, R.; Capello, K.; Melchiotti, E.; Laganga, P.; Zamarchi, R.; Vascellari, M. Detection and prognostic relevance of circulating and disseminated tumour cell in dogs with metastatic mammary carcinoma: A pilot study. Cancers (Basel). 2019, 11, 163, https://doi.org/10.3390/cancers11020163. 8. Lacroix, M. Significance, detection and markers of disseminated breast cancer cells. Endocr. Relat. Cancer. 2006, 13, 1033-1067, https://doi.org/10.1677/ERC-06-0001. 9. Shaikh, K.; Krishnan, S.; Thanki, R. Types, Diagnosis, and Treatment of Breast Cancer. In: Artificial Intelligence in Breast Cancer Early Detection and Diagnosis 2021, Springer, Cham, https://doi.org/10.1007/978-3-030-59208-0_2. 10. Ginsburg, O.; Yip, C.H.; Brooks, A.; Cabanes, A.; Caleffi, M.; Dunstan Yataco, J.A.; Gyawali, B.; McCormack, V.; McLaughlin de Anderson, M.; Mehrotra, R.; Mohar, A.; Murillo, R.; Pace, L.E.; Paskett, E.D.; Romanoff, A.; Rositch, A.F.; Scheel, J.R.; Schneidman, M.; Unger-Saldana, K.; Vanderpuye, V.; Wu, T.Y.; Yuma, S.; Dvaladze, A.; Duggan, C.; Anderson, B.O. Breast cancer early detection: A phased approach to implementation. Cancer 2020, 126, 2379-2393, https://doi.org/10.1002/cncr.32887. 11. Barba, D.; León-Sosa, A.; Lugo, P.; Suquillo, D.; Torres, F.; Surre, F.; Trojman, L.; Caicedo, A. Breast cancer, screening and diagnostic tools: All you need to know. Crit. Rev. Oncol. Hematol. 2021, 157, 103174, https://doi.org/10.1016/j.critrevonc.2020.103174. 12. Chavarri-Guerra, Y.; Soto-Perez-de-Celis, E.; Ramos-Lopez, W.; San Miguel de Majors, S.L.; Sanchez- Gonzalez, J.; Ahumada-Tamayo, S.; Viramontes-Aguilar, L.; Sanchez-Gutierrez, O.; Davila-Davila, B.; Rojo-Castillo, P.; Perez-Montessoro, V.; Bukowski, A.; Goss, P.E. Patient navigation to enhance access to care for underserved patients with a suspicion or diagnosis of cancer. Oncologist. 2019, 24, 1195-1200, https://doi.org/10.1634/theoncologist.2018-0133. 13. Unger-Saldaña, K. Challenges to the early diagnosis and treatment of breast cancer in developing countries. World J. Clin. Oncol. 2014, 5, 465-477, https://doi.org/10.5306/wjco.v5.i3.465. 14. Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet‐Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87-108, https://doi.org/10.3322/caac.21262. https://biointerfaceresearch.com/ 12 of 16 23. https://doi.org/10.33263/BRIAC133.232 15. Padilla-Ruiz, M.; Zarcos-Pedrinaci, I.; Rivas-Ruiz, F. et al. Factors that influence treatment delay for patients with breast cancer. Ann. Surg. Oncol. 2021, 28, 3714-3721, https://doi.org/10.1245/s10434-020-09409-2. 16. Yip, C.H.; Bhoo Pathy, N.; Teo, S.H. A review of breast cancer research in malaysia. Med. J. Malaysia. 2014, 69, 8-22. 17. Tan, M.-M.; Ho, W.-K.; Yoon, S.-Y. et al. A case-control study of breast cancer risk factors in 7,663 women in malaysia. PLoS One. 2018, 13, e0203469, https://doi.org/10.1371/journal.pone.0203469. 18. Figueroa, J.D.; Gierach, G.L.; Duggan, M.A. et al. Risk factors for breast cancer development by tumor characteristics among women with benign breast disease. Breast Cancer Res. 2021, 23, 34, https://doi.org/10.1186/s13058-021-01410-1. 19. Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The traditional medicine and modern medicine from natural products. Molecules 2016, 21, 559, https://doi.org/10.3390/molecules21050559. 20. Afzal, M.; Ameeduzzafar; Alharbi, K.S. et al. Nanomedicine in treatment of breast cancer–a challenge to conventional therapy. Semin. Cancer Biol. 2021, 69, 279-292, https://doi.org/10.1016/j.semcancer.2019.12.016. 21. Creighton, C.J.; Li, X.X.; Landis, M.; Dixon, J.M.; Neumeister, V.M.; Sjolund, A.; Rimm, D.L.; Wong, H.; Rodriguez, A.; Herschkowitz, J.I.; Fan, C.; Zhang, X.M.; He, X.P.; Pavlick, A.; Gutierrez, M.C.; Renshaw, L.; Larionov, A.A.; Faratian, D.; Hilsenbeck, S.G.; Perou, C.M.; Lewis, M.T.; Rosen, J.M.; Chang, J.C. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 13820-13825, https://doi.org/10.1073/pnas.0905718106. 22. Waks, A.G.; Winer, E.P. Breast cancer treatment: A review. JAMA. 2019, 321, 288-300, https://doi.org/10.1001/jama.2018.19323. Ji, S.R.; Liu, C.; Zhang, B.; Yang, F.; Xu, J.; Long, J.; Jin, C.; Fu, D.L.; Ni, Q.X.; Yu, X.J. Carbon nanotubes in cancer diagnosis and therapy. Biochim. Biophys. Acta – Reviews on cancer 2010, 1806, 29-35, https://doi.org/10.1016/j.bbcan.2010.02.004. 24. Moon, H.K.; Lee, S.H.; Choi, H.C. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano 2009, 3, 3707-3713, https://doi.org/10.1021/nn900904h. 25. Muley, H.; Fado, R.; Rodriguez-Rodriguez, R.; Casals, N. Drug uptake-based chemoresistance in breast cancer treatment. Biochem. Pharmacol. 2020, 177, 113959, https://doi.org/10.1016/j.bcp.2020.113959. 26. Wang, C.; Zhang, J.; Yin, J.; Gan, Y.; Xu, S.; Gu, Y.; Huang, W. Alternative approaches to target myc for cancer treatment. Signal Transduction and Targeted Therapy 2021, 6, 117, https://doi.org/10.1038/s41392- 021-00500-y. 27. Cassileth, B.R.; Deng, G. Complementary and alternative therapies for cancer. The Oncologist 2004, 9, 80- 89, https://doi.org/10.1634/theoncologist.9-1-80. 28. Abbasi, M.; Ghoran, S.H.; Niakan, M.H.; Jamali, K.; Moeini, Z.; Jangjou, A.; Izadpanah, P.; Amani, A. M. Mesoporous silica nanoparticle: Heralding a brighter future in cancer nanomedicine. Microporous Mesoporous Mater. 2021, 319, 110967, https://doi.org/10.1016/j.micromeso.2021.110967. 29. Alsaba, M.T.; Al Dushaishi, M.F.; Abbas, A.K. A comprehensive review of nanoparticles applications in the oil and gas industry. J Pet Explor Prod Te. 2020, 10, 1389-1399, https://doi.org/10.1007/s13202-019-00825- z. 30. Manzano, M.; Vallet‐Regí, M. Mesoporous silica nanoparticles for drug delivery. Adv. Funct. Mater. 2020, 30, 1902634, https://doi.org/10.1002/adfm.201902634. 31. Burke, A.R.; Singh, R.N.; Carroll, D.L.; Wood, J.C.; D'Agostino, R.B., Jr.; Ajayan, P.M.; Torti, F.M.; Torti, S.V. The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy. Biomaterials 2012, 33, 2961-2970, https://doi.org/10.1016/j.biomaterials.2011.12.052. 32. Jose, J.; Kumar, R.; Harilal, S.; Mathew, G.E.; Parambi, D.G.T.; Prabhu, A.; Uddin, M.S.; Aleya, L.; Kim, H.; Mathew, B. Magnetic nanoparticles for hyperthermia in cancer treatment: An emerging tool. Environ. Sci. Pollut. Res. 2020, 27, 19214-19225, https://doi.org/10.1007/s11356-019-07231-2. 33. Zein, R.; Sharrouf, W.; Selting, K. Physical properties of nanoparticles that result in improved cancer targeting. J. Oncol. 2020, 2020, https://doi.org/10.1155/2020/5194780. 34. Hosseini, M.; Haji-Fatahaliha, M.; Jadidi-Niaragh, F.; Majidi, J.; Yousefi, M. The use of nanoparticles as a promising therapeutic approach in cancer immunotherapy. Artif Cell Nanomed Biotech. 2016, 44, 1051-1061, https://doi.org/10.3109/21691401.2014.998830. 35. Conti, M.; Tazzari, V.; Baccini, C.; Pertici, G.; Serino, L.P.; De Giorgi, U. Anticancer drug delivery with nanoparticles. In vivo. 2006, 20, 697-701. 36. Aghebati-Maleki, A.; Dolati, S.; Ahmadi, M.; Baghbanzhadeh, A.; Asadi, M.; Fotouhi, A.; Yousefi, M.; Aghebati-Maleki, L. Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. J. Cell. Physiol. 2020, 235, 1962-1972, https://doi.org/10.1002/jcp.29126. 37. Silva, F.; Campello, M.P.C.; Paulo, A. Radiolabeled gold nanoparticles for imaging and therapy of cancer. Materials 2021, 14, 4, https://doi.org/10.3390/ma14010004. 38. Hashemi, M.; Omidi, M.; Muralidharan, B.; Tayebi, L.; Herpin, M.J.; Mohagheghi, M.A.; Mohammadi, J.; Smyth, H.D.C.; Milner, T.E. Layer-by-layer assembly of graphene oxide on thermosensitive liposomes for photo-chemotherapy. Acta Biomater. 2018, 65, 376-392, https://doi.org/10.1016/j.actbio.2017.10.040. https://biointerfaceresearch.com/ 13 of 16 https://doi.org/10.33263/BRIAC133.232 39. Hou, L.; Yang, X.; Ren, J.; Wang, Y.; Zhang, H.; Feng, Q.; Shi, Y.; Shan, X.; Yuan, Y.; Zhang, Z. A novel redox-sensitive system based on single-walled carbon nanotubes for chemo-photothermal therapy and magnetic resonance imaging. Int J Nanomedicine 2016, 11, 607-624, https://doi.org/10.2147/IJN.S98476. 40. Jeyamohan, P.; Hasumura, T.; Nagaoka, Y.; Yoshida, Y.; Maekawa, T.; Kumar, D. S. Accelerated killing of cancer cells using a multifunctional single-walled carbon nanotube-based system for targeted drug delivery in combination with photothermal therapy. Int J Nanomedicine 2013, 8, 2653-2667, https://doi.org/10.2147/Ijn.S46054. 41. Pai, C.L.; Chen, Y.C.; Hsu, C.Y.; Su, H.L.; Lai, P.S. Carbon nanotube-mediated photothermal disruption of endosomes/lysosomes reverses doxorubicin resistance in mcf-7/adr cells. J Biomed Nanotechnol. 2016, 12, 619-629, https://doi.org/10.1166/jbn.2016.2133. 42. Yang, H.; Chen, Y.; Chen, Z.; Geng, Y.; Xie, X.; Shen, X.; Li, T.; Li, S.; Wu, C.; Liu, Y. Chemo- photodynamic combined gene therapy and dual-modal cancer imaging achieved by ph-responsive alginate/chitosan multilayer-modified magnetic mesoporous silica nanocomposites. Biomater Sci. 2017, 5, 1001-1013, https://doi.org/10.1039/c7bm00043j. 43. Wang, D.; Wang, T.; Xu, Z.; Yu, H.; Feng, B.; Zhang, J.; Guo, C.; Yin, Q.; Zhang, Z.; Li, Y. Cooperative treatment of metastatic breast cancer using host-guest nanoplatform coloaded with docetaxel and sirna. Nano- micro Small 2016, 12, 488-498, https://doi.org/10.1002/smll.201502913. 44. Fahrenholtz, C.D.; Ding, S.; Bernish, B.W.; Wright, M.L.; Zheng, Y.; Yang, M.; Yao, X.; Donati, G.L.; Gross, M.D.; Bierbach, U.; Singh, R. Design and cellular studies of a carbon nanotube-based delivery system for a hybrid platinum-acridine anticancer agent. J. Inorg. Biochem. 2016, 165, 170-180, https://doi.org/10.1016/j.jinorgbio.2016.07.016. 45. Peng, J.; Qi, T.; Liao, J.; Chu, B.; Yang, Q.; Qu, Y.; Li, W.; Li, H.; Luo, F.; Qian, Z. Mesoporous magnetic gold “nanoclusters” as theranostic carrier for chemo-photothermal co-therapy of breast cancer. Theranostics. 2014, 4, 678-692, https://doi.org/10.7150/thno.7869. 46. Wang, L.; Shi, J.; Jia, X.; Liu, R.; Wang, H.; Wang, Z.; Li, L.; Zhang, J.; Zhang, C.; Zhang, Z. Nir-/ph- responsive drug delivery of functionalized single-walled carbon nanotubes for potential application in cancer chemo-photothermal therapy. Pharm. Res. 2013, 30, 2757-2771, https://doi.org/10.1007/s11095-013-1095- 3. 47. Oh, Y.; Je, J. Y.; Moorthy, M.S.; Seo, H.; Cho, W.H. pH and NIR-light-responsive magnetic iron oxide nanoparticles for mitochondria-mediated apoptotic cell death induced by chemo-photothermal therapy. Int. J. Pharm. 2017, 531, 1-13, https://doi.org/10.1016/j.ijpharm.2017.07.014. 48. Yuan, J.; Liu, J.L.; Song, Q.; Wang, D.; Xie, W.S.; Yan, H.; Zhou, J.F.; Wei, Y.; Sun, X.D.; Zhao, L. Y. Photoinduced mild hyperthermia and synergistic chemotherapy by one-pot-synthesized docetaxel-loaded poly(lactic-co-glycolic acid)/polypyrrole nanocomposites. ACS Applied Materials & Interfaces 2016, 8, 24445-24454, https://doi.org/10.1021/acsami.6b07669. 49. Mei, C.; Wang, N.; Zhu, X.; Wong, K.H.; Chen, T. Photothermal‐controlled nanotubes with surface charge flipping ability for precise synergistic therapy of triple‐negative breast cancer. Adv. Funct. Mater. 2018, 28, 1805225, https://doi.org/10.1002/adfm.201805225. Oh, Y.; Jin, J.-O.; Oh, J. Photothermal-triggered control of sub-cellular drug accumulation using doxorubicin- loaded single-walled carbon nanotubes for the effective killing of human breast cancer cells. Nanotechnology 2017, 28, 125101, https://doi.org/10.1088/1361-6528/aa5d7d. Vimala, K.; Shanthi, K.; Sundarraj, S.; Kannan, S. Synergistic effect of chemo-photothermal for breast cancer therapy using folic acid (FA) modified zinc oxide nanosheet. J. Colloid Interface Sci. 2017, 488, 92-108, https://doi.org/10.1016/j.jcis.2016.10.067. 52. Marches, R.; Mikoryak, C.; Wang, R.H.; Pantano, P.; Draper, R.K.; Vitetta, E.S. The importance of cellular internalization of antibody-targeted carbon nanotubes in the photothermal ablation of breast cancer cells. Nanotechnology 2011, 22, 095101, https://doi.org/10.1088/0957-4484/22/9/095101. 53. Xia, Y.Z.; Wu, X.X.; Zhao, J.T.; Zhao, J.S.; Li, Z.H.; Ren, W.Z.; Tian, Y.C.; Li, A.G.; Shen, Z.Y.; Wu, A.G. Three dimensional plasmonic assemblies of aunps with an overall size of sub-200 nm for chemo- photothermal synergistic therapy of breast cancer. Nanoscale 2016, 8, 18682-18692, https://doi.org/10.1039/c6nr07172d. 54. Feng, Q.; Zhang, Y.; Zhang, W.; Shan, X.; Yuan, Y.; Zhang, H.; Hou, L.; Zhang, Z. Tumor-targeted and multi-stimuli responsive drug delivery system for near-infrared light induced chemo-phototherapy and photoacoustic tomography. Acta Biomater. 2016, 38, 129-142, https://doi.org/10.1016/j.actbio.2016.04.024. 55. Zhang, L.; Jing, D.; Wang, L.; Sun, Y.; Li, J.J.; Hill, B.; Yang, F.; Li, Y.; Lam, K.S. Unique photochemo- immuno-nanoplatform against orthotopic xenograft oral cancer and metastatic syngeneic breast cancer. Nano Lett. 2018, 18, 7092-7103, https://doi.org/10.1021/acs.nanolett.8b03096. 56. Jones, E.; Nissen, L.; McCarthy, A.; Steadman, K.; Windsor, C. Exploring the use of complementary and alternative medicine in cancer patients. Integr. Cancer Ther. 2019, 18, https://doi.org/10.1177/1534735419854134. 57. Ostberg, J.R.; Gellin, C.; Patel, R.; Repasky, E.A. Regulatory potential of fever-range whole body hyperthermia on langerhans cells and lymphocytes in an antigen-dependent cellular immune response. The Journal of Immunology 2001, 167, 2666-2670, https://doi.org/10.4049/jimmunol.167.5.2666. https://biointerfaceresearch.com/ 14 of 16 50. 51. 58. 66. https://doi.org/10.33263/BRIAC133.232 Yagawa, Y.; Tanigawa, K.; Kobayashi, Y.; Yamamoto, M. Cancer immunity and therapy using hyperthermia with immunotherapy, radiotherapy, chemotherapy, and surgery. J. Cancer Metastasis Treat. 2017, 3, 218- 230, https://doi.org/10.20517/2394-4722.2017.35. 59. Kaidar-Person, O.; Oldenborg, S.; Poortmans, P. Re-irradiation and hyperthermia in breast cancer. Clin. Oncol. 2018, 30, 73-84, https://doi.org/10.1016/j.clon.2017.11.004. 60. Kikumori, T.; Kobayashi, T.; Sawaki, M.; Imai, T. Anti-cancer effect of hyperthermia on breast cancer by magnetite nanoparticle-loaded anti-her2 immunoliposomes. Breast Cancer Res. Treat. 2009, 113, 435, https://doi.org/10.1007/s10549-008-9948-x. 61. Yin, W.Y.; Yan, L.; Yu, J.; Tian, G.; Zhou, L.J.; Zheng, X.P.; Zhang, X.; Yong, Y.; Li,J.; Gu, Z.J.; Zhao, Y.L. High-throughput synthesis of single-layer mos2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 2014, 8, 6922-6933, https://doi.org/10.1021/nn501647j. 62. Zhang, M.; Wang, W.; Cui, Y.; Chu, X.; Sun, B.; Zhou, N.; Shen, J. Magnetofluorescent fe3o4/carbon quantum dots coated single-walled carbon nanotubes as dual-modal targeted imaging and chemo/photodynamic/photothermal triple-modal therapeutic agents. Chem. Eng. J. 2018, 338, 526-538, https://doi.org/10.1016/j.cej.2018.01.081. 63. Wang, G.; Xu, D.; Chai, Q.; Tan, X.; Zhang, Y.; Gu, N.; Tang, J. Magnetic fluid hyperthermia inhibits the growth of breast carcinoma and downregulates vascular endothelial growth factor expression. Oncol. Lett. 2014, 7, 1370-1374, https://doi.org/10.3892/ol.2014.1893. 64. Krysko, D.V.; Garg, A.D.; Kaczmarek, A.; Krysko, O.; Agostinis, P.; Vandenabeele, P. Immunogenic cell death and damps in cancer therapy. Nat. Rev. Cancer. 2012, 12, 860-875, https://doi.org/10.1038/nrc3380. 65. Poinard, B.; Neo, S.Z.Y.; Yeo, E.L.L.; Heng, H.P.S.; Neoh, K.G.; Kah, J.C.Y. Polydopamine nanoparticles enhance drug release for combined photodynamic and photothermal therapy. ACS Appl Mater Interfaces 2018, 10, 21125-21136, https://doi.org/10.1021/acsami.8b04799. Dadwal, A.; Baldi, A.; Narang, R.K. Nanoparticles as carriers for drug delivery in cancer. Artif Cell Nanomed B. 2018, 46, 295-305, https://doi.org/10.1080/21691401.2018.1457039. 67. Hatamie, S.; Balasi, Z.M.; Ahadian, M.M.; Mortezazadeh, T.; Shams, F.; Hosseinzadeh, S. Hyperthermia of breast cancer tumor using graphene oxide-cobalt ferrite magnetic nanoparticles in mice. J. Drug Deliv. Sci. Technol. 2021, 65, 102680, https://doi.org/10.1016/j.jddst.2021.102680. 68. McKernan, P.; Virani, N.A.; Faria, G.N.F.; Karch, C.G.; Prada Silvy, R.; Resasco, D.E.; Thompson, L. F.; Harrison, R.G. Targeted single-walled carbon nanotubes for photothermal therapy combined with immune checkpoint inhibition for the treatment of metastatic breast cancer. Nanoscale Res Lett. 2021, 16, 9, https://doi.org/10.1186/s11671-020-03459-x. Radzi, M.R.M.; Johari, N.A.; Zawawi, W.F.A.W.M.; Zawawi, N.A.; Latiff, N.A.; Malek, N.A.N.N.; Wahab, A.A.; Salim, M.I.; Jemon, K. In vivo evaluation of oxidized multiwalled-carbon nanotubes-mediated hyperthermia treatment for breast cancer. Materials Science and Engineering: C. 2021, 112586, https://doi.org/10.1016/j.msec.2021.112586. 70. Cheng, D.; Ji, Y.; Wang, B.; Wang, Y.; Tang, Y.; Fu, Y.; Xu, Y.; Qian, X.; Zhu, W. Dual-responsive nanohybrid based on degradable silica-coated gold nanorods for triple-combination therapy for breast cancer. Acta Biomater. 2021, 128, 435-446, https://doi.org/10.1016/j.actbio.2021.04.006. 71. Zhou, Z.; Zhao, J.; Di, Z.; Liu, B.; Li, Z.; Wu, X.; Li, L. Core–shell gold nanorod@ mesoporous-mof heterostructures for combinational phototherapy. Nanoscale. 2021, 13, 131-137, https://doi.org/10.1039/D0NR07681C. 72. Nosrati, H.; Baghdadchi, Y.; Abbasi, R.; Barsbay, M.; Ghaffarlou, M.; Abhari, F.; Mohammadi, A.; Kavetskyy, T.; Bochani, S.; Rezaeejam, H.; Davaran, S.; Danafar, H. Iron oxide and gold bimetallic radiosensitizers for synchronous tumor chemoradiation therapy in 4T1 breast cancer murine model. J Mater Chem B. 2021, 9, 4510-4522, https://doi.org/10.1039/d0tb02561e. 73. D'Souza, J.N.; Prabhu, A.; Nagaraja, G.K.; Navada, K.M.; Kouser, S.; Manasa, D.J. Unravelling the human triple negative breast cancer suppressive activity of biocompatible zinc oxide nanostructures influenced by vateria indica (l.) fruit phytochemicals. Mater. Sci. Eng.: C 2021, 122, 111887, https://doi.org/10.1016/j.msec.2021.111887. 74. Niu, S.W.; Zhang, X.J.; Williams, G.R.; Wu, J.R.; Gao, F.; Fu, Z.; Chen, X.; Lu, S.; Zhu, L.M. Hollow mesoporous silica nanoparticles gated by chitosan-copper sulfide composites as theranostic agents for the treatment of breast cancer. Acta Biomater. 2021, 126, 408-420, https://doi.org/10.1016/j.actbio.2021.03.024. 75. Alkahtani, S.; Alarifi, S.; Albasher, G.; Al-Zharani, M.; Aljarba, N.H.; Almarzoug, M.H.; Alhoshani, N.M.; Al-Johani, N.S.; Alothaid, H.; Alkahtane, A.A. Poly lactic-co-glycolic acid- (plga-) loaded nanoformulation of cisplatin as a therapeutic approach for breast cancers. Oxid. Med. Cell. Longev. 2021, 2021, https://doi.org/10.1155/2021/5834418. 76. Xie, Z.; Fan, T.; An, J.; Choi, W.; Duo, Y.; Ge, Y.; Zhang, B.; Nie, G.; Xie, N.; Zheng, T.; Chen, Y.; Zhang, H.; Kim, J.S. Emerging combination strategies with phototherapy in cancer nanomedicine. Chem. Soc. Rev. 2020, 49, 8065-8087, https://doi.org/10.1039/d0cs00215a. 77. Yao, C.P.; Zhang, L.W.; Wang, J.; He, Y.L.; Xin, J.; Wang, S.J.; Xu, H.; Zhang, Z.X. Gold nanoparticle mediated phototherapy for cancer. Journal of Nanomaterials. 2016, 2016, https://doi.org/10.1155/2016/5497136. https://biointerfaceresearch.com/ 15 of 16 69. https://doi.org/10.33263/BRIAC133.232 78. Sun, Y.; Wang, Q.; Chen, J.; Liu, L.; Ding, L.; Shen, M.; Li, J.; Han, B.; Duan, Y. Temperature-sensitive gold nanoparticle-coated pluronic-pll nanoparticles for drug delivery and chemo-photothermal therapy. Theranostics 2017, 7, 4424-4444, https://doi.org/10.7150/thno.18832. 79. Kong, F.Y.; Zhang, J.W.; Li, R.F.; Wang, Z.X.; Wang, W.J.; Wang, W. Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules 2017, 22, 1445, https://doi.org/10.3390/molecules22091445. 80. Xu, L. G.; Li, W.; Sadeghi-Soureh, S.; Amirsaadat, S.; Pourpirali, R.; Alijani, S. Dual drug release mechanisms through mesoporous silica nanoparticle/electrospun nanofiber for enhanced anticancer efficiency of curcumin. Journal of Biomedical Materials Research Part A. 2021, 110, 316-330, https://doi.org/10.1002/jbm.a.37288. 81. Wang, A.C.; Ma, Y.B.; Wu, F.X.; Ma, Z.F.; Liu, N.F.; Gao, R.; Gao, Y.S.; Sheng, X.G. TLR4 induces tumor growth and inhibits paclitaxel activity in myd88‑positive human ovarian carcinoma in vitro. Oncol. Lett. 2014, 7, 871-877, https://doi.org/10.3892/ol.2013.1759. 82. Abdelhamid, H.N.; Wu, H.-F. Nanoparticles advanced drug delivery for cancer cells. In: Raj K. Keservani and A.K. Sharma (eds.), Nanoparticles advanced drug delivery for cancer cells 2019, Apple Academic Press, New York, USA, https://doi.org/10.1201/9781351137263. 83. Guo, Q.; Shen, X.T.; Li, Y.Y.; Xu, S.Q. Carbon nanotubes-based drug delivery to cancer and brain. J Huazhong Univ Sci Technolog Med Sci. 2017, 37, 635-641, https://doi.org/10.1007/s11596-017-1783-z. 84. Jiang, B.P.; Zhou, B.; Lin, Z.; Liang, H.; Shen, X.C. Recent advances in carbon nanomaterials for cancer phototherapy. Chemistry a European J. 2019, 25, 3993-4004, https://doi.org/10.1002/chem.201804383. 85. Li, B.; Harlepp, S.; Gensbittel, V.; Wells, C.J.; Bringel, O.; Goetz, J.G.; Begin-Colin, S.; Tasso, M.; Begin, D.; Mertz, D. Near infra-red light responsive carbon nanotubes@ mesoporous silica for photothermia and drug delivery to cancer cells. Materials Today Chemistry 2020, 17, 100308, https://doi.org/10.1016/j.mtchem.2020.100308. 86. Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Del. Rev. 2012, 64, 24-36, https://doi.org/10.1016/j.addr.2012.09.006. 87. Robinson, J.T.; Welsher, K.; Tabakman, S.M.; Sherlock, S.P.; Wang, H.; Luong, R.; Dai, H. High performance in vivo near-IR (> 1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano research 2010, 3, 779-793, https://doi.org/10.1007/s12274-010-0045-1. 88. Nakamoto, S.; Ikeda, M.; Kubo, S.; Yamamoto, M.; Yamashita, T.; Notsu, A. Systemic immunity markers associated with lymphocytes predict the survival benefit from paclitaxel plus bevacizumab in HER2 negative advanced breast cancer. Sci. Rep. 2021, 11, 6328, https://doi.org/10.1038/s41598-021-85948-2. 89. Esteva, F.J.; Hubbard-Lucey, V.M.; Tang, J.; Pusztai, L. Immunotherapy and targeted therapy combinations in metastatic breast cancer. The Lancet Oncology 2019, 20, E175-E186, https://doi.org/10.1016/S1470- 2045(19)30026-9. 90. Bracci, L.; Schiavoni, G.; Sistigu, A.; Belardelli, F. Immune-based mechanisms of cytotoxic chemotherapy: Implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ. 2014, 21, 15-25, https://doi.org/10.1038/cdd.2013.67. 91. Mehraj, U.; Dar, A.H.; Wani, N.A.; Mir, M.A. Tumor microenvironment promotes breast cancer chemoresistance. Cancer Chemother. Pharmacol. 2021, 87, 147-158, https://doi.org/10.1007/s00280-020- 04222-w. 92. Jolesch, A.; Elmer, K.; Bendz, H.; Issels, R.D.; Noessner, E. Hsp70, a messenger from hyperthermia for the immune system. Eur. J. Cell Biol. 2012, 91, 48-52, https://doi.org/10.1016/j.ejcb.2011.02.001. 93. Multhoff, G.; Pockley, A.G.; Schmid, T.E.; Schilling, D. The role of heat shock protein 70 (Hsp70) in radiation-induced immunomodulation. Cancer Lett. 2015, 368, 179-184, https://doi.org/10.1016/j.canlet.2015.02.013. 94. Datta, N.; Ordóñez, S.G.; Gaipl, U.; Paulides, M.; Crezee, H.; Gellermann, J.; Marder, D.; Puric, E.; Bodis, S. Local hyperthermia combined with radiotherapy and-/or chemotherapy: Recent advances and promises for the future. Cancer Treat. Rev. 2015, 41, 742-753, https://doi.org/10.1016/j.ctrv.2015.05.009.
(1)
[1] Abd Rahman, A. B., & Omar, W. (2006). Issues and challenges in the implementation of industrialised building systems in Malaysia. Proceedings of the 6th Asia-Pacific Structural Engineering and Construction Conference, (September), C–45 – C–53. [2] Hassim. (2009). Hassim, S., Jaafar, M. S., Sazali, & S. A. A. H. (2009) The Contractor Perception Towards Industrialised Building System Risk in Construction Projects in Malaysia. American Journal of Applied Sciences, 6 (5). [3] IBS (2003). Industrialized Building System (IBS) Roadmap 2003-2010. Construction Industry Development Board (CIDB), Kuala Lumpur, (72). [4] Kamar. (2009). Kamar, K. A. M., Alshawi, M., & Hamid, Z. (2009, January). Barriers to industrialized building system (IBS): The case of Malaysia. In In BuHu. 9th International Postgraduate Research Conference (IPGRC), Salford, United Kingdom. [5] Nawi, M. N. M.,1 Lee, A.,2 and Nor, K. M.3, Barriers to Implementation of the Industrialised Building System (IBS) in Malaysia, The Built & Human Environment Review, Volume 4, 22 (2011). [6] Thanoon, W. A., Peng, L. W., Kadir, M. R. A., Jaafar, M. S. and Salit, M. S., The Essential Characteristics of Industrialised Building Systems, Construction Industry Development Board (CIDB) Malaysia, Kuala Lumpur, Malaysia, 10-11 September 2003. [7] Shaari, S., & Ismail, E. (2003). Promoting the usage of industrialized building system (ibs) and modular coordination (mc) in malaysia. Construction industry in engineers (board of engineer malaysia). [8] Nawi, M. N. M., Elias, E.M., Hamid, M. S. A. & Yusoff, M. N. (2005) A Study of IBS Formwork Usage in the Malaysian Construction Industry. Proceeding in National Seminar on Engineering Support Course, University Malaysia Perlis, Malaysia. [9] Nawi, M.N.M., Nifa, F.A.A., Abdullah, S. & Yasin, F.M. (2007) A Preliminary Survey of the Application of IBS in Kedah and Perlis Malaysian Construction Industry, Proceeding in Conference in Sustainable Building, Malaysia. [10] Nadim, W., & Goulding, J. S. (2010). Offsite production in the UK: the way forward? A UK construction industry perspective. Construction Innovation: Information, Process, Management, 10(2), 181-202. [11] Lessing. (2005). Lessing, J., Stehn, L., & Ekholm, A. (2005). Industrialised housing: Definition and categorisation of the concept. In 13th International Group for Lean Construction Conference: Proceedings (p. 471). International Group on Lean Construction. [12] Blismas, N., & Wakefield, R. (2009). Drivers, constraints and the future of offsite manufacture in Australia. Construction Innovation: Information, Process, Management, 9, 72–83. [13] Abd Shukor, A.S., Mohammad,M.F., Mahbub,R. and Ismail,F.Supply Chain Integration in Industralised Building System in the Malaysian Construction Industry The Built & Human Environment Review.Volume 4, Special Issue 1,(2011)108. [14] Faizul. (2006). Faizul, N.A. (2006) Supply Chain Management in IBS Industry. Malaysia International IBS Exhibition, Kuala Lumpur. [15] Jaafar, M and Mahamad, N. JIT Practices from the Perspective of Malaysian IBS Manufacturers, Malaysian Construction Research Journal, 10(1) (2012), 63-76. [16] Kamarul Anuar Mohamad Kamar and Zuhairi Abd. Hamid Supply Chain Strategy for Contractor in Adopting Industrialised Building System (IBS). Australian Journal of Basic and Applied Sciences, 5(12) (2011) 2552-2557. [17] Mohamad Ibrahim Mohamad, Mardhiah Zawawi, M.A.Nekooie, Implementing industrialsed Building System (IBS) in Malaysia: Acceppting and awareness level, problems and strategies, Malaysian Journal of Civil Engineering. 21(2) (2009) 219-234. [18] Din, M. I., Bahri, N., Dzulkifly, M. A., Norman, M. R., Kamar, K. A. M., & Hamid, Z. A. (2012). The adoption of Industrialised Building System (IBS) construction in Malaysia: The history, policies, experiences and lesson learned. ISARC Proceedings. [19] Gibb. (2001). Gibb, A. (2001) Pre-assembly in construction: A review of recent and current industry and research initiatives on pre-assembly in construction, CRISP Consultancy Commission – 00/19, May 2001. [20] IBS, & Roadmap. (2007). IBS Roadmap Review (Final Report) (2007), 2007, IBS Centre, Construction Industry Development Board, Malaysia, Kuala Lumpur. [21] Agus. (n.d.). Agus, M. R. (1997) Urban development and housing policy in Malaysia. International Journal Housing Science Application, 21(2), 97–106. [22] Azman. (2011). World Conference on Information Technology Permanent and Mobile Industrialised Building System Manufacturing Plant Based on Malaysian Case Study, (Mci). [23] Waleed. (1997). Waleed, T., Mohd, P. D., Abdul, S. A., Abdul Kadir, M. R., and Ali, A. A. ~1997!. “‘Industrialized building systems.’” Proc., Seminar on Affordable Quality Housing, Housing Research Centre, Univ. Putra, Malaysia ~UPM. [24] Friedman, A., & Cammalleri, V. (1997). Cost Reduction Through Prefabrication: a Design Approach. Housing and Society. [25] Oostra, M., Joonson, C., C. (2007) Best practices: Lesson Learned on Building Concept (edited by) Kazi, A. S., Hannus, M., Boudjabeur, S., Malone, A. (2007), Open Building Manufacturing – Core Concept and Industrial Requirement’, Manubuild Consortium and VTT Finland Publication, Finland. [26] Jaafar, M and Radzi N M, Level of satisfaction and issues with procurement systems used in the Malaysian public sector, Australasian Journal of Construction Economics and Building. 13 (1) (2013) 50-65. [27] CIMP. (2007). CIMP (2007) Construction Industry Master Plan 2006 – 2015 (CIMP 2006 – 2015). Construction Industry Development Board Malaysia (CIDB), Kuala Lumpur. [28] Chung, L. P. & Kadir, A. M. (2007) Implementation Strategy for Industrialized Building System. PhD thesis, Universiti Teknologi Malaysia (UTM), Johor Bahru. [29] Gandu, Y.J., Ali, A.A. and Chindo, P.G. (2009) ‘Bidding model for sustainable projects using the traditional procurement method’, The Information Manager, Vol. 9, No. 2, (2009) 36–43. [30] Preuss, L. (2009). Addressing sustainable development through public procurement: the case of local government. Supply Chain Management: An International Journal, 14(3), 213-223. [31] Helen Walker, & Wendy Phillips, (2009). Sustainable procurement: emerging issues. International Journal of Procurement Management, 2(1), 41-61. [32] Jaafar, M and Mohd Radzi, N., Building procurement in a developing country: a comparison study between public and private sectors. International Journal of Procurement Management, Vol. 5, No. 5, (2012) 608-626.
(1)
1. Abd Rahman, N. H., Ismail, S., Ridzuan, A. R., Abd Samad, K. (2020). The issue of graduate unemployment in Malaysia: Post Covid-19. International Journal of Academic Research in Business and Social Sciences, 10(10), 834-841. 2. Ahmad, S.Z and Buchanan R.F. (2015). Entrepreneurship education in Malaysian universities. Tertiary Education and Management, 21 (4) pp349-366. 3. Ahmad, S. Z. (2013). The need for inclusion of entrepreneurship education in Malaysia lower and higher learning institutions. Education and Training, 55(2), 191– 203. doi:10.1108/00400911311304823. 4. Ali Sis dan Aede Hatib Musta’Amal (2014). Cabaran Kursus Pendek Keusahawanan Di Dalam Pembelajaran Sepanjang Hayat Di Kolej Komuniti Kementerian Pendidikan Malaysia. http://eprints.utm.my/id/eprint/61317/1/. 5. Christenson, S. L., Reschly, A. L., Appleton, J. J., Berman, S., Spanjers, D. and Varro, P. (2008): Best practices in fostering student engagement. Best Practices in School Psychology, 5, 1099- 1120. National Association of School Psychologists Bethesda, MD. 6. Cheng, M. Y., Chan, W. S., & Mahmood, A. (2009). The effectiveness of entrepreneurship education in Malaysia. Education + Training, 1(7), 555-566. http://dx.doi.org/10.1108/00400910910992754. 7. Course Outline Kursus Asas Pembudayaan Keusahawanan, Pusat Penataaran Ilmu dan Bahasa, Universiti Malaysia Sabah. 8. edglossary.Student Engagement. Retrieved from http://edglossary.org/ student-engagement/ 9. Fayolle, A., & Gailly, B. (2008). From craft to science: Teaching models and learning processes in entrepreneurship education. Journal of European Industrial Training, 32(7). 10. Fayolle, A. (2008). Entrepreneurship education at a crossroads: Towards a more mature teaching field. Journal of Enterprising Culture, 16, 325–337. 11. Graduates Statistics (2019). Department of Statistics Malaysia. https://www.dosm.gov.my/v1/index.php?r=column/pdfPrev&id=b3ROY1djSVROS2ZhclZaUWh LUVp5QT09. 12. Hmelo-Silver, C.E. (2004). Problem-based Learning: What and how do students learn? Educational Psychology Review, 16(3), September. 13. Ibrahim Mamat, Wan Mohd Zaifurin Wan Nawang dan Noorun Nashriah Ramli (2009). Nilai, sikap dan amalan pegawai kanan institut pengajian tinggi terhadap program pembangunan usahawan siswa. Jurnal Kemanusiaan, Bil 4: 96-115. 14. Department of Statistic Malaysia. (Disember 2019). Press release Graduate Statistic 2018. http://www.dosm.gov.my. 15. Jaafar, M., & Abdul-Aziz, A. R. (2008). Entrepreneurship education in developing country: Exploration on its necessity in the construction programme. Journal of Engineering Design 16. Janssen, D. A. 2006. The ultimate self challenge: Time management. http://www.danieljanssen.com [3 Jun 2012]. 17. Kuh, G.D(2009): What student affairs professionals need to know about student engagement. Journal of College Student Development, 50(6). The Johns Hopkins University Press, 683-706. 18. Lim, H. E., Rich, J., & Harris, N. M. (2008). Employment outcomes of graduates: the case of Universiti Utara, Malaysia. Asian Economic Journal, 22(3), 321-341. 19. Menon, S. (2020). Stay positive: Things will get better. The Star Online. Retrieved from https://www.thestar.com.my/news/education/2020/07/19/stay-positive-things-will-get better. 20. Ministry of Higher Education Department (MoHE, 2020). Graduate employability: A priority of the Education Ministry. Press Statement: 18 February 2020, News Straits Times. Retrieved from https://www.nst.com.my/news/nation/2020/02/566731/graduate-employability-priority-educationministry. 21. Ministry of Higher Education (MoHE, 2016). Pelan Tindakan Keusahawanan Institusi Pendidikan Tinggi 2016-2020. Retrevied from http://www. pnc.upm.edu.my/upload/dokumen/menul320171013112713Pelan_Tindakan_Keusahawanan. 22. Ministry of Higher Education (MoHE) (2011). The National Higher Education Action Plan Phase 2 (2011- 2015). Putrajaya: MoHE. 23. Ministry of Higher Education (MoHE). (2007). The National Higher Education Strategic Plan: Laying the foundation beyond 2020. Ministry of Higher Education: Putrajaya. 24. Ministry of Higher Education, Malaysia (MoHE). (2010). Graduates Tracer Study. Retrieved April 15, 2013, from http://www.mohe.gov.my/web_statistik/statistik2010/BAB7_KAJIAN_PENGESA NAN_GRADUAN.pdf. 25. Ministry of Higher Education (MoHE) (2011). The National Higher Education Action Plan Phase 2 (2011- 2015). 26. Ministry of Higher Education (2015). Higher Education Statistics 2015. Retrieved from: https://www.mohe.gov.my/en/download/awam/statistik/2015/215-bab-1-makro-institusipendidikan-tinggi-1/file
(1)
1. Abdulahi A, Samadi B, Gharleghi B. A Study on the Negative Effects of Social Networking Sites such as Facebook among Asia Pacific University Scholars in Malaysia. Int J Bus Soc Sci. 2014;5:133-145. Available From: ijbssnet.com/journals/Vol_5_No_10_ September_2014/18.pdf 2. A’lamElhuda D, Dimetry DA. The Impact of Facebook and Others Social Networks Usage on Academic Performance and Social Life among Medical Students at Khartoum University. Int J Sci Technol Res. 2014;3:41-46. Accessed March 14, 2019. Available From: www.ijstr.org/paper-references.php?ref= IJSTR-0414-8622 3. Anderson EL, Steen E, Stavropoulos V. Internet Use and Problematic Internet Use: A Systematic Review of Longitudinal Research Trends in Adolescence and Emergent Adulthood. Int J Adolesc Youth. 2017;22:430- 454. DOI: 10.1080/02673843.2016.1227716 4. Arumugam B, Nagalingam S, Ganesan R. Behavioral Attributes and Risk Factors on Usage of Social Networking Sites among School Going Children of Chennai - A Cross Sectional Study. Br Biomed Bull. 2014;2:165-173. 5. Abdulahi A, Samadi B, Gharleghi B. A Study on the Negative Effects of Social Networking Sites Such as Facebook among 31. Mahat SS, Mundhe SD. Impact of Social Networking Sites (SNS) on the Youth. In: Impact of Social Networking Sites (SNS) on the Youth. ; 2014:225-230. 32. Müller KW, Dreier M, Beutel ME, Duven E, Giralt S, Wölfling K. A Hidden Type of Internet Addiction? Intense and Addictive Use of Social Networking Sites in Adolescents. Comput Hum Behav. 2016;55:172-177. DOI: 10.1016/j.chb.2015.09.007 33. Moslehpour M, Batjargal U. Factors Influencing Internet Addiction among Adolescents of Malaysia and Mongolia. J Adm Bisnis. 2013;9(2):101-116. Accessed March 14, 2019. Available From: www.researchgate.net/ publication/ 309210256_Factors_ Influencing_ Internet_ Addiction_ among_Adolescents_of_Malaysia_and_Mongolia 34. Soh PC-H, Charlton JP, Chew K-W. The Influence of Parental and Peer Attachment on Internet Usage Motives and Addiction. First Monday. 2014;19. DOI: 10.5210/fm.v19i7.5099 35. Smith A, Anderson M. Social Media Use 2018: Pew Research Centre; 2018. Accessed March 21, 2019. Available From: www.pewinternet.org/2018/03/01/socialmedia- use-in-2018/ 36. Vogel EA, Rose JP, Roberts LR, Eckles K. Social comparison, social media, and self-esteem. Psychol Pop Media Cult. 2014;3:206-222. DOI: 10.1037/ppm0000047 37. Liu D, Baumeister RF. Social Networking Online and Personality of Self-worth: A Meta-analysis. J Res Personal. 2016;64:79-89. DOI: 10.1016/j.jrp.2016.06.024 38. B³achnio A, Przepiorka A, Pantic I. Association between Facebook addiction, self-esteem and life satisfaction: A cross-sectional study. Comput Hum Behav. 2016;55: 701-705. DOI: 10.1016/j.chb.2015.10.026 39. Hawi NS, Samaha M. The Relations among Social Media Addiction, Self-Esteem, and Life Satisfaction in University Students. Soc Sci Comput Rev. 2017;35:576-586. DOI: 10.1177/0894439316660340 40. Gámez-Guadix M. Depressive Symptoms and Problematic Internet Use among Adolescents: Analysis of the Longitudinal Relationships from the Cognitive–Behavioral Model. Cyberpsychology Behav Soc Netw. 2014;17:714-719. DOI: 10.1089/cyber.2014.0226
(1)
1. Abdul Halim Ali. (2006). Mendekati Puisi Melayu Tradisional. Tanjung Malim: Penerbitan Profesional Baharu 2. Abdul Wahab bin Abu. (2003). Dikir Hadrah Cerminan Masyarakat Melayu Utara. Tesis Master Sastera. Serdang: Universiti Putra Malaysia. 3. Ahmad Lufti bin Abdul Wahab Al Linggi. (2009). Qosidah Al-Burdah Imam Al-Busairi R. A: Puji-pujian Untuk Rasulullah S.A.W. Kajang: Mawleed Publishing. 4. Ahmed Hankir. (2017). The Performing Arts and Psychological Well-Being. Psychiatria Danubina. 5. Al-Imam Nawawi. (1988). Terjemahan Hadis Shahih Bukhari Jilid I, II, III & IV. Klang. Selangor: Klang Book Centre. 6. Arham. (2013). Qasidah Burdah Imam Al-Busyari (Analisis ‘Ilm Al-Qawafi). Skripsi Sarjana Sastra Pada Falkultas Sastra. Makassar: Inuversitas Hasanuddin. 7. Asmad, (1990). Siri Bunga Rampai Kebudayaan Seni Lagu dan Permainan Tradisi, Associated Educational Distributors (M) Sdn Bhd, Melaka. 8. Aqib Yousuf Rather. (2022). Gandhian Philosophy is More Relevant Today than Yesterday. Journal of Social Responsibility,Tourism and Hospitality(JSRTH) ISSN 2799-1016, 2(04), 19–24. https://doi.org/10.55529/jsrth.24.19.24 9. Braginsky. I.V. (1994). Erti Keindahan dan Keindahan Erti dalam Kesusasteraan Melayu Klasik. Kuala Lumpur: Dewan Bahasa dan Pustaka. 10. Chowdhury, A. . (2022). History Beyond The Frame: Exploring The Art In Spiegelman’s Maus. Journal of Media,Culture and Communication(JMCC) ISSN:2799-1245, 2(05), 6–10. https://doi.org/10.55529/jmcc25.6.10 11. Harun Jaafar. (2002). Puisi-puisi Memuji Rasulullah. Wacana Kesusteraan Melayu Klasik. Tanjong Malim: Penerbit Universiti Pendidikan Sultan Idris. 12. Harun Mat Piah. (1980). Fungsi dan Penyebaran Permainan Kesenian Melayu di Malaysia. Dewan Bahasa. 13. _____________. (1989). Puisi Melayu Tradisional: Satu Pembicaraan Genre dan Fungsi. Kuala Lumpur: Dewan Bahasa dan Pustaka. 14. _____________. (2004). Puisi Melayu Tradisional: Nasihat dan Pengajaran. Kuala Lumpur: Dewan Bahasa dan Pustaka. 15. Ibnu Khaldun. (2002). Muqaddimah Ibnu Khaldun. Kuala Lumpur. Dewan Bahasa dan Pustaka. 16. Ismail, Noryamisma. (April 2018). Tema Keislaman Dalam Lirik Dikir al-Burdah Di Kampung Hulu, Sri Aman, Sarawak, Malaysia, tesis Ijazah Master Sastera, Universiti Putra Malaysia 17. Ismail, Noryamisma. Abdul Rani, Mohd Zariat. Husin, Fazilah. Haji Mohd Kiram, Norazlina. (2018). Islam Dalam Persembahan Dikir al-Burdah Oleh Pertubuhan Badan Kesenian dan Kebudayaan, Kampung Sessang, Sarawak, Jurnal Melayu Bil 17(2) hlm. 124 – 142. 18. Ismail, Noryamisma. Abdul Rani, Mohd Zariat. Husin, Fazilah. Haji Mohd Kiram, Norazlina. (2018). Seni Persembahan Dikir Al-Burdah Oleh Pertubuhan An-Nur, Kampung Melango Baru, Saratok, Sarawak, Journal of Borneo-Kalimantan (JBK) Vol 4 (2) hlm, 15 – 28.
(1)
1. Abdullahi, R., Lihan, S., Carlos, B. S., Bilung, M. K., Mikal, M. K. and Collick, F. (2013). Detection of oprL gene and antibiotic resistance of Pseudomonas aeruginosa from aquaculture environment. European Journal of Experimental Biology 3(6), 148-152. 2. Allen, H. K., Donato, J., Wang, H. H., Cloud-Hansen, K. A., Davies, J. and Handelsman, J. (2010). Call of the wild: Antibiotic resistance genes in natural environments. Nature Reviews Microbiology 8(4), 251259. 3. Barton, J. R. and Fløysand, A. (2010). The political ecology of Chilean salmon aquaculture, 1982-2010: A trajectory from economic development to global sustainability. Global Environmental Change 20(4), 739-752. 4. Bhullar, K., Waglechner, N., Pawlowski, A., Koteva, K., Banks, E. D., Johnston, M. D., Barton H. A. and Wright, G. D. (2012). Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS ONE 7(4), 1-11. 5. Bostock, J., Mcandrew, B., Richards, R., Jauncey, K., Telfer, T., Lorenzen, K., Little, D., Ross, L., Handisyde, N., Gatward, I. and Corner, R. (2010). Aquaculture : Global status and trends. Philosophical Transactions of The Royal Society B (365), 28972912.
(1)
1. Abideen, A. Z., Mohamad, F. B., & Hassan, M. R. (2020). Mitigation strategies to fight the COVID-19 pandemic—present, future and beyond. Journal of Health Research, 34(6), 547–562. https://doi.org/10.1108/JHR-04-2020-0109 2. Al-Maroof, R. S., Salloum, S. A., Hassanien, A. E., & Shaalan, K. (2020). Fear from COVID-19 and technology adoption: the impact of Google Meet during Coronavirus pandemic. Interactive Learning Environments, 0(0), 1–16. https://doi.org/10.1080/10494820.2020.1830121 3. Budd, J., Miller, B. S., Manning, E. M., Lampos, V., Zhuang, M., Edelstein, M., Rees, G., Emery, V. C., Stevens, M. M., Keegan, N., Short, M. J., Pillay, D., Manley, E., Cox, I. J., Heymann, D., Johnson, A. M., & McKendry, R. A. (2020). Digital technologies in the public-health response to COVID-19. Nature Medicine, 26(8), 1183–1192. https://doi.org/10.1038/s41591-020-1011-4 4. Cabarcos, M. Á., Soriano, D. R., & Chousa, J. (2020). All that glitters is not gold. The rise of gaming in the COVID-19 pandemic. Journal of Innovation & Knowledge, 5(4), 289–296. https://doi.org/10.1016/j.jik.2020.10.004 5. Damian, D., & Manea, C. (2018). How globalization is changing digital technology adoption An international perspective. Journal of Innovation and Knowledge, 3(1), 44–55. https://doi.org/10.1016/j.jik.2021.04.001 6. Dharmarajan, H., Anderson, J. L., Kim, S., Sridharan, S., Duvvuri, U., Ferris, R. L., Solari, M. G., Clump, D. A., Skinner, H. D., Ohr, J. P., Zandberg, D. P., Branstetter, B., Hughes, M. A., Traylor, K. S., Seethala, R., Chiosea, S. I., Nilsen, M. L., Johnson, J. T., & Kubik, M. W. (2020). Transition to a virtual multidisciplinary tumor board during the COVID-19 pandemic: University of Pittsburgh experience. Head and Neck, 42(6), 1310–1316. https://doi.org/10.1002/hed.26195 7. Dick P, T., & Burrill F, G. (2016). Design and Implementation Principles for Dynamic Interactive Mathematics Technologies. In Handbook of Research on Transforming Mathematics Teacher Education in the Digital Age (1st ed., pp. 23– 51). IGI Global Publisher of Timely Knowledge. https://www.igi- global.com/book/handbook-research-transforming-mathematics- teacher/142135 8. Donthu, N., & Gustafsson, A. (2020). Effect of COVID-19 on business and research. Journal of Business Research, 117(JUne), 284–289. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7280091/pdf/main.pdf 9. Dwivedi, Y., Hughes, D. L., Coombs, C., Constantiou, I., Duan, Y., Edwards, J., Gupta, B., Lal, B., Misra, S., Prashant, P., Raman, R., Rana, N., Sharma, S., & Upadhyay, N. (2020). Impact of COVID-19 pandemic on information management research and practice: Transforming education, work and life. International Journal of Information Management, 55, 102211. https://doi.org/10.1016/j.ijinfomgt.2020.102211 10. Eichhorn, S., & Matkin, G. W. (2016). Massive Open Online Courses, Big Data, and Education Research. New Directions for Institutional Research, 2015(167), 27–40. https://doi.org/10.1002/ir.20152 11. Golinelli, D., Boetto, E., Carullo, G., Nuzzolese, A. G., Landini, M. P., & Fantini, M. P. (2020). How the COVID-19 pandemic is favoring the adoption of digital technologies in healthcare: A literature review. MedRxiv, 0–2. https://doi.org/10.1101/2020.04.26.20080341 12. Gudmundsdóttir, G. B., Dalaaker, D., Egeberg, G., Hatlevik, O. E., & Tømte, K. H. (2014). Interactive technology. Traditional practice? Nordic Journal of Digital Literacy, 2014(1), 23–43. https://doi.org/10.18261/ISSN1891-943X-2014-01-05 13. Iivari, N., Sharma, S., & Ventä-Olkkonen, L. (2020). Digital transformation of everyday life – How COVID-19 pandemic transformed the basic education of the young generation and why information management research should care? International Journal of Information Management, 55(June), 102183. https://doi.org/10.1016/j.ijinfomgt.2020.102183 14. Iyengar, R. (2020). Education as the path to a sustainable recovery from COVID- 19. Prospects, 49(1–2), 77–80. https://doi.org/10.1007/s11125-020-09488-9 15. Kemp, S. (2020). Digital trends 2020: Every single stat you need to know about the internet. Thenextweb.Com. https://thenextweb.com/news/digital-trends- 2020-every-single-stat-you-need-to-know-about-the-internet 16. Khan, N., & Qureshi, M. I. (2020). A systematic literature review on online medical services in Malaysia. International Journal of Online and Biomedical Engineering, 16(6), 107–118. https://doi.org/10.3991/ijoe.v16i06.13573 17. Mac Callum, K., Jeffrey, L., & Kinshuk. (2014). Comparing the role of ICT literacy and anxiety in the adoption of mobile learning. Computers in Human Behavior, 39, 8–19. https://doi.org/10.1016/j.chb.2014.05.024 18. Mustapha, I., Thuy Van, N., Shahverdi, M., Qureshi, M. I., & Khan, N. (2021). Effectiveness of Digital Technology in Education During COVID-19 Pandemic. A Bibliometric Analysis. International Journal of Interactive Mobile Technologies (IJIM), 136–154. 19. Nicomedes, C. J. C., & Avila, R. M. A. (2020). Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19 . The COVID-19 resource centre is hosted on Elsevier Connect , the company ’ s public news and information . January. 20. Oberländer, M., Beinicke, A., & Bipp, T. (2020). Digital competencies: A review of the literature and applications in the workplace. Computers and Education, 146(November 2019). https://doi.org/10.1016/j.compedu.2019.103752 21. Papadopoulos, T., Baltas, K. N., & Balta, M. E. (2020). The use of digital technologies by small and medium enterprises during COVID-19: Implications for theory and practice. International Journal of Information Management, 55(July), 102–192. https://doi.org/10.1016/j.ijinfomgt.2020.102192 22. Severin, J. W., & Tankard, W. J. (2001). Communication theories: origins, methods, and uses in the mass media (4th ed.). Addison Wesley Longman. 23. Spacey, J. (2017). 12 Types of Interactive Media. Www.Simplicable.Com. https://simplicable.com/new/interactive-media 24. Taylor, P. (2019). Interactive Technology. Encyclopedia of Business and Finance. https://www.encyclopedia.com/finance/finance-and-accounting- magazines/interactive-technology 25. Thatcher, J. B., & Perrewe, L. P. (2002). An Empirical Examination of Individual Traits as Antecedents to Computer Anxiety and Computer Self-Efficacy. Management Information Systems Research Center, University of Minnesota, 26(4), 381–396. 26. Tønnessen, Ø., Dhir, A., & Flåten, B.-T. (2021). Digital knowledge sharing and creative performance: Work from home during the COVID-19 pandemic. Technological Forecasting and Social Change, 170(April), 120866. https://doi.org/10.1016/j.techfore.2021.120866 27. Tuma, F. (2021). The use of educational technology for interactive teaching in lectures. Annals of Medicine and Surgery, 62(December 2020), 231–235. https://doi.org/10.1016/j.amsu.2021.01.051 28. Vargo, D., Zhu, L., Benwell, B., & Yan, Z. (2021). Digital technology use during COVID-19 pandemic: A rapid review. Human Behavior and Emerging Technologies, 3(1), 13–24. https://doi.org/10.1002/hbe2.242 29. Whitelaw, S., Mamas, M. A., Topol, E., & van Spall, H. G. C. (2020). Applications of digital technology in COVID-19 pandemic planning and response. The Lancet Digital Health, 2(8), 435–440. https://doi.org/10.1016/S2589-7500(20)30142-4 30. Willy, C. Kriz. (2020). Gaming in the Time of COVID-19. Sage Journals, 51(4), 403– 410. https://doi.org/10.1177/1046878120931602 31. Wodon, Q. (2020). COVID-19 Crisis, Impacts on Catholic Schools, and Potential Responses | Part II: Developing Countries with Focus on Sub-Saharan Africa. Journal of Catholic Education, 23(1), 51–86. https://search.proquest.com/scholarly-journals/covid-19-crisis-impacts-on- catholic-schools/docview/2465720472/se-2?accountid=14542
(1)
1. Abid, G., Sajjad, I., Elahi, N. S., Farooqi, S., & Nisar, A. (2018). The influence of prosocial motivation and civility on work engagement: The mediating role of flourishingat work. Cogent Business & Management,5(1), 1493712. 2. Ashforth, B. E., & Mael, F. (1989). Social identificationtheory and the organization.Academy of management review,14(1), 20-39. 3. Ashforth, B. E., Harrison, S. H., & Corley, K. G. (2008). Identification in organizations: An examination of four fundamental questions.Journal of Management,34(3), 325-374. 4. Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models.Journal of the academy of marketing science,16(1), 74-94. 5. Bakker, A. B., & Demerouti, E. (2018). Multiple levels in job demands-resources theory: Implications for employee well-being and performance.Handbook of well-being. 6. Benevene, P., Dal Corso, L., De Carlo, A., Falco, A., Carluccio, F., & Vecina, M. L. (2018). Ethical leadership as an antecedent of job satisfaction, affective organizational commitment,and intention to stay among volunteers of non-profit organizations.Frontiers in psychology,9, 2069. 7. Bizumic, B., Reynolds, K. J., Turner, J. C., Bromhead, D., & Subasic, E. (2009). Abstract.Applied Psychology,58(1), 171-192. 8. Blustein, D. L., Kenny, M. E., Di Fabio, A., & Guichard, J. (2019). Expanding the impact of the psychology of working: Engaging psychology in the struggle for decent work and human rights.Journal of Career Assessment,27(1), 3-28. 9. Bosman, K. (2021). Implications of Mental Health and Academicians. 10. Capone, V., & Petrillo, G. (2020). Mental health in academicians: Relationships with job satisfaction, efficacy beliefs, burnout and depression.Current Psychology,39(5), 1757-1766. 11. Çelik, A., & Findik, M. (2012). The effect of perceived organizational support on organizational identification. International Journal of Economics and Management Engineering,6(8), 2089-2094. 12. Chhabra, B. (2020). Revisiting the relationship between work role stress and employee outcomes in Indian organizations: Moderating role of core self-evaluation.Global Business Review,21(1), 219-240. 13. Chhabra, B. (2020). Revisiting the relationship between work role stress and employee outcomes in Indian organizations: Moderating role of core self-evaluation.Global Business Review,21(1), 219-240. 14. Chin, W. W. (1998). The partial least squares approach to structural equation modeling.Modern methods for business research,295(2), 295-336. 15. Chughtai, A. A. (2016). Servant leadership and follower outcomes: Mediating effects of organizational identification and psychological safety. The Journal of psychology,150(7), 866-880. 16. Chughtai, A. A. (2016). Servant leadership and follower outcomes: Mediating effects of organizational identification and psychological safety.The Journal of psychology,150(7), 866-880. 17. Cobo-Rendón, R., López-Angulo, Y., Pérez-Villalobos, M. V., & Díaz-Mujica, A. (2020). Perceived Social Support and Its Effects on Changes in the Affective and Eudaimonic Well-Being of Chilean University Students.Frontiers in Psychology,11, 3380. 18. Colbert, A., Yee, N., & George, G. (2016). The digital workforce and the workplace of the future. 19. Consiglio, C., Borgogni, L., Di Tecco, C., & Schaufeli, W. B. (2016). What makes employees engaged with their work? The role of self-efficacy and employee's perceptions of social context over time.Career development international. 20. Dai, K., & Qin, X. (2016). Perceived organizational support and employee engagement: Based on the research of organizational identification and organizational justice.Open Journal of Social Sciences,4(12), 46-57. 21. Das, S. C., & Pandey, D. (2020). A Review on Organizational Support and Knowledge Sharing Behaviour under the Mediating Effects of Organizational Identification.IPE Journal of Management,10(1), 101-115. 22. Demerouti, E., Bakker, A. B., & Gevers, J. M. (2015). Job crafting and extra-role behavior: The role of work engagement and flourishing.Journal of Vocational Behavior,91, 87-96. 23. Diedericks, E., & Rothmann, S. (2013). Flourishing of information technology professionals: The role of work engagement and job satisfaction.Journal of Psychology in Africa,23(2), 225-233. 24. Diener, E. (2009). Subjective well-being.The science of well-being, 11-58. 25. Diener, E., Wirtz, D., Tov, W., Kim-Prieto, C., Choi, D. W., Oishi, S., & Biswas-Diener, R. (2010). New well-being measures: Short scales to assess flourishing and positive and negative feelings.Social indicators research,97(2), 143-156. 26. Du Plessis, M., Waglay, M., & Becker, J. R. (2020). The role of emotional intelligence and autonomy in transformational leadership: A leader-member exchange perspective.SA Journal of Industrial Psychology,46(1), 1-12. 27. Dutton, J. E., Dukerich, J. M., & Harquail, C. V. (1994). Organizational images and member identification.Administrative science quarterly, 239-263. 28. Dutton, J. E., Roberts, L. M., & Bednar, J. (2020). Prosocial practices, positive identification, and flourishing at work. InPositive Psychological Science(pp. 128-144). Routledge. 29. Education Support Partnership. (2019). Health survey 2017: The mental health and well-being of education professionals in the UK. YouGov. Retrieved from https://www.educationsupport.org.uk/sites/default/files/education_staff_health_survey_2017.pdf. 30. Edwards, M. R., & Peccei, R. (2010). Perceived organizational support, organizational identification, and employee outcomes.Journal of Personnel Psychology. 31. Eisenberger, R., Stinglhamber, F., Vandenberghe, C., Sucharski, I. L., & Rhoades, L. (2002). Perceived supervisor support: contributions to perceived organizational support and employee retention. Journal of applied psychology,87(3), 565. 32. Emadpoor, L., Lavasani, M. G., & Shahcheraghi, S. M. (2016). Relationship between perceived social support and psychological well-being among students based on mediating role of academic motivation.International Journal of Mental Health and Addiction,14(3), 284-290. 33. Feeney, B. C., & Collins, N. L. (2014). A theoretical perspective on the importance of social connections for flourishing. 34. Fontinha, R., Easton, S., & Van Laar, D. (2019). Overtimeand quality of working life in academics and nonacademics: The role of perceived work-life balance.International Journal of Stress Management,26(2), 173. 35. Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error.Journal of marketing research,18(1), 39-50. 36. Fredrickson, B. L. (2001). The role of positive emotions in positive psychology: the broaden-and-build theory of positive emotions.American psychologist,56(3), 218. 37. Gok, S., Karatuna, I., & Karaca, P. O. (2015). The role of perceived supervisor support and organizational identification in job satisfaction.Procedia-Social and Behavioral Sciences,177, 38-42. 38. Gouldner, A. W. (1960). The norm of reciprocity: A preliminary statement.American sociological review, 161-178. 39. Greenaway, K. H., Haslam, S. A., Cruwys, T., Branscombe, N. R., Ysseldyk, R., & Heldreth, C. (2015). From "we"to "me": Group identification enhances perceived personal control with consequences for health and well-being.Journal of personality and social psychology,109(1), 53. 40. Hair Jr, J. F., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research.European business review. 41. Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet.Journal of Marketing theory and Practice,19(2), 139-152. 42. Hämmig, O. (2017). Health and well-being at work: The key role of supervisor support.SSM-population Health,3, 393-402. 43. Harandi, T. F., Taghinasab, M. M., & Nayeri, T. D. (2017). The correlation of social support with mental health: A meta-analysis.Electronic physician,9(9), 5212. 44. Häusser, J. A., Junker, N. M., & van Dick, R. (2020). The how and the when of the social cure: A conceptual model of group‐and individual‐level mechanisms linking social identificationto health and well‐being.European Journal of Social Psychology,50(4), 721-732. 45. Häusser, J. A., Junker, N. M., & van Dick, R. (2020). The how and the when of the social cure: A conceptual model of group‐and individual‐level mechanisms linking social identificationto health and well‐being.European Journal of Social Psychology,50(4), 721-732. 46. He, H., & Brown, A. D. (2013). Organizational identificationand organizational identification: A review of the literature and suggestions for future research.Group & Organization Management,38(1), 3-35. 47. Hefferon, K., Ashfield, A., Waters, L., & Synard, J. (2017). Understanding optimal human functioning–The 'call for qual'in exploring human flourishing and well-being. 48. Hone, L. C., Jarden, A., Duncan, S., & Schofield, G. M. (2015). Flourishing in New Zealand workers: Associations with lifestyle behaviors, physical health, psychosocial, and work-related indicators.Journal of Occupational and Environmental Medicine,57(9), 973-983. 49. Hoy, W. K., & Tarter, C. J. (2011). Positive psychology and educational administration: An optimistic research agenda.Educational Administration Quarterly,47(3), 427-445. 50. Hu SM and Liu MQ (2017) New Generation Employees'Job Insecurity in the Social Transformation Period. Contemporary Youth Research, 3, 79–84. 51. Huppert, F. A., & So, T. T. (2013). Flourishing across Europe: Application of a new conceptual framework for defining well-being.Social indicators research,110(3), 837-861. 52. Huppert, F. A., & So, T. T. (2013). Flourishing across Europe: Application of a new conceptual framework for defining well-being.Social indicators research,110(3),837-861. 53. Hwang, J., & Jang, W. (2020). The effects of job characteristics on perceived organizational identification and job satisfaction of the Organizing Committee for the Olympic Games employees.Managing Sport and Leisure,25(4), 290-306. 54. Imran, M. Y., Elahi, N. S., Abid, G., Ashfaq, F., & Ilyas, S. (2020). Impact of perceived organizational support on work engagement: Mediating mechanism of flourishingand flourishing.Journal of Open Innovation: Technology, Market, and Complexity,6(3), 82. 55. Jackson, L. T., Rothmann, S., & Van de Vijver, F. J. (2006). A model of work‐related well‐being for academicians in South Africa.Stress and Health: Journal of the International Society for the Investigation of Stress,22(4), 263-274. 56. Janse van Rensburg, C., Rothmann, S. S., & Diedericks, E. (2017). Person-environment fit, flourishing and intention to leave in universities of technology in South Africa.SA Journal of Industrial Psychology,43(1), 1-10. 57. Janse van Rensburg, C., Rothmann, S., & Diedericks, E. (2018). Job demands and resources: Flourishing and job performance in South African universities of technology settings.Journal of Psychology in Africa,28(4), 291-297. 58. Javed, A., Khan, M. N. S., Nasar, A., & Rasheed, A. (2020). Mental healthcare in Pakistan.Taiwanese Journal of Psychiatry,34(1), 6. 59. Keyes, C. L. (2002). The mental health continuum: From languishing to flourishing in life.Journal of health and social behavior, 207-222. 60. Keyes, C. L. (2005). Mental illness and/or mental health? Investigating axioms of the complete state model of health.Journal of consulting and clinical psychology,73(3), 539. 61. Keyes, C. L. M., & Haidt, J. (Eds.) (2003). Flourishing: Positive psychology and a life well-lived. Washington, D. C.: American Psychological Association. 62. Khan, A., Yusoff, R. B. M., & Isa, K. B. (2016). Examining Linkages between Psychological Health Problems, Socio-Demographic Characteristics and Workplace Stressors in Pakistan's Academia.International Education Studies,9(6), 108-119. 63. Kinman, G., & Johnson, S. (2019). Special section on well-being in academic employees.International Journal of Stress Management,26(2), 159. 64. Kinman, G., & Wray, S. (2014). Taking its toll: rising stress levels in further education.London: University and College Union. 65. Kun, A., & Gadanecz, P. (2019). Workplace happiness, well-being and their relationship with psychological capital: A study of Hungarian Academicians.Current Psychology, 1-15. 66. Kurtessis, J. N., Eisenberger, R., Ford, M. T., Buffardi, L. C., Stewart, K. A., & Adis, C. S. (2017). Perceived organizational support: A meta-analytic evaluation of organizational support theory.Journal of management,43(6), 1854-1884. 67. Kyriacou, C. (2001). Academicianstress: Directions for future research.Educational review,53(1), 27-35. 68. Lavy, S., & Bocker, S. (2018). A path to academicianhappiness? A sense of meaning affects academician–student relationships, which affect job satisfaction.Journal of Happiness Studies,19(5), 1485-1503. 69. Leavy, R. L. (1983). Social support and psychological disorder: A review.Journal of community psychology,11(1), 3-21. 70. Lestiani, I. (2016). Hubungan penerimaan diri dan kebahagiaan pada karyawan. Jurnal Ilmiah Psikologi.9(2), 109-119. Retrievedfromhttp://ejournal.gunadarma.ac.id/index.php/psiko/article/view/1549/1308 71. Luthans, F., Norman, S. M., Avolio, B. J., & Avey, J. B. (2008). The mediating role of psychological capital in the supportive organizational climate—employee performance relationship.Journal of Organizational Behavior: The International Journal of Industrial, Occupational and Organizational Psychology and Behavior,29(2), 219-238. 72. Luthans, F., Youssef, C. M., & Avolio, B. J. (2015).Psychological capital and beyond. Oxford University Press, USA. 73. Mael, F. A., & Ashforth, B. E. (2001). Identification in work, war, sports, and religion: Contrasting the benefits and risks.Journal for the Theory of Social Behaviour,31(2), 197-222. 74. Malik, N. A., Björkqvist, K., & Österman, K. (2017). Sick-leave due to burnout among academiciansin Pakistan and Finland and its psychosocial concomitants.European Journal of Social Science Education and Research,4(4), 203-212. 75. McCarthy, D. J., Campbell, K. R., Lun, A. T., & Wills, Q. F. (2017). Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R.Bioinformatics,33(8), 1179-1186. 76. Mirowsky, J., & Ross, C. E. (1986). Social patterns of distress.Annual review of sociology,12(1), 23-45. 77. Mudrak, J., Zabrodska, K., Kveton, P., Jelinek, M., Blatny, M., Solcova, I., & Machovcova, K. (2018). Occupational well-being among university faculty: A job demands-resources model.Research in Higher Education,59(3), 325-348. 78. Naumann, S. E., & Bennett, N. (2000). A case for procedural justice climate: Development and test of a multilevel model.Academy of Management journal,43(5), 881-889. 79. Nielsen, K., & Miraglia, M. (2017). What works for whom in which circumstances? On the need to move beyond the 'what works?' question in organizational intervention research.Human relations,70(1), 40-62. 80. Noble, T., & McGrath, H. (2014). Well-being and resilience in school settings. InIncreasing psychological well-being in clinical and educational settings(pp. 135-152). Springer, Dordrecht. 81. Pakistan Economic Survey 2018-19 Chapter 10: Education". Economic Survey of Pakistan. 2019-06-10. Retrieved 2019-07-07 82. Redelinghuys, K., Rothmann, S., & Botha, E. (2019). Flourishing-at-work: The role of positive organizational practices.Psychological Reports,122(2), 609-631. 83. Riketta, M. (2005). Organizational identification: A meta-analysis.Journal of vocational behavior,66(2), 358-384. 84. Ringle, C. M. (2005). SmartPLS 2.0 (M3).http://www. smartpls. de. 85. Rothmann, S., & Welsh, C. (2013). Employee engagement: The role of psychological conditions.Management Dynamics: Journal of the Southern African Institute for Management Scientists,22(1), 14-25. 86. Rothmann, S., Redelinghuys, K., & Botha, E. (2019). Workplace flourishing: Measurement, antecedents and outcomes.SA Journal of Industrial Psychology,45(1), 1-11. 87. Rousseau, V., Salek, S., Aube, C. and Morin, E. (2009), "Distributive justice, procedural justice, and psychological distress: the moderating effect of co-worker support and work autonomy", Journal of Occupational Health Psychology, Vol. 14 No. 3, pp. 305-317. 88. Saleem, S., & Amin, S. (2013). The impact of organizational support for career development and supervisory support on employee performance: An empirical study from Pakistani academic sector.European Journal of Business and Management,5(5), 194-207. 89. Schotanus-Dijkstra, M., Pieterse, M. E., Drossaert, C. H., Westerhof, G. J., De Graaf, R., Ten Have, M., ... & Bohlmeijer, E. T. (2016). What factors are associated with flourishing? Results from a large representative national sample.Journal of happiness studies,17(4), 1351-1370. 90. Shen, Y., Jackson, T., Ding, C., Yuan, D., Zhao, L., Dou, Y., & Zhang, Q. (2014). Linking perceived organizational support with employee work outcomes in a Chinese context: Organizational identification as a mediator.European Management Journal,32(3), 406-412. 91. Shin, Y., Hur, W. M., & Choi, W. H. (2020). Co-worker support as a double-edged sword: A moderated mediation model of job crafting, work engagement, and job performance.The International Journal of Human Resource Management,31(11), 1417-1438. 92. Singh, B., Selvarajan, T. T., & Solansky, S. T. (2019). Co-worker influence on employee performance: A conservation of resources perspective.Journal of Managerial Psychology. 93. Singh, C., Cross, W., Munro, I., & Jackson, D. (2020). Occupational stress facing nurse academics—A mixed‐methods systematic review.Journal of clinical nursing,29(5-6), 720-735. 94. Sluss, D. M., Klimchak, M., & Holmes, J. J. (2008). Perceived organizational support as a mediator between relational exchange and organizational identification.Journal of Vocational Behavior,73(3), 457-464. 95. Steffens, N. K., Haslam, S. A., Schuh, S. C., Jetten, J., & van Dick, R. (2017). A meta-analytic review of social identification and health in organizational contexts.Personality and Social Psychology Review,21(4), 303-335. 96. Subba, D. (2019). Antecedent and consequences of organizational identification: a study in the tourism sector of Sikkim.Future Business Journal,5(1), 1-9. 97. Susskind, A. M., Kacmar, K. M., & Borchgrevink, C. P. (2003). Customer service providers' attitudes relating to customer service and customer satisfaction in the customer-server exchange.Journal of applied psychology,88(1), 179. 98. Tajfel, H., Turner, J. C., Austin, W. G., & Worchel, S. (1979). An integrative theory of intergroup conflict.Organizational identification: A reader,56(65), 9780203505984-16. 99. Tajvar, A., Saraji, G. N., Ghanbarnejad, A., Omidi, L., Hosseini, S. S. S., & Abadi, A. S. S. (2015). Occupational stress and mental health among nurses in a medical intensive care unit of a general hospital in Bandar Abbas in 2013.Electronic physician,7(3), 1108. 100. Turner, L., & McLaren, S. (2011). Social support and sense of belonging as protective factors in the rumination–depressive symptoms relation among Australian women.Women & Health,51(2), 151-167. 101. Valle, M., Andrews, M. C., & Kacmar, K. M. (2020). Situational antecedents to organizational identification and the role of supervisor support.Organization Management Journal. 102. Valle, M., Andrews, M. C., & Kacmar, K. M. (2020). Situational antecedents to organizational identification and the role of supervisor support.Organization Management Journal. 103. Van Dick, R., Hirst, G., Grojean, M. W., & Wieseke, J. (2007). Relationships between leader and follower organizational identification and implications for follower attitudes and behaviour.Journal of Occupational and Organizational Psychology,80(1), 133-150. 104. Van Knippenberg, D., & Schippers, M. C. (2007). Work group diversity.Annu. Rev. Psychol.,58, 515-541. 105. Velando‐Soriano, A., Ortega‐Campos, E., Gómez‐Urquiza, J. L., Ramírez‐Baena, L., De La Fuente, E. I., & Cañadas‐De La Fuente, G. A. (2020). Impact of social support in preventing burnout syndrome in nurses: A systematic review.Japan Journal of Nursing Science,17(1), e12269. 106. Walumbwa, F. O., Christensen-Salem, A., Perrmann-Graham, J., & Kasimu, P. (2020). An identification-based framework examining how and when salient social exchange resources facilitate and shape flourishingat work.Human Resource Development Review,19(4), 339-361. 107. Woo, B., & Chelladurai, P. (2012). Dynamics of perceived support and work attitudes: The case of fitness club employees.Human Resource Management Research,2(1), 6-18. 108. Ziegler, R. Schlett, C. (2016). An Attitude Strength and Self-Perception Framework Regarding the-Directional Relationship of Job Satisfaction with Extra-Role and In-Role Behavior: The Doubly Moderating Role of Work Centrality. Frontiers in Psychology, 7, 1–17
(1)
1. Abney CW, Mayes RT, Saito T, Dai S (2017) Materials for the recovery of uranium from seawater. Chemic Rev. 117:13935-14013 2. Guo H, Mei P, Xiao J, Huang X, Ishag A, Sun Y (2021) Carbon materials for extraction of uranium from seawater. Chemosphere 278:130411-130423 3. Sholl DS, Lively RP (2016) Seven chemical separations to change the world. Nat 532:435-437 4. Zhang X, Kong L, Song G, Chen D (2016) Adsorption of uranium onto modified rice straw grafted with oxygen-containing groups. Environ Eng Sci. 33(12):942-950 5. Md Yunus S & Hamzah Z, Wood AKH, Saat, A. (2015) Natural radionuclides and heavy metals pollution in seawater at Kuala Langat Coastal Area. Malay J Anal Sci 4(2015):766-774 6. Szlachta M, Neitola R, Peräniemi S, Vepsäläinen J (2020) Effective separation of uranium from mine process effluents using chitosan as a recyclable natural adsorbent Sep Purif Tech DOI 10.1016/j.seppur.2020.117493 7. Younes A, Ali JS, Nur MT, Duda A, Wang J, Samson J, Kawamura A, Francesconi L, Alexandratos S, Drain CM (2020) Pistachio shells as remediating agents for uranium in contaminated industrial seawater J Eng Rad DOI 10.1016/j.jenvrad.2020.106209 8. Liu C, Li Y, Liu S, Zhou Y, Li B, Liu D, Fu C, Ye L (2022) Polyethylenimine embellished multiwalled carbon nanotube (MWCNTs) for efficiently enhancing sequestration of uranium(VI) from seawater J Eng Environ Chem Eng DOI 10.1016/j.jece.2022.108513 9. Yan Z, Gao Y, Pu Y, Luo Z, Zhang M, Chen X, Li H, Zhang Y, Duan T (2024) Ultrathin nickel hydroxide nanosheets decorated carbon nanotubes for electrochemical detection of uranyl ion J Radioannal Nucl Chem DOI 10.1007/s10967-023-09181-z 10. Im J-G, Pak H-S, Jon U-C, Ri S-B, Om S-Y, Jong C-J (2023) Study on the uranium adsorption and reusability characteristics of amidoximated polypropylene-acrylonitrile-acrylic acid fibrous adsorbent J Radioannal Nucl Chem DOI 10.1007/s10967-023-09118-6 11. Liu C, Li Ye, Liu, D, Lei M, Li B, Fu C, Zhang J (2023) In suit establishment of Ti3C2 MXenes exchanger via Na+, K+ and NH4+ intercalation: Exceptionally UO22+ loading capability and hijacking mechanism Chem Eng J DOI 10.1016/j.cej.2023.143756 12. Wang Z, Meng X, Du Z, Wang S, Qu C, Mo H, Jiang C, Wang J, Zang Y, Chen S (2023) Zinc loaded amidoxime polyacrylonitrile porous resin microcapsules for uranium extraction from seawater J Radioannal Nucl Chem DOI 10.1007/s10967-023-08851-2 13. Anagnostopoulos VA, Koutsoukos PG, Symeopoulos BD (2015) Removal of U (VI) from aquatic systems, using winery by-products as biosorbents: equilibrium, kinetic, and speciation studies. Water Air Soil Pollut. 226:1-14 14. Anagnostopoulos V, Symeopoulos B, Bourikas K, Bekatorou, A (2016) Biosorption of U (VI) from aqueous systems by malt spent rootlets. Int J Environ Sci Tech. 13:285-296 15. Jiménez-Reyes M, de M Ramírez De La Cruz F, Solache-Ríos M (2020) Physicochemical behavior of uranium and lanthanum in the presence of Abies religiosa leaf biomass. Water Air Soil Pollut. 231:1-20 16. Wang F, Tan L, Liu Q, Li R, Li Z, Zhang H, Hu S, Liu L, Wang J (2015) Biosorption characteristics of Uranium (VI) from aqueous solution by pollen pini. J Environ Radio 150:93-98 17. Torres, E (2020) Biosorption: A review of the latest advances Process DOI 10.3390/pr8121584 18. Rasyid TH, Kusumawaty, YHS (2020) The utilization of sago waste: prospect and challenges. Bogor, IOP Publishing 19. Su Y, Wenzel M, Seifert M, Weigand JJ (2022) Surface ion-imprinted brewer’s spent grain with low template loading selective uranyl ions adsorption from simulated wastewater J Hazard Mater DOI 10.1016/j.jhazmat.2022.129682 20. Nordin NA, Abdul Rahman N, Abdullah AH (2020) Effective removal of Pb(II) Ions by Electrospun PAN/Sago Lignin-Based Activated Carbon Nanofibers Mol DOI 10.3390/molecules25133081 21. Psyrillou AM, Noli F (2021) Investigation of uranium biosorption using tomato peel in raw and modified form. J Radioannal Nucl Chem. 330(1):305-314 22. Nuhanović M, Smječanin N, Curić N, Vinković A. (2021a) Efficient removal of U(VI) from aqueous solution using biocompostie based on sugar beet pulp and pomelo peel. J Radioannal Nucl Chem. 328:347-358 23. Bağda E, Sarı A, Tuzen, M (2018) Effective uranium biosorption by macrofungus (Russula sanguinea) from aqueous solution: equilibrium, thermodynamic and kinetic studies. J Radioannal Nucl Chem. 317:1387-1397 24. Šabanović E, Muhić-Šarac T, Nuhanović M, Memić M (2019) Biosorption of uranium(VI) from aqueous solution by Citrus limon peels: kinetics, equilibrium, and batch studies. J Radioannal Nucl Chem. 319:425-435 25. Wang Z, Huang F, Liu Y, Yi F, Feng Y, Luo Y, Jia W, Wang Z (2022) Adsorption properties and mechanism of uranium by three biomass materials Radiochim Acta DOI 10.1515/ract-2021-1078 26. Su, Y. et al., Su Y, Wenzel M, Paasch S, Seifert M, Doert T, Brunner E, Weigand JJ (2021) One-pot synthesis of brewer's spent grain-supported superabsorbent polymer for highly efficient uranium adsorption from wastewater Env Res DOI 10.1016/j.envres.2022.113333 27. Sirry SM, Aldakhil F, Alharbi OM, Ali I (2019) Chemically treated date stones for uranium (VI) uptake and extraction in aqueous solutions. J Mol Liq. 273:192-202 28. Kumari G, Guleria A, Singh K, Kumar N, Guleria A, Kumar D, Lima E (2022) In: Bhaskar T, Pandey A (eds) Biomass, Biofuels, Biochem. Elsevier, Amsterdam 29. Dai Y, Zhou L, Tang X, Xi J, Ouyang J, Liu Z, Huang G, Adesina AA (2020) Macroporous ion-imprinted chitosan foams for the selective biosorption of U (VI) from aqueous solution. Int J Biol Macromol. 164:4155-4164 Supplementary information 30. Bukhari NA, Loh SK, Bakar NA, Ismail M (2017) Hydrolysis of Residual Starch from Sago Pith Residue and Its Fermentation to Bioethanol. Sains Malays 46(8):1269-1278This section will not appear in the printed version of your paper but it will contain a link; the webpage containing the electronic supplementary information will appear when one clicks on the hyperlink. Here you can list the details of your research which would be too long for the main text, e.g. a larger number of spectra etc. Start with 1 for Figure and Table numbers in this section. 31. Hammado N, Utomo S, Budiyono B (2020) Characteristic Lignocelluloses of Sago Solid Waste for Biogas Production. J Appl Eng Sci. 18(2): 157-164 32. Noli F, Kapashi E, Pashalidis I, Margellou A, Karfaridis D (2022) The effect of chemical and thermal modifications on the biosorption of uranium in aqueous solutions using winery wastes J Mol Liq DOI 10.1016/j.molliq.2022.118665 33. Abegunde SM, Idowu K, Adejuwon OM, Adeyemi-Adejolu T (2020) A review on the influence of chemical modification on the performance of adsorbents Resour Environ Sustain DOI 10.1016/j.resenv.2020.100001 34. Ye X, Chi R, Wu Z, Chen J, Lv Y, Lin C, Liu Y, Luo W. A (2023) A biomass fiber adsorbent grafted with phosphate/amidoxime for efficient extraction of uranium from seawater by synergistic effect J Eng Manag DOI 10.1016/j.jenvman.2023.117658 35. Cheng Y, Li F, Liu N, Lan T, Yang Y, Zhang T, Liao J, Qing R (2021) A novel freeze-dried natural microalga powder for highly efficient removal of uranium from wastewater. Chemosphere DOI 10.1016/j.chemosphere.2021.131084 36. Deshmukh P, Sar SK, Smječanin N, Nuhanović M, Lalwani R (2022) Magnetically Modified Waste Bark of Aegle marmelos Tree as a Promising Biosorbent for Uranium(VI) Sorption. Radiochem. 64(4):532-542 37. Yacob N, Yusof MR, Ainun ZM, Badri KH (2018) In: Wahab MA, Sunarti A, Ramli NH, Ahmad A (eds) IOP Conference Series: Materials Science and Engineering. IOP Pub, Bristol 38. Liao J, Ding L, Zhang Y, Zhu W (2021) Efficient removal of uranium from wastewater using pig manure biochar: understanding adsorption and binding mechanism J Hazard Mat DOI 10.1016/j.jhazmat.2021.127190 39. Celikbıcak O, Bayramoglu G, Acıkgoz-Erkaya I, Arica MY (2021) Aggrandizement of uranium (VI) removal performance of Lentinus concinnus biomass by attachment of 2, 5-diaminobenzenesulfonic acid ligand. J Radioannal Nucl Chem. 328(3):1085-1098 40. Maurya A, Marvaniya K, Dobariya P, Chudasama N, Mane M, Patel K, Kushwaha S (2023) Protocol for extraction, characterization, and computational analysis of uranium from seawater STAR protoc DOI 10.1016/j.xpro.2023.102100 41. Georgiou E, Raptopoulos G, Anastopoulos I, Giannakoudakis DA, Arkas M, Paraskevopoulou P, Pashalidis I (2023) Uranium Removal from Aqueous Solutions by Aerogel-Based Adsorbents—A Critical Review Nanomat DOI 10.3390/nano13020363 42. Banerjee S, Kundu A, Dhak, P (2022) Bioremediation of uranium from waste effluents using novel biosorbents: a review. J Radioannal Nucl Chem. 331:2409-2435 43. Lin Z, Chen L, Ye Z, Chen X, Wang X, Wei Y (2021) Film-like chitin/polyethylenimine biosorbent for highly efficient removal of uranyl-carbonate compounds from water J Environ Chem Eng DOI 10.1016/j.jece.2021.105340 44. Smječanin N, Nuhanović M, Sulejmanović J, Grahek Ž, Odobašić A (2022) Study of uranium biosorption process in aqueous solution by red beet peel. Journal of Radioanalytical and Nuclear Chemistry, Volume J Radioannal Nucl Chem. 331:1459-1471 45. Nuhanović M, Grebo M, Draganović S, Memić M, Smječanin N. (2019) Uranium (VI) biosorption by sugar beet pulp: equilibrium, kinetic and thermodynamic studies. J Radioannal Nucl Chem. 322:2065-2078 46. Ma F, Gui Y, Liu P, Xue Y, Song W (2020) Functional fibrous materials-based adsorbents for uranium adsorption and environmental remediation Chem Eng J DOI 10.1016/j.cej.2020.124597 47. Jiménez-Reyes M, de M Ramírez De La Cruz F, Solache-Ríos M (2020) Physicochemical behavior of uranium and lanthanum in the presence of Abies religiosa leaf biomass. Water Air Soil Pollut. 231:1-20 48. Ebelegi AN, Ayawei N, Wankasi D (2020) Interpretation of adsorption thermodynamics and kinetics Open J Phy Chem DOI 10.4236/ojpc.2020.103010 49. Su Y, Wenzel M, Paasch S, Seifert M, Bohm W, Doert T, Weigand JJ (2021) Recycling of Brewer’s Spent Grain as a Biosorbent by Nitro-Oxidation for Uranyl Ion Removal from Wastewater ACS Omega DOI 10.1021/acsomega.1c00589 50. Mahmoud (2021) Sorption of U(VI) ions from aqueous solution by eggplant leaves: Isotherm, kinetics and thermodynamic studies Prog Nucl Energy DOI 10.1016/j.pnucene.2021.103829 51. Noli F, Kapashi E, Kapnisti M (2019) Biosorption of Uranium and Cadmium using sorbents based on Aloe Vera wastes J Environ Chem Eng DOI 10.1016/j.jece.2019.102985 52. Fang Y, Liu L, Xiang H, Wang Y, Sun X (2022) Biomass-based carbon microspheres for removing heavy metals from the environment: a review Mater Today Sustain DOI 10.1016/j.mstust.2022.100136 53. Nuhanović M, Smječanin N, Mulahusić N, Sulejmanović J (2021) Pomegranate peel waste biomass modified with H3PO4 as a promising sorbent for uranium(VI) removal J Radioannal Nucl DOI 10.1007/s10967-021-07664-5
(1)
[1] Aboelela, D., Soliman, Moustafa, A. and Ashour, I. 2020. A reduced model for microbial electrolysis cells. International Journal of Innovative Technology and Exploring Engineering, 9(4): 1724–1730. DOI: https://doi.org/10.35940/ijitee.D1613.029420 [2] Varanasi, J. L., Veerubhotla, R., Pandit, S. and Das, D. 2019. Biohydrogen Production using Microbial Electrolysis Cell. In Microbial Electrochemical Technology. 843–869. Elsevier. DOI: https://doi.org/10.1016/B978-0-444-64052-9.00035-2 [3] Hernández-García, K. M., Cercado, B., Rodríguez, F. A., Rivera, F. F. and Rivero, E. P. 2020. Modeling 3D current and potential distribution in a microbial electrolysis cell with augmented anode surface and non-ideal flow pattern. Biochemical Engineering Journal, 162: 107714. DOI: https://doi.org/10.1016/j.bej.2020.107714 [4] Hernández-García, K. M., Cercado, B., Rivero, E. P. and Rivera, F. F. 2020. Theoretical and experimental evaluation of the potential-current distribution and the recirculation flow rate effect in the performance of a porous electrode microbial electrolysis cell (MEC). Fuel, 279: 118463. DOI: https://doi.org/10.1016/j.fuel.2020.118463 [5] Xing, D., Yang, Y., Li, Z., Cui, H., Ma, D., Cai, X. and Gu, J. 2020. Hydrogen Production from Waste Stream with Microbial Electrolysis Cells. In Bioelectrosynthesis. 39–70. Wiley. DOI: https://doi.org/10.1002/9783527343829.ch2 [6] Flores-Estrella, R. A., de Jesús Garza-Rubalcava, U., Haarstrick, A. and Alcaraz-González, V. 2019. A dynamic biofilm model for a microbial electrolysis cell. Processes, 7(4): 183. DOI: https://doi.org/10.3390/pr7040183 [7] Hua, T., Li, S., Li, F., Zhou, Q. and Ondon, B. S. 2019. Microbial electrolysis cell as an emerging versatile technology: a review on its potential application, advance and challenge. Journal of Chemical Technology and Biotechnology, 94(6): 1697–1711. DOI: https://doi.org/10.1002/jctb.5898 [8] Deaver, J. A., Kerr, C. A. and Popat, S. C. 2022. Primary sludge-based blackwater favors electrical current over methane production in microbial electrochemical cells. Journal of Water Process Engineering 47: 102848. DOI: https://doi.org/10.1016/j.jwpe.2022.102848 [9] Sharma, M., Salama, E.-S., Thakur, N., Alghamdi, H., Jeon, B.-H. and Li, X. 2023. Advances in the biomass valorization in bioelectrochemical systems: A sustainable approach for microbial-aided electricity and hydrogen production. Chemical Engineering Journal. 465: 142546. DOI: https://doi.org/10.1016/j.cej.2023.142546 [10] Kurniawan, S., Abdullah, S., Imron, M., Said, N., Ismail, N., Hasan, H., Othman, A. and Purwanti, I. 2020. Challenges and opportunities of biocoagulant/bioflocculant application for drinking water and wastewater treatment and its potential for sludge recovery. International Journal of Environmental Research and Public Health, 17(24): 9312. DOI: https://doi.org/10.3390/ijerph17249312 [11] Alazaiza, M., Albahnasawi, A., Ali, G., Bashir, M., Nassani, D., Al Maskari, T., Amr, S. and Abujazar, M. 2022. Application of natural coagulants for pharmaceutical removal from water and wastewater: A review. Water, 14(2): 140. DOI: https://doi.org/10.3390/w14020140 [12] Anusha, P., Ragavendran, C., Kamaraj, C., Sangeetha, K., Thesai, A. S., Natarajan, D. and Malafaia, G. 2023. Eco-friendly bioremediation of pollutants from contaminated sewage wastewater using special reference bacterial strain of Bacillus cereus SDN1 and their genotoxicological assessment in Allium cepa. Science of The Total Environment, 863: 160935. DOI: https://doi.org/10.1016/j.scitotenv.2022.160935 [13] Periyasamy, P. 2021. Estimation of economic loss of agricultural production and livestock population in Tamil Nadu due to sago industrial pollution: A case study. Grassroots Journal of Natural Resources, 4(2): 165–178. DOI: https://doi.org/10.33002/nr2581.6853.040212 [14] Alcaraz–Gonzalez, V., Rodriguez–Valenzuela, G., Gomez–Martinez, J. J., Dotto, G. L. and Flores–Estrella, R. A. 2021. Hydrogen production automatic control in continuous microbial electrolysis cells reactors used in wastewater treatment. Journal of Environmental Management, 281: 111869. DOI: https://doi.org/10.1016/j.jenvman.2020.111869 [15] Guo, Z. and Yang, C. 2020. Microbial Metabolism Kinetics and Interactions in Bioelectrosynthesis System. In Bioelectrosynthesis, pp. 363–394. Wiley. DOI: https://doi.org/10.1002/9783527343829.ch15 [16] Pinto, R. P., Srinivasan, B., Escapa, A. and Tartakovsky, B. 2011. Multi-population model of a microbial electrolysis cell. Environmental Science and Technology, 45(11): 5039–5046. DOI: https://doi.org/10.1021/es104268g [17] Thirugnanasambandham, K. and Shine, K. 2016. Hydrogen gas production from sago industry wastewater using electrochemical reactor: Simulation and validation. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(15): 2258–2264. DOI: https://doi.org/10.1080/15567036.2016.1174755 [18] Flores-Estrella, R. A., Rodríguez-Valenzuela, G., Ramírez-Landeros, J. R., Alcaraz-González, V. and González-Álvarez, V. 2020. A simple microbial electrochemical cell model and dynamic analysis towards control design. Chemical Engineering Communications, 207(4): 493–505. DOI: https://doi.org/10.1080/00986445.2019.1605360 [19] Dudley, H. J., Lu, L., Ren, Z. J. and Bortz, D. M. 2019. Sensitivity and bifurcation analysis of a differential-algebraic equation model for a microbial electrolysis cell. SIAM Journal on Applied Dynamical Systems, 18(2): 709–728. DOI: https://doi.org/10.1137/18M1172223 [20] Kyazze, G., Popov, A., Dinsdale, R., Esteves, S., Hawkes, F., Premier, G. and Guwy, A. 2010. Influence of catholyte pH and temperature on hydrogen production from acetate using a two chamber concentric tubular microbial electrolysis cell. International Journal of Hydrogen Energy, 35(15): 7716–7722. DOI: https://doi.org/10.1016/j.ijhydene.2010.05.036 [21] Hosseinzadeh, A., Zhou, J. L., Altaee, A., Baziar, M. and Li, D. 2020. Effective modelling of hydrogen and energy recovery in microbial electrolysis cell by artificial neural network and adaptive network-based fuzzy inference system. Bioresource Technology, 316: 123967. DOI: https://doi.org/10.1016/j.biortech.2020.123967 [22] Wang, Y., Yang, G., Sage, V., Xu, J., Sun, G., He, J. and Sun, Y. 2021. Optimization of dark fermentation for biohydrogen production using a hybrid artificial neural network (ANN) and response surface methodology (RSM) approach. Environmental Progress and Sustainable Energy, 40(1): e13485. DOI:https://doi.org/10.1002/ep.13485 [23] Cheng, D., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Zhang, S., Deng, S., An, D. and Hoang, N. B. 2022. Impact factors and novel strategies for improving biohydrogen production in microbial electrolysis cells. Bioresource Technology, 346: 126588. DOI: https://doi.org/10.1016/j.biortech.2021.126588 [24] Muddasar, M., Liaquat, R., Aslam, A., Ur Rahman, M. Z., Abdullah, A., Khoja, A. H., Latif, K. and Bahadar, A. 2022. Performance efficiency comparison of microbial electrolysis cells for sustainable production of biohydrogen—A comprehensive review. International Journal of Energy Research, 46(5): 5625–5645. DOI: https://doi.org/10.1002/er.7606 [25] Rani, G., Banu, J. R., Kumar, G. and Yogalakshmi, K. N. 2022. Statistical optimization of operating parameters of microbial electrolysis cell treating dairy industry wastewater using quadratic model to enhance energy generation. International Journal of Hydrogen Energy, 47(88): 37401-37414. DOI: https://doi.org/10.1016/j.ijhydene.2022.03.120 [26] Yahya, A. M., Hussain, M. A. and Abdul Wahab, A. K. 2015. Modeling, optimization, and control of microbial electrolysis cells in a fed-batch reactor for production of renewable biohydrogen gas. International Journal of Energy Research, 39(4): 557–572. DOI: https://doi.org/10.1002/er.3273 [27] Dudley, H. J., Ren, Z. J. and Bortz, D. M. 2019. Competitive exclusion in a DAE model for microbial electrolysis cells. Mathematical Biosciences and Engineering, 17(5): 6217–6239. DOI: https://doi.org/10.48550/arXiv.1906.02086 [28] Lu, L., Vakki, W., Aguiar, J. A., Xiao, C., Hurst, K., Fairchild, M., Chen, X., Yang, F., Gu, J. and Ren, Z. J. 2019. Unbiased solar H2 production with current density up to 23 mA cm-2 by Swiss-cheese black Si coupled with wastewater bioanode. Energy and Environmental Science, 12(3): 1088–1099. DOI: https://doi.org/10.1039/c8ee03673j
(1)
[1] Aboh, R. "Slang and Multiple Methods of Interpreting Sex and Sexual Identity in the Nigerian Novel." The African Symposium: An online journal of the African Educational Research Network, vol. 15, no. 1, 2015, pp. 91-97. [2] Ahmad, Ismail, and Dania Dirani. Orang Macam Kita. Matahari Books Publisher, 2010. [3] Arua, A. E., and Modupe M. A. "The Creation of Students' Academic Slang Expressions in the University of Botswana." Linguistik Online, vol. 9, no. 4, 2009, pp. 15-28. [4] Gan, K. L. "Strategi Penukaran Kod di Kalangan Guru-Guru Cina Berpendidikan Cina dan Bukan Berpendidikan Cina: Satu Kajian Kes." 2000. Universiti Malaya, Kuala Lumpur, Malaysia, MA thesis. [5] Gay, L R, and Airasian P. W. Student Guide for Educational Research: Competencies for Analysis and Application, Third Edition. Merrill Pub. Co, 2003. [6] Julaina, Nopiah, et al. "Elemen Dualisme dalam Peribahasa: Pendekatan Semantik Inkuisitif." MELAYU: Jurnal Antarabangsa Dunia Melayu, vol. 10, no. 1, 2017, pp. 67-89. [7] Julaina, Nopiah, et al. "Refleksi Dualisme ‘Durian-Timun’ dalam Peribahasa Melayu: Pendekatan Semantik Inkuisitif." Jurnal Linguistik, vol. 21, no. 2, Dec. 2017, pp. 001-014. [8] Junaini, Kasdan, and Nor Hashimah Jalaluddin. "Unsur Asam dan Akal Budi Melayu: Analisis Semantik Inkuisitif." 2015, Seminar Meja Bulat: Simpulan Bahasa dan Kognitif Penutur. Kuala Lumpur: Institut Alam dan Tamadun Melayu (ATMA), Universiti Kebangsaan Malaysia. [9] Junaini, Kasdan, et al. "Ikan (Pisces) dalam Peribahasa Melayu: Analisis Semantik Inkuisitif." International Journal of the Malay World and Civilisation (Iman), vol. 4, no. 1, 2016, pp. 31-41. [10] Kamus Pelajar Bahasa Melayu Dewan. 2nd ed., Kuala Lumpur: Dewan Bahasa dan Pustaka, 2016. [11] Kheren Kezia Adolof. "Slang dalam Lagu Black Eyed Peas." 2014. Universitas Sam Ratulangi, Indonesia, MA thesis. [12] Mary Fatimah, Subet, and Muhammad Zaid Daud. "“Giler” Atau “Gile”: Slanga Kata Penguat." Jurnal Bahasa, vol. 16, no. 2, 2016, pp. 293-306, jurnalbahasa.dbp.my/wordpress/wp- content/uploads/2016/12/6-Giler.pdf. [13] Mary Fatimah, Subet, and Muhammad Zaid Daud. "Semantik dan Makna Konotasi dalam Slanga Pelacur." 2017, The International Conference on Language Studies (iCLS) 2017. Kuching (Riverside Majestic Hotel). [14] Mary Fatimah, Subet, and Muhammad Zaid Daud. "Makna Denotatif dan Konotatif dalam Slanga Pelacur." MALTESAS Multi-Disciplinary Research Journal (MIRJO), vol. 3, no. 1, 2018, pp. 29-43. [15] Mohammad Shahrul Nizam Abd Wahid, and Muhammad Zaid Daud. "Individu dan Pemilihan Dialek: Kajian Kes di Kota Samarahan, Sarawak." MALTESAS Multi-Disciplinary Research Journal (MIRJO), vol. 3, no. 3, 2018. [16] Muhammad Zaid, Daud, Mohammad Shahrul Nizam Abd Wahid, & Remmy Gedat. "Eufemisme dalam Bahasa Iban: Satu Kajian Kes di Kampung Lebor, Serian, Sarawak." Borneo Research Journal, vol. 11, no. 1, 2017, pp. 87-105, ajap.um.edu.my [17] Muhammad Zaid, Daud, Mohammad Shahrul Nizam Abd Wahid, & Remmy Gedat. "Penggunaan eufemisme dalam kalangan penutur Iban." International Journal of Language Education and Applied Linguistics (IJLEAL), vol. 8, no. 1, 2018, pp. 27-40. [18] Muhammad Zaid Daud, and Mary Fatimah Subet. "Ayam (Gallus Gallus Domesticus) Dalam Peribahasa Melayu: Analisis Semantik Inkuisitif." Jurnal Kemanusiaan, vol. 16, no. 2, 2018. [19] Muhammad Zaid, Daud. "Domain Rezeki Dalam Peribahasa Melayu Berorientasikan Aves Melalui Perspektif Semantik Inkuisitif." MALTESAS Multi-Disciplinary Research Journal (MIRJO), vol. 3, no. 1, 2018, pp. 19-28. [20] Muhammad Zaid, Daud. "Gallus Gallus Domesticus Dan Paradoxurus Hermaphroditus Dalam Peribahasa Melayu: Analisis Semantik Inkuisitif." Sains Humanika, vol. 10, no. 2, 2018, pp. 41-51. [21] Muhammad Zaid, Daud. "Slanga Kedai Kopi: Satu Analisis Semantik Inkuisitif." 2017. Universiti Malaysia Sarawak, Malaysia, Unpublished final year project. doi:10.31229/osf.io/upt8j [22] Nadia, Suboh. "Aspek Bahasa Melayu dalam Penulisan Blog Berdasarkan Perisisan Pengukuran NEMD Versi 2.0." 2013. Universiti Putra Malaysia, Serdang, Malaysia, MA thesis. [23] Nor Hashimah, Jalaluddin. Pemugaran Penyelidikan Untuk Pemerkasaan Bahasa. 2014. eseminar.dbp.go v.my/ceramahnj/kertas_kerja _norhashimah_jalaluddin.pdf-. Accessed 5 Feb. 2016. [24] Nor Hashimah, Jalaluddin. Semantik Dan Akal Budi Melayu. Penerbit UKM, 2014. [25] Norsimah, Mat Awal. "Semantik." Pengenalan Linguistik: Teoretis dan Aplikasi, Dewan Bahasa dan Pustaka. [26] Nur Afiqah, Wan Mansor, and Nor Hashimah Jalaluddin. "Deria Rasa Dalam Kiasan Melayu: Analisis Semantik Inkuisitif." Journal Pertanika Mahawangsa, vol. 2, no. 1, 2015, pp. 1-16. [27] Oxford, Dictionaries. Colour Oxford Dictionary & Thesaurus. Oxford Univ P, 2011. [28] Setiawan, Nugroho. "Pembentukan Kosakata Slang dalam Komunitas JKBOSS Pada Akun Twitter @JakartaKeras." 2015. Universitas Negeri Yogyakarta, Indonesia, MA thesis. [29] Shahraki, Sara H., and Abbass E. Rasekh. "Check This One out: Analyzing Slang Usage among Iranian Male and Female Teenagers." English Language Teaching, vol. 4, no. 2, 2011, p. 198. [30] Tangaprabu Murthy, Mary Fatimah Subet, & Muhammad Zaid Daud. "Kajian Semantik Inkuisitif dalam Peribahasa Tamil: Imej Tumbuhan." Sains Humanika, vol. 11, no. 1, 2019, p. 73–80. [31] Tay, M. G. "Analisis Linguistik Terhadap Penggunaan Bahasa SMS dalam Kalangan Guru Pelatih." Jurnal Penyelidikan IPG Kampus Batu Lintang, vol. 10, no. 1, 2010, pp. 1-26. [32] Za’ba. Ilmu mengarang Melayu. Dewan Bahasa dan Pustaka. 1965. [33] Zhou, Yanchun, and Yanhong Fan. "A Sociolinguistic Study of American Slang." Theory and Practice in Language Studies, vol. 3, no. 12, 2013. [34] Zuraidah, Mohd Sulaiman, et al. "Slanga Remaja Melayu Dan Cina: Analisis Awal Berdasarkan Teori Relevan." 2012, International Conference On Arts, Social Sciences, And Technology (ICAST2012).
(1)
1. Abraham, A. (2003). Financial sustainability and accountability: a model for nonprofit organisations. In AFAANZ 2003 Conference Proceedings. Brisbane, Australia: AFAANZ. Retrieved from http://ro.uow.edu.au/commpapers/739/ 2. Adams, C., & Perlmutter, F. (1991). Commercial venturing and the transformation of America’s voluntary social welfare agencies. Nonprofit and Voluntary Sector Quarterly, 20, 25-38. 3. Ahmad, A.R., Ng, K.S. and Ting, N.P. (2015). Income Generation Activities among Academic Staffs at Malaysian Public Universities. International Education Studies, 8(6), 194-203. 4. Alexander, J. A., & Lee, S.-Y. D. (2006). Does Governance Matter? Board Configuration and Performance in Not-for-Profit Hospitals. Milbank Quarterly, 84(4), 733–758. 5. Ali, A.A. (2012). Factors influencing sustainable funding of non-governmental organisations in Kenya: A case study of Sisters Maternity Home (SIMANO) in Garissa. Nairobi University, Kenya. 6. Arshad, R., Abu Bakar, N., Wan Mohd Razali, W. A. A., & Omar, N. (2013). Financial Vulnerability, Risk Management and Accountability of Non-Profit Organisations. Journal of Energy Technologies and Policy, 3(11), 408–414. 7. Atan, R., Zainon, S., Aliman, S., & Nam, R. Y. T. (2013). Financial Management in Religious Non-Profit (pp. 502–505). Presented at the International Conference on Advanced Computer Science and Electronics Information (ICACSEI 2013), Beijing, China: Atlantis Press. Retrieved from http://www.atlantis-press.com/php/download_paper.php?id=7602 8. Baron, R.M. and Kenny, D.A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 1173–1182. 9. Betzler, D., & Gmür, M. (2012). Towards fund-raising excellence in museums-linking governance with performance: Towards fund-raising excellence in museums. International Journal of Nonprofit and Voluntary Sector Marketing, 17(3), 275–292. http://doi.org/10.1002/nvsm.1429 10. Black, J. (2008). Constructing and contesting legitimacy and accountability in polycentric regulatory regimes. Regulation and Governance, 2(2), 137–164. 11. Brealey, R. A. and Myers, S. C. (1991). Principles of Corporate Finance (4th Ed). McGraw-Hill, Inc. 12. Brettel, M. and Voss, U. (2013). Antecedents of Management Control Combinations –An Explanation from Resource Dependence Theory. Schmalenbach Business Review, 65 (October), 409-430. 13. Calabrese, T. (2012). The accumulation of nonprofit profits: A dynamic analysis. Nonprofit and Voluntary Sector Quarterly, 41(2), 300–324. 14. Callen, J.L., Klein, A., & Tinkelman, D. (2003). Board Composition, Committees, and Organizational Efficiency: The Case of Nonprofits. Nonprofit and Voluntary Sector Quarterly, 32(4), 493–520. http://doi.org/10.1177/0899764003257462 15. Carroll, D. A., & Stater, K. J. (2009). Revenue Diversification in Nonprofit Organizations: Does it Lead to Financial Stability? Journal of Public Administration Research and Theory, 19(4), 947–966. https://doi.org/10.1093/jopart/mun025 16. Carroll, D.A. (2009). Diversifying Municipal Government Revenue Structures: Fiscal Illusion or Instability? Public Budgeting & Finance, 29(1), 27-48. 17. Chabotar, K.J. (1989). Financial Ratio Analysis Comes to Nonprofits. Journal of Higher Education, 60 (2), 188-208. 18. Chang, C.F. & Tuckman, H.P. (1994) Voluntas: International Journal of Voluntary and Nonprofit Organizations, 5(3), 273–290. 19. Chikoto, G. L., & Neely, D. G. (2014). Building nonprofit financial capacity: The impact of revenue concentration and overhead costs. Nonprofit and Voluntary Sector Quarterly, 43, 570-588. 20. Chow, C. W., & Wong-Boren, A. (1987). Voluntary Financial Disclosure by Mexican Corporations. The Accounting Review, 62(3), 533-541. 21. Copps, J., and Vernon, B. (2010). The little blue book, NPC’s guide to analysing charities, for charities and funders. London: New Philanthropy Capital. 22. Crowther, D. (2017). Formulation of a sustainable financial management strategy for South African Universities’ Hotel Schools (Doctoral dissertation.) Retrieved from: http://ir.cut.ac.za/bitstream/handle/11462/1893/Crowther%2C%20Dalene%20.pdf?sequence=1&isAllowed=y 23. Despard, M.R., Adjabeng, B., Nafziger-Mayegun, R.N. (2016, January). Do Revenue Diversification and Income Generating Activities Promote Financial Sustainability of NGOs in Sub-Saharan Africa? Paper presented at the Society for Social Work and Research 20thAnnual Conference, Washington, DC. Retrieved from: https://www.researchgate.net/publication/296639551_Do_revenue_diversification_and_income_generating_activities_promote_financial_sustainability_of_NGOs_in_Sub-Saharan_Africa 24. DiMaggio, P. J. (1986). Introduction. In P. DiMaggio (Ed.), Nonprofit enterprise and the arts (pp. 3-13). New York: Oxford University Press. 25. DiStefano, C. and Morgan, G.B. (2014). A Comparison of Diagonal Weighted Least Squares Robust Estimation Techniques for Ordinal Data. Structural Equation Modeling: A Multidisciplinary Journal, 21(3),425-438. 26. Doornik, J. and Hansen, H. (2008). An omnibus test for univariate and multivariate normality. Oxford Bulletin of Economics and Statistics, 70, 915-925. 27. Ebrahim, A. (2005). Accountability myopia: losing sight of organisational learning. Non-profit and Voluntary Services Quarterly, 34(1), 56-87. 28. Efron, B. (1987). Better Bootstrap Confidence Intervals. Journal of the American Statistical Association, 82(397), 171–185. 29. Enjolras, B. and Sivesind, K.H. (2018). The Roles and Impacts of the Third Sector in Europe. In B. Enjolras, L.M. Salamon, K.H. Sivesind, A. Zimmer (Eds.), The Third Sector as a Renewable Resource for Europe: Concepts, Impacts, Challenges and Opportunities. Retrieved from https://link.springer.com/chapter/10.1007/978-3-319-71473-8_4 30. Foo, N., and Mohd Rani, N. A. (2017, September 3). Malaysians feeling the economic pinch, giving less to charity now. The Star Online. Retrieved from http://www.thestar.com.my/metro/community/2017/03/09/drastic-drop-in-donations-welfare-homes-struggle-to-continue-operations-as-contributions-take-a-dive/ 31. Foster, M., & Meinhard, A. (2000). Revenue Diversification as a Strategic Response by Canada’s Nonprofit Sector. Toronto: Centre for Voluntary Sector Studies, Ryerson University. Retrieved from http://www.ryerson.ca/content/dam/cvss/files/new-WORKING-PAPERS/WP12%202000(3)%20Revenue%20Diversification....Strategic%20Response.pdf 32. Froelich, K. A. (1999). Diversification of revenue strategies: Evolving resource dependence in nonprofit organisations. Nonprofit and Voluntary Sector Quarterly, 28, 246-268. Retrieved from https://journals.sagepub.com/doi/pdf/10.1177/0899764099283002 33. Galaskiewicz, J., and Bielefeld, W. (1998). Nonprofit organizations in an age of uncertainty: A study of organizational change. Piscataway: Transaction Publishers. 34. Gronbjerg, K. A. (1991). Managing grants and contracts: The case of four nonprofit social service organizations. Nonprofit and Voluntary Sector Quarterly, 20(1), 5-24. 35. Gronbjerg, K. A. (1992). Nonprofit human service organizations: Funding strategies and patterns of adaptation. In Y. Hasenfeld (Ed.), Human Services as Complex Organizations (pp. 73-97). Newbury Park, CA: Sage. 36. Grønbjerg, K. A. (1993). Understanding nonprofit funding: Managing revenues in social service and community development organizations. San Francisco: Jossey-Bass. 37. Grove, H., and Basilico, E. (2008). Fraudulent Financial Reporting Detection. Key Ratios Plus Corporate Governance Factors. Int. Studies of Mgt. and Org., 38(3), 10–42. 38. Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2014). A Primer on Partial Least Squares Structural Equation Modeling. Thousand Oaks: Sage. 39. Henze, N., and Zirkler, B. (1990). A class of invariant consistent tests for multivariate normality. Communications in Statistics, Theory and Methods, 19, 3595-3617. 40. Hooper, D., Coughlan, J. and Mullen, M. R. (2008). Structural Equation Modelling: Guidelines for Determining Model Fit. The Electronic Journal of Business Research Methods, 6 (1), 53 – 60. Available at http://www.ejbrm.com/issue/download.html?idArticle=183 41. Hu, L.T. and Bentler, P.M. (1999). Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria Versus New Alternatives. Structural Equation Modeling, 6 (1), 1-55. 42. James, L. R. and Brett, J. M. (1984). Mediators, moderators, and tests for mediation. Journal of Applied Psychology, 69(2), 307–321. https://doi.org/10.1037/0021-9010.69.2.307 43. Judd, C. M., & Kenny, D. A. (1981). Process analysis: Estimating mediation in treatment evaluations. Evaluation Review, 5, 602– 619. http:// dx.doi.org/10.1177/0193841X8100500502 44. Keating, E. K., and Frumkin, P. (2003). Reengineering non-profit financial accountability: Toward a more reliable foundation for regulation. Public Administration Review, 63(1), 3–15 45. Keating, E. K., Fischer, M., Gordon, T. P., and Greenlee, J. (2005). Assessing Financial Vulnerability in the Nonprofit Sector (Vol. 1). Cambridge, MA: Harvard University, Hauser Center for Nonprofit Organizations. 46. Kelly, K. S. (1998). Effective fund-raising management. Mahwah, NJ: Lawrence Erlbaum 47. Kim, M. (2014). Does revenue diversification really matter? The power of commercial and donative distinction in the nonprofit arts. University of Pennsylvania Social Impact Fellowship, 1–34. Retrieved from: http://socialimpactstrategy.org/wp-content/uploads/2016/03/Kim.pdf 48. Ko, W.W. and Liu, G. (2020). The Transformation from Traditional Nonprofit Organizations to Social Enterprises: An Institutional Entrepreneurship Perspective. Journal of Business Ethics. Retrieved from https://doi.org/10.1007/s10551-020-04446-z 49. Lewis, T. (2011). Financial sustainability essentials. Course handbook. Oxford: Management Accounting for Non-Governmental Organisations (MANGO). 50. Lin, W. (2010). Nonprofit revenue diversification and organizational performance: an empirical study of New Jersey Human services and community improvement organizations. Rutgers The State University of New Jersey-Newark. Retrieved from http://search.proquest.com/openview/d90fa258ec69319a26e19ddbe5f540d6/1?pq-origsite=gscholar&cbl=18750&diss=y 51. MacCallum, R.C., Browne, M.W., and Sugawara, H. M. (1996). Power Analysis and Determination of Sample Size for Covariance Structure Modeling. Psychological Methods, 1 (2), 130-49. 52. MacKinnon, D.P., Fairchild, A.J., and Fritz, M. S. (2007). Mediation Analysis. Annual Review of Psychology, 58(1), 593-614. 53. Mardia, K.V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57, 519-530. 54. McQuitty, S. (2004). Statistical power and structural equation models in business research. Journal of Business Research, 57 (2), 175-83. 55. Midot. (2013). Midot guide for effectiveness. Tel Aviv: Midot—analyzing and rating NPOs. 56. Miles, J. and Shevlin, M. (1998). Effects of sample size, model specification and factor loadings on the GFI in confirmatory factor analysis. Personality and Individual Differences, 25, 85-90. 57. Mîndrilă, D. (2010). Maximum Likelihood (ML) and Diagonally Weighted Least Squares (DWLS) Estimation Procedures: A Comparison of Estimation Bias with Ordinal and Multivariate Non-Normal Data. International Journal of Digital Society (IJDS), 1(1), 60-66. 58. Mohamed, M. M., & Muturi, W. (2017). Factors influencing financial sustainability of local non-governmental organisations in Puntland, Somalia. International Journal of Social Sciences and Information Technology, 3(2), 1612–1639. 59. Muth, M. M. and Donaldson, L. (1998). Stewardship Theory and Board Structure: a contingency approach. Corporate Governance, 6(1), 5-28. 60. Muthén, B., du Toit, S.H.C. and Spisic, D. (1997). Robust inference using weighted least squares and quadratic estimating equations in latent variable modeling with categorical and continuous outcomes. Unpublished technical report. 61. Nielsen, W. A. (1979). The endangered sector. New York: Columbia University Press. 62. Nik Ahmad, N.N., Ismail, S. and Siraj, S.A. (2019). Financial sustainability of Malaysian public universities: officers’ perceptions. International Journal of Educational Management, 33(2), 317-334. 63. Njoroge, G. B. (2013). An investigation on the factors influencing sustainability of NGO‘S in Kenya. University of Nairobi, Kenya. Retrieved from: http://chss.uonbi.ac.ke/sites/default/files/chss/BONIFACE%20NJOROGE%20GATHEE%20D63-75810-2012.pdf 64. Nyanumba, P., Rotich, G., Gekara, M., Keraro, V., & Okari, H. (2017). Influence of Revenue Diversification on Performance of Counties in Kenya. International Journal of Innovative Finance and Economics Research, 5(2), 11–20. 65. Ochieng, A. G. A. (2016). The Effects Of Funding Diversification On Financial Sustainability Of Non-Governmental Organizations In Nairobi County. University of Nairobi, Kenya. 66. Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18(1), 109-131. 67. Okorley, E., Deh, J. and Owusu, R. (2012). A Ghanaian case study of strategies of ensuring accountability by non-governmental organisations. Journal of Sustainable Development in Africa, 14(7), 43-54. 68. Omar, N., Arshad, R., & Razali, W. A. A. W. M. (2013). Assessment of Risk Using Financial Ratios in Non-Profit Organisations. Journal of Energy Technologies and Policy, 3(11), 382–389. 69. Organisation for Economic Co-operation and Development (OECD). (1995). Development Cooperation: Efforts and Policies of the Members of the Development Assistance Committee. Chairman’s Report, 1994. Paris: OECD. 70. Pardo, A., and Roman, M. (2013). Reflections on the Baron and Kenny model of statistical mediation. Anales de psicologia, 29(2), 614-623. 71. Parker, L.D. (2003). Financial Management Strategy in a Community Welfare Organisation: A Boardroom Perspective. Financial Accountability & Management, 19(4), 341-374. 72. Peterson, P. A. (1986). From impresario to arts administrator. In P. DiMaggio (Ed.), Nonprofit enterprise and the arts (pp. 161-183). New York: Oxford University Press. 73. Pfeffer, J., and Salancik, G. R. (1978). The external control of organizations. New York: Harper and Row. 74. Pfeffer, J. and Salancik, G. R. (2003). The external control of organizations: A resource dependence perspective. Stanford, CA: Stanford University Press. 75. Powell, W. W., & Owen-Smith, J. (1998). Universities and the market for intellectual property in the life sciences. Journal of Policy Analysis and Management, 17, 253-277. 76. Powell, W.W. and Friedkin, R. (1987). Organizational Change in Nonprofit Organizations. In W.W. Powell (Ed.), The Nonprofit Sector: A Research Handbook. New Haven CT: Yale University Press, 1987. 77. Preacher, K. J., and Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, and Computers, 36, 717-731. 78. Reed, P.B. and Howe, V.J. (1999). Defining and Classifying the Nonprofit Sector. Available at http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.502.193&rep=rep1&type=pdf 79. Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1-36. Retrieved from: http://www.jstatsoft.org/v48/i02/ 80. Ryan, C., and Irvine, H. J. (2012). Not-for-profit ratios for financial resilience and internal accountability: A study of Australian international aid organisations. Australian Accounting Review, 22(2), 177-194. 81. Salamon, L. M., and Anheier, H. K. (1997). The Third World’s Third Sector in Comparative Perspective. Baltimore: The Johns Hopkins Institute for Policy Studies. Retrieved from http://www.adm-cf.com/jhu/pdfs/CNP_Working_Papers/CNP_WP24.pdf 82. Saungweme, M. (2014). Factors influencing financial sustainability of local NGOs: the case of Zimbabwe. Stellenbosch University, South Africa. Retrieved from: https://oatd.org/oatd/record?record=handle%5C%3A10019.1%5C%2F97293 83. Scurto-Davis, T. (2014). Earned Revenue Ratio: Its Effect on Non-profit Financial Sustainability. Drexel University, Philadelphia, US. 84. Shannon, J. (1987). State Revenue Diversification - The Search for Balance, Tax Policy Roundtable, Property Tax Papers Series TPR-16. In F.D. Stocker (Ed.), The Quest for Balance in State-Local Revenue Structures (pp.9-37). Cambridge, MA: Lincoln Institute of Land Policy. 85. Simsa, R., Rausher, O., Schober, C., & Moder, C. (2014). Methodological guidelines for impact assessment. Third Sector Impact Working Paper No. 1, The Roles and Impacts of the Third Sector in Europe Seventh Framework Programme (grant agreement 613034). European Union. Brussels: Third Sector Impact. 86. Singh, S., & Mofokeng, M.-A. (2014). An analysis of what makes a non profit organisation sustainable: specific reference to revenue diversification. Interdisciplinary Journal of Contemporary Research in Business, 6(2), 393–424. 87. Tevel, E., Katz, H., & Brock, D. M. (2014). Nonprofit Financial Vulnerability: Testing Competing Models, Recommended Improvements, and Implications. VOLUNTAS: International Journal of Voluntary and Nonprofit Organizations. https://doi.org/10.1007/s11266-014-9523-5 88. Tuckman, H. P., and Chang, C. F. (1991). A methodology for measuring the financial vulnerability of charitable nonprofit organisations. Nonprofit and Voluntary Sector Quarterly, 20, 445–460. 89. Useem, M. (1987). Corporate philanthropy. In W. Powell (Ed.), The nonprofit sector: A research handbook (pp. 340-359). New Haven, CT: Yale University Press. 90. von Schnurbein, G. and Fritz, T.M. (2017). Benefits and Drivers of Nonprofit Revenue Concentration. Nonprofit and Voluntary Sector Quarterly, 46(5), 922-943. 91. Waiganjo, E.W., Ng’ethe, J.M. and Mugambi, D.N. (2012). An investigation into the strategies adopted by non-governmental organisation in Kenya to increase financial sustainability. International Journal of Current Research, 4(4), 74-78. 92. Webb, J. (2015). A path to sustainability: How revenue diversification helps colleges and universities survive tough economic conditions. Journal of International & Interdisciplinary Business Research, 2, 69-97. Available at: http://scholars.fhsu.edu/jiibr/vol2/iss1/7 93. White, F.C. (1983). Trade-Off in Growth and Stability in State Taxes. National Tax Journal XXXVI(1), 103–114. 94. Wicker, P., Feiler, S., & Breuer, C. (2013). Organizational Mission and Revenue Diversification among Non-profit Sports Clubs. International Journal of Financial Studies, 1(4), 119–136. https://doi.org/10.3390/ijfs1040119 95. Wong, D. (2016, April 10). Bigger charities feel the pinch, too. Retrieved April 15, 2017, from http://www.nst.com.my/node/138309 96. Yan, W., Denison, D. V., & Butler, J. S. (2009). Revenue structure and nonprofit borrowing. Public Finance Review, 37(1), 47-67. 97. Yasmin, S., Haniffa, R., & Hudaib, M. (2014). Communicated Accountability by Faith-Based Charity Organisations. Journal of Business Ethics, 122(1), 103–123. https://doi.org/10.1007/s10551-013-1759-2 98. Young, D. R., and Salamon, L. M. (2002). Commercialization, social ventures, and for-profit competition. In L. M. Salamon (Ed.), The State of Nonprofit America (pp. 423-446). Washington, DC: Brookings Institution Press. 99. Zaharrudin, N. Z., Zakaria, A., & Zakaria, A. (2018). The Contributing Sources for Sustainable Funding in Malaysian Social Welfare Group. International Journal of Academic Research in Business and Social Sciences, 8(11), 2111–2121. 100. Zhu, J., Ye, S. & Liu, Y. (2018). Legitimacy, Board Involvement, and Resource Competitiveness: Drivers of NGO Revenue Diversification. VOLUNTAS: International Journal of Voluntary and Nonprofit Organizations, 29(6), 1176–1189. 101. Zimmerman, M. A., & Zeitz, G. J. (2002). Beyond survival: Achieving new venture growth by building legitimacy. Academy of Management Review, 27(3), 414–431.
(1)
1. Adamson S. Teaching baby massage to new parents. Complementary Therapies in Nursing and Midwifery, 1996; 2:151-159. 2. Cooke A. Infant massage: The practice and evidence-base to support it. Br J Midwifery. 2015; 23(3), March, 166–170. 3. McClure V. Infant Massage: handbook for loving parents. London: Souvenir Press; 2001. 4. Underdown A, Barlow J, Stewart-Brown S. Tactile stimulation in physically health infants: result of a systematic review. J. Reprod. Infant Psychol. 2009;1-19: DOI: 10.1080/02646830903247209. 5. Bal Yılmaz H, Conk Z. The effect of massage by mothers on growth in healthy full ter20infants. J. Hum. Sci. 6(1);2009. Accessible from http://www.insanbilimleri.com/en on 30-12-2019 on 20-9-2019. 6. Underdown A. Research says massage may help infants sleep more, cry less and be less stressed (n.d). Accessed from http://www2.warwick.ac.uk/newsandevents/pressreleases/ne1000000231138/ on 4-2-2019. 7. Garmy P. Infant massage: State of knowledge - A systematic review. Nord. J. Nurs. Res. 2012;32(4): 29-33. 8. Rahmatnezhad L, Sheikhi S, Didarloo A, Fakoor Z, Iranidokht M. The Impact of Baby Massage Training on Awareness, Perceived Stress and Breastfeeding Self-Efficacy of Mothers with Hospitalized Neonate. Int J Pediatr. 2018;6(10): 8297-8306. DOI: 10.22038/ijp.2018.32043.2833. 9. Porter LS, Porter BO, McCoy V, Bango-Sanchez B, Williams M, Nunnewar S. Blended Infant Massage-Parenting Enhancement Program on Recovering Substance-Abusing Mothers' Parenting Stress, Self-Esteem, Depression, Maternal Attachment, and Mother-Infant Interaction. Asian Nurs Res (Korean Soc Nurs. Sci), 2015; 9(4):318-327. 10. Chan KG, Saloma Pawi, Lee S, Hii E, Chor YO, Zurraini Arabi, Helmy Hazmi. Experience of mothers’ learning and doing infant massage. Malays Appl Biol. 2018; 47(1):189-194. 11. Gürol A, Polat S. The Effects of Baby Massage on Attachment between Mother and their Infants. Asian Nurs Res, 2012; 6:35-41. 12. Thukral A, Sankar M, Agarwal R, Gupta N, Deorari A, Paul V. Early skin-to-skin contact and breastfeeding behaviour in term neonates: a randomized controlled trial. Neonatology, 2012;102:114-119. 13. Srivastava S, Gupta A, Bhatnagar A, Dutta S. Effect of very early skin-to-skin contact on success at breastfeeding and preventing early hypothermia in neonates. Indian J Public Health, 2014; 58(1):22-26. 14. Matthiesen, AS, Ransjö-Arvidson AB, Nissen, E, Uvnäs-Moberg K. Postpartum maternal oxytocin release by newborns: effects of infant hand massage and sucking. Birth, 2001; 28(1):13-19. 15. Sharma A. Efficacy of early skin-to-skin contact on the rate of exclusive breastfeeding in term neonates: A randomized controlled trial. Afr Health Sci, 2016;16(3):790-797. 16. Stuebe AM, Grewen K, Pedersen C, Propper C, Meltzer-Brody S. “Failed lactation and perinatal depression: common problems with shared neuroendocrine mechanisms?” Int. J. Women’s Health, 2012;21(3): 264–272: DOI: 10.1089/jwh.2011.3083. 17. Raisi-Dehkordi Z, Delaram M, Hosseini-Baharanchi F S. The effect of infant massage on the frequency and duration of breast feeding - A randomized clinical trial. Int. J. Nurs. Midwifery, 2013;2(3):19-27. 18. World Health Organization. Guideline: Protecting, promoting and supporting breastfeeding in facilities providing maternity and new-born services. 2017. Accessible from https://apps.who.int/iris/bitstream/ handle/10665/259386/9789241550086-eng.pdf, 2017. 19. Arabi Z, Jamani NA. Breastfeeding and COVID-19 in Malaysia: Weighing the Risks and Benefits. Int. Med. J. Malays. 2020;19(3): Oct:125-129. 20. Chan SK, Asirvatham CV. Feeding practices of infants delivered in a district hospital during the implementation of Baby Friendly Hospital Initiative. Med J Malaysia, 2001;56(1):71-76. 21. Siah CK, Yadav H. Breastfeeding practice among mothers in an urban polyclinic. Med J Malaysia, 2002;57(2):188-194. 22. National Institute of Health. The Third National Health and Morbidity Survey, 2006 (NHMS-III) Report Malaysia: Ministry of Health. 2008. 23. Abdallaha B, Badrb LK, Hawwaric M. The efficacy of massage on short and long term outcomes in preterm infants. Infant Behav. Dev. 2013;36(4):662-9: DOI: 10.1016/j.infbeh.2013.06.009. 24. Agunbiade OM. and Ogunleye OV. Constraints to exclusive breastfeeding practice among breastfeeding mothers in Southwest Nigeria: implications for scaling up. Int. Breastfeed. J.2012;7(5), doi:10.1186/1746-4358-7-5. 25. Tengku Alina TT, Wan Abdul Manan WM, Zaharah, S, Rohana AJ and Nik Normanieza NM. Perceptions and Practice of Exclusive Breastfeeding among Malay Women in Kelantan, Malaysia: A Qualitative Approach, Mal J Nutr. 2012; 18(1):15-25. 26. Senarath U, Siriwardena I, Godakandage SS, Jayawickrama H, Fernando DN, Dibley MJ. Determinants of breastfeeding practices: An analysis of the Sri Lanka Demographic and Health Survey 2006–2007. Matern. Child Nutr, 2012:8(3): 315-329. 27. Tan KL. Factors associated with exclusive breastfeeding among infants under six months of age in peninsular Malaysia. Int. Breastfeed. J., 2011;6(2): DOI: 10.1186/1746-4358-6-2 28. Gatti L. Maternal Perceptions of Insufficient Milk Supply in Breastfeeding. J Nurs Scholarsh, 2008;40(4):355-363: https://doi.org/10.1111/j.1547-5069.2008.00234.x 29. Fatimah S Jr, Siti Saadiah HN, Tahir A and Hussain Imam MI, Ahmad Faudzi Y. Breastfeeding in Malaysia: Results of the Third National Health and Morbidity Survey (NHMS III) 2006. Malays. J. Nutrition, 2010;16(2):195-206. 30. Campos SM, Márquez FD, Lynda W. Teaching Chilean Mothers to Massage Their Full-Term Infants: Effects on Maternal Breast-Feeding and Infant Weight Gain at Age 2 and 4 Months. J. Perinat. Neonatal Nurs, 2010; April-June, 24(2): 172–181, DOI: 10.1097/JPN.0b013e3181db5377. 31. Centers for Disease Control and Prevention. Breastfeeding questionnaires, at https://www.cdc.gov/breastfeeding/data/ifps/questionnaires.htm (n.d). Accessed on 30-5-2017. 32. Ching-man Ku and Chow S. Factors influencing the practice of exclusive breastfeeding among Hong Kong Chinese women: a questionnaire survey, Journal of clinical nursing, 2010; Sept; 19(17-18): 2434-45. 33. Premlata M, Hooja N, Bansal A, Anuradha S, Fatima A. and Priyanka M. Knowledge, Attitude and Practice of Breast Feeding at a Tertiary Care Centre in Rajasthan. Sch. Acad. J. Biosci., 2014; 2(10): 714-718. 34. Malaysia Malaysia Ministry of Human Resource: Employment Law Reforms: 2021 at https://www.mohr.gov.my/index. Accessed on 14-4-21. 35. Unantenne N. Mummies, Here is Everything You Need To Know About Mixed Feeding. The Asian Parent Singapore: at https://sg.theasianparent.com/mixed-feeding-everything-you-need-to-know. Accessed on 14-4-202.
(1)
1. Adeleke, E. O., & Omafuvbe, B. O. (2011). Antibiotic resistance of aerobic mesophilic bacteria isolated from poultry faeces. Research Journal of Microbiology, 6(4), 356-365. 2. Ahmed, W., Sidhu, J. P. S., & Toze, S. (2012). Speciation and frequency of virulence genes of Enterococcus spp. isolated from rainwater tank samples in southeast Queensland, Australia. Environmental Science and Technology, 46(20), 6843-6850. 3. Al-Talib, H., Zuraina, N., Kamarudin, B., & Yean, C. Y. (2015). Genotypic variations of virulent genes in Enterococcus faecium and Enterococcus faecalis isolated from three hospitals in Malaysia. Advances in Clinical and Experimental Medicine, 24(1), 121-127. 4. Arias, C. A., & Murray, B. E. (2012). The rise of the Enterococcus: beyond vancomycin resistance. Nature Reviews Microbiology, 10(4), 266-278. 5. Baldassarri, L., Cecchini, R., Bertuccini, L., Ammendolia, M. G., Iosi, F., Arciola, C. R, … & Creti, R. (2001). Enterococcus spp. produces slime and survives in rat peritoneal macrophages. Medical Microbiology and Immunology, 190(3), 113-120.
(1)
1. Adler, G. H., & Levins, R. (1994). The island syndrome in rodent populations. Quarterly Review of Biology, 69, 473–490. 2. Amat, F. (2008). Exploring female reproductive tactics: Trade-offs between clutch size, egg mass and newborn size in lacertid lizards. Herpetological Journal, 18, 147–153. 3. Andrews, R. M., & Rand, A. S. (1974). Reproductive effort in anoline lizards. Ecology, 55, 1317–1327. 4. Ashmole, N. P. (1963). The regulation of numbers of tropical oceanic birds. Ibis, 103, 458–473. 5. Ashton, K. G. (2005). Life history of a fossorial lizard, Neoseps reynoldsi. Journal of Herpetology, 39, 389–395.
(1)
1. Adriaenssens, E. M., & Cowan, D. A. (2014). Using signature genes as tools to assess environmental viral ecology and diversity. Applied and Environmental Microbiology, 80(15), 4470–4480. https:// doi.org/10.1128/AEM.00878-14 2. Antonova, N. P., Vasina, D. V., Lendel, A. M., Usachev, E. V., Makarov, V. V., Gintsburg, A. L., … Gushchin, V. A. (2019). Broad bactericidal activity of the myoviridae bacteriophage Lysins LysAm24, LysECD7, and LysSi3 against Gram-Negative ESKAPE Pathogens. Viruses, 11(3), 1–16. https://doi.org/10.3390/v11030284 3. Carlton, R. M. (1999). Phage therapy: past history and future prospects. Archivum Immunologiae et Therapiae Experimentalis, 47(5), 267–274. https://doi.org/10.2217/ fvl.15.3 4. Chadha, P., Katare, O. P., & Chhibber, S. (2016). In vivo efficacy of single phage versus phage cocktail in resolving burn wound infection in BALB/c mice. Microbial Pathogenesis, 99, 68–77. https://doi.org/10.1016/j. micpath.2016.08.001 5. Clancy, C. J., Hao, B., Shields, R. K., Chen, L., Perlin, D. S., Kreiswirth, B. N., & Nguyen, M. H. (2014). Doripenem, gentamicin, and colistin, alone and in combinations, against gentamicin-susceptible, kpc-producing Klebsiella pneumoniae strains with various ompk36 genotypes. Antimicrobial Agents and Chemotherapy, 58(6), 3521–3525. https://doi.org/10.1128/AAC.01949-13
(1)
1. Aduda.J, Oduor.E.O&Onwonga.M (2012), "” The Behaviour and Financial Performance of Individual Investors in the Trading Shares of Companies Listed At the Nairobi Stock Exchange, Kenya" “Journal of Finance and Investment Analysis, Volume.1, no.3, 2012, Page no 33-60. 2. Agnew, J. (2002). Inefficient choices in 401 (k) plans: Evidence from individual-level data. College of William and Mary Working Paper. 3. Akhtar, M. N., Hunjra, A. I., & Rehman, K. U. (2011). Determinants of Short Term Investment Decision Making. Actual Problems of Economics, 11, 356-363. 4. A.L.I.& Rehman (2013) “Stock Selection Behaviour of Individual Equity Investors’ in Pakistan”Middle-East Journal of Scientific Research 15 (9): 1295-1300, 2013. 5. Ali, R., & Qudous, R. A. (2012). Performance evaluation of income funds in Pakistan. Interdisciplinary Journal of Contemporary Research in Business, 3(9), 1079-1083. 6. Al-Tamimi, H. A. H., (2006). Factors Influencing Individual Investor Behaviour: Journal of Scientific Research 16 (8): 195-13, 2006. 7. Anna A. Merikas, (E-mail: merikas@otenet.gr), Deree College, Greece, Andreas G. Merikas, (E-mail: merikas@otenet.gr), University of the Aegean, Greece George S. Vozikis, (E-mail: george-vozikis@utulsa.edu), University of Tulsa Dev Prasad, (E-mail: devprasad1@hotmail.com), University of Massachusetts, Lowell And “Individual InvestorBehaviour: The Case Of The Greek Stock Exchange: Journal of Applied Business Research Volume 20, Number 4 93 Economic Factors 8. Anna A.M, Andreas, G.M, George, S.V. (2004) "“Economic Factors andIndividual Investor Behaviour" “The Case of the Greek Stock Exchange, Volume 20, 93. Prasad Journal of Applied Business Research. 9. Arnold, J, Moizer, P.and Noreen, E. (1984), “Investment appraisal methods of financial analysts: a comparative study of U.S. and U.K. practices”, International Journal of Accounting, Spring, pp.1-18. 10. Arnold, J. and Moizer, P. (1984), “A survey of the methods used by U.K. investment analysts to appraise investment in ordinary shares,”Accounting & Business Research, Vol. 14, pp.195-207. 11. Avanidhar Subrahmanyam “Behaviour Finance: A Review and Synthesis,”European Management, Vol. 14, No. 1, 2007, 12–29Anderson Graduate School of Management, the University of California at Los Angeles, U.S.A. 12. Awan, H. M., & Arshad, S. (2012). Factors valued by investors while investing in mutual funds behavioural context. Interdisciplinary journal of contemporary research in business, 4(1), p503. 13. Baker, H. K., & Haslem, J. A. (1974). Toward The Development Of Client-Specified Valuation Models. Journal of Finance, 29, 1255-1263. 14. Baker, H. K., Hargrove, M. B., & Haslem, J. A. (1977). An Empirical Analysis of the Risk-Return Preferences of Individual Investors. The Journal of Financial and Quantitative Analysis, 12(3), 377-389. 15. Bashir, Javed A,Ms. Scholar Arslan Ali ButtMs. Scholar Nazish Azam, Tanvee A, Ansar I. “An Assessment Study on the “Factors Influencing the Individual Investor Decision Making Behaviour”IOSR Journal of Business and Management (IOSR-JBM) e-ISSN: 2278-487X, p-ISSN: 2319-7668. Volume 9, Issue 5 (Mar. - Apr. 2013), P.P. 37-44 16. Burney, Nadeem and Ashfaque H. Khan, (1992),“Socioeconomic Characteristics and Household Savings”. An Analysis of Household Saving Behaviour in Pakistan. The Pakistan Development Review.3(1). 31 – 48. 17. Carlin, B. I., & Robinson, D. T. (2012). Education and timely decision support: Lessons from Junior Achievement. The American Economic Review, 102(3), 305-308. 18. Carter, R.B and Van Auken, H.E. (1990), “Security analysis and portfolio management: a survey and analysis”,Journal of Portfolio Management, Vol. 16 No.1, pp.81-5. 19. Chandra. A, (2008) "“Decision Making in the Stock Market: Incorporating Psychology with Finance" “National Conference: FFMI 2008 I.I.T. Kharagpur. 20. Chenhall, R.H and Juchau, R. (1977), “Investors information needs: an Australian study”, Accounting and Business Research, Spring, Vol. 7 pp.111-9. 21. Clark-Murphy, M and Soutar, G.N. (2003), “What individual investors value: some Australian evidence”, Journal of Economic Psychology, Vol. 25 No.4, pp.539-55. 22. Cooray, A. (2003). Factors Affecting Investments and Business confidence with Special Empirical study of the U.A.E. Financial Markets. Unpublished master’s thesis, University of Sharjah, Sharjah, U.A.E. 23. Daniel KD, Titman S (2000). Market Efficiency in an Irrational World. NBER Working paper series # 7489. 24. Daniel KD, Titman S (2006). Market reactions to tangible and intangible information. J. Fin. 61(4):1605-1643. 25. Dimitrios,I. M., (2007) Investors’behaviour in the Athens Stock Exchange (A.S.E.) Journal of Accountancy, Vol.120, pp.67-72. 26. Dwyer and Others (2002), “Gender Differences in Revealed Risk-Taking: Evidence from Mutual Fund Investors”, Economic Letters, Vol. 76, Pages. 151-158 27. Einhorn HJ (1980). Overconfidence in judgment. New Directions for Methodology of Social and Behavioural Science, 4:1-16. 28. Engelberg JE, Parsons CA (2011). The causal impact of media in financial markets. J. Fin. 66(1):67-97. 29. Epstein,M.J. (1994) “Social disclosure and the individual investor”, Accounting, Auditing& Accountability Journal, Vol.4. 30. Falk, H., & Matulich, S. (1976). The Effect of Personal Characteristics on Attitudes toward Financial Analysts Journal, 48(6), 32-37. 31. Fama EF (1972). Components of investment performance. J. Fin. 27(3):551-567. 32. Fama EF (1998). Market efficiency, long-term returns, and behavioural Finance, J. Fin. Econ. 33. Fang L, Peress J (2009). Media coverage and the cross-section of stock returns. J. Fin.64(5):2023-2052. 34. Ferris, S.P., and D.M.Chance, “The effect of 12b-1 fees on Mutual Fund expense ratio: A Note”, TheJournal of Finance, 42, 1987, 1077-82. 35. Geetha, S. N., & Vimala, K. (2014). Perception of Household Individual Investors towards Selected Investment Avenues (With Reference to Investors in Chennai City). Procedia Economics and Finance, 11, 360-374. 36. Goetzman, W.N., “Cognitive Dissonance and Mutual Fund Investors”, Working Paper, Columbia Business School, 1993. 37. Haugen RA, Baker NL (1996). Commonality in the determinants of expected stock returns, J. Fin. Econ. 41:401-39 38. Hodge,F.D, (2000) “Investors' perceptions of earnings quality, auditor independence, and the usefulness of audited financial information"Accounting Horizons, Vol.17. 39. Huberman, G., & Jiang, W. (2006). Offering versus choice in 401 (k) plans: Equity exposure and number of funds. The Journal of Finance, 61(2), 763-801. 40. Hussein, A.H. (2007) Factors influencing individual investor behaviour in the U.A.E. financial markets. Journal of Business, Vol.92 41. Iqbal, A and Usmani, S(2009)" ""Factors Influencing Individual Investor Behaviour"" South Asian Journal of Management Sciences, Vol. 3, No. 1, Page no, 15 – 26 42. Iyer,S.B. and Bhaskar,R.K. (2002) "Investor's psychology: a study of investor behaviour in the Indian Capital Market", Finance India, Vol. XVI. 43. Jagadeesh N, Titman S (1993). Returns to buying winners and selling losers: Implications for stock market efficiency, J. Fin. 48:65-91. 44. Jain, D and Mandot, N. (2012) "" Impact of Demographic Factors on Investment. Decision of Investors in Rajasthan"", Issue–2 (3), Journal of Psychology. 2004;15:201-93. 45. Kadariya.S, (2012) ""Factors affecting investor decision making: A case of Nepalese capital market" "Journal of Research in Economics and International Finance (JREIF), Vol. 1(1) Page. 16-30, 46. Kadiyala,P. and Rau,R. (2004) "Investor reaction to corporate event announcement: Underreaction oroverraction?", Journal of Business, Vol.77. 47. Katarachia, A., & Konstantinidis, A. (2014). Education and Decision Making Processes. Procedia Economics and Finance, 9, 142-152. 48. Khan, A. H., & Hassan, L. (1998). liberalization, savings, and economic development in Pakistan. Economic Development and Cultural Change, 46(3), 581-597. 49. Krishnan,R. and Booker,D.M. (2002) "Investors' use of Analysts' recommendations", Behavioural Research in Accounting, Vol. 14. 50. Lease, R. C., Lewellen, W. G., & Schlarbaum, G. G. (1974). The Individual Investor: Attributes and Attitudes. The Journal of Finance, 29(2), 413-433. 51. Lee, T.A and Tweedie, D.P. (1975a), "Accounting information: an investigation of private shareholder usage", Accounting & Business Research, Autumn. 52. Lee, T.A and Tweedie, D.P. (1975b), "Accounting information: an investigation of private shareholder. The Journal of Finance, 22(2), 423-431. 53. Lee, T.A and Tweedie, D.P. (1976), "The private shareholder – his sources of information and his understanding of reporting practices", Accounting & Business Research, Autumn. 54. Lee, T.A and Tweedie, D.P. (1977), The Private Shareholder and the Corporate Report, Institute of Chartered Accountants in England and Wales, London, 55. Lewellen, W.G., Lease, R.C and Schlarbaum, G.G. (1977), "Patterns of investment strategy and behaviour among individual investors", Journal of Business, Vol 50 No 3 pp296-333. 56. Lucey& Dowling, M (2005) "The Role of Feelings in Investor Decision-making" Journal of economic surveys vol. 19, no. 2# Blackwell publishing ltd. 2005, 9600 57. M. Halek si J. Eisenhauer (2001) "A Study of Fund Selection Behaviour of Individual Investors Towards Mutual Funds: With Reference to Mumbai City, The ICFAI Journal of Behavioural Finance, Vol. III, No. 2. 58. Mehmet Islamoğlu1*, Mehmet Apan2, Adem Ayvali (2015) "Determination of Factors Affecting Individual Investor Behaviours: A Study on Bankers" ISSN: 2146-4138 2015, 5(2), 531-543. International Journal of Economics and Financial Issues | Vol 5 • Issue 2 • 2015. 59. Merikas, A. A., Andreas. G., Vozikis, G. S., & Prasad, D. (2004). Economic Factors And Individual Investor Behaviour: The Case Of The Greek Stock Exchange. Journal of Applied Business Research, 20(4), 93-98. 60. Merilkas,A.,and Prasad,D, (2003), Factors influencing Greek investor behaviour on the Athens stock exchange. Journal of Business, Vol.66 61. Muhammad Jawad Iqbal Khan (2008) "Performance Evaluation of Income Funds in Pakistan" NUST Business School, Rawalpindi Electronic copy available at: 62. Nagy and Obenberger, (1994) "Factors influencing investor behaviour", Financial Analysts Journal, Vol.50. 63. Nagy, R. A., & Obenberger, R. W. (1994). Factors Influencing Individual Investor Behaviour. Financial Analysts Journal, 50(4), 63-68. 64. Naresh K. Malhotra., Marketing Research – An Applied Orientation, Prentice Hall International, U.S.A.,1999, 585 –597. 65. Obamuyi, T. M. (2013). Factors Influencing Investment Decisions in Capital Market: A study of Individual investors in Nigeria. Organizations and Markets in Emerging Economies, 4(1). 66. Pandiyan and Aranganathan, (May-June 2012)" ‟Savings and Investments Attitude of Salaried Class in CUDDALORE District‟‟ IOSR Journal of Business and Management (IOSRJBM) Volume 1, Issue 1, P.P. 40-49 Quantitative Analysis, 11(1), 13-37. 67. Raja Rajan V “Investment size based segmentation of individual investors” , Management Researcher,1997b, 21-28; “ Stages in life cycle and investment pattern”, The Indian Journal of Commerce, 51 (2 &3), 1998, 27 – 36; “Investors demographics and risk bearing capacity” , Finance India, 17(2), June 2003,pp.565 – 576; “ Chennai Investor is conservative”, Business Line, 23 Feb.1997a. 68. Rajeshware TR and Rama Moorthy VE (2002), “A Study of Fund Selection Behaviour of Individual Investors Towards Mutual Funds: With Reference to Mumbai City, The ICFAI Journal of Behavioural Finance, Vol. III, No. 2,2006. 69. Richard B., (1973), Factor analysis, McGraw Hill NY Selltiz,C.,Wrightsman,L.S.and Cook,W, (1976) Research Methods in Social Relations. 70. Malmendier, U., & Shanthikumar, D. (2003). Are small investors naïve?. NBER Working Paper, 10812. 71. Shefrin, H. (1999), Beyond Greed and Fear, Harvard Business School Press, Boston, MA. 72. Riley, W. B., & Chow, K. V. (1992). Asset Allocation and Individual Risk Aversion. 73. Risk. The Journal of Risk and Insurance, 43(2), 215-241. 74. Rob Euwals, Angelika Eymann and Axel Börsch-Supan (2004) “Who determines household savings for old age”? Evidence from Dutch panel data*Journal of Economic Psychology Volume 25, Issue 2, Pages 195-211. 75. Sevil, G., Sen, M., & Yalama, A. (2007). Small Investor Behaviour in Istabul Stock Exchange.Middle Eastern Finance Economics 76. Shanmugham, R., & Ramya, K. (2012). Impact of social factors on individual investors’ trading behaviour. Procedia Economics and Finance, 2, 237-246. 77. Spearman C. "General intelligence", objectively determined and measured. American. 78. Subrahmanyam, A. (2008). Behaviour finance: A review and synthesis. European Management, 14(1), 12-29. 79. Sun L, Wei K.C.J. (2011). Intangible information and analyst behaviour. Paper presented in seminar at the Hong Kong University of Science and Technology, Hong Kong. 80. Syama Sundar, P.V., 1998, “Growth Prospects of Mutual Funds and Investor perception with special reference to Kothari Pioneer Mutual Fund” , Project Report, Sri Srinivas Vidya Parishad, Andhra University, Visakhapatnam. 81. Tapia, W., & Yermo, J. (2007). Implications of behaviour economics for mandatory individual account pension systems. Accounting & Business Research, Winter. 82. Tavakoli.R.M, Tanha.H.F, &Halid.N. (2011) „‟ A study on small investors‟ behaviour in choosing stock case study: Kuala-Lumpur stock market‟‟, African Journal of Business Management, Vol. 5(27), pp. 11082-11092, 9 November, 2011 83. Van Rooij M, Alessie R, Lusardi A (2007). Financial literacy and stock market participation, NBER Working Paper 13565. Vuolteenaho T (2002). What drives firm level stock returns? J. Fin. 57(1):233-264. 84. Virlics, A. (2013). Investment Decision Making and Risk. Procedia Economics and Finance, 6, 169-177. 85. Warren, W. E. E., Stevens, R. E., & McConkey, C. W. (1990). Using Demographic and Lifestyle Analysis to Segment Individual Investors. Financial Analysts Journal,46(2), 74-77. 86. Winsen, J. K. (1976). Investor Behaviour and Information. The Journal of Financial and economics Vol. 5(27), pp. 11082-11092, 9 November, 2011. 87. Yeoh, K. (2010). The behaviour of individual investors in Malaysia: a governance perspective (D investment proxies. According to results, democracy affected the national savings and investment in Pakistan positively but insignificantlyoctoral dissertation, Northumbria University). 88. Shan, Z. (2021). Behaviorism reinforcement learning and its application in mathematics teaching in primary and middle schools. Frontiers in Educational Research, 4(4). Shan(2021) 89. Kennedy, B. (2013). The theory of planned behavior and financial literacy: a predictive model for credit carddebt? Theses, Dissertation and Capstones, Marshall University 90. Kennedy, Brian P., "The Theory of Planned Behavior and Financial Literacy: A Predictive Model for Credit Card Debt?" (2013). Theses, Dissertations and Capstones. Paper 480. 91. Cucinelli, D., Gandolfi, G., & Soana, M. G. (2016). Customer and advisor financial decisions: The theory of planned behavior perspective. International Journal of Business and Social Science, 7(12), 80-92. 92. Vlaev, I., Chater, N., & Stewart, N. (2007). Relativistic financial decisions: Context effects on retirement saving and investment risk preferences. Judgment and Decision Making, 2(5), 292-311. 93. Jensen, A. R. (2006). Correlated chronometric and psychometric variables. Clocking the mind: mental chronometry and individual differences. Elsevier, Amsterdam, 155-186.
(1)
1. Afthanorhan, A., Nazim, A. and Ahmad, S. (2015). Permutation Test, Non-Parametric, and Confidence Set Approaches to Multigroup Analysis for Comparing 2 Groups Using Partial Least Square Structural Equation Modeling (PLS-SEM). International Journal of Mathematics and Statistics Studies, 3(4), 18–34. https://doi.org/10.9734/ AIR/2015/15218 2. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50, 179–211. https:// doi.org/10.1016/0749-5978(91)90020-T 3. Ajzen, I. (2002). Perceived Behavioral Control, SelfEfficacy, Locus of Control, and the Theory of Planned Behavior. Journal of Applied Social Psychology, 32(4), 665–683. https://doi.org/10.1111/ j.1559-1816.2002.tb00236.x 4. Al-Shabib, N.A., Husain, F.M. and Khan, J.M. (2016). Study on food safety concerns, knowledge and practices among university students in Saudi Arabia. Food Control, 73(Part B), 202–208. https://doi.org/10.1016/j.foodcont.2016.08.005 5. Alrabadi, N.I., Al-Massad, M. and Alboqai, O. (2013). Food Safety: A Study of Jordanian Consumer’s Knowledge and Practices. World Applied Sciences Journal, 22(1), 35–40. https://doi.org/10.5829/ idosi.wasj.2013.22.01.2949
(1)
1. Agenda 21 – Projekt Kindergesundheit. Handbuch mit erfolgreichen Bewegungs-, Ernährungsund Mobilitätsbeispielen für Kindergärten und Schulen. Karlsruhe; 2005. (Physical activity sessions 1, 6, 7, 17) 2. Bappert S, Bork Ch, Chounard D, Dreher-Mansur S, Horn A. & Kromer R. Bewegung, Spiel und Sport im Vorschulalter – Erfahren und Begreifen durch Spielen und Sich-Bewegen. Weilheim/ Teck: Bräuer GmbH; 2004. (Physical activity sessions 2, 7, 9, 13-16, 18–22, 25, 26) 3. Blumenthal E. Bewegungsspiele für Vorschulkinder – Ein Beitrag zur Entwicklungsförderung der 3- bis 5-Jährigen. Band 70: Schriftenreihe zur Praxis der Leibeserziehung und des Sports. Schorndorf: Hofmann; 1973. (Physical activity sessions 4, 16, 24) 4. Bundesarbeitsgemeinschaft für Haltungs- und Bewegungsförderung e. V. Bewegungshits für Vorschulkids. 3. Auflage. Wiesbaden: Bundesarbeitsgemeinschaft für Haltungs- und Bewegungsförderung e. V.; 2005. (Physical activity sessions 3, 6, 8, 10, 14, 17, 21, 26). 5. Stein G. Spielgeschichten – wir reisen ins Bewegungsland. Aachen: Meyer & Meyer; 2004. (Physical activity sessions 4, 8, 11, 15) 6. Stiftung Kindergesundheit. Tiger Kids – Bewegungsspiele für den Kindergarten. Remagen: AOK Verlag GmbH; 2004. (Physical activity sessions 4, 24, 25) 7. Zimmer R. Sport und Spiel im Kindergarten. Aachen: Meyer & Meyer; 1992. (Physical activity sessions 5, 12, 13, 23) 8. Zimmer R. Toben macht schlau! Bewegung statt Verkopfung. Freiburg: Herder; 2004. (Physical activity sessions 5, 10, 18, 25) 9. Brustad RJ. Youth in sport: Psychological considerations. In Handbook of Research on Sport Psychology. LK Tennant, editor. New York: Macmillan; 1993. pp. 695-717.
(1)
[1] A. H. Hashim, "Occupational Safety & Health Guidelines: Emergency Preparedness," 2019. [Online]. Available: https://ir.unimas.my/id/eprint/24952/1/UNIMAS%20OSH%20Guidelines-Emergency%20Preparedness%20Ver%201.1.pdf [2] B. J. Park, R. Ficocelli, L. D. Patterson, V. Spicer, F. Dodich, and H. H. Tsang, "Modelling Crowd Dynamics and Crowd Management Strategies," in 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 2021, pp. 0627-0632. https://doi.org/10.1109/IEMCON53756.2021.9623214. [3] Bernama, "Makmal komputer di Kampus Kejuruteraan USM terbakar," Astroawani.com, 2024. [Online]. Available: https://www.astroawani.com/berita-malaysia/makmal-komputer-di-kampus-kejuruteraan-usm-terbakar-454005. [4] C. Feliciani, K. Shimura, and K. Nishinari, "Crowd Simulators: Computational Methods, Product Selection, and Visualization," Springer EBooks, pp. 119-166, 2021. https://doi.org/10.1007/978-3-030-90012-0_5. [5] C. Wang, Y. Tang, M. A. Kassem, H. Li, and Z. Wu, "Fire evacuation visualization in nursing homes based on agent and cellular automata," Journal of Safety Science and Resilience, vol. 2, no. 4, pp. 181-198, 2021. https://doi.org/10.1016/j.jnlssr.2021.08.006. [6] D. Helbing and A. Johansson, "Pedestrian, crowd, and evacuation dynamics," in Encyclopedia of Complexity and Systems Science, R. A. Meyers, Ed. Springer New York, 2009, pp. 1-28, doi: 10.1007/978-3-642-27737-5_382-5. [7] D. Ramos, "The Pros and Cons of Gantt Charts," SmartSheet, May 2021. [Online]. Available: https://www.smartsheet.com/content/gantt-chart-pros-cons. [8] D. Taylor, "2020 PyroSim User Manual," Thunderhead Engineering, 2020. [Online]. Available: https://www.thunderheadeng.com/files/2020/PyroSim-User-Manual.pdf. [9] E. Cohen-Peckham, "How Unity built the world’s most popular game engine," TechCrunch, Aug. 2019. [Online]. Available: https://techcrunch.com/2019/10/17/how-unity-built-the-worlds-most-popular-game-engine/. [10] E. Riahi Dehkordi, M. R. GivKashi, and M. Dadashi, "Simulation of evacuation in an educational building using Agent-Based Modeling with emphasis on furnishing location," AUT Journal of Civil Engineering, vol. 7, no. 1, pp. 83-90, 2023. https://doi.org/10.22060/ajce.2024.22332.5827. [11] E. Ronchi, "Developing and validating evacuation models for fire safety engineering," Fire Safety Journal, p. 103020, May 2020. https://doi.org/10.1016/j.firesaf.2020.103020. [12] G. Han, R. Ficocelli, A. J. Park, and E. Hwang, "Fire Egress Simulations Based on Human Behavioural Patterns," in 2024 IEEE 14th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 2024, pp. 0397-0402. https://doi.org/10.1109/CCWC60891.2024.10427703. [13] H. Cui, D. Zhao, C. Geng, X. Xie, Y. Lu, and H. Zhou, "Study on fire simulation and evacuation of teaching building," in 4th International Symposium on Power Electronics and Control Engineering (ISPECE 2021), 2021. https://doi.org/10.1117/12.2620520. [14] H. H. Pasquel Mohottige, A. Gharakheili, A. Vishwanath, S. S. Kanhere, and V. Sivaraman, "Evaluating Emergency Evacuation Events Using Building WiFi Data," in 2020 IEEE/ACM Fifth International Conference on Internet-of-Things Design and Implementation (IoTDI), Sydney, NSW, Australia, 2020, pp. 116-127. https://doi.org/10.1109/IoTDI49375.2020.00018. [15] Iterative Model, "javatpoint". [Online]. Available: https://www.javatpoint.com/software-engineering-iterative-model#:~:text=Advantage(Pros)%20of%20Iterative%20Model. [16] J. Radianti, O.-C. Granmo, N. Bouhmala, P. Sarshar, A. Yazidi, and J. Gonzalez, "Crowd Models for Emergency Evacuation: A Review Targeting Human-Centered Sensing," in 2013 46th Hawaii International Conference on System Sciences, 2013. https://doi.org/10.1109/hicss.2013.155. [17] K. P. White and R. G. Ingalls, "Introduction to simulation," in Proceedings of the 2009 Winter Simulation Conference (WSC), 2009. https://doi.org/10.1109/WSC.2009.5429315 [18] L. Fu, "Research on Fire Safety Education for College Students," Applied & Educational Psychology, vol. 4, no. 3, pp. 9-14, 2023. https://doi.org/10.23977/appep.2023.040302. [19] L. Zhang, J. Liu, and S. Tan, "Research on Knowledge Navigation Strategy for Complex Building Fire Evacuation," in 2023 9th International Conference on Electrical Engineering, Control and Robotics (EECR), Wuhan, China, 2023, pp. 229-234. https://doi.org/10.1109/EECR56827.2023.10149988. [20] M. A. Majid and T. Herawan, "Modelling Reactive and Proactive Behaviour in Simulation: A Case Study in a University Organisation," International Journal of Multimedia and Ubiquitous Engineering, vol. 8, no. 6, pp. 329-338, 2013. https://doi.org/10.14257/ijmue.2013.8.6.32. [21] M. Spearpoint and X.-D. Xiang, "Calculating Evacuation Times from Lecture Theatre Type Rooms Using a Network Model," Fire Safety Science-Proceedings of the Tenth International Symposium, vol. 10, pp. 599-612, 2011. https://doi.org/10.3801/iaffs.fss.10-599. [22] M. Xu and D. Peng, "PyroSim-Based Numerical Simulation of Fire Safety and Evacuation Behaviour of College Buildings," International Journal of Safety and Security Engineering, vol. 10, no. 2, pp. 293-299, 2020. https://doi.org/10.18280/ijsse.100218. [23] Mediaworks, "Crowd Simulation Software | Massmotion," Oasys, 2024. [Online]. Available: https://www.oasys-software.com/products/massmotion/. [24] Mosimtec, "A Guide to Simulation Software Selection," MOSIMTEC, Jan. 2021. [Online]. Available: https://mosimtec.com/a-guide-simulation-software-selection/. [25] N. A. Abu Bakar, K. Adam, M. A. Majid, and M. Allegra, "A simulation model for crowd evacuation of fire emergency scenario," in IEEE Xplore, May 2017, https://doi.org/10.1109/ICITECH.2017.8080027. [26] O. Özgün and Y. Barlas, "Discrete vs. Continuous Simulation: When Does It Matter?" in Proceedings of the 27th International Conference of the System Dynamics Society, 2009. [Online]. Available: https://proceedings.systemdynamics.org/2009/proceed/papers/P1199.pdf. [27] P. Cheer, "NetLogo for scientific research: Modeling," Opensource.com, 2019. [Online]. Available: https://opensource.com/article/19/2/get-started-netlogo. [28] P. Dickinson, K. Gerling, K. Hicks, J. Murray, J. Shearer, and J. Greenwood, "Virtual reality crowd simulation: effects of agent density on user experience and behaviour," Virtual Reality, vol. 23, no. 1, pp. 19-32, 2018. https://doi.org/10.1007/s10055-018-0365-0. [29] Pedestrian Dynamics. (n.d.). "PMC." Retrieved January 9, 2024, from https://pmcorp.com/simulation/pedestrian-dynamics/ [30] P. Kienitz, "The pros and cons of Iterative Software Development," One Beyond, Mar. 2017. [Online]. Available: https://www.one-beyond.com/pros-cons-iterative-software-development/. [31] P. Lorusso, M. D. Iuliis, S. Marasco, M. Domaneschi, G. P. Cimellaro, and V. Villa, "Fire emergency evacuation from a school building using an evolutionary virtual reality platform," Buildings, vol. 12, no. 2, p. 223, Feb. 2022, doi: 10.3390/buildings12020223. [32] P. McGuire, "Trapped Inside: When Fires Cause Stampedes," Unlikely Explanation, Feb. 2022. [Online]. Available: https://www.unlikelyexplanation.com/post/trapped-inside-when-fires-cause-stampedes. [33] R. A. Saeed, D. R. Recupero, and P. Remagnino, "Modelling group dynamics for crowd simulations," Personal and Ubiquitous Computing, vol. 26, no. 5, pp. 1299-1319, 2022. https://doi.org/10.1007/s00779-022-01687-9. [34] R. Saeed and E. D. Zendeh, "A conceptual framework to simulate building occupancy using crowd modelling techniques for energy analysis," International Council for Research and Innovation in Building and Construction, 2016. [35] S. R. Musse, V. J. Cassol, and D. Thalmann, "A history of crowd simulation: the past, evolution, and new perspectives," The Visual Computer, vol. 37, no. 12, pp. 3077–3092, 2021. [Online]. Available: https://doi.org/10.1007/s00371-021-02252-w [36] S. Wu and E. D. Zendeh, "A conceptual framework to simulate building occupancy using crowd modelling techniques for energy analysis," International Council For Research And Innovation In Building And Construction, 2016. [37] S. Yang, T. Li, X. Gong, B. Peng, and J. Hu, "A review on crowd simulation and modeling," Graphical Models, vol. 111, p. 101081, 2020. https://doi.org/10.1016/j.gmod.2020.101081. [38] Thalmann, D. (2016). "Crowd Simulation." In N. Lee (Ed.), Encyclopedia of Computer Graphics and Games (pp. 1–8). Springer Cham. [Online]. Available: https://doi.org/10.1007/978-3-319-08234-9_69-1 [39] ThunderHead Engineering. (2020). PyroSim User Manual (pp. 1–239). [Online]. Available: https://teci.imgix.net/support/documents/pyrosim-user-manual-2020-2.pdf . [40] Unified Modeling Language (UML), "What is Unified Modeling Language?" Visual Paradigm, Sep. 2017. [Online]. Available: https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/. [41] Unity Technologies. (2019). Unity. Unity. [Online]. Available: https://unity.com/ [42] W. Nur and Mohd., "A study on evacuation time from lecture halls in Faculty of Engineering, Universiti Putra Malaysia," IOP Conference Series, 2018. https://doi.org/10.1088/1755-1315/140/1/012096. [43] Yang, S., Li, T., Gong, X., Peng, B., & Hu, J. (2020). A review on crowd simulation and modeling. Graphical Models, 111, 101081. https://doi.org/10.1016/j.gmod.2020.101081 [44] Y. Huang, Z. Guo, H. Chu, and R. Sengupta, "Evacuation Simulation Implemented by ABM-BIM of Unity in Students’ Dormitory Based on Delay Time," ISPRS International Journal of Geo-Information, vol. 12, no. 4, pp. 160-160, 2023. https://doi.org/10.3390/ijgi12040160. [45] Y. Y. Ma, W. K. Zhang, Y. Feng, Z. C. Zhang, H. Bo Li, and M. Shi, "The Study on Time Pressure-based Model for the Fire Evacuation Simulations," in 2023 IEEE 14th International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 2023, pp. 162-166. https://doi.org/10.1109/ICSESS58500.2023.10293033. [46] Zali Muhamad Naim, Mohd Ibrahim Azhar, Venkat, I., Omar, S., & Bahari Belaton. (2023). Crowd management: Simulation modelling and visualization via fuzzy agents. Nucleation and Atmospheric Aerosols, 2643(1). https://doi.org/10.1063/5.0110450 [47] Zhou, S., Chen, D., Cai, W., Luo, L., Low, M. Y. H., Tian, F., Tay, V. S.-H., Ong, D. W. S., & Hamilton, B. D. (2010). Crowd modeling and simulation technologies. ACM Transactions on Modeling and Computer Simulation, 20(4), 1–35. https://doi.org/10.1145/1842722.1842725 [48] Z. Li, H. Huang, N. Li, M. L. Chu, and K. Law, "An agent-based simulator for indoor crowd evacuation considering fire impacts," Automation in Construction, vol. 120, p. 103395, 2020. https://doi.org/10.1016/j.autcon.2020.103395
(1)
[1] A. H. Soomro, A. S. Larik, M. A. Mahar, A. A. Sahito, A. M. Soomro, and G. S. Kaloi, “Dynamic voltage restorer-A comprehensive review,” Energy Reports, vol. 7, pp. 6786–6805, Nov. 2021, doi: 10.1016/j.egyr.2021.09.004. [2] N. Abas, S. Dilshad, A. Khalid, M. S. Saleem, and N. Khan, “Power quality improvement using dynamic voltage restorer,” IEEE Access, vol. 8, pp. 164325–164339, 2020, doi: 10.1109/ACCESS.2020.3022477. [3] C. Tu et al., “Dynamic voltage restorer with an improved strategy to voltage sag compensation and energy self-recovery,” CPSS Transactions on Power Electronics and Applications, vol. 4, no. 3, pp. 219–229, Sep. 2019, doi: 10.24295/CPSSTPEA.2019.00021. [4] B. Srilakshmi, K. Sudharshan Reddy, H. C. Mahadeva and M. Gayathri, “Power quality improvement using dynamic voltage restorer,” in 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), May 2018, pp. 558–561, doi: 10.1109/RTEICT42901.2018.9012583. [5] C. H. Rovai and A. Doorwar, “An overview of various control techniques of DVR,” in 2014 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2014], Mar. 2014, pp. 53–57, doi: 10.1109/ICCPCT.2014.7054844. [6] P. Ray, P. K. Ray, and S. K. Dash, “Power quality enhancement and power flow analysis of a PV Integrated UPQC system in a distribution network,” IEEE Transactions on Industry Applications, vol. 58, no. 1, pp. 201–211, Jan. 2022, doi: 10.1109/TIA.2021.3131404. [7] S. Singh and S. S. Letha, “Various custom power devices for power quality improvement: a review,” in 2018 International Conference on Power Energy, Environment and Intelligent Control (PEEIC), Apr. 2018, pp. 689–695, doi: 10.1109/PEEIC.2018.8665470. [8] E. Hossain, M. R. Tur, S. Padmanaban, S. Ay, and I. Khan, “Analysis and mitigation of power quality issues in distributed generation systems using custom power devices,” IEEE Access, vol. 6, pp. 16816–16833, 2018, doi: 10.1109/ACCESS.2018.2814981. [9] S. Choudhury, D. P. Acharya, and N. Nayak, “A comprehensive survey on active power filters: classifications, issues and future trends,” in 2021 International Conference in Advances in Power, Signal, and Information Technology (APSIT), Oct. 2021, pp. 1–6, doi: 10.1109/APSIT52773.2021.9641490. [10] P. K. Pathak and A. R. Gupta, “Battery energy storage system,” in 2018 4th International Conference on Computational Intelligence and Communication Technology (CICT), Feb. 2018, pp. 1–9, doi: 10.1109/CIACT.2018.8480377. [11] T. Karthik, M. Prathyusha, R. Thirumalaivasan, and M. Janaki, “Power quality improvement using DSTATCOM,” in 2019 Innovations in Power and Advanced Computing Technologies (i-PACT), Mar. 2019, pp. 1–7, doi: 10.1109/i-PACT44901.2019.8960234. [12] B. Shraddha, S. R, S. J. Pillai, and S. Modi, “Simulation and analysis of dynamic voltage restorer,” in 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology (RTEICT), May 2018, pp. 1388–1393, doi: 10.1109/RTEICT42901.2018.9012532. [13] V. K. Remya, P. Parthiban, V. Ansal, and B. C. Babu, “Dynamic voltage restorer (DVR)-A review,” Journal of Green Engineering, vol. 8, no. 4, pp. 519–572, 2018, doi: 10.13052/jge1904-4720.844. [14] S. B. Pandu and K. Nagappan, “A novel multiobjective control of DVR to enhance power quality of sensitive load,” The Scientific World Journal, vol. 2015, pp. 1–10, 2015, doi: 10.1155/2015/385109. [15] A. H. Soomro, A. S. Larik, M. A. Mahar, A. A. Sahito, and I. A. Sohu, “Simulation-based analysis of a dynamic voltage restorer under different voltage sags with the utilization of a PI controller,” Engineering, Technology and Applied Science Research, vol. 10, no. 4, pp. 5889–5895, Aug. 2020, doi: 10.48084/etasr.3524. [16] K. Jeyaraj, D. Durairaj, and A. I. S. Velusamy, “Development and performance analysis of PSO‐optimized sliding mode controller-based dynamic voltage restorer for power quality enhancement,” International Transactions on Electrical Energy Systems, vol. 30, no. 3, Mar. 2020, doi: 10.1002/2050-7038.12243. [17] S. S. Kishore, S. K. Sinha, P. Abirami, and M. L. George, “Voltage sag reduction and power quality improvement using DVR,” in 2017 International Conference on Computation of Power, Energy Information and Communication (ICCPEIC), Mar. 2017, pp. 761–767, doi: 10.1109/ICCPEIC.2017.8290465. [18] S. S. Salman, A. T. Humod, and F. A. Hasan, “Dynamic voltage restorer based on particle swarm optimization algorithm and adaptive neuro-fuzzy inference system,” Bulletin of Electrical Engineering and Informatics, vol. 11, no. 6, pp. 3217–3227, Dec. 2022, doi: 10.11591/eei.v11i6.4023. [19] M.-H. Khooban and R. Javidan, “A novel control strategy for DVR: Optimal bi-objective structure emotional learning,” International Journal of Electrical Power and Energy Systems, vol. 83, pp. 259–269, Dec. 2016, doi: 10.1016/j.ijepes.2016.04.014. [20] A. M J, S. N, and M. S. Shashikala, “Power quality enhancement using dynamic voltage restorer (DVR) by artificial neural network and hysteresis voltage control techniques,” in 2019 Global Conference for Advancement in Technology (GCAT), Oct. 2019, pp. 1–6, doi: 10.1109/GCAT47503.2019.8978333. [21] C. Gallo, “Artificial neural networks tutorial,” in Encyclopedia of Information Science and Technology, Third Edition, {IGI} Global, 2014, pp. 6369–6378. [22] S. B. Ibrahim, “Voltage quality enhancement in distribution system using artificial neural network (ANN) based dynamic voltage restorer,” Nigerian Journal of Technology, vol. 37, no. 1, Jan. 2018, doi: 10.4314/njt.v37i1.24. [23] M. A. El-Gammal, A. Y. Abou-Ghazala, and T. I. El-Shennawy, “Dynamic voltage restorer (DVR) for voltage sag mitigation,” International Journal on Electrical Engineering and Informatics, vol. 3, no. 1, pp. 1–11, Mar. 2011, doi: 10.15676/ijeei.2011.3.1.1. [24] A. Moghassemi and S. Padmanaban, “Dynamic voltage restorer (DVR): A comprehensive review of topologies, power converters, control methods, and modified configurations,” Energies, vol. 13, no. 16, Aug. 2020, doi: 10.3390/en13164152. [25] A. M. Eltamaly, Y. S. Mohamed, A.-H. M. El-Sayed, and A. N. A. Elghaffar, “Enhancement of power system quality using PI control technique with DVR for mitigation voltage sag,” in 2018 Twentieth International Middle East Power Systems Conference (MEPCON), Dec. 2018, pp. 116–121, doi: 10.1109/MEPCON.2018.8635221. [26] N. Kassarwani, J. Ohri, and A. Singh, “Performance analysis of dynamic voltage restorer using improved PSO technique,” International Journal of Electronics, vol. 106, no. 2, pp. 212–236, Feb. 2019, doi: 10.1080/00207217.2018.1519859. [27] Y. Siregar and A. J. Aritonang, “Optimization of location, capacity, and number of UPFC in the 150 kV SUMBAGUT transmission system by using particle swarm optimization,” in 2022 11th Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS), Aug. 2022, pp. 28–33, doi: 10.1109/EECCIS54468.2022.9902890. [28] J. P. S. Rosa, D. J. D. Guerra, N. C. G. Horta, R. M. F. Martins, and N. C. C. Lourenço, “Overview of artificial neural netwo rks,” in Using Artificial Neural Networks for Analog Integrated Circuit Design Automation, Springer International Publishing, 2020, pp. 21–44. [29] C. Kasala, V. K. Awaar, and P. Jugge, “Power quality enhancement using artificial neural network (ANN) based dynamic voltage restorer (DVR),” E3S Web of Conferences, vol. 309, Oct. 2021, doi: 10.1051/e3sconf/202130901100. [30] I. N. Anwar, K. Daud, A. A. A. Samat, Z. H. C. Soh, A. M. S. Omar, and F. Ahmad, “Implementation of Levenberg-Marquardt based multilayer perceptron (MLP) for detection and classification of power quality disturbances,” in 2022 IEEE 12th International Conference on Control System, Computing and Engineering (ICCSCE), Oct. 2022, pp. 63–68, doi: 10.1109/ICCSCE54767.2022.9935584. [31] M. Miaoli, W. Xiaolong, and H. Honggui, “Accelerated Levenberg–Marquardt algorithm for radial basis function neural network,” in 2020 Chinese Automation Congress (CAC), Nov. 2020, pp. 6804–6809, doi: 10.1109/CAC51589.2020.9327740. [32] P. V. Naidu and B. Basavaraja, “PSO-based optimization of PI regulator and VA loading of a SRF-based multi-converter DVR,” International Journal of Engineering, Science and Technology, vol. 7, no. 1, pp. 44–58, Jan. 1970, doi: 10.4314/ijest.v7i1.5.
(1)
1. aid e.V. und Deutsche Gesellschaft für Ernährung (DGE). Das beste Essen für Kinder – Empfehlungen für die Ernährung von Kindern.Köln; 2009. 2. aid e.V. Die aid-Ernährungspyramide – Richtig essen lehren undlernen. 4. überarbeitete Auflage. Bonn: aid infodienst Verbraucherschutz,Ernährung, Landwirtschaft e.V.; 2009. 3. aid e.V. Der Pausenbrot-Check für Kita und Schule – damit alle Kinderclever frühstücke. Bonn: aid infodienst Verbraucherschutz, Ernährung,Landwirtschaft e.V.; 2009. 4. aid e.V. und DGE. Essen und Trinken in Tageseinrichtungen für Kinder.3. überarbeitete Auflage. Bonn: aid infodienst Verbraucherschutz,Ernährung, Landwirtschaft e.V. und Deutsche Gesellschaft für Ernährung(DGE)e.V.; 2008. 5. aid e.V. Esspedition Kindergarten – Ernährungserziehung für die Praxis.Stuttgart: Ministerium für Ernährung und Ländlichen Raum und aid infodienst Verbraucherschutz, Ernährung, Landwirtschaft e.V.; 2007. 6. aid e.V. Über Milchpiraten und Limokönige – Ernährungsund Bewegungskartei für den Übergang vom Kindergarten zur Grundschule.2. überarbeitete Auflage. Bonn; 2010. 7. Bayer O, Kries R. von, Strauss A, Mitschek C, Toschke A.M, Hose A, Koletzko B.V. Short- and mid-term effects of a setting based prevention program to reduce obesity risk factors in children: A cluster-randomized trial. Clinical Nutrition. 2009; 28: 122-128. 8. Benton D. Role of parents in the determination of the food preferences of children and the development of obesity. International journal of obesity. 2004; 28: 858-869. 9. European Food Safety Authority (EFSA) - Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific Opinion on establishing Food-Based Dietary Guidelines. EFSA Journal. 2010; 8(3):1460. 10. Eufic Review. Food Based Dietary Guidelines in Europe. Reference Paper of the European Food Information Council. [Internet] 2011 [cited: ] Available from: www.eufic.org. 11. Forschungsinstitut für Kinderernährung Dortmund, Institut an der Rheinischen Friedrich-Wilhelms-Universität Bonn. Empfehlungen für die Ernährung von Kindern und Jugendlichen – Die optimierte Mischkost optimiX®.
(1)
1. Aid e.V. Und Deutsche Gesellschaft für Ernährung (DGE). Das beste Essen für Kinder – Empfehlungen für die Ernährung von Kindern. Köln; 2009. 2. Aid e.V. Die aid-Ernährungspyramide – Richtig essen lehren und lernen. 4. Überarbeitete Auflage. Bonn: aid infodienst Verbraucherschutz, Ernährung, Landwirtschaft e.V.; 2009. 3. Aid e.V. Der Pausenbrot-Check für Kita und Schule – damit alle Kinder clever frühstücken. Bonn: aid infodienst Verbraucherschutz, Ernährung, Landwirtschaft e.V.; 2009. 4. Aid e.V. Und DGE. Essen und Trinken in Tageseinrichtungen für Kinder. 3. Überarbeitete Auflage. Bonn: aid infodienst Verbraucherschutz, Ernährung, Landwirtschaft e.V. Und Deutsche Gesellschaft für Ernährung (DGE)e.V.; 2008. 5. Aid e.V. Esspedition Kindergarten – Ernährungserziehung für die Praxis. Stuttgart: Ministerium für Ernährung und Ländlichen Raum und aid infodienst Verbraucherschutz, Ernährung, Landwirtschaft e.V.; 2007. 6. Aid e.V. Clevere Durstlöscher – Getränke, Baustein zur Ernährungsbildung in der Grundschule. Bonn: aid infodienst Verbraucherschutz, Ernährung, Landwirtschaft e.V.; 2009. 7. Alexy U, Clausen K, Kersting M. Die Ernährung gesunder Kinder und Jugendlicher nach dem Konzept der Optimierten Mischkost. Ernährungs Umschau. Ausgabe 3/08; 2008. 8. Bayer O, Kries R. Von, Strauss A, Mitschek C, Toschke A.M, Hose A, Koletzko B.V. Short- and mid-term effects of a setting based prevention program to reduce obesity risk factors in children: A cluster-randomized trial. Clinical Nutrition. 2009; 28: 122-128. 9. Forschungsinstitut für Kinderernährung Dortmund. Empfehlungen für die Ernährung von Kindern und Jugendlichen – Die optimierte Mischkost optimix®. 5. Aktualisierte Auflage. Dortmund: Institut an der Rheinischen Friedrich-Wilhelms-Universität Bonn; 2010. 10. German Nutrition Society (DGE). Reference values for nutrient intake. 1st edition in English. Frankfurt/Main: Umschau/Braus; 2002. 11. Heseker H, Heseker B. Die Nährwerttabelle. Neustadt an der Weinstraße: Neuer Umschau Buchverlag; 2010. 12. Lobstein T, Baur L, Uauy R. Obesity in children and young people: a crisis in public health. The International Association for the Study of Obesity. Obesity reviews. 2004; 5, suppl. 1: 4-85. 13. Puder JJ, Marques-Vidal P, Schindler C, Zahner L, Niederer I, Bürgi F, Ebeneggern V, Nydegger A, Kriemler S. Effect of multidimensional lifestyle intervention on fitness and adiposity in predominantly migrant preschool children (Ballabeina): cluster randomised controlled trial. BMJ; 2011; 343:d6195. 14. Scaglioni S, Salvioni M, Galimberti C. Influence of parental attitudes in the development of children eating behaviour. British Journal of Nutrition. 2008; 99, Suppl.1: 22-25. 15. Stiftung Kindergesundheit. Tigerkids Kindergarten aktiv Heft 3 – Praxis Teil 1 – Viele Ideen für den Kindergartenalltag, wie Sie den Kindern gesunde Ernährung näherbringen können. 5. Auflage. Remagen: AOK Verlag gmbh; 2010. 16. Stiftung Kindergesundheit. Tigerkids Kindergarten aktiv Heft 4 – Praxis Teil 2 – Viele Ideen für den Kindergartenalltag, wie Sie den Kindern gesunde Ernährung näherbringen können. 5. Auflage. Remagen: AOK Verlag gmbh; 2010.
(1)
[1] Aisyah, A., & Krishnasamy, P. K. N. (2015, June 18). Knowledge transfer via Japanese language: Mechanism for innovations. Retrieved from https://ukm.pure.elsevier.com/en/publications/knowledge-transfer-via-japanese-language-mechanism-for-innovation. [2] Firebase. (2019, November 27). Retrieved from https://en.wikipedia.org/wiki/Firebase. [3] Heil, C. R., Wu, J. S., Lee, J. J., & Schmidt, T. (n.d.). A Review of Mobile Language Learning Applications: Trends, Challenges, and Opportunities. Retrieved from https://polipapers.upv.es/index.php/eurocall/article/view/6402/7213. [4] Introduction to XML. (n.d.). Retrieved from https://www.w3schools.com/xml/xml_whatis.asp. [5] Powell-Morse, A. (2017, November 2). What Is Rapid Application Development (RAD) and How Do You Use It? Retrieved from https://airbrake.io/blog/sdlc/rapid-application- development#targetText=Rapid application development (RAD) describes, planning and sequential design practices. [6] Rouse, M., Walter, D., Rouse, M., & Rouse, M. (n.d.). What is Android Studio? - Definition from WhatIs.com. Retrieved from https://searchmobilecomputing.techtarget.com/definition/Android-Studio
(1)
[1] A. Jamwal, R. Agrawal, M. Sharma, and A. Giallanza, “Industry 4.0 technologies for manufacturing sustainability: A systematic review and future research directions,” Appl. Sci. Switz., vol. 11, no. 12, 2021, doi: 10.3390/app11125725. [2] L. D. Gitelman and M. V. Kozhevnikov, “Electrification in industrial revolution 4.0,” Int. J. Energy Prod. Manag., vol. 5, no. 4, pp. 367–379, Nov. 2020, doi: 10.2495/EQ-V5-N4-367-379. [3] Y. Xiao and Z. Zeng, “A Construction Method of Intelligent Manufacturing System under Industry 4.0 Model,” Sci. Program., vol. 2021, 2021, doi: 10.1155/2021/4775237. [4] X. Zhang, “Economic benefit evaluation modelling of intelligent manufacturing enterprises based on entropy value method,” Int. J. Manuf. Technol. Manag., vol. 35, no. 3, pp. 271–285, 2021, doi: 10.1504/IJMTM.2021.118807. [5] J. Wang, C. Xu, J. Zhang, and R. Zhong, “Big data analytics for intelligent manufacturing systems: A review,” J. Manuf.Syst., 2021, doi: 10.1016/j.jmsy.2021.03.005. [6] S. Ayvaz and K. Alpay, “Predictive maintenance system for production lines in manufacturing: A machine learning approach using IoT data in real-time,” Expert Syst. Appl., vol. 173, 2021, doi: 10.1016/j.eswa.2021.114598. [7] M. Syafrudin, G. Alfian, N. L. Fitriyani, and J. Rhee, “Performance analysis of IoT-based sensor, big data processing, and machine learning model for real-time monitoring system in automotive manufacturing,” Sens. Switz., vol. 18, no. 9, 2018, doi: 10.3390/s18092946. [8] S. M. Acosta and A. M. Oliveira Sant’Anna, “Machine learning-based control charts for monitoring fraction nonconforming product in smart manufacturing,” Int. J. Qual. Reliab. Manag., 2022, doi: 10.1108/IJQRM-07-2021-0210. [9] M. Xu, J. Sheng, B. An, and N. Kang, “Intelligent manufacturing resource allocation efficiency based on mutual information criterion,” Jisuanji Jicheng Zhizao XitongComputer Integr. Manuf. Syst. CIMS, vol. 23, no. 9, pp. 1842–1852, 2017, doi: 10.13196/j.cims.2017.09.002. [10] H. Quinones and Y. Yong, “Intelligent manufacturing automation,” 2017. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85015720454&partnerID=40&md5=efe97228a882d8f28225cb484deccb6b [11] C.-F. Chien and C.-C. Chen, “Adaptive parametric yield enhancement via collinear multivariate analytics for semiconductor intelligent manufacturing,” Appl. Soft Comput., vol. 108, 2021, doi: 10.1016/j.asoc.2021.107385. [12] B. He and K.-J. Bai, “Digital twin-based sustainable intelligent manufacturing: a review,” Adv. Manuf., vol. 9, no. 1, 2021, doi: 10.1007/s40436-020-00302-5. [13] T. Geng and Y. Du, “The business model of intelligent manufacturing with Internet of Things and machine learning,” Enterp. Inf. Syst., vol. 16, no. 2, pp. 307–325, 2022, doi: 10.1080/17517575.2020.1722253. [14] Z. Wang, W. Zhang, X. Jin, Y. Huang, and C. Lu, “An optimal edge server placement approach for cost reduction and load balancing in intelligent manufacturing,” J. Supercomput., vol. 78, no. 3, pp. 4032–4056, 2022, doi: 10.1007/s11227-021- 04017-7. [15] A. Gu, Z. Yin, C. Fan, and F. Xu, “Safety Framework Based on Blockchain for Intelligent Manufacturing Cyber Physical System,” in Int. Conf. Ind. Artif. Intell., IAI, 2019, vol. 2019-January. doi: 10.1109/IAI47267.2019.9085328. [16] W. Chen, “Intelligent manufacturing production line data monitoring system for industrial internet of things,” Comput. Commun., vol. 151, pp. 31–41, 2020, doi: 10.1016/j.comcom.2019.12.035. [17] C. Xu and G. Zhu, “Intelligent manufacturing Lie Group Machine Learning: real-time and efficient inspection system based on fog computing,” J. Intell. Manuf., vol. 32, no. 1, pp. 237–249, 2021, doi: 10.1007/s10845-020-01570-5. [18] R. Dubey et al., “Big data analytics and artificial intelligence pathway to operational performance under the effects of entrepreneurial orientation and environmental dynamism: A study of manufacturing organisations,” Int. J. Prod. Econ., vol. 226, 2020, doi: 10.1016/j.ijpe.2019.107599. [19] A. T. Rizvi, A. Haleem, S. Bahl, and M. Javaid, Artificial Intelligence (AI) and Its Applications in Indian Manufacturing: A Review, vol. 52. Springer Science and Business Media Deutschland GmbH, 2021, p. 835. doi: 10.1007/978-981-33-4795-3_76. [20] F. Lampathaki, C. Agostinho, Y. Glikman, and M. Sesana, “Moving from ‘black box’ to ‘glass box’ artificial intelligence in manufacturing with XMANAI,” 2021. doi: 10.1109/ICE/ITMC52061.2021.9570236. [21] P. Trakadas et al., “An artificial intelligence-based collaboration approach in industrial iot manufacturing: Key concepts, architectural extensions and potential applications,” Sens. Switz., vol. 20, no. 19, pp. 1–20, 2020, doi: 10.3390/s20195480. [22] C. Liu, R. Luosang, X. Yao, and L. Su, “An integrated intelligent manufacturing model based on scheduling and reinforced learning algorithms,” Comput. Ind. Eng., vol. 155, 2021, doi: 10.1016/j.cie.2021.107193. [23] L. Shan, Z. Wang, and C. Jiang, “Key technologies of real-time visualization system for intelligent manufacturing equipment operating state under IIOT environment,” J. Internet Technol., vol. 21, no. 5, pp. 1479–14789, 2020, doi: 10.3966/160792642020092105021. [24] L. Zhang, Y. Hu, Q. Tang, J. Li, and Z. Li, “Data-driven dispatching rules mining and real-time decision-making methodology in intelligent manufacturing shop floor with uncertainty,” Sensors, vol. 21, no. 14, 2021, doi: 10.3390/s21144836. [25] H. B. Mahajan, A. Badarla, and A. A. Junnarkar, “CL-IoT: cross-layer Internet of Things protocol for intelligent manufacturing of smart farming,” J. Ambient Intell. Humaniz. Comput., vol. 12, no. 7, pp. 7777–7791, 2021, doi: 10.1007/s12652-020-02502-0. [26] M. Zhang, L. Shi, X. Zhuo, and Y. Liu, “Research on collaborative efficiency evaluation of complex supplier network under the background of intelligent manufacturing,” Processes, vol. 9, no. 12, 2021, doi: 10.3390/pr9122158. [27] R. Klamma et al., Scaling mentoring support with distributed artificial intelligence, vol. 12149 LNCS. Springer, 2020, p. 44. doi: 10.1007/978-3-030-49663-0_6. [28] Y. Cui, S. Kara, and K. C. Chan, “Manufacturing big data ecosystem: A systematic literature review,” Robot. Comput.-Integr. Manuf., vol. 62, p.
(1)
1. Ajzen I. (2012). The theory of planned behavior. In P. A. M. Lange, A. W. Kruglanski & E. T. Higgins (Eds.), Handbook of theories of social psychology,Vol. 1: 438-459. London, UK: Sage. 2. Anghelachea, V & Benteaa, C.C. (2012). Educational changes and teachers’ attitude towards change. Procedia- Social and Behavioral Sciences, 33 (2012): 593 – 597. 3. Behar-Horenstein, L. S., & Berlin, B. B. (1995). Strategies for school change. In J. Zadja, (ed.). Education and Society. Australia: James Nicholas Publishers Pty Ltd: 309- 319. 4. Bovey, W. H., & Hede, A. (2001a). Resistance to organisational change: the role of defence mechanisms. Journal of Managerial Psychology, 16(7): 534–548. 5. Bovey, W.H., & Hede, A. (2001b),"Resistance to organizational change: the role of cognitive and affective processes". Leadership & Organization Development Journal, Vol. 22 Iss 8: 372 – 382. 6. Bouckenooghe, D., Devos, G., & van den Broeck, H. (2009). Organizational Change Questionnaire—Climate of Change, Processes, and Readiness: Development of a new instrument. The Journal of Psychology: Interdisciplinary and Applied, 143(6): 559–599. 7. Braun, V. & Clarke, V. (2012) Thematic analysis. In H. Cooper, P. M. Camic, D. L. Long, A. T. Panter, D. Rindskopf, & K. J. Sher (Eds), APA handbook of research methods in psychology, Vol. 2: Research designs: Quantitative, qualitative, neuropsychological, and biological: 57-71, Washington, DC: American Psychological Association. 8. Bryan, L., & Atwater, M. (2002). Teacher beliefs and cultural models: A challenge for science teacher education programs. Science Education, 86: 821-839. 9. Ely, D. (1990). Conditions that facilitate the implementation of educational technology innovation. Journal of Research on Computing in Education, 23(2): 298-305. 10. Ellsworth, J.B. (2000). Surviving Change: A Survey of Educational Change Models. Syracuse NY: ERIC Clearinghouse on Information and Technology. ED443417 11. Fischer, A. H., & Manstead, A. S. R. (2008). Functions of Emotion from an Organizational Perspective. N. Ashkanasy & G. Cooper (Eds.), Research Companion to Emotion in Organizations. London & Boston: Edward Elgar: 2-17. 12. Fullan, M. (2001). The New Meaning of Educational Change, (3rd edn), New York: Teachers College Press. 13. Fullan, M. (2007). The NEW meaning of educational change. New York, NY, Teachers College Press. 14. Fullan, M. & S. Stiegelbauer. (1991). The New Meaning of Educational Change. London: Cassell Educational Limited, 2nd edition. 15. Hall, G.E. & Hord, S.M. (1987). Change in School: Facilitating the Process. Albany: State University of New York Press. 16. Hall, G.E & Hord, S.M. (2015). Implementing Change: Patterns, Principles, and Potholes.(4 th edn). Pearson. 17. Hargreaves, A. (2005). Pushing the Boundaries of Educational Change. In A. Hargreaves et al (Eds), Extending Educational Change: International Handbook of Educational Change. 18. Kementerian Pelajaran Malaysia (2012). Pelan Strategik Interim Kementerian Pelajaran Malaysia 2011-2020. Kementerian Pelajaran Malaysia. 19. Kennedy, C. and J. Kennedy (1996) Teacher attitudes and change implementation. System 24(3): 104-111. 20. Kernan, M. C., & Hanges, P. J. (2002). Survivor reactions to reorganization: Antecedents and consequences of procedural, interpersonal, and informational justice. Journal of Applied Psychology, 87(5): 916–928. 21. Korsgaard, M.A., Schweiger, D. and Sapienza, H. (1995) Building commitment, attachment and trust in strategic decision-making teams: the role of procedural justice. Academy of Management Journal, 38(1), pp. 60-84 22. Kursunoglu.A & Tanriogen.A. (2009). The relationship between teachers’ perceptions towards instructional leadership behaviors of their principal and teachers’ attitudes towards change. Procedia Social and Behavioral Sciences. Vol 1: 252-258. 23. Levin, H.M. (2001). Educating for Commonwealth. Educational Researcher, 30 (6): 30- 33. 24. Merriam, S.B. (1998). Qualitative Research and Case Study Applications in Education. Jossey-Bass Publishers, San Francisco. 25. Laszlo, E. and Laszlo, A. (1997). The Contribution of the Systems Sciences to the Humanities. Systems Research and Behavioural Science, 14: 5–19. 26. Piderit, S.K. (2000). Rethinking Resistance and Recognizing Ambivalence: A Multidimensional View of Attitudes Toward an Organizational Change. The Academy of Management Review, 25(4):783-794. 27. Rogers, M. E. (2003). Diffusion of Innovation (5th edn). London: Free Press 28. Sashkin, M., & Egermier, J. (1992). School Change Model and Processes: A Review of Research and Practice. Paper presented at annual meeting of the Merican Educational Research Association, San Francisco. 29. Schön, D. A. (1983). The Reflective Practitioner: How Professionals Think in Action. NY: Basic Books 30. Schon, D. A. (2010). Government as a Learning System. Chapter 1 in Blackmore, C. (ed.) Social Learning Systems and Communities of Practice. Springer, Dordrecht. 31. Spillane J.P. et al (2002) ‘Policy Implementation and Cognition: Reframing and Refocusing Implementation Research’. Review of Educational Research. Vol 72 No 3: 387-431. 32. Sokal, L., Trudel, L.E. & Babb, J. (2020). Canadian teachers’ attitudes toward change, efficacy, and burnout during the COVID-19 pandemic. International Journal of Educational Research Open, V1, 2020. 33. Rousseau, D. M., & Tijoriwala, S. A. (1999). What’s a good reason to change? Motivated reasoning and social accounts in promoting organizational change. Journal of Applied Psychology, 84: 514–528. 34. Tai, M. K. (2013). Modelling of principal change leadership competencies and its relationship with teacher change beliefs and teacher attitudes toward change. Doctoral dissertation, Sultan Idris Education University, Malaysia. 35. Tai, M.K., Omar Abdull Kareem, Mohamad Sahari Nordin & Khuan, W.B. (2015). Teacher change beliefs: Validating a scale with structural equation modelling. School Leadership and Management, 35(3): 266-299. 36. Tai Mei Kin, Omar Abdull Kareem, Mohamad Sahari Nordin & Khuan Wai Bing (2014): Teacher change beliefs: validating a scale with structural equation modelling, School Leadership & Management: Formerly School Organisation. School Leadership & Management, 2014 http://dx.doi.org/10.1080/13632434.2014.962503. 37. Thomas, B. (2003) ‘Innovation support networks and SMEs in industrial South Wales’. International Journal of Applied Management Studies, Vol. 1, No. 2: 15–27. 38. Vakola, M., & Nikolaou, I. (2005). Attitudes towards organizational change: What is the role of employees’ stress and commitment? Employee Relations, 27: 160-174. 39. Waks, L.J. (2007). The Concept of Fundamental Educational Change. Educational Theory, 57 (3). 40. Weber W. (1979). An Introduction to His Life and Work, translated by Philippa Hurd, Polity Press: 174-96. 41. Yin, R. K., (1994). Case Study Research Design and Methods: Applied Social Research and Methods Series (2nd edn). Thousand Oaks, CA: Sage Publications Inc. 42. Yogesh Hole et al 2019 J. Phys.: Conf. Ser. 1362 012121 43. Zaltman, G. & Duncan (1977). Innovation and Organisation. New York: John Wiley.
(1)
1. Akasiadis C, Chalkiadakis G (2016) Decentralized large-scale electricity consumption shifting by prosumer cooperatives. In: ECAI. August 2016, pp 175–183 2. Vale Z, Pinto T, Morais H, Praça I, Faria P (2011) VPP’s multi-level negotiation in smart grids and competitive electricity markets. In: 2011 IEEE power and energy society general meeting. IEEE. July 2011, pp 1–8 3. Elwan AA, Habibuddin MH (2021) Techno-economic analysis of a grid-connected waste to energy gasification plant: a case study. Energy Eng 118(6):1681–1701 4. Yang Q, Wang H, Wang T, Zhang S, Wu X, Wang H (2021) Blockchain-based decentralized energy management platform for residential distributed energy resources in a virtual power plant. Appl Energy 294:117026 5. Abujarad SY, Mustafa MW, Jamian JJ (2017) Recent approaches of unit commitment in the presence of intermittent renewable energy resources: a review. Renew Sustain Energy Rev 70:215–223 6. Emovon I (2020) A fuzzy multi-criteria decision-making approach for power generation problem analysis. J Eng Sci 7(2):E26-31 7. Kanagasabai L (2021) Heat transfer and simulated coronary circulation system optimization algorithms for real power loss reduction. J Eng Sci 8(1):E1–E8 8. Sikorski T, Jasi ´nski M, Ropuszy´nska-Surma E, W˛eglarz M, Kaczorowska D, Kostyła P, Leonowicz Z, Lis R, Rezmer J, Rojewski W, Sobierajski M (2019) A case study on distributed energy resources and energy-storage systems in a virtual power plant concept: economic aspects. Energies 12(23):4447 9. Wang X, Liu Z, Zhang H, Zhao Y, Shi J, Ding H (2019) A review on virtual power plant concept, application and challenges. In: 2019 IEEE innovative smart grid technologies-Asia (ISGT Asia). May 2019, pp 4328–4333 10. Teixeira R, Cerveira A, Baptista J (2021) Optimized management of renewable energy sources in smart grids in a VPP context. In: 2021 international conference on electrical, computer and energy technologies (ICECET). IEEE. December 2021, pp 1–6 11. Zhang G, Jiang C, Wang X (2019) Comprehensive review on structure and operation of virtual power plant in electrical system. IET Gener Transm Distrib 13(2):145–156 12. Othman MM, Hegazy YG, Abdelaziz AY (2015) A review of virtual power plant definitions, components, framework, and optimization. Int Electr Eng J 6(9):2010–2024. 13. Schmidt H (2019) Explosive precursor safety: an application of the Deming cycle for continuous improvement. J Chem Health Saf 26(1):31–36 14. Alauddin N, Yamada S (2019) Overview of Deming criteria for total quality management conceptual framework design in education services. J Eng Sci Res 3(5):12–20.
(1)
1. Akhsan N, Sutisna M & Mardji D. 2012. Pengujian model inokulasi Fusarium sp. pada pohon gaharu (Aquilaria microcarpa). Jurnal Kehutanan Tropika Humida 5: 48–55. 2. Azah MAN, Husni SS, Mailina J, Sahrim L, Majid JA & Faridz ZM. 2013. Classification of agarwood (gaharu) by resin content. Journal of Tropical Forest Science 25: 213–219. 3. Barden A, Awang AN, Mulliken T & Song M. 2000. Heart of the Matter. Agarwood Use and Trade and CITES Implementation for Aquilaria malaccensis. TRAFFIC, Cambride. 4. Battacharyya B, Datta A & Barauah HK. 1952. On the formation and development of gaharu in Aquilaria agallocha. Science and Culture 18: 240–243. 5. Chhipa H & Kaushik N. 2017. Fungal and bacterial diversity isolated from Aquilaria malaccensis tree and soil, induces agarospirol formation within 3 months after artificial infection. Frontiers in Microbiology 8: 1–12. https://doi.org/10.3389/fmicb.2017.01286.
(1)
[1] Akter, A., Noor, M.J.M.M., Goto, M., Khanam, S., Parvez, A., Rasheduzzaman, M. (2019). Landslide disaster in Malaysia: An overview. International Journal of Innovative Research & Development, 8(6): 292-302. https://doi.org/10.24940/ijird/2019/v8/i6/jun19058 [2] Rosly, M.H., Mohamad, H.M., Bolong, N., Harith, N.S.H. (2022). An overview: Relationship of geological condition and rainfall with landslide events at East Malaysia. Trends in Sciences, 19(8): 3464-3464. https://doi.org/10.48048/tis.2022.3464 [3] Achour, Y., Pourghasemi, H.R. (2020). How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? Geoscience Frontiers, 11(3): 871-883. https://doi.org/10.1016/j.gsf.2019.10.001 [4] Najar, I.A., Ahmadi, R., Khalik, Y.K.A., Taib, S.N.L., Sutan, N.B.M., Ramli, N.H.B. (2023). Soil suffusion under the dual threat of rainfall and seismic vibration. International Journal of Design & Nature and Ecodynamics, 18(4): 849-860. https://doi.org/10.18280/ijdne.180411 [5] Vincent, S., Pathan, S., Benitez, S.R.G. (2022). Landslides in goa: A weight of evidence (WoE) approach for mapping. In 2022 International Conference on Recent Trends in Microelectronics, Automation, Computing and Communications Systems (ICMACC), pp. 154-160. https://doi.org/10.1109/ICMACC54824.2022.10093638 [6] Ben, S.K., Ahmadi, R., Bustami, R.A., Najar, I.A. (2023). Numerical investigation of seismic hazard and risk of murum hydro-electric dam (MHEP). In International Conference on Dam Safety Management and Engineering, pp. 855-869. https://doi.org/10.1007/978-981-99-3708-0_60 [7] Singh, H., Huat, B.B., Jamaludin, S. (2008). Slope assessment systems: A review and evaluation of current techniques used for cut slopes in the mountainous terrain of West Malaysia. Electronic Journal of Geotechnical Engineering, 13: 1-24. [8] Ahmad, A.B., Ahmadi, R., Najar, I.A., Abidin, A.S.Z. (2024). Comprehension of energy-based methods for investigating soil suffusion uncertainties. International Journal of Design & Nature and Ecodynamics, 19(3): 733-743. https://doi.org/10.18280/ijdne.190303 [9] Alqawasmeh, H. (2023). Comparative assessment of various artificial neural network techniques for estimating the safety factor of road embankments. Geomate Journal, 24(103): 42-51. https://doi.org/10.21660/2023.103.3532 [10] Anis, Z., Wissem, G., Vali, V., Smida, H., Mohamed Essghaier, G. (2019). GIS-based landslide susceptibility mapping using bivariate statistical methods in Northwestern Tunisia. Open Geosciences, 11(1): 708-726. https://doi.org/10.1515/geo-2019-0056 [11] Rudra, R.R., Sarkar, S.K. (2023). Artificial neural network for flood susceptibility mapping in Bangladesh. Heliyon, 9(6): e16459. https://doi.org/10.1016/j.heliyon.2023.e16459 [12] Nugroho, F.S., Danoedoro, P., Arjasakusuma, S., Candra, D.S., Bayanuddin, A.A., Samodra, G. (2021). Assessment of Sentinel-1 and Sentinel-2 data for landslides identification using google earth engine. In 2021 7th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), pp. 1-6. https://doi.org/10.1109/APSAR52370.2021.9688356 [13] Yarmohammad Touski, M., Veiskarami, M., Dehghani, M. (2019). Interferometric point target analysis (IPTA) for landslide monitoring. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42: 1079-1083. https://doi.org/10.5194/isprs-archives-xlii-4-w18-1079- 2019 [14] Huang, F., Mao, D., Jiang, S. H., Zhou, C., Fan, X., Zeng, Z., Catani, F., Yu, C., Chang, Z., Huang, J., Jiang, B., Li, Y. (2024). Uncertainties in landslide susceptibility prediction modeling: a review on the incompleteness of landslide inventory and its influence rules. Geoscience Frontiers, 15(6): 101886. https://doi.org/10.1016/j.gsf.2024.101886 [15] Kritikos, T., Robinson, T.R., Davies, T.R. (2015). Regional coseismic landslide hazard assessment without historical landslide inventories: A new approach. Journal of Geophysical Research Earth Surface, 120(4): 711-729. https://doi.org/10.1002/2014jf003224 [16] Asadi, A., Baise, L. G., Chatterjee, S., Koch, M., Moaveni, B. (2024). Regional landslide mapping model developed by a deep transfer learning framework using post-event optical imagery. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 18(1): 186-210. https://doi.org/10.1080/17499518.2024.2316265 [17] Singh, A., Dhiman, N., Niraj, K.C., Shukla, D.P. (2024). Ensembled transfer learning approach for error reduction in landslide susceptibility mapping of the data scare region. Scientific Reports, 14(1): 29060. https://doi.org/10.1038/s41598-024-76541-4 [18] Depicker, A., Govers, G., Jacobs, L., Vanmaercke, M., Uwihirwe, J., Campforts, B., Kubwimana, D., Mateso, J.M., Bibentyo, T.M., Nahimana, L., Smets, B., Dewitte, O. (2024). Mobilization rates of landslides in a changing tropical environment: 60-year record over a large region of the East African Rift. Geomorphology, 454: 109156. https://doi.org/10.1016/j.geomorph.2024.109156 [19] Huggel, C., Khabarov, N., Korup, O., Obersteiner, M.,Clague, J.J., Stead, D. (2012). Physical impacts of climate change on landslide occurrence and related adaptation. In Landslides, J. J. Clague and D. Stead, Eds. Cambridge: Cambridge University Press, pp. 121-133. https://doi.org/10.1017/cbo9780511740367.012 [20] Najar, I.A., Ahmadi, R.B., Jamian, M.A.H., Hamza, H., Ahmad, A., Sin, C.H. (2022). Site-specific ground response analysis using the geotechnical dataset in moderate seismicity region. International Journal of Mechanics, 16(1): 37-45. https://doi.org/10.46300/9104.2022.16.5 [21] Najar, I.A., Ahmadi, R., Khalik, Y.K.A., Mohamad, N.Z., Jamian, M.A.H., Najar, N.A. (2022). A framework of systematic land use vulnerability modeling based on seismic microzonation: A case study of miri district of Sarawak, Malaysia. International Journal of Design & Nature and Ecodynamics, 17(5): 669-677. https://doi.org/10.18280/ijdne.170504 [22] Rahman, H.A., Mapjabil, J. (2017). Landslides disaster in Malaysia: An overview. Health, 8(1): 58-71. [23] Mohd Anip, M.H. (2024). Permulaan monsun timur laut 2024/2025. [24] Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Scientific Data, 2(1): 1-21. https://doi.org/10.1038/sdata.2015.66 [25] FAO and IIASA. (2023). Harmonized world soil database version 2.0. FAO, International Institute for Applied Systems Analysis (IIASA), Rome and Laxenburg. https://doi.org/10.4060/cc3823en [26] Gray, J.M., Bishop, T.F., Wilford, J.R. (2016). Lithology and soil relationships for soil modelling and mapping. Catena, 147: 429-440. https://doi.org/10.1016/j.catena.2016.07.045 [27] Department of Statistics Malaysia. (2025). Gross Domestic Product by State. OpenDOSM. [28] Department of Statistics Malaysia. (2023). Learn more about your area today! OpenDOSM. [29] Caves, B. (2021). Leveraging on multidisciplinary expertise for landslide disaster risk reduction and management: A case study of a limestone hill rockfall hazard assessment. Sains Malaysiana, 50(8): 2179-2191. https://doi.org/10.17576/jsm-2021-5008-04 [30] Youssef, A.M., Pourghasemi, H.R. (2021). Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia. Geoscience Frontiers, 12(2): 639-655. https://doi.org/10.1016/j.gsf.2020.05.010 [31] Nur, B.A. (2018). Landslides susceptibility mapping at Gunung Ciremai National Park. In E3S Web of Conferences, 31: 12010. https://doi.org/10.1051/e3sconf/20183112010 [32] Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., Alsdorf, D. (2007). The shuttle radar topography mission. Reviews of Geophysics, 45(2): 1-33. https://doi.org/10.1029/2005RG000183 [33] Badola, S., Mishra, V.N., Parkash, S., Pandey, M. (2023). Rule-based fuzzy inference system for landslide susceptibility mapping along national highway 7 in Garhwal Himalayas, India. Quaternary Science Advances, 11: 100093. https://doi.org/10.1016/j.qsa.2023.100093 [34] Kirschbaum, D., Stanley, T., Zhou, Y. (2015). Spatial and temporal analysis of a global landslide catalog. Geomorphology, 249: 4-15. https://doi.org/10.1016/j.geomorph.2015.03.016 [35] Avand, M., Kuriqi, A., Khazaei, M., Ghorbanzadeh, O. (2022). DEM resolution effects on machine learning performance for flood probability mapping. Journal of Hydro-Environment Research, 40: 1-16. https://doi.org/10.1016/j.jher.2021.10.002 [36] Zhang, Z., Zeng, R., Meng, X., Zhao, S., Wang, S., Ma, J., Wang, H. (2023). Effects of changes in soil properties caused by progressive infiltration of rainwater on rainfall-induced landslides. Catena, 233: 107475. https://doi.org/10.1016/j.catena.2023.107475 [37] Guo, Y., Ma, C. (2023). Elucidating the role of soil hydraulic properties on aspect-dependent landslide initiation. Hydrology and Earth System Sciences, 27(8): 1667-1682. https://doi.org/10.5194/hess-27-1667-2023 [38] Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., Böhner, J. (2015). System for automated geoscientific analyses (SAGA) v. 2.1. 4. Geoscientific model development, 8(7): 1991-2007. https://doi.org/10.5194/gmd-8-1991- 2015 [39] Ahmed, I., Pan, N.D., Debnath, J., Bhowmik, M., Bhattacharjee, S. (2024). Flood hazard zonation using GIS-based multi-parametric Analytical Hierarchy Process. Geosystems and Geoenvironment, 3(2): 100250. https://doi.org/10.1016/j.geogeo.2023.100250 [40] Singha, C., Swain, K.C., Moghimi, A., Foroughnia, F., Swain, S.K. (2024). Integrating geospatial, remote sensing, and machine learning for climate-induced forest fire susceptibility mapping in Similipal Tiger Reserve, India. Forest Ecology and Management, 555: 121729. https://doi.org/10.1016/j.foreco.2024.121729 [41] Yang, C., Wang, J., Li, S., Xiong, R., Li, X., Gao, L., Guo, X., Ma, C., Xiong, H., Qiu, Y. (2024). Landslide susceptibility assessment and future prediction with land use change and urbanization towards sustainable development: The case of the li river valley in Yongding, China. Sustainability, 16(11): 4416. https://doi.org/10.3390/su16114416 [42] Trimaille, E. (2023). Download OSM data thanks to the Overpass API. You can also open local OSM or PBF files. A special parser, on top of OGR, is used to let you see all OSM keys available. [43] Chung, C.J.F., Fabbri, A.G. (2003). Validation of spatial prediction models for landslide hazard mapping. Natural Hazards, 30: 451-472. https://doi.org/10.1023/b:nhaz.0000007172.62651.2b [44] Dias, H.C., Gramani, M.F., Grohmann, C.H., Bateira, C., Vieira, B.C. (2021). Statistical-based shallow landslide susceptibility assessment for a tropical environment: A case study in the southeastern Brazilian coast. Natural Hazards, 108(1): 205-223. https://doi.org/10.1007/s11069-021-04676-y [45] Doan, V.L., Nguyen, B.Q.V., Pham, H.T., Nguyen, C.C., Nguyen, C.T. (2023). Effect of time-variant NDVI on landside susceptibility: A case study in Quang Ngai province, Vietnam. Open Geosciences, 15(1): 20220550https://doi.org/10.1515/geo-2022-0550 [46] Hoa, P.V., Tuan, N.Q., Hong, P.V., Thao, G.T.P., Binh, N.A. (2023). GIS-based modeling of landslide susceptibility zonation by integrating the frequency ratio and objective-subjective weighting approach: a case study in a tropical monsoon climate region. Frontiers in Environmental Science, 11: 1175567. https://doi.org/10.3389/fenvs.2023.1175567 [47] Aziz, N.F.A., Yaacob, N., Yusof, A.L., Omar, H. (2025). Statistical analysis for forest fire factors using geography information system (GIS) and remote sensing imagery. Journal of Advanced Research in Applied Sciences and Engineering Technology, 45(2): 177-190. https://doi.org/10.37934/araset.45.2.177190 [48] Donnarumma, A., Revellino, P., Grelle, G., Guadagno, F.M. (2013). Slope angle as indicator parameter of landslide susceptibility in a geologically complex area. Landslide Science and Practice: Volume 1: Landslide Inventory and Susceptibility and Hazard Zoning, 425- 433. https://doi.org/10.1007/978-3-642-31325-7_56 [49] Wu, Y.B., Duan, Z., Peng, J.B., Zhang, Q. (2022). Influences of slope angle on propagation and deposition of laboratory landslides. Earth Surface Dynamics Discussions, 2022: 1-34. https://doi.org/10.5194/esurf- 2022-38 [50] Janzandr. (2020). Version: [2196] One Click Raster Stacking 1.1.0. QGIS. [51] Najar, I.A., Ahmadi, R., Amuda, A.G., Mourad, R., Bendary, N.E., Ismail, Ismial, I., Nabilah, A.B., Tang, S. (2025). Advancing soil-structure interaction (SSI): A comprehensive review of current practices, challenges, and future directions. Journal of Infrastructure Preservation and Resilience, 6(5): 1-25. https://doi.org/10.1186/s43065-025-00118-2 [52] Iban, M.C., Sekertekin, A. (2022). Machine learning based wildfire susceptibility mapping using remotely sensed fire data and GIS: A case study of Adana and Mersin provinces, Turkey. Ecological Informatics, 69: 101647. https://doi.org/10.1016/j.ecoinf.2022.101647 [53] Islam, A.R.M.T., Talukdar, S., Mahato, S., Kundu, S., Eibek, K.U., Pham, Q.B., Kuriqi, A., Linh, N.T.T. (2021). Flood susceptibility modelling using advanced ensemble machine learning models. Geoscience Frontiers, 12(3): 101075. https://doi.org/10.1016/j.gsf.2020.09.006 [54] UMW. (2015). Microsoft excel manual. University of Mary, Washington. [55] Mohammed, M.A. (2024). Effect of using numerical data scaling on supervised machine learning performance. Global Libyan Journal, 67: 1-21. https://doi.org/10.37376/glj.vi67.5903 [56] Najar, I.A., Ahmadi, R., Amuda, A.G., Mourad, R., Bendary, N.E., Tang, S., Ahmad, A., Khalik, Y.K.A., Haris, M.N. (2025). Laboratory Investigation of Soil Suffusion through Particle Size Distribution and Hydraulic Conductivity Analysis, 48(2): 1-9. https://doi.org/10.1007/s40996-025-017 [57] Fritsch, S., Guenther, F., Guenther, M.F. (2019). Package ‘neuralnet’. Training of Neural Networks, 2: 30. [58] Chowdhury, M.S., Rahman, M.N., Sheikh, M.S., Sayeid, M.A., Mahmud, K.H., Hafsa, B. (2024). GIS-based landslide susceptibility mapping using logistic regression, random forest and decision and regression tree models in Chattogram District, Bangladesh. Heliyon, 10(1): e23424. https://doi.org/10.1016/j.heliyon.2023.e23424 [59] Al-Ruzouq, R., Shanableh, A., Jena, R., Gibril, M.B.A., Hammouri, N.A., Lamghari, F. (2024). Flood susceptibility mapping using a novel integration of multitemporal sentinel-1 data and eXtreme deep learning model. Geoscience Frontiers, 15(3): 101780. https://doi.org/10.1016/j.gsf.2024.101780 [60] Bivand, R., Hijmans, R.J., Pebesma, E., Sumner, M.D. (2024). Package ‘terra,’. CRAN. [61] Dai, L., Zhu, M., He, Z., He, Y., Zheng, Z., Zhou, G., Wang, C., Ren, J., Tang, H., Liu, Q., Huang, F., Li, Z., Li, M., Wang, Z., Li, M., Jiang, L. (2021). Landslide risk classification based on ensemble machine learning. In 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, pp. 3924-3927. https://doi.org/10.1109/IGARSS47720.2021.9553034
(1)
[1] AlcarazeGonzalez V, RodriguezeValenzuela G, GomezeMartinez JJ, Dotto GL, FloreseEstrella RA. Hydrogen production automatic control in continuous microbial electrolysis cells reactors used in wastewater treatment. J Environ Manag 2021;281:111869. https://doi.org/10.1016/ j.jenvman.2020.111869. [2] Carde~na R, Cercado B, Buitr�on G. Microbial electrolysis cell for biohydrogen production. Biohydrogen. Elsevier; 2019. p. 159e85. https://doi.org/10.1016/b978-0-444-64203- 5.00007-1. [3] Kadier A, Simayi Y, Kalil MS, Abdeshahian P, Hamid AA. A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas. Renew Energy 2014;71:466e72. https://doi.org/10.1016/ j.renene.2014.05.052. [4] Kitching M, Butler R, Marsili E. Microbial bioelectrosynthesis of hydrogen: current challenges and scale-up. Enzym Microb Technol 2017;96:1e13. https://doi.org/10.1016/ j.enzmictec.2016.09.002. [5] Varanasi JL, Veerubhotla R, Pandit S, Das D. Biohydrogen production using microbial electrolysis cell: recent advances and future prospects. Biomass, Biofuels, Biochem Microb Electrochem Technol Sustain Platf Fuels, Chem Remediat 2018:843e69. https://doi.org/10.1016/B978-0-444- 64052-9.00035-2. Elsevier. [6] Oh S-E, Van Ginkel S, Logan BE. The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environ Sci Technol 2003;37:5186e90. https://doi.org/10.1021/es034291y. [7] Nikolaidis P, Poullikkas A. A comparative overview of hydrogen production processes. Renew Sustain Energy Rev 2017;67:597e611. https://doi.org/10.1016/j.rser.2016.09.044. [8] Hallenbeck PC. Fundamentals and limiting processes of biological hydrogen production. Biohydrogen III Renew Energy Syst by Biol Sol Energy Convers 2004:93e100. https:// doi.org/10.1016/B978-008044356-0/50008-7. Elsevier Inc. [9] Levin DB, Pitt L, Love M. Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy 2004;29:173e85. https://doi.org/10.1016/S0360- 3199(03)00094-6. [10] Aboelela D, Soliman Moustafa A, Ashour I. A reduced model for microbial electrolysis cells. Int J Innovative Technol
(1)
1. Alderwerelt Van Rosenburgh CRWK. 1922. New or noteworthy Malayan Araceae II. Bulletin du Jardin botanique de Buitenzorg ser. 3, 4: 163–229. 2. Boyce PC & Wong SY. 2012. Studies on Homalomeneae (Araceae) of Sumatera I: Homalomena hypsiantha, a distinctive new species of the Chamaecladon Supergroup. Webbia 67(2): 147–150. 3. Boyce PC & Wong SY. 2013. Studies on Homalomeneae (Araceae) of Sumatera II: Homalomena limnogena, a novel species from Pulau Belitung, and the first record of colonial helophytism in the Homalomena Chamaecladon Supergroup. Webbia 68(2): 77–79. 4. Boyce PC & Wong SY. 2016a. Studies on Homalomeneae (Araceae) of Sumatera IV: Three new species of ornamental Homalomena [Chamaecladon clade]. Willdenowia 46(2): 253–260. 5. Boyce PC & Wong SY. 2016b. Studies on Homalomeneae (Araceae) of Sumatera V – Homalomena squamisdraconis, a new species for the Chamaecladon Clade. Aroideana 39(2): 121–125.
(1)
[1] A. Levstek, T.H. Aleš, and P. Andreja. "IT governance mechanisms and contingency factors: Towards an adaptive IT governance model." Organizacija 51.4 (2018): 286-310. [2] A. Daneshmandnia. "The influence of organizational culture on information governance effectiveness." Records Management Journal (2019). [3] P. Weill, J.W. Ross, "IT governance on one page", CISR WP, 349, (2004) [4] V. Sambamurthy, and R. Zmud. "Arrangements for information technology Governance: A theory of multiple contingencies. " Management Information Systems Quarterly, 23(2), 261–290. https://doi.org/10.2307/249754. (1999). [5] H. Saida, "A conceptual framework on IT governance impact on organizational performance: A dynamic capability perspective." Academic Journal of Interdisciplinary Studies 10.1 (2021): 136-136. [6] R. F. Frogeri, D. J. P. Franklin, and G. R. Cunha. "Information technology governance in a higher education institution: An IT professionals' perception analysis." International Journal of Human Capital and Information Technology Professionals (IJHCITP) 11.1 (2020): 31-46. [7] G. CWiedenhöft, C. Guilherme, E. M. Luciano, and G. V. Pereira. "Information technology governance institutionalization and the behaviour of individuals in the context of public organizations." Information Systems Frontiers 22.6 (2020): 1487-1504 [8] ITGI, "Global Status Report on the Governance of Enterprise IT (GEIT)," IT Governance Institute, Meadows, IL, 2011. [9] D. Smits, and J. V. Hillegersberg. "Evaluation of the usability of a new ITG instrument to measure hard and soft governance maturity." International journal of information systems and project management 7.2 (2019): 37-58. [10] I. Aguilar-Alonso, E. T. Caro, J. Carrillo Verdún and N. A. Barra García, "Factors Influencing the Implementation of IT Governance in Public Universities," 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), 2020, pp. 89-94, doi: 10.1109/ICACCCN51052.2020.9362790. [11] H. Waheed, H. Hussin and M. R. Mohamed Jalaldeen, "The Influence of IT Leaders' Leadership Behaviour on IT Governance Performance in Higher Education: A Literature Review," 2018 International Conference on Information and Communication Technology for the Muslim World (ICT4M), 2018, pp. 254-259, doi: 10.1109/ICT4M.2018.00054. [12] C. L. Rodriguez, E. H. Diniz, and F. Ferrer, "Governmental Influence and institutional strategies of innovation diffusion in emerging economies [Influência governamental e estratégias institucionais na difusão de inovações em economias emergentes] ". RAE Revista de Administracao de Empresas, (2007). [13] E. M. Luciano, et al. "Information technology governance adoption: Understanding its expectations through the lens of organizational citizenship." International Journal of IT/Business Alignment and Governance (IJITBAG) 7.2 (2016): 22-32. [14] H. Shaad. "A proposed instrument for assessing organizational citizenship behaviour in BFSI companies in India." Cogent Business & Management 6.1 (2019): 1625702. [15] N. Cem-Ersoy, N., Derous, E., Born, M., & Van Der Molen, H. "Antecedents of organizational citizenship behaviour among Turkish white-collar employees in the Netherlands and Turkey. " International Journal of Intercultural Relations, 49(1), 68–79. doi:10.1016/j.ijintrel.2015.06.010 (2015) [16] A. Rego, and M. P. Cunha. "Organizational justice and citizenship behaviours: A study in the portuguese cultural context. Applied Psychology. " 59, 404–430. https://doi.org/10.1111/j.1464- 0597.2009.00405.x. (2010). [17] D. W. Organ, D. W. "Organizational citizenship behaviour: the good soldier syndrome. " Lexington, MA: Lexington Books. (1988). [18] M. R. Barrick, And M. K. Mount, "The Big Five Personality Dimensions And Job Performance: A Meta-Analysis". Personnel Psychology, 44: 1-26. h, (1991) [19] G. Majid, et al. "Issues in Malaysian higher education: A quantitative representation of the top five priorities, values, challenges, and solutions from the viewpoints of academic leaders." SAGE Open 8.1 (2018): 2158244018755839. [20] G. Ali. "A Review of Successful Construction Project Managers' Competencies and Leadership Profile." Journal of Rehabilitation in Civil Engineering 11.1 (2023): 76-95. [21] J. K. Hemphill, "Development of the leader behaviour description questionnaire." Leader behaviour; its description and measurements (1957). [22] Y. Gary, "Leadership in organizations", 8 Edition, Boston: Perason,2012. [23] N.A.A. Hamid et al., "The Role of Information Technology Human Capability in the Implementation of Information Technology Governance (ITG): A Systematic Literature Review on Malaysian Organizations", Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 314-322 (2019).
(1)
1. Al Hakim RR, Ariyanto E, Arief YZ, Sungkowo A, Trikolas T (2022) Preliminary study of juridical aspects of renewable energy draft law in Indonesia: an academic perspectives. ADLIYA J Huk dan Kemanus 16(1):59–72. https://doi.org/10.15575/adliya.v16i1.14063 2. Al Hakim RR (2020) Model Energi Indonesia, Tinjauan Potensi Energi Terbarukan untuk Ketahanan Energi di Indonesia: Sebuah Ulasan. ANDASIH J Pengabdi Kpd Masy 1(1):11–21 [Online]. Available: http://www.jurnal.umitra.ac.id/index.php/ANDASIH/article/view/374 3. Mali B, Shrestha A, Chapagain A, Bishwokarma R, Kumar P, Gonzalez-Longatt F (2022) Challenges in the penetration of electric vehicles in developing countries with a focus on Nepal. Renew Energy Focus 40:1–12. https://doi.org/10.1016/J.REF.2021.11.003 4. Roca-Puigròs M, Marmy C, Wäger P, Müller DB (2023) Modeling the transition toward a zero emission car fleet: integrating electrification, shared mobility, and automation. Transp Res Part D Transp Environ 115:103576. https://doi.org/10.1016/J.TRD.2022.103576 5. Tromaras A, Aggelakakis A, Margaritis D (2017) Car dealerships and their role in electric vehicles’ market penetration—a Greek market case study. Transp Res Procedia 24:259–266. https://doi.org/10.1016/J.TRPRO.2017.05.116 6. Lebrouhi BE, Khattari Y, Lamrani B, Maaroufi M, Zeraouli Y, Kousksou T (2021) Key challenges for a large-scale development of battery electric vehicles: a comprehensive review. J Energy Storage 44(Part B):103273. https://doi.org/10.1016/J.EST.2021.103273 7. Danielis R, Rotaris L, Giansoldati M, Scorrano M (2020) Drivers’ preferences for electric cars in Italy. Evidence from a country with limited but growing electric car uptake. Transp Res Part A Policy Pract 137:79–94. https://doi.org/10.1016/J.TRA.2020.04.004 8. Kowalska-Pyzalska A, Michalski R, Kott M, Skowro´nska-Szmer A, Kott J (2022) Consumer preferences towards alternative fuel vehicles. Results from the conjoint analysis. Renew Sustain Energy Rev 155:111776. https://doi.org/10.1016/J.RSER.2021.111776 9. Matthews L, Lynes J, Riemer M, Del Matto T, Cloet N (2017) Do we have a car for you? Encouraging the uptake of electric vehicles at point of sale. Energy Policy 100:79–88. https:// doi.org/10.1016/J.ENPOL.2016.10.001 10. Scorrano M, Danielis R (2022) Simulating electric vehicle uptake in Italy in the small-tomedium car segment: a system dynamics/agent-based model parametrized with discrete choice data. Res Transp Bus Manag 43:100736. https://doi.org/10.1016/J.RTBM.2021.100736 11. Inci E, Tatar Taspinar Z, Ulengin B (2022) A choice experiment on preferences for electric and hybrid cars in Istanbul. Transp Res Part D Transp Environ 107:103295. https://doi.org/10. 1016/J.TRD.2022.103295 12. de Oliveira MB, da Silva HMR, Jugend D, Fiorini PDC, Paro CE (2022) Factors influencing the intention to use electric cars in Brazil. Transp Res Part A Policy Pract 155:418–433. https:// doi.org/10.1016/J.TRA.2021.11.018 13. Wicki M, Brückmann G, Bernauer T (2022) How to accelerate the uptake of electric cars? Insights from a choice experiment. J Clean Prod 355:131774. https://doi.org/10.1016/J.JCL EPRO.2022.131774 14. Goetzel N, Hasanuzzaman M (2022) An empirical analysis of electric vehicle cost trends: a case study in Germany. Res Transp Bus Manag 43:100825. https://doi.org/10.1016/J.RTBM. 2022.100825 15. Gönül Ö, Duman AC, Güler Ö (2021) Electric vehicles and charging infrastructure in Turkey: an overview. Renew Sustain Energy Rev 143:110913. https://doi.org/10.1016/J.RSER.2021. 110913 16. Wen W, Yang S, Zhou P, Gao SZ (2021) Impacts of COVID-19 on the electric vehicle industry: evidence from China. Renew Sustain Energy Rev 144:111024. https://doi.org/10.1016/J.RSER. 2021.111024 17. Mastoi MS et al (2022) An in-depth analysis of electric vehicle charging station infrastructure, policy implications, and future trends. Energy Rep 8:11504–11529. https://doi.org/10.1016/J. EGYR.2022.09.011 18. Mohideen MM et al (2023) Techno-economic analysis of different shades of renewable and non-renewable energy-based hydrogen for fuel cell electric vehicles. Renew Sustain Energy Rev 174:113153. https://doi.org/10.1016/J.RSER.2023.113153 19. Lemme RFF, Arruda EF, Bahiense L (2019) Optimization model to assess electric vehicles as an alternative for fleet composition in station-based car sharing systems. Transp Res Part D Transp Environ 67:173–196. https://doi.org/10.1016/J.TRD.2018.11.008 20. Dewi RG, Siagian UWR, Asmara B, Anggraini SD, Ichihara J, Kobashi T (2023) Equitable, affordable, and deep decarbonization pathways for low-latitude developing cities by rooftop photovoltaics integrated with electric vehicles. Appl Energy 332:120507. https://doi.org/10. 1016/J.APENERGY.2022.120507 21. Li Y, Taghizadeh-Hesary F (2022) The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China. Energy Policy 160:112703. https://doi.org/10. 1016/J.ENPOL.2021.112703 22. Prencipe LP, Theresia van Essen J, Caggiani L, Ottomanelli M, Homem de Almeida Correia G (2022) A mathematical programming model for optimal fleet management of electric carsharing systems with vehicle-to-grid operations. J Clean Prod 368:33147. https://doi.org/10. 1016/J.JCLEPRO.2022.133147 23. Caggiani L, Prencipe LP, Ottomanelli M (2021) A static relocation strategy for electric carsharing systems in a vehicle-to-grid framework. Transp Lett 13(3):219–228. https://doi.org/10. 1080/19427867.2020.1861501 24. Krishnan R, Butt B (2022) “The gasoline of the future:” points of continuity, energy materiality, and corporate marketing of electric vehicles among automakers and utilities. Energy Res Soc Sci 83:102349. https://doi.org/10.1016/J.ERSS.2021.102349 25. Kannchen M (2021) Using the PVM-VSI (Preference Vector Method-Vector Space of Increments) method in supporting the decision related to the purchase of an electric family car. Procedia Comput Sci 192:2199–2209. https://doi.org/10.1016/J.PROCS.2021.08.233 26. Hu JW, Javaid A, Creutzig F (2021) Leverage points for accelerating adoption of shared electric cars: perceived benefits and environmental impact of NEVs. Energy Policy 155:112349. https:// doi.org/10.1016/J.ENPOL.2021.112349 27. Vivanco DF, Nechifor V, Freire-González J, Calzadilla A (2021) Economy-wide rebound makes UK’s electric car subsidy fall short of expectations. Appl Energy 297:117138. https://doi.org/ 10.1016/J.APENERGY.2021.117138 28. Stauch A (2021) Does solar power add value to electric vehicles? An investigation of car-buyers’ willingness to buy product-bundles in Germany. Energy Res Soc Sci 75:102006. https://doi. org/10.1016/J.ERSS.2021.102006 29. Corradi C, Sica E, Morone P (2023) What drives electric vehicle adoption? Insights from a systematic review on European transport actors and behaviours. Energy Res Soc Sci 95:102908. https://doi.org/10.1016/J.ERSS.2022.102908 30. Shafiei E, Dauphin R, Yugo M (2022) Optimal electrification level of passenger cars in Europe in a battery-constrained future. Transp Res Part D Transp Environ 102:103132. https://doi.org/ 10.1016/J.TRD.2021.103132 31. Danielis R, Giansoldati M, Rotaris L (2018) A probabilistic total cost of ownership model to evaluate the current and future prospects of electric cars uptake in Italy. Energy Policy 119:268–281. https://doi.org/10.1016/J.ENPOL.2018.04.024 32. Deuten S, Vilchez JJG, Thiel C (2020) Analysis and testing of electric car incentive scenarios in the Netherlands and Norway. Technol Forecast Soc Change 151:119847. https://doi.org/10. 1016/J.TECHFORE.2019.119847 33. Du J, Meng X, Li J, Wu X, Song Z, Ouyang M (2018) Insights into the characteristics of technologies and industrialization for plug-in electric cars in China. Energy 164:910–924. https://doi.org/10.1016/J.ENERGY.2018.09.060
(1)
[1]Alifiarry, Muhammad Ananda, and Bevaola Kusumasari. "The application of social movement as a form of digital advocacy: Case of# TolakRUUPermusikan."Journal of Government and Civil Society5, no. 1 (2021): 1-30.https://doi.org/10.31000/jgcs.v5i1.2991[2]Korir, Geoffrey. "Important pillars in delivery of mass campaign messages to a target audience through earned media."African Social Science and Humanities Journal3, no. 1 (2022): 53-56.https://doi.org/10.57040/asshj.v3i1.113[3]Gada, Vrushabh, Madhura Shegaonkar, Madhura Inamdar, Sharath Dinesh, Darshan Sapariya, Vedant Konde, Mahesh Warang, and Ninad Mehendale. "Data analysis of COVID-19 hospital records using contextual patient classification system."Annals of Data Science9, no. 5 (2022): 945-965.https://doi.org/10.1007/s40745-022-00378-9[4]Ghazal, Mai Monir, and Ahmed Hammad. "Application of knowledge discovery in database (KDD) techniques in cost overrun of construction projects."International Journal of Construction Management22, no. 9 (2022): 1632-1646.https://doi.org/10.1080/15623599.2020.1738205[5]Lund, K. “#MakeSchoolASaferPlace Trends After Malaysian Student Exposes Rape Culture Among Students & Lecturers.” (2020). https://juiceonline.com/makeschoolasaferplace-trends-after-msian-teen-exposes-rape-culture-among-students-teachers[6]Martínez-Plumed, Fernando, Lidia Contreras-Ochando, Cesar Ferri, José Hernández-Orallo, Meelis Kull, Nicolas Lachiche, María José Ramírez-Quintana, and Peter Flach. "CRISP-DM twenty years later: From data mining processes to data science trajectories."IEEE transactions on knowledge and data engineering33, no. 8 (2019): 3048-3061.https://doi.org/10.1109/TKDE.2019.2962680[7]Messaoudi, Chaima, Zahia Guessoum, and Lotfi Ben Romdhane. "Opinion mining in online social media: a survey."Social Network Analysis and Mining12, no. 1 (2022): 25.https://doi.org/10.1007/s13278-021-00855-8[8]Patel, Ravikumar, and Kalpdrum Passi. "Sentiment analysis on twitter data of world cup soccer tournament using machine learning."IoT1, no. 2 (2020): 14.https://doi.org/10.3390/iot1020014[9]Crisp-DM. “The CRISP-DM process model.” http://www.crisp-dm.org[10]Wirth, Rüdiger, and Jochen Hipp. "CRISP-DM: Towards a standard process model for data mining." InProceedings of the 4th international conference on the practical applications of knowledge discovery and data mining, vol. 1, pp. 29-39. 2000.[11]Istia, Sean Semuel, and Hindriyanto Dwi Purnomo. "Sentiment analysis of law enforcement performance using support vector machine and K-nearest neighbor." In2018 3rd International Conference on Information Technology, Information System and Electrical Engineering (ICITISEE), pp. 84-89. IEEE, 2018.https://doi.org/10.1109/ICITISEE.2018.8720969[12]Kabir, Ahmed Imran, Ridoan Karim, Shah Newaz, and Muhammad Istiaque Hossain. "The Power of Social Media Analytics: Text Analytics Based on Sentiment Analysis and Word Clouds on R."Informatica Economica22, no. 1 (2018).https://doi.org/10.12948/issn14531305/22.1.2018.03[13]Kang, H. J., & Sung, Y. “The influence of geolocation on Twitter data analysis: A case study of political communication research.” The Korean Journal of International Relations, Vol 59(2), (2019): 111-134.[14]Ridhwan, Khairiyah Mohamed, and Carol Anne Hargreaves. "Leveraging Twitter data to understand public sentiment for the COVID-19 outbreak in Singapore."International Journal of Information Management Data Insights1, no. 2 (2021): 100021.https://doi.org/10.1016/j.jjimei.2021.100021[15]Nikmah, Tiara Lailatul, Muhammad Zhafran Ammar, Yusuf Ridwan Allatif, Rizki Mahjati Prie Husna, Putu Ayu Kurniasari, and Andi Syamsul Bahri. "Comparison of LSTM, SVM, and naive bayes for classifying sexual harassment tweets."Journal of Soft Computing Exploration3, no. 2 (2022): 131-137.https://doi.org/10.52465/joscex.v3i2.85 16]Prashanth, Duddela Sai, R. Vasanth Kumar Mehta, and Nisha Sharma. "Classification of handwritten Devanagari number–an analysis of pattern recognition tool using neural network and CNN."Procedia Computer Science167 (2020): 2445-2457.https://doi.org/10.1016/j.procs.2020.03.297[17]Rathi, Megha, Aditya Malik, Daksh Varshney, Rachita Sharma, and Sarthak Mendiratta. "Sentiment analysis of tweets using machine learning approach." In2018 Eleventh international conference on contemporary computing (IC3), pp. 1-3. IEEE, 2018.https://doi.org/10.1109/IC3.2018.8530517[18]Sabaruddin, Ramadani Anwar, and Suhaila Saee. "Malay tweets: discovering mental health situation during covid-19 pandemic in Malaysia." In2021 IEEE 19th Student Conference on Research and Development (SCOReD), pp. 58-63. IEEE, 2021.https://doi.org/10.1109/SCOReD53546.2021.9652759[19]Sahir, Syafrida Hafni, Raden Sri Ayu Ramadhana, Muhammad Fauzi Romadhon Marpaung, Shabrina Rasyid Munthe, and Ronal Watrianthos. "Online learning sentiment analysis during the covid-19 Indonesia pandemic using twitter data." InIOP Conference Series: Materials Science and Engineering, vol. 1156, no. 1, p. 012011. IOP Publishing, 2021.https://doi.org/10.1088/1757-899X/1156/1/012011[20]Salsabila, Unik Hanifah, Anggi Pratiwi, Yazida Ichsan, and Difa'ul Husna. "Sentiment Analysis of Religious Moderation in Virtual Public Spaces during the Covid-19 Pandemic."Tadris: Jurnal Keguruan Dan Ilmu Tarbiyah6, no. 1 (2021): 41-52.https://doi.org/10.24042/tadris.v6i1.8839[21]Pratiwi, Santi, and Nataly Juerges. "Digital advocacy at the science-policy interface: Resolving land-use conflicts in conservation forests."Land Use Policy121 (2022): 106310.https://doi.org/10.1016/j.landusepol.2022.106310[22]Siahaan, Timothy Pieter Christian, and Nurhadi Susanto. "Digital Advocacy for Punitive Justice and Vigilantism: Analyzing Citizen Dissatisfaction with the Klitih Prevention Policy."Policy & Governance Review7, no. 1 (2023): 21-37.https://doi.org/10.30589/pgr.v7i1.628[23]Chaudhry, Hassan Nazeer, Yasir Javed, Farzana Kulsoom, Zahid Mehmood, Zafar Iqbal Khan, Umar Shoaib, and Sadaf Hussain Janjua. "Sentiment analysis of before and after elections: Twitter data of US election 2020."Electronics10, no. 17 (2021): 2082. https://doi.org/10.3390/electronics10172082[24]Patel, Ravikumar, and Kalpdrum Passi. "Sentiment analysis on twitter data of world cup soccer tournament using machine learning."IoT1, no. 2 (2020): 14. https://doi.org/10.3390/iot1020014[25]Rathi, Megha, Aditya Malik, Daksh Varshney, Rachita Sharma, and Sarthak Mendiratta. "Sentiment analysis of tweets using machine learning approach." In2018 Eleventh international conference on contemporary computing (IC3), pp. 1-3. IEEE, 2018. https://doi.org/10.1109/IC3.2018.8530517[26]Ghani, Miharaini Md, Mohd Nizam Osman, Siti Zobidah Omar, Siti Ramizah Khairunnisa Mohd Radzi, Wan Azani Mustafa, and Annisa Mardatillah. "Current Approaches of Artificial Intelligence (AI) in Leading Behavioural Change: The Latest Review."Journal of Advanced Research in Applied Sciences and Engineering Technology35, no. 1 (2024): 143-155. https://doi.org/10.37934/araset.34.3.143155
(1)
1. Ali, I.; Peng, C.; Khan, Z.M.; Naz, I.; Sultan, M.; Ali, M.; Abbasi, I.A.; Islam, T.; Ye, T. Overview of microbes based fabricated biogenic nanoparticles for water and wastewater treatment. Journal Environmental Management 2019, 230, 128-150, https://doi.org/10.1016/j.jenvman.2018.09.073. 2. Zhu, L.; Li, H.; Xia, P.; Liu, Z.; Xiong, D. Hierarchical ZnO Decorated with CeO2 Nanoparticles as the Direct Z-Scheme Heterojunction for Enhanced Photocatalytic Activity. ACS Applied Materials & Interfaces 2018, 10, 39679-39687, https://doi.org/10.1021/acsami.8b13782. 3. Hoang Thi, T.T.; Cao, V.D.; Nguyen, T.N.Q.; Hoang, D.T.; Ngo, V.C.; Nguyen, D.H. Functionalized mesoporous silica nanoparticles and biomedical applications. Materials Science and Engineering: C 2019, 99, 631-656, https://doi.org/10.1016/j.msec.2019.01.129. 4. Pang, W.Y.; Ahmad, A.L.; Zaulkiflee, N.D. Antifouling and antibacterial evaluation of ZnO/MWCNT dual nanofiller polyethersulfone mixed matrix membrane. Journal Environmental Management 2019, 249, 109358, https://doi.org/10.1016/j.jenvman.2019.109358. 5. Besha, A.T.; Liu, Y.; Bekele, D.N.; Dong, Z.; Naidu, R.; Gebremariam, G.N. Sustainability and environmental ethics for the application of engineered nanoparticles. Environmental Science & Policy 2020, 103, 85-98, https://doi.org/10.1016/j.envsci.2019.10.013. 6. Yu, J.; Jiang, C.; Guan, Q.; Ning, P.; Gu, J.; Chen, Q.; Zhang, J.; Miao, R. Enhanced removal of Cr(VI) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth. Chemosphere 2018, 195, 632-640, https://doi.org/10.1016/j.chemosphere.2017.12.12. 7. Danielsson, K.; Gallego-Urrea, J.A.; Hassellov, M.; Gustafsson, S.; Jonsson, C.M. Influence of organic molecules on the aggregation of TiO2 nanoparticles in acidic conditions. Journal of Nanoparticle Research 2017, 19, 133, http://doi.org/10.1007/s11051-017-3807-9. 8. Arenas-Lago, D.; Monikh, F.A.; Vijver, M.G.; Peijnenburg, W.J. Dissolution and aggregation kinetics of zero valent copper nanoparticles in (simulated) natural surface waters: Simultaneous effects of pH, NOM and ionic strength. Chemosphere 2019, 226, 841-850, https://doi.org/10.1016/j.chemosphere.2019.03.190. 9. Najim, N.; Rusdi, R.; Hamzah, A.S.; Shaameri, Z.; Mat Zain, M.; Kamarulzaman, N. Effects of the absorption behaviour of ZnO nanoparticles on cytotoxicity measurements. Journal of Nanomaterials 2014, 2014, http://doi.org/10.1155/2014/694737. 10. Carbery, M.; O’Connor, W.; Palanisami, T. Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environment International 2018, 115, 400-409, https://doi.org/10.1016/j.envint.2018.03.007. 11. Jia, H.-R.; Zhu, Y.-X.; Duan, Q.-Y.; Chen, Z.; Wu, F.-G. Nanomaterials meet zebrafish: Toxicity evaluation and drug delivery applications. Journal Controlled Release 2019, 311-312, 301-318, https://doi.org/10.1016/j.jconrel.2019.08.022. 12. Dekkers, S.; Ma-Hock, L.; Lynch, I.; Russ, M.; Miller, M.R.; Schins, R.P.F.; Keller, J.; Römer, I.; Küttler, K.; Strauss, V.; De Jong, W.H.; Landsiedel, R.; Cassee, F.R. Differences in the toxicity of cerium dioxide nanomaterials after inhalation can be explained by lung deposition, animal species and nanoforms. Inhalation Toxicology. 2018, 30, 273-286, https://doi.org/10.1080/08958378.2018.1516834. 13. Oliveira, A.G.; Andrade, J.d.L.; Montanha, M.C.; Lima, S.M.; Andrade, L.H.d.C.; Winkler Hechenleitner, A.A.; Pineda, E.A.G.; Oliveira, D.M.F.d. Decontamination and disinfection of wastewater by photocatalysis under UV/visible light using nano-catalysts based on Ca-doped ZnO. Journal of Environmental Management 2019, 240, 485-493, https://doi.org/10.1016/j.jenvman.2019.03.124. 14. Liu, Z.; Wang, C.; Hou, J.; Wang, P.; Miao, L.; Lv, B.; Yang, Y.; You, G.; Xu, Y.; Zhang, M.; Ci, H. Aggregation, sedimentation, and dissolution of CuO and ZnO nanoparticles in five waters. Environmental Science and Pollution Research 2018, 25, 31240-31249, https://doi.org/10.1007/s11356-018-3123-7. 15. Sengul, A.B.; Asmatulu, E. Toxicity of metal and metal oxide nanoparticles: a review. Environmental Chemistry Letters 2020, 18, 1659–1683, https://doi.org/10.1007/s10311-020-01033-6. 16. Wahab, R.; Khan, F.; Lutfullah; Singh, R.B.; Kaushik, N.K.; Ahmad, J.; Siddiqui, M.A.; Saquib, Q.; Ali, B.A.; Khan, S.T.; Musarrat, J.; Al-Khedhairy, A.A. Utilization of photocatalytic ZnO nanoparticles for deactivation of safranine dye and their applications for statistical analysis. Physica E: Low-dimensional Systems and Nanostructures 2015, 69, 101-108, https://doi.org/10.1016/j.physe.2015.01.005. 17. Jiang, J.; Pi, J.; Cai, J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorganic Chemistry & Applications 2018, 2018, https://doi.org/10.1155/2018/1062562. 18. Wahab, R.; Khan, F.; Mishra, Y.K.; Musarrat, J.; Al-Khedhairy, A.A. Antibacterial studies and statistical design set data of quasi zinc oxide nanostructures. RSC Advances 2016, 6, 32328-32339, https://doi.org/10.1039/C6RA05297E. 19. Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Letters 2015, 7, 219-242, https://doi.org/10.1007/s40820-0150040-x. 20. Areerachakul, N.; Sakulkhaemaruethai, S.; Johir, M. A. H.; Kandasamy, J.; Vigneswaran, S. Photocatalytic degradation of organic pollutants from wastewater using aluminium doped titanium dioxide. Journal of Water Process Engineering 2019, 27, 177-184, https://doi.org/10.1016/j.jwpe.2018.12.006. 21. Birben, N.C.; Paganini, M.C.; Calza, P.; Bekbolet, M. Photocatalytic degradation of humic acid using a novel photocatalyst: Ce-doped ZnO. Photochemical & Photobiological Sciences 2017, 16, 24-30, https://doi.org/10.1039/C6PP00216A. 22. Bel Hadjltaief, H.; Ben Zina, M.; Galvez, M.E.; Da Costa, P. Photocatalytic degradation of methyl green dye in aqueous solution over natural clay-supported ZnO–TiO2 catalysts. Journal of Photochemistry & Photobiology A: Chemistry 2016, 315, 25-33, https://doi.org/10.1016/j.jphotochem.2015.09.008. 23. Philippe, A.; Schaumann, G.E. Interactions of Dissolved Organic Matter with Natural and Engineered Inorganic Colloids: A Review. Environmental Science & Technology 2014, 48, 8946-8962, http://doi.org/10.1021/es502342r. 24. Dziedzic, J.; Wodka, D.; Nowak, P.; Warszyński, P.; Simon, C.; Kumakiri, I. Photocatalytic degradation of the humic species as a method of their removal from water - comparison of UV and artificial sunlight irradiation. Physicochemical Problems of Mineral Processing 2010, 45(1), 15-28. 25. Ghaneian, M.T.; Morovati, P.; Ehrampoush, M.H.; Tabatabaee, M. Humic acid degradation by the synthesized flower-like Ag/ZnO nanostructure as an efficient photocatalyst. Journal of Environmental Health Science and Engineering 2014, 12, 138, http://doi.org/10.1186/s40201-014-0138-y. 26. Tang, W.-W.; Zeng, G.-M.; Gong, J.-L.; Liang, J.; Xu, P.; Zhang, C.; Huang, B.-B. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review. Science of the Total Environment 2014, 468-469, 1014-1027, http://dx.doi.org/10.1016/j.scitotenv.2013.09.044. 27. Wang, J.; Zhou, Y.; Li, A.; Xu, L. Adsorption of humic acid by bi-functional resin JN-10 and the effect of alkali-earth metal ions on the adsorption. Journal of Hazardous Materials 2010, 176, 1018-1026, https://doi.org/10.1016/j.jhazmat.2009.11.142. 28. Maiga, D.T.; Nyoni, H.; Nkambule, T.T.; Mamba, B.B.; Msagati, T.A.M. Impact of zinc oxide nanoparticles in aqueous environments: influence of concentrations, natural organic matter and ionic strength. Inorganic and Nano-Metal Chemistry 2020, 50, 680-692, https://doi.org/10.1080/24701556.2020.1724145. 29. Zhao, Y.; Zhou, W.; Wang, Y.; Gao, B.; Xu, X.; Zhao, Y. The effect of humic acid and bovine serum albumin on the adsorption and stability of ZnO nanoparticles on powdered activated carbon. Journal of Cleaner Production 2020, 251, 119695, https://doi.org/10.1016/j.jclepro.2019.119695. 30. Huang, J.; Liu, S.; Kuang, L.; Zhao, Y.; Jiang, T.; Liu, S.; Xu, X. Enhanced photocatalytic activity of quantum-dot-sensitized one-dimensionally-ordered ZnO nanorod photocatalyst. Journal of Environmental Sciences 2013, 25, 2487-2491, http://doi.org/10.1016/S1001-0742(12)60330-1. 31. Shirzad Siboni, M.; Samadi, M.T.; Yang, J.K.; Lee, S.M. Photocatalytic reduction of Cr(VI) and Ni(II) in aqueous solution by synthesized nanoparticle ZnO under ultraviolet light irradiation: a kinetic study. Environmental Technology 2011, 32, 1573-1579, http://doi.org/10.1080/09593330.201. 32. Zhou, J.; Xu, N.S.; Wang, Z.L. Dissolving Behavior and Stability of ZnO Wires in Biofluids: A Study on Biodegradability and Biocompatibility of ZnO Nanostructures. Advanced Materials 2006, 18, 2432-2435, https://doi.org/10.1002/adma.200600200. 33. Liu, W.; Li, Y.; Liu, F.; Jiang, W.; Zhang, D.; Liang, J. Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C3N4: Mechanisms, degradation pathway and DFT calculation. Water Research 2019, 151, 8-19, https://doi.org/10.1016/j.watres.2018.11.084. 34. Ma, H.; Brennan, A.; Diamond, S.A. Photocatalytic reactive oxygen species production and phototoxicity of titanium dioxide nanoparticles are dependent on the solar ultraviolet radiation spectrum. Environmental Toxicology & Chemistry 2012, 31, 2099-2107, http://doi.org/10.1002/etc.1916. 35. Bian, S.-W.; Mudunkotuwa, I.A.; Rupasinghe, T.; Grassian, V.H. Aggregation and Dissolution of 4 nm ZnO Nanoparticles in Aqueous Environments: Influence of pH, Ionic Strength, Size, and Adsorption of Humic Acid. Langmuir 2011, 27, 6059-6068, https://doi.org/10.1021/la200570n. 36. Neale, P.A.; Jämting, Å.K.; O’Malley, E.; Herrmann, J.; Escher, B.I. Behaviour of titanium dioxide and zinc oxide nanoparticles in the presence of wastewater-derived organic matter and implications for algal toxicity. Environmental Science: Nano 2015, 2, 86-93, http://doi.org/10.1039/C4EN00161C. 37. Peng, Y.-H.; Tso, C.-p.; Tsai, Y.-c.; Zhuang, C.-m.; Shih, Y.-h. The effect of electrolytes on the aggregation kinetics of three different ZnO nanoparticles in water. Science of the Total Environment 2015, 530-531, 183-190, http://doi.org/10.1016/j.scitotenv.2015.05.059, 38. Peng, Y.-H.; Tsai, Y.-C.; Hsiung, C.-E.; Lin, Y.-H.; Shih, Y.-h. Influence of water chemistry on the environmental behaviors of commercial ZnO nanoparticles in various water and wastewater samples. Journal of Hazardous Materials 2017, 322, 348-356, http://doi.org/10.1016/j.jhazmat.2016.10.003. 39. Degenkolb, L.; Kaupenjohann, M.; Klitzke, S. The Variable Fate of Ag and TiO 2 Nanoparticles in Natural Soil Solutions—Sorption of Organic Matter and Nanoparticle Stability. Water, Air, & Soil Pollution 2019, 230, 1-14, https://doi.org/10.1007/s11270-019-4123-z. 40. Velintine, V.; Siong, W.B.; Chin, S.; Kok, K.Y. Transformation of zinc oxide nanoparticles under environmentally relevant conditions: influence of pH and ionic strength. Transactions on Science and Technology 2017, 4(2), 123-136, http://tost.unise.org/pdfs/vol4/no2/4x2x123x136.pdf 41. Zhu, M.; Wang, H.; Keller, A.A.; Wang, T.; Li, F. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths. Science of the Total Environment 2014, 487, 375-380, https://doi.org/10.1016/j.scitotenv.2014.04.036. 42. Wang, Z.; Cao, M.; Cai, W.; Zeng, H. The effect of humic acid and fulvic acid on adsorption-desorption behavior of copper and zinc in the yellow soil. AIP Conference Proceedings. 2017, 1820, 040027, https://doi.org/10.1063/1.4977299. 43. Asgari, G.; Ebrahimi, A.; Mohammadi, A.; Ghanizadeh, G. The investigation of humic acid adsorption from aqueous solutions onto modified pumice with hexadecyl trimethyl ammonium bromide. International Journal of Environmental Health Engineering 2013, 2, 20-20, https://doi.org/10.4103/2277-9183.110176. 44. Javanshah, A.; Saidi, A. Determination of humic acid by spectrophotometric analysis in the soils. International Journal of Advanced Biotechnology and Research 2016, 7, 19-23. 45. Herbert, N.; Affonso Celso, G.; Marcelo Angelo, C.; Gustavo Ferreira, C.; Daniel, S.; Marcelo Gonçalves dos, S.; Dionir Luiz, B.; Juliano, Z. Adsorption of Cu (II) and Zn (II) from Water by Jatropha curcas L. as Biosorbent. Open Chemistry 2016, 14, 103-117, https://doi.org/10.1515/chem-2016-0010. 46. Şentürk, İ.; Alzein, M. Adsorption of Acid Violet 17 Onto Acid-Activated Pistachio Shell: Isotherm, Kinetic and Thermodynamic Studies. Acta Chimica Slovenica 2020, 67, 55-69, http://doi.org/10.17344/acsi.2019.5195. 47. Weber, T.W.; Chakravorti, R.K. Pore and solid diffusion models for fixed-bed adsorbers. AICHE Journal 1974, 20, 228-238, https://doi.org/10.1002/aic.690200204. 48. Desta, M.B. Batch sorption experiments: Langmuir and Freundlich isotherm studies for the adsorption of textile metal ions onto teff straw (Eragrostis tef) agricultural waste. Journal of Thermodynamics 2013, 2013, 375830, https://doi.org/10.1155/2013/375830. 49. Domingos, R.F.; Rafiei, Z.; Monteiro, C.E.; Khan, M.A.K.; Wilkinson, K.J. Agglomeration and dissolution of zinc oxide nanoparticles: role of pH, ionic strength and fulvic acid. Environmental Chemistry 2013, 10, 306-312, http://doi.org/10.1071/EN12202. 50. Dai, H.; Sun, T.; Han, T.; Guo, Z.; Wang, X.; Chen, Y. Aggregation behavior of zinc oxide nanoparticles and their biotoxicity to Daphnia magna: Influence of humic acid and sodium alginate. Environmental Research 2020, 191, 110086, https://doi.org/10.1016/j.envres.2020.110086. 51. Gasim, M.B.; Khalid, N.A.; Muhamad, H. The influence of tidal activities on water quality of Paka River Terengganu, Malaysia. Malaysian Journal of Analytical Sciences 2015, 19, 979-990, http://www.ukm.my/mjas/v19_n5/pdf/MuhammadBarzani_19_5_9.pdf 52. Dong, Y.-n.; Li, X.; Huang, Y.; Wang, H.; Li, F. Coagulation and Dissolution of Zinc Oxide Nanoparticles in the Presence of Humic Acid Under Different pH Values. Environmental Engineering Science 2016, 33, 347-353, http://doi.org/10.1089/ees.2015.0396. 53. Wang, X.; Sun, T.; Zhu, H.; Han, T.; Wang, J.; Dai, H. Roles of pH, cation valence, and ionic strength in the stability and aggregation behavior of zinc oxide nanoparticles. Journal of Environmental Management. 2020, 267, 110656, https://doi.org/10.1016/j.jenvman.2020.110656. 54. Singh, R.; Dutta, S. The role of pH and nitrate concentration in the wet chemical growth of nano-rods shaped ZnO photocatalyst. Nano-Structures & Nano-Objects 2019, 18, 100250, https://doi.org/10.1016/j.nanoso.2019.01.009. 55. Han, J.; Qiu, W.; Gao, W. Potential dissolution and photo-dissolution of ZnO thin films. Journal of Hazardous Materials 2010, 178, 115-122, http://doi.org/10.1016/j.jhazmat.2010.01.050. 56. Han, Y.; Kim, D.; Hwang, G.; Lee, B.; Eom, I.; Kim, P.J.; Tong, M.; Kim, H. Aggregation and dissolution of ZnO nanoparticles synthesized by different methods: Influence of ionic strength and humic acid. Colloids and Surfaces: Physicochemical Engineering Aspects 2014, 451, 7-15, http://doi.org/10.1016/j.colsurfa.2014.03.030. 57. Oskoei, V.; Dehghani, M.H.; Nazmara, S.; Heibati, B.; Asif, M.; Tyagi, I.; Agarwal, S.; Gupta, V.K. Removal of humic acid from aqueous solution using UV/ZnO nano-photocatalysis and adsorption. Journal of Molecular Liquids 2016, 213, 374-380, http://dx.doi.org/10.1016/j.molliq.2015.07.052. 58. Khan, R.; Inam, M.A.; Park, D.R.; Zam Zam, S.; Shin, S.; Khan, S.; Akram, M.; Yeom, I.T. Influence of Organic Ligands on the Colloidal Stability and Removal of ZnO Nanoparticles from Synthetic Waters by Coagulation. Processes 2018, 6, 170, http://dx.doi.org/10.3390/pr6090170. 59. Mekonnen, E.; Yitbarek, M.; Soreta, T.R. Kinetic and thermodynamic studies of the adsorption of Cr(VI) onto some selected local adsorbents. South African Journal of Chemistry 2015, 68, 45-52, http://doi.org/10.17159/0379-4350/2015/v68a7. 60. Odzak, N.; Kistler, D.; Sigg, L. Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments. Environmental Pollution 2017, 226, 1-11, http://doi.org/10.1016/j.envpol.2017.04.006. 61. Li, M.; Lin, D.; Zhu, L. Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environmental Pollution 2013, 173, 97-102, http://doi.org/10.1016/j.envpol.2012.10.026. 62. Pansamut, G.; Charinpanitkul, T.; Suriyawong, A. Removal of humic acid by photocatalytic process: effect of light intensity. Engineering Journal 2013, 17, 25-32, http://doi.org/10.4186/ej.2013.17.3.25. 63. Goodhead, R.M.; Johnston, B.D.; Cole, P.A.; Baalousha, M.; Hodgson, D.; Iguchi, T.; Lead, J.R.; Tyler, C.R. Does natural organic matter increase the bioavailability of cerium dioxide nanoparticles to fish? Environmental Chemistry 2015, 12, 673-682, http://doi.org/10.1071/EN15003.
(1)
1. Alim, F. L. (2023). The conservation experience of Mudbrick Archaeological Monuments in the framework of the creation of the archaeological park on the example of Kultobe settlement. Arkheologiia Evraziiskikh Stepei, 1, 156-169. https://Doi. Org/10.24852/2587-6112.2023. 1.156.169 2. Baird-Naysmith. L. (2018). Archaeological heritage management at the memphis and its Necropolis World Heritage Site, conservation and management of archaeological sites. http://doi.org/10.1080 /13505033.2018.1434378 3. CONSERVATION AND MANAGEMENT PLAN 19 Journal of Sustainability Science and Management Volume 19 Number 7, July 2024: 1-22 4. Barker, G., et al. (2000). The Niah Project: Preliminary report on the first (2000) season. Sarawak Museum Journal, LV(76), 111-149. 5. Barker, G., et al. (2001). The Niah Caves Projects: The second (2001) season of fieldwork. Sarawak Museum Journal, LVI(77), 37-119. 6. Barker, G., et al. (2002). The Niah Caves Projects: The third (2002) season of fieldwork. Sarawak Museum Journal, LVII(78), 87-177. 7. Barker, G., et al. (2003). The Niah Caves Projects: The fourth (2003) season of fieldwork. Sarawak Museum Journal, LVIII(79), 45-119. 8. Barker, G. (Ed.) (2013). Rainforest foraging and farming in Island Southeast Asia. The archaeology of the Niah Caves, Sarawak. Cambridge: McDonald Institute for Archaeological Research. 9. Barker, G., & Farr, L. (Eds). (2016). Archaeological investigations in the Niah Caves, Sarawak: The archaeology of the Niah Caves, Sarawak. Cambridge: McDonald Institute for Archaeological Research. 10. Brothwell, D. R. (1960). Upper Pleistocene human skull from Niah Caves. Sarawak, Sarawak Museum Journal, IX(15), 323- 346. 11. Bujeng, V., & Chia, S. (2012). Bone and shell artifacts from Bukit Sarang, Bintulu and Gua Kain Hitam B, Niah, Sarawak. In M. 11. L. Tjoa-Bonatz, A. Reinecke & D. Bonatz (Eds.), Crossing border: Selected papers from the 13th International Conference of the European Association of Southeast Asian Archaeologists (pp. 35-52). Singapore: NUS Press. 12. Bushozi, P. M. (2022). Sustainable management and conservation of heritage assets: A case study of the Lake Eyasi Basin, Northern Tanzania. African Archaeological Review, 39(3), 303-314. https://doi.org/10.1007/s10 437-022-09489-3 13. Chia, S., & Datan, I. (2002). Preliminary report on archaeological survey and excavations at Bukit Sarang Caves, Ulu Kakus Sarawak. Sarawak Museum Journal, LVIII(79), 121- 140. 14. Chia, S. (2018). A history of archaeology in Malaysia. In J. Habu, P. V. Lape & J. W. Olsen (Eds.), Handbook of East and Southeast Asian archaeology (pp. 125- 141). New York: Springer. 15. Curnoe, D., et al. (2016). Deep skull from Niah Cave and the Pleistocene peopling of Southeast Asia. Front. Ecol. Evol., 4, 75. doi: 10.3389/fevo.2016.00075. 16. Curnoe, D., et al. (2017). Archaeological investigations at Trader’s Cave, Niah National Park: Report on the first (2017) field season. Sarawak Museum Journal, 78(99), 119-137. 17. Curnoe, D., et al. (2018). Rare Late Pleistoceneearly Holocene human mandibles from the Niah Caves (Sarawak, Borneo). PLoS ONE, 13(6), e0196633. https://doi.org/10.1371/ journal.pone.0196633. 18. Curnoe, D., et al. (2021). Further analyses of the Deep Skull femur from Niah Caves, Malaysia. Journal of Human Evolution, 161, 103089. https://doi.org/https://doi.org/ 10.1016/j.jhevol.2021.103089 19. Demas, M. (2000). Planning for conservation and management of archaeological sites: A values-based approach. In Management planning for archaeological sites. Greece: Getty Conservation Institute. 20. Donna Lee Abdullah, Q., & Abdul Hamid, S. (2018). Public-Private Partnership (PPP) in managing arts, cultural and tourism sector. In Journal of Tourism, Hospitality & Culinary Arts (JTHCA) 2018 (Vol. 10, Issue 1). 21. Faggi, A., Bartolini-Lucenti, S., & Rook, L. (2023). Assessing the scientific value and vulnerability of paleontological sites: A new 22. Gallou, E., & Fouseki, K. (2019). Applying Social Impact Assessment (SIA) Principles in assessing contribution of cultural heritage to social sustainability in rural landscapes. Journal of Cultural Heritage Management and Sustainable Development, 9(3), 352-375. https://doi.org/10.1108/ JCHMSD-05-2018-0037. 23. Goh, H. M. (2014). Cave archaeology of the Lenggong Valley, Malaysia: A heritage management perspective (Unpublished doctoral dissertation). Flinders University, Australia. 24. Harrisson, B. (1967). A classification of stone age burials from Niah Great Cave, Sarawak. Sarawak Museum Journal, XV(30-31), 126- 200. 25. Harrisson, B. (1965). Upi-using – A late burial cave at Niah. Sarawak Museum Journal, XII(25-26), 83-116. 26. Harrisson, B. (1968). A Niah Stone Age JarBurial, C-14 Dates. Sarawak Museum Journal, XVI(32), 64-66. 27. Harrisson, B., & Harrisson, T. (1968). Magala - A series of neolithic and metal age burial grottos at Sekaloh, Niah, Sarawak. Journal of the Malaysian Branch of the Royal Asiatic Society, 41, 148-175. 28. Harrisson, T. (1958). The Great Cave Sarawak: A ship-of-the-dead cult and related rock paintings. The Archaeological News Letter, 6, 199-204. 29. Harrisson, T. (1958). The Cave of Niah: A history of prehistory. Sarawak Museum Journal, V111(12), 549-595. 30. Harrisson, T. (1966). Lobang Angus, a frequentation cave at Niah. Sarawak Museum Journal, 13, 136-138. 31. Harrisson, T. (1967). Niah Caves: Progress report to 1967. Sarawak Museum Journal, XV(30-31), 95-97. 32. Harrisson, T. (1970). The prehistory of Borneo. Asian Perspectives, 13, 17-45. http://www. jstor.org/stable/42929091. 33. Harrisson, T., & Medway, L. (1967). A first classification of prehistory bone and tooth artifacts (based on material from Niah Great Caves). Sarawak Museum Journal, XV(30), 335-362. 34. Hazelbroek, H., & Morshidi, A. (2000). National parks of Sarawak. Kota Kinabalu: Natural History Publication (Borneo). 35. Hoerman, R. B. (2016). Utilizing rock art to trace human migration: Case studies from Sarawak, Malaysian Borneo. (Unpublished Ph.D thesis). University of Hawaii-Manoa. 36. Hubbard, P. (2018). The Rock Art of the Matobo Hills World Heritage Area, Zimbabwe: Management and use, c 1800 to 201. Conservation and Management of Archaeological Sites. doi: 10.1080/13505033.2018.1462073 37. Lorusso, S. (2016). The protection and valorization of cultural and environmental heritage in the development process of the territory. Conservation Science in Cultural Heritage. 38. Luz Endere, M., Gabriela Chaparro, M., & Vanesa Giacomasso, M. (2021). Stakeholders, values, and meanings of the Intihuasi archaeological site, San Luis Province, Argentina. An analysis oriented to its heritage management | Grupos de interés, valores significados del sitio arqueológico Intihuasi, provincia de San Luis, Arg. Arqueologia, 27(1),69-90. https://doi.org/ 10.34096/ARQUEOLOGIA.T27.N1.7632. 39. Majid, Z. (1982). The West Mouth, Niah in the prehistory of Southeast Asia. Sarawak Museum Journal, XXXI(52), 1-200. 40. Maksić, M., Dobričić, M., & Trkulja, S. (2018). Institutional limitations in the management of UNESCO cultural heritage in Serbia: The case of Gamzigrad-Romuliana archaeological site. Land Use Policy, 78, Mas, M. T., Bendicho, V. M. L.-M., Tercero, J. L., Valdelomar, J. T., & Maschner, H. (2022). Digitization and virtual reality projects in archaeological heritage. The case of the archaeological site of Motilla Del Azuer in Daimiel (Ciudad Real) Proyectos De Digitalización Y Realidad Virtual En El Patrimonio Arqueológico. El Caso Del Yacimiento. Virtual Archaeology Review, 13(26), 135-146. https://doi.org/10.4995/ VAR.2022.15004 Matero, F. et al. (2013). Archaeological site conservation and management an appraisal of recent trends. Conservation and Management of Archaeological Sites, 2(3), 129- 142, DOI: 10.1179/cma. 1998.2.3.129. McKercher, B., & Ho, P. S. Y. (2006). Assessing the tourism potential of smaller cultural and heritage attractions. Journal of Sustainable Tourism, 14(5), 473-488. https://doi.org/ 10.2167/jost Mohale, D. M., McKay, T., & Merwe, C. D. van der. (2020). The nature of cultural and heritage tourism in greater Polokwane, Limpopo, South Africa. African Journal of Hospitality, Tourism and Leisure, 9(6), 930- 943. https://doi.org/10.46222/ajhtl.197707 20-60 Mohamed Husain. (1958). The origin of the caves at Niah. Sarawak Museum Journal, VII(12). Moussa, W. (2023). Archaeological sites management: A proposed management framework for the Acropolis of Aghurmi, Siwa. Journal of Tourism, Hotels and Heritage, 6(2), 1-26. https://doi.org/10. 21608/sis.2023.194259.1133 Mwitondi, M. S., Mjandwa, A. S., Felician, L., & Bushozi, P. M. (2021). Community engagement in management and conservation strategies for archaeological sites: A case study of Mumba Rock Shelter in Northern Tanzania. South African Archaeological Bulletin, 76(215), 125-134. Ugong, et al. (2019). The community involvement in sustaining an archaeological site: The case of Sarawak, Malaysia. International Journal of Conservation Science, 10(3, July-September), 441-448. Pereira, P., & Martins, J. (2018). Sustainable heritage management towards mass tourism impact: The HERIT-DATA project. 9th International Conference on Intelligent Systems 2018: Theory, Research and Innovation in Applications, IS 2018 Prosedings, 801-806. https://doi. org/10.1109/IS.2018.8710555 Szabo, K. A., Piper, P. J., & Barker, G. (2008). Sailing between world: The symbolism of death in Northwest Borneo. In G. Clark, F. Leach & S. O’Connor (Eds.), Islands of inquiry: Colonisation, seafaring and the archaeology of maritime landscapes (pp. 149-170). Canberra: ANU Press. Tacon, P. S. C., & Sauffi, M. S. (2019). Painted Cave, Niah Caves complex, Sarawak, Malaysia: A report into its history and management. (Unpublished report) 20 February 2019. Griffith University, Gold Coast. Tacon, P., Sauffi, M. S., Datan, I., & Curnoe, D. (2019). Niah cupules discovered in 2012 and 2014 are subject to ongoing research: Reply to Zhang. Rock Art Research, 36(2), 230-232. Umar, N., Yüceer, H., & Aydın, R. (2022). Assessing community awareness for participatory conservation of cultural heritage: The case of Tepebağ Tumulus and its surroundings in Adana Turkey. Open House International. https://doi.org/ 10.1108/OHI-09-20210205. Svensson, E., Eddudóttir, S. D., Kåreskog, I., Johansson, A., & Sundqvist, M. (2023). Conservation or development? Challenging the heritagization of shielings in transitional times, for climate mitigation and (post-) Nur Auni Ugong et al. 22 Journal of Sustainability Science and Management Volume 19 Number 7, July 2024: 1-22 pandemic development. Heritage and Society. https://doi.org/10.1080/2159032X. 2023.2228184 Vinodan, A., & Meera, S. (2021). Integrated management of heritage sites: Scale development and validation. Journal of Cultural Heritage Management and Sustainable Development. Emerald Publishing Limited. 2044-1266. DOI 10.11 08/JCHMSD-092021-0158. Wu, W., Dai, Y., & Qiu, F. (2021). The community integration of new residents in the community reorganization at a heritage site: A model based on Tangkou in Huangshan. Sustainability (Switzerland), 13(9). https://doi.org/10.3390/su13094621 Yamabhaia, J., Knoopb, R., & Cusripitucka, P. (2021). Participatory engagement for sustainable innovation in Karen communities. Austrian Journal of South�East Asian Studies, 14(2), 195-212. https: //doi.org/10.14764/10.ASEAS-0062
(1)
1.Allan, G. (2020). Qualitative research. In Handbook for research students in the social sciences(pp. 177-189). Routledge.2.Baker, J. O., Perry, S. L., & Whitehead, A. L. (2020). Crusading for moral authority: Christian nationalism and opposition to science. In Sociological Forum,35(3), 587-607.3.Berend, N. (2023). Interconnection and Separation: Medieval Perspectives on the Modern Problem of the “Global Middle Ages”.Medieval Encounters,29(2-3), 285-314.4.Bradshaw, P. F. (2023).Eucharistic origins. Wipf and Stock Publishers.5.Canda, E. R., Furman, L. D., & Canda, H. J. (2019).Spiritual diversity in social work practice: The heart of helping. Oxford University Press, USA.6.Castellano, G., & Vessio, G. (2021). Deep learning approaches to pattern extraction and recognition in paintings and drawings: An overview.Neural Computing and Applications,33(19), 12263-12282.7.Cleeve, L. N. (2021). Stations of the Cross and Stations of the Resurrection: Interdisciplinary art practice and its implications for visual theology. InTransforming Christian Thought in the Visual Arts(pp. 219-237). Routledge.8.Crow, D. (2022).Visible signs: An introduction to semiotics in the visual arts. Bloomsbury Publishing.9.Dodell-Feder, D., Ressler, K. J., & Germine, L. T. (2020). Social cognition or social class and culture? On the interpretation of differences in social cognitive performance.Psychological medicine,50(1), 133-145.10.Eddington, A. S. (2019).Science and the unseen world. Pickle Partners Publishing.11.Eller, J. D. (2021).Introducing anthropology of religion: culture to the ultimate. Routledge.12.Gombrich, E. H. (2023). Art and Illusion: A Study in the Psychology of Pictorial Representation-Millennium Edition.13.Gombrich, E. H., & Gombrich, E. H. (1995).The story of art(Vol. 12, pp. 155-159). London: Phaidon.14.Grabar, A. (2023).Christian iconography: a study of its origins(Vol. 10). Princeton University Press.15.Köhler, T., Rumyantseva, M., & Welch, C. (2023). Qualitative restudies: Research designs for retheorizing.Organizational Research Methods, 10944281231216323.16.Peña‐Alves, S. (2020). Outspoken objects and unspoken myths: The semiotics of object‐mediated communication.Symbolic interaction,43(3), 385-404.17.Peterson, M. L. (2020).CS Lewis and the Christian worldview. Oxford University Press.18.Richards, G. (2019). Symbols and religious language. InSymbols in Art and Religion(pp. 1-13). Routledge.19.Sauvet, G. (2019). The hierarchy of animals in the Paleolithic iconography.Journal of Archaeological Science: Reports,28, 102025.20.Viladesau, R. (2000).Theology and the arts: Encountering God through music, art, and rhetoric. Paulist Press.21.Wallis, R. J. (2019). Art and shamanism: From cave painting to the white cube.Religions,10(1), 54.
(1)
1. Altshuller, G. (2002). 40 principles: TRIZ keys to innovation (Vol. 1). Technical Innovation Center, Inc.. 2. BorneoTalk. (2019, April 1). Beautiful Sounds of Bamboo. BorneoTalk, Vol.52(APR-JUN 2019), 76–77. 3. Davies, M. (2015). Knowledge–Explicit, implicit and tacit: Philosophical aspects. International encyclopedia of the social & behavioral sciences, 13, 74-90. 12 4. George, F., Kulathuramaiyer, N., & Bala, P. (2020, December). Fostering a TRIZ-Based Grassroots Innovation Among Penans. In MYTRIZ Conference (Vol. 6, No. 7, P. 185). 5. Grant, K. A. (2020). Affective Collections: Exploring Care Practices in Digital Community Heritage Projects. 6. Järvensivu, T., Karhu, J., Mangs, A., Niemi, R., Jyrämä, A., Nenonen, S., ... & Väistö, T. (2013). Helping Local Innovation Ecosystems to Become Custodians of Global Sustainability. In The XXIV ISPIM Conference-Innovating in Global Markets: Challenges for Sustainable Growth Conference. 7. Johannessen, J. A., Olsen, B., & Olaisen, J. (1999). Aspects of innovation theory based on knowledge-management. International journal of information management, 19(2), 121-139. 8. Koizumi, M., Mamung, D., & Levang, P. (2012). Hunter gatherers' culture, a major hindrance to a settled agricultural life: The case of the Penan Benalui of East Kalimantan. Forests, Trees and Livelihoods, 21(1), 1-15. 9. Mamo, D. (Ed.). (2021). The Indigenous World 2021 (35th ed.). International Work Group for Indigenous Affair. 10. Needham, R. (1954). The system of teknonyms and death-names of the Penan. Southwestern Journal of Anthropology, 10(4), 416-431. 11. Needham, R., & Beidelman, T. O. (1971). Penan friendship-names. The translation of culture: essays to EE Evans-Pritchard, 117, 203. 12. Puri, R. K. (1997). Hunting knowledge of the Penan Benalui of East Kalimantan, Indonesia. University of Hawai'i at Manoa. 13. Puri, R. K. (2013). Transmitting Penan basketry knowledge and practice. Understanding cultural transmission: a critical anthropological synthesis, 266-299. 14. Russo, D., & Spreafico, C. (2015). TRIZ 40 Inventive principles classification through FBS ontology. Procedia engineering, 131, 737-746. 15. Survivial International. (n.d.). The Penan. Survival International. Retrieved January, 2022, from https://www.survivalinternational.org/tribes/penan 16. Swiderska, K. R. Y. S. T. Y. N. A. (2012). Consent and conservation: getting the most from community protocols. IIED Briefing Paper-International Institute for Environment and Development, (17137). 17. Yu, P. K. (2003). Traditional knowledge, intellectual property, and Indigenous culture: An introduction. Cardozo Journal of International and Comparative Law, 11(2), 239.
(1)
[1] American Cancer Society. (2016). Cancer facts & figure 2016. American Cancer Society, 1-72. [2] Health Ministry and World Health Organization. (2015). Cancer facts and figures in Malaysia. [Online]. Available: http://www.themalaymailonline.com. [Accessed: 2-Nov-2017]. [3] Siegel, R. L., Miller, K. D., & Jemal, A. (2016). Cancer statistics, 2016. A Cancer Journal for Clinicians, 66, 7-30. [4] American Cancer Society. (2018). Cancer facts & figures 2018. [Online]. Available: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts -figures-2018.html. [Accessed: 6-Jun-2017]. [5] Cancer Research Malaysia. (2015). Facts and figure for breast cancer. [Online]. Available: http://www.cancerresearch.my/research/breast-cancer/. [Accessed: 6-Jun-2017]. [6] The Start News Online. (2016). About 100,000 Malaysians suffer from cancer each year. [Online]. Available: http://www.thestar.com.my/news/nation/2016/04/03 /about-100000-malaysians-suffer-from-cancer-each-year/. [Accessed: 3-Apr-2016]. [7] Ministry of Health Malaysia. (2017). National Strategic Plan for Cancer Control Programme 2016-2020. Putrajaya, Malaysia, 1-122. [8] Komen, S. G. (2013). Facts for life: what is breast cancer? [Online]. Available: http://ww5.komen.org/uploadedFiles/_Komen/Content/About_Breast_Cancer/Tools_and_Resources/Fact_Sheets_and_Breast_Self_Awareness_Cards/What%20is%20Breast%20Cancer.pdf. [Accessed: 2-Jul-2017]. [9] Radiological Society of North America Inc. (2017). Mammography. [Online]. Available: https://www.radiologyinfo.org/en/info.cfm?pg=mammo. [Accessed: 2-Jul-2017]. [10] Brennan, M., & Houssami, N. (2016). Discussing the benefits and harms of screening mammography. Maturitas, 92, 150-153. [11] Tartar, M., Comstock, C. E., & Kipper, M. S. (2008). Breast cancer imaging: a multidisciplinary, multimodality approach. Philadelphia, United States of America: Elsevier Health Sciences. [12] Hang, J. A., Sim, L., & Zakaria, Z. (2017). Non-invasive breast cancer assessment using magnetic induction spectroscopy technique. International Journal of Integrated Engineering, 9(2), 54-60. [13] Personal Health Cart. (2012). Different types of breast lumps. [Online]. Available: http://www.personalhealthcart.com/different-types-of-breast-lumps/. [Accessed: 24-Sep-2016]. [14] Winters, D. W., Shea, J. D., Kosmas, P., Van Veen, B. D., & Hagness, S. C. (2009). Three-dimensional microwave breast imaging: Dispersive dielectric properties estimation using patient-specific basis functions. IEEE Transactions on Medical Imaging, 28(7), 969-981. doi: 10.1109/tmi.2008.2008959 [15] Mashal, A., Sitharaman, B., Li, X., Avti, P. K., Sahakian, A. V., Booske, J. H., & Hagness, S. C. (2010). Toward carbon-nanotube-based theranostic agents for microwave detection and treatment of breast cancer: Enhanced dielectric and heating response of tissue-mimicking materials. IEEE Transactions on Biomedical Engineering, 57(8), 1831-1834. doi: 10.1109/tbme.2010.2042597 [16] Takenaka, T., Moriyama, T., Ping, K. A. H., & Yamasaki, T. (2010). Microwave breast imaging by the filtered forward-backward time-stepping method. Paper presented at the URSI International Symposium on Electromagnetic Theory. [17] Li, Y., Porter, E., Santorelli, A., Popović, M., & Coates, M. (2017). Microwave breast cancer detection via cost-sensitive ensemble classifiers: Phantom and patient investigation. Biomedical Signal Processing and Control, 31, 366-376. [18] Neira, L. M., Van Veen, B. D., & Hagness, S. C. (2017). High-resolution microwave breast imaging using a 3-D inverse scattering algorithm with a variable-strength spatial prior constraint. IEEE Transactions on Antennas and Propagation, 65(11), 6002-6014. [19] Gao, F., Van Veen, B. D., & Hagness, S. C. (2015). Sensitivity of the distorted born iterative method to the initial guess in microwave breast imaging. IEEE Transactions on Antennas and Propagation, 63(8), 3540-3547. [20] Fhager, A., Hashemzadeh, P., & Persson, M. (2006). Reconstruction quality and spectral content of an electromagnetic time-domain inversion algorithm. IEEE Transactions on Biomedical Engineering, 53(8), 1594-1604. doi: 10.1109/tbme.2006.878079 [21] Maponi, P., Recchioni, M. C., & Zirilli, F. (1997). The use of optimization in the reconstruction of obstacles from acoustic or electromagnetic scattering data. In Biegler, L. T., Coleman, T. F., Conn, A. R., & Santosa, F. N. (Eds.), Large-scale optimization with applications (pp. 81-100). New York: Springer. [22] Takenaka, T., Jia, H., & Tanaka, T. (2000). Microwave imaging of electrical property distributions by a forward-backward time-stepping method. Journal of Electromagnetic Waves and Applications, 14(12), 1609-1626. [23] Ping, K. A. H., Moriyama, T., Takenaka,T., & Tanaka, T. (2009). Two-dimensional Forward-Backward Time-Stepping approach for tumor detection in dispersive breast tissues. Paper presented at the Mediterrannean Microwave Symposium. [24] Ng, S. W., Ping, K. A. H., Sahrani, S., Marhaban, M. H., Sariphan, M. I., Moriyama, T., & Takenaka, T. (2016). Preliminary results on estimation of the dispersive dielectric properties of an object utilizing Frequency-Dependent Forward-Backward Time-Stepping technique. Progress In Electromagnetics Research 49, 61-68. [25] Yong, G., Ping, K. A. H., Chie, A. S. C., Ng, S. W., & Masri, T. (2015). Preliminary study of Forward-Backward Time-Stepping technique with edge-preserving regularization for object detection applications. Paper presented at the International Conference on BioSignal Analysis, Processing and Systems. [26] Yee, K. S. (1966). Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Transactions on Antennas and Propagation, 14(3), 302-307. [27] Schneide, J. B. (2016). Understanding the finite-difference time-domain method. School of electrical engineering and computer science, Washington State University. [28] Okada, N., & Cole, J. B. (2014). Electromagnetic imaging of two-dimensional geometries by multipulse interference using the inverse FDTD method. Advances in Optical Technologies, 2014, 1-10. [29] Narayan, S., Divya, K. M., & Kanth, V. K. (2017). FDTD modeling of EM field inside microwave cavities. Singapore: Springer Nature Singapore Pte Ltd. [30] De Boor, C. (1978). A practical guide to spline. New York: Springer-Verlag. [31] Späth, H. (1995). Two dimensional spline interpolation algorithms. Wellesley, United States: AK Peters. [32] Schumaker, L. L. (2015). Spline functions: Computational methods. Philadelphia, United Staes of America: Society for Industrial and Applied Mathematics. [33] Han, D. Y. (2013). Comparison of commonly used image interpolation methods. Paper presented at the Proceedings of the 2nd International Conference on Computer Science and Electronics Engineerings. [34] Singh, M. R., & Bhide, A. S. (2016). A review of image retrieval using different types of interpolation techniques. International Research Journal of Engineering and Technology, 3(12), 1423-1426. [35] Feinberg, B. (2005). Breast cancer answer: Understanding and fighting breast cancer. Canada: Joney and Bartlett Publishers. [36] Mammary gland. (2017). Mammary gland. [Online]. Available: https://en.wikipedia. org /wiki/Mammary_gland. [Accessed: 26-Jun-2017]. [37] Thibodeau, G. A., & Patton, K. T. (1992). Structure & function of the body. United States of America: Elsevier Health Sciences. [38] Stöppler, M. C. (2015). Breast cancer prevention. [Online]. Available: http://www.medicine net.com/breast_cancer_prevention/article.htm. [Accessed: 27-Jun-2017]. [39] Sauter, E. R., & Daly, M. B. (2010). Breast cancer risk reduction and early detection. Boston, United States of America: Springer. [40] Byrne, C., Schairer, C., Brinton, L. A., Wolfe, J., Parekh, N., Salane, M., Carter, C., & Hoover, R. (2001). Effects of mammographic density and benign breast disease on breast cancer risk (United States). Cancer Causes & Control, 12(2), 103-110. [41] Hartmann, L. C., Sellers, T. A., Frost, M. H., Lingle, W. L., Degnim, A. C., Ghosh, K., Vierkant, R. A., Maloney, S. D., Pankratz, V. S., Hillman, D. W., & Suman, V. J. (2005). Benign breast disease and the risk of breast cancer. New England Journal of Medicine, 353(3), 229-237. [42] Lewison, E. F., & Lyons, J. G. (1953). Relationship between benign breast disease and cancer. AMA archives of surgery, 66(1), 94-114. [43] Boyd, N. F., Rommens, J. M., Vogt, K., Lee, V., Hopper, J. L., Yaffe, M. J., & Paterson, A. D. (2005). Mammographic breast density as an intermediate phenotype for breast cancer. The Lancet Oncology, 6(10), 798-808. [44] Van der Waal, D., Ripping, T. M., Verbeek, A. L., & Broeders, M. J. (2017). Breast cancer screening effect across breast density strata: A case–control study. International Journal of Cancer, 140(1), 41-49. [45] Silva, W. R., & Menotti, D. (2012). Classification of mammograms by the breast composition. Paper presented at the Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition. [46] Boyd, N. F., Lockwood, G. A., Byng, J. W., Tritchler, D .L., & Yaffe, M. J. (1998). Mammographic densities and breast cancer risk. Cancer Epidemiology and Prevention Biomarkers, 7(12), 1133-1144. [47] Masala, G., Ambrogetti, D., Assedi, M., Bendinelli, B., Caini, S., & Palli, D. (2017). Mammographic breast density and breast cancer risk in a Mediterranean population: a nested case–control study in the EPIC Florence cohort. Breast Cancer Research and Treatment, 1-7. [48] Jones, B. A., Claye, E., Philpotts, L., Hooley, R., Silber, A., & Epstein, L. (2017). Risk Factors for high risk breast density patterns in Hispanic/Latinas living in the Northeast, US. [Online]. Available: http://cancerres.aacrjournals.org/content/77/4_ Supplement/P2-13-02. [Accessed: 24-Sep-2018]. [49] Ng, K. H., & Lau, S. (2015). Vision 20/20: Mammographic breast density and its clinical applications. Medical Physics, 42(12), 7059-7077. [50] Wolfe, J. N. (1976). Breast patterns as an index of risk for developing breast cancer. American Journal of Roentgenology, 126(6), 1130-1137. [51] Wolfe, J. N. (1976). Risk for breast cancer development determined by mammographic parenchymal pattern. Cancer, 37(5), 2486-2492. [52] D’orsi, C. J., Bassett, L. W., & Feig, S. (1998). Breast imaging reporting and data system (BI-RADS). In Lee, C. I., Lehman, C. D., & Bassett, L. W. (Eds.), Breast imaging (pp. 85-108). New York, United States of America: Oxford University Press. [53] Sonnenschein, M., & Waldherr, C. (2017). BI-RADS reporting for breast tomosynthesis (3D-mammography). In Atlas of Breast Tomosynthesis (pp. 7-57). Switzerland: Springer. [54] Liberman, L., & Menell, J. H. (2002). Breast imaging reporting and data system (BI-RADS). Radiologic Clinics of North America, 40(3), 409-430. [55] Bell, D. J., & Weerakkody, Y. (2015). Breast imaging-reporting and data system (BIRADS). [Online]. Available: https://radiopaedia.org/articles/breast-imaging-reporting-and-data-sys tem-birads. [Accessed: 28-Jun-2017]. [56] Strigel, R. M., Burnside, E. S., Elezaby, M., Fowler, A. M., Kelcz, F., Salkowski, L. R., & DeMartini, W. B. (2017). Utility of BI-RADS assessment category 4 subdivisions for screening breast MRI. American Journal of Roentgenology, 208(6), 1392-1399. [57] Taplin, S. H., Ichikawa, L. E., Kerlikowske, K., Ernster, V. L., Rosenberg, R. D., Yankaskas, B. C., Carney, P. A., Geller, B. M., Urban, N., Dignan, M. B., & Barlow, W. E. (2002). Concordance of breast imaging reporting and data system assessments and management recommendations in screening mammography. Radiology, 222(2), 529-535. [58] Berg, W. A., D'Orsl, C. J., Bassett, L. W., Beam, C. A., Lewls, R. S., & Crewson, P. E. (2002). Does training in the Breast Imaging Reporting and Data System (BI-RADS) improve biopsy recommendations or feature analysis agreement with experienced breast imagers at mammography? Radiology, 224(3), 871-880. [59] De Oliveira, J. E., Machado, A. M., Chavez, G. C., Lopes, A. P. B., Deserno, T. M., & Araújo, A. D. A. (2010). MammoSys: A content-based image retrieval system using breast density patterns. Computer Methods and Programs in Biomedicine, 99(3), 289-297. [60] Conceicao, R. C., O'Halloran, M., Glavin, M., & Jones, E. (2011). Numerical modelling for ultra wideband radar breast cancer detection and classification. Progress In Electromagnetics Research B, 34, 145-171. [61] Dixon, J. M. (Ed.). (2012). ABC of breast diseases (3rd ed.). Edinburgh, Scotland: John Wiley & Sons. [62] Mariotti, C., & Sánchez, L. J. (2013). Non-invasive and invasive breast cancer. In Valeri, A., Bergamini, C., Agresta, F., & Martellucci, J. (Eds.), What’s new in surgical oncology (pp. 229-254). Italy: Springer. [63] West, A. K. V., Wullkopf, L., Christensen, A., Leijnse, N., Tarp, J. M., Mathiesen, J., Erler, J. T., & Oddershede, L. B. (2017). Division induced dynamics in non-invasive and invasive breast cancer. Biophysical Journal, 112(3), 123a. [64] American Cancer Society. (2017). Breast cancer. [Online]. Available: https://www.cancer.org/cancer/breast-cancer.html. [Accessed: 29-Jun-2017]. [65] Visual Dictionary. (2017). Breast cancer: be well informed for a rosy future! [Online]. Available: http://www.ikonet.com/en/visualdictionary/static/us/breast_cancer_1. [Accessed: 28-Jun-2017]. [66] Amin, M. B., Greene, F. L., Edge, S. B., Compton, C. C., Gershenwald, J. E., Brookland, R. K., Meyer, L., Gress, D. M., Byrd, D. R., & Winchester, D. P. (2017). The eighth edition AJCC cancer staging manual: Continuing to build a bridge from a population based to a more “personalized” approach to cancer staging. A Cancer Journal for Clinicians, 67(2), 93-99. [67] National Breast Cancer Foundation. (2017). Breast cancer stages. [Online]. Available: http://www.nationalbreastcancer.org/breast-cancer-stages. [Accessed: 29-Jun-2017]. [68] BreastCancer.org. (2017). Breast cancer. [Online]. Available: https://www. breastcancer. org/. [Accessed: 29-Jun-2017]. [69] Harmer, V. (2011). Breast cancer nursing care and management. London, United Kingdom: John Wiley & Sons. [70] Jatoi, I., & Kaufmann, M. (2010). Management of breast diseases. Heidelberg, Germany: Springer. [71] National Cancer Institute. (2017). Types of cancer treatment. [Online]. Available: https://www.cancer.gov/about-cancer/treatment/types. [Accessed: 2-Jul-2017]. [72] Hong Kong Baptist Hospital. (2010). Breast cancer screening: The current recommendations. [Online]. Available: http://www.hkbh.org.hk/doc/monthly_ newsletter/newsletter_02_2010. pdf. [Accessed: 3-Jul-2017]. [73] Bevers, T. B., Helvie, M., Bonaccio, E., Calhoun, K. E., Daly, M. B., Farrar, W. B., Garber, J. E., Gray, R., Greenberg, C. C., Greenup, R., & Hansen, N. M. (2018). Breast cancer screening and diagnosis, version 3.2018, NCCN clinical practice guidelines in oncology. Journal of the National Comprehensive Cancer Network, 16(11), 1362-1389. [74] National Institute for Health and Clinical Excellence (NICE). (2008). Review of Clinical Guideline (CG80) – Breast cancer (early & locally advanced): Diagnosis and Treatment. [Online]. Available: https://www.nice.org.uk/guidance/cg80/documents/ early-and-locally-advanced-breast-cancer-consultation-document2. [Accessed: 3-Jul-2017]. [75] Moore, S. K. (2001). Better breast cancer detection. IEEE Spectrum, 38(5), 50-54. [76] Nelson, H. D., O'meara, E. S., Kerlikowske, K., Balch, S., & Miglioretti, D. (2016). Factors associated with rates of false-positive and false-negative results from digital mammography screening: An analysis of registry data false-positive and false-negative digital mammography screening results. Annals of Internal Medicine, 164(4), 226-235. [77] Gowri, D. S., & Amudha, T. (2014). A review on mammogram image enhancement techniques for breast cancer detection. Paper presented at the International Conference on Intelligent Computing Applications. [78] Radiological Society of North America Inc. (2016). Ultrasound breast. [Online]. Available: https://www.radiologyinfo.org/en/info.cfm?pg=breastus. [Accessed: 3-Jul-2017]. [79] Redman, A., Lowes, S., & Leaver, A. (2016). Imaging techniques in breast cancer. Surgery (Oxford), 34(1), 8-18. [80] Ladycare health. (2016). Advantages and disadvantages of breast ultrasound. [Online]. Available: http://ladycarehealth.com. [Accessed: 3-Jul-2017]. [81] Radiological Society of North America Inc. (2016). Magnetic Resonance Imaging (MRI)-Breast. [Online]. Available: https://www.radiologyinfo.org/en/info.cfm? pg=breastmr. [Accessed: 4-Jul-2017]. [82] Orel, S. G., & Schnall, M. D. (2001). MR imaging of the breast for the detection, diagnosis, and staging of breast cancer. Radiology, 220(1), 13-30. [83] Clifford, E. J., & Lugo-Zamudio, C. (1996). Scintimammography in the diagnosis of breast cancer. The American Journal of Surgery, 172(5), 483-486. [84] The Women's Health Resource. (2017). Nuclear medicine breast imaging (scintimammography). [Online]. Available: http://www.imaginis.com/nuclear-medicine/ nuclear-medicine-breast-imaging-scintimammography. [Accessed: 4-Jul-2017]. [85] Radiological Society of North America Inc. (2017). Scintimammography. [Online]. Available: https://www.radiologyinfo.org/en/info.cfm?pg=Scintimammo. [Accessed: 4-Jul-2017]. [86] Brem, R. F., Rapelyea, J. A., Zisman, G., Mohtashemi, K., Raub, J., Teal, C. B., Majewski, S., & Welch, B. L. (2005). Occult breast cancer: Scintimammography with high-resolution breast-specific gamma camera in women at high risk for breast cancer. Radiology, 237(1), 274-280. [87] Liu, L., Song, Y., Gao, S., Ji, T., Zhang, H., Ji, B., Chen, B., Jia, B., Wang, F., Xu, Z., & Ma, Q. (2014). 99mTc-3PRGD2 scintimammography in palpable and nonpalpable breast lesions. Molecular Imaging, 13(5), 7290.2014. 00010. [88] Benson, J. R., Gui, G.P., & Tuttle, T. (Eds.). (2013). Early breast cancer: from screening to multidisciplinary management (3rd Ed.). London, England: CRC Press. [89] Das, B. K., Biswal, B. M., & Bhavaraju, M. (2006). Role of scintimammography in the diagnosis of breast cancer. The Malaysian Journal of Medical Sciences, 13(1), 52-57. [90] Health Quality Ontario (2007). Scintimammography as an adjunctive breast imaging technology: An evidence-based analysis. Ontario Health Technology Assessment Series, 7(2), 1-46. [91] Islam, M. S., Kaabouch, N., & Hu, W. C. (2013). A survey of medical imaging techniques used for breast cancer detection. Paper presented at the IEEE International Conference on Electro-Information Technology. [92] Elsdon, M., Yurduseven, O., & Smith, D. (2013). Early stage breast cancer detection using indirect microwave holography. Progress In Electromagnetics Research, 143, 405-419. [93] Baran, A., Kurrant, D.J., Zakaria, A., Fear, E.C., & LoVetri, J. (2014). Breast imaging using microwave tomography with radar-based tissue-regions estimation. Progress In Electromagnetics Research, 149, 161-171. [94] Biçer, M. B., Akdağlı, A., & Özdemir, C. (2015). Breast cancer detection using inverse radon transform with microwave image technique. Paper presented at the 23nd Signal Processing and Communications Applications Conference. [95] Mohamed, T. M. (2015). Efficient breast cancer detection using sequential feature selection techniques. Paper presented at the IEEE Seventh International Conference on Intelligent Computing and Information Systems. [96] Gu, D., Gu, C., Zhou, G., & Wang, S. (2015). Early breast cancer detection based on multicarrier techniques. Paper presented at the IET International Radar Conference. [97] Ambrosanio, M., Kosmas, P., & Pascazio, V. (2017). Exploiting wavelet decomposition to enhance sparse recovery in microwave imaging. Paper presented at the 11th European Conference on Antennas and Propagation. [98] Bucci, O. M., Bellizzi, G., Costanzo, S., Crocco, L., Di Massa, G., & Scapaticci, R. (2017). Towards the assessment of detection limits in magnetic nanoparticle enhanced microwave imaging of breast cancer. Paper presented at the 11th European Conference on Antennas and Propagation. [99] Pavithra, P., Ravichandran, K., Sekar, K., & Manikandan, R. (2018). The effect of thermography on breast cancer detection. Systematic Reviews in Pharmacy, 9(1), 10-16. [100] Shahzad, A. (2018). Fast ultra wideband microwave imaging for early stage breast cancer detection (Doctoral dissertation, The National University of Ireland, Galway). Retrieved from https://aran.library.nuigalway.ie/handle/10379/7078?show=full [101] Hinrikus, H., & Riipulk, J. (2006). Microwave Imaging. Wiley Encyclopedia of Biomedical Engineering, 1-13. [102] Almeida, E. R., Porsani, J. L., Catapano, I., Gennarelli, G., & Soldovieri, F. (2014). GPR data analysis enhanced by microwave tomography for forensic archaeology. Paper presented at the 15th International Conference on Ground Penetrating Radar. [103] Persico, R., Pochanin, G., Ruban, V., Orlenko, A., Catapano, I., & Soldovieri, F. (2016). Performances of a microwave tomographic algorithm for GPR systems working in differential configuration. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(4), 1343-1356. [104] Fedeli, A., Pastorino, M. & Randazzo, A. (2016). A two-step multifrequency imaging technique for ground penetrating radar. Paper presented at the 10th European Conference on Antennas and Propagation. [105] Benedetti, M., Donelli, M., Martini, A., Pastorino, M., Rosani, A., & Massa, A. (2006). An innovative microwave-imaging technique for nondestructive evaluation: Applications to civil structures monitoring and biological bodies inspection. IEEE Transactions on Instrumentation and Measurement, 55(6), 1878-1884. [106] Kharkovsky, S., & Zoughi, R. (2007). Microwave and millimeter wave nondestructive testing and evaluation-Overview and recent advances. IEEE Instrumentation & Measurement Magazine, 10(2), 26-38. [107] Deng, Y., & Liu, X. (2011). Electromagnetic imaging methods for nondestructive evaluation applications. Sensors, 11(12), 11774-11808. [108] Santamaría-Artigas, A., Mattar, C., & Wigneron, J. P. (2016). Application of a combined optical–passive microwave method to retrieve soil moisture at regional scale over Chile. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(4), 1493-1504. [109] Estatico, C., Fedeli, A., Pastorino, M., & Randazzo, A. (2015). Buried object detection by means of a Lp Banach-space inversion procedure. Radio Science, 50(1), 41-51. [110] Ibrahim, P. M., Ping, K. A. H., Wei, N. S., Guang, Y., Rajaee, N., & Anyi, M. (2016). Elliptic filter and iterative inversion method for buried object detection applications. Applied Mechanics and Materials, 833, 164-169. [111] Shah, S. A., Zhang, Z., Ren, A., Zhao, N., Yang, X., Zhao, W., Yang, J., Zhao, J., Sun, W., & Hao, Y. (2017). Buried object sensing considering curved pipeline. IEEE Antennas and Wireless Propagation Letters. [112] Elizabeth, M. A., Ping, K. A. H., Rajaee, N. B., & Moriyama, T. (2015). Chebyshev filter applied to an inversion technique for breast tumour detection International Journal of Research in Engineering and Technology, 4(6), 210-218. [113] Porter, E., Coates, M., & Popović, M. (2016). An early clinical study of time-domain microwave radar for breast health monitoring. IEEE Transactions on Biomedical Engineering, 63(3), 530-539. [114] Vemulapalli, S. (2017). Early Breast Cancer Diagnosis Using Microwave Imaging via Space-Frequency Algorithm (Master dissertation, The University of Missouri, Kansas City, Missouri). Retrieved from https://mospace.umsystem.edu/xmlui /handle/10355/60585 [115] Carr, K. L. (1989). Microwave radiometry: Its importance to the detection of cancer. IEEE Transactions on Microwave Theory and Techniques, 37(12), 1862-1869. [116] Jackson, T. J., Le Vine, D. M., Hsu, A. Y., Oldak, A., Starks, P. J., Swift, C. T., Isham, J. D., & Haken, M. (1999). Soil moisture mapping at regional scales using microwave radiometry: The southern great plains hydrology experiment. IEEE Transactions on Geoscience and Remote Sensing, 37(5), 2136-2151. [117] Rodrigues, D. B., Maccarini, P. F., Salahi, S., Oliveira, T. R., Pereira, P. J., Limão-Vieira, P., Snow, B. W., Reudink, D., & Stauffer, P. R. (2014). Design and optimization of an ultra wideband and compact microwave antenna for radiometric monitoring of brain temperature. IEEE Transactions on Biomedical Engineering, 61(7), 2154-2160. [118] Barrera-Verdejo, M., Crewell, S., Löhnert, U., Orlandi, E., & Girolamo, P. D. (2016). Ground-based lidar and microwave radiometry synergy for high vertical resolution absolute humidity profiling. Atmospheric Measurement Techniques, 9(8), 4013-4028. [119] Dolant, C., Langlois, A., Montpetit, B., Brucker, L., Roy, A., & Royer, A. (2016). Development of a rain-on-snow detection algorithm using passive microwave radiometry. Hydrological Processes, 30(18), 3184-3196. [120] Barrett, A. H., Myers, P. C., & Sadowsky, N. L. (1977). Detection of breast cancer by microwave radiometry. Radio Science, 12(6S), 167-171. [121] Carr, K. (1989). Microwave radiometry: Its importance to the detection of cancer. IEEE Transactions on Microwave Theory and Techniques, 37(12), 1862-1869. [122] Bocquet, B., Van de Velde, J. C., Mamouni, A., Leroy, Y., Giaux, G., Delannoy, J., & Delvalee, D. (1990). Microwave radiometric imaging at 3 GHz for the exploration of breast tumors. IEEE Transactions on Microwave Theory and Techniques, 38(6), 791-793. [123] Zhurbenko, V. (2011). Challenges in the design of microwave imaging systems for breast cancer detection. Advances in Electrical and Computer Engineering, 11(1), 91-96. [124] Stec, B., Dobrowolski, A., & Susek, W. (2002). Estimation of deep-seated profile of temperature distribution inside biological tissues by means of multifrequency microwave thermograph. Paper presented at the IEEE MTT-S International Microwave Symposium Digest. [125] Jacobi, J. H., Larsen, L. E., & Hast, C. T. (1979). Water-immersed microwave antennas and their application to microwave interrogation of biological targets. IEEE Transactions on Microwave Theory and Techniques, 27(1), 70-78. doi: 10.1109/tmtt.1979.1129561 [126] Larsen, L. E., & Jacobi, J. H. (1979). Microwave scattering parameter imagery of an isolated canine kidney. Medical physics, 6(5), 394-403. [127] Pichot, C., Jofre, L., Peronnet, G., & Bolomey, J. (1985). Active microwave imaging of inhomogeneous bodies. IEEE Transactions on Antennas and Propagation, 33(4), 416-425. [128] Bolomey, J. C., Izadnegahdar, A., Jofre Roca, L., Pichot, CH., Peronnet, G., & Solaimani, M. (1982). Microwave diffraction tomography for biomedical applications. IEEE Transactions on Microwave Theory and Techniques, 30(11), 1998-2000. [129] Liu, Q. H., Zhang, Z. Q., Wang, T. T., Bryan, J. A., Ybarra, G. A., Nolte, L. W., & Joines, W. T. (2002). Active microwave imaging. I. 2-D forward and inverse scattering methods. IEEE Transactions on Microwave Theory and Techniques, 50(1), 123-133. [130] Zhang, Z. Q., Liu, Q. H., Xiao, C., Ward, E., Ybarra, G., & Joines, W. T. (2003). Microwave breast imaging: 3-D forward scattering simulation. IEEE Transactions on Biomedical Engineering, 50(10), 1180-1189. doi: 10.1109/tbme.2003.817634 [131] Foudazi, A., Donnell, K. M., & Ghasr, M. T. (2014). Application of active microwave thermography to delamination detection. Paper presented at the IEEE International Conference on Instrumentation and Measurement Technology. [132] Selvaraj, V., Srinivasan, P., Kumar, J., Krishnan, R., & Annamalai, K. (2017). Highly directional microstrip ultra wide band antenna for microwave imaging system. Acta graphica: znanstveni časopis za tiskarstvo i grafičke komunikacije, 28(1), 35-40. [133] Larsen, L. E., & Jacobi, J. H. (1985). Medical applications of microwave imaging. New York: IEEE Press. [134] Nikolova, N. K. (2011). Microwave imaging for breast cancer. IEEE Microwave Magazine, 12(7), 78-94. [135] Noghanian, S., Sabouni, A., Desell, T., & Ashtari, A. (2014). Micorwave tomography. London: Springer. [136] Kosmas, P., & Rappaport, C. M. (2006). FDTD-based time reversal for microwave breast cancer Detection-localization in three dimensions. IEEE Transactions on Microwave Theory and Techniques, 54(4), 1921-1927. doi: 10.1109/tmtt.2006. 871994 [137] Qing Huo, L., Zhong Qing, Z., Wang, T. T., Bryan, J. A., Ybarra, G. A., Nolte, L. W., & Joines, W. T. (2002). Active microwave imaging. I. 2-D forward and inverse scattering methods. IEEE Transactions on Microwave Theory and Techniques, 50(1), 123-133. doi: 10.1109/22.981256 [138] Henriksson, T., Joachimowicz, N., Conessa, C., & Bolomey, J. C. (2010). Quantitative microwave imaging for breast cancer detection using a planar 2.45 GHz system. IEEE Transactions on Instrumentation and Measurement, 59(10), 2691-2699. doi: 10.1109/tim. 2010.2045540 [139] Colton, D., & Kress, R. (1998). Inverse acoustic and electromagnetic scattering theory (3rd ed.). New York: Springer. [140] Mur, G. (1981). Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations. IEEE transactions on Electromagnetic Compatibility, 23(4), 377-382. [141] Taflove, A. (1988). Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures. Wave Motion, 10(6), 547-582. [142] Luebbers, R. J., Kunz, K. S., Schneider, M., & Hunsberger, F. (1991). A finite-difference time-domain near zone to far zone transformation (electromagnetic scattering). IEEE Transactions on Antennas and Propagation, 39(4), 429-433. [143] Zainud-Deen, S. H., Botros, A. Z., & Ibrahim, M. S. (2008). Scattering from bodies coated with metamaterial using FDFD method. Paper presented at the National Conference of Radio Science. [144] Goldak, J., Chakravarti, A., & Bibby, M. (1984). A new finite element model for welding heat sources. Metallurgical and Materials Transactions B, 15(2), 299-305. [145] Wu, J. Y., Kingsland, D. M., Lee, J. F., & Lee, R. (1997). A comparison of anisotropic PML to Berenger's PML and its application to the finite-element method for EM scattering. IEEE Transactions on Antennas and Propagation, 45(1), 40-50. [146] Coggon, J. H. (1971). Electromagnetic and electrical modeling by the finite element method. Geophysics, 36(1), 132-155. [147] Cai, H., Xiong, B., Han, M., & Zhdanov, M. (2014). 3D controlled-source electromagnetic modeling in anisotropic medium using edge-based finite element method. Computers & Geosciences, 73, 164-176. [148] Franchois, A., & Pichot, C. (1997). Microwave imaging-complex permittivity reconstruction with a Levenberg-Marquardt method. IEEE Transactions on Antennas and Propagation, 45(2), 203-215. [149] Caorsi, S., Gragnani,G. L., & Pastorino, M. (1990). Two-dimensional microwave imaging by a numerical inverse scattering solution. IEEE Transactions on Microwave Theory and Techniques, 38(8), 981-980. [150] Lakhtakia, A. (1992). Strong and weak forms of the method of moments and the coupled dipole method for scattering of time-harmonic electromagnetic fields. International Journal of Modern Physics C, 3(3), 583-603. [151] Wu, R., Yang, P., Zhao, Y., Ren, X., & Zhang, Y. (2017). Study of scattering from two-layered soil surfaces with object buried between two rough interfaces. Paper presented at the International Symposium of Applied Computational Electromagnetics Society. [152] Ekman, J. (2003). Electromagnetic modeling using the partial element equivalent circuit method (Doctoral Dissertation, The University of Technology, Lulea, Sweden). Retrieved from http://www.diva-portal.org/smash/get/diva2:990875/ FULLTEXT01.pdf [153] Cao, Y. S., Jiang, L. J., & Ruehli, A. E. (2015). Distributive radiation and transfer characterization based on the PEEC method. IEEE transactions on Electromagnetic Compatibility, 57(4), 734-742. [154] Abreu, R., Stich, D., & Morales, J. (2015). The Complex-Step-Finite-Difference method. Geophysical Journal International, 202(1), 72-93. [155] Liszka, T., & Orkisz, J. (1980). The finite difference method at arbitrary irregular grids and its application in applied mechanics. Computers & Structures, 11(1-2), 83-95. [156] Dong, Q., & Rappaport, C. M. (2009). Microwave subsurface imaging using direct finite-difference frequency-domain-based inversion. IEEE Transactions on Geoscience and Remote Sensing, 47(11), 3664-3670. [157] Zainud-Deen, S. H., Hassen, W. M., Ali, E. M., Awadalla, K. H., & Sharshar, H. A. (2008). Breast cancer detection using a hybrid Finite difference frequency domain and particle swarm optimization techniques. Paper presented at the National Radio Science Conference. [158] Sun, S., Kooij, B. J., Jin, T., & Yarovoy, A. (2015). Simultaneous multi-frequency TE/TM polarization inversion based on FDFD for ground penetrating radar. Paper presented at the 8th International Workshop on Advanced Ground Penetrating Radar. [159] VonNeumann, J., & Richtmyer, R. D. (1950). A method for the numerical calculation of hydrodynamic shocks. Journal of Applied Physics, 21(3), 232-237. [160] Taflove, A., & Brodwin, M. E. (1975). Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations. IEEE Transactions on Microwave Theory and Techniques, 23(8), 623-630. [161] Taflove, A. (1980). Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems. IEEE transactions on Electromagnetic Compatibility(3), 191-202. [162] Taflove, A., & Hagness, S.C. (2005). Computational electrodynamics: the finite-difference time-domain method: Artech house. [163] Giannakis, I., Giannopoulos, A., & Warren, C. (2015). A realistic FDTD numerical modeling framework of ground penetrating radar for landmine detection. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(1), 37-51. [164] Rufus, E., & Alex, Z. C. (2013). FDTD based EM modeling and analysis for microwave imaging of biological tissues. Paper presented at the International Conference on Smart Structures and Systems, IEEE. [165] Zhang, M., Liao, C., Xiong, X.Z., & Xu, X. (2017). Scattering Analysis of Buried Objects by Using FDTD with Nonuniform Meshes. Progress In Electromagnetics Research, 54, 83-90. [166] Wang, F. F., Zhong, S., Wu, H., Qin, T., & Hong, W. (2018). FDTD Based Dictionary Matrix for Sparsity-Based Through-Wall Radar Imaging. Progress In Electromagnetics Research, 75, 21-28. [167] Oskooi, A. F., Roundy, D., Ibanescu, M., Bermel, P., Joannopoulos, J. D., & Johnson, S. G. (2010). MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method. Computer Physics Communications, 181(3), 687-702. [168] Holland, R. (1993). Pitfalls of staircase meshing. IEEE transactions on Electromagnetic Compatibility, 35(4), 434-439. [169] Burkhardt, M. R. (1999). Contributions toward uncertainty assessments and error minimization of FDTD simulations involving complex dielectric bodies. ETH Zurich. [170] Nilavalan, R., Craddock, I. J., & Railton, C. J. (2002). Quantifying numerical dispersion in non-orthogonal FDTD meshes. IEEE Proceedings-Microwaves, Antennas and Propagation, 149(1), 23-27. [171] Jiménez-Mejía, E., & Herrera-Murcia, J. (2015). Validation of a non-uniform meshing algorithm for the 3D-FDTD method by means of a two-wire crosstalk experimental set-up. Ingeniería e Investigación, 35, 98-103. [172] Colton, D., & Kress, R. (2012). Inverse acoustic and electromagnetic scattering theory. New York: Springer Science & Business Media. [173] Perry, W. (1974). On the Bojarski-Lewis inverse scattering method. IEEE Transactions on Antennas and Propagation, 22(6), 826-829. [174] Colton, D., Haddar, H., & Piana, M. (2003). The linear sampling method in inverse electromagnetic scattering theory. Inverse Problems, 19(6), S105. [175] Erramshetty, M., & Bhattacharya, A. (2019). Shape Reconstruction of Dielectric and Conducting Objects using Linear Sampling Method and Limitations. Paper presented at the URSI Asia-Pacific Radio Science Conference. [176] Semnani, A., Rekanos, I. T., Kamyab, M., & Moghaddam, M. (2012). Solving inverse scattering problems based on truncated cosine Fourier and cubic B-spline expansions. IEEE Transactions on Antennas and Propagation, 60(12), 5914-5923. [177] Takenaka, T., Jia, H., & Tanaka, T. (2015). Microwave imaging of electrical property distributions by a Foward-Backward Time-Stepping method. Journal of Electromagnetic Waves and Applications, 14, 1609-1626. [178] Nawawi, J., Sahrani, S., Ping, K. A. H., Mat, D. A. A., & Zaidel, D. N. A. (2016). Iterative refinement in inverse scattering technique with median filter. Paper presented at the IEEE Asia-Pacific Conference on Applied Electromagnetics. [179] Ping, K. A. H., Soetarman, A. S., Wee, B. S., Sahrani, S., Zaidel, D. N. A., Mat, D. A. A., Islam, M. T., Mahmud, M. Z. & Moriyama, T. (2018). Detection of Breast Tumor in Scattered Fibroglandular Breast Tissue Using Inverse Scattering Technique. Paper presented at the International Conference on Computational Approach in Smart Systems Design and Applications. [180] Moriyama, T., Meng, Z. & Takenaka, T. (2011). Forward–backward time‐stepping method combined with genetic algorithm applied to breast cancer detection. Microwave and Optical Technology Letters, 53(2), 438-442. [181] Jia, H., & Yasumoto, K. (2004). Time domain inverse scattering analysis of stratified lossy media using a forward-backward time-stepping method. Paper presented at the 3rd International Conference on Computational Electromagnetics and Its Applications. [182] Shea, J. D., Kosmas, P., Hagness, S. C., & Van Veen, B. D. (2010). Three‐dimensional microwave imaging of realistic numerical breast phantoms via a multiple‐frequency inverse scattering technique. Medical Physics, 37(8), 4210-4226. [183] Moriyama, T., Oliveri, G., Salucci, M., & Takenaka, T. (2014). A multi-scaling forward-backward time-stepping method for microwave imaging. IEICE Electronics Express, 1-12. [184] Moriyama, T., Yamaguchi, Y., Hong Ping, K. A., Tanaka, T., & Takenaka, T. (2008). Parallel processing of forward-backward time-stepping method for time domain inverse scattering. PIERS Online, 4(6), 695-700. [185] Henshaw, W. D. (1996). Automatic grid generation. Acta Numerica, 5, 121-148. [186] Liseikin, V. D. (2017). Grid generation methods. Netherlands: Springer. [187] Rubin, S., & Khosla, P. (1977). Polynomial interpolation methods for viscous flow calculations. Journal of Computational Physics, 24(3), 217-244. [188] Thompson, J. F., Warsi, Z. U., & Mastin, C. W. (1985). Numerical grid generation: foundations and applications. New York, United States: Elsevier North-Holland. [189] Thompson, J. F., Soni, B. K., & Weatherill, N. P. (1998). Handbook of grid generation. Boca Raton, Florida, United State: CRC press. [190] Garnero, G., & Godone, D. (2013). Comparisons between different interpolation techniques. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W3, 139-144. [191] Burrough, P. A., McDonnell, R. A., & Lloyd, C. D. (2015). Principles of geographical information systems (3rd ed.). United Kingdom: Oxford University Press. [192] Chand, K. K. (2005). Component-based hybrid mesh generation. International Journal for Numerical Methods in Engineering, 62(6), 747-773. [193] Chesshire, G., & Henshaw, W. D. (1990). Composite overlapping meshes for the solution of partial differential equations. Journal of Computational Physics, 90(1), 1-64. [194] Meakin, R. L. (1996). The chimera method of simulation for unsteady three-dimensional viscous flow. In Hafez, M., & Oshima, K. (Eds.), Computational fluid dynamics review (pp. 70-86). Moffett Field, California: NASA Ames Research Center. [195] Kauffman, J. A., Sheldon, J. P., Miller, S. T. (2017). Overset meshing coupled with hybridizable discontinuous Galerkin finite elements. International Journal for Numerical Methods in Engineering, 112(5), 1-32. [196] Lin, C. W., Smith, G.D., & Fisher, S. C. (1991). Application of a Multiblock Grid Generation Approach to Ship Configuration. Paper presented at the 3rd International Conference on Numerical Grid Generation in CFD, Spain. [197] Henshaw, W. (2002). Overture: An object-oriented framework for overlapping grid applications. Paper presented at the 32nd AIAA Fluid Dynamics Conference and Exhibit. [198] Peron, S. (2016). A Review of Overset Grid Technology. Paper presented at the 13th Overset Grid Symposium, Future of Flight Aviation Center, Mukilteo, WA, USA. [199] Carrier, G., Atinault, O., Dequand, S., Hantrais-Gervois, J. L., Liauzun, C., Paluch, B., Rodde, A. M., & Toussaint, C. (2012). Investigation of a strut-braced wing configuration for future commercial transport. Paper presented at the 28th Congress of the International Council of the Aeronautical Sciences. [200] Castillon, L., & Legras, G. (2013). Overset Grid Method for Simulation of Compressors With Nonaxisymmetric Casing Treatment. Journal of Propulsion and Power, 29(2), 460-465. [201] Renaud, T., Pape, A. L., & Péron, S. (2013). Numerical analysis of hub and fuselage drag breakdown of a helicopter configuration. CEAS Aeronautical Journal, 4(4), 409-419. [202] Castillon, L., Billonnet, G., Riou, J., Péron, S., & Benoit, C. (2014). A technological effect modeling on complex turbomachinery applications with an overset grid numerical method. Journal of Turbomachinery, 136(10), 101005. [203] Wiart, L., Atinault, O., Hue, D., Grenon, R., & Paluch, B. (2015). Development of NOVA Aircraft Configurations for Large Engine Integration Studies. Paper presented at the 33rd AIAA Applied Aerodynamics Conference. [204] Zanotti, A., Droandi, G., Gibertini, G., Auteri, F., Boniface, J. C., Gavériaux, R., & Pape, A. L. (2016). A Computational framework for helicopter fuselage drag reduction using vortex generators. Journal of the American Helicopter Society, 61(3), 1-13. [205] Chan, W. M., Gomez, R. J., Rogers, S. E., & Buning, P. G. (2002). Best practices in overset grid generation. American Institute of Aeronautics and Astronautics Paper, 3191, 2002. [206] Chan, W. M. (2016). Progress in Automation of Overset Structured Surface Grid Generation. Paper presented at the 13th Symposium on Overset Composite Grids and Solution Technology, Mukilteo, Washington. [207] Michler, A. K. (2011). Aircraft control surface deflection using RBF‐based mesh deformation. International Journal for Numerical Methods in Engineering, 88(10), 986-1007. [208] Eiseman, P. R., & Erlebacher, G. (1987). Grid generation for the solution of partial differential equations. Hampton, Virginia: NASA Langley Research Center. [209] Cali, P., & Couaillier, V. (2000). Conservative interfacing for overset grids. Paper presented at the 38th Aerospace Sciences Meeting and Exhibit. [210] Rai, M. M. (1986). An implicit, conservative, zonal-boundary scheme for Euler equation calculations. Computers & Fluids, 14(3), 295-319. [211] Lee, K. R., Park, J. H., & Kim, K. H. (2009). High order interpolation method for Overset Grid using FVM. Paper presented at the 19th American Institute of Aeronautics and Astronautics Computational Fluid Dynamics, San Antonio, Texas. [212] Sahrani, S., & Kuroda, M. (2013). FDTD analysis with Overset Grid Generation method for rotating body and evaluation of its accuracy. IEICE Transactions on Electronics, 96(1), 35-41. [213] Mahajan, S. H., & Harpale, V. K. (2015). Adaptive and non-adaptive image interpolation techniques. Paper presented at the International Conference on Computing Communication Control and Automation. [214] Sinha, A., Kumar, M., Jaiswal, A. K., & Saxena, R. (2014). Performance analysis of high resolution images using interpolation techniques in multimedia communication system. Signal & Image Processing, 5(2), 39-39. [215] Gupta, R. B., Lee, B. G., & Lee, J. J. (2007). A new image interpolation technique using exponential B-spline. Paper presented at the 15th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision. [216] Moler, C. B. (2004). Numerical computing with MATLAB. [Online]. Available: https://www.mathworks.com/moler/chapters.html. [Accessed: 23-Jun-2018]. [217] Szabados, J., & Vértesi, P. (1990). Interpolation of functions. Totteridge, London: World Scientific. [218] Acharya, T., & Ray, A. K. (2005). Image processing: principles and applications. Hoboken, New Jersey: John Wiley & Sons. [219] Lehmann, T. M., Gonner, C., & Spitzer, K. (1999). Survey: Interpolation methods in medical image processing. IEEE Transactions on Medical Imaging, 18(11), 1049-1075. [220] Sinha, A. (2015). Study of interpolation techniques in multimedia communication system - A review. International Journal of Current Engineering and Technology, 5(3), 1871-1873. [221] Al-Ayyoub, A. E. (1996). Pipelined algorithm for Newton's divided difference interpolation. Computers & Structures, 58(4), 689-701. [222] Stoer, J., & Bulirsch, R. (2013). Introduction to numerical analysis (2nd ed.). New York, United States of America: Springer Science & Business Media. [223] Milne, W. E. (2015). Numerical calculus. Princeton, New Jersey: Princeton University Press. [224] Davis, P. J. (1975). Interpolation and approximation. Mineola, New York, United States of America: Courier Corporation. [225] Mastroianni, G., & Milovanovic, G. (2008). Interpolation processes: Basic theory and applications. New York, United States of America: Springer Science & Business Media. [226] Olivier, R., & Hanqiang, C. (2012). Nearest neighbor value interpolation. International Journal of Advanced Computer Science and Applications, 3(4), 1-6. [227] Kahaner, D., Moler, C., & Nash, S. (1989). Numerical methods and software. United States of America: Prentice-Hall, Inc. [228] Maeland, E. (1988). On the comparison of interpolation methods. IEEE Transactions on Medical Imaging, 7(3), 213-217. [229] Fritsch, F. N., & Carlson, R. E. (1980). Monotone piecewise cubic interpolation. SIAM Journal on Numerical Analysis, 17(2), 238-246. [230] Unser, M. (1999). Splines: A perfect fit for signal and image processing. IEEE Signal Processing Magazine, 16(6), 22-38. [231] Aldroubi, A., Unser, M., & Eden, M. (1993). B-spline signal processing. IEEE Transactions on Signal Processing, 41(2), 821-833. [232] Parker, J. A., Kenyon, R. V., & Troxel, D. E. (1983). Comparison of interpolating methods for image resampling. IEEE Transactions on Medical Imaging, 2(1), 31-39. [233] Skillen, A. (2012). The overset grid method, applied to the solution of the incompressible Navier-Stokes equations in two and three spatial dimensions (Doctoral dissertation). University of Manchester, Manchester, England. [234] Salomon, D. (2007). Curves and surfaces for computer graphics. New York, United States of America: Springer Science & Business Media. [235] Hou, H., & Andrews, H. (1978). Cubic splines for image interpolation and digital filtering. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(6), 508-517. [236] Mihalik, J., Zavacky, J., & Kuba, I. (1995). Spline interpolation of image. Radioengineering, 4(1), 221-230. [237] Jiang, N., & Wang, J. (2015). Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum Information Processing, 14(11), 4001-4026. [238] Warbhe, S., & Gomes, J. (2016). Interpolation technique using non-linear Partial Differential Equation with Edge Directed Bicubic. International Journal of Image Processing (IJIP), 10(4), 205-213. [239] Iwamatsu, H., Fukumoto, R., Ishihara, M., & Kuroda, M. (2008). Comparative study of over set grid generation method and body fitted grid generation method with moving boundaries. Paper presented at the Antennas and Propagation Society International Symposium, IEEE. [240] Spath, H. (1995). Two dimensional spline interpolation algorithms. United States of America: A K Peters, Wellesley, Massachusetts. [241] Xia, P., Tahara, T., Kakue, T., Awatsuji, Y., Nishio, K., Ura, S., Kubota, T., & Matoba, O. (2013). Performance comparison of bilinear interpolation, bicubic interpolation, and B-spline interpolation in parallel phase-shifting digital holography. Optical Review, 20(2), 193-197. [242] Wikimedia Commons. (2016). Comparison of 1D and 2D interpolation. [Online]. Available: https://commons.wikimedia.org/wiki/File:Comparison_of_1D_and_2D_ interpolation.svg. [Accessed: 3-Jul-2017]. [243] Matiu-Iovan, L. (2013). A cubic spline interpolation algorithm implemented on a system with digital signal processor. Paper presented at the Signal Processing: Algorithms, Architectures, Arrangements, and Applications, 2013. [244] Lee, J. H., Lee, K. S., & Jo, G. S. (2013). Representation method of the moving object trajectories by interpolation with dynamic sampling. Paper presented at the International Conference on Information Science and Applications. [245] Rasti, P., Demirel, H., & Anbarjafari, G. (2013). Image resolution enhancement by using interpolation followed by iterative back projection. Paper presented at the Signal Processing and Communications Applications Conference. [246] Huang, C. H., Chen, C. H., Wu, J. J., & Liu, D. S. (2015). Microwave imaging of multiple dielectric objects by FDTD and APSO. Computer Science & Information Technology, 35-42. [247] Emigh, M. S., Kriminger, E. G., Brockmeier, A. J., Príncipe, J. C., & Pardalos, P. M. (2016). Reinforcement learning in video games using nearest neighbor interpolation and metric learning. IEEE Transactions on Computational Intelligence and AI in Games, 8(1), 56-66. [248] Mu, L., Yang, L., & Chen, Y. (2016). Reconstruction of underground coal seam surface based on B-spline surface interpolation. Journal of Computational and Theoretical Nanoscience, 13(5), 3507-3510. [249] Dubey, A., Lohiya, A., Narwal, V., Jha, A. K., Agarwal, P., & Schaefer, G. (2016). Natural image interpolation using extreme learning machine. Paper presented at the International Conference on Soft Computing and Pattern Recognition. [250] Pérez, J. S., Chicote, M. A., Díez, F. V., & Gómez, E. V. (2017). A new method for calculating conduction response factors for multilayer constructions based on frequency–Domain spline interpolation (FDSI) and asymptotic analysis. Energy and Buildings, 148, 280-297. [251] Azman, A., Sahrani, S., Ping, K.H, & Mat, D.A.A. (2017). A new approach for solving inverse scattering problems with Overset Grid Generation method. TELKOMNIKA (Telecommunication Computing Electronics and Control), 15(1), 820-828. [252] Kuorda, M. (2017). FDTD method for the analysis of moving boundary problems-over set grid generation method and body fitted grid generation method with moving boundaries. Paper presented at the International Conference on Electromagnetics in Advanced Applications. [253] Zong, X., Xu, M., Xu, J., & Lv, X. (2018). Improvement of the ocean pollutant transport model by using the surface spline interpolation. Tellus A: Dynamic Meteorology and Oceanography, 1-13. [254] Gupta, B., & Singh, A. K. (2018). A new cartoon--texture image decomposition approach with smoothing spline interpolation. Optik, 159, 39-49. [255] Patel, V., & Mistree. K. (2013). A review on different image interpolation techniques for image enhancement. International Journal of Emerging Technology and Advanced Engineering, 3, 129-133. [256] Meijering, E. H. (2000). Spline interpolation in medical imaging: comparison with other convolution-based approaches. Paper presented at the 10th European Signal Processing Conference. [257] Guo, Z., Pan, H., Fan, W., & Lv, X. (2017). Application of surface spline interpolation in inversion of bottom friction coefficients. Journal of Atmospheric and Oceanic Technology, 34(9), 2021-2028. [258] Boor, C. D. (2001). A Practical Guide to Spline. New York: Springer-Verlag. [259] Schumaker, L. L. (1980). Spline functions: Basic theory (3rd ed.). New York: John Wiley. [260] Johnson, J. E., Takenaka, T., Ping, K. A. H., Honda, S., & Tanaka, T. (2009). Advances in the 3-D Forward-Backward Time-Stepping (FBTS) inverse scattering technique for breast cancer detection. IEEE Transactions on Biomedical Engineering, 56(9), 2232-2243. [261] Taflove, A., & Hagness, S. C. (2000). Computational electrodynamics. London: Artech house publishers. [262] Yavuz, E., & Balik, H. H. (2008). A new approach to analysis of rectangular waveguides. Journal of Science and Technology, 2(2), 177-193. [263] Kunz, K. S., & Luebbers, R. J. (1993). The finite difference time domain method for electromagnetics. London, New York: CRC Press. [264] Courant, R., Friedrichs, K., & Lewy, H. (1928). On the partial difference equations of mathematical physics. Mathematische Annalen, 100(1), 32-74. [265] Stutzman, W. L., & Thiele, G. A. (2012). Antenna theory and design (3rd ed.). New Jersey, United State: John Wiley & Sons. [266] Costen, F., Bérenger, J. P., & Brown, A. K. (2009). Comparison of FDTD hard source with FDTD soft source and accuracy assessment in Debye media. IEEE Transactions on Antennas and Propagation, 57(7), 2014-2022. [267] Berenger, J. P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2), 185-200. [268] Roden, J. A., & Gedney, S. D. (2000). Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media. Microwave and Optical Technology Letters, 27(5), 334-338. [269] Rao, S. S. (2009). Engineering optimization: Theory and practice (4th ed.). New Jersey, United State: John Wiley & Sons. [270] Kelley, C. T. (1999). Iterative methods for optimization. Philadelphia, Pennsylvania: Society for Industrial and Applied Mathematics. [271] Kiranyaz, S., Ince, T., & Gabbouj, M. (2014). Multidimensional particle swarm optimization for machine learning and pattern recognition. New York: Springer-Verlag. [272] Venter, G. (2010). Review of optimization techniques. Encyclopedia of Aerospace Engineering, 1-9. [273] Wei, Z. X., Li, G. Y., & Qi, L. Q. (2008). Global convergence of the Polak-Ribiere-Polyak conjugate gradient method with an Armijo-type inexact line search for nonconvex unconstrained optimization problems. Mathematics of Computation, 77(264), 2173-2193. [274] Nazareth, J. L. (2009). Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics, 1(3), 348-353. [275] Fletcher, R., & Reeves, C. M. (1964). Function minimization by conjugate gradients. The Computer Journal, 7(2), 149-154. [276] Polak, E., & Ribiere, G. (1969). Note Sur la convergence de directions conjug`ees, Rev. Francaise Informat Recherche Operationelle. Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique, 3(R1), 35-43. [277] Polyak, B. T. (1969). The conjugate gradient method in extremal problems. USSR Computational Mathematics and Mathematical Physics, 9(4), 94-112. [278] Hestenes, M. R., & Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 49(6), 409-436. [279] Lasdon, L., Mitter, S., & Waren, A. (1967). The conjugate gradient method for optimal control problems. IEEE Transactions on Automatic Control, 12(2), 132-138. [280] Johnson, J. E., Takenaka, T., Ping, K. A. H., Honda, S., & Tanaka, T. (2009). Advances in the 3-D Forward-Backward Time-Stepping (FBTS) inverse scattering technique for breast cancer detection. IEEE Transactions on Biomedical Engineering, 56(9), 2232-2243. doi: 10.1109/tbme.2009.2022635
(1)
[1] A. Mikhaylov, "Geothermal Energy Development in Iceland," International Journal of Energy Economics and Policy, vol. 10, no. 4, pp. 31-35, 2020. [2] F. E. Abrahamsen, S. G. Ruud and A. Gebremedhin, "Moving Toward a Sustainable Energy System: A Case Study of Viken County of Norway," Energies, vol. 13, no. 22, 2020. [3] "Malaysian Investment Development Authority (MIDA)," 23 June 2021. [Online]. Available: https://www.mida.gov.my/mida-news/malaysiaaims- 31-re-capacity-by-2025/. [Accessed 2 November 2021]. [4] The Star, "Largest Solar Park in Malaysia Starts Operation," 5 December 2018. [Online]. Available: https://www.thestar.com.my/business/businessnews/ 2018/12/05/largest-solar-park-in-malaysia-starts-operation/. [Accessed 3 January 2022]. [5] M. Tabassum, S. Abul Kashem and M. B. M. Siddique, "Feasibility of using Photovoltaic (PV) technology to generate solar energy in Sarawak," in 2017 International Conference on Computer and Drone Applications (IConDA), Kuching, 2017. [6] "Sarawak Energy’s Batang Ai Solar Project Receives Sustainability & CSR Malaysia Award," Sarawak Energy, 7 January 2021. [Online]. Available: https://www.sarawakenergy.com/media-info/mediareleases/ 2021/sarawak-energys-batang-ai-solar-project-receivessustainability- csr-malaysia-award. [Accessed 5 November 2021]. [7] S. Sharma, K. K. Jain and A. Sharma, "Solar Cells: In Research and Application- A Review," Materials Sciences and Applications, vol. VI, no. 12, 2015. [8] A. M. Bagher, M. M. A. Vahid and M. Mohsen, "Types of Solar Cells and Application," American Journal of Optics and Photonics, vol. 3, no. 5, pp. 94-113, 2015. [9] M. Fogl and V. Moudry, "Influence of vegetation canopies on solar potential in urban environment," Applied Geography, vol. 66, pp. 73- 80, 2016. [10] K. Calbert and W. Mabee, "More solar farms or more bioenergy crops? Mapping and assessing potential land-use conflicts among renewable energy technologies in Eastern Ontario, Canada," Applied Geography, vol. 56, pp. 2019-221, 2015. [11] M. AG, J. Remund, S. Muller, M. Schmutz, D. Barsotti, P. Graf and R. Catin, "Meteonorm 8 Handbook Part II: Theory," Meteotest AG, 2021. [12] PVSyst, "General Description of the PVSyst Software, "2022. [Online].Available: https://www.pvsyst.com/help/general_descr.htm. [Accessed 17 January 2022]. [13] A. M. Khalid, I. Mitra, W. Warmuth and V. Schacht, "Performance ratio – Crucial parameter for grid connected PV plants," Renewable and Sustainable Energy Reviews, vol. 65, pp. 1139-1158, 2016.
(1)
1. A.M. Khorasani, I. Gibson, M. Goldberg, E.H. Doeven, and G. Littlefair, Investigation on the effect of cutting fluid pressure on surface quality measurement in high speed thread milling of brass alloy (C3600) and aluminium alloy (5083). Measurement, 2016. 82: p. 55-63. 2. A. Li, J. Zhao, H. Luo, Z. Pei, and Z. Wang, Progressive tool failure in high-speed dry milling of Ti-6Al-4V alloy with coated carbide tools. The International Journal of Advanced Manufacturing Technology, 2012. 58(5-8): p. 465-478. 3. J. Sun, S. Huang, H. Ding, and W. Chen, Cutting performance and wear mechanism of Sialon ceramic tools in high speed face milling GH4099. Ceramics International, 2019. 4. A. Çelik, M.S. Alağaç, S. Turan, A. Kara, and F. Kara, Wear behavior of solid SiAlON milling tools during high speed milling of Inconel 718. Wear, 2017. 378: p. 58-67. 5. N. Fang and Q. Wu, A comparative study of the cutting forces in high speed machining of Ti–6Al–4V and Inconel 718 with a round cutting edge tool. Journal of materials processing technology, 2009. 209(9): p. 4385-4389. 6. N.K. Maroju, D.P. Yan, B. Xie, and X. Jin, Investigations on surface microstructure in high-speed milling of Zr-based bulk metallic glass. Journal of Manufacturing Processes, 2018. 35: p. 40-50. 7. M. Albertí, J. Ciurana, and C. Rodriguez, Experimental analysis of dimensional error vs. cycle time in high-speed milling of aluminium alloy. International Journal of Machine Tools and Manufacture, 2007. 47(2): p. 236-246. 8. Z. Zhong, X. Ai, Z. Liu, J. Liu, and Q. Xu, Surface morphology and microcrack formation for 7050-T7451 aluminum alloy in high speed milling. The International Journal of Advanced Manufacturing Technology, 2015. 78(1-4): p. 281-296. 9. F. Díaz, R. Bolmaro, A. Guidobono, and E. Girini, Determination of residual stresses in high speed milled aluminium alloys using a method of indent pairs. Experimental mechanics, 2010. 50(2): p. 205-215. 10. X. Huang, J. Sun, J. Li, X. Han, and Q. Xiong, An experimental investigation of residual stresses in high-speed end milling 7050-T7451 aluminum alloy. Advances in Mechanical Engineering, 2013. 5: p. 592659. 11. Y. Ito, T. Kizaki, R. Shinomoto, M. Ueki, N. Sugita, and M. Mitsuishi, High-efficiency and precision cutting of glass by selective laser-assisted milling. Precision Engineering, 2017. 47: p. 498-507. 12. H. Attia, S. Tavakoli, R. Vargas, and V. Thomson, Laser-assisted high-speed finish turning of superalloy Inconel 718 under dry conditions. CIRP annals, 2010. 59(1): p. 83-88. 13. D.-H. Kim and C.-M. Lee, A study of cutting force and preheating-temperature prediction for laser-assisted milling of Inconel 718 and AISI 1045 steel. International Journal of Heat and Mass Transfer, 2014. 71: p. 264-274. 14. I.-W. Kim and C.-M. Lee, Investigation into the machining characteristics of AISI 1045 steel and Inconel 718 for an ellipsoidal shape using laser-assisted contouring and ramping machining. International Journal of Precision Engineering and Manufacturing, 2017. 18(9): p. 1231-1238. 15. S. Debnath, M.M. Reddy, and Q.S. Yi, Environmental friendly cutting fluids and cooling techniques in machining: a review. Journal of cleaner production, 2014. 83: p. 33-47. 16. B. Ozcelik, E. Kuram, M.H. Cetin, and E. Demirbas, Experimental investigations of vegetable based cutting fluids with extreme pressure during turning of AISI 304L. Tribology International, 2011. 44(12): p. 1864-1871. 17. R. Padmini, P.V. Krishna, and G.K.M. Rao, Effectiveness of vegetable oil based nanofluids as potential cutting fluids in turning AISI 1040 steel. Tribology International, 2016. 94: p. 490-501. 18. M. Bermingham, W. Sim, D. Kent, S. Gardiner, and M. Dargusch, Tool life and wear mechanisms in laser assisted milling Ti–6Al–4V. Wear, 2015. 322: p. 151-163. 19. M. Razfar, P. Sarvi, and M.A. Zarchi, Experimental investigation of the surface roughness in ultrasonic-assisted milling. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2011. 225(9): p. 1615-1620. 20. G.C. Verma and P.M. Pandey, Machining forces in ultrasonic-vibration assisted end milling. Ultrasonics, 2019. 94: p. 350-363. 21. M.M. bootorabi Zarchi, M.R. Razfar, and A. Abdullah, Investigation of the effect of cutting speed and vibration amplitude on cutting forces in ultrasonic-assisted milling. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012. 226(7): p. 1185-1191. 22. X.-H. Shen, J. Zhang, D.X. Xing, and Y. Zhao, A study of surface roughness variation in ultrasonic vibration-assisted milling. The International Journal of Advanced Manufacturing Technology, 2012. 58(5-8): p. 553-561. 23. G. Quintana, X. Gomez, J. Delgado, and J. Ciurana, Influence of cutting parameters on cycle time, surface roughness, dimensional error and cutting forces in milling operations on aluminium 6082 sculptured surface geometry. International Journal of Machining and Machinability of Materials, 2010. 8(3-4): p. 339-355. 24. H. Ding, N. Shen, and Y.C. Shin, Thermal and mechanical modeling analysis of laser-assisted micro-milling of difficult-to-machine alloys. Journal of Materials Processing Technology, 2012. 212(3): p. 601-613. 25. D. Sreehari and A.K. Sharma, On form accuracy and surface roughness in micro-ultrasonic machining of silicon microchannels. Precision Engineering, 2018. 53: p. 300-309. 26. Y. Uemura, K. Sasaki, K. Minami, T. Sato, P.-K. Choi, and S. Takeuchi, Observation of cavitation bubbles and acoustic streaming in high intensity ultrasound fields. Japanese Journal of Applied Physics, 2015. 54(7S1): p. 07HB05. 27. P.P. Shukla, J. Lawrence, and A. Paul, Influence of laser beam brightness during surface treatment of a ZrO2 engineering ceramic. Lasers in Engineering, 2011. 22: p. 151–173. 28. K. Tamrin, Y. Nukman, and N. Sheikh, Laser spot welding of thermoplastic and ceramic: An experimental investigation. Materials and Manufacturing Processes, 2015. 30(9): p. 1138-1145. 29. K. Tamrin, S. Zakariyah, and N. Sheikh, Multi-criteria optimization in CO2 laser ablation of multimode polymer waveguides. Optics and Lasers in Engineering, 2015. 75: p. 48-56. 30. E. Kuram, B. Ozcelik, and E. Demirbas, Environmentally friendly machining: vegetable based cutting fluids, in Green Manufacturing Processes and Systems. 2013, Springer. p. 23-47. 31. N.S.M. Yusof, B. Babgi, Y. Alghamdi, M. Aksu, J. Madhavan, and M. Ashokkumar, Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications. Ultrasonics sonochemistry, 2016. 29: p. 568-576. 32. C. Dowding and J. Lawrence, A Proposed Concept of a System for the Removal of Debris Produced During Laser Micromachining. Lasers in Engineering (Old City Publishing), 2010. 20: p. 65-85. 33. Y. Liao, H. Lin, and Y. Chen, Feasibility study of the minimum quantity lubrication in high-speed end milling of NAK80 hardened steel by coated carbide tool. International Journal of Machine Tools and Manufacture, 2007. 47(11): p. 1667-1676. 34. P. Shukla and J. Lawrence, Investigation of temperature distribution during CO2 laser and fibre laser processing of a Si3N4 engineering ceramic by means of a computational and experimental approach. Lasers in Engineering, 2014. 27(3-4): p. 135-160. 35. K. Venkatesan, The study on force, surface integrity, tool life and chip on laser assisted machining of inconel 718 using Nd: YAG laser source. Journal of advanced research, 2017. 8(4): p. 407-423. 36. J. Lawrence and D. Evans, An Analysis of Crack and Porosity Formation In Laser Surface Treated Magnesia Partially Stabilized Zirconia (MgO-PSZ) and Methods for Alleviation. Lasers in Engineering 2007. 17: p. 255-271. 37. H. Song, J. Dan, J. Li, J. Du, J. Xiao, and J. Xu, Experimental study on the cutting force during laser-assisted machining of fused silica based on the Taguchi method and response surface methodology. Journal of Manufacturing Processes, 2019. 38: p. 9-20. 38. E. Kuram, The effect of monolayer TiCN-, AlTiN-, TiAlN-and two layers TiCN+ TiN-and AlTiN+ TiN-coated cutting tools on tool wear, cutting force, surface roughness and chip morphology during high-speed milling of Ti6Al4V titanium alloy. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2018. 232(7): p. 1273-1286.
(1)
[1] A. M. Nesdi Evryliyan Rozanda, “Perbandingan Metode Hot Fit dan Tam dalam Mengevaluasi Penerapan Sistem Informasi Manajemen Kepegawaian (SIMPEG) (Studi Kasus : Pengadilan Tata Usaha Negara Pekanbaru),” Semin. Nas. Teknol. Informasi, Komun. dan Ind. 9, vol. ISSN 2579, pp. 18–19, 2017. [2] Y. Asdafi, “Perbandingan Metode UTAUT dengan TAM dalam Analisis Penerimaan Sistem Informasi Akademik di Kalangan Mahasiswa,” Prosiding, no. 0271, p. 719483, 2018. [3] N. I. dan H. F. Indriyanti, Tri Wahyuni, Erni Ermawati, “Analisis Perbandingan Metode TAM dan UTAUT dalam Mengukur Kesuksesan Penggunaan Aplikasi Ojek Online,” Semin. Nas. Inform. 2013, no. semnasIF, pp. 140–146, 2020. [4] A. J. S. Pujo Hari Saputro, A. Djoko Budiyanto, “Model Delone and Mclean untuk Mengukur Kesuksesan E-government Kota Pekalongan,” Sci. J. Informatics, vol. 2, no. 1, pp. 203–216, 2015. [5] M. B. Suryawan and P. Prihandoko, “Evaluasi Penerapan SIAKAD Politeknik Negeri Madiun Menggunakan Pendekatan TAM dan EUCS,” Creat. Inf. Technol. J., vol. 4, no. 3, p. 233, 2017, doi: 10.24076/citec.2017v4i3.113. [6] B. Santoso and Edwin Zusrony, “Analisis Persepsi Pengguna Aplikasi Payment Berbasis Fintech Menggunakan Technology Acceptance Model (Tam),” J. Teknol. Inf. Dan Komun., vol. 11, no. 1, pp. 49–54, 2020, doi: 10.51903/jtikp.v11i1.150. [7] A. Fitriana and I. Wingdes, “Analisis TAM Terhadap Faktor-Faktor yang Mempengaruhi Konsumen Menggunakan E-money Indomaret Card di Pontianak TAM Analysis of Factors That Influence Customers to Use Indomaret Card E-Money in Pontianak,” IJCCS ISSNTechno.COM, vol. 16, no. 4, pp. 401–410, 2017. [8] Megawati and R. Firnandi, “Analisis Perbandingan Metode TAM dan UTAUT dalam Mengevaluasi Penerimaan Pengguna Sistem Informasi Manajemen Rumah Sakit (SIMRS) (Studi Kasus: Rumah Sakit Jiwa Tampan Provinsi Riau),” Semin. Nas. Teknol. Informasi, Komun. dan Ind. 9, pp. 299– 307, 2017. [9] H. Ramadhani and S. Monalisa, “Analisis Penerapan Sistem Informasi Pengelolaan Nilai Raport Menggunakan Metode TAM,” J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 3, no. 2, pp. 65–69, 2017, [Online]. Available: http://ejournal.uin-suska.ac.id/index.php/RMSI/article/view/4303. [10] H. A. Kurniawati, A. Arif, and W. A. Winarno, “Analisis Minat Penggunaan Mobile Banking Dengan Pendekatan Technology Acceptance Model (TAM) Yang Telah Dimodifikasi,” e-Journal Ekon. Bisnis dan Akunt., vol. 4, no. 1, p. 24, 2017, doi: 10.19184/ejeba.v4i1.4563.
(1)
[1] A. Nanthanasit, “Approach Augmented Reality Real - time Rendering for Understanding Light and Shade in Art Education,” 2018 Int. Conf. Digit. Arts, Media Technol., pp. 71–74, 2018. [2] A. A. Kamal and S. N. Junaini, “The Effects Of Design-Based Learning In Teaching Augmented Reality For Pre-University Students In The ICT Competency Course,” Int. J. Sci. Technol. Res., vol. 8, no. 12, pp. 2726–2730, 2019. [3] E. A. Kyza, Y. Georgiou, M. Souropetsis, and A. Agesilaou, “Collecting ecologically valid data in location-aware augmented reality settings: A comparison of three data collection techniques,” Int. J. Mob. Blended Learn., vol. 11, no. 2, pp. 78–95, 2019. [4] A. Norlund, “The research field of reality environments in education,” Int. J. Mob. Blended Learn., vol. 11, no. 2, pp. 68–77, 2019. [5] I. Jalaluddin, L. Ismail, and R. Darmi, “Developing vocabulary knowledge among low achievers: Mobile augmented reality (MAR) practicality,” Int. J. Inf. Educ. Technol., vol. 10, no. 11, pp. 813–819, 2020. [6] S. Trista and A. Rusli, “Historiar: Experience indonesian history through interactive game and augmented reality,” Bull. Electr. Eng. Informatics, vol. 9, no. 4, pp. 1518–1524, 2020. [7] P. D. Petrov and T. V. Atanasova, “The Effect of augmented reality on students’ learning performance in stem education,” Inf., vol. 11, no. 4, 2020. [8] A. A. Gonzalez, P. A. Lizana, S. Pino, B. G. Miller, and C. Merino, “Augmented reality-based learning for the comprehension of cardiac physiology in undergraduate biomedical students,” Adv. Physiol. Educ., vol. 44, no. 3, pp. 314–322, 2020. [9] M. N. Wangid, H. E. Rudyanto, and Gunartati, “The Use of AR-assisted storybook to reduce mathematical anxiety on elementary school students,” Int. J. Interact. Mob. Technol., vol. 14, no. 6, pp. 195–204, 2020. [10] Z. Zhang, Z. Li, M. Han, Z. Su, W. Li, and Z. Pan, “An augmented reality-based multimedia environment for experimental education,” Multimed. Tools Appl., vol. 80, no. 1, pp. 575–590, 2021. [11] S. Cai, C. Liu, T. Wang, E. Liu, and J. C. Liang, “Effects of learning physics using Augmented Reality on students’ self-efficacy and conceptions of learning,” Br. J. Educ. Technol., vol. 52, no. 1, pp. 235–251, 2021. [12] L. Pombo and M. M. Marques, “The potential educational value of mobile augmented reality games: The case of edupark app,” Educ. Sci., vol. 10, no. 10, pp. 1–20, 2020. [13] H. C. K. Lin, Y. H. Lin, Y. M. Huang, T. H. Wang, and L. K. Su, “Effects of incorporating ar into a board game on learning outcomes and emotions in health education,” Electron., vol. 9, no. 11, pp. 1–15, 2020. [14] M. Nadeem, A. Chandra, A. Livirya, and S. Beryozkina, “AR-LaBOR: Design and assessment of an augmented reality application for lab orientation,” Educ. Sci., vol. 10, no. 11, pp. 1–30, 2020. [15] J. Fernandes, A. Teles, and S. Teixeira, “An augmented reality-based mobile application facilitates the learning about the spinal cord,” Educ. Sci., vol. 10, no. 12, pp. 1–18, 2020. [16] J. Jesionkowska, F. Wild, and Y. Deval, “Active learning augmented reality for steam education—a case study,” Educ. Sci., vol. 10, no. 8, pp. 1–15, 2020. [17] M. C. Costa, A. Manso, and J. Patrício, “Design of a mobile augmented reality platform with game-based learning purposes,” Inf., vol. 11, no. 3, pp. 1–19, 2020. [18] C. Erbas and V. Demirer, “The effects of augmented reality on students’ academic achievement and motivation in a biology course,” J. Comput. Assist. Learn., no. 4244, pp. 1–9, 2019. [19] K. Awang, S. N. W. Shamsuddin, I. Ismail, N. A. Rawi, and M. M. Amin, “The usability analysis of using augmented reality for linus students,” Indones. J. Electr. Eng. Comput. Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 9 http://journals.uob.edu.bh Sci., vol. 13, no. 1, pp. 58–64, 2019. [20] A. J. Moreno-Guerrero, S. A. García, M. R. Navas-Parejo, M. N. Campos-Soto, and G. G. García, “Augmented reality as a resource for improving learning in the physical education classroom,” Int. J. Environ. Res. Public Health, vol. 17, no. 10, 2020. [21] S. Cai, E. Liu, Y. Shen, C. Liu, S. Li, and Y. Shen, “Probability learning in mathematics using augmented reality: impact on student’s learning gains and attitudes,” Interact. Learn. Environ., vol. 28, no. 5, pp. 560–573, 2020. [22] M. Flores-Bascuñana, P. D. Diago, R. Villena-Taranilla, and D. F. Yáñez, “On augmented reality for the learning of 3D-geometric contents: A preliminary exploratory study with 6-grade primary students,” Educ. Sci., vol. 10, no. 1, 2020. [23] T. A. Vakaliuk, L. D. Shevchuk, and B. V. Shevchuk, “Possibilities of using AR and VR technologies in teaching mathematics to high school students,” Univers. J. Educ. Res., vol. 8, no. 11B, pp. 6280–6288, 2020. [24] O. S. Kaya and H. Bicen, “Study of augmented reality applications use in education and its effect on the academic performance,” Int. J. Distance Educ. Technol., vol. 17, no. 3, pp. 25–36, 2019. [25] R. O. Kellems, G. Cacciatore, and K. Osborne, “Using an Augmented Reality–Based Teaching Strategy to Teach Mathematics to Secondary Students With Disabilities,” Career Dev. Transit. Except. Individ., 2019. [26] N. I. N. Ahmad and S. N. Junaini, “Augmented Reality for Learning Mathematics: A Systematic Literature Review,” Int. J. Emerg. Technol. Learn., vol. 15, no. 16, pp. 106–122, 2020. [27] A. Yaacob, F. Zaludin, N. Aziz, N. Ahmad, N. A. Othman, and R. A. Muhamad Fakhruddin, “AUGMENTED REALITY (AR) FLASHCARDS AS A TOOL TO IMPROVE RURAL LOW ABILITY STUDENTS’ VOCABULARY,” Pract. Res. Vol 1 Pract. Res. Vol. 1, July, 2019, 2020. [28] D. B. Luh, E. C. Li, and C. C. Dai, “Game Factors Influencing Players to Continue Playing Online Pets,” IEEE Trans. Comput. Intell. AI Games, vol. 9, no. 3, pp. 267–276, 2017. [29] Y. Wang, P. Rajan, C. S. Sankar, and P. K. Raju, “Let Them Play: The Impact of Mechanics and Dynamics of a Serious Game on Student Perceptions of Learning Engagement,” IEEE Trans. Learn. Technol., vol. 10, no. 4, pp. 514–525, 2016. [30] Punchoojit Lumpapun and Hongwarittorrn Nuttanont, “Usability Studies on Mobile User Interface Design Patterns: A Systematic Literature Review,” Adv. Human-Computer Interact., vol. 2017, pp. 1–22, 2017.
(1)
[1] A. Nanthanasit, “Approach Augmented Reality Real - time Rendering for Understand-ing Light and Shade in Art Education,” 2018 Int. Conf. Digit. Arts, Media Technol., pp. 71–74, 2018. https://doi.org/10.1109/icdamt.2018.8376498 [2] A. A. Kamal and S. N. Junaini, “The effects of design-based learning in teaching aug-mented reality for pre-university students in the ict competency course,” Int. J. Sci. Technol. Res., vol. 8, no. 12, pp. 2726–2730, 2019. http://www.ijstr.org/final-print/dec2019/The-Effects-Of-Design-based-Learning-In-Teaching-Augmented-Reality-For-Pre-university-Students-In-The-Ict-Competency-Course.pdf [3] M. K. Bekele, R. Pierdicca, E. Frontoni, E. S. Malinverni, and J. Gain, “A survey of augmented, virtual, and mixed reality for cultural heritage,” Journal on Computing and Cultural Heritage, vol. 11, no. 2. 2018. https://doi.org/10.1145/3145534 [4] M. Wang, V. Callaghan, J. Bernhardt, et al., “Augmented reality in education and train-ing : pedagogical approaches and illustrative case studies,” J. Ambient Intell. Humaniz. Comput., vol. 9, no. 5, pp. 1391–1402, 2018. https://doi.org/10.1007/s12652-017-0547-8 [5] N. F. Saidin, N. D. A. Halim, and N. Yahaya, “A review of research on augmented re-ality in education: Advantages and applications,” Int. Educ. Stud., vol. 8, no. 13, pp. 1–8, 2015. https://doi.org/10.5539/ies.v8n13p1 [6] M. Ibáñez and C. Delgado-kloos, “Computers & Education Augmented reality for STEM learning : A systematic review,” Comput. Educ., vol. 123, no. April, pp. 109–123, 2018. https://doi.org/10.1016/j.compedu.2018.05.002 [7] M. M. O. da Silva, J. M. X. N. Teixeira, P. S. Cavalcante, and V. Teichrieb, “Perspec-tives on how to evaluate augmented reality technology tools for education: a systematic review,” J. Brazilian Comput. Soc., vol. 25, no. 1, 2019. https://doi.org/10.1186/s13173-019-0084-8 [8] A. Liberati et al., “The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elabora-tion.,” BMJ, vol. 339, 2009. http://doi.org/10.1371/journal.pmed.1000100 [9] E. Ibili, D. Resnyansky, and M. Billinghurst, “Applying the technology acceptance model to understand maths teachers’ perceptions towards an augmented reality tutoring system,” Educ. Inf. Technol., vol. 24, no. 5, pp. 2653–2675, 2019. https://doi.org/10.1007/s10639-019-09925-z [10] Z. Gecu-Parmaksiz and O. Delialioglu, “Augmented reality-based virtual manipulatives versus physical manipulatives for teaching geometric shapes to preschool children,” Br. J. Educ. Technol., vol. 50, no. 6, pp. 3376–3390, 2019. https://doi.org/10.1111/bjet.12740 [11] H. C. K. Lin, M. C. Chen, and C. K. Chang, “Assessing the effectiveness of learning solid geometry by using an augmented reality-assisted learning system,” Interact. Learn. Environ., vol. 23, no. 6, pp. 799–810, 2015. https://doi.org/10.1080/10494820.2013.817435 [12] Y. C. Chen, “Effect of Mobile Augmented Reality on Learning Performance, Motiva-tion, and Math Anxiety in a Math Course,” J. Educ. Comput. Res., vol. 57, no. 7, pp. 1695-1722, 2019. https://doi.org/10.1177/0735633119854036 [13] J. J. Nagata, J. García-Bermejo Giner, and F. M. Abad, “Augmented reality in pedestri-an navigation applied in a context of mobile learning: Resources for enhanced compre-hension of science, Technology, engineering and mathematics,” International Journal of Engineering Education, vol. 33, no. 2. pp. 768–780, 2017. https://www.ijee.ie/covers/covandabs33-2B.pdf [14] A. Cascales-Martínez, M. J. Martínez-Segura, D. Pérez-López, and M. Contero, “Using an augmented reality enhanced tabletop system to promote learning of mathematics: A case study with students with special educational needs,” Eurasia J. Math. Sci. Technol. Educ., vol. 13, no. 2, pp. 355–380, 2017. https://doi.org/10.12973/eurasia.2017.00621a [15] E. G. de Ravé, F. J. Jiménez-Hornero, A. B. Ariza-Villaverde, and J. Taguas-Ruiz, “DiedricAR: a mobile augmented reality system designed for the ubiquitous descriptive geometry learning,” Multimed. Tools Appl., vol. 75, no. 16, pp. 9641–9663, 2016. https://doi.org/10.1007/s11042-016-3384-4 [16] H. F. Hanafi, N. A. Zainuddin, M. F. N. L. Abdullah, and M. H. Ibrahim, “The effec-tiveness of teaching aid for a mathematics subject via mobile augmented reality (Mar) for standard six students,” Int. J. Recent Technol. Eng., vol. 7, no. 6, pp. 121–125, 2019. https://www.ijrte.org/wp-content/uploads/papers/v7i6s2/F10180476S219.pdf [17] I. Kazanidis and N. Pellas, “Developing and Assessing Augmented Reality Applications for Mathematics with Trainee Instructional Media Designers: An Exploratory Study on User Experience,” J. Univers. Comput. Sci. (J.UCS). Spec. issue “Immersive Learn. Technol. Res. Futur. Dir., vol. 25, no. 5, pp. 489–514, 2019. https://doi.org/10.3217/jucs-025-05-0489 [18] J. C. Sanabria and J. Arámburo-Lizárraga, “Enhancing 21st century skills with AR: Us-ing the gradual immersion method to develop collaborative creativity,” Eurasia J. Math. Sci. Technol. Educ., vol. 13, no. 2, pp. 487–501, 2017. https://doi.org/10.12973/eurasia.2017.00627a [19] A. Martin-Gonzalez, A. Chi-Poot, and V. Uc-Cetina, “Usability evaluation of an aug-mented reality system for teaching Euclidean vectors,” Innov. Educ. Teach. Int., vol. 53, no. 6, pp. 627–636, 2016. https://doi.org/10.1080/14703297.2015.1108856 [20] L. Medina Herrera, J. Castro Pérez, and S. Juárez Ordóñez, “Developing spatial math-ematical skills through 3D tools: augmented reality, virtual environments and 3D print-ing,” Int. J. Interact. Des. Manuf., vol. 13, no. 4, pp. 1385–1399, 2019. https://doi.org/10.1007/s12008-019-00595-2 [21] A. Buchori, P. Setyosari, I. Wayan Dasna, and S. Ulfa, “Mobile augmented reality me-dia design with waterfall model for learning geometry in college,” Int. J. Appl. Eng. Res., vol. 12, no. 13, pp. 3773–3780, 2017. https://www.ripublication.com/ijaer17/ijaerv12n13_29.pdf [22] R. Andrea, S. Lailiyah, F. Agus, and Ramadiani, “‘Magic Boosed’ an elementary school geometry textbook with marker-based augmented reality,” Telkomnika (Telecommuni-cation Comput. Electron. Control., vol. 17, no. 3, pp. 1242–1249, 2019. http://dx.doi.org/10.12928/telkomnika.v17i3.11559 [23] E. Demitriadou, K. Stavroulia, and A. Lanitis, “Comparative evaluation of virtual and augmented reality for teaching mathematics in primary education,” vol. 25, no. 1, pp. 381–401. Educ. Inf. Technol., 2019. https://doi.org/10.1007/s10639-019-09973-5 [24] R. O. Kellems, G. Cacciatore, and K. Osborne, “Using an Augmented Reality–Based Teaching Strategy to Teach Mathematics to Secondary Students With Disabilities,” Ca-reer Dev. Transit. Except. Individ., vol. 42, no. 4, pp. 253–258, 2019. https://doi.org/10.1177/2165143418822800 [25] S. Cai, E. Liu, Y. Yang, and J. C. Liang, “Tablet-based AR technology: Impacts on stu-dents’ conceptions and approaches to learning mathematics according to their self-efficacy,” Br. J. Educ. Technol., vol. 50, no. 1, pp. 248–263, 2019. https://doi.org/10.1111/bjet.12718 [26] M. C. Hsieh and S. H. Chen, “Intelligence augmented reality tutoring system for math-ematics teaching and learning,” J. Internet Technol., vol. 20, no. 5, pp. 1673–1681, 2019. http://doi.org/10.3966/160792642019092005031 [27] S. Cai, E. Liu, Y. Shen, C. Liu, S. Li, and Y. Shen, “Probability learning in mathematics using augmented reality: impact on student’s learning gains and attitudes,” Interact. Learn. Environ., vol. 0, no. 0, pp. 1–14, 2019. https://doi.org/10.1080/10494820.2019.1696839 [28] M. Hernández-Ordoñez, M. A. Nuño-Maganda, C. A. Calles-Arriaga, O. Montaño-Rivas, and K. E. Bautista Hernández, “An Education Application for Teaching Robot Arm Manipulator Concepts Using Augmented Reality,” Mob. Inf. Syst., vol. 2018, pp. 2653–2675, 2018. https://doi.org/10.1155/2018/6047034 [29] O. M. Aldalalah, Z. Ababneh, A. Bawaneh, and W. Alzubi, “Effect of Augmented Re-ality and Simulation on the Achievement of Mathematics and Visual Thinking Among Students,” Int. J. Emerg. Technol. Learn., vol. 14, no. 18, p. 164, 2019. https://doi.org/10.3991/ijet.v14i18.10748 [30] S. Nuanmeesri, “The augmented reality for teaching Thai students about the human heart,” Int. J. Emerg. Technol. Learn., vol. 13, no. 6, pp. 203–213, 2018. https://doi.org/10.3991/ijet.v13i06.8506 [31] L. D. Pratama and W. Setyaningrum, “GBL in math problem solving: Is it effective?,” Int. J. Interact. Mob. Technol., vol. 12, no. 6, pp. 101–111, 2018. https://doi.org/10.3991/ijim.v12i6.8658
(1)
1. Angarita, F., Valls, J., Almenar, V., & Torres, V. (2014). Reduced-complexity min-sum algorithm for decoding ldpc codes with low error-floor. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(7), 2150–2158. 2. Chen, J., Member, S., Fossorier, M. P. C., & Member, S. (2002). Near optimum universal belief propagation based decoding of low-density parity check codes. IEEE Transactions on Communications, 50(3), 406–414. 3. Ullah, W., Tao, J., & Fengfan, Y. (2011) Two-way normalization of min-sum decoding algorithm for medium and short length low density parity check codes, pp. 2–6. 4. Zhang, J., Fossorier, M., & Gu, D. (2006). Two-dimensional correction for min-sum decoding of irregular LDPC codes. IEEE Communications Letters, 10(3), 180–182. 5. Lechner, G., & Sayir, J. (2004). Improved sum-min decoding of LDPC codes, pp. 3–6. 6. Emran, A. A., & Elsabrouty, M. (2014). Simplified variablescaled min sum LDPC decoder for irregular LDPC codes. In Consum. Commun. Netw. Conf., pp. 526–531. 7. Wang, C. L., Chen, X., Li, Z., & Yang, S. (2013). A simplified min-sum decoding algorithm for non-binary LDPC codes. IEEE Transactions on Communications, 61(1), 24–32. 8. Xu, Y., Member, S., Szczecinski, L., Member, S., & Rong, B. (2014). Variable LLR scaling in min-sum decoding for irregular LDPC codes. IEEE Transactions on Broadcasting, 60(4), 606–613. 9. Chen, J. C. J., & Fossorier, P. M. C. (2002). Density evolution for BP-based decoding algorithms of LDPC codes and their quantized versions. In Glob. Telecommun. Conf. 2002. GLOBECOM’02 (Vol. 2, no. 5, pp. 1378–1382). IEEE. 10. Cheng, C. C., Yang, J. D., Lee, H. C., Yang, C. H., & Ueng, Y. L. (2014). A fully parallel LDPC decoder architecture using probabilistic min-sum algorithm for high-throughput applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(9), 2738–2746. 11. Lechner, G. (2006). Improved sum-min decoding for irregular LDPC codes. 12. Jung, Y., Jung, Y., Lee, S., & Kim, J. (2014). New min-sum LDPC decoding algorithm using SNR-considered adaptive scaling factors. Electronics and Telecommunications Research Institute Journal, 36(4), 591–598. 13. Islam, M. R., Shafiullah, D. S., Mostafa, M., Faisal, A., & Rahman, I. (2012). Optimized min-sum decoding algorithm for low density parity check codes. In 14th International Conference on Advanced Communication Technology, Vol. 2, no. 12, pp. 168–174. 14. Li, Y., Vucetic, B., Wong, T. F., Member, S., & Dohler, M. (2006). Distributed turbo coding with soft information relaying in multihop relay networks. IEEE Journal on Selected Areas in Communications, 24(11), 2040–2050. 15. Benjillali, M., & Szczecinski, L. (2009). A simple detect-andforward scheme in fading channels. IEEE Communications Letters, 13(5), 309–311. 16. Wang, H., Ma, S., & Ng, T. (2011). ‘‘On performance of cooperative communication systems with spatial random relays. IEEE Transactions on Communications, 59(4), 1190–1199. 17. Like, P., & W. Communications. (2003). Wireless antennas— making wireless communications, pp. 47–73. 18. Rappaport, T. S., et al. (1996). Wireless communications: principles and practice, Vol. 207, p. 736. 19. Bansal, J. C., Singh, P. K., Saraswat, M., Verma, A., Jadon, S. S., & Abraham, A. (2011). Inertia weight strategies in particle swarm, pp. 640–647. 20. Xu, M., Wu, J., & Zhang, M. (2010). A modified offset min-sum decoding algorithm for LDPC codes. In 2010 3rd International Conference on Computer Science and Information Technology, November, pp. 19–22.
(1)
1. Anonymous (2017) Indonesian man found dead in belly of 7m-long python. The Jakarta Post. Available on line at http://www.thejakartapost.com/news/2017/03/29/indonesian-man-founddead-in-belly-of-7m-long-python-.html. Accessed 8 Oct 2017 2. Anonymous (2018) Pope Francis compares fake news to snake in Garden of Eden. The Guardian, 24 January 2018. Accessed at https://www.theguardian.com/world/2018/jan/24/pope-francisfake-news-snake-garden-of-eden on 5 Dec 2018 3. Antoniou SA, Antoniou GA, Learney R, Granderath FA, Antoniou A (2011) The rod and the serpent: history’s ultimate healing symbol. World J Surg 35:217–221 4. Arizona Poison Control Center (2017). http://azpoison.com/venom/rattlesnakes. Accessed 19 June 2017 5. Bahá’í Reference Library (1976) Available via http://reference.bahai.org/en/t/c/BWF/bwf-72. html. Accessed 26 Sept 2017
(1)
1. Armstrong, D. (1991). What do patients want? British Medical Journal, 303(6797), 261-262. 2. Arora, N. K. (2003). Interacting with cancer patients: the significance of doctors’ communication behavior. Social Science & Medicine, 57(5), 791-806. 3. Baile, W. F., Buckman, R., Lenzi, R., Glober, G., Beale, E. A., & Kudelka, A. P. (2000). SPIKES—a six-step protocol for delivering bad news: application to the patient with cancer. The oncologist, 5(4), 302-311. 4. Bakker, D. A., Fitch, M. I., Gray, R., Reed, E., & Bennett, J. (2001). Patient–health care provider communication during chemotherapy treatment: the perspectives of women with breast cancer. Patient Education and Counseling, 43(1), 61-71. 5. Breslin, M. L., & Yee, S. (2009). The Current State of Health Care for People with Disabilities. National Council on Disability. 6. Brown, J. B., Stewart, M., & Ryan, B. L. (2003). Outcomes of patient-provider interaction. Handbook of health communication, 141-161. 7. Catherine Dingley, R. N., Kay Daugherty, R. N., & Mary, K. Improving Patient Safety Through Provider Communication Strategy Enhancements. 8. Chio, A., Montuschi, A., Cammarosano, S., De Mercanti, S., Cavallo, E., Ilardi, A., & Calvo, A. (2008). ALS patients and caregivers communication preferences and information seeking behaviour. European Journal of Neurology, 15(1), 55-60. 9. Collins, T. C., Clark, J. A., Petersen, L. A., & Kressin, N. R. (2002). Racial differences in how patients perceive physician communication regarding cardiac testing. Medical care, 40(1), I-27. 10. Cortes, D. E., Mulvaney-Day, N., Fortuna, L., Reinfeld, S., & Alegría, M. (2008). Patient–provider communication: Understanding the role of patient activation for Latinos in mental health treatment. Health Education & Behavior. , 36(1), 138-54. 11. De Negri, B., Brown, D. L., Hernández, O., Rosenbaum, J., & Roter, D. (1997). Improving interpersonal communication between health care providers and clients. Bethesda US, 3-59. 12. Deber, R. B. (1994). Physicians in health care management: 8. The patient-physician partnership: decision making, problem solving and the desire to participate. CMAJ: Canadian Medical Association Journal, 151(4), 423. 13. DiMatteo, M. R. (1998). The role of the doctor in the emerging health care environment. Western Journal of Medicine, 168(5), 328. 14. DiMatteo, M. R., Haskard-Zolnierek, K. B., & Martin, L. R. (2012). Improving patient adherence: a three-factor model to guide practice. Health Psychology Review, 6(1), 74-91. 15. Duffy, F. D., Gordon, G. H., Whelan, G., Cole-Kelly, K., & Frankel, R.(2004). Assessing competence in communication and interpersonal skills: the Kalamazoo II report. Academic Medicine, 79(6), 495-507. 16. Epstein, R. M. (2007). Assessment in medical education. New England Journal of Medicine, 356(4), 387-396. 17. Epstein, R. M., Franks, P., Fiscella, K., Shields, C. G., Meldrum, S. C., Kravitz, R. L., & Duberstein, P. R. (2005). Measuring patient-centered communication in patient– doctors consultations: theoretical and practical issues. Social science & medicine, 61(7), 1516-1528. 18. Fowler Jr, F. J., Collins, M. M., Albertsen, P. C., Zietman, A., Elliott, D. B., & Barry, M. J. (2000). Comparison of recommendations by urologists and radiation oncologists for treatment of clinically localized prostate cancer. Jama, 283(24), 3217-3222. 19. Goold, S. D., & Lipkin, M. (1999). The doctor–patient relationship. Journal of general internal medicine, 14(1), 26-33. 20. Ha, J. F., & Longnecker, N. (2010). Doctor-patient communication: a review. The Ochsner Journal, 10(1), 38-43. 21. Hottel, T. L., & Hardigan, P. C. (2005). Improvement in the interpersonal communication skills of dental students. Journal of Dental Education, 69(2), 281-284. 22. Jerant, A. F., von Friederichs-Fitzwater, M. M., & Moore, M. (2005). Patients’ perceived barriers to active self-management of chronic conditions. Patient education and counseling, 57(3), 300-307. 23. Kim, Y. M., Figueroa, M. E., Martin, A., Silva, R., Acosta, S. F., Hurtado, M. & Kols, A. (2002). Impact of supervision and self-assessment on doctor–patient communication in rural Mexico. International Journal for Quality in Health Care, 14(5), 359-367. 24. Knapp, M. L., & Daly, J. A. (Eds.). (2002). Handbook of interpersonal communication. 3rd Ed., Thousand Oaks, CA. Sage. 25. Koenig, H. G. (2013). Spirituality in patient care: Why, how, when, and what. Templeton Foundation Press 26. Koutsosimou, M., Adamidis, K., Liakos, A., & Mavreas, V. (2013). The Development of an Instrument for the Assessment of Doctor-Patient Relationship (Dopraq-16). J Psychol Psychother, 3(118), 2161-0487. 27. Krauss,R.M.& Fussell, S. R. (1996). Social Psychological Models of Interpersonal Communication. Social psychology: Handbook of basic principles, (655-701). New York: Guilford. 28. Krep.L.Gery. (1981). Interpersonal Communication in Interpersonal communication skills Care: Paper presented at the Annual Meeting of the Eastern Communication Association 76th, Providence, RI. 29. Kreps L.Gery. (1988). Relational communication in health care. Southern Speech Communication Journal, 53(4), 344-359. 30. Kreps, L.Gery. (2006). Communication and racial inequities in health care. American Behavioral Scientist, 49(6), 760-774. Patients' perspectives .Psycho‐Oncology, 11(3), 212-220. 31. Lanigan, R. L. (1992). The human science of communicology: A phenomenology of discourse in Foucault and Merleau-Ponty. Duquesne University Press. 32. Lasswell, H. D. (1948). The structure and function of communication in society. In L. Bryson (Ed.). The communication of ideas (37-51). New York: Institute for religious and social studies. 33. Levinson, W., Gorawara-Bhat, R., & Lamb, J. (2000). A study of patient clues and doctor responses in primary care and surgical settings. Jama, 284(8), 1021-1027. 34. Levinson, W., Lesser, C. S., & Epstein, R. M. (2010). Developing physician communication skills for patient-centered care. Health Affairs, 29(7), 1310-1318. 35. Levinson, W., Stiles, W. B., Inui, T. S., & Engle, R. (1993). Doctor frustration in communicating with patients. Medical Care, 31(4), 285-295. 36. Lisa Sparks L. (1998). Health care and care giving research, policy, and practice. Multi-disciplinary Coordinated Care giving: Professional Contributions. Springer. 37. Lovell, B. L., Lee, R. T., & Brotheridge, C. M. (2010). Doctor communication: barriers to achieving shared understanding and shared decision making with patients. Journal of Participation in Medicine, 2, 12. 38. Makoul, G. (2001). Essential elements of communication in medical encounters: the Kalamazoo consensus statement. Academic Medicine, 76(4), 390-393. 39. Martin, L. R., Williams, S. L., Haskard, K. B., & DiMatteo, M. R. (2005). The challenge of patient adherence. Therapeutics and clinical risk management, 1(3), 189. 40. Moñux, Y. R. L., Juan, L. C., Marcos, A. P., & Soler, M. L. M. (2014). Interpersonal relationships among hospital nurses and the use of communication skills. Texto & Contexto-Enfermagem, 23(3), 555-562. 41. Nicholas D D, Heiby J R, Hatzell T A (1991). The quality assurance project: introducing quality improvements to primary health care in lesser developed countries. Quality Assurance in Health Care 3, 147 65. 42. Ong, L. M., De Haes, J. C., Hoos, A. M., & Lammes, F. B. (1995) Doctor-patient communication: a review of the literature. Social science & medicine, 40(7), 903-918. 43. Parker, J., & Coiera, E. (2000). Improving Clinical Communication A View from Psychology. Journal of the American Medical Informatics Association, 7(5), 453-461. 44. Platt, F. W., & Keating, K. N. (2007). Differences in physician and patient perceptions of uncomplicated UTI symptom severity: understanding the communication gap. International journal of clinical practice, 61(2), 303-308. 45. Salmon, D. A., Sapsin, J. W., Teret, S., Jacobs, R. F., Thompson, J. W., Ryan, K., & Halsey, N. A. (2005). Public health and the politics of school immunization requirements. American Journal of Public Health, 95(5), 778. 46. Simpson, M., Buckman, R., Stewart, M., Maguire, P., Lipkin, M., Novack, D., & Till, J. (1991). Doctor-patient communication: The Toronto consensus statement. Bmj, 303(6814), 1385-1387. 47. Sitzia, J., & Wood, N. (1997). Patient satisfaction: a review of issues and concepts. Social science & medicine, 45(12), 1829-1843. 48. Smith RC, Lyles JS, Gardiner JC, Sirbu C, Hodges A, Collins C, Dwamena FC, Lein C, William Given C, Given B, Goddeeris J. (2006). Primary care clinicians treat patients with medically unexplained symptoms: a randomized controlled trial. Journal of General Internal Medicine, 21(7), 671-677. 49. Smith, J. A. (1996). Beyond the divide between cognition and discourse: Using interpretative phenomenological analysis in health psychology. Psychology and Health, 11(2), 261-271. 50. Stewart, M. (2003). Patient-centered medicine: transforming the clinical method. Radcliffe Publishing. 51. Street Jr, R. L., & Haidet, P. (2011). How well do doctors know their patients? Factors affecting doctor understanding of patients’ health beliefs. Journal of general internal medicine, 26(1), 21-27. 52. Street, R. L., Makoul, G., Arora, N. K., & Epstein, R. M. (2009). How does communication heal? Pathways linking clinician–patient communication to health outcomes. Patient education and counseling, 74(3), 295-301. 53. Tasaki, K., Maskarinec, G., Shumay, D. M., Tatsumura, Y., & Kakai, H. (2002). Communication between physicians and cancer patients about complementary and alternative medicine: exploring. 54. Thompson, L. L. (1991). Information exchange in negotiation. Journal of Experimental Social Psychology, 27(2), 161-179. 55. Travaline, J. M., Ruchinskas, R., & D'Alonzo, G. E. (2005). Patient-doctor communication: why and how. JAOA: Journal of the American Osteopathic Association, 105(1), 13-18. 56. WHO. (2007). Mental health: Strengthening mental health promotion. Retrieved from World Health Organization. http://www.who.int/mediacentre/factsheets/fs220/en/print.html.
(1)
1) Armstrong, S.P., Measuring trade and trade potential: A survey. Crawford School Asia Pacific Economic Paper, 2007(368). 2) Bergstrand, J.H., The Gravity Equation in International Trade: Some Microeconomic Foundations and Empirical Evidence. The Review of Economics and Statistics, 1985. 67(3): p. 474-481. 3) Chen, N., Analysis of the Correlation between Cross-Border E-Commerce and Economic Growth Based on Hierarchical Multilevel Gray Evaluation Model. Journal of Mathematics, 2022. 2022. 4) Chen, T.T., An Empirical Study on China's Assessment of the Cross-Border E-commerce Development Potential in ASEAN Countries under the Background of the Belt and Road Initiative: Based on a Two-Stage Trade Gravity Model. Journal of Commercial Economics, 2020(22): p. 80-83. 5) Derindağ, Ö.F., Rise of Cross-Border E-Commerce: A Systematic Literature Review. Journal of Applied and Theoretical Social Sciences, 2022. 4(3): p. 352-372. 6) Egger, P., an Econometric View on the Estimation of Gravity Models and the Calculation of Trade Potentials. The World Economy, 2002. 25(2): p. 297-312. 7) Gomez-Herrera, E., B. Martens, and G. Turlea, The drivers and impediments for cross-border e-commerce in the EU. Information Economics and Policy, 2014. 28: p. 83-96. 8) Hamilton, C., Opening up international trade in Eastern Europe, L.A. Winters, Editor. 1992, Institute for International Economic Studies: Stockholm:. DOI: 10.5281/zenodo.13986583 446 | V 1 9 . I 1 0 9) Han, J. and T. Lee, The Influence Factors of China’s Cross-Border E-Commerce Export Trade Using Gravity Model’. Journal of Korea Trade, 2022. 26(5): p. 56-75. 10) He, Y. and J. Wang, A Panel Analysis on the Cross Border E-commerce Trade: Evidence from ASEAN Countries. The Journal of Asian Finance, Economics and Business, 2019. 6: p. 95-104. 11) Hu, G.L., X.H. Lu, and L.H. Huang, An Essay on E-business Ecosystem and Its Evolutionary Path——With Focus on the Phenomenon of E-business Industrial Cluster in China. Economic Management Journal, 2009. 31(06): p. 110-116. 12) Huang, J., Research on the Evaluation of Cross-border E-commerce Development in Guangdong Province Based on Ecosystem Theory. 2019, South China University of Technology. 13) Jin, S. and X. Wang, Impact of cross-border e-commerce on China's aquatic product export, in Proceedings of the 2022 13th International Conference on E-business, Management and Economics. 2022, Association for Computing Machinery: Beijing, China. p. 67–71. 14) Kong, Q.F. and H.W. Dong, Trade Facilitation and Trade Potential of Countries along “One Belt One Road” Route. Journal of International Trade., 2015(12): p. 158-168. 15) Li, J.B., M.D. Chen, and C.L. Qin, Research on the Evaluation of the Development Level of China’s Cross�border E-commerce——Analysis based on Fuzzy Analytic Network Process. Price: Theory & Practice, 2020(11): p. 157-160. 16) Li, X.G. and Q.F. Wang, Research on Symbiotic Coupling Mode and Mechanism of Cross-border E�commerce Logistics Industry Chain based on Public Overseas Warehouse. China Business and Market, 2018. 32(09): p. 41-48. 17) Liu, H.H., Construction and Development Strategy of Cross-border E-commerce Ecosystem in Era of Digital Economy, in Proceedings of the 2021 7th International Conference on Education and Training Technologies. 2021, Association for Computing Machinery: Macau, China. p. 60–65. 18) Liu, Z.J., Research on Enterprise Ecological Networks Based on Industrial Clusters. Research on Economics and Management, 2006(01): p. 61-64. 19) Moore, J.F., The Decline of Competition: Leadership and Strategy in the Business Ecosystem Era. 1999: Beijing Publishing House. 20) Nazir, M.A. and R. Muhammad Azam, Barriers to Adopting Electronic Commerce for Small and Medium�sized Enterprises in Emerging Economies. Emerging Markets Journal, 2020. 10(2): p. 43-55. 21) Nilsson, L., Trade integration and the EU economic membership criteria. European Journal of Political Economy, 2000. 16(4): p. 807-827. 22) OECD, OECD Science, Technology and Industry Scoreboard 2007. 2007. 23) Poyhonen, P., A Tentative Model for the Volume of Trade between Countries. Weltwirtschaftliches Archiv, 1963. 90: p. 93-100. 24) Shen, H.H. and J. Chen, Empirical research of business development potentiality of cross border e commerce between China and the belt & road countries. Finance, 2020. 6(3): p. p1. 25) Shen, J.S., Research on the Development Potential of Cross border E-commerce between China and G20 Member States. 2023, Hebei University of Economics and Business. 26) Shu, T., Research on Sino-US Trade Efficiency and Potential Based on Stochastic Frontier Gravity Model. 2018, Shandong University. 27) Song, H.X., Research on the Development Potential of Cross-border E-commerce in China-ASEAN. 2021, Hebei University of Economics and Business. DOI: 10.5281/zenodo.13986583 447 | V 1 9 . I 1 0 28) Tansley, A.G., The Use and Abuse of Vegetational Concepts and Terms. Ecology, 1935. 16(3): p. 284-307. 29) Tinbergen, J., Shaping the World Economy: An Analysis of World Trade Flows. New York Twentieth Century Fund, 1962. 5(1): p. 27-30. 30) Villa, E., et al., Electronic Commerce: Factors Involved in its Adoption from a Bibliometric Analysis. Journal of theoretical and applied electronic commerce research, 2018. 13: p. 39-70. 31) Wang, G. and Z. Cao, An Empirical Study on the Trade Impact of Cross border E-commerce on ASEAN and China under the Framework of RECP. E3S Web of Conferences, 2021. 32) Wang, G. and Z. Cao. An Empirical Study on the Trade Impact of Cross border E-commerce on ASEAN and China under the Framework of RECP. In E3S Web of Conferences. 2021. EDP Sciences. 33) Wang, M. Impact of the Electronic Payment Environment of the Importing Country on China’s Export Trade: Based on Panel Data of the Five ASEAN Countries. In 5th International Conference on Economics, Management, Law and Education (EMLE 2019). 2020. Atlantis Press. 34) Wang, Z., Y.M. Chen, and M. Zhang, Measuring the Development of the Global Digital Economy: Stylized Facts Based on TIMG Index. Chinese Review of Financial Studies, 2021. 13(06): p. 40-56+118-119. 35) Yang, J.Z. and L. Yu, Analysis on the Cross-border E-commerce Application of China’s Foreign Trade Enterprises. Contemporary Economic Management, 2014. 36(06): p. 58-63. 36) Yang, J.Z., B.X. Zheng, and L.F. Yang, Research on Cross-border E-commerce Index System Based on Factor Analysis. Finance & Trade Economics, 2014(09): p. 94-102. 37) Zhang, B., X.J. Liu, and Z. Tao, The Study of Current Situation and Operation Pattern of the Cross-border E-commerce Logistics in Chin. China Business and Market, 2015. 29(01): p. 51-56. 38) Zhang, J.L., Y.Z. Zhang, and X.Q. Zhang, The current situation and potential evaluation of Sino-German bilateral trade based on gravity model. World Regional Studies, 2016. 25(06): p. 18-27. 39) Zhang, P.F. and Y.Y. Tang, The Impact of Digital Service Level on International Bilateral Trade along the Belt and Road——An Empirical Study Based on Asian Countries. Journal of Shanghai University of International Business and Economics, 2020. 27(03): p. 38-46. 40) Zhang, W.N., X.J. Lu, and M.H. Li, a Study of Factors That Affect the Development of China Cross-Border Electronic Commerce. Humanities & Social Sciences Journal of Hainan University, 2019. 37(03): p. 57-63. 41) Zhang, X., Effect of Silk Road Economic Belt Countries' Trade Facilitation on Chinese Mechanical and Electronic Export. 2020, Shandong University. 42) Zhang, X.H. and D.D. Li, Research on the Coupling Development of the Digital Economy, Cross-border E�commerce and Digital Trade——Application Prospect of Blockchain Technology Among Them. Theoretical Investigation, 2020(01): p. 115-121. 43) Zhang, X.H. and T.S. Ma, Difficulties and Countermeasures about China’s Cross-border E-commerce Logistics. Contemporary Economic Management, 2015. 37(05): p. 51-54. 44) Zhang, X.H., Construction Mechanism and Implementation Path of Cross Border E-Commerce Ecosystem. Contemporary Economic Management, 2021. 43(07): p. 55-60. 45) Zhang, Y.F. and C. Wang, Study on Cross-border E-commerce Export Trade Potential and Its Influencing Factors: An Empirical Test Based on Extended Trade Gravity Model. West Forum, 2019. 29(05): p. 85-92. 46) Zheng, C.F. and Y.Q. Zhang, Research on Influencing Factors and Potential of China’s Cross-Border E�Commerce Export. Journal of Graduate School of Chinese Academy of Social Sciences, 2021(04): p. 63-72
(1)
[1] A. Rode et al., “Estimating a social cost of carbon for global energy consumption,” Nature, vol. 598, no. 7880, pp. 308–314, Oct. 2021, doi: 10.1038/s41586- 021-03883-8. [2] V. S. Arutyunov and G. V Lisichkin, “Energy resources of the 21st century: problems and forecasts. Can renewable energy sources replace fossil fuels?,” Russ. Chem. Rev., vol. 86, no. 8, pp. 777–804, Aug. 2017, doi: 10.1070/RCR4723. [3] A. I. Alnahhal, A. Halal, and B. Plesz, “Thermal- Electrical Model of Concentrated Photovoltaic- Thermoelectric Generator Combined System for Energy Generation,” in 2022 28th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), Sep. 2022, pp. 1–4, doi: 10.1109/THERMINIC57263.2022.9950655. [4] M. Haryanti, W. Saputro, and B. Yulianti, “Thermoelectric Generator for Micropower Application Using Household Waste,” in 2022 International Conference on Informatics Electrical and Electronics (ICIEE), Oct. 2022, pp. 1–5, doi: 10.1109/ICIEE55596.2022.10010009. [5] H. Inokawa et al., “Substrate Bias Effect on SOIbased Thermoelectric Power Generator,” in 2021 17th International Conference on Quality in Research (QIR): International Symposium on Electrical and Computer Engineering, Oct. 2021, pp. 119–122, doi: 10.1109/QIR54354.2021.9716172. [6] M. N. Hasan, Y. M. Yunos, and M. S. M. Ali, “Structural Optimization of a Bismuth Telluride- Based Thermoelectric Generator Using Finite Element Analysis,” in 2021 IEEE International Power and Renewable Energy Conference (IPRECON), Sep. 2021, pp. 1–4, doi: 10.1109/IPRECON52453.2021.9640629. [7] D. Luo, Z. Sun, and R. Wang, “Performance investigation of a thermoelectric generator system applied in automobile exhaust waste heat recovery,” Energy, vol. 238, p. 121816, Jan. 2022, doi: 10.1016/j.energy.2021.121816. [8] W. N. Septiadi, G. A. Iswari, M. A. Rofiq, B. Gitawan, J. M. Gugundo, and C. A. Duga Purba, “Output voltage characteristic of heat pipe sink thermoelectric generator with exhaust heat utilization of motorcycles,” IOP Conf. Ser. Earth Environ. Sci., vol. 105, p. 012129, Jan. 2018, doi: 10.1088/1755- 1315/105/1/012129. [9] Rimbawati, B. Prandika, and Cholish, “Rancang Bangun Sistem Konversi Energi Panas Api,” J. Ilm. Pendidik. Tek. Elektro, vol. 6, no. 1, pp. 1–8, 2022. [10] R. I. Smith and M. L. Johnston, “Analysis of Skin- Worn Thermoelectric Generators for Body Heat Energy Harvesting to Power Wearable Devices,” in 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Nov. 2021, pp. 7158–7161, doi: 10.1109/EMBC46164.2021.9629473. [11] J. Wang, L. Zhang, L. Wang, W. Lei, and Z. Wu, “Two‐dimensional Boron Nitride for Electronics and Energy Applications,” ENERGY Environ. Mater., vol. 5, no. 1, pp. 10–44, Jan. 2022, doi: 10.1002/eem2.12159. [12] H. Jouhara et al., “Thermoelectric generator (TEG) technologies and applications,” Int. J. Thermofluids, vol. 9, p. 100063, Feb. 2021, doi: 10.1016/j.ijft.2021.100063. [13] Rudra Prasad Nanda, “RENEWABLE USE OF WASTE HEAT AND CURRENT USING THERMO ELECTRIC,” Ind. Eng. J., vol. 52, no. 3, pp. 634–640, 2023. [14] M. Abrar, “Studi Karakterisasi Modul Generator Thermoelektrik Tipe SP184827145SA,” Undergrad. thesis, Inst. Teknol. Sepuluh Nop. Surabaya., p. 23, 2016. [15] M. Zairi, “Thermoelectric Cooler,” Meas. Perform. Bus. Results, pp. 242–246, 1994, doi: 10.1007/978-94- 011-1302-1_22. [16] ESP8266 Datasheet, “ESP8266EX Datasheet,” Espr. Syst. Datasheet, pp. 1–31, 2015, [Online]. Available: https://www.adafruit.com/images/productfiles/ 2471/0A-ESP8266__Datasheet__EN_v4.3.pdf. [17] C. Mr- et al., “Relay Module 2 Channel,” Int. J. Control. Autom. Commun. Syst., vol. 1, no. 2, pp. 9– 10, 2020, [Online]. Available: https://randomnerdtutorials.com/complete-guide-forultrasonic- sensor-hc-sr04/%0Ahttps://bcrobotics. com/tutorials/controlling-a-solenoid-valvewith- arduino/%0Ahttps://www.bcrobotics. com/tutorials/controlling-a-solenoid-valvewith- arduino/%0Ahttps://compo. [18] H. Temperature and R. Above, “Series : Hse-Bx-045H │ Description : Heat Sink Performance Curves ( Continued ) Hse-B508-045H,” pp. 5–10, 2017.
(1)
[1] Aroian, K. J., Hough, E.S., Templin, T. N., and Kaskiri, E. A. (2008) Development and psychometric evaluation of an Arab version of the Family Peer Relationship Questionnaire. Research in Nursing and Health, 31:402–416. [PubMed: 18389498] [2] Aronson, M. A. (1953). A study of the relationships between certain counsellor and client characteristics in client-centered therapy. In W. U. Snyder (Ed.), Report of a Program of Research in Psychotherapy, 39-54. [3] Othman, A., and Abdullah, S. S. (2015). Counselling in Malaysia: Trends and practice with the Malays. International Journal of Business and Applied Social Science, 1(1), 1 – 10. [4] Bandura, A., (1977). Self-efficacy: Toward a theory of behavioural change. Psychological Review 84(2), 191-215. [5] Board of Counselor. (2011). Code of Ethics: Kuala Lumpur: Publishers of Malaysian Board of Counselor [6] Counsellor Act 1998 (Act 580) and Regulations. (1998). Kuala Lumpur: Law Revision Commissioner of Malaysia in Collaboration with the Malaysian National Printing Bhd. [7] Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297-334. [8] Eriksen, K., and McAuliffe, G. (2003). A measure of counselor competency. Counselor Education and Supervision, 43(2), 120-133. [9] Gonzalez, V. M., Stewart, A., Ritter, P. L., and Lorig, K. (1995). Translation and validation of arthritis outcome measures into Spanish. Arthritis and Rheumatism 38, 1429–1446. [PubMed: 7575693] [10] Green, M., and Piel, J. A. (2009). Theories of human development: A comparative approach (2nd ed.). Prentice-Hall
(1)
1. Asad S, Mathai J, Laird D, Ong N, Buckingham L (2015) Preliminary herpetofaunal inventory of a logging concession in the Upper Baram, Sarawak, Borneo. Herpetological Review 46: 64–68. 2. Brygoo ER (1987): Les Ophisaurus (Sauria: Anguidae) d’Asie orientale. Bulletin du Muséum National d’Histoire Naturelle, Paris, 4e ser., 9: 727–752. 3. Büttikofer J (1897) Zoological results of the Dutch scientific expedition to central Borneo. Notes Leyden Mus. 19: 1–25. [1 map] 4. Chua EK (2004) Borneo’s tropical Eden. Sabah. Simply Green, Singapore, 255 pp. 5. Chua EK, Kon B (1996) The heath forests of Sabah’s Long Pasia. Nature Watch, Singapore 4(3): 14–19.
(1)
1. Asch DA, Nicholson S, Srinivas SK, Herrin J and Epstein AJ. How do you deliver a good obstetrician? Outcome-based evaluation of medical education. Acad Med 2014; 89(1): 24-6. 2. Preston R, Gratani M, Owens K, Roche P, Zimanyi M and MalauAduli B. Exploring the impact of assessment on medical students’ learning. Assess Eval Higher Educ 2020; 45(1): 109-24. 3. Majumder MAA, Kumar A, Krishnamurthy K, Ojeh N, Adams OP and Sa B. An evaluative study of objective structured clinical examination (OSCE): Students and examiners perspectives. Adv Med Educ Pract 2019; 10: 387-97. 4. Asani M. Assessment methods in undergraduate medical schools. Niger J Basic Clin Sci 2012; 9(2): 53-60. 5. FMHS UNIMAS. Medical handbook, 2019-2020. Sarawak, Malaysia Universiti Malaysia Sarawak; 2020. 6. Van der Vleuten C. Validity of final examinations in undergraduate medical training. BMJ 2000; 321(7270): 1217-9. 7. IBM SPSS Statistics for Windows (computer program). Version 27. Armonk, New York, USA: IBM SPSS; 2020. 8. Pickering SG. Against multiple choice questions. Med Teach 1979; 1(2): 84-6. 9. Burton RF. Multiple‐choice and true/false tests: Myths and misapprehensions. Assess Eval Higher Educ 2005; 30(1): 65-72. 10. Paniagua MA and Swygert KA. Constructing written test questions for the basic and clinical sciences. Philadelphia PA: National Board of Medical Examiners, USA; 2016.
(1)
[1] A. S. Gentzke et al., "Vital Signs: Tobacco Product Use Universal Journal of Public Health 12(4): 687-696, 2024 695 Among Middle and High School Students - United States, 2011-2018," MMWR Morb Mortal Wkly Rep, vol. 68, no. 6, pp. 157-164, 2019.https://doi.org/10.15585/mmwr.mm680 6e1 [2] US Department of Health, "E-cigarette use among youth and young adults : a report of the Surgeon General,," U.S. Department of Health and Human Services, Public Health Service,, Rockville, MD, Atlanta, GA, 2016. [Online]. Available: https://e-cigarettes.surgeongeneral.gov/docume nts/2016_sgr_full_report_non-508.pdf.https://doi.org/. [On line]. Available: https://e-cigarettes.surgeongeneral.gov/do cuments/2016_sgr_full_report_non-508.pdf [3] M. B. Drummond and D. Upson, "Electronic cigarettes. Potential harms and benefits," (in eng), Ann Am Thorac Soc, vol. 11, no. 2, pp. 236-42, 2014. https://doi.org/10.1513/A nnalsATS.201311-391FR [4] P. Marques, L. Piqueras, and M.-J. Sanz, "An updated overview of e-cigarette impact on human health," Respiratory Research, vol. 22, no. 1, p. 151, 2021. https://doi.org/10.1186/s12931-021-01737-5 [5] A. M. Barbeau, J. Burda, and M. Siegel, "Perceived efficacy of e-cigarettes versus nicotine replacement therapy among successful e-cigarette users: a qualitative approach," (in eng), Addict Sci Clin Pract, vol. 8, no. 1, p. 5, 2013. https://doi.org/10.1186/1940-0640-8-5 [6] A. McQueen, S. Tower, and W. Sumner, "Interviews with "vapers": implications for future research with electronic cigarettes," (in eng), Nicotine Tob Res, vol. 13, no. 9, pp. 860-7, 2011. https://doi.org/10.1093/ntr/ntr088 [7] J. K. Pepper, K. M. Ribisl, S. L. Emery, and N. T. Brewer, "Reasons for starting and stopping electronic cigarette use," (in eng), Int J Environ Res Public Health, vol. 11, no. 10, pp. 10345-61, 2014. https://doi.org/10.3390/ijerph111010345 [8] D. Kale and A. Pickering, "Electronic cigarette use among adult smokers: longitudinal associations with smoking and trait impulsivity," Journal of Substance Use, pp. 1-8, 2023. https://doi.org/10.1080/14659891.2023.2275015 [9] R. I. Mohd Amir, I. H. Mohd, S. Saad, S. A. Abu Seman, and T. B. H. Tuan Besar, "Perceived Ease of Use, Perceived Usefulness, and Behavioral Intention: The Acceptance of Crowdsourcing Platform by Using Technology Acceptance Model (TAM)," in Charting a Sustainable Future of ASEAN in Business and Social Sciences, N. Kaur and M. Ahmad Eds. Singapore: Springer Singapore, 2020, pp. 403-410. https://doi.org/10.1007/978-981-15-3859-9_34 [10] M. Sheppard and C. Vibert, "Re-examining the relationship between ease of use and usefulness for the net generation," Education and Information Technologies, vol. 24, no. 5, pp. 3205-3218, 2019. https://doi.org/10.1007/s10639-019-099 16-0 [11] I. Ajzen, "The theory of planned behavior," Organizational Behavior and Human Decision Processes, vol. 50, no. 2, pp. 179-211, 1991. https://doi.org/10.1016/0749-5978(91)900 20-t [12] T. J. Madden, P. S. Ellen, and I. Ajzen, "A comparison of the theory of planned behavior and the theory of reasoned action," Personality and social psychology Bulletin, vol. 18, no. 1, pp. 3-9, 1992. https://doi.org/10.1177/01461672921 81 [13] P. Driezen et al., "E-cigarette prevalence among Malaysian adults and types and flavors of e-cigarette products used by cigarette smokers who vape: Findings from the 2020 ITC Malaysia Survey," (in eng), Tob Induc Dis, vol. 20, p. 32, 2022. https://doi.org/10.18332/tid/146363 [14] Institute for Public Health, National Institutes of Health, and Ministry of Health Malaysia, "Survey Among Malaysian Adolescents (TECMA)," p. 148, 2016. [Online]. Available:https://iku.moh.gov.my/images/IKU/Document/ REPORT/TECMA2016/TabaccoandECigarette.pdf [15] James R L, "Comparison of Four TAM Item Formats: Effect of Response Option Labels and Order," Journal of Usability Studies, vol. 14, no. 4, pp. 224-236, 2019. [Online]. Available: https://dl.acm.org/doi/abs/10.5555/35 42805.3542809 [16] E. E. A. Simpson et al., "Employing the theory of planned behaviour to design an e-cigarette education resource for use in secondary schools," (in eng), BMC Public Health, vol. 22, no. 1, p. 276, Feb 11 2022. https://doi.org/10.1186/s12 889-022-12674-3 [17] O. Khosravizadeh, B. Ahadinezhad, S. Shahsavari, M. Ghiasvand, and M. Mehri, "Role of organizational silence in the professional performance of frontline staff in the hospital structure: a path analysis," Journal of Health Reports and Technology, vol. 8, no. 2, p. e121301, 2022. https://doi.org/10.5812/ijhls.121301 [18] J. F. Hair Jr, L. M. Matthews, R. L. Matthews, and M. Sarstedt, "PLS-SEM or CB-SEM: updated guidelines on which method to use," International Journal of Multivariate Data Analysis, vol. 1, no. 2, pp. 107-123, 2017. https://doi.org/10.1504/IJMDA.2017.087624 [19] R. A. Van Griethuijsen et al., "Global patterns in students’ views of science and interest in science," Research in science education, vol. 45, pp. 581-603, 2015. https://doi.org/10.1007/s11165-014-9438-6 [20] R. B. Kline, Principles and practice of structural equation modeling. Guilford publications, 2023. [21] J. Henseler, C. M. Ringle, and M. Sarstedt, "A new criterion for assessing discriminant validity in variance-based structural equation modeling," Journal of the academy of marketing science, vol. 43, pp. 115-135, 2015. https://doi.org/10.1007/s11747-014-0403-8 [22] D. Alarcón, J. A. Sánchez, and U. De Olavide, "Assessing convergent and discriminant validity in the ADHD-R IV rating scale: User-written commands for Average Variance Extracted (AVE), Composite Reliability (CR), and Heterotrait-Monotrait ratio of correlations (HTMT)," in Spanish STATA meeting, 2015, vol. 39, pp. 1-39. [23] C. DiStefano and G. B. Morgan, "A comparison of diagonal weighted least squares robust estimation techniques for ordinal data," Structural Equation Modeling: A multidisciplinary journal, vol. 21, no. 3, pp. 425-438, 2014. https://doi.org/10.1080/10705511.2014.915373 [24] C.-X. Kou and Y.-H. Dai, "A modified self-scaling memoryless Broyden–Fletcher–Goldfarb–Shanno method for unconstrained optimization," Journal of Optimization Theory and Applications, vol. 165, pp. 209-224, 2015. https://doi.org/10.1007/s10957-014-0528-4 696 Structural Pathway of Use of Electronic Cigarettes among Adult Cigarette Smokers: A Cross-Sectional Study in Samarahan and Kuching Division, Sarawak [25] J. F. Hair, M. C. Howard, and C. Nitzl, "Assessing measurement model quality in PLS-SEM using confirmatory composite analysis," Journal of Business Research, vol. 109, pp. 101-110, 2020. https://doi.org/10.1 016/j.jbusres.2019.11.069 [26] H.-Y. Lee, H.-C. Lin, D.-C. Seo, and D. K. Lohrmann, "The effect of e-cigarette warning labels on college students' perception of e-cigarettes and intention to use e-cigarettes," Addictive behaviors, vol. 76, pp. 106-112, 2018. https://doi.org/10.1016/j.addbeh.2017.07.033 [27] J. C. Duke, J. Allen, M. E. Eggers, J. M. Nonnemaker, and M. C. Farrelly, "Exploring Differences in Youth Perceptions of the Effectiveness of Electronic Cigarette Television Advertisements," Nicotine & tobacco research, vol. 18, no. 5, pp. 1382-1386, 2016. https://doi.org/10.109 3/ntr/ntv264 [28] T. B. Noel et al., "Impact of e-cigarette health warnings on motivation to vape and smoke," Tobacco Control, vol. 28, no. e1, p. e64, 2019. https://doi.org/10.1136/tobaccocontro l-2018-054878 [29] D. Chao, H. Hashimoto, and N. Kondo, "Social influence of e-cigarette smoking prevalence on smoking behaviours among high-school teenagers: Microsimulation experiments," PloS one, vol. 14, no. 8, p. e0221557, 2019. https://doi.org/10.1371/journal.pone.0221557 [30] M. Qi, J. Cui, X. Li, and Y. Han, "Perceived Factors Influencing the Public Intention to Use E-Consultation: Analysis of Web-Based Survey Data," (in eng), J Med Internet Res, vol. 23, no. 1, p. e21834, 2021. https://doi.org/10.2196/21834 [31] M. Morgenstern, A. Nies, M. Goecke, and R. Hanewinkel, "E-Cigarettes and the Use of Conventional Cigarettes," (in eng), Dtsch Arztebl Int, vol. 115, no. 14, pp. 243-248, 2018. https://doi.org/10.3238/arztebl.2018.0243 [32] National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health, "E-Cigarette Policy and Practice Implications " in E-Cigarette Use Among Youth and Young Adults: A Report of the Surgeon General. Atlanta (GA): Centers for Disease Control and Prevention (US), 2016, ch. 5. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK5386 82/ [33] S. A. Glantz and D. W. Bareham, "E-Cigarettes: Use, Effects on Smoking, Risks, and Policy Implications," (in eng), Annu Rev Public Health, vol. 39, pp. 215-235, Apr 1 2018. https://doi.org/10.1146/annurev-publhealth-040617- 013757 [34] L. Xiao et al., "Awareness and prevalence of e-cigarette use among Chinese adults: policy implications," Tobacco Control, vol. 31, no. 4, p. 498, 2022. https://doi.org/10.113 6/tobaccocontrol-2020-056114
(1)
1. Ashton PS. 1963. Taxonomic notes on Bornean Dipterocarpaceae. Gardens’ Bulletin Singapore 20(3): 229–284. 2. Ashton PS. 1982. Dipterocarpaceae. In: van Steenis CGGJ [ed.], Flora Malesiana, Series I, Spermatophyta 9(2): 237–552 & 561–562. The Hague, Nijhoff, 3. Ashton PS. 2004. Dipterocarpaceae. In: E. Soepadmo, L.G. Saw & RCK. Chung [eds], The Tree Flora of Sabah and Sarawak 5, 62–388 & 485–486. Forest Research Institute Malaysia (FRIM), Sabah Forestry Department, Malaysia, Sarawak Forestry Department, Malaysia. 4. Balgooy MMJ van, Low YW, Wong KM. 2015. SpotCharacters for the Identification of Malesian Seed Plants, A Guide. Kota Kinabalu, Natural History Publications (Borneo). 5. Beccari O 1884–1886. Piante ospitatrici, ossia piante formicarie della Malesia e della Papuasia. Malesia (Genoa) vol. II, fasc. 1–2 (1884), fasc. 3 (1885), fasc. 2 (1886).
(1)
1. Assefa, S., & Tadesse, S. (2019). The principal role of organic fertilizer on soil properties and agricultural productivity review. Agricultural Resource and Technology: Open Access Journal, 22, 2, 556192. 2. Chen, Z., & Jiang, X. (2014). Microbiological safety of chicken litter or chicken litter-based organic fertilizers: a review. Agriculture, 4, 1, 1-29. 3. Kasso, M., & Balakrishnan, M. (2013). Ecological and economic importance of bats (Order Chiroptera). International Scholarly Research Notices, 2013. 4. Khandaker, M. M., Rohani, F., Dalorima, T., & Mat, N. (2017). Effects of different organic fertilizers on growth, yield and quality of Capsicum annuum L. Var. Kulai (Red Chilli Kulai). Biosciences Biotechnology Research Asia, 14, 1, 185-192. 5. Linn, K. Z., & Myint, P. P. (2018). Study on the effectiveness of natural organic fertilizers on cassava (Manihot esculenta Crantz.) cultivation. Asian Journal of Soil Science and Plant Nutrition, 1-10. 6. Oo, A. L., Khine, T. M., & Aye, T. T. Preparation and characterization of organic fertilizers made from bat guano, rice husk ash and groundnut leaves. Journal Myanmar Academy of Arts and Sciences, 17, 1B, 393-405. 7. Poliquit, D., & Calong, E. (2018). Bat guano levels of application influencing carrot (Daucus carota L.) growth and yield performance. Countryside Development Research Journal, 6, 1, 23-29. 8. Sakoui, S., Derdak, R., Addoum, B., Serrano-Delgado, A., Soukri, A., & El Khalfi, B. (2020). The life hidden inside caves: Ecological and economic importance of bat guano. International Journal of Ecology, 2020. 9. Schröder, J. (2005). Revisiting the agronomic benefits of manure: a correct assessment and exploitation of its fertilizer value spares the environment. Bioresource Technology, 96, 2, 253- 261. 10. Shetty, S., Sreepada, K. S., & Bhat, R. (2013). Effect of bat guano on the growth of Vigna radiata L. International Journal of Scientific and Research Publications, 3, 3, 1-8.
(1)
[1] A. Syafiuddin, S. Salmiati, T. Hadibarata, A. B. H. Kueh, M. R. Salim, and M. A. A. Zaini, “Silver Nanoparticles in the Water Environment in Malaysia: Inspection, characterization, removal, modeling, and future perspective,” Sci. Rep., vol. 8, no. 1, p. Article 986, 2018, doi: 10.1038/s41598-018-19375-1. [2] A. Syafiuddin, T. Hadibarata, A. Beng Hong Kueh, and M. Razman Salim, “Novel weed-extracted silver nanoparticles and their antibacterial appraisal against a rare bacterium from river and sewage treatment plan,” Nanomaterials, vol. 8, no. 1, pp. 1–9, 2018, doi: 10.3390/nano8010009. [3] Z. Z. Loh et al., “Shifting from Conventional to Organic Filter Media in Wastewater Biofiltration Treatment: A Review,” Appl. Sci., vol. 11, no. 18, p. 8650, 2021, doi: 10.3390/app11188650. [4] A. Ratnasari, A. Syafiuddin, A. B. H. Kueh, S. Suhartono, and T. Hadibarata, “Opportunities and Challenges for Sustainable Bioremediation of Natural and Synthetic Estrogens as Emerging Water Contaminants Using Bacteria, Fungi, and Algae,” Water, Air, Soil Pollut., vol. 232, no. 6, pp. 1–23, 2021, doi: 10.1007/s11270-021-05183-3. [5] M. Kurokawa, P. M. King, X. Wu, E. M. Joyce, T. J. Mason, and K. Yamamoto, “Effect of sonication frequency on the disruption of algae,” Ultrason. Sonochem., vol. 31, pp. 157–162, 2016, doi: 10.1016/j.ultsonch.2015.12.011. [6] C. Liu, J. Wang, Z. Cao, W. Chen, and H. Bi, “Variation of dissolved organic nitrogen concentration during the ultrasonic pretreatment to Microcystis aeruginosa,” Ultrason. Sonochem., 6 vol. 29, pp. 236–243, 2016, doi: 10.1016/j.ultsonch.2015.09.017. [7] X. Tan, D. Zhang, K. Parajuli, S. Upadhyay, Y. Jiang, and Z. Duan, “Comparison of four quantitative techniques for monitoring microalgae disruption by low-frequency ultrasound and acoustic energy efficiency,” Environ. Sci. Technol., vol. 52, no. 5, pp. 3295–3303, 2018, doi: 10.1021/acs.est.7b05896. [8] S. Gao, Y. Hemar, M. Ashokkumar, S. Paturel, and G. D. Lewis, “Inactivation of bacteria and yeast using high-frequency ultrasound treatment,” Water Res., vol. 60, pp. 93–104, 2014, doi: 10.1016/j.watres.2014.04.038. [9] S. Vajnhandl, T. Željko, A. Majcen Le Marechal, and J. V. Valh, “Feasibility study of ultrasound as water disinfection technology,” Desalin. Water Treat., vol. 55, no. 5, pp. 1393–1399, 2015, doi: 10.1080/19443994.2014.927331. [10] H. Zou and L. Wang, “The disinfection effect of a novel continuous-flow water sterilizing system coupling dual-frequency ultrasound with sodium hypochlorite in pilot scale,” Ultrason. Sonochem., vol. 36, pp. 246–252, 2017, doi: 10.1016/j.ultsonch.2016.11.041. [11] S. Gao, Y. Hemar, G. D. Lewis, and M. Ashokkumar, “Inactivation of Enterobacter aerogenes in reconstituted skim milk by high-and low-frequency ultrasound,” Ultrason. Sonochem., vol. 21, no. 6, pp. 2099–2106, 2014, doi: 10.1016/j.ultsonch.2013.12.008. [12] E. Joyce, A. Al‐Hashimi, and T. J. Mason, “Assessing the effect of different ultrasonic frequencies on bacterial viability using flow cytometry,” J. Appl. Microbiol., vol. 110, no. 4, pp. 862–870, 2011, doi: 10.1111/j.1365-2672.2011.04923.x. [13] A. Al Bsoul, J.-P. Magnin, N. Commenges-Bernole, N. Gondrexon, J. Willison, and C. Petrier, “Effectiveness of ultrasound for the destruction of Mycobacterium sp. strain (6PY1),” Ultrason. Sonochem., vol. 17, no. 1, pp. 106–110, 2010, doi: 10.1016/j.ultsonch.2009.04.005. [14] Y. Li, X. Shi, Z. Zhang, and Y. Peng, “Enhanced coagulation by high-frequency ultrasound in Microcystis aeruginosa-laden water: Strategies and mechanisms,” Ultrason. Sonochem., vol. 55, pp. 232–242, 2019, doi: 10.1016/j.ultsonch.2019.01.022. [15] C.-B. Park, S. Baik, S. Kim, J.-W. Choi, S.-H. Lee, and Y. J. Kim, “The use of ultrasonic frequencies to control the bloom formation, regrowth, and eco-toxicity in Microcystis aeruginosa,” Int. J. Environ. Sci. Technol., vol. 14, no. 5, pp. 923–932, 2017, doi: 10.1007/s13762-016-1224-8. [16] X. Wu, E. M. Joyce, and T. J. Mason, “Evaluation of the mechanisms of the effect of ultrasound on Microcystis aeruginosa at different ultrasonic frequencies,” Water Res., vol. 46, no. 9, pp. 2851–2858, 2012, doi: 10.1016/j.watres.2012.02.019. [17] D. E. Ingber, K. Bojanowski, C. Chen, S. Huang, and A. Maniotis, “Cellular tensegrity: An architectural basis for control of cell shape and morphogenesis,” in Molecular Biology of the Cell, 1996, vol. 7, p. 1975. [18] D. E. Ingber et al., “Cellular tensegrity: exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis,” Int. Rev. Cytol., vol. 150, pp. 173–224, 1994, doi: 10.1016/S0074-7696(08)61542-9. [19] J. G. McGarry and P. J. Prendergast, “A three-dimensional finite element model of an adherent eukaryotic cell,” Eur. Cell. Mater., vol. 7, pp. 27–34, 2004, doi: 10.22203/eCM.v007a03. [20] G. De Santis, A. B. Lennon, F. Boschetti, B. Verhegghe, P. Verdonck, and P. J. Prendergast, “How can cells sense the elasticity of a substrate?: an analysis using a cell tensegrity model,” Eur. Cell. Mater., vol. 22, pp. 202–213, 2011, doi: 10.22203/eCM.v022a16. [21] N. M. Budari, M. F. Ali, K. H. Ku Hamid, K. A. Khalil, M. Musa, and N. F. Khairuddin, “Escherichia coli Wild Type Cells Disruption by Low Intensity Ultrasound for Bacterial Disinfection,” in InCIEC 2015, 2016, pp. 21–31, doi: 10.1007/978-981-10-0155-0_3. [22] T. O. Ajiboye, S. O. Babalola, and D. C. Onwudiwe, “Photocatalytic Inactivation as a Method of Elimination of E. coli from Drinking Water,” Appl. Sci., vol. 11, no. 3, p. 1313, 2021, doi: 10.3390/app11031313. [23] F. Wu, A. Japaridze, X. Zheng, J. Wiktor, J. W. J. Kerssemakers, and C. Dekker, “Direct imaging of the circular chromosome in a live bacterium,” Nat. Commun., vol. 10, no. 1, pp. 1–9, 2019, doi: 10.1038/s41467-019-10221-0. [24] M. R. Nurliyana et al., “The detection method of Escherichia coli in water resources: A review,” in Journal of Physics: Conference Series, 2018, vol. 995, no. 1, p. 12065, doi: 10.1088/1742-6596/995/1/012065. [25] I. Gammoudi et al., “Morphological and nanostructural surface changes in Escherichia coli over time, monitored by atomic force microscopy,” Colloids Surfaces B Biointerfaces, vol. 141, pp. 355–364, 2016, doi: 10.1016/j.colsurfb.2016.02.006. [26] S. T. Odonkor and J. K. Ampofo, “Escherichia coli as an indicator of bacteriological quality of water: An overview,” Microbiol. Res. (Pavia)., vol. 4, no. 1, p. e2, 2013, doi: 10.4081/mr.2013.e2. [27] Q. Cui et al., “Validation of the mechano-bactericidal mechanism of nanostructured surfaces with finite element simulation,” Colloids Surfaces B Biointerfaces, vol. 206, p. 111929, 2021, doi: 10.1016/j.colsurfb.2021.111929. [28] J. C. Gumbart, M. Beeby, G. J. Jensen, and B. Roux, “Escherichia coli peptidoglycan structure and mechanics as predicted by atomic-scale simulations,” PLoS Comput. Biol., vol. 10, no. 2, p. e1003475, 2014, doi: 10.1371/journal.pcbi.1003475. [29] C. L. Lewis, C. C. Craig, and A. G. Senecal, “Mass and density measurements of live and dead gram-negative and gram-positive bacterial populations,” Appl. Environ. Microbiol., vol. 80, no. 12, pp. 3622–3631, 2014, doi: 10.1128/AEM.00117-14. [30] E. Martinez-Salas, J. A. Martin, and M. Vicente, “Relationship of Escherichia coli density to growth rate and cell age,” J. Bacteriol., vol. 147, no. 1, pp. 97–100, 1981, doi: 10.1128/jb.147.1.97-100.1981. [31] J. Shiloach and R. Fass, “Growing E. coli to high cell density—a historical perspective on method development,” Biotechnol. Adv., vol. 23, no. 5, pp. 345–357, 2005, doi: 10.1016/j.biotechadv.2005.04.004. [32] H. H. Tuson et al., “Measuring the stiffness of bacterial cells from growth rates in hydrogels of tunable elasticity,” Mol. Microbiol., vol. 84, no. 5, pp. 874–891, 2012, doi: 10.1111/j.1365-2958.2012.08063.x. [33] N. Kandemir, W. Vollmer, N. S. Jakubovics, and J. Chen, “Mechanical interactions between bacteria and hydrogels,” Sci. Rep., vol. 8, no. 1, pp. 1–11, 2018, doi: 10.1038/s41598-018-29269-x. [34] S. H. Abo Sabah and A. B. H. Kueh, “Finite element modeling of laminated composite plates with locally delaminated interface subjected to impact loading,” Sci. World J., vol. 2014, p. Article 954070, 2014, doi: 10.1155/2014/954070. [35] S. Q. Koo and A. B. H. Kueh, “Finite element state-space model of edge initiating localized interfacial degeneration of damped composite laminated plates,” in IOP Conference Series: Materials Science and Engineering, 2019, vol. 620, no. 1, p. 012072, doi: 10.1088/1757-899X/620/1/012072. [36] J. Li et al., “Ultrasound-induced Escherichia coli O157: H7 cell death exhibits physical disruption and biochemical apoptosis,” Front. Microbiol., vol. 9, p. 2486, 2018, doi: 10.3389/fmicb.2018.02486. [37] X. Liao et al., “Multiple action sites of ultrasound on Escherichia coli and Staphylococcus aureus,” Food Sci. Hum. Wellness, vol. 7, no. 1, pp. 102–109, 2018, doi: 10.1016/j.fshw.2018.01.002. [38] W. Wittrick and F. Williams, “A general algorithm for computing natural frequencies of elastic structures,” Q. J. Mech. Appl. Math., vol. 24, no. 3, pp. 263–284, 1971, doi: 10.1093/qjmam/24.3.263.
(1)
[1] Awang, S. (2004). Teras pendidikan bahasa Melayu: Asas pegangan guru [Core of Malay language education: Teachers’ foundation beliefs]. Betong: PTS Publications Sdn Bhd. [2] Bruck, M., & Waters, G. (1990). Effects of reading skill on component spelling skills. Applied Psycholinguistics, 11, 425-437 [3] Carreker, S. (2011). Teaching spelling. In J. R. Birsh (Ed.), Multisensory teaching of basic language skills (pp. 251-291). Baltimore, MD: Brookes. [4] Craig, S. A. (2006). The effects of an adapted interactive writing intervention on kindergarten children's phonological awareness, spelling, and early reading development: A contextualized approach to instruction. Journal of Educational Psychology, 98(4), 714-731. [5] Deno, S. L., Mirkin, P., & Marston, D. (1980). Relationships among simple measures of spelling and performance on standardized achievement tests (Vol. IRLD-RR-22). Minneapolis: University of Minnesota, Institute for Research on Learning Disabilities. [6] Department of Statistics Malaysia. (2011). Preliminary count report, population and housing census, Malaysia (updated: 16/09/2018). Retrieved from https://www.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=117&bul_id=Wk81WnBvbXdtQzdJRjdmM2hSNHM3Zz09&menu_id=L0pheU43NWJwRWVSZklWdzQ4TlhUUT09 (accessed 16/09/2018). [7] Ehri, L. C. (2015). How children learn to read words. In A. Pollatsek & R. Treiman (Eds.), The Oxford handbook of reading (pp. 293-310). New York: Oxford University Press. [8] Ehri, L.C. (2000). Learning to read and learning to spell: Two sides of a coin. Topics in Language Disorder, 20(3), 19-36. [9] Frith, U. (1980). Unexpected spelling problems. In U. Frith (Ed.), Cognitive processes in spelling (pp. 495-515). New York: Academic Press [10] Fuchs, L. S., Fuchs, D., Hamlett, C. L., Walz, L., & Germann, G. (1993). Formative evaluation of academic progress: How much growth can we expect? School Psychology Review, 22, 27-48. [11] Gomez, C., & Reason, R. (2002). Cross-linguistic transfer of phonological skills: A Malaysian perspective. Dyslexia, 8(1), 22-33. [12] Goodman, K. S. (1967). Reading: A psycholinguistic guessing game. Journal of the Reading Specialist, 6(4), 126-135. [13] Gough, P. B. (1972). One second of reading. In J. F. Kavanagh and I. G. Mattingly (eds.), Language by ear and by eye (pp.331-358). Cambridge, MA: MIT Press. [14] Hamdan, H. A. R. (1988). Dasar pendeskripsian sistem fonologi bahasa Melayu [Basic description of Malay phonology]. In M. O. Farid (Ed.), Bunga rampai fonologi bahasa Melayu. PJ: Penerbit Fajar Bakti Sdn. Bhd. [15] Henry, M.K. (2003). Unlocking literacy: Effective decoding and spelling instruction. Baltimore: Paul H. Brookes Publishing Co. [16] Hosp, M. K., Hosp, J. L., & Howell, K. W. (2007). The ABCs of CBM: A practical guide to curriculum-based measurement. New York: The Guilford Press. [17] Isahak, H. (1990). Mengajar membaca peringkat permulaan [Teaching beginning reading]. In O. Safiah (Ed.) Membaca: Satu Pengenalan, (pp. 46-58). Kuala Lumpur: Berita Publishing Sdn. Bhd. [18] Jones, S. (2009). The importance of spelling. Retrieved from http://www.spellingcity.com/importance-of-spelling.html (accessed 16/09/2018). [19] Lee, J. A. C., & Al Otaiba, S. (2017). End-of-Kindergarten spelling outcomes: How can spelling error analysis data inform beginning reading instruction? Reading &Writing Quarterly, 33(3), 226-238. [20] Lee, L. C., Liow, S. J. R., & Wee, M. L. O. (1998). Morphological structure of Malay: Using psycholinguistic analyses of rated familiarity. SEALS VIII, 109-119. [21] Lee, L. W. (2008). Development and validation of a reading-related assessment battery in Malay for the purpose of dyslexia assessment. Annals of Dyslexia, 58(1), 37-57. [22] McCardle, P., Chhabra, V., & Kapinus, B. (2008). Reading research in action: A teacher's guide for student success. Maryland, US: Paul H. Brookes Pub Co. [23] Mehta, P. D., Foorman, B. R., Branum-Martin, L., & Taylor, W. P. (2005). Literacy as a unidimensional multilevel construct: Validation, sources of influence, and implications in a longitudinal study in grades 1 to 4. Scientific Studies of Reading, 9(2), 85-116. [24] National Reading Panel. (2000). Teaching children to read: An evidence-based assessment of the scientific research literature on reading and its implications for reading instruction. Washington, DC: National Institute of Child Health and Human Development. [25] Ritchey, K. D., Coker, D. L., & McCraw, S. B. (2010). A comparison of metrics for scoring beginning spelling. Assessment for Effective Intervention, 25, 78-88. [26] Smith, F. (1971). Understanding reading: A psycholinguistic analysis of reading and learning to read. New York: Holt, Rinehart and Winston. [27] Snow, C. E., Griffin, P., and Burns, M. S. (Eds.) (2005). Knowledge to Support the Teaching of Reading: Preparing Teachers for a Changing Wold. San Francisco: Jossey-Bass. [28] Tangel, D.M. & Blachman, B. A. (1992). Effect of phoneme awareness instruction on kindergarten children’s invented spelling. Journal of Reading Behavior, 24, 233- 261. [29] Treiman, R. (1993). Beginning to spell: A study of first-grade children. New York: Oxford University Press. [30] Treiman, R. (1998). Why spelling? The benefits of incorporating spelling into beginning reading instruction. In J.L. Metsala, & L. Ehri (Eds.), Word recognition in beginning literacy (pp.289-313). Mahwah, NJ: Erlbaum. [31] Treiman, R. (2001). Reading. In M. Aronoff and J. Rees-Miller (Eds.), Blackwell Handbook of Linguistics (pp. 664-672). Oxford, England: Blackwell. [32] Treiman, R., Kessler, B., & Caravolas, M. (2018). What methods of scoring young children's spelling best predict later spelling performance?. Journal of Research in Reading, 00(00), 1-17. [33] Wright, J. (1992). Curriculum-based measurement: A manual for teachers. Syracuse City Schools.
(1)
1. Awang, Z., Afthanorhan, A., & Mamat, M. (2016). The Likert Scale Analysis Using Parametric-Based Structural Equation Modeling (SEM). 9. 2. Awang, Z., Lim, S. H., & Afthanorhan, A. (2021). SEM Made Simple 2.0. 3. Bryne, B. M. (2016). Structural Equation Modeling With Amos. 4. Hair, J. F. (Ed.). (2014). Multivariate Data Analysis (7. Ed., Pearson New Internat. Ed). Pearson. 5. Hair, J. F. (2019). Multivariate Data Analysis (Eighth Edition). Cengage.
(1)
[1] Azamris, Buku Ajar Kelainan Tiroid. Yogyakarta (ID): Deepublish Publisher, 2020. [2] A. Fukao et al., “Graves’ disease and mental disorders,” Journal of Clinical and Translational Endocrinology, vol. 19. Elsevier, p. 100207, Mar. 01, 2020. doi: 10.1016/j.jcte.2019.100207. [3] L. L. Altshuler et al., “Does thyroid supplementation accelerate tricyclic antidepressant response? A review and meta-analysis of the literature,” Am. J. Psychiatry, vol. 158, no. 10, pp. 1617–1622, 2001, doi: 10.1176/appi.ajp.158.10.1617. [4] M. Bauer, T. Goetz, T. Glenn, and P. C. Whybrow, “The thyroid-brain interaction in thyroid disorders and mood disorders,” J. Neuroendocrinol., vol. 20, no. 10, pp. 1101–1114, 2008, doi: 10.1111/J.1365-2826.2008.01774.X. [5] R. R. Al-Hakim et al., “Sistem Pakar untuk Diagnosis Penyakit Tiroid dengan Gejala Psikologis Beserta Pengobatan Etnobotaninya,” J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 7, pp. 1771–1778, 2022, doi: 10.25126/jtiik.2022976763. [6] A. K. Meena and S. Kumar, “Study and Analysis of MYCIN expert system,” Int. J. Eng. Comput. Sci., vol. 4, no. 10, pp. 14861–14865, Oct. 2015, doi: 10.18535/ijecs/v4i10.41. [7] W. Wiriyasuttiwong and W. Narkbuakaew, “Medical Knowledge-Based System for Diagnosis from Symptoms and Signs,” Int. J. Appl. Biomed. Eng., vol. 2, no. 1, pp. 54–59, 2009. [8] R. R. Al Hakim, E. Rusdi, and M. A. Setiawan, “Android Based Expert System Application for Diagnose COVID-19 Disease: Cases Study of Banyumas Regency,” J. Intell. Comput. Heal. Informatics, vol. 1, no. 2, pp. 1–13, 2020, doi: 10.26714/jichi.v1i2.5958. [9] M. R. Mufid, A. Basofi, S. Mawaddah, K. Khotimah, and N. Fuad, “Risk diagnosis and mitigation system of covid-19 using expert system and web scraping,” in 2020 International Electronics Symposium (IES), Sep. 2020, pp. 577–583. doi: 10.1109/IES50839.2020.9231619. [10] Y. Sha, T. Feng, X. Xiong, and T. Yang, “Designing Online Psychological Consultation Expert System Using Human-Computer Interaction,” Mob. Inf. Syst., vol. 2021, Jun. 2021, doi: 10.1155/2021/6458924. [11] A. A. Al-Hajji, F. M. AlSuhaibani, and N. S. AlHarbi, “An Online Expert System for Psychiatric Diagnosis,” Int. J. Artif. Intell. Appl., vol. 10, no. 2, pp. 59–76, 2019, doi: 10.5121/ijaia.2019.10206. [12] I. A. Alshawwa, M. Elkahlout, H. Q. El-Mashharawi, and S. S. Abu-Naser, “An Expert System for Depression Diagnosis,” Int. J. Acad. Heal. Med. Res., vol. 3, no. 4, pp. 20–27, 2019. [13] N. K. Ariasih, “Expert System to Diagnose Diseases of Mental Health with Forward Chaining and Certainty Factor,” Wahana Mat. dan Sains J. Mat. Sains, dan Pembelajarannya, vol. 14, no. 1, pp. 28–41, Apr. 2020, doi: 10.23887/WMS.V14I1.24267. [14] M. Melina, E. K. Putra, W. Witanti, S. Sukrido, and V. A. Kusumaningtyas, “Design and Implementation of Multi Knowledge Base Expert System Using the SQL Inference Mechanism for Herbal Medicine,” J. Phys. Conf. Ser., vol. 1477, p. 22007, 2020, doi: 10.1088/1742-6596/1477/2/022007. [15] R. R. Al Hakim, H. A. Hidayah, A. Pangestu, D. Nugraha, S. Faizah, and E. R. C. Putri, “Sistem Pakar Forward-Chaining Dengan Certainty Factor Dalam Pemanfaatan Tumbuhan Obat, Studi Kasus: Etnobotani Di Kabupaten Banyumas, Jawa Tengah (An Expert System With Forward-Chaining And Certainty Factor For Medicinal Plant Uses, Cases Study: Ethnobota,” in E-Prosiding Seminar Nasional Inovasi Teknologi Pertanian Berkelanjutan (INOPTAN), 2022, vol. 1, no. 1, pp. 106–113. [Online]. Available: https://jurnal.unikastpaulus.ac.id/index.php/inoptan/article/view/1412 [16] M. Abdar, M. Zomorodi-Moghadam, R. Das, and I. H. Ting, “Performance analysis of classification algorithms on early detection of liver disease,” Expert Syst. Appl., vol. 67, pp. 239–251, 2017, doi: 10.1016/j.eswa.2016.08.065. [17] I. Z. Jibril, J. Agajo, L. A. Ajao, J. G. Kolo, and O. C. Inalegwu, “Development of a Medical Expert System for Hypertensive Patients Diagnosis: A Knowledge-Based Rules,” Adv. Electr. Telecommun. Eng., vol. 1, no. 1, pp. 39–47, 2018. [18] G. Yu, Z. Chen, J. Wu, and Y. Tan, “Medical decision support system for cancer treatment in precision medicine in developing countries,” Expert Syst. Appl., vol. 186, p. 115725, Dec. 2021, doi: 10.1016/J.ESWA.2021.115725. [19] R. Islam, S. Imran, M. Ashikuzzaman, and M. M. A. Khan, “Detection and Classification of Brain Tumor Based on Multilevel Segmentation with Convolutional Neural Network,” J. Biomed. Sci. Eng., vol. 13, no. 04, pp. 45–53, 2020, doi: 10.4236/jbise.2020.134004. [20] V. V. Vadhiraj, A. Simpkin, J. O’Connell, N. S. Ospina, S. Maraka, and D. T. O’Keeffe, “Ultrasound Image Classification of Thyroid Nodules Using Machine Learning Techniques,” Medicina (Kaunas)., vol. 57, no. 6, 2021, doi: 10.3390/medicina57060527. [21] F. L. D. Cahyanti, W. Gata, and F. Sarasati, “Implementasi Algoritma Naïve Bayes dan K-Nearest Neighbor Dalam Menentukan Tingkat Keberhasilan Immunotherapy Untuk Pengobatan Penyakit Kanker Kulit,” J. Ilm. Univ. Batanghari Jambi, vol. 21, no. 1, pp. 259–262, Feb. 2021, doi: 10.33087/JIUBJ.V21I1.1189. [22] E. Rich and K. Knight, Artificial Intelligence, 2nd ed. New York: McGraw-Hill Education, 1991. [23] E. Hariadha, D. Nugraha, R. R. Al Hakim, A. Pangestu, M. Yusro, and M. H. Satria, “Using Certainty Factor for Symptoms Diagnosis of Thyroid Disorders,” in 2022 International Conference on ICT for Smart Society (ICISS), 2022, pp. 01–05. doi: 10.1109/ICISS55894.2022.9915219. [24] M. I. Pramanik, R. Y. K. Lau, M. A. K. Azad, M. S. Hossain, M. K. H. Chowdhury, and B. K. Karmaker, “Healthcare informatics and analytics in big data,” Expert Syst. Appl., vol. 152, Aug. 2020. [25] O. C. Ungureanu et al., “Telemedicine Software Application,” Int. J. Comput. Sci. Netw. Secur., vol. 21, no. 2, pp. 171–180, 2021, doi: 10.22937/IJCSNS.2021.21.2.1.19. [26] X. SUN, H. LIU, G. WU, and Y. ZHOU, “Training effectiveness evaluation of helicopter emergency relief based on virtual simulation,” Chinese J. Aeronaut., vol. 31, no. 10, pp. 2000–2012, Oct. 2018. [27] R. R. Al Hakim et al., “Design and Development Smart-iMbulance for Efficiency of Road Emergency Priorities,” J. Innov. Res. Knowl., vol. 1, no. 2, pp. 167–172, 2021, doi: 10.53625/jirk.v1i2. [28] L. Salekhova, A. Nurgaliev, R. Zaripova, and N. Khakimullina, “The Principles of Designing an Expert System in Teaching Mathematics,” Univers. J. Educ. Res., vol. 1, no. 2, pp. 42–47, Aug. 2013, doi: 10.13189/UJER.2013.010202. [29] S. Supriyadi and D. Wiliyanto, “Prototype Expert System Application to Identify Specific Children Learning Disabilities in Inclusion Schools,” IJDS Indones. J. Disabil. Stud., vol. 8, no. 01, pp. 117–127, Jan. 2021, doi: 10.21776/ub.ijds.2021.008.01.09. [30] R. Eskrootchi, M. Zavari, and M. Alibeyk, “Developing a fuzzy expert system to determine the levels of students’ eHealth literacy,” Libr. Philos. Pract., vol. 2021, pp. 1–26, Jan. 2021. [31] M. F. Azis, Belajar Sendiri Pemrograman Sistem Pakar. Jakarta (ID): Elex Media Komputindo, 1994. [32] H. S. Suryadi, Pengantar Sistem Pakar. Depok: Universitas Gunadarma, 1994. [33] E. I. H. Rahayu, S. Suhardoyo, and I. Iwan, “Umpan Balik Sistem Pakar Sebagai Penilaian Kinerja Karyawan Pada PT. Multistrada Arah Sarana, Tbk,” BMAJ Bus. Manag. Anal. J., vol. 2, no. 1, pp. 52–67, Apr. 2019, doi: 10.24176/bmaj.v2i1.3211. [34] Y. L. Lai and A. Ishizaka, “The application of multi-criteria decision analysis methods into talent identification process: A social psychological perspective,” J. Bus. Res., vol. 109, pp. 637–647, Mar. 2020, doi: 10.1016/J.JBUSRES.2019.08.027. [35] A. P. Hamid, R. R. Al Hakim, A. Sungkowo, T. Trikolas, H. Purnawan, and A. Jaenul, “Talent Management Employee Development by Using Certainty Factor Method of Expert System,” ARRUS J. Eng. Technol., vol. 1, no. 1, pp. 33–39, 2021, doi: 10.35877/jetech568. [36] R. R. Al Hakim, G. E. Setyowisnu, and A. Pangestu, “An Expert System Dataset for Checking the Potential for Administering a Covid-19 Vaccine in Indonesia: Forward- Chaining Inference Machine Approach,” J. Glob. Eng. Res. Sci., vol. 1, no. 1, pp. 1–4, 2022, doi: 10.56904/jgers.v1i1.3. [37] A. Farizi, “Sistem Pakar Untuk Mendiagnosa Kerusakan Komputer Dengan Menggunakan Metode Forward Chaining,” Edu Komputika J., vol. 1, no. 2, pp. 21–32, 2014. [38] M. M. Arifin and Y. B. Utomo, “Sistem Pakar Untuk Diagnosa Kerusakan Hardware Komputer Menggunakan Jaringan Syaraf Tiruan,” Dec. 2021. Accessed: Apr. 28, 2021. [Online]. Available: https://ejournal.uniska-kediri.ac.id/index.php/JTECS/article/view/715 [39] A. Eresen, N. Imamoǧlu, and M. Önder Efe, “Autonomous quadrotor flight with vision-based obstacle avoidance in virtual environment,” Expert Syst. Appl., vol. 39, no. 1, pp. 894–905, Jan. 2012, doi: 10.1016/J.ESWA.2011.07.087. [40] E. Sudaryanto and A. Suryanto, “Sistem pakar diagnosa hama dan penyakit tanaman durian dengan metode naive bayes,” Teodolita Media Komunkasi Ilm. di Bid. Tek., vol. 21, no. 1, Jun. 2020, doi: 10.53810/JT.V21I1.339. [41] M. H. Ramadhan, G. Dewantoro, and F. D. Setiaji, “Rancang Bangun Sistem Pakar Pemantau Kualitas Air Berbasis IoT Menggunakan Fuzzy Classifier,” J. Tek. Elektro, vol. 12, no. 2, pp. 47–56, Dec. 2020, doi: 10.15294/jte.v12i2.25351. [42] R. Hariyanto and K. Sa’diyah, “Sistem Pakar Diagnosis Penyakit dan Hama Pada Tanaman Tebu Menggunakan Metode Certainty Factor,” JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 3, no. 1, pp. 1–4, 2018, doi: 10.31328/jointecs.v3i1.500. [43] S. H. Al Ikhsan, “Pengembangan Sistem Pakar Agribisnis Cabai (Capsicum Annuum L.) Berbasis Android,” Institut Pertanian Bogor, 2012. [44] Y. -, F. Marisa, and D. Purnomo, “Sistem Rekomendasi Distribusi Tetes Tebu Di UD. Lancar Menggunakan Metode Fuzzy Sugeno Berbasis Web,” JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 1, no. 1, pp. 6–9, 2016, doi: 10.31328/jointecs.v1i1.401. [45] Z. Zhao, F. Hong, H. Huang, C. Liu, Y. Feng, and Z. Guo, “Short-term prediction of fishing effort distributions by discovering fishing chronology among trawlers based on VMS dataset,” Expert Syst. Appl., vol. 184, 2021, doi: 10.1016/j.eswa.2021.115512. [46] P. Karuniawan, I. N. Farida, and J. Suhertian, “Implementasi metode certainty factor untuk mengidentifikasi penyakit tanaman kedelai dan padi,” Nusant. Eng., vol. 4, no. 1, p. 9, Apr. 2021, doi: 10.29407/NOE.V4I1.15902. [47] B. A. Crawford, J. C. Maerz, and C. T. Moore, “Expert-informed habitat suitability analysis for at-risk species assessment and conservation planning,” J. Fish Wildl. Manag., vol. 11, no. 1, pp. 130–150, Jun. 2020, doi: 10.3996/092019-JFWM-075. [48] M. Di Febbraro et al., “Expert-based and correlative models to map habitat quality: Which gives better support to conservation planning?,” Glob. Ecol. Conserv., vol. 16, Oct. 2018, doi: 10.1016/J.GECCO.2018.E00513. [49] Y. Darnita and R. Toyib, “Klasifikasi Penentuan Manfaat Tanaman Obat Herbal Berbasis Rule Based Reasoning,” SISTEMASI, vol. 10, no. 1, pp. 82–95, Jan. 2021, doi: 10.32520/STMSI.V10I1.1090. [50] K. Sturk-Andreaggi, M. A. Peck, C. Boysen, P. Dekker, T. P. McMahon, and C. K. Marshall, “AQME: A forensic mitochondrial DNA analysis tool for next-generation sequencing data,” Forensic Sci. Int. Genet., vol. 31, pp. 189–197, 2017, doi: 10.1016/J.FSIGEN.2017.09.010. [51] J. Mortera, A. P. Dawid, and S. L. Lauritzen, “Probabilistic expert systems for DNA mixture profiling,” Theor. Popul. Biol., vol. 63, no. 3, pp. 191–205, 2003, doi: 10.1016/S0040-5809(03)00006-6. [52] R. R. Al Hakim, A. Pangestu, and A. Jaenul, “Penerapan Metode Certainty Factor dengan Tingkat Kepercayaan pada Sistem Pakar dalam Mendiagnosis Parasit pada Ikan,” Djtechno J. Inf. Technol. Res., vol. 2, no. 1, pp. 29–37, 2021, doi: 10.46576/djtechno.v2i1.1254. [53] Suharjito, Diana, Yulyanto, and A. Nugroho, “Mobile Expert System Using Fuzzy Tsukamoto for Diagnosing Cattle Disease,” Procedia Comput. Sci., vol. 116, pp. 27–36, 2017. [54] R. Stefani, “Sistem pakar diagnosa penyakit pada ikan koi menggunakan metode backward chaining,” J. Ris. RUMPUN ILMU HEWANI, vol. 1, no. 2, pp. 16–30, Oct. 2022, Accessed: Nov. 22, 2022. [Online]. Available: https://prin.or.id/index.php/JURRIH/article/view/526 [55] Z. Hakim and R. Rizky, “Sistem Pakar Diagnosis Penyakit Ikan Mas Menggunakan Metode Certainty Factor Di UPT Balai Budidaya Ikan Air Tawar Dan Hias Kabupaten Pandeglang Banten,” J. Tek. Inform. Unis, vol. 7, no. 2, pp. 164–169, 2020, doi: 10.33592/jutis.v7i2.399. [56] R. Sharda, D. Delen, and E. Turban, Analytics, data science, & artificial intelligence: systems for decision support, 11th ed. Hoboken, New Jersey (US): Pearson Education, 2020. [57] Suyanto, Artificial Intelligence: Searching, Reasoning, Planning, dan Learning. Bandung: Informatika, 2014. [58] M. I. Fale and Y. G. Abdulsalam, “Dr. Flynxz – A First Aid Mamdani-Sugeno-type fuzzy expert system for differential symptoms-based diagnosis,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 4, pp. 1138–1149, 2022, doi: 10.1016/j.jksuci.2020.04.016. [59] A. S. Yanuar, E. G. Wahyuni, and D. T. Wiyanti, “Certainty Factor Method for Neurological Disease Diagnosis Based on Symptoms,” in ICCSET, 2018, pp. 851–856. doi: 10.4108/eai.24-10-2018.2280500. [60] L. Safira, B. Irawan, and C. Setiningsih, “Implementation of the Certainty Factor Method for Early Detection of Cirrhosis Based on Android,” J. Phys. Conf. Ser., vol. 1201, no. 1, p. 12053, 2019, doi: 10.1088/1742-6596/1201/1/012053. [61] C. Slamet, B. Firmanda, M. A. Ramdhani, W. Darmalaksana, E. Enjang, and F. M. Kaffah, “Android-based expert system design for drug selection using certainty factor,” J. Phys. Conf. Ser., vol. 1280, p. 22018, 2019, doi: 10.1088/1742-6596/1280/2/022018. [62] D. Sudrajat et al., “Expert system application for identifying formalin and borax in foods using the certainty factor method,” Eurasian J. Anal. Chem., vol. 13, no. 6, pp. 321–325, 2018. [63] Sumiati, H. Saragih, T. K. A. Rahman, and A. Triayudi, “Expert system for heart disease based on electrocardiogram data using certainty factor with multiple rule,” IAES Int. J. Artif. Intell., vol. 10, no. 1, pp. 43–50, Mar. 2021, doi: 10.11591/ijai.v10.i1.pp43-50. [64] X. Huang et al., “A Generic Knowledge Based Medical Diagnosis Expert System,” in The 23rd International Conference on Information Integration and Web Intelligence (iiWAS2021), 2021, pp. 1–7. doi: 10.1145/3487664.3487728. [65] N. Farsad Layegh, R. Darvishzadeh, A. K. Skidmore, C. Persello, and N. Krüger, “Integrating Semi-Supervised Learning with an Expert System for Vegetation Cover Classification Using Sentinel-2 and RapidEye Data,” Remote Sens., vol. 14, no. 15, p. 3605, Jul. 2022, doi: 10.3390/RS14153605. [66] E. Lasso, T. T. Thamada, C. A. A. Meira, and J. C. Corrales, “Expert system for coffee rust detection based on supervised learning and graph pattern matching,” Int. J. Metadata, Semant. Ontol., vol. 12, no. 1, pp. 19–27, 2017, doi: 10.1504/IJMSO.2017.087641. [67] R. Board and L. Pitt, “Semi-supervised learning,” Mach. Learn., vol. 4, pp. 41–65, Oct. 1989, doi: 10.1007/BF00114803. [68] R. Primartha, Algoritma Machine Learning. Bandung (ID): Informatika, 2021. [69] D. D. Lewis and J. Catlett, “Heterogeneous Uncertainty Sampling for Supervised Learning,” in Machine Learning Proceedings 1994, W. W. Cohen and H. Hirsh, Eds. New Brunswick (NJ): Morgan Kaufmann, 1994, pp. 148–156. doi: 10.1016/B978-1-55860-335-6.50026-X. [70] E. B. Baum and F. Wilczek, “Supervised Learning of Probability Distributions by Neural Networks,” Neural Inf. Process. Syst., pp. 52–61, 1988. [71] A. I. Hajamydeen and R. A. A. Helmi, “Performance of Supervised Learning Algorithms on Multi-Variate Datasets,” in Machine Learning and Big Data: Concepts, Algorithms, Tools and Applications, wiley, 2020, pp. 209–232. doi: 10.1002/9781119654834.CH8. [72] F. K. Lembang, “Analisis Regresi Berganda dengan Metode Stepwise pada Data Hbat,” J. Barekeng, vol. 5, no. 1, pp. 15–20, 2011. [73] S. Borzouei, H. Mahjub, N. Sajadi, and M. Farhadian, “Diagnosing thyroid disorders: Comparison of logistic regression and neural network models,” J. Fam. Med. Prim. Care, vol. 9, no. 3, p. 1476, 2020, doi: 10.4103/JFMPC.JFMPC_910_19. [74] R. R. Al Hakim, M. H. Satria, Y. Z. Arief, A. D. Setiawan, A. Pangestu, and H. A. Hidayah, “Artificial Intelligence for Thyroid Disorders: A Systematic Review,” Sci. Inf. Technol. Lett., vol. 2, no. 2, Nov. 2021, doi: 10.31763/sitech.v2i2.694. [75] R. Kohavi, “The power of decision tables,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 912, pp. 174–189, 1995, doi: 10.1007/3-540-59286-5_57. [76] R Core Team, “R: A language and environment for statistical computing [Computer software manual],” 2016 [77] J. S. Malensang, H. Komalig, and D. Hatidja, “PENGEMBANGAN MODEL REGRESI POLINOMIAL BERGANDA PADA KASUS DATA PEMASARAN,” J. Ilm. Sains, vol. 12, no. 2, pp. 149–152, Jan. 2013, doi: 10.35799/JIS.12.2.2012.740. [78] D. S. Moore, W. I. Notz, and M. A. Flinger, The basic practice of statistics, 6th ed. New York (US): W.H. Freeman and Company, 2013. [79] R. R. Al-Hakim and A. Andriand, “Diagnosis Leptospirosis Menggunakan Sistem Pakar Metode Faktor Kepastian Beserta Prediksi Regresi Linear,” Pros. SAINTEK Sains dan Teknol., vol. 2, no. 1, pp. 256–261, 2023, [Online]. Available: https://www.jurnal.pelitabangsa.ac.id/index.php/SAINTEK/article/view/2165
(1)
1. Azlan AA, Hamzah MR, Sern TJ, Ayub SH, Mohamad E. Public knowledge, attitudes and practices towards COVID-19: A cross-sectional study in Malaysia. PLoS One. 2020;15(5):e0233668. 2. World Health Organization. The impact of COVID-19 on health and care workers: a closer look at deaths. Technical document. Geneva: World Health Organization; 2021. 3. Wan KS, Tok PSK, Yoga Ratnam KK, Aziz N, Isahak M, Ahmad Zaki R, et al. Implementation of a COVID-19 surveillance programme for healthcare workers in a teaching hospital in an upper-middle-income country. PLoS One. 2021;16(4):e0249394. 4. CodeBlue. Nearly 20,000 MOH Health Workers Infected With Covid, 17 Deaths2021 18 October 2021. Available from: https://codeblue.galencentre.org/2021/10/18/nearly-20000-moh-health-workers-infected-with-covid-17-deaths/. 5. Ministry of Health Malaysia. Annex 21: Management of Healthcare Workers (HCW) During COVID-19 Pandemic 2022. 6. Badgujar JV, Sharma GM, Relwani NR, Rohondia OS, Patole TD, Puntambekar AS. Knowledge, attitude and practices regarding the use of personal protective equipment during COVID-19 pandemic among health care workers at a tertiary health care center. International Journal Of Community Medicine And Public Health. 2021;8(5). 7. Hashim JH, Adman MA, Hashim Z, Mohd Radi MF, Kwan SC. COVID-19 Epidemic in Malaysia: Epidemic Progression, Challenges, and Response. Front Public Health. 2021;9:560592. 8. Liu M, Cheng SZ, Xu KW, Yang Y, Zhu QT, Zhang H, et al. Use of personal protective equipment against coronavirus disease 2019 by healthcare professionals in Wuhan, China: cross sectional study. BMJ. 2020;369:m2195. 9. Burke RM, Midgley CM, Dratch A, Fenstersheib M, Haupt T, Holshue M, et al. Active Monitoring of Persons Exposed to Patients with Confirmed COVID-19 - United States, January-February 2020. MMWR Morb Mortal Wkly Rep. 2020;69(9):245-6. 10. Center of Disease Prevention and Control. Interim Infection Prevention and Control Recommendations for Healthcare Personnel During the Coronavirus Disease 2019 (COVID-19) Pandemic. 2021. 11. World Health Organization. Rational use of personal protective equipment for coronavirus disease (COVID-19) and considerations during severe shortages. 2020. 12. Ministry of Health Malaysia. Annex 8: Guidelines on Infection Prevention and Control (IPC) Measures in Managing Person Under Surveillance (PUS), Suspected, Probable or Confirmed Coronavirus Disease (COVID-19) version 4. 2021. 13. WW D. Biostatistics: a foundation for analysis in the health sciences. 7 ed. New York: John Wiley & Sons; 1999. 14. Daugherty EL, Perl TM, Needham DM, Rubinson L, Bilderback A, Rand CS. The use of personal protective equipment for control of influenza among critical care clinicians: A survey study. Crit Care Med. 2009;37(4):1210-6. 15. Berhe M EM, Bearman GM. Practices and an assessment of health care workers’ perceptions of compliance with infection control knowledge of nosocomial infections. Am J Infect Control. 2005;33:55-7. 16. Nienhaus A, Hod R. COVID-19 among Health Workers in Germany and Malaysia. Int J Environ Res Public Health. 2020;17(13). 17. Ciris Yildiz C, Ulasli Kaban H, Tanriverdi FS. COVID-19 pandemic and personal protective equipment: Evaluation of equipment comfort and user attitude. Arch Environ Occup Health. 2022;77(1):1-8. 18. Lockhart SL, Naidu JJ, Badh CS, Duggan LV. Simulation as a tool for assessing and evolving your current personal protective equipment: lessons learned during the coronavirus disease (COVID-19) pandemic. Can J Anaesth. 2020;67(7):895-6. 19. World Health Organization. Rational use of personal protective equipment (PPE) for coronavirus disease (COVID-19): interim guidance. 2020. 20. Bauchner H, Fontanarosa PB, Livingston EH. Conserving Supply of Personal Protective Equipment-A Call for Ideas. JAMA. 2020;323(19):1911. 21. Boyce JM PD. Healthcare Infection Control Practices Advisory Committee; HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. Guideline for Hand Hygiene in Health-Care Settings. Recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. Society for Healthcare Epidemiology of America/Association for Professionals in Infection Control/Infectious Diseases Society of America. MMWR Recomm Rep. 2002;25(RR-16):MMWR Recomm Rep. 22. Hu X, Zhang Z, Li N, Liu D, Zhang L, He W, et al. Self-reported use of personal protective equipment among Chinese critical care clinicians during 2009 H1N1 influenza pandemic. PLoS One. 2012;7(9):e44723. 23. Sturdy A, Basarab M, Cotter M, Hager K, Shakespeare D, Shah N, et al. Severe COVID-19 and healthcare-associated infections on the ICU: time to remember the basics? J Hosp Infect. 2020;105(4):593-5. 24. Loibner M, Hagauer S, Schwantzer G, Berghold A, Zatloukal K. Limiting factors for wearing personal protective equipment (PPE) in a health care environment evaluated in a randomised study. PLoS One. 2019;14(1):e0210775. 25. Ruskin KJ, Ruskin AC, Musselman BT, Harvey JR, Nesthus TE, O'Connor M. COVID-19, Personal Protective Equipment, and Human Performance. Anesthesiology. 2021;134(4):518-25. 26. Honda H, Iwata K. Personal protective equipment and improving compliance among healthcare workers in high-risk settings. Curr Opin Infect Dis. 2016;29(4):400-6. 27. Sulaiman AH, Ahmad Sabki Z, Jaafa MJ, Francis B, Razali KA, Juares Rizal A, et al. Development of a Remote Psychological First Aid Protocol for Healthcare Workers Following the COVID-19 Pandemic in a University Teaching Hospital, Malaysia. Healthcare (Basel). 2020;8(3). 28. Ministry of Health Malaysia. Annex 33: Mental Health and Psychosocial Support in COVID-19 29. Seitz RM, Yaffee AQ, Peacock E, Moran TP, Pendley A, Rupp JD. Self-Reported Use of Personal Protective Equipment among Emergency Department Nurses, Physicians and Advanced Practice Providers during the 2020 COVID-19 Pandemic. Int J Environ Res Public Health. 2021;18(13). 30. Hossain MA, Rashid MUB, Khan MAS, Sayeed S, Kader MA, Hawlader MDH. Healthcare Workers' Knowledge, Attitude, and Practice Regarding Personal Protective Equipment for the Prevention of COVID-19. J Multidiscip Healthc. 2021;14:229-38. 31. Min HS, Moon S, Jang Y, Cho I, Jeon J, Sung HK. The Use of Personal Protective Equipment among Frontline Nurses in a Nationally Designated COVID-19 Hospital during the Pandemic. Infect Chemother. 2021;53(4):705-17. 32. Amalina Anuar WCA, Nailul Muna Ahmad Musadad, Siti Noriani Abdol Wahab, Noorhafini Abdul Sukur & Othman Warijo. Knowledge, attitude and practice towards COVID-19 and perceived challenges of working during the movement control order: a quantitative analysis among healthcare workers in a Malaysian northwestern state. Current Medical Research and Opinion.38(2):327-38. 33. Mohamad N, Pahrol MA, Shaharudin R, Md Yazin NKR, Osman Y, Toha HR, et al. Compliance to Infection Prevention and Control Practices Among Healthcare Workers During COVID-19 Pandemic in Malaysia. Frontiers in Public Health. 2022;10. 34. Lebares CC, Guvva EV, Olaru M, Sugrue LP, Staffaroni AM, Delucchi KL, et al. Efficacy of Mindfulness-Based Cognitive Training in Surgery: Additional Analysis of the Mindful Surgeon Pilot Randomized Clinical Trial. JAMA Netw Open. 2019;2(5):e194108. 35. Muhammad AzamiNA AM, Mohammed NawiA, Salleh SA, PeriyasamyP, Kori N, Hasan MR, Ahmad N, SulongA, Othman H, Mohd DonTN, Ab MutalibNS, Mohamad HanifEA, Sulaiman SA, Zulkiflee NS, Abdul KaderAR, Abdul GaforAH, Rashid HH, Jamal R COVID-19 in Malaysia: exposure assessment and prevention practices among healthcare workers at a teaching hospital. The Journal of Infection in Developing Countries. 2021;15(12):1816-24.
(1)
1. Baker, D. E. (1991). The relationship of the supervisory working alliance to supervisor and supervisee narcissism, gender, and theoretical orientation. Dissertation Abstracts International, 51(7-B), 1484B. (University Microfilms No. 90-14), 392. 2. Bernard, J. M., & Goodyear, R. K. (2009). Fundamentals of clinical supervision (3rd ed.). Boston: Pearson. 3. Bernard, J. M., & Goodyear, R.K. (1992). Fundamentals of clinical supervision. Boston, MA: Allyn and Bacon. 4. Bussey,L;, E. (2015). The supervisory relationship: How style and working alliance relate to satisfaction among cyber and face to face supervisees. Doctoral Dissertations, University of Tennessee, Retrieve from http://trace.tennessess.edu/utk_graddiss/3564 5. Corey, G., Haynes, R., Moulton, P., & Muratori, M. (2010). Clinical supervision in the helping professions: A practical guide. (2nd Ed.) Alexandria, VA: American Counseling Association. 6. Dye, H.A. & Borders, L.D. (1990). Counseling supervisors: Standards for preparation and practice. Journal of Counseling and Development, 69, 27-32. 7. Fernando, D. M., & Hulse-Killacky, D. (2005). The Relationship of supervisory styles to satisfaction with supervision and the perceived self-efficacy of master's-level counseling students. Counselor Education and Supervision, 44(4), 293-304. 8. Friedlander, M. L., & Ward, L. G. (1984). Development and validation of the Supervisory Styles Inventory. Journal of Counseling Psychology, 31, 541-557. 9. Hayes, A., (2020). Stratified random sampling. Retrieved from https://www.investopedia.com/terms/stratified_random_sampling.asp 10.Hensley, L. G., Smith, S. L., & Thompson, R. W. (2003). Assessing competencies of counselors in- training: Complexities in evaluating personal and professional development. Counselor Education and Supervision, 42(3), 219-230. 11.Herbert, J. T., & Ward, T. J. (1990). Supervisory Styles among rehabilitation counseling practical supervisors. Rehabilitation Education, 4, 203-212. 12.Ladany, N., & Lehrman-Waterman, D.E. (1999). The content and frequency of supervisor self- disclosures and their relationship to supervisor style and the supervisory working alliance. Counselor Education and Supervision, 38, 143-160. 13.Ladany, N., Hill, C. E., & Nutt, E. A. (1996). Supervisory Satisfaction Questionnaire. 14.Ladany, N., Lehrman-Waterman, D. (1999). The content and frequency of supervisor self- disclosures and their relationship to supervisor style and the supervisor working alliance. Counselor Education and Supervision, 38, 143-160. 15.Ladany, N., Walker, J. A., & Melincoff, D. S. (2001). Supervisory Style: Its relation to the supervisory working alliance and supervisor self-disclosure. Counselor Education and Supervision, 40(4), 263-275. 16.Ladany, N., Walker, J. A., & Melincoff, D. S. (2001). Supervisory style: its relation to the superisory working alliance and supervisor self-disclosure. Counselor Education and Supervision, 40(4), 263- 275. 17.Morgan, M. M., & Sprenkle, D. H. (2007). Toward a common-factors approach to supervision. Journal of Marital and Family Therapy, 33(1), 1-17. 18.Nelson, M. L., & Holloway, E. L. (1990). Relation of gender to power and involvement in supervision. Journal of Counseling Psychology, 37(4), 473-481. 19.Nelson, M., & Friedlander, M. L. (2001). A close look at conflictual supervisory relationships: The trainees's perspective. Journal of Counseling Psychology, 48, 384-395. http://dx.doi.org/10.1037/0022-0167.48.4.384. 20.Nor Mazlina Ghazali, Josephine Lo Jing Wen, Azzahrah Anuar & Edris Aden. (2018). Reliability Analysis of Supervisory Styles Inventory: A Preliminary Study. Journal of Cognitive Sciences and Human Development. Vol. 3(2). 21.Nur Hafizah Mohd Ali, Siti Aishah Hassan and Othman Jailani (2014). The supervisory styles of supervisors as perceived by counselling interns in Malaysia. Asian Journal of Applied Sciences. Vol (2)2321-0893. Retrieve from www.ajouronline.com 22.Patton, M. J., & Kivlighan, D. M., Jr. (1997). Relevance of the supervisory alliance to the counseling alliance and to treatment adherence in counselor training. Journal of Counseling Psychology, 44(1), 108-115.http://dx.doi.org/10.1037/0022-0167.44.1.108. 23.Ramos-Sanchez, l., Esnil, E., Riggs, S., Wright, L, L., Goodwin, A., Osachy Touster, L., Ratanasiripong, P., & Radolfa, E. (2002). Negative supervisory events; effects on supervision satisafaction and supervisory alliance. Professional Psychology: Research and Practice, 33(2), 197- 202. 24.Spence, S. H., Wilson, J., Kavanagh, D., Strong, J., & Worrall, L. (2001). Clinical supervision in four mental health professions: A review of the evidence. Behavior Change, 18, 135-155. 25.Terranova-Nneberg, J. (2013). A quantitative investigating supervisory styles, satisfaction with supervision and self-efficacy among female clinical training supervisees. Retrieved from https://search.proquest.com/docview/1459239531?pq-origsite=gdcholar.
(1)
1. Barnes D B and Chan L G (1990) Common Weeds of Malaysia and Their Control. Shah Alam, Malaysia: Ancom Berhad Publication. 2. Sankaranarayanan S, Bama P, Ramachandran J, Jayasimman R, Kalaichelvan P T and Deccaraman M (2010) In vitro platelet aggregation inhibitory effect of triterpenoid compound from the leaf of Elephantopus scaber Linn. International Journal of Pharmacy and Pharmaceutical Sciences 2: 49-51.2010 3. Ho W Y, Ky H, Yeap H S, Abdul Rahim R, Omar A R and Ho C (2009) Traditional practice, bioactivities and commercialization potential of Elephantopus scaber Linn. Journal of Medicinal Plants Research 3:1212-1221 4. Hammer M L A and Johns E A (1993) Tapping an Amazonian plethora: four medicinal plants of Marajo Island, Para (Brazil). Journal of Ethnopharmacology 40: 53-75 5. David E B and Luz G C (1990) Common weeds of Malaysia and their control. Shah Alam, Malaysia: Ancom Berhad Publication. 6. Inta A, Shengji P, Balslev H, Wangpakapattanawong P and Trisonthi C (2008) A comparative study on medicinal plants used in Akha’s traditional medicine in China and Thailand, cultural coherence or ecological divergence? Journal of Ethnopharmacology 116: 508-517 7. Ichikawa H, Nair M S, Takada Y, Sheeja D B A, Kumar M A S and Oommen O V (2006) Isodeoxyelephantopin, a novel sesquiterpene lactone, potentiates apoptosis, inhibits invasion, and abolishes osteoclastogenesis through suppression of nuclear factor-KB(NF-KB) activation and NF-KB-regulated gene expression. Clinical Cancer Research 12: 5910-5918 8. But P, Hon P, Cao H, Chan T W ,Wu B, Mak T and Che C (1997) Sesquiterpene lactones from Elephantopus scaber. Phytochemisrty 44: 113-116 9. Singh S D J, Krishna V, Mankani K L, Manjunatha B K, Vidya S M and Manohara Y N (2005) Wound healing activity of the leaf extracts and deoxyelephantopin isolated from Elephantopus scaber Linn. Indian Journal of Pharmacology 37: 238-242 10.Ong H C and Nordiana M (1999) Malay ethno-medico botany in Machang, Kelantan, Malaysia.Filoterapia 70: 502-513 11. Liang Q L and Min Z D (2002) Sesquiterpene Lactones from Elephantopus scaber. Chinese Chemical Letters 13:343-344 12. Mohan V R, Chenthurpandy P and Kalidass C (2010) Pharmacognostic and phytochemical investigation of Elephantopus scaber L. (Asteraceae). Journal of Pharmaceutical Science and Technology 2: 191-197 13.Quintero A, Pelcastre A and Solano J D (1999) Antitumoral activity of new pyrimidine derivatives of sesquiterpene lactones. Journal of Pharmacy & Pharmaceutical Science 2: 108-112 14. Than N N , Fotso S, Sevvana M, Sheldrick G M, Fiebig H H , Kelter G and Laatsch H (2005) Sesquiterpene lactones from Elephantopus scaber. Naturforsch 60: 200-204. 15. Xu G, Liang Q, Gong Z, Yu W, He S and Xi L (2006) Antitumor activities of the four sesquiterpene lactones from Elephantopus scaber L. Experimental Oncology 28: 106-109. 16. Rajkapoor B, Jayakar B and Anandan R (2002) Antitumour Activity of Elephantopus scaber Linn Against Dalton«SQ»s Ascitic Lymphoma. Indian Journal of Pharmaceuticals Science 64:71-73 17. Avani K and Neeta S (2005) A study of the antimicrobial activity of Elephantopus scaber. Indian Journal of Pharmacology, 37: 126-128. 18. Wiart C (2002) Medicinal Plants of Southeast Asia. Selangor, Malaysia: Prentice Hall. 19.Muthumani P, Chiristina A J M, Venkataraman S, Meera R, Devi P, Kameswari B, and Eswarapriya B (2010) Anti-diarrhoeal and cardiotonic activity of extracts of Elephantopus scaber Linn in experimental animals. Research Journal of Pharmaceutical, Biological and Chemical Sciences 1:1-4 20. Dais P, Jasmine R, Ignacimuthu S and Murugan E (2009) A novel steroid from Elephantopus scaber L. an ethnomedicinal plant with antidiabetic activity. Phytomedicine 16:252-257. 21. Viruel M A, Escribano P, Barbieri M, Ferri M and Hormaza J I (2005) Fingerprinting, embryo type and geographic differentiation in mango (Mangifera indica L., Anacardiaceae) with microsatellites. Molecular Breeding 15: 383-393 22. Sekar B, Pokharia A K , Ravi Prasad G.V, Chowdhury R K, Rajagopalan G and Pa J N, Pharmacognosy can help minimize accidental misuse of herbal medicine. Current Science, 93:1356-1358. 2007. 23. Joshi K, Chavan P, Warude D and Patwardhan B (2004) Molecular markers in herbal drug technology. Current Science 87: 159-165. 24. Suslow T V and Bradford K J (1999). “Fingerprinting” Vegetables: DNA-based Marker Assisted Selection. Perishables Handling 100: 8-11. 25. Henry R. J. (2001) Plant genotyping: The DNA fingerprinting of plants. New York: CABI Publishing. 26. Singh B D (2006) Plant Biotechnology. New Delhi: Kalyani Publishers. 27.Reddy M P, Sarla N and. Siddiq E A (2002) Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 128: 9-17 28. Esselman E J , Li J Q, Crawford D J, Windus J L and Wolfe A D (1999). Clonal diversity in the rare Calamagrostis porteri ssp. insperata (Poaceae): comparative results for allozymes and random amplified polymorphic DNA (RAPD) and intersimple sequence repeat (ISSR) markers. Molecular Ecology 8: 443-451 29. Fang D Q and Roose M L (1997). Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theoritical and Applied Genetics 95: 408-417 30. Shekhar T S and Anju G (2012) Antioxidant Activity by DPPH Radical Scavenging Method of Ageratum conyzoides Linn. Leaves. American Journal of Ethnomedicine. 1: 244-249 31. Motooka P, Castro L, Nelson D, Nagai G and Ching L (2003) Weeds of Hawai’is pasture and natural areas; an identification and management guide. College of Tropical Agriculture and Human Resources, University of Hawai’I at Manoa. 32.Kikuchi K, Hirano H Y, Niwa Y, Sunohara H, Yamaguchi T and Umeda M (1998) A rapid and easy handling procedure for isolation of DNA from rice, Arabidopsis and Tobacco. Plant Biotechnology 15: 45-48 33. Ming L C (1999). Ageratum conyzoides: A Tropical Source of Medicinal and Agricultura Products. In J. Janick (Ed.), Perspectives on new crops and new uses (pp. 469-473). Alexandria, VA: ASHS Press. 34. Tropical Plant Database: Ageratum conyzoides (1996). Raintree nutrition. http://www.rain-tree.com/index.html. 35.Okwori A E J, Dina C O, Junaid S, Okeke I O, Adetunji J A and Olabode A O (2007). Antibacterial Activities Of Ageratum conyzoides Extracts On Selected Bacterial Pathogens. The Internet Journal of Microbiology, Vol. 4, No. 1. 36.Rosmawati S and Siti Izyan K (2012) Molecular Identity of Ageratum conyzoides L. Proceedings of Taxonomy and Ecology: Beyond Classical Approaches 147-151 37.Wang L, Liu J, Jian S, Zhang W, Wang Q, Zhao X, Liu N, and Zhong Y (2006) Genetic diversity and population structure in Elephantopus scaber (Asteraceae) from South China as revealed by ISSR markers. Plant Biosystems 40:273-279 38. Welsh J, Petersen C and Mc Clelland M (1991) Polymorphism generated by arbitrarily primed PCR in the mouse: application to strain identification amd genetic mapping. Nucleic Acid Research 19: 303-306 39. Williams J G K, Kubelik A R, Livak K J, Rafalski J A and Tingey S V (1990) DNA polymorphism amplified by arbitrariry primers are useful as genetic markers. Nucleic Acid Research 18: 6531-6535 40. Li W, Xia L Q, Li J Q and Wang G X (2004). Genetic diversity of Potamogeton maackianus in the Yangtze River. Aquatic Botany 80: 227-240 41. Cheng K T, Chang, H C, Huang H and Lin C T (2000). RAPD Analysis of Lycium barbarum medicine in Taiwan market. Botanical Bulletin of Academia Sinica 41, 11-14 42. Rosmawati S, Zuliza A and Jaya M (2013) ISSR Profiles of Elephantopus scaber Linn. Proceedings of International Congress on Chemical, Biological and Environmental Sciences 32-39 43.De Padua L S, Bunyapraphatsara N and Lemmens R H M J (1999) PROSEA. Plant Resources of South-East Asia, 12 (1): Medicinal and Poisonous Plants 1. 44. Perry, L.M. (1980). Medicinal plants of East and Southeast Asia: Attributed properties and uses. Cambridge, Massachusettes and London, England: The MIT Press, 87-88. 45. Herbal Medicine, http://www.akitaherbalmedicine.com/info/blumea.php. 46. Fazilatun N (2004) Free radical-scavenging activity of organic extracts and pure flavanoids of Blumea balsamifera D.C. leaves. Food Chemistry 88: 243-252 47. Fazilatun N, Zhari I. and Mohamed N (2002). Antioxidant activity of extracts from the leaves of Blumea balsamifera DC and their major flavonoids with ƒÒ-carotene-linoleic acid model system. Abstract of MPS Pharmacy Scientific Conference 2002. Penang, Malaysia. 41. 48. Xu S B, ChenW F, Liang H Q, Lin Y C, Deng J. and Long K.H.(1993). Protective action of blumeatin against experimental liver injuries. Zhongguo Yao Li Xue Bao 14: 376-378 49. Wang Y-H and Yu X-Y (2018). Biological activities and chemical compositions of votile oil and essential oil from the leaves of Blumea balsamifera. Journal of Essential Oil Bearing Plants 21: 1511-1531 50. Yin T M., Zhang X Y, Huang M R, Wang M X, Qiang Z, Tu S, Zhu L and Wu R (2002) Molecular linkage maps of the Populus genome. Genome 45: 541–555.
(1)
1. Bashir, M., S.G. Mustafa, and J. Ulfat. 2009. Diet and diet choice in the common Kashmir lizard, Laudakia tuberculata: Gray. Ecology Environment and Conservation 15(2): 397–402. 2. Eremchenko, V. and W. Kästle. 2002. Agamidae, pp. 574–783. In: H.-H. Schleich and W. Kästle (eds.), Amphibians and reptiles of Nepal. Biology, Systematics, Field Guide. Koeltz Scientific Books, Koenigstein. 3. Khan, M.S. 2006. Amphibians and Reptiles of Pakistan. Krieger Publishing Company, Malabar, Florida. 4. Lal, O.P. 1991. Distribution, habits, habitats and feeding behaviour of common rock lizard, Agama tuberculata Gray (Reptilia: Agamidae) in Kullu Valley, western Himalayas. Journal of Entomological Research, New Delhi 15(4): 248–250. 5. Minton, S.A. 1966. A contribution to the herpetology of West Pakistan. Bulletin of the American Museum of Natural History 134: 27–184. 6. Vishwakarma, R., D. Sengupta, L. Gomes, and A.C. Momin. 2019. Notes on Kashmir Rock Agamas, Laudakia tuberculata (Gray, 1827), from the Kalesar Wildlife Sanctuary in northern India. Reptiles & Amphibians 26(1): 75–76. 7. Waltner, R.C. 1991. Altitudinal ecology of Agama tuberculata Gray in the Western Himalayas. University of Kansas Museum of Natural History, Miscellaneous Publications 83(3): 1–74.
(1)
1. Bayer SR, DeCherney AH. Clinical manifestations and treatment of dysfunctional uterine bleeding. JAMA. 1993 Apr 14; 269(14):1823-8. 2. Ganong WF (2010). The Gonads: Development and function of the reproductive system, Chapter 25, Review of Medical Physiology. 23rd ed., Singapore: McGraw Hill: 411-422. 3. Olayaki LA, Salman TM, Ayinla MT, Soladoye AO. Plasma magnesium and cardiovascular changes during menstrual cycle in young Nigerian women. Tropical Journal of Health Sciences. 2008 Oct 23; 15(2):24-8. 4. Seelig MS. Interrelationship of magnesium and estrogen in cardiovascular and bone disorders, eclampsia, migraine and premenstrual syndrome. Journal of the American College of Nutrition. 1993 Aug 1; 12(4):442-58. 5. Artraga E, Rojas A, Villaseca P, Bianchi M. The effect of 17betaestradiol and alpha-tocopherol on the oxidation of LDL cholesterol from postmenopausal women and the minor effect of gamma-tocopherol and melatonin. Menopause (New York, NY). 2000 Mar 1; 7(2):112-6. 6. Dincer Y, Ozen E, Kadioglu P, Hatemi H, Akçay T. Effect of sex hormones on lipid peroxidation in women with polycystic ovary syndrome, healthy women, and men. Endocrine Research. 2001 Jan 1; 27(3):309-16. 7. Ha EJ, Smith AM. Plasma selenium and plasma and erythrocyte glutathione peroxidase activity increase with estrogen during the menstrual cycle. Journal of the American College of Nutrition. 2003 Feb 1; 22(1):43-51. 8. Seelig M. Cardiovascular consequences of magnesium deficiency and loss: pathogenesis, prevalence and manifestations— magnesium and chloride loss in refractory potassium repletion. The American Journal of Cardiology. 1989 Apr 18; 63(14):G4- 21. 9. Rardon DP and Fisch C (1990). Electrolytes and the Heart. In The Heart, 7 th edition (Ed. Hurst JW). McGraw-Hill Book Co., New York: 1567. 10. Arsenian MA. Magnesium and cardiovascular disease. Progress in Cardiovascular Diseases. 1993 Jan 1; 35(4):271-310. 11. Dunne FP, Barry DG, Ferriss JB, Grealy G, Murphy D. Changes in blood pressure during the normal menstrual cycle. Clinical Science. 1991 Oct; 81(s25):515-8. 12. Dullo P, Vedi N. Changes in serum calcium, magnesium and inorganic phosphorus levels during different phases of the menstrual cycle. Journal of Human Reproductive Sciences. 2008 Jul; 1(2):77. 13. Htet-Htet-Oo (2010). Serum calcium, magnesium and calcium magnesium ratio in women with premenstrual syndrome. M.Med.Sc (Physiology) thesis, University of Medicine (2), Yangon. 14. Lanje MA, Bhutey AK, Dhawle UP and Sande AS). Serum electrolytes during different phases of menstrual cycle. International Journal of Pharmacological Sciences and Research 2010; 1(10): 435-437. 15. Luepker RV, Evans A, McKeigue P, Reddy KS. Cardiovascular survey methods. World Health Organization; 2004. 16. Rosenstein DL, Elin RJ, Hosseini JM, Grover G, Rubinow DR. Magnesium measures across the menstrual cycle in premenstrual syndrome. Biological Psychiatry. 1994 Apr 15; 35(8):557-61. 17. Nishtha V (2012). Blood pressure and heart rate variability as function of ovarian cycle in young women. Ph.D thesis. School of Life Sciences, Pt. Ravishankar Shukla University, Raipur, India 18. Northcott CA, Watts SW. Low [Mg2+] e enhances arterial spontaneous tone via phosphatidylinositol 3-kinase in DOCA-salt hypertension. Hypertension. 2004 Jan 1; 43(1):125-9. 19. Khayam-Bashi H, Liu TZ, Walter V. Measurement of serum magnesium with a centrifugal analyzer. Clinical Chemistry. 1977
(1)
1. Bell CS, Samuel JP & Samuels JA. Prevalence of hypertension in children: Applying the new American Academy of Pediatrics Clinical Practice Guideline. Am J Hypertens. 2019, 73:148-152. doi:10.1161/ HYPERTENSIONAHA.118.11673 2. Song P, Zhang Y, Yu J, et al. Global prevalence of hypertension in children: A systematic review and meta-analysis. JAMA Pediatrics. 2019, 173(12): 1154-1163. doi:10.1001/jamapediatrics.2019.3310 3. Flynn, J. The changing face of pediatric hypertension in the era of the childhood obesity epidemic. Pediatr Nephrol. 2013, 28(7):1059-1066. 4. Li Y, Zou Z, Luo J, et al. The predictive value of anthropometric indices for cardiometabolic risk factors in Chinese children and adolescents: A national multicenter school-based study. PloS One, 2020, 15(1), e0227954. 5. Munthali RJ, Kagura J, Lombard Z, et al. Childhood adiposity trajectories are associated with late adolescent blood pressure: Birth to twenty cohort. BMC Public Health. 2016, 16(1):1-10. doi: 10.1186/s12889-016-3337-x
(1)
1. Benami E, Jin Z, Carter MR, et al. Uniting remote sensing, crop modelling and economics for agricultural risk management. Nature Reviews Earth & Environment 2021; 2(2): 140–159. doi: 10.1038/s43017-020-00122-y 2. Hill RV, Kumar N, Magnan N, et al. Ex ante and ex post effects of hybrid index insurance in Bangladesh. Journal of Development Economics 2019; 136: 1–17. doi: 10.1016/j.jdeveco.2018.09.003 3. Smith VH, Watts M. Index based agricultural insurance in developing countries: Feasibility, scalability and sustainability. Gates Open Research 2019; 3(65): 65. doi: 10.21955/GATESOPENRES.1114971.1 4. Budhathoki NK, Lassa JA, Pun S, Zander KK. Farmers’ interest and willingness-to-pay for index-based crop insurance in the lowlands of Nepal. Land Use Policy 2019; 85: 1–10. doi: 10.1016/j.landusepol.2019.03.029 5. Takahashi K, Barrett CB, Ikegami M. Does index insurance crowd in or crowd out informal risk sharing? Evidence from rural Ethiopia. American Journal of Agricultural Economics 2019; 101(3): 672–691. 6. de Janvry A, Sadoulet E. Using agriculture for development: Supply- and demand-side approaches. World Development 2020; 133: 105003. doi: 10.1016/j.worlddev.2020.105003 7. Cariappa AGA, Acharya KK, Adhav CA, et al. Impact of COVID-19 on the Indian agricultural system: A 10-point strategy for post-pandemic recovery. Outlook on Agriculture 2021; 50(1): 26–33. doi: 10.1177/0030727021989060 8. Ceballos F, Kramer B, Robles M. The feasibility of picture-based insurance (PBI): Smartphone pictures for affordable crop insurance. Development Engineering 2019; 4: 100042. doi: 10.1016/j.deveng.2019.100042 9. Jung J, Maeda M, Chang A, et al. The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Current Opinion in Biotechnology 2021; 70: 15–22. doi: 10.1016/j.copbio.2020.09.003 10. Möhring N, Dalhaus T, Enjolras G, et al. Crop insurance and pesticide use in European agriculture. Agricultural Systems 2020; 184: 102902. doi: 10.1016/j.agsy.2020.102902 11. Wiener M, Saunders C, Marabelli M. Big-data business models: A critical literature review and multiperspective research framework. Journal of Information Technology 2020; 35(1): 66–91. doi: 10.1177/0268396219896811 12. Roetzel PG. Information overload in the information age: A review of the literature from business administration, business psychology, and related disciplines with a bibliometric approach and framework development. Business Research 2019; 12(2): 479–522. doi: 10.1007/s40685-018-0069-z 13. Grover V, Chiang RHL, Liang TP, Zhang D. Creating strategic business value from big data analytics: A research framework. Journal of Management Information Systems 2018; 35(2): 388–423. doi: 10.1080/07421222.2018.1451951 14. Lim C, Kim KH, Kim MJ, et al. From data to value: A nine-factor framework for data-based value creation in information-intensive services. International Journal of Information Management 2018; 39: 121–135. doi: 10.1016/j.ijinfomgt.2017.12.007 15. Niño HAC, Niño JPC, Ortega RM. Business intelligence governance framework in a university: Universidad de la costa case study. International Journal of Information Management 2020; 50: 405–412. doi: 10.1016/j.ijinfomgt.2018.11.012 16. Jean RJ, Sinkovics RR, Kim D. Information technology and organizational performance within international business to business relationships: A review and an integrated conceptual framework. International Marketing Review 2008; 25(5): 563–583. doi: 10.1108/02651330810904099 17. Rahardja U. Using Highchart to implement business intelligence on attendance assessment system based on YII framework. International Transactions on Education Technology 2022; 1(1): 19–28.
(1)
[1] “Benefits of Nuclear Energy Power on Malaysian Society Engineering Essay”, Available from: https://www.ukessays.com/essays/engineering/benefits-of-nuclearenergy-power-on-malaysian-society-engineering-essay.php?vref=1. Accessed on 07 Dec 2019. [2] E. Triantaphyllou and S. H. Mann, “Using the Analytic Hierarchy Process for Decision Making in Engineering Applications: Some Challenges,” J. Ind. Eng. Appl. Pract., vol. 2, no. 1, pp. 35–44, 1995. [3] R. W. Saaty, “The analytic hierarchy process-what it is and how it is used,” Math. Model., vol. 9, no. 3–5, pp. 161–176, 1987. [4] Y. Murayama, 2014. “Progress in geospatial analysis,” Prog. Geospatial Anal., vol. 9784431540, no. April 2012, pp. 1–291. [5] S. A. Azeez, O. R. Nandagopan, and V. M. Dhiwakar, “Application of Analytic Hierarchy Process for Optimal Design Decisions in Product Development,” no. 3, pp. 47–54, 2013.. [6] R. Idris and Z. Abd. Latif, 2012. “GIS multi-criteria for power plant site selection,” Proc. - 2012 IEEE Control Syst. Grad. Res. Colloquium, ICSGRC 2012, no. Icsgrc, pp. 203–206. [7] “PRIS - Home.” Available from: https://pris.iaea.org/PRIS/home.aspx. Accessed on 19 Jul 2020. [8] H. M. Sungguh et al., “Application of the Analytic Hierarchy Process (AHP) in the Selection of River Basin Organizations Models in Toba Asahan River Basin - Indonesia,” vol. 3, no. 8, pp. 65–77, 2013. [9] Z. B. H. Ibrahim, “Thesis_A Comparative Study of The AHP and Topsis Methods For Implementing Load Shedding Scheme In A Pulp Mill System”, 2014. [10] B. Khwanruthai, “How to do AHP analysis in Excel,” pp. 1–21, 2012. [11] I.The AHP and A. Hierarchy, “The Analytic Hierarchy Process (AHP),” no. 1980, pp. 1–11, 2004.
(1)
[1] Bers, M.-U.: Coding as another language: A pedagogical approach for teaching computer science in early childhood, Journal of Computers in Education, 6(4), 2019, 499-528. https://doi.org/10.1007/s40692-019-00147-3 [2] Bhatt, D.; Patel, C.; Talsania, H.; Patel, J.; Vaghela, R.; Pandya, S.; Ghayvat, H.: CNN variants for computer vision: History, architecture, application, challenges and future scope, Electronics, 10(20), 2021, 2470. https://doi.org/10.3390/electronics10202470 [3] Bhuiyan, M.-N.; Rahman, M.-M.; Billah, M.-M.; Saha, D.: Internet of things (IoT): A review of its enabling technologies in healthcare applications, standards protocols, security, and market opportunities, IEEE Internet of Things Journal, 8(13), 2021, 10474-10498. https://doi.org/10.1109/JIOT.2021.3062630 [4] Cioffi, R.; Travaglioni, M.; Piscitelli, G.; Petrillo, A.; Felice, F.: Artificial intelligence and machine learning applications in smart production: Progress, trends, and directions, Sustainability, 12(2), 2020, 492. https://doi.org/10.3390/su12020492 [5] DiPietro, J.; Kelemen, A.; Liang, Y.; Sik, L.-C.: Computer-and robot-assisted therapies to aid social and intellectual functioning of children with autism spectrum disorder, Medicina, 55(8), 2019, 440. https://doi.org/10.3390/medicina55080440 [6] Faris, M.; Chiverton, J.; Ndzi, D.; Ahmed, A.-I.: A review on computer vision-based methods for human action recognition, Journal of Imaging, 6(6), 2020, 46. https://doi.org/10.3390/jimaging6060046 [7] Hashimoto, D.-A.; Rosman, G.; Witkowski, E.-R.; Stafford, C.; Navarette, W.-A.-J.; Rattner, D.-W.; Meireles, O.-R.: Computer vision analysis of intraoperative video: automated recognition of operative steps in laparoscopic sleeve gastrectomy, Annals of Surgery, 270(3), 2019, 414-421. https://doi.org/10.1097/SLA.0000000000003460 [8] Hu, Y.; Yu, Z.; Cheng, X.; Luo, Y.; Wen, C.: A bibliometric analysis and visualization of medical data mining research, Medicine, 99(22), 2020, e20338. https://doi.org/10.1097/MD.0000000000020338 [9] Khanam, F.-T.-Z.; Naji, A.; Chahl, J.: Remote monitoring of vital signs in diverse non-clinical and clinical scenarios using computer vision systems: A review, Applied Sciences, 9(20), 2019, 4474. https://doi.org/10.3390/app9204474 [10] Miceli, M.; Schuessler, M.; Yang, T.: Between subjectivity and imposition: Power dynamics in data annotation for computer vision, Proceedings of the ACM on Human-Computer Interaction, 4(CSCW2), 2020, 1-25. https://doi.org/10.1145/3415186 [11] Miller, D.: The best practice of teach computer science students to use paper prototyping, International Journal of Technology, Innovation and Management (IJTIM), 1(2), 2021, 42-63. https://doi.org/10.54489/ijtim.v1i2.17 [12] Ngiam,K.-Y.;Khor,W.:Bigdataandmachinelearningalgorithmsforhealthcaredelivery,The Lancet Oncology, 20(5), 2019, e262-e273. https://doi.org/10.1016/S1470-2045(19)30149-4 [13] Ray,P.-P.;Dash,D.;Salah,K.;Kumar,N.:BlockchainforIoT-basedhealthcare:background, consensus, platforms, and use cases, IEEE Systems Journal, 15(1), 2020, 85-94. https://doi.org/10.1109/JSYST.2020.2963840 [14] Salman, M.-M.; Obaidi, Z.; Kitchen, P.; Loreto, A.; Bill, R.-M.; Wade, M.-R.: Advances in applying computer-aided drug design for neurodegenerative diseases, International Journal of Molecular Sciences, 22(9), 2021, 4688. https://doi.org/10.3390/ijms22094688 [15] Scheuerman, M.-K.; Hanna, A.; Denton, E.: Do datasets have politics? Disciplinary values in computer vision dataset development, Proceedings of the ACM on Human-Computer Interaction, 5(CSCW2), 2021, 1-37. https://doi.org/10.1145/3476058 [16] Thakkar, A.; Kogej, T.; Reymond, J.-L.; Engkvist, O.; Bjerrum, E.-J.: Datasets and their influence on the development of computer assisted synthesis planning tools in the pharmaceutical domain, Chemical Science, 11(1), 2020, 154-168. https://doi.org/10.1039/C9SC04944D [17] Venkatasubramanian,S.:Ambulatorymonitoringofmaternalandfetalusingdeepconvolution generative adversarial network for smart health care IoT system, International Journal of Advanced Computer Science and Applications, 13(1), 2022, 214-222. https://doi.org/10.14569/IJACSA.2022.0130126 [18] Yeung,A.-W.-K.;Tosevska,A.;Klager,E.;Eibensteiner,F.;Laxar,D.;Stoyanov,J.;Willschke, H.: Virtual and augmented reality applications in medicine: analysis of the scientific literature, Journal of Medical Internet Research, 23(2), e25499. https://doi.org/10.2196/25499 [19] Zheng,S.;Rao,J.;Song,Y.;Zhang,J.;Xiao,X.;Fang,E.-F.;Niu,Z.:PharmKG:adedicated knowledge graph benchmark for bomedical data mining, Briefings in Bioinformatics, 22(4), 2021, 1-15. https://doi.org/10.1093/bib/bbaa344
(1)
1. Bertrands, E., De Medts, C., & Descheppere, G. (2003). Kleuterstappen in beweging. Leuven: Acco. 2. Cardon, G., Geldhof, E., Cnockaert, B. & Janda, I. (2007). De kinderrugschool, een multifactorieel programma voor een rugvriendelijke levensstijl. Acco Leuven/ Voorburg. (p. 96-106) 3. De Medts, C., Coens, H. & van Damme, E. (2008). Hop pompom! Bewegingsontwikkeling voor kleuters. Uitgeverij Zwijsen.be, Antwerpen. 4. Dennison, A.D., Russo, T.J., Burdick, P.A. & Jenkins, P.L. (2004). An intervention to reduce television viewing by preschool children. Arch Pediatr Adolesc Med, 158: 170-176. 5. Florquin V. & Bertrands E. (1995). Speelkriebels voor kleuters. Acco Leuven/Den Haag. (p. 149, 153, 156, 158-159, 175, 177, 198, 244, 393) 6. Sherwood, N.A., Russo, T.J. & Dennison, B.A. (2004). Fit 5 Kids: Reduction of TV viewing (preschool curriculum). 7. Vlaams verbond katholiek basisonderwijs (1998). Bewegingsopvoeding in de basisschool: leerplan. CRKLKO. 8. Vlaams verbond katholiek basisonderwijs (2000). Ontwikkelingsplan voor de katholieke kleuterschool. CRKLKO.
(1)
[1] Bhattacharjee, B. (2008). Module 7 Lecture -1: Durability of Concrete. Department of Civil Engineering, IIT Delhi [2] Dhir, R. K, McCarthy, M. J. & Newlands, M. D. (1997) Challenges In Designing Concrete Durability: A Sustainable Approach. Concrete Technology Unit. University of Dundee, UK [3] Ohama, Y. (1997). Recent Progress In Concrete - Polymer Composites. [4] Ohama, Y. (1994). Classification of Concrete - Polymer Composities. [5] Boonpradit, P. S. A. N. (2006). Use of Liquid Polymer to Prevent Moisture Loss during Curing and to Improve Watertightness at the Hardening Stage. Thammasat Int. J. Sc. Tech. 11(2): 41-46. [6] Radonjanin, R. (1998). Experimental Research On Polymer Modified Concrete. ACI Material Journal 95. [7] Z.Su, K. S., J.M.J.M Bijen, H.M. Jennings, & A.L.A. Fraaij (1996). The Evolution of Microsructure in Styrene Acrylate for Polymer-Modified Cement Pastes at Early Stage of Cement Hydration. Advanced Cement Based Material 3: 87-93 [8] Mehta, P.K. (n.d.). High – Performance, High – Volume Fly Ash Concrete For Sustainable Development. International Workshop on Sustainable Development and Concrete Technology.
(1)
1. Bhayani SB, Clayman RV, Sundaram CP, Landman J, Andriole G, Figenshau RS, et al. Surgical treatment of renal neoplasia: Evolving toward a laparoscopic standard of care. Urology. 2003 Nov 1;62(5):821–6. 2. Albqami N, Janetschek G. Indications and contraindications for the use of laparoscopic surgery for renal cell carcinoma. Nat Clin Pract Urol. 2006 Jan;3(1):32–7. 3. Jacobs JK, Goldstein RE, Geer RJ. Laparoscopic adrenalectomy. A new standard of care. Ann Surg. 1997 May;225(5):495–501; discussion 501-502. 4. Vargas HI, Kavoussi LR, Bartlett DL, Wagner JR, Venzon DJ, Fraker DL, et al. Laparoscopic adrenalectomy: a new standard of care. Urology. 1997 May;49(5):673–8. 5. Moon DA, El-Shazly MA, Chang CM, Gianduzzo TR, Eden CG. Laparoscopic pyeloplasty: evolution of a new gold standard. Urology. 2006 May;67(5):932– 6. 6. Symons SJ, Bhirud PS, Jain V, Shetty AS, Desai MR. Laparoscopic pyeloplasty: our new gold standard. J Endourol. 2009 Mar;23(3):463–7. 7. Griffith JL, Voloschin P, Gibb GD, Bailey JR. Differences in eye-hand motor coordination of video-game users and non- users. Percept Mot Skills. 1983 Aug;57(1):155–8. 8. Green CS, Bavelier D. Action-Video-Game Experience Alters the Spatial Resolution of Vision. Psychol Sci. 2007 Jan;18(1):88– 94. 9. Green CS, Bavelier D. Action video game modifies visual selective attention. Nature. 2003 May;423(6939):534–7. 10. Colzato LS, van Leeuwen PJA, van den Wildenberg WPM, Hommel B. DOOM’d to Switch: Superior Cognitive Flexibility in Players of First Person Shooter Games. Front Psychol. 2010;1:8. 11. Ou Y, McGlone ER, Camm CF, Khan OA. Does playing video games improve laparoscopic skills? Int J Surg. 2013 Jun;11(5):365–9. 12. Sammut M, Sammut M, Andrejevic P. The benefits of being a video gamer in laparoscopic surgery. Int J Surg. 2017 Sep;45:42–6. 13. Rosenberg J, Grantcharov TP, Bardram L, Funch-Jensen P. Impact of hand dominance, gender, and experience with computer games on performance in virtual reality laparoscopy. Surg Endosc. 2003 Jul 1;17(7):1082–5. 14. Fraser SA, Klassen DR, Feldman LS, Ghitulescu GA, Stanbridge D, Fried GM. Evaluating laparoscopic skills: Setting the pass/fail score for the MISTELS system. Surg Endosc. 2003 Jun;17(6): 964–7. 15. Vassiliou MC, Ghitulescu GA, Feldman LS, Stanbridge D, Leffondré K, Sigman HH, et al. The MISTELS program to measure technical skill in laparoscopic surgery: Evidence for reliability. Surg Endosc. 2006 May;20(5):744–7. 16. Hasnaoui A, Zaafouri H, Haddad D, Bouhafa A, Ben Maamer A. Reliability testing of a modified MISTELS score using a low-cost trainer box. BMC Med Educ. 2019 May 6;19(1):132. 17. Rosser JC, Lynch PJ, Cuddihy L, Gentile DA, Klonsky J, Merrell R. The impact of video games on training surgeons in the 21st century. Arch Surg Chic Ill 1960. 2007 Feb;142(2):181–6; discusssion 186. 18. Schlickum MK, Hedman L, Enochsson L, Kjellin A, Felländer-Tsai L. Systematic video game training in surgical novices improves performance in virtual reality endoscopic surgical simulators: A prospective randomized study. World J Surg. 2009 Nov;33(11):2360–7. 19. Shane MD, Pettitt BJ, Morgenthal CB, Smith CD. Should surgical novices trade their retractors for joysticks? Videogame experience decreases the time needed to acquire surgical skills. Surg Endosc. 2008 May; 22(5):1294–7. 20. Chalhoub M, Khazzaka A, Sarkis R, Sleiman Z. The role of smartphone game applications in improving laparoscopic skills. Adv Med Educ Pract. 2018;9:541– 7. 21. Spence I, Feng J. Video Games and Spatial Cognition. Rev Gen Psychol. 2010 Jun 1;14(2):92–104. 22. Cherney ID. Mom, Let Me Play More Computer Games: They Improve My 8 Xiang et al.; AJRRU, 5(1): 1-9, 2022; Article no.AJRRU.83209 Mental Rotation Skills. Sex Roles. 2008 Dec 1;59(11):776–86. 23. Plerhoples TA, Zak Y, Hernandez- Boussard T, Lau J. Another Use of the Mobile Device: Warm-up for Laparoscopic Surgery. J Surg Res. 2011 Oct; 170(2):185–8.
(1)
[1] B. Kahar, "Studi Dan Pemodelan Penyediaan Energi Di Pulau Moti Kota Ternate Berbasis Energi Terbarukan," Jurusan Teknik Fisika, Fakultas Teknologi Industri, Institut Teknologi Sepuluh November, Surabaya, 2016. [Online]. Available: https://core.ac.uk/reader/291465650. [2] A. Budiyanto, "Analisis Potensi PLTH (Angin Dan Surya) di Pantai Losari Makassar Menggunakan HOMER," 2020. [Online]. Available: https://dspace.uii.ac.id/handle/123456789/30524. [3] A. N. Azizah and S. Purbawanto, "Perencanaan pembangkit listrik tenaga hibrid (PV dan Mikrohidro) terhubung grid (Studi kasus desa Merden, Kecamatan Padureso, Kebumen)," Jurnal Listrik, Instrumentasi, dan Elektronika Terapan, vol. 2, no. 1, 2021. [Online]. Available: https://journal.ugm.ac.id/juliet/article/view/64365. [4] C. A. Nugraha, "Analisa Potensi Sumber Daya Angin Sebagai Pembangkit Listrik Tenaga Bayu (Pltb) Di Pantai Congot, Kulonprogo,"Universitas Muhammadiyah Yogyakarta, 2015. [Online]. Available: https://etd.umy.ac.id/id/eprint/16502/ [5] A. Rajani, K. Kusnadi, and R. Darussalam, "Simulasi Integrasi PV-Biogas Menggunakan Homer Pada Pembangkit Listrik Hybrid On-Grid: Studi Kasus Ponpes Baiturrahman Ciparay Bandung," in Prosiding Seminar Nasional Fisika (E-Journal), 2016, vol. 5, pp.SNF2016-ERE-55-60, doi: https://doi.org/10.21009/0305020611. [6] R. N. Haliim and A. Syofian, "Studi Evaluasi Sistem Pembangkit Hybrid PLN dan PLTMH Dengan Aplikasi Homer," Rang Teknik Journal, vol. 6, no. 2, pp. 147-153, 2023, doi: https://doi.org/10.31869/rtj.v6i2.4148. [7] M. Ali and H. S. Wibowo, "Perancangan Sistem Mikrogrid Cerdas Berbasis Energi Terbarukan Untuk Pabrik Es Nelayan Kapasitas 4 kW Design of Smart Microgrid System Based On Renewable Energy For Fishermen’s Ice Factory 4 kW Capacity," Jurnal Teknologi Bahan dan Barang Teknik Vol, vol. 9, no. 2, pp. 55-62, 2019, doi: http://dx.doi.org/10.37209/jtbbt.v9i2.103. [8] A. Pratama, K. B. Adam, and J. Raharjo, "Simulasi Optimasi Pembangkit Listrik Tenaga Hibrida Di Pulau Nusa Penida Menggunakan Aplikasi Homer," eProceedings of Engineering, vol. 9, no. 5, 2022. [Online]. Available: https://openlibrarypublications.telkomuniversi ty.ac.id/index.php/engineering/article/view/18511. [9] J. Indrawan, K. H. Khwee, and A. Hiendro, "Perencanaan Pembangkit Listrik Hibrida Angin–Biomassa–Diesel–Surya Di Desa Penjernang, Kecamatan Sungai Tebelian, Kabupaten Sintang, Kalimantan Barat," Journal of Electrical Engineering, Energy, and Information Technology (J3EIT), vol. 10, no. 1, 2022, doi: http://dx.doi.org/10.26418/j3eit.v10i1.52518. [10] I. Saputra, "Analisa Daya Pembangkit Listrik Pada Pesisir Pantai Labu Menggunakan Software Homer Tenaga Hibrida," Jurnal Ilmiah Mahasiswa Teknik [JIMT], vol. 1, no. 3, 2021. [Online]. Available: http://jurnalmahasiswa.umsu.ac.id/index.php/jimt/article/view/569 . [11] M. I. Ramadhan, "Analisis Perencanaan Pembangkit Listrik Tenaga Hybrid (PLTH) Berbasis Software Homer di Pantai Parangtritis," Universitas Muhammadiyah Yogyakarta, 2022. [Online]. Available: https://etd.umy.ac.id/id/eprint/35663/ [12] M. Rohman, "Optimalisasi Perancangan Solar Home System Menggunakan Homer”,"Univesitas Muhammadiyah Surakarta, 2012. [Online]. Available: https://eprints.ums.ac.id/20206/ [13] M. Sukmawidjaja and I. Akbar, "Simulasi Optimasi Sistem Plth Menggunakan Software Homer Untuk Menghemat Pemakaian Bbm Di Pulau Penyengat Tanjung Pinang Kepulauan Riau," Jetri: Jurnal Ilmiah Teknik Elektro, pp. 17-42, 2013, doi:https://doi.org/10.25105/jetri.v11i1.1626. [14] M. Reza, "Studi Kelayakan Sistem Pembangkit Listrik Tenaga Hybrid di Pelabuhan Perikanan Pantai (PPP) Morodemak dengan Menggunakan Software Homer," Universitas Sultan Agung, 2021. [Online]. Available: https://repository.unissula.ac.id/24025/ [15] S. Ramadhan, "Analisis Perencanaan Sistem Pembangkit Listrik Tenaga Hybrid Dengan Homer Pro di Pantai Liang Ambon Maluku: Analysis Of Hybrid Power Plant System Planning With Homer Pro On Liang Beach Ambon, Maluku," Swara Patra: Majalah Ilmiah PPSDM Migas, vol. 13, no. 2, pp. 15-32, 2023, doi: https://doi.org/10.37525/sp/2023-2/453
(1)
1. Bloom DE, Luca DL. The Global Demography of Aging. Vol 1. 1st ed. Elsevier B.V.; 2016. doi:10.1016/bs.hespa.2016.06.002 2. NoorAni A, Rajini S, Balkish MN, et al. Morbidity patterns and healthcare utilisation among older people in Malaysia: 1996–2015. Public Health. 2018;163:105-112. doi:10.1016/j.puhe.2018.06.018 3. Samad S, Mansor N. Population Ageing and Social Protection in Malaysia. Malaysian J Econ Stud. 2013;50(2):139-156. http://search.proquest.com/docview/1471984460/. 4. Collard RM, Boter H, Schoevers RA, Oude Voshaar RC. Prevalence of frailty in community-dwelling older persons: A systematic review. J Am Geriatr Soc. 2012;60(8):1487-1492. doi:10.1111/j.1532-5415.2012.04054.x 5. Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. Lancet. 2013;381(9868):752-762. doi:10.1016/S0140-6736(12)62167-9 6. Ahmad NS, Hairi NN, Said MA, et al. Prevalence, transitions and factors predicting transition between frailty states among rural community-dwelling older adults in Malaysia. PLoS One. 2018;13(11):1-16. doi:10.1371/journal.pone.0206445 7. Sathasivam J, Kamaruzzaman SB, Hairi F, Ng CW, Chinna K. Frail Elders in an Urban District Setting in Malaysia: Multidimensional Frailty and Its Correlates. Vol 27. Los Angeles, CA: SAGE Publications; 2015. 8. Travers J, Romero-Ortuno R, Bailey J, Cooney MT. Delaying and reversing frailty: A systematic review of primary care interventions. Br J Gen Pract. 2019;69(678):E61- E69. doi:10.3399/bjgp18X700241 9. Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3). 10. Rockwood K, Song X, MacKnight C, et al. A global clinical measure of fitness and frailty in elderly people. Can Med Assoc J. 2005;173(5):489-495. 11. Ruiz JG, Dent E, Morley JE, et al. Screening for and Managing the Person with Frailty in Primary Care: ICFSR Consensus Guidelines. J Nutr Heal Aging. 2020;24(9):920-927. doi:10.1007/s12603-020-1492-3 12. Morley JE, Malmstrom TK, Miller DK. A simple frailty questionnaire (FRAIL) predicts outcomes in middle aged african americans. J Nutr Heal Aging. 2012;16(7):601-608. doi:10.1007/s12603-012-0084-2 13. Ensrud KE, Ewing SK, Taylor BC, et al. Comparison of 2 frailty indexes for prediction of falls, disability, fractures, and death in older women. Arch Intern Med. 2008;168(4):382-389. doi:10.1001/archinternmed.2007.113 14. Satake S, Senda K, Hong YJ, et al. Validity of the Kihon Checklist for assessing frailty status. Geriatr Gerontol Int. 2016;16(6):709-715. doi:10.1111/ggi.12543 15. Fun S. Management Update on Functional decline in older adults. Singapore Fam Physician. 2012;38(1). https://www.cfps.org.sg/publications/the-singapore-familyphysician/ article/82_pdf. 16. Theou O, Pérez-Zepeda MU, Van Der Valk AM, Searle SD, Howlett SE, Rockwood K. A classification tree to assist with routine scoring of the Clinical Frailty Scale. Age Ageing. 2021;50(4):1406-1411. doi:10.1093/ageing/afab006 17. Theou O, Andrew M, Ahip S, et al. The Pictorial Fit-Frail Scale: Developing a Visual Scale to Assess Frailty. Can Geriatr J. 2019;22(2):64-74. http://search.proquest.com/ docview/2241218310/. 18. Ahip SS, Ghazali SS, Theou O, et al. The Pictorial Fit-Frail Scale—Malay version (PFFS-M): reliability and validity testing in Malaysian primary care. Fam Pract. 2022;(August 2022):290-299. doi:10.1093/fampra/cmac089 19. Wallace LMK, McGarrigle L, Rockwood K, Andrew MK, Theou O. Validation of the Pictorial Fit-Frail Scale in a memory clinic setting. Int Psychogeriatrics. 2019:1–10. doi:10.1017/S1041610219000905 20. Cooper L, Deeb A, Dezube AR, et al. Validation of the Pictorial Fit-Frail Scale in a Thoracic Surgery clinic. Ann Surg. 2022;Publish Ah(5). doi:10.1097/ sla.0000000000005381 21. Chehrehgosha M, Alizadeh-Khoei M, Behnampour N, Sharifi F, Fadaye Vatan R, Aminalroaya R. Diagnosis of frailty in geriatric patients: Is the pictorial fit frail scale an appropriate screening tool in hospital settings? Casp J Intern Med. 2021;12(3):307- 314. doi:10.22088/cjim.12.3.307 22. E, Azreena; I, Suriani; J, Muhamad Hanafiah; P F. Factors associated with health literacy among Type 2 Diabetes Mellitus patients attending government among Type 2 Diabetes Mellitus patients attending a government health clinic. Int J Public Heal Clin Sci. 2016;3(6):50-64. 23. Ysea-Hill O, Sani TN, Nasr LA, et al. Concurrent Validity of Pictorial Fit-Frail Scale (PFFS) in Older Adult Male Veterans with Different Levels of Health Literacy. Gerontol Geriatr Med. 2021;7. doi:10.1177/23337214211003804 24. Ahip SS, Shariff-Ghazali S, Lukas S, et al. Translation, adaptation and pilot testing of the pictorial fit-frail scale (PFFS) for use in Malaysia – The PFFS-Malay version (PFFS-M). Malaysian Fam physician. 2021;16(2):27-36. 25. Martin Bland J, Altman D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet (British Ed. 1986;327(8476):307-310. 26. Searle SD, Mitnitski A, Gahbauer EA, Gill TM, Rockwood K. A standard procedure for creating a frailty index. BMC Geriatr. 2008;8:1-10. doi:10.1186/1471-2318-8-24 27. Fried LP, Ferrucci L, Darer J, Williamson JD, Anderson G. Untangling the Concepts of Disability, Frailty, and Comorbidity: Implications for Improved Targeting and Care. Journals Gerontol - Ser A Biol Sci Med Sci. 2004;59(3):255-263. doi:10.1093/ gerona/59.3.m255 28. Mor V, Thomas KS, Rahman M. Defining and Measuring Nursing Home Placement. J Am Geriatr Soc. 2018;66(10):1866-1868. doi:10.1111/jgs.15546 29. Identifying frailty. National Health Service, UK. https://www.england.nhs.uk/ ourwork/clinical-policy/older-people/frailty/frailty-risk-identification/. Published 2021. Accessed July 23, 2021. 30. Althubaiti A. Information bias in health research: Definition, pitfalls, and adjustment methods. J Multidiscip Healthc. 2016;9:211-217. doi:10.2147/JMDH.S104807
(1)
1. Bongers EM, van Kampen A, van Bokhoven H, Knoers NV. Human syndromes with congenital patellar anomalies and the underlying gene defects. Clin Genet. 2005;68(4):302-319. doi:10.1111/j.1399-0004.2005. 00508.x 2. Kim HS, Yoo JH, Park NH, Chang JH, Ban YS, Song SH. Magnetic Resonance Imaging Findings in Small Patella Syndrome. Knee Surg Relat Res. 2016;28(1):75- 78. doi:10.5792/ksrr.2016.28.1.7 3. Khaimov M, Fakhoury J, Karim F, Bitterman A, Alpert S. Total Knee Arthroplasty in Patients with Familial Patellar Absentia Syndrome: A 40-Year Update: A Case Report. JBJS Case Connect. 2018;8(4): e100. doi:10.2106/JBJS.CC.17.00329 4. Bongers, E. M., Duijf, P. H., van Beersum, S. E., Schoots, J., Van Kampen, A., Burckhardt, A., Hamel, B. C., Losan, F., Hoefsloot, L. H., Yntema, H. G., Knoers, N. V., & van Bokhoven, H. (). Mutations in the human TBX4 gene cause small patella syndrome. American journal of human genetics, 2004;74(6):1239–1248. https://doi.org/10.1086/421331 5. Scott, J E, and W S Taor. “The “small patella” syndrome.” The Journal of bone and joint surgery. 1979;61(2): 172- 5. doi:10.1302/0301-620X.61B2.438269 6. Bongers, E M et al. “The small patella syndrome: description of five cases from three families and examination of possible allelism with familial patella aplasia-hypoplasia and nail-patella syndrome.” Journal of medical genetics .2001; 38 (3): 209-14. doi:10.1136/ jmg.38.3.209 7. Kozlowski, K, and J Nelson. “Small patella syndrome.” American journal of medical genetics 1995;57: : 558-61. doi:10.1002/ajmg.1320570408 8. Bilgic, Serkan et al. “Bilateral absence of patella.” Congenital anomalies vol. 2010;50: (1): 71-4. doi:10.1111/j.1741-4520.2009.00263.x 9. Dellestable, F. et al. “The ‘small-patella’ syndrome. Hereditary osteodysplasia of the knee, pelvis and foot.” The Journal of bone and joint surgery. British volume 78 1 (1996): 63-5. https://doi.org/10.1302/0301- 620X.78B1.1136 10. Jerome, J Terrence Jose et al. “Bilateral congenital absence of patella.” Indian journal of orthopaedics 2008;42(2): 228-30. doi:10.4103/0019-5413.40264 11. Varghese, Renjit A, and Benjamin Joseph. “Congenital aplasia of the patella and the distal third of the quadriceps mechanism.” Journal of pediatric orthopedics. 2007; 16 (5): 323-6. doi: 10.1097/01.bpb.0000243828.22552.74 12. Duygun, Fatih et al. “Isolated unilateral absent patella and contralateral small patella.” BMJ case reports vol. 2013 bcr2013200353. 3 Sep. 2013, doi:10.1136/bcr- 2013-200353
(1)
[1] Bonjar, GH Sahidi, and P. Rashid Farrokhi. "Anti-bacillus activity of some plants used in traditional medicine of Iran." Nigerian Journal of Natural Products and Medicine 8, no. 1 (2004): 34-39. [2] Centers for Disease Control and Prevention (CDC). Vibrio cholerae Outbreak online Databases. Retrieved on December 2, 2016, from http://www.cdc.gov/cholera/index.html. [3] Choudhury, S., A. Sree, S. C. Mukherjee, P. Pattnaik, and M. Bapuji. "In vitro antibacterial activity of extracts of selected marine algae and mangroves against fish pathogens." Asian fisheries science 18, no. 3/4 (2005): 285. [4] Costerton, J. William, Philip S. Stewart, and E. Peter Greenberg. "Bacterial biofilms: a common cause of persistent infections." Science 284, no. 5418 (1999): 1318-1322. [5] Dalsgaard, Anders, Anita Forslund, Andreas Petersen, Derek J. Brown, Francisco Dias, Serifo Monteiro, Kåre Mølbak, Peter Aaby, Amabelia Rodrigues, and Anita Sandström. "Class 1 integron-borne, multiple-antibiotic resistance encoded by a 150-kilobase conjugative plasmid in epidemic Vibrio cholerae O1 strains isolated in Guinea-Bissau." Journal of clinical microbiology 38, no. 10 (2000): 3774-3779. [6] Davey, Mary Ellen, and George A. O'toole. "Microbial biofilms: from ecology to molecular genetics." Microbiology and molecular biology reviews 64, no. 4 (2000): 847-867. [7] Donlan, R. M., W. O. Pipes, and T. L. Yohe. "Biofilm formation on cast iron substrata in water distribution systems." Water Research 28, no. 6 (1994): 1497-1503. [8] Elexson, N., R. Son, Y. Rukayadi, T. T. Zainazor, M. Nor Ainy, Y. Nakaguchi, and N. Mitsuaki. "Biosafety of Vibrio Parahaemolyticus biofilm from seafood using herbs and spices." Journal of Life Medicine 1, no. 3 (2013): 71-82. [9] Finkelstein, R. A. Cholera, Vibrio cholerae O1 and O139, and other pathogenic vibrios (2002). Medical Microbiology (4th ed). University of Texas Medical Branch at Galveston. Guarrera, P. M. 2005. Traditional phytotherapy in central Italy. Fitoterapia, 76, 1–25. [10] Guarrera P. M. Traditional phytotherapy in Central Italy (Marche, Abruzzo, and Latium)(2005). Fitoterapia , pp.1- 25. [11] Inamdar, Nazma, Shima Edalat, Vikram B. Kotwal, and Sunita Pawar. "Herbal drugs in milieu of modern drugs." International Journal of Green Pharmacy (IJGP) 2, no. 1 (2008). [12] Jeremy Veno. Cholera outbreak in Limbang under control (2016). Borneo Post . March 16, [13] Kiuchi, Fumiyuki, NORIO NAKAMURA, YOSHISUKE TSUDA, Kaoru Kondo, and Hiroyuki Yoshimura. "Studies on crude drugs effective on visceral larva migrans. II.: Larvicidal principles in Kaempferiae rhizoma." Chemical and pharmaceutical bulletin 36, no. 1 (1988): 412-415. [14] Larsen, Kai, Halijah Ibrahim, S. H. Khaw, and L. G. Saw. Gingers of peninsular Malaysia and Singapore. Natural History Publications (Borneo), 1999. [15] Mandal, Shyamapada, Manisha DebMandal, Nishith Kumar Pal, and Krishnendu Saha. "Synergistic antiStaphylococcus aureus activity of amoxicillin in combination with Emblica officinalis and Nymphae odorata extracts." Asian Pacific Journal of Tropical Medicine 3, no. 9 (2010): 711-714. [16] Patel, Robin. "Biofilms and antimicrobial resistance." Clinical Orthopaedics and Related Research® 437 (2005): 41- 47. [17] Seeley, H. W., Vandemark, P. J., & Lee, J. J. . Microbes in action: A laboratory manual of microbiology (4th ed) (2001). New York, NY: W.H. Freeman and Company. [18] Sunayana, V., P. Vadivukkarasi, A. Rajendran, T. Francis Xavier, and E. Natarajan. "Antibacterial potential of Plectranthus amboinicus (Lour) Spreng." A study in vitro. J Swamy Bot Club 20 (2003): 55-58. [19] Watnick, Paula I., Crystal M. Lauriano, Karl E. Klose, Laura Croal, and Roberto Kolter. "The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139." Molecular microbiology 39, no. 2 (2001): 223-235. [20] World Health Organization. "The Legal Status of Traditional and Complementary/Alternative Medicine: a Worldwide Review." Geneva, WHO-Verlag (2001).
(1)
[1] Borah, Tasvina, Singh, Akoijam Paul, Pampi, Talang, Hammylliende & Kumar, Bagis and Hazarika, Samarendra.”Spawn Production and Mushroom Cultivation Technology”, ICAR Research Complex for NEH Region, Meghalaya, India (2019), pp. 1-46. [2] Yafetto L, “The structure of mycelial cords and rhizomorphs of fungi: A mini-review”. Mycosphere 9(5), 984–998, 2018. Doi 10.5943/mycosphere/9/5/3. [3] Katel, Shambhu, Mandal, Honey and Sharma, Rohit. “Oyster Mushroom Cultivation”, in Research Trends in Agriculture Sciences, 30th Edition, Chapter: 3, AkiNik Publications, 2022, pp.39-56. [4] Ottom, Mohammad Ashraf and Alawad, Noor Aldeen. “Classification of mushroom fungi using machine learning techniques”. International Journal of Advanced Trends in Computer Science and Engineering, 8(5), September - October 2019, pp.2378- 2385.DOI://10.30534/ijatcse/2019/78852019. [5] Preechasuk, Jitdumrong, Chaowalit, Orawan and Pensiri, Fuangfar and Visutsak, Po- rawat, “Image analysis of mushroom types classification by convolution neural networks”., 2019, pp.82-88.10.1145/3375959.337598. [6] Maurya, P. and Singh, N.P., “Mushroom classification using feature based machine learning approach”. In: Chaudhuri, B., Nakagawa, M.,Khanna, P., Kumar, S. (eds) Proceedings of 3rd International Conference on Computer Vision and Image Processing. Advances in Intelligent Systems and Computing, vol 1022. Springer, Singapore. 2020. https://doi.org/10.1007/978-981-32-9088-4_17. [7] N. Zahan, M. Z. Hasan, M. A. Malek and S. S. Reya, "A deep learning based approach for edible, inedible and poisonous mushroom classification," 2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD), Dhaka, Bangladesh, pp. 440-444, 2021, doi: 10.1109/ICICT4SD50815.2021.9396845. [8] Paudel, Nawaraj and Bhatta, Jagdish, “Mushroom classification using random forest and REP tree classifiers”. Nepal Journal of Mathematical Sciences. 3, pp. 111-116, 2022. 10.3126/njmathsci.v3i1.44130. [9] Viswanadham, S., Muttipati, A.S., Lakshmi, N.J., Sujatha, Y., “Mushroom classification and feature extraction using linear discriminant analysis”. In: Bhateja, V., Khin Wee, L., Lin, J.CW., Satapathy, S.C., Rajesh, T.M. (eds) Data Engineering and Intelligent Computing. Lecture Notes in Networks and Systems, vol 446, Springer, Singapore, 2022. https://doi.org/10.1007/978-981-19-1559-8_34. [10] S. K. Pal, R. Pant, R. Roy, S. Singh, L. Choudhary and S. Naaz, "Mushroom classification model to check edibility using machine learning," 2023 10th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 2023, pp. 214-217. [11] M. R. M. Kassim, I. Mat and I. M. Yusoff, "Applications of Internet of Things in mushroom farm management," 2019 13th International Conference on Sensing Technology (ICST), Sydney, NSW, Australia, 2019, pp. 1-6, doi: 10.1109/ICST46873.2019.9047702. [12] A. A. Shakir, F. Hakim, M. Rasheduzzaman, S. Chakraborty, T. U. Ahmed and S. Hossain, "Design and Implementation of SENSEP ACK: an IoT based mushroom cultivation monitoring system," 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox'sBazar, Bangladesh, 2019, pp. 1-6, doi: 10.1109/ECACE.2019.8679183. [13] Pramod, Mathew, Jacob., Jeni, Moni., Sneha, Sunil, “An intelligent system for cultivation and classification of mushrooms using machine vision”, 2023 International Conference on Computational Intelligence and Sustainable Engineering Solutions (CISES), Greater Noida, India, 2023, pp. 264-270, doi: 10.1109/CISES58720.2023.10183464. [14] Md. Ariful Islam, Md. Antonin Islam, Md Saef Ullah Miah, and Abhijit Bhowmik, “An automated monitoring and environmental control system for laboratory-scale cultivation of oyster mushrooms using the Internet of Agricultural Thing (IoAT)”. In Proceedings of the 2nd International Conference on Computing Advancements (ICCA '22). Association for Computing Machinery, New York, NY, USA, 200, pp.207–212. https://doi.org/10.1145/3542954.3542985. [15] A. Anil, H. Gupta and M. Arora, "Computer vision based method for identification of freshness in mushrooms," 2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), Ghaziabad, India, 2019, pp. 1-4, doi: 10.1109/ICICT46931.2019.8977698. [16] Ma, Y., Xia, Y., & He, X, “A preliminary study on mushroom classification and application of SVM principle to infer the linearly separable dataset”. In Advances in Petrochemical Engineering and Green Development, 2022,pp. 470-476, CRC Press. [17] Cucut, Hariz, Pratomo., Widyastuti, Andriyani, “Mushroom image classification using C4.5 algorithm”. Journal of Intelligent Software System,2(1), pp.17-19, 2023. doi: 10.26798/jiss.v2i1.930. [18] Zheng, Y.-Y.; Kong, J.-L.; Jin, X.-B.; Wang, X.-Y.; Su, T.-L.; Zuo, M. “CropDeep: The crop vision dataset for deep-learning-based classification and detection in precision agriculture”. Sensors 2019, 19,1058. https://doi.org/10.3390/s19051058. [19] L. Boukhris, J. Ben Abderrazak and H. Besbes, "Tailored deep learning based architecture for smart agriculture," 2020 International Wireless Communications and Mobile Computing (IWCMC), Limassol, Cyprus, 2020, pp. 964-969, doi: 10.1109/IWCMC48107.2020.9148182. [20] Yingyuan Du, Tao Wu, Gaoyuan Yang, Yuwei Yang, Ge Peng, “Classification algorithm based on convolutional neural network for wild fungus”, Third International Conference on Artificial Intelligence and Computer Engineering (ICAICE 2022); 126105D (2023), https://doi.org/10.1117/12.2671050.
(1)
1. Boyce PC. 2007. Studies on the Alocasia Schott (Araceae – Colocasieae) of Borneo: I. Two new species from Sarawak, Malaysian Borneo. Gardens’ Bulletin Singapore 58: 141–154. 2. Hay A. 1998. The genus Alocasia (Araceae-Colocasieae) in West Malesia and Sulawesi. Gardens’ Bulletin Singapore 50: 221–334 3. Hay A. 2000. Alocasia nebula. Botanical Magazine, n.s. 17(1): 14–18, pl. 381 4. Kurniawan A, Boyce PC. 2011. Studies on the Alocasia Schott (Araceae–Colocasieae) of Borneo II: Alocasia baginda, a new species from East Kalimantan, Indonesian Borneo. Acta Phytotaxonomica et Geobotanica 60(3): 123–126. 5. Tate RB. 2001. The geology of Borneo island CDROM. – Kuala Lumpur: Persatuan Geologi Malaysia / Geological Society of Malaysia. 6. Wong KM, Boyce PC. 2016. Novitates Bruneienses, 6. Alocasia azlanii (Araceae), a new species from Brunei. Acta Phytotaxonomica et Geobotanica 67(3): 185–189.
(1)
1. Boyce PC 2017. Studies on Schismatoglottideae (Araceae) of Borneo LXIII: Three new species for the Schismatoglottis Patentinervia Clade. Borneo Journal of Resource Science and Technology 7(2): 84–92. 2. Furtado CX. 1935. Araceae Malesicae. The Gardens’ Bulletin, Straits Settlements 8: 145–158. 3. Oldfield M. 2014. The Green Heart of Sabah. Scubazoo Publications. 255pp. 4. Tate RB. 2001. The geology of Borneo island CDROM. - Kuala Lumpur: Persatuan Geologi Malaysia / Geological Society of Malaysia. 5. Wong SY, Aisahtul binti W, Boyce PC. 2017. Studies on Schismatoglottis (Araceae) of Borneo LX: Preliminary notes on the Schismatoglottis Patentinervia Clade, including descriptions of three new species. Aroideana 40(1): 4–28. 6. Wong SY, Aisahtul binti W, Boyce PC. 2018. Studies on Schismatoglottis (Araceae) of Borneo LXIV: Another new species for Schismatoglottis Patentinervia Clade from the Rejang Basin, Sarawak. Aroideana 41(1): 139–148. 7. Wong SY, Boyce PC, Aisahtul binti Wardi, Chai SK. 2019. Araceae of Mulu National Park I: Four new species of Schismatoglottis (Araceae). Nordic Journal of Botany 37: doi 10.1111/njb.02566.
(1)
1. Boyce PC & Hay A. 2001. A taxonomic revision of Araceae tribe Potheae (Pothos, Pothoidium and Pedicellarum) for Malesia, Australia and the tropical Western Pacific. Telopea 9(3): 449–457. 2. Grayum MH. 1984. Palynology and phylogeny of the Araceae. Ph.D. Dissertation. Univ. Massachusetts, Amherst, Massachusetts. 3. Grayum MH. 1990. Evolution and phylogeny of the Araceae. Annals of the Missouri Botanical Garden 77(4): 628–697. 4. Hay A. 2019. Durianology, discovery, and saltation: the evolution of aroids. Gardens’ Bulletin Singapore 71(Suppl. 2): 257–313. 5. Hay A & Mabberley DJ. 1991. ‘Transference of function’ and the origin of aroids: their significance in early angiosperm evolution. Botanische Jahrbücher fur Systematik, Pflanzengeschichte und Pflanzengeographie. 113: 330–428.
(1)
1) Bracken J, Tran T, Ditchfield M. Developmental dysplasia of the hip: controversies and current concepts. J Paediatr Child Health. 2012 Nov;48(11):963-72; quiz 972-3. 2) Aronson J. Osteoarthritis of the young adult hip: etiology and treatment. Instr Course Lect. 1986;35:119-28. 3) Barrack RL: Neuvascular injury:avoiding catastrophe. J arthroplasty 19(4 SupplI):104-107,2004 4) Norwegian Arthroplasy Register.
(1)
[1]Bradford MA,Pi Y-L.Elastic flexural–torsional buckling of discretely restrained arches.Journal of Structural Engineering,ASCE 2002;128(6):719–27. [2]Chen WF, Lui EM.Stability design of steel frames.Boca Raton, FL:CRC Press;1991 [3]Trahair NS,Bradford MA,Nethercot DA,Gardner L.The behaviour and design of steel structures to EC3.4th ed.London:Taylor and Francis;2008. [4]Chan BH.Non-linear analysis of steel frames under non-proportional and fire loadings. Ph.D. thesis. Hong Kong: The Hong Kong Polytechnic University;2002. [5]Iu CK, Chan SL. A simulation-based large deflection and inelastic analysis of steel frames under fire. Journal of Constructional Steel Research 2004;60:1495–524. [6]Heidarpour A, Bradford MA. Generic non-linear modelling of a bi-material composite beam with partial shear interaction. International Journal of Non-Linear Mechanics 2009;44:290–7. [7]Song L,Izzuddin BA,Elnashai AS,Dowling PJ.An integrated adaptive environment for fire and explosion analysis of steel frames—PartI:Analytical models.Journal of Constructional Steel Research 2000;53:63–85. [8]Izzuddin BA,Song L,Elnashai AS,Dowling PJ.An integrated adaptive environment for fire and explosion analysis of steel frames—Part II: Verification and application. Journal of Constructional Steel Research 2000;53:87–111. [9]Wood RD, Zienkiewicz OC. Geometrically nonlinear finite element analysis of beams,frames,arches and axisymmetric shells. Computers and Structures 1976;7:725–35. [10]Noor AM,Greene WH,Hartley SJ.Nonlinear finite element analysis of curved beams. Computer Methods in Applied Mechanics and Engineering 1976;12:289–307. [11]Noor AK,Peters JM. Mixed models and reduced/selective integration displace-ment models for nonlinear analysis of curved beams. International Journal for Numerical Methods in Engineering 1981;17:615–31. [12]Stolarski H, Belytschko T. Membrane locking and reduced integration for curved elements. Journal of Applied Mechanics 1982;49:172–6. [13]Pi Y-L,Bradford MA,Uy B.A rational elasto-plastic spatially curved thin-walled beam element. International Journal for Numerical Methods in Engineering 2007;70:253–90.[14]Calhoun PR, DaDeppo DA. Nonlinear finite element analysis of clamped arches.Journal of Structural Engineering,ASCE 1983;109:599–612. [15]Elias ZM,Chen KL.Nonlinear shallow curved-beam finite element.Journal of Engineering Mechanics,ASCE 1988;114:1076–87. [16]Wen RK, Suhendro B. Nonlinear curved-beam element for arch structures.Journal of Structural Engineering,ASCE 1991;117:599–612. [17]Bradford MA, Uy B, Pi Y-L. In-plane elastic stability of arches under a central concentrated load.Journal of Engineering Mechanics,ASCE 2002;128:710–9. [18]Pi Y-L,Bradford MA,Uy B.In-plane stability of arches. International Journal of Solids and Structures 2002;39:105–25. [19]Bradford MA. In-plane nonlinear behaviour of circular pinned arches with elastic restraints under thermal loading. International Journal of Structural Stability and Dynamics 2006;6:163–77. [20]Bradford MA. Buckling of circular steel arches subjected to fire loading. Welding in the World 2006;50:394–9. [21]Bradford MA. Long span shallow steel arches subjected to fire loading. In:International symposium on innovations in structural steel;2008. [22]Moon J, Yoon K-Y, Lee T-H, Lee H-E. In-plane elastic buckling of pin-ended shallow parabolic arches.Engineering Structures 2007;29:2611–7. [23]Dimopoulos CA, Gantes CJ. Nonlinear in-plane behaviour of circular steel arches with hollow circular cross-section. Journal of Constructional Steel Research 2008;64:1436–45. [24] ADINA system 8.3. Release notes. Watertown,MA: ADINA R&D Inc.;2005. [25]ABAQUS. User’s manual—Version6.1.1. Pawtucket,RI: Abaqus Inc.;2006. [26]ECCS—T3. European recommendations for the fire safety of steel structures.Amsterdam:Elsevier;1983. [27]British Standards Institution. Eurocode 3: Design of steel structures: Part 1.2 general rules—Structural fire design.London: BSI;2005. [28]Lie TT. Structural fire protection.New York: ASCE;1992.[29]Standards Australia. AS4100 Steel Structures.1998.[30]Heidarpour A,Bradford MA.Generic non-linear modelling of restrained steel beams at elevated temperatures. Engineering structures[Published online 17 July 2009]. [31]Heidarpour A,Bradford MA.Non-discretisation formulation for the non-linear analysis of semi-rigid steel frames at elevated temperatures. Computers and Structures[inpress].[32]Waterloo maple software.Waterloo,ON: Maplesoft;2008.[33]Broken hill proprietary limited.Hot rolled products.Melbourne: BHP;1998. [34]Pi Y-L,Bradford MA.Thermo elastic lateral-torsional buckling of fixed slender beams under linear moment gradient. International Journal of Mechanical Sciences 2008;50(7):1183–93.
(1)
1. Breijyeh Z, Karaman R. Comprehensive review on Alzheimer's disease: causes and treatment. Molecules. 2020;25(24):5789. 2. Zhang H, Zheng Y. β amyloid hypothesis in Alzheimer's disease:pathogenesis,prevention,and management. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2019;41(5):702–8. 3. Fang X, Zhang J, Zhao J, Wang L. Effect of resveratrol combined with donepezil hydrochloride on inflammatory factor level and cognitive function level of patients with Alzheimer's disease. J. Healthcare Eng. 2022;2022. 4. Darland T, Dowling JE. Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc. Natl. Acad. Sci. 2001;98(20):11691–6. 5. Benvenutti R, Marcon M, Gallas-Lopes M, de Mello AJ, Herrmann AP, Piato A. Swimming in the maze: an overview of maze apparatuses and protocols to assess zebrafish behavior. Neurosci. Biobehav. Rev. 2021;127:761–78. 6. Lamb EA, Echevarria DJ, Jouandot DJ. The utility of the T-maze in assessing learning, memory, and models of neurological disorders in the zebrafish. Behaviour. 2012;149(10–12):1081. 7. Kundap UP, Kumari Y, Othman I, Shaikh MF. Zebrafish as a model for epilepsy-induced cognitive dysfunction: a pharmacological, biochemical and behavioral approach. Front. Pharmacol. 2017;8. 8. Barros T, Alderton W, Reynolds H, Roach A, Berghmans S. Zebrafish: an emerging technology for in vivo pharmacological assessment to identify potential safety liabilities in early drug discovery. Br. J. Pharmacol. 2008;154(7):1400–13. 9. Shenoy A, Banerjee M, Upadhya A, Bagwe-Parab S, Kaur G. The brilliance of the zebrafish model: perception on behavior and Alzheimer’s disease. Front. Behav. Neurosci. 2022;16:861155. 10. Raduan SZ, Ahmed QU, Kasmuri AR, Rusmili MRA, Sulaiman WAW, Shaikh MF, et al. Neurotoxicity of aluminium chloride and okadaic acid in zebrafish: Insights into Alzheimer's disease models through anxiety and locomotion testing, and acute toxicity assessment with Litsea garciae bark's methanolic extract. J. King Saud Univ. Sci. 2023;35(7), 102807. 11. Panula P, Sallinen V, Sundvik M, Kolehmainen J, Torkko V, Tiittula A, et al. Modulatory neurotransmitter systems and behavior: towards zebrafish models of neurodegenerative diseases. Zebrafish. 2006;3(2):235–47. 12. Yang S, Kim W, Choi BH, Koh HY, Lee CJ. Alcohol impairs learning of T-maze task but not active avoidance task in zebrafish. Kor. J. Biol. Sci. 2003;7(4):303–7. 13. Kasture S, Kasture V, Joshua A, Damodaran A, Amit A. Nootropic activity of BacoMind, an enriched phytochemical composition from Bacopa monnieri. J. Nat. Remed. 2007;7(1):166–73. 14. Nada S, Williams F, Shah Z. Development of a novel and robust pharmacological model of okadaic acid-induced Alzheimer's disease in zebrafish. CNS & Neurol. Disord. Drug Targets (Formerly Curr. Drug Targets-CNS & Neurol. Disord.). 2016;15 (1):86–94. 15. Patil S, Chan C. Palmitic and stearic fatty acids induce Alzheimer-like hyperphosphorylation of tau in primary rat cortical neurons. Neurosci. Lett. 2005;384(3):288–93. 16. Webster SJ, Bachstetter AD, Nelson PT, Schmitt FA, Van Eldik LJ. Using mice to model Alzheimer's dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front. Genet. 2014;5. 17. Firdous SM, Pal S, Khanam S, Zakir F. Behavioral neuroscience in zebrafish: unravelling the complexity of brain-behavior rela-tionships. Naunyn Schmiedebergs Arch. Pharmacol. 2024;1-19. 18. Yu L, Tucci V, Kishi S, Zhdanova IV. Cognitive aging in zebrafish. PLoS One. 2006;1(1), e14. 19. Wenk GL. Assessment of spatial memory using the T maze. Curr. Protoc. Neurosci. 1998;4(1) 8.5 B. 1-8.5 A. 7.
(1)
1. BREITFIELD, H. T., HALL, R., GALIN, T. & BOUDAGHER-FADEL, M. K. (2018). Unravelling the stratigraphy and sedimentation history of the uppermost Cretaceous to Eocene sediments of the Kuching Zone in West Sarawak (Malaysia), Borneo. Journal of Asian Earth Sciences, 160: 200 – 223. 2. BROWN, A. & BROWN, B. (1987). A survey of freshwater fishes of the family Belontiidae in Sarawak. Sarawak Museum Journal, 37: 155 – 170, 3 pls. 3. BROWN, B. (1987). Special announcement – two new anabantoid species. Aquarist and Pondkeeper, 1987 (June): 34. 4. FINKE, P. (2013). Special issue 1 – The Licorice Gouramis. Labyrinth, Anabantoid Association of Great Britain, UK. 47 pp. 5. FINKE, P. & HALLMANN, M. (2013). Prachtguramis: Juwelen des Urwalds in der Natur und im Aquarium (German). Aqualog Animalbook GmbH, 200 p.
(1)
[1] B. Sellato and J. M. Fogel, "Decorated Mats of the Peoples of the Borneo Hinterland," Researchgate, vol. 17, no. 4, pp. 126- 137, 2013. [2] K. Simon, "datareportal.com," kepios.com, 5 January 2021. [Online]. Available: https://datareportal.com/reports/digital- 2020-july-global-statshot. [Accessed 15 January 2021]. [3] A. Durin, Tikar Bemban, Sarawak: Universiti Malaysia Sarawak, 2014. [4] B. Selleto. B, Plaited Arts From The Borneo Rainforest, Jakarta Indonesia, Singapore: Jakarta : Lontar Foundation, 2012. [5] D. G. Lowe, "Object recognition from local scale invariant features," Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150-1157, 1999. [6] M. A. Fischler and R. C. Bolles, "Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography," Communications of the ACM, vol. 24, no. 6, pp. 381-395, 1981. [7] Y. Ke and S. , "PCA-SIFT: a more distinctive representation for local image descriptors," Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. II-II, 2004. [8] M. A. Rasyidi and T. Bariyah, "Batik Pattern Recognition Using Convolutional Neural Network," Bulletin of Electrical Engineering and Informatics, vol. 9, no. 4, pp. 1430-1437, 2020. [9] M. Kasiselvanathan, V. Sangeetha and A. Kalaiselvi, "Palm pattern recognition using scale invariant feature transform," International Journal of Intelligence and Sustainable Computing, vol. 1, p. 44, 2020. [10] I. Nurhaida, H. Wei, R. A. Zen, R. Manurung and A. M. Arymurthy, "Texture Fusion for Batik Motif Retrieval System," International Journal of Electrical and Computer Engineering, vol. 6, no. 6, pp. 3174-3187, 2016. [11] N.Suciati,D.HerumurtiandA.Y.Wijaya,"Featureextractionusinggray-levelco-occurrencematrixofwaveletcoefficients and texture matching for batik motif recognition," Eighth International Conference on Graphic and Image Processing (ICGIP 2016), vol. 10225, 2017. [12] I. Hipiny, H. Ujir, A. Mujahid and N. K. Yahya, "Towards Automated Biometric Identification of Sea Turtles (Chelonia mydas)," Journal of ICT Research and Applications, pp. 256-266, 2019. [13] M. Anandraj, A. Rijuvan, B. and E. Simtha, "Real Time Image Feature Extraction Using Sift Detector," International Research Journal of Engineering and Technology (IRJET), vol. 4, pp. 2395-56, 2017. [14] N.Sasikala,V.Swathipriya,M.Ashwina,V.Preethi,A.PranaviandM.Ranjith,"FeatureExtractionofReal-TimeImage Using SIFT Algorithm," European Journal ofElectricalEngineeringand ComputerScience (EJECE), vol. 4, no. 3, 2020. [15] Isa et al., "Indonesian Sign Language Number Recognition," The 2nd International Conference on Vocational Education and Electrical Engineering (ICVEE), 2018. [16] S.Joseph,H.UjirandI.Hipiny,"UnsupervisedClassificationofIntrusiveIgneousRockThinSectionImagesUsingEdge Detection and Color Analysis," IEEE International Conference on Signal and Image Processing Applications (ICSIPA), pp. 530-534, 2017. [17] I. M. e. al., "Indonesian Sign Language Number Recognition using SIFT Algorithm," IOP Conforence Series: Materials Science and Engineering, vol. 336, 2018. [18] K. Mikolajczyk and C. Schmid , "Scale & Affine Invariant Interest Point Detectors," International Journal of Computer Vision, vol. 60, p. 63–86, 2004. [19] K. Mikolajczyk and C. Schmid, "Comparison Of Affine Invariant Local Detectors and Descriptors," 2004 12th European Signal Processing Conference, pp. 1729-1732, 2004. [20] T.Lindeberg,"ScaleInvariantFeatureTransform,"Scholarpedia,vol.7,p.10491,2012. [21] K. Wang, X. Li and T. Xu, "A Novel Improved Probability-Guided RANSAC Algorithm for Robot 3D Map Building," Journal of Sensors, vol. 2016, pp. 1-18, 2016. [22] H. Li, J. Qin, X. Xiang, L. Pan, W. Ma and N. N. Xiong, "An Efficient Image Matching Algorithm Based on Adaptive Threshold and RANSAC," IEEE, vol. 6, pp. 66963-66971, 2018. [23] H.Liu,S.Luo,J.LuandJ.Dong,"MethodforfusedphaseandPCADiretionBasedonaSIFTframeworkformulti-modal image matching," IEEE Access, vol. 7, pp. 165356-165364, 2019. [24] F. d. Gioia, G. Meoni, G. Giuffrida, M. Donati and L. Fanucci, "A Robust RANSAC-Based Planet Radius Estimation for Onboard Visual Based Navigation," Sensors 2020, vol. 20, pp. 1-13, 2020. [25] A.VedaldiandF.Brian,"VLFeat:Anopenandportablelibraryofcomputervisionalgorithms,"inProceedingsofthe18th International Conference on Multimedea 2010, Firenze, Italy, 2010. [26] H. Sarmah, "Analyticsindiamag.com," Analytics India Magazine PVT LTD, 17 October 2019. [Online]. Available: https://analyticsindiamag.com/synthetic-data-is-making-it-easy-for-data-scientists-to-create-train-ai-algorithms/. [Accessed 3 January 2021]. [27] V. Chawla, "Analyticsindiamag.com," Analytics India Magazine PVT LTD, 1 August 2020. [Online]. Available: https://analyticsindiamag.com/how-synthetic-data-sets-can-improve-computer-vision-models/. [Accessed 5 December 2020]. [28] Y.Tao,M.Skubic,T.Han,Y.XiaandX.Chi,"PerformanceEvaluationofSIFT-BasedDescriptorsforObjectRecognition," Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS), vol. 2, 2010. [29] Z.Wang,B.FanandF.Wu,"Localintensityorderpatternforfeaturedescription,"InternationalConferenceonComputer Vision (ICCV), vol. 1, p. 603–610, 2011. [30] G.Lv,S.W.TengandG.Lu,"Enhancingimageregistrationperformancebyincorporating,"PatternRecognition,vol.103, p. 46–52, 2018. [31] S. A. K. Tareen and Z. Saleem, "A Comparative Analysis of SIFT, SURF, KAZE, AKaze, ORB and BRISK," 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), pp. 1-10, 2018.
(1)
1. Cammarota G, Ianiro G, Ahern A, Carbone C, Temko A, Claesson MJ, et al. Gut microbiome, big data and machine learning to promote precision medicine for cancer. Nat Rev Gastroenterol Hepatol [Internet]. 2020;17(10):635–48. doi:10.1038/s41575-020-0327-3 2. Greenhalgh T, Rosen R, Shaw SE, Byng R, Faulkner S, Finlay T, et al. Planning and Evaluating Remote Consultation Services: A New Conceptual Framework Incorporating Complexity and Practical Ethics. Front Digit Heal [Internet]. 2021;3. doi:10.3389/fdgth.2021.726095 3. Yang J, Li Y, Liu Q, Li L, Feng A, Wang T, et al. Brief introduction of medical database and data mining technology in big data era. J Evid Based Med [Internet]. 2020;13(1):57–69. doi:10.1111/jebm.12373
(1)
1. Cao, T.; Yi, J.; Wang, X.; Xiao, H.; Xu, C. Interaction Trust-Driven Data Distribution for Vehicle Social Networks: A Matching Theory Approach. IEEE Trans. Comput. Soc. Syst. 2024, 11, 4071–4086. 2. Yang, Z.; Wang, R.; Wu, D.; Yang, B.; Zhang, P. Blockchain-Enabled Trust Management Model for the Internet of Vehicles. IEEE Internet Things J. 2023, 10, 12044–12054. 3. Adhikari, M.; Munusamy, A.; Hazra, A.; Menon, V.G.; Anavangot, V.; Puthal, D. Security in Edge-Centric Intelligent Internet of Vehicles: Issues and Remedies. IEEE Consum. Electron. Mag. 2022, 11, 24–31. 4. Yang, X.; Zhu, F.; Yang, X.; Luo, J.; Yi, X.; Ning, J.; Huang, X. Secure Reputation-Based Authentication With Malicious Detection in VANETs. IEEE Trans. Dependable Secur. Comput. 2024, 1–15. 5. Zhang, Y.; Zhao, Y.; Zhou, Y. User-Centered Cooperative-Communication Strategy for 5G Internet of Vehicles. IEEE Internet Things J. 2022, 9, 13486–13497. 6. Shokrollahi, S.; Dehghan, M. TGRV: A Trust-Based Geographic Routing Protocol for VANETs. Ad Hoc Netw. 2023, 140, 103062. 7. Rathee, G.; Kumar, A.; Kerrache, C.A.; Calafate, C. A Trust Management Solution for 5G-based Future Generation Internet of Vehicles. Comput. Netw. 2024, 248, 110501. 8. Abbas, G.; Ullah, S.; Waqas, M.; Abbas, Z.H.; Bilal, M. A Position-based Reliable Emergency Message Routing Scheme for Road Safety in VANETs. Comput. Netw. 2022, 213, 109097. 9. Ullah, S.; Abbas, G.; Waqas, M.; Abbas, Z.H.; Khan, A.U. RSU Assisted Reliable Relay Selection for Emergency Eessage Routing in Intermittently Connected VANETs. Wirel. Netw. 2023, 29, 1311–1332. 10. Monfared, S.K.; Shokrollahi, S. DARVAN: A Fully Decentralized Anonymous and Reliable Routing for VANets. Comput. Netw. 2023, 223, 109561. 11. Guo, J.; Li, X.; Liu, Z.; Ma, J.; Yang, C.; Zhang, J.; Wu, D. TROVE: A Context-Awareness Trust Model for VANETs Using Reinforcement Learning. IEEE Internet Things J. 2020, 7, 6647–6662. 12. Tripathi, K.N.; Sharma, S.C. A Trust Based Model (TBM) to Detect Rogue Nodes in Vehicular Ad-hoc Networks (VANETS). Int. J. Syst. Assur. Eng. Manag. 2020, 11, 426–440. 13. Kuang, Y.; Xu, H.; Jiang, R.; Liu, Z. GTMS: A Gated Linear Unit Based Trust Management System for Internet of Vehicles Using Blockchain Technology. In Proceedings of the IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Wuhan, China, 9–11 December 2022; pp. 28–35. 14. Li, W.; Meng, W.; Kwok, L.F. Surveying Trust-Based Collaborative Intrusion Detection: State-of-the-Art, Challenges and Future Directions. IEEE Commun. Surv. Tutorials 2022, 24, 280–305. 15. Kaur, G.; Kakkar, D. Hybrid Optimization Enabled Trust-based Secure Routing with Deep Learning-based Attack Detection in VANET. Ad Hoc Netw. 2022, 136, 102961. 16. Li, W.; Meng, W.; Yang, L.T. Enhancing Trust-based Medical Smartphone Networks via Blockchain-based Traffic Sampling. In Proceedings of the IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Shenyang, China, 20–22 October 2021; pp. 122–129. 17. Wazid, M.; Das, A.K.; Shetty, S. TACAS-IoT: Trust Aggregation Certificate-Based Authentication Scheme for Edge-Enabled IoT Systems. IEEE Internet Things J. 2022, 9, 22643–22656. 18. Fernandes, C.P.; Montez, C.; Adriano, D.D.; Boukerche, A.; Wangham, M.S. A Blockchain-based Reputation System for Trusted VANET Nodes. Ad Hoc Netw. 2023, 140, 103071. 19. Aslan, M.; Sen, S. A Dynamic Trust Management Model for Vehicular Ad Hoc Networks. Veh. Commun. 2023, 2, 11304. 20. Alalwany, E.; Mahgoub, I. Security and Trust Management in the Internet of Vehicles (IoV): Challenges and Machine Learning Solutions. Sensors 2024, 24, 368. 21. Zhang, S.; He, R.; Xiao, Y.; Liu, Y. A Three-Factor Based Trust Model for Anonymous Bacon Message in VANETs. IEEE Trans. Veh. Technol. 2023, 72, 11304–11317. 22. Nazih, O.; Benamar, N.; Lamaazi, H.; Choaui, H. Towards Secure and Trustworthy Vehicular Fog Computing: A Survey. IEEE Access 2024, 12, 35154–35171. 23. Mahmood, A.; Sheng, Q.Z.; Zhang, W.E.; Wang, Y.; Sagar, S. Towards a Distributed Trust Management System for Misbehavior Detection in the Internet of Vehicles. ACM Trans. Cyber-Phys. Syst. 2023, 7, 1–25. 24. Sagar, S.; Mahmood, A.; Sheng, Q.Z.; Munazza, Z.; Farhan, S. Can We Quantify Trust? Towards a Trust-based Resilient SIoT Network. Computing 2024, 106, 557–577. 25. Zhang, S.; Zhang, D.; Wu, Y.; Zhong, H. Service Recommendation Model Based on Trust and QoS for Social Internet of Things. IEEE Trans. Serv. Comput. 2023, 16, 3736–3750. 26. Wang, Y.X.; Mahmood, A.; Sabri, M.F.M.; Zen, H.; Kho, L.C. MESMERIC: Machine Learning-based Trust Management Mechanism for the Internet of Vehicles. Sensors 2024, 24, 863. 27. Mahmood, A.; Siddiqui, S.A.; Sheng, Q.Z.; Zhang, W.E.; Suzuki, H.; Ni, W. Trust on Wheels: Towards Secure and Resource Efficient IoV Networks. Computing 2022, 104, 1337–1358. 28. Qi, J.X.; Zheng, N.; Xu, M.; Chen, P.; Li, W.Q. A Hybrid-Trust-based Emergency Message Dissemination Model for Vehicular Ad Hoc Networks. J. Inf. Secur. Appl. 2024, 81, 103699. 29. Azizi, M.; Shokrollahi, S. RTRV: An RSU-assisted Trust-based Routing Protocol for VANETs. Ad Hoc Netw. 2024, 154, 103387. 30. Lam, C.C.; Song, Y.; Cao, Y.; Zhang, Y.; Cai, B.; Ni, Q. Multidimensional Trust Evidence Fusion and Path-Backtracking Mechanism for Trust Management in VANETs. IEEE Internet Things J. 2024, 11, 18619–18634. 31. Sagar, S.; Mahmood, A.; Sheng, Q.Z.; Zhang, W.E. Trust Computational Heuristic for Social Internet of Things: A Machine Learning-based Approach. In Proceedings of the IEEE International Conference on Communications (ICC), Virtual, 7–11 June 2020; pp. 1–6. 32. Mao, W.; Hu, T.; Zhao, W. Reliable Task Offloading Mechanism based on Trusted Roadside Unit Service for Internet of Vehicles. Ad Hoc Netw. 2023, 139, 103045.
(1)
[1] C. Chauhan, A. Dhir, M. U. Akram, and J. Salo, “Food loss and waste in food supply chains. A systematic literature review and framework development approach,” Journal of Cleaner Production, vol. 295. 2021. [2] A. Dhir, S. Talwar, P. Kaur, and A. Malibari, “Food waste in hospitality and food services: A systematic literature review and framework development approach,” J. Clean. Prod., vol. 270, p. 122861, 2020. [3] A. Betz, J. Buchli, C. Göbel, and C. Müller, “Food waste in the Swiss food service industry - Magnitude and potential for reduction,” Waste Manag., vol. 35, pp. 218–226, 2015. [4] J. Parfitt, M. Barthel, and S. MacNaughton, “Food waste within food supply chains: Quantification and potential for change to 2050,” Philos. Trans. R. Soc. B Biol. Sci., vol. 365, no. 1554, pp. 3065–3081, 2010. [5] B. Lipinski, “By the Numbers: Reducing Food Loss and Waste | World Resources Institute,” pp. 1–4, 2013. [6] N. Luo, T. L. Olsen, and Y. Liu, “A conceptual framework to analyze food loss and waste within food supply chains: An operations management perspective,” Sustain., vol. 13, no. 2, pp. 1–21, 2021. [7] F. K and I. TH, “Household Purchase and Generation of Food Waste in Malaysia (Sri Serdang and Taman Connaught Cheras Kuala Lumpur),” Adv. Recycl. Waste Manag., vol. 02, no. 03, 2018. [8] M. H. Ismail et al., “Impact of movement control order (Mco) due to coronavirus disease (covid-19) on food waste generation: A case study in klang valley, malaysia,” Sustain., vol. 12, no. 21, pp. 1–17, 2020. [9] S. Qiu and J. Wang, “The prediction of food additives in the fruit juice based on electronic nose with chemometrics,” Food Chem., vol. 230, pp. 208–214, 2017. [10] P. Hartyáni, I. Dalmadi, and D. Knorr, “Electronic nose investigation of Alicyclobacillus acidoterrestris inoculated apple and orange juice treated by high hydrostatic pressure,” Food Control, vol. 32, no. 1, pp. 262–269, 2013. [11] A. H. Gómez, J. Wang, G. Hu, and A. G. Pereira, “Monitoring storage shelf life of tomato using electronic nose technique,” J. Food Eng., vol. 85, no. 4, pp. 625–631, 2008. [12] H. Liu, Q. Li, B. Yan, L. Zhang, and Y. Gu, “Bionic electronic nose based on mos sensors array and machine learning algorithms used for wine properties detection,” Sensors (Switzerland), vol. 19, no. 1, 2019. [13] Q. Li, Y. Gu, and J. Jia, “Classification of multiple chinese liquors by means of a QCM-based e-nose and MDS-SVM classifier,” Sensors (Switzerland), vol. 17, no. 2, 2017. [14] Q. Li, Y. Gu, and N. F. Wang, “Application of Random Forest Classifier by Means of a QCM-Based ENose in the Identification of Chinese Liquor Flavors,” IEEE Sens. J., vol. 17, no. 6, pp. 1788–1794, 2017. [15] S. Qiu, J. Wang, C. Tang, and D. Du, “Comparison of ELM, RF, and SVM on E-nose and E-tongue to trace the quality status of mandarin (Citrus unshiu Marc.),” J. Food Eng., vol. 166, pp. 193–203, 2015. [16] S. Qiu, L. Gao, and J. Wang, “Classification and regression of ELM, LVQ and SVM for E-nose data of strawberry juice,” J. Food Eng., vol. 144, pp. 77–85, 2014. [17] S. Buratti, C. Malegori, S. Benedetti, P. Oliveri, and G. Giovanelli, “E-nose, e-tongue and e-eye for edible olive oil characterization and shelf life assessment: A powerful data fusion approach,” Talanta, vol. 182, no. January, pp. 131–141, 2018. [18] E. Ordukaya and B. Karlik, “Quality Control of Olive Oils Using Machine Learning and Electronic Nose,” J. Food Qual., vol. 2017, 2017. [19] S. Kiani, S. Minaei, and M. Ghasemi-Varnamkhasti, “Integration of computer vision and electronic nose as non-destructive systems for saffron adulteration detection,” Comput. Electron. Agric., vol. 141, pp. 46–53, 2017. [20] X. Tian, J. Wang, and S. Cui, “Analysis of pork adulteration in minced mutton using the electronic nose of metal oxide sensors,” J. Food Eng., vol. 119, no. 4, pp. 744–749, 2013. [21] X. Tian, J. Wang, Z. Ma, M. Li, Z. Wei, and J. M. Díaz-Cruz, “Combination of an E-Nose and an E-Tongue for Adulteration Detection of Minced Mutton Mixed with Pork,” J. Food Qual., vol. 2019, 2019. [22] M. Camardo Leggieri et al., “An electronic nose supported by an artificial neural network for the rapid detection of aflatoxin B1 and fumonisins in maize,” Food Control, vol. 123. 2021
(1)
[1] Center for Applied Learning and Multimedia (CALM) UNIMAS, Https://www.calm.unimas.my/ (Accessed: 3 July 2022). [2] Ismail, A. M., Zakwan, F. A. A., Ismail, R., and Ismail, B. N. (2010). Implementation and Assessment of Outcome Based Education (OBE) in the Faculty of Civil Engineering at Universiti Teknologi MARA (UiTM), Proceeding of the IEEE 2nd International Congress on Engineering Education, 211-214, Kuala Lumpur, Malaysia. DOI: 10.1109/ICEED.2010.5940793. [3] Pradhan, D. (2021). Effectiveness of Outcome Based Education (OBE) Toward Empowering the Students Performance in an Engineering Course, Journal of Advances in Education and Philosophy, 5(2), 58-65. DOI: 10.36348/Jaep.2021.V05i02.003. [4] Qadir, J., Shafi, A., Al-Fuqaha, A., Taha, A. E. M., Yau, K. L. A., Ponciano, J. and Hussain, S. (2020). Outcome-Based Engineering Education: A Global Report of International OBE Accreditation and Assessment Practices, American Society for Engineering Education (ASEE) Virtual Conference, 1-37. DOI:10.35542/Osf. Io/Rde62. [5] Sastri, P. and Narayana, J. L. (2019). Outcome Based Engineering Education: A Case Study on Implementing DMAIC Method to Derive Learning Outcomes. International Journal of Advanced Research in Engineering and Technology (IJARET), 10(1), 216-222.
(1)
[1] Chan, Y. H., Lee, B. C., & Lee, J. C. (2014). Sustainability in the construction industry in Malaysia: the challenges and breakthroughs. International Journal of Economics and Management Engineering, 8(4), 1218-1222. [2] Pradhananga, P., Elzomor, M., & Santi Kasabdji, G. (2021). Barriers and Drivers to the Adoption of Sustainable Construction Practices in Developing Countries: A Case Study of Venezuela. Journal of Architectural Engineering, 27(3), 05021005. [3] Bohari AA, Skitmore M, Xia B, Teo M. Green oriented procurement for building projects: Preliminary findings from Malaysia. Journal of Cleaner Production. 2017 Apr 1;148:690-700. [4] Lebel, L., Tri, N. H., Saengnoree, A., Pasong, S., & Buatama, U. (2002). Industrial transformation and shrimp aquaculture in Thailand and Vietnam: pathways to ecological, social, and economic sustainability?. AMBIO: A Journal of the Human Environment, 31(4), 311-323. [5] Onubi, H. O., Yusof, N. A., & Hassan, A. S. (2019). Adopting green construction practices: health and safety implications. Journal of Engineering, Design, and Technology. [6] Marjaba, G. and Chidiac, S. (2016), “Sustainability and resiliency metrics for buildings - critical review”, Building and Environment, Vol. 101, pp. 116-125. [7] Liu, J. Y., Low, S. P., & He, X. (2012). Green practices in the Chinese building industry: drivers and impediments. Journal of technology management in China. [8] Nduka, D. O., & Ogunsanmi, O. E. (2015). Stakeholders’ perception of factors determining the adoptability of green building practices in construction projects in Nigeria. Journal of Environment and Earth Science, 5(2), 188-196. [9] Fischer, E.A. (2010). Issues in Green Building and the Federal Response: An Introduction. Congressional Research Service. Retrieved August 13, 2013, from http://www.crs.gov [10] Ahn, Y.H., Pearce, A.R., Wang, Y., & Wang, G. (2013). Drivers and Barriers of Sustainable Design and Construction: The perception of Green Building Experience. International Journal of Sustainable Building Technology, 4 (1): 35-45. [11] Shafii, F., Arman Ali, Z., & Othman, M. Z. (2006). Achieving sustainable construction in the developing countries of Southeast Asia. [12] VGBC (2022), Lotus Projects; Lotus NC Projects. Retrieved March 31, 2022, from https://vgbc.vn/en/lotus-projects/ [13] GBI (2022), GBI Executive Summary as of 30 December 2021. Retrieved March 31, 2022, from https://www.greenbuildingindex.org/how-gbi-works/gbi-executive-summary/ [14] Hwang, B. G., Zhu, L., & Ming, J. T. T. (2017). Factors affecting productivity in green building construction projects: The case of Singapore. Journal of Management in Engineering, 33(3), 04016052. [15] Ghomashchi, V. (2012). Building sustainability through collaborative planning. International Journal of Sustainable Development and Planning, 7(1), 14-25. [16] Cooke, B., Langford, W. T., Gordon, A., & Bekessy, S. (2012). Social context and the role of collaborative policymaking for private land conservation. Journal of environmental planning and management, 55(4), 469-485. [17] Gunton, T. I. & Day, J., (2003). The theory and practice of collaborative planning in resource and environmental management. Environments, 31(2), 5. [18] Moradi, S., Kähkönen, K., & Aaltonen, K. (2020). Project managers’ competencies in collaborative construction projects. Buildings, 10(3), 50.
(1)
[1] CHEN, L. and INTAL, P.S. (2017) ASEAN Foreign Trade, Investment, and Integration in Comparative Perspective. In: INTAL, P. and CHEN, L. (eds.) ASEAN and Member States: Transformation and Integration. Jakarta: Economic Research Institute for ASEAN and East Asia. [2] YANG, S. and MARTINEZ-ZARZOSO, I. (2014) A Panel Data Analysis of Trade Creation and Trade Diversion Effects: The case of ASEAN-China Free Trade Area. China Economic Review, 29, pp. 138–151. [3] SHENG, Y., TANG, H.C., and XU, X. (2014) The Impact of the ACFTA on ASEAN–PRC Trade: Estimates Based on an Extended Gravity Model for Component Trade. Applied Economics, 46 (19), pp. 2251–2263. [4] SCHAAK, H. (2015) The Impact of Free Trade Agreements on International Agricultural Trade: A Gravity Application on the Dairy Product Trade and the ASEANChina-FTA. In: Proceedings of 55th Annual Conference, Giessen, September 2015. German Association of Agricultural Economists. Available from http://dx.doi.org/10.22004/ag.econ.211619. [5] INDRIYANI, I. (2016) The Effect of ASEAN-China Free Trade Area (ACFTA) on Indonesia Export. Etikonomi: Jurnal Ekonomi, 15 (2), pp. 125–138. [6] LIMA, J.D. and BATHAN, B.M. (2016) Economic Impact of the ASEAN-China Free Trade Agreement on Philippine Fresh Banana Exports. Journal of Global Business and Trade, 12 (1), pp. 1–8. [7] ENDOH, M. (1999) Trade Creation and Trade Diversion in the EEC, the LAFTA and the CMEA: 1960–1994. Applied Economics, 31 (2), pp. 207–216. [8] SOLOAGA, I. and WINTERS, A. (2001) Regionalism in the Nineties: What Effects on Trade? North American Journal of Economics and Finance, 12 (1), pp. 1–29. [9] CARRERE, C. (2006) Revisiting the Effects of Regional Trade Agreements on Trade Flows with Proper Specification of the Gravity Model. European Economic Review, 50 (2), pp. 223–247. [10] MAGEE, C. (2008) New Measures of Trade Creation and Trade Diversion. Journal of International Economics, 75 (2), pp. 349– 362. [11] MARTÍNEZ-ZARZOSO, I., NOWAKLEHMANN, D.F., and HORSEWOOD, N. (2009) Are Regional Trading Agreements Beneficial? Static and Dynamic Panel Gravity Models. North American Journal of Economics and Finance, 20 (1), pp. 46–65. [12] MARTÍNEZ-ZARZOSO, I. and NOWAK-LEHMANN, D.F. (2003) Augmented Gravity Model: An Empirical Application to MERCOSUR-European Union Trade Flows. Journal of Applied Economics, VI (2), pp. 291–316. [13] ALLEYNE, A., ZHANG, Z., and MU, Y. (2020) Sustaining International Trade with China: Does ACFTA Improve ASEAN Export Efficiency? Sustainability, 12 (15), 6159.
(1)
1. Chiappini E, Stival A, Galli L, de Martino M. Pertussis re-emergence in the post-vaccination era. BMC Infect Dis [Internet]. 2013 Dec [cited 2018 Oct 1];13(1). Available from: http://bmcinfectdis.biomedcentral.com/ articles/10.1186/1471-2334-13-151 2. World Health Organization (WHO). Pertussis, update 2017. In: The immonological basis for Immunization series [Internet]. 2017 [cited 2018 Nov 17]. (Module 4). Available from: http://apps. who.int/iris/handle/10665/259388 3. World Health Organization (WHO). Data, statistics and graphics [Internet]. 2019 Dec [cited 2020 Jan 25]. Available from: https://www.who.int/ immunization/monitoring_surveillance/data/en/ 4. World Health Organization (WHO). Vaccinepreventable diseases: monitoring system. 2019 Global summary. [Internet]. 2019 Oct [cited 2020 Jan 25]. Available from: https://apps.who. int/immunization_monitoring/globalsummary/ c o u n t r i e s ? c o u n t r y c r i t e r i a % 5 B c o u n t r y % 5D%5B%5D=MYS&commit=OK 5. Randi BA, Sejas ONE, Miyaji KT, Infante V, Lara AN, Ibrahim KY, et al. A systematic review of adult tetanus-diphtheria-acellular (Tdap) coverage among healthcare workers. Vaccine. 2019 Feb;37(8):1030–7. 6. Meng Q, Li L, Shi W, Wang Q, Ding M, Liu Y, et al. Seroprevalence of diphtheria and pertussis immunoglobulin G among children with pneumonia in Ji’nan, China. BMC Pediatr [Internet]. 2018 Dec [cited 2019 Jun 26];18(1). Available from: https://bmcpediatr.biomedcentral. com/articles/10.1186/s12887-018-1337-y 7. Sigera S, Perera J, Rasarathinam J, Samaranayake D, Ediriweera D. Seroprevalence of Bordetella pertussis specific Immunoglobulin G antibody levels among asymptomatic individuals aged 4 to 24 years: a descriptive cross sectional study from Sri Lanka. BMC Infect Dis [Internet]. 2016 Dec [cited 2019 Jun 26];16(1). Available from: http:// bmcinfectdis.biomedcentral.com/articles/10.1186/ s12879-016-2068-z 8. Shimizu H, Seki K, Shiga K, Nakayama T, Mori M. Safety and efficacy of DTaP-IPV vaccine use in healthcare workers for prevention of pertussis. Vaccine. 2018 Sep;36(40):5935–9. 9. World Health Organization (WHO). Health Worker Occupational Health [Internet]. Occupational Health. 2018 [cited 2018 Nov 17]. Available from: http://www.who.int/occupational_health/topics/ hcworkers/en/ 10. Liang JL, Tiwari T, Moro P, Messonnier NE, Reingold A, Sawyer M, et al. Prevention of Pertussis, Tetanus, and Diphtheria with Vaccines in the United States: Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2018 Apr 27;67(2):1–44. 11. Haviari S, Bénet T, Saadatian-Elahi M, André P, Loulergue P, Vanhems P. Vaccination of healthcare workers: A review. Hum Vaccines Immunother. 2015 Nov 2;11(11):2522–37. 12. Russi M, Behrman A, Buchta WG, Budnick LD, Hodgson MJ, Spillmann SJ, et al. Pertussis Vaccination of Health Care Workers. 2013 Sep;55(9):3. 13. Ryser A-J, Heininger U. Comparative acceptance of pertussis and influenza immunization among health-care personnel. Vaccine. 2015 Oct;33(41):5350–6. 14. Greer AL, Fisman DN. Use of Models to Identify Cost-effective Interventions: Pertussis Vaccination for Pediatric Health Care Workers. PEDIATRICS [Internet]. 2011 Aug 15 [cited 2018 Oct 1]; Available from: http://pediatrics.aappublications. org/cgi/doi/10.1542/peds.2010-0796 15. Ministry of Health Malaysia. Case Definitions For Infectious Diseases in Malaysia. Third. 2017. 16. Hudu SA. Influenza vaccination among Malaysian healthcare workers: a survey of coverage and attitudes. 2016;71(5):7. 17. Hope K, Butler M, Massey PD, Cashman P, Durrheim DN, Stephenson J, et al. Pertussis vaccination in Child Care Workers: room for improvement in coverage, policy and practice. BMC Pediatr [Internet]. 2012 Dec [cited 2018 Oct 1];12(1). Available from: http://bmcpediatr.biomedcentral. com/articles/10.1186/1471-2431-12-98 18. Lu P, Graitcer SB, O’Halloran A, Liang JL. Tetanus, diphtheria and acellular pertussis (Tdap) vaccination among healthcare personnel—United States, 2011. Vaccine. 2014 Jan;32(5):572–8. 19. Paranthaman K, McCarthy N, Rew V, van Zoelen S, Cockerill L. Pertussis vaccination for healthcare workers: staff attitudes and perceptions associated with high coverage vaccination programmes in England. Public Health. 2016 Aug;137:196–9. 20. Ferrer RA, Klein WM. Risk perceptions and health behavior. Curr Opin Psychol. 2015 Oct;5:85–9. 21. National Safety Council. Risk Perception: Theories, Strategies and next steps [Internet]. Campbell Institute; 2014 [cited 2018 Nov 17]. Available from: www.thecampbellinstitute.org 22. Nabizadeh SM, Taymoori P, Hazhir MS, Shirazi M, Roshani D, Shahmoradi B. Predicting vitamin E and C consumption intentions and behaviors among factory workers based on protection motivation theory. Environ Health Prev Med [Internet]. 2018 Dec [cited 2019 Jun 24];23(1). Available from: https://environhealthprevmed.biomedcentral.com/ articles/10.1186/s12199-018-0742-z 23. Lawrence S. Meyers, Glenn C. Gamst, A.J.Guarino. Performing Data Analysis Using IBM SPSS. John Wiley & Sons; 2013. 24. WarpPLS [Internet]. 2017. Available from: http:// www.warppls.com/ 25. Ned Kock. WarpPLS User Manual Version 6.0 [Internet]. 2010 [cited 2019 Jun 26]. Available from: http://cits.tamiu.edu/WarpPLS/ UserManual_v_6_0.pdf#page=26 26. Kock N, Gaskins L. The Mediating Role of Voice and Accountability in the Relationship Between Internet Diffusion and Government Corruption in Latin America and Sub-Saharan Africa. Inf Technol Dev. 2014 Jan 2;20(1):23–43. 27. Tuckerman JL, Collins JE, Marshall HS. Factors affecting uptake of recommended immunizations among health care workers in South Australia. Hum Vaccines Immunother. 2015 Mar 4;11(3):704–12. 28. Yuan Q, Wang F, Zheng H, Zhang G, Miao N, Sun X, et al. Hepatitis B vaccination coverage among health care workers in China. Chemin I, editor. PLOS ONE. 2019 May 7;14(5):e0216598. 29. La Torre G, Scalingi S, Garruto V, Siclari M, Chiarini M, Mannocci A. Knowledge, Attitude and Behaviours towards Recommended Vaccinations among Healthcare Workers. Healthcare. 2017 Mar 7;5(1):13. 30. Xiao H, Li S, Chen X, Yu B, Gao M, Yan H, et al. Protection Motivation Theory in Predicting Intention to Engage in Protective Behaviors against Schistosomiasis among Middle School Students in Rural China. Hotez PJ, editor. PLoS Negl Trop Dis. 2014 Oct 16;8(10):e3246. 31. MacDougall DM, Halperin BA, MacKinnonCameron D, Li L, McNeil SA, Langley JM, et al. The challenge of vaccinating adults: attitudes and beliefs of the Canadian public and healthcare providers. BMJ Open. 2015 Sep;5(9):e009062. 32. Loulergue P, Launay O. Vaccinations among medical and nursing students: Coverage and opportunities. Vaccine. 2014 Aug;32(38):4855–9. 33. Tuckerman J, Thomas N, Marshall HS. Should professionals caring for children be vaccinated? Community perspectives on health care and child care worker immunisation. Vaccine. 2016 Mar;34(14):1726–32. 34. Maltezou HC, Katerelos P, Poufta S, Pavli A, Maragos A, Theodoridou M. Attitudes toward mandatory occupational vaccinations and vaccination coverage against vaccine-preventable diseases of health care workers in primary health care centers. Am J Infect Control. 2013 Jan;41(1):66–70. 35. Maltezou HC, Poland GA. Vaccination policies for healthcare workers in Europe. Vaccine. 2014 Aug;32(38):4876–80. 36. Visser O, Hautvast JLA, van der Velden K, Hulscher MEJL. Intention to Accept Pertussis Vaccination for Cocooning: A Qualitative Study of the Determinants. Hozbor DF, editor. PLOS ONE. 2016 Jun 2;11(6):e0155861. 37. Visser O, Hulscher MEJL, Antonise-Kamp L, Akkermans R, van der Velden K, Ruiter RAC, et al. Assessing determinants of the intention to accept a pertussis cocooning vaccination: A survey among healthcare workers in maternity and paediatric care. Vaccine. 2018 Jan;36(5):736–43. 38. Tariq L, Mangen M-JJ, Hövels A, Frijstein G, de Boer H. Modelling the return on investment of preventively vaccinating healthcare workers against pertussis. BMC Infect Dis [Internet]. 2015 Dec [cited 2018 Oct 1];15(1). Available from: http:// bmcinfectdis.biomedcentral.com/articles/10.1186/ s12879-015-0800-8 39. MacDonell K. A Protection Motivation TheoryBased Scale for Tobacco Research among Chinese Youth. J Addict Res Ther [Internet]. 2013 [cited 2018 Nov 17];04(03). Available from: https://www. omicsonline.org/a-protection-motivation-theorybased-scale-for-tobacco-research-among-chineseyouth-2155-6105.1000154.php?aid=15632 40. Plotnikoff RC, Trinh L. Protection Motivation Theory: Is This a Worthwhile Theory for Physical Activity Promotion? Exerc Sport Sci Rev. 2010 Apr;38(2):91–8.
(1)
1. Choudhury I. and Chuan P. Experimental evaluation of laser cut quality of glass fibre reinforced plastic composite. Optics and Lasers in Engineering 51(10) (2013), 1125-1132. 2. Riveiro A., Quintero F., Lusquiños F., Del Val J., Comesaña R., Boutinguiza M., and Pou J. Experimental study on the CO2 laser cutting of carbon fiber reinforced plastic composite. Composites Part A: Applied Science and Manufacturing 43(8) (2012), 1400-1409. 3. Salama A., Li L., Mativenga P., and Whitehead D. TEA CO 2 laser machining of CFRP composite. Applied Physics A 122(5) (2016), 497. 4. Fürst A., Hipp D., Klotzbach A., Hauptmann J., Wetzig A., and Beyer E. Increased Cutting Efficiency due to Multi‐ Wavelength Remote‐ Laser‐ Ablation of Fiber‐ Reinforced Polymers. Advanced Engineering Materials 18(3) (2016), 403-408. 5. Tamrin K.F., Nukman Y., Choudhury I., and Shirley S. Multiple-objective optimization in precision laser cutting of different thermoplastics. Optics and Lasers in Engineering 67 (2015), 57-65. 6. Nisar S., Sheikh M., Li L., and Safdar S. Effect of thermal stresses on chip-free diode laser cutting of glass. Optics & Laser Technology 41(3) (2009), 318-327. 7. Negarestani R., Sundar M., Sheikh M., Mativenga P., Li L., Li Z., Chu P., Khin C., Zheng H., and Lim G. Numerical simulation of laser machining of carbon-fibre-reinforced composites. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 224(7) (2010), 1017-1027. 8. Nattapat M., Marimuthu S., Kamara A., and Esfahani M.N. Laser surface modification of carbon fiber reinforced composites. Materials and Manufacturing Processes 30(12) (2015), 1450-1456. 9. Liu Y.-C., Wu C.-W., Huang Y.-H., Song H.-W., and Huang C.-G. Interlaminar damage of carbon fiber reinforced polymer composite laminate under continuous wave laser irradiation. Optics and Lasers in Engineering 88 (2017), 91-101. 10. Wu C.-W., Wu X.-Q., and Huang C.-G. Ablation behaviors of carbon reinforced polymer composites by laser of different operation modes. Optics & Laser Technology 73 (2015), 23-28. 11. Choudhury I., Chong W., and Vahid G. Hole qualities in laser trepanning of polymeric materials. Optics and lasers in engineering 50(9) (2012), 1297-1305. 12. Hakimian E. and Sulong A.B. Analysis of warpage and shrinkage properties of injection-molded micro gears polymer composites using numerical simulations assisted by the Taguchi method. Materials & Design 42 (2012), 62-71. 13. Nalbant M., Gökkaya H., and Sur G. Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning. Materials & design 28(4) (2007), 1379-1385. 14. Azhikannickal E., Bates P.J., and Zak G. Use of thermal imaging to characterize laser light reflection from thermoplastics as a function of thickness, laser incidence angle and surface roughness. Optics & Laser Technology 44(5) (2012), 1491-1496. 15. Leone C., Genna S., and Tagliaferri V. Fibre laser cutting of CFRP thin sheets by multi-passes scan technique. Optics and Lasers in Engineering 53 (2014), 43-50. 16. Moghadasi K. and Tamrin K. Experimental investigation and parameter optimization of low-power CO2 laser cutting of a carbon/Kevlar fiber-reinforced hybrid composite. Lasers in Engineering (Old City Publishing) 45(1-3) (2020), 85-108. 17. Wei Q., Li S., Han C., Li W., Cheng L., Hao L., and Shi Y. Selective laser melting of stainlesssteel/ nano-hydroxyapatite composites for medical applications: microstructure, element distribution, crack and mechanical properties. Journal of Materials Processing Technology 222 (2015), 444-453. 18. Alavudeen A., Rajini N., Karthikeyan S., Thiruchitrambalam M., and Venkateshwaren N. Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: Effect of woven fabric and random orientation. Materials & Design (1980-2015) 66 (2015), 246-257. 19. Patel P., Gohil P., and Rajpurohit S. Laser machining of polymer matrix composites: scope, limitation and application. International Journal of Engineering Trends and Technology (IJETT) 4(6) (2013), 2391-2399. 20. Tamrin K., Nukman Y., Sheikh N., and Harizam M. Determination of optimum parameters using grey relational analysis for multi-performance characteristics in CO2 laser joining of dissimilar materials. Optics and Lasers in Engineering 57 (2014), 40-47. 21. Sheng P.S. and Joshi V.S. Analysis of heat-affected zone formation for laser cutting of stainless steel. Journal of materials processing technology 53(3-4) (1995), 879-892. 22. Goldak J., Chakravarti A., and Bibby M. A new finite element model for welding heat sources. Metallurgical transactions B 15(2) (1984), 299-305. 23. Hyer M.W. and White S.R. Stress analysis of fiber-reinforced composite materials. DEStech Publications, Inc. 2009. p. 170. 24. Mivehchi H. and Varvani-Farahani A. The effect of temperature on fatigue strength and cumulativefatigue damage of FRP composites. Procedia engineering 2(1) (2010), 2011-2020. 25. Hashin Z. Failure criteria for unidirectional fiber composites. Journal of Applied Mechanics 47(2) (1980), 329-334. 26. Kim H.S., Wang W.-X., and Takao Y. Evaluation by FEM of temperature-dependent damage behavior in quasi-isotropic carbon/epoxy laminates. Advanced Composite Materials 8(3) (1999), 247-257. 27. Matzenmiller A., Lubliner J., and Taylor R. A constitutive model for anisotropic damage in fibercomposites. Mechanics of materials 20(2) (1995), 125-152. 28. Lapczyk I. and Hurtado J.A. Progressive damage modeling in fiber-reinforced materials. Composites Part A: Applied Science and Manufacturing 38(11) (2007), 2333-2341.
(1)
1. Coates, G., (1992). Program from Invisible Site—a Virtual Show, a Multimedia Performance Work presented by George Coates Performance Works, San Francisco, CA, March, 1992 2. Greenbaum, P., (1992, March). The Lawnmower Man. Film and Video, 9 (3), pp. 58-62. 3. Disztinger, P., Schlo gl, S. & Groth, A., (2017), “Technology acceptance of virtual reality for travel planning”, in Schegg, R. and Stangl, B. (Eds), Information and Communication Technologies in Tourism 2017 Proceedings of the International Conference in Rome, Italy, 24-26 January, Springer, Cham, pp. 255-268. 4. Guttentag, D. A., (2010). Virtual reality: Applications and implications for tourism. Tourism Management, 31(5), 637–651. doi: 10.1016/j.tourman.2009.07.003 5. HEILIG M. L., (1962), Sensorama Simulator – US Patent Office, Retrieved: http://www.mortonheilig.com/Sen- soramaPatent.pdf [accessed Sep 23 2018] 6. Hobson, J. S. P., & Williams, A. P. (1995). Virtual reality: A new horizon for the tourism industry. Journal of Vacationn Marketing, 1(2), 124–135. 7. Huang, Y. C., Backman, K. F., Backman, S. J., & Chang, L. L. (2016). Exploring the implications of virtual reality technologyin tourism marketing: An integrated research framework. International Journal of Tourism Research, 18(2), 116–128. 8. Jung, T. H., & Tom Dieck, M. C., (2017). Augmented reality, virtual reality and 3D printing for the co-creation of value for the visitor experience at cultural heritage places. Journal of Place Management and Development, 10(2), 140–151. 9. Jung, T., Claudia, M., Lee, H., & Chung, N., (2016). Effects of virtual reality and aug-mentedreality on visitor experiences in museum. In A. Inversini, & R. Schegg (Eds.). Information and communication technologies in tourism (pp. 621–635). Wien, New York: Springer International Publishing. 10. Lee K., (2012), Augumented Reality in Education and Training, Tech Trends, vol.56, no. 2, University of Nortern Colorado, Retrieved: https://www2.potsdam.edu/betrusak/566/A ugmented%20Reality%20in%20Education.pdf [accessed Sep 23 2018] 11. Lee, O., & Oh, J. E., (2007). The impact of virtual reality functions of a hotel website on travel anxiety. Cyberpsychology and Behavior, 10(4), 584–586. 12. Marasco, A., Buonincontri, P., van Niekerk, M., Orlowski, M. and Okumus, F. (2018), “Exploring the role of next- generation virtual technologies in destination marketing”, Journal of Destination Marketing & Management 13. Sutherland I. E., A Head-Mounted Three-Dimensional Display, Retrieved: http://90.146.8.18/en/archiv_files/19902/E 1990b_123.pdf [accessed Sep 23 2018] 14. Inam, G., Ullah, I., Singh, J., & Arumungam, T. (2020). Digital Tourism: A Possible Revival Strategy for Malaysian Tourism Industry after COVID-19 Pandemic. Electronic Journal of Business & Management, 2, 1-17. 15. Iacovino, A., De Paolis, L. T., & Ndou, V. (2020, September). Technologies to Support Tourism Innovation and Cultural Heritage: Development of an Immersive Virtual Reality Application. In International Conference on Augmented Reality, Virtual Reality and Computer Graphics (pp. 3-14). Springer, Cham. 16. Jeong, M., & Shin, H. H. (2020). Tourists’ experiences with smart tourism technology at smart destinations and their behavior intentions. Journal of Travel Research, 59(8), 1464-1477. 17. Pranita, D. (2018). Digitalization: The way to tourism destination’s competitive advantage (Case study of Indonesia marine tourism). KnE Social Sciences, 243-253. 18. Elmqaddem, N. (2019). Augmented reality and virtual reality in education. Myth or reality?. International journal of emerging technologies in learning, 14(3). 19. Mandal, S. (2013). Brief introduction of virtual reality & its challenges. International Journal of Scientific & Engineering Research, 4(4), 304-309. 20. Pestana, M. H., Parreira, A., & Moutinho, L. (2020). Motivations, emotions and satisfaction: The keys to a tourism destination choice. Journal of Destination Marketing & Management, 16, 100332. 21. (2019). Annual Report Malaysia Tourism Promotion Board di laman web https://www.tourism.gov.my/files/uploads/annual_report_2019.pdf 22. (2018). Annual Report Malaysia Tourism Promotion Board di laman web https://www.tourism.gov.my/activities/view/tourism-malaysia-2017-annual-report-1 23. Mahika, E. C., (2011). Current trends in tourist motivation. Cactus Tourism Journal, 2(2), 15-24. 24. Stanley, A., (2017). Virtual reality experiences becoming big part of tourism campaigns. Retrieved January, 19, 2018. 25. Tavakoli, R., & Mura, P., (2015). ‘Journeys in Second Life’–Iranian Muslim women's behaviour in virtual tourist destinations. Tourism Management, 46, 398-407.
(1)
1.Coates, G., (1992). Program from Invisible Site—a Virtual Show, a Multimedia Performance Work presented by George Coates Performance Works, San Francisco, CA, March, 1992 2.Greenbaum, P., (1992, March). The Lawnmower Man. Film and Video, 9 (3), pp. 58-62. 3.Disztinger, P., Schlo gl, S. & Groth, A., (2017), “Technology acceptance of virtual reality for travel planning”, in Schegg, R. and Stangl, B. (Eds), Information and Communication Technologies in Tourism 2017 Proceedings of the International Conference in Rome, Italy, 24-26 January, Springer, Cham, pp. 255-268. 4.Guttentag, D. A., (2010). Virtual reality: Applications and implications for tourism. Tourism Management, 31(5), 637–651. doi: 10.1016/j.tourman.2009.07.003 5.HEILIG M. L., (1962), Sensorama Simulator – US Patent Office, Retrieved: http://www.mortonheilig.com/Sen- soramaPatent.pdf [accessed Sep 23 2018] 6.Hobson, J. S. P., & Williams, A. P. (1995). Virtual reality: A new horizon for the tourism industry. Journal of Vacationn Marketing, 1(2), 124–135. 7.Huang, Y. C., Backman, K. F., Backman, S. J., & Chang, L. L. (2016). Exploring the implications of virtual reality technologyin tourism marketing: An integrated research framework. International Journal of Tourism Research, 18(2), 116–128. 8.Jung, T. H., & Tom Dieck, M. C., (2017). Augmented reality, virtual reality and 3D printing for the co-creation of value for the visitor experience at cultural heritage places. Journal of Place Management and Development, 10(2), 140–151. 9.Jung, T., Claudia, M., Lee, H., & Chung, N., (2016). Effects of virtual reality and aug-mentedreality on visitor experiences in museum. In A. Inversini, & R. Schegg (Eds.). Information and communication technologies in tourism (pp. 621–635). Wien, New York: Springer International Publishing. 10.Lee K., (2012), Augumented Reality in Education and Training, Tech Trends, vol.56, no. 2, University of Nortern Colorado, Retrieved: https://www2.potsdam.edu/betrusak/566/A ugmented%20Reality%20in%20Education.pdf [accessed Sep 23 2018] 11.Lee, O., & Oh, J. E., (2007). The impact of virtual reality functions of a hotel website on travel anxiety. Cyberpsychology and Behavior, 10(4), 584–586. 12.Marasco, A., Buonincontri, P., van Niekerk, M., Orlowski, M. and Okumus, F. (2018), “Exploring the role of next- generation virtual technologies in destination marketing”, Journal of Destination Marketing & Management 13.Sutherland I. E., A Head-Mounted Three-Dimensional Display, Retrieved: http://90.146.8.18/en/archiv_files/19902/E 1990b_123.pdf [accessed Sep 23 2018] 14.Inam, G., Ullah, I., Singh, J., & Arumungam, T. (2020). Digital Tourism: A Possible Revival Strategy for Malaysian Tourism Industry after COVID-19 Pandemic. Electronic Journal of Business & Management, 2, 1-17. 15.Iacovino, A., De Paolis, L. T., & Ndou, V. (2020, September). Technologies to Support Tourism Innovation and Cultural Heritage: Development of an Immersive Virtual Reality Application. In International Conference on Augmented Reality, Virtual Reality and Computer Graphics (pp. 3-14). Springer, Cham. 16.Jeong, M., & Shin, H. H. (2020). Tourists’ experiences with smart tourism technology at smart destinations and their behavior intentions. Journal of Travel Research, 59(8), 1464-1477. 17.Pranita, D. (2018). Digitalization: The way to tourism destination’s competitive advantage (Case study of Indonesia marine tourism). KnE Social Sciences, 243-253. 18.Elmqaddem, N. (2019). Augmented reality and virtual reality in education. Myth or reality?. International journal of emerging technologies in learning, 14(3). 19.Mandal, S. (2013). Brief introduction of virtual reality & its challenges. International Journal of Scientific & Engineering Research, 4(4), 304-309. 20.Pestana, M. H., Parreira, A., & Moutinho, L. (2020). Motivations, emotions and satisfaction: The keys to a tourism destination choice. Journal of Destination Marketing & Management, 16, 100332. 21.(2019). Annual Report Malaysia Tourism Promotion Board di laman web https://www.tourism.gov.my/files/uploads/annual_report_2019.pdf 22.(2018). Annual Report Malaysia Tourism Promotion Board di laman web https://www.tourism.gov.my/activities/view/tourism-malaysia-2017-annual-report-1 23.Mahika, E. C., (2011). Current trends in tourist motivation. Cactus Tourism Journal, 2(2), 15-24. 24.Stanley, A., (2017). Virtual reality experiences becoming big part of tourism campaigns. Retrieved January, 19, 2018. 25.Tavakoli, R., & Mura, P., (2015). ‘Journeys in Second Life’–Iranian Muslim women's behaviour in virtual tourist destinations. Tourism Management, 46, 398-407.
(1)
1. Conti J, Holtberg P, Diefenderfer J, LaRose A, Turnure JT, Westfall L (2016) International energy outlook 2016 with projections to 2040. USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Energy Analysis 2. Madlool NA, Saidur R, Hossain MS, Rahim NA (2011) A critical review on energy use and savings in the cement industries. Renew Sustain Energy Rev 15(4):2042–2060 3. Fadayini OM, Madu C, Oshin TT, Obisanya AA, Ajiboye GO, Ipaye TO, Rabiu TO, Akintola JT, Ajayi SJ, Kingsley NA (2021) Energy and economic comparison of different fuels in cement production. Cem Ind Optim Charact Sustain Appl 3:105 4. Unachukwu GO (2003) Energy efficiency measures investigation in cement company: BCC case study. Niger J Renew Energy. 10(1–2):85–92 5. Menghi R, Papetti A, Germani M, Marconi M (2019) Energy efficiency of manufacturing systems: a review of energy assessment methods and tools. J Clean Prod 10(240):118276 6. Yin Y, Wang Y, Cheng TC, Liu W, Li J (2017) Parallel-machine scheduling of deteriorating jobs with potential machine disruptions. Omega 1(69):17–28 7. Wang DJ, Liu F, Jin Y (2017) A multi-objective evolutionary algorithm guided by directed search for dynamic scheduling. Comput Oper Res 1(79):279–290 8. Liang P, Yang HD, Liu GS, Guo JH (2015) An ant optimization model for unrelated parallel machine scheduling with energy consumption and total tardiness. Math Probl Eng 1:2015 9. Zhang Q, Grossmann IE (2016) Planning and scheduling for industrial demand side management: advances and challenges. Altern Energy Sources Technol 383–414 10. Zhang X, Hug G, Kolter JZ, Harjunkoski I. Model predictive control of industrial loads and energy storage for demand response. In: 2016 IEEE power and energy society general meeting (PESGM) 2016 Jul 17. IEEE, pp 1–5 11. Weckmann S, Kuhlmann T, Sauer A (2017) Decentral energy control in a flexible production to balance energy supply and demand. Procedia Cirp. 1(61):428–433 12. Xu W, Tang L, Pistikopoulos EN (2018) Modeling and solution for steelmaking scheduling with batching decisions and energy constraints. Comput Chem Eng 4(116):368–384 13. Mitra S, Sun L, Grossmann IE (2013) Optimal scheduling of industrial combined heat and power plants under time-sensitive electricity prices. Energy 1(54):194–211 14. Harjunkoski I, Maravelias CT, Bongers P, Castro PM, Engell S, Grossmann IE, Hooker J, Méndez C, Sand G, Wassick J (2014) Scope for industrial applications of production scheduling models and solution methods. Comput Chem Eng 5(62):161–193 15. Pattison RC, Touretzky CR, Johansson T, Harjunkoski I, Baldea M (2016) Optimal process operations in fast-changing electricity markets: framework for scheduling with low-order dynamic models and an air separation application. Ind Eng Chem Res 55(16):4562–4584 16. Uddin M, Romlie MF, Abdullah MF, Abd Halim S, Kwang TC (2018) A review on peak load shaving strategies. Renew Sustain Energy Rev 1(82):3323–3332 17. Castro PM, Dalle Ave G, Engell S, Grossmann IE, Harjunkoski I (2020) Industrial demand side management of a steel plant considering alternative power modes and electrode replacement. Ind Eng Chem Res 59(30):13642–13656 18. Melouk S, Damodaran P, Chang PY (2004) Minimizing makespan for single machine batch processing with non-identical job sizes using simulated annealing. Int J Prod Econ 87(2):141– 147 19. Artigues C, Lopez P, Hait A (2013) The energy scheduling problem: industrial case-study and constraint propagation techniques. Int J Prod Econ 143(1):13–23 20. Tomar A et al (eds) (2022) Proceedings of 3rd international conference on machine learning, advances in computing, renewable energy and communication: MARC 2021, vol 915. ISBN: 978-981-19-2830-7. Springer, pp 15, 781. https://doi.org/10.1007/978-981-19-2828-4 21. Ierapetritou MG, Wu D, Vin J, Sweeney P, Chigirinskiy M (2002) Cost minimization in an energy-intensive plant using mathematical programming approaches. Ind Eng Chem Res 41(21):5262–5277
(1)
[1] C. Shi, P.V. Krivenko, D. Roy, Alkali-activated cements and concretes, In Abingdon, (2006). [2] J. He, Y. Jie, J. Zhang, Y. Yu, G. Zhang, Synthesis and characterization of red mud and rice husk ash-based geopolymer composites, Cem. Concr. Compos. 37(1) (2013) 108–118. [3] A.M. Rashad, A brief on high-volume Class F fly ash as cement replacement: A guide for civil engineer, Int. J. Sustain. Built Environ. 90 (2015) 1–29. [4] F.A. Memon, M.F. Nuruddin, S. Demie, N. Shafiq, Effect of curing conditions on strength of fly ash based self-compacting geopolymer concrete, Int. J. Civil, Environ. Struct. Constr. Archt. Eng. 5(8) (2011) 8–22. [5] American Concrete Institute (ACI), ACI manual of concrete pratice index (2015). [6] J.L. Provis, Geopolymers and other alkali activated materials: why, how, and what? Mat. Struc. 47(1–2) (2014) 11–25. [7] G. Görhan, G. Kürklü, The influence of the NaOH solution on the properties of the fly ashbased geopolymer mortar cured at different temperatures, Compos. B. Eng. 58 (2014) 371–377. [8] H. Zhu, Z. Zhang, Y. Zhu, L. Tian, Durability of alkali-activated fly ash concrete: chloride penetration in pastes and mortars, Constr. Build. Mater. 65 (2014) 51–59. [9] M. Criado, A. Fernández-Jiménez, A. Palomo, Alkali activation of fly ash: Effect of the SiO2/Na2O ratio. Part I: FTIR study, Micropor. Mesopor. Mat. 106(1–3) (2007) 180–191. [10] I. Ismail, S.A. Bernal, J.L. Provis, R. San Nicolas, S. Hamdan, J.S.L. van Deventer, Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash, Cem. Concr. Compos. 45 (2014) 125–135. [11] W. Zhou, C. Yan, P. Duan, Y. Liu, Z. Zhang, X. Qiu, D. Li, A comparative study of high- and low-Al2O3 fly ash based-geopolymers: the role of mix proportion factors and curing temperature, Mater. Des. 95 (2016) 63–74. [12] M.J.A. Mijarsh, M.A.A. Johari, Z.A. Ahmad, Compressive strength of treated palm oil fuel ash based geopolymer mortar containing calcium hydroxide, aluminum hydroxide and silica fume as mineral additives, Cem. Concr. Compos. 60 (2015) 65–81. [13] A. Fernández-Jiménez, A. Palomo, Composition and microstructure of alkali activated fly ash binder: Effect of the activator, Cement. Concrete. Res. 35(10) (2005) 1984–1992. [14] W.K. Part, M. Ramli, C.B. Cheah, An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products, Constr. Build. Mater. 77 (2015) 370–395. [15] C. Hwang, T. Huynh, Effect of alkali-activator and rice husk ash content on strength development of fly ash and residual rice husk ash-based geopolymers, Constr. Build. Mater. 101 (2015) 1–9. [16] E. Smidt, K. Böhm, M. Schwanninger, The application of FT-IR spectroscopy in waste management, in: G. Nikolic, (Ed.), Fourier transforms-new analytical approaches and FTIR strategies, InTech, Rijeka, Croatia. 2011, pp. 405–430. [17] Y. Liu, W. Zhu, E. Yang, Alkali-activated ground granulated blast-furnace slag incorporating incinerator fly ash as a potential binder, Constr. Build. Mater. 112 (2016) 1005–1012. [18] M. Zhang, T. El-Korchi, G. Zhang, J. Liang, M. Tao, Synthesis factors affecting mechanical properties, microstructure, and chemical composition of red mud-fly ash based geopolymers, Fuel 134 (2014) 315–325. [19] K. Somna, C. Jaturapitakkul, P. Kajitvichyanukul, P. Chindaprasirt, NaOH-activated ground fly ash geopolymer cured at ambient temperature, Fuel 90(6) (2011) 2118–2124. [20] A.M.M.A. Bakri, H. Kamarudin, M. Bnhussain, A.R. Rafiza, Y. Zarina, Effect of Na2SiO3/NaOH ratios and NaOH molarities on compressive strength of fly-ash-based geopolymer. ACI Mater. J. 109(5) (2012) 503–508. [21] C. Montes, E.N. Allouche, Influence of activator solution formulation on fresh and hardened properties of low-calcium fly ash geopolymer concrete, CCGP 4 (2012) 1–9. [22] K. Wang, S.P. Shah, A. Mishulovich, Effects of curing temperature and NaOH addition on hydration and strength development of clinker-free CKD-fly ash binders, Cement. Concrete. Res. 34(2) (2014) 299–309. [23] A.N. Reddy, D. Anitha, U.V. Tilak, Performance of alkali activated slag and alkali activated slag + fly ash with various alkali activators, Int. J. Eng. Res. Tecnol. Res. 2(1) (2014) 73–78. [24] I. Ismail, S.A. Bernal, J.L. Provis, R. San, D.G. Brice, A.R. Kilcullen, S. Hamdan, J.S.J. Deventer, Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes, Constr. Build. Mater. 48 (2013) 1187–1201. [25] N. Chousidis, E. Rakanta, I. Ioannou, G. Batis, Mechanical properties and durability performance of reinforced concrete containing fly ash, Constr. Build. Mater. 101 (2015) 810– 817. [26] M. Kawamura, K. Takeuchi, A. Sugiyama, Mechanisms of expansion of mortars containing reactive aggregate in NaCl solution, Cement. Concrete. Res. 24(4) (1994) 621–632. [27] P.W. Brown, A. Doerr, Chemical changes in concrete due to the ingress of aggressive species, Cement. Concrete. Res. 30(3) (2000) 411–418. [28] P. Feng, C. Miao, J.W. Bullard, A model of phase stability, microstructure and properties during leaching of portland cement binders, Cem. Concr. Compos. 49 (2014) 9–19.
(1)
[1] C. W. Fetter (1988). Applied Hydrogeology. Columbus, Merrill Publishing Company. p. 592. [2] D. Hinrichsen (2007). Ocean Planet in Decline. http://www.peopleandplanet.net/?lid=26188&topic=44§ion=35. Accessed April 23 2013. [3] M. S. Kornis, D. M. Bilkovic, L. A. Davias, S. Giordano, D. L. Breitburg (2017). Shoreline Hardening Affects Nekton Biomass, Size Structure, and Taxonomic Diversity in Nearshore Waters, with Responses Mediated by Functional Species Groups. Estuaries and Coast, Vol. 41, pp 159-179. [4] Q. Zhang, R. E. Volker, and D. A. Lockington (2002). Experimental investigation of contaminant transport in coastal groundwater. Advances in Environmental Research, Vol.6 (3), p. 229–237. [5] S. S. Mehdizadeh, S. E. Karamalipour, R. Asoodeh (2017). Sea level rise effect on seawater intrusion into layered coastal aquifers (simulation using dispersive and sharp-interface approaches). Ocean & Coastal Management. Vol. 138, pp 11-18. [6] R. E. Volker, and K. R. Rushton (1982). An assessment of the importance of some parameters for sea water intrusion in aquifers and a comparison of depressive and sharp interface modelling approaches. Journal of Hydrology, Vol.56, 239-250. [7] Solinst (2012). Pump/recharge rate affects saltwater intrusion: groundwater monitoring, management and conservation keep saltwater intrusion under control. http://www.solinst. com/Res/papers/101C4Salt.html. Accessed April 28 2013. [8] A. Szymkiewicz, A. Gumula-Kawecka, J. Simunek, B. Leterme, S. Beegum, B. Jaworska-Szulc, M. Pruszkowska-Caceres, W. Gorczewska-Langner, R. Angulo-Jaramillo, D. Jacques (2017). Simulations of freshwater lens recharge and salt/freshwater interfaces using the HYDRUS and SWI2 packages for MODFLOW. J. Hydrol. Hydromech., 66, 2018, 2, 246-256. [9] P. M. Barlow (2003). Groundwater in Freshwater-Saltwater Environments of the Atlantic Coast. U.S. Geological Survey Circular, p. 1262. [10] R. E. Glover (1959). The pattern of freshwater flow in a coastal aquifer. Journal of Geophysical Research, Vol. 64 (4), 457-459. [11] R. Pedreira, A. Kallioras F. Pliakas, I. Gkiougkis, C. Schuth (2015). Groundwater vulnerability assessment of a coastal aquifer system at River Nestos eastern Delta, Greece. Environmental Earth Sciences. Vol. 73(10), pp 6387-6415. [12] H. R. Henry (1959). Salt intrusion into freshwater aquifers. Journal of Geophysical Research, Vol. 64, 1911-1919. [13] H. Ketabchi, D. Mahmoodzadeh, B. Ataie-Ashitani, C. T. Simmons (2016). Sea-level rise impacts on seawater intrusion in coastal aquifers: Review and integration. Journal of Hydrology. Vol. 535, pp 235-255. [14] T. E. Reilly and A.S. Goodman (1985). Quantitative analysis of saltwater-freshwater relationships in groundwater systems-a historical prospective. Journal of Hydrology, Vol.80, 125-160. [15] D. M. Allen, D. C. Mackie, and M. Wei (2003). Groundwater and climate change: a sensitivity analysis for the Grand Forks aquifer, southern British Columbia, Canada. Hydrogeology Journal, Vol.12, pp. 270–290. [16] Z. W. Kundzewicz and P. Doll (2009). Will groundwater ease freshwater stress under climate change? Hydrological Sciences Journal, Vol.54 (4), 665-675. [17] A. F. V. Loon (2015). Hydrological drought explained. WIREs Water2015, 2:359–392. [18] A. G. Bobba (1993). Mathematical models for saltwater intrusion in coastal aquifers. Water Resources Management, Vol.7, 3–37. [19] S. H. Hong, H. D. Kim, N. Kumar, H. J. Kim, and N. Park (2005). Experimental Investigations on Groundwater Flow in Coastal Aquifers. Groundwater and Saline Intrusion, Vol.15, p.21. [20] C. Robinson, L. Li, and D. A. Barry (2007). Effect of tidal forcing on a subterranean estuary. Advances in Water Resources, Vol.30, 851–865. [21] H. Li, M. C. Boufadel, and J. W. Weaver (2008). Tide-induced seawater-groundwater circulation in shallow beach aquifers. Journal of Hydrology, Vol.352 (1), 211-224. [22] S. W. Chang, T. P. Clement, M. J. Simpson, and K. K. Lee (2011). Does sea-level rise have an impact on saltwater intrusion? Advances in water resources, Vol.34 (10), 1283-1291. [23] W. K. Kuan, G. Q. Jin, P. Xin, C. Robinson, B. Gibbes, and L. Li (2012). Tidal influence on seawater intrusion in unconfined coastal aquifers. Water Resources Research, Vol.48 (2), 1-11. [24] R. R. Goswami and T. P. Clement (2007). Laboratory-scale investigation of saltwater intrusion dynamics. Water Resources Research, p. 43. [25] R. Luyun, K. Momii, and K. Nakagawa (2009), Laboratory-scale saltwater behavior due to subsurface cutoff wall. Journal of Hydrology, Vol.377, 227–236. [26] IPCC (2007). Climate change 2001: impacts, adaptation and vulnerability. Summary for policymakers. The Intergovernmental Panel on Climate Change. Cambridge University Press: Cambridge. [27] M. Vermeer and S. Rahmstorf (2009). Global sea level linked to global temperature. Proceedings of the National Academy of Sciences, Vol.106 (51), p. 21527-21532. [28] R. G. Shepherd (1989). Correlations of permeability and grain size. Groundwater, Vol.27 (5), 633-638. [29] M. S. Alyamani and Z. Şen (1993). Determination of Hydraulic Conductivity from Complete Grain‐Size Distribution Curves. Groundwater, Vol.31 (4), 551-555. [30] J. Odong (2007). Evaluation of empirical formulae for determination of hydraulic conductivity based on grain-size analysis. Journal of American Science, Vol.3 (3), 54-60. [31] A. F. Salarashayeri and M. Siosemarde (2012). Prediction of Soil Hydraulic Conductivity from Particle-Size Distribution. World Academy of Science, Engineering and Technology, Vol.6 (1), 454-458. [32] P. Xin, C. Robinson, L. Li, D. A. Barry, and R. Bakhtyar (2010). Effects of wave forcing on a subterranean estuary. Water Resources Research, p. 46.
(1)
[1] D. A. Watkins et al., "Global, Regional, and National Burden of Rheumatic Heart Disease, 1990-2015," N Engl J Med, vol. 377, no. 8, pp. 713-722, 2017, doi: 10.1056/NEJMoa1603693. [2] R. Forero et al., "Application of four-dimension criteria to assess rigour of qualitative research in emergency medicine," BMC Health Services Research, vol. 18, no. 1, p. 120, 2018, doi: 10.1186/s12913-018-2915-2. [3] E. Marijon, M. Mirabel, D. S. Celermajer, and X. Jouven, "Rheumatic heart disease," The Lancet, vol. 379, no. 9819, pp. 953-964, 2012, doi: 10.1016/s0140-6736(11)61171-9. [4] H. Liang-choo, "A Review of Acute Rheumatic Fever and Rheumatic Heart Disease Research in Malaysia," (in en), Med J Malaysia, vol. 71, 1, p. 8, 2016. [Online]. Available: http://www.e-mjm.org/2016/v71s1/rheumatic-heart-disease-research.pdf. [5] P. M. Coffey, A. P. Ralph, and V. L. Krause, "The role of social determinants of health in the risk and prevention of group A streptococcal infection, acute rheumatic fever and rheumatic heart disease: A systematic review," PLoS Negl Trop Dis, vol. 12, no. 6, p. e0006577, 2018, doi: 10.1371/journal.pntd.0006577. [6] C. S. Yilgwan, "Socioeconomic Status, Benzathine Penicillin Prophylaxis, and Clinical Outcomes in Patients with Rheumatic Heart Disease," Walden University, United States, 2020. [Online]. Available: https://scholarworks.waldenu.edu/cgi/viewcontent.cgi?article=10586&context=dissertationsfiles/4554/9315.html [7] L. Zühlke et al., "Clinical Outcomes in 3343 Children and Adults With Rheumatic Heart Disease From 14 Low- and Middle-Income Countries," Circulation, vol. 134, no. 19, pp. 1456-1466, 2016, doi:10.1161/CIRCULATIONAHA.116.024769. [8] J. J. V. Vuuren. "Six critical global issues: What are the world’s biggest problems and how can I help?" Global Vision International.https://www.gvi.co.uk/blog/6-critical-global-issues-what-are-the-worlds-biggest-problems-and-how-i-can-help/ (accessed. [9] P. L. Z. Khoo, J. S. Poon, G. J. S. Tan, A. Yahya, and K. M. J. Chan, "A review of heart valve disease research in Malaysia," (in eng), The Medical Journal of Malaysia, vol. 75, no. 6, pp. 722-730, 2020. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/33219184. [10] J. W. Creswell, Research design: qualitative, quantitative, and mixed methods approaches, 4th ed. Los Angeles, Calif.: SAGE (in en), 2014, p. 273. [11] K. M. Sullivan, "OpenEpi -- Sample Size Calculation for Cross-Sectional, Cohort, and Clinical Trials," (in English), Sample Size Calculations for a Proportion for Cluster Surveys, 2003. [Online]. Available:http://web1.sph.emory.edu/users/cdckms/samplesize%20icc%20deff2.htmlfiles/1454/samplesizeiccdeff2.html. [12] Y. C. Tie, M. Birks, and K. Francis, "Grounded theory research: A design framework for novice researchers," SAGE Open Med, vol. 7, p. 2050312118822927, 2019, doi: 10.1177/2050312118822927. Universal Journal of Public Health 11(2): 214-223, 2023 223 [13] K. Charmaz, Constructing grounded theory - A Practical Guide Through Qualitative Analysis London; Thousand Oaks, Calif: Sage Publications (in en), 2006, p. 208. [14] Y. S. Lincoln and E. G. Guba, "But is it rigorous? Trustworthiness and authenticity in naturalistic evaluation," New Directions for Program Evaluation, vol. 1986, no. 30, pp. 73-84, 1986, doi: https://doi.org/10.1002/ev.1427. [15] H. Kyngäs, M. Kääriäinen, and S. Elo, "The Trustworthiness of Content Analysis," 2020, pp. 41-48. [16] A. O'Cathain, E. Murphy, and J. Nicholl, "The Quality of Mixed Methods Studies in Health Services Research," Journal of Health Services Research & Policy, vol. 13, no. 2, pp. 92-98, 2008, doi: 10.1258/jhsrp.2007.007074. [17] J. Dobson, A. C. Steer, S. Colquhoun, and J. Kado, "Environmental factors and rheumatic heart disease in Fiji," Pediatr Cardiol, vol. 33, no. 2, pp. 332-6, 2012, doi: 10.1007/s00246-011-0139-x. [18] E. Okello et al., "Socioeconomic and environmental risk factors among rheumatic heart disease patients in Uganda," PLoS One, vol. 7, no. 8, p. e43917, 2012, doi: 10.1371/journal.pone.0043917. [19] T. C. L. Tobing, T. Ontoseno, S. Rahayuningsih, R. A. Ganie, and Y. Siregar, "Relationship between Environmental Factors and Rheumatic Heart Disease," in International Conference on Tropical Medicine and Infectious Disease, Indonesia, 2019, vol. 1: SciTePress Digital Library, pp. 1795-1798, doi:10.5220/0009862901800184. [20] G. E. Cole, D. R. Holtgrave, and N. M. Ríos, "Internal and external factors that encourage or discourage health-relevant behaviors," National Center for Prevention Services, Centers for Disease Control and Prevention, USA, 2021. [Online]. Available:https://www.orau.gov/cdcynergy/soc2web/content/activeinformation/resources/health_behavior_factors.pdf [21] P. A. Braveman et al., "Socioeconomic status in health research: one size does not fit all," (in eng), Journal of Americal Medical Association, vol. 294, no. 22, pp. 2879-88, 2005, doi: 10.1001/jama.294.22.2879.
(1)
1. Department of Statistics Malaysia [DOSM]. Pocket Stats Negeri Sarawak ST2 2022 Putajaya, Malaysia DOSM 2022. 2. Bong MW, Karim NA, Noor IM. Nutritional status and complementary feeding among Penan infants and young children in rural Sarawak, Malaysia. Malays J Nutr 2018;24:539–50. 3. Department of Statistics Malaysia [DOSM]. Household Income and Basic Amenities Survey Report 2019 Putajaya, Malaysia DOSM 2020. 4. Ahmad MH, Selamat R, Salleh R, Majid NL, Zainuddin AA, Bakar WA, et al. Food insecurity situation in Malaysia:Findings from Malaysian adult nutrition survey (MANS) 2014. Malaysian J Public Health Med 2020;20:167–74. 5. Department of Statistics Malaysia [DOSM]. Household Expenditure Survey Report by State and Administrative District:Sarawak 2019 Putrajaya, Malaysia DOSM 2020. 6. Shim JE, Kim SJ, Kim K, Hwang JY. Spatial disparity in food environment and household economic resources related to food insecurity in rural Korean Households with older adults. Nutrients 2018;10:1514. 7. U.S. Department of Labor, Bureau of Labor Statistics. American Time Use Survey Questionnaire 2011. US Bureau of Labor Statistics 2012. 8. Zimet GD, Dahlem NW, Zimet SG, Farley GK. The multidimensional scale of perceived social support. J Pers Assess 1988;52:30–41. 9. Ng CG, Amer Siddiq AN, Aida SA, Zainal NZ, Koh OH. Validation of the Malay version of the multidimensional scale of perceived social support (MSPSS-M) among a group of medical students in faculty of medicine, university Malaya. Asian J Psychiatr 2010;3:3–6. 10. Scheier MF, Carver CS, Bridges MW. Distinguishing optimism from neuroticism (and trait anxiety, self-mastery, and self-esteem):A reevaluation of the life orientation test. J Pers Soc Psychol 1994;67:1063–78. 11. Abdullah MF, Hami R, Appalanaido GK, Azman N, Shariff NM, Sharif SS. Validation of the malay version of the life orientation test-revised (LOT-R) among Malaysian cancer patients. J Biomed Clin Sci (JBCS) 2018;2:8–13. 12. Schwarzer R, Jerusalem M. Generalized self-efficacy scale Weinman J, Wright S, Johnston M. Measures in Health Psychology:A User's Portfolio:Causal and Control Beliefs Windsor, UK NFER-NELSON 1995. 13. Dev RD, Kamalden TF, Geok SK, Abdullah MC, Ayub AF, Ismail IA. Emotional intelligence, spiritual intelligence, selfefficacy and health behaviors:Implications for quality health. Int J Acad Res Bus Soc Sci 2018;8:794–809. 14. Hobfoll SE. The Ecology of Stress New York, NY Hemisphere Publishing Corporation 1988. 15. Law LS. Development of the Malaysian Coping Strategy Scale to Measure Household Food Insecurity among the Orang Asli. [Dissertation] Serdang, Malaysia Universiti Putra Malaysia 2018. 16. Radimer KL, Olson CM, Campbell CC. Development of indicators to assess hunger. J Nutr 1990;120 Suppl 11:1544–8. 17. Zalilah MS, Tham BL. Food security and child nutritional status among Orang Asli (Temuan) households in Hulu Langat, Selangor. Med J Malaysia 2002;57:36–50. 18. Kuriakose S, Ting KO, Hebous S, Tiew H. Firms'Recovery from COVID-19 in Malaysia:Results from the 4th Round of COVID-19 Business Pulse Survey Washington, DC World Bank 2022. 19. The World Bank. Food Security Available from: https://www.thedocs.worldbank.org/en/doc/4cda3ceaa5a01b7590e7105fd5e6ca4f0320012022/original/Food-Security-update-LXVI-July-15-2022.pdf [Last accessed on 2023 Apr 08, Last update on 2022 Jul 15]. 20. Bashir MK, Schilizzi S. Determinants of rural household food security:A comparative analysis of African and Asian studies. J Sci Food Agric 2013;93:1251–8. 21. Temple JB, Russell J. Food insecurity among older aboriginal and torres strait Islanders. Int J Environ Res Public Health 2018;15:1766. 22. Temple JB, Booth S, Pollard CM. Social assistance payments and food insecurity in Australia:Evidence from the householdexpenditure survey. Int J Environ Res Public Health 2019;16:455. 23. Prime's Minister Office, Malaysia. Government's Aid for the People:Bantuan Sara Hidup (Household Living Aid) 2022 Available from: https://www.pmo.gov.my/governments-aid-for-the-people/ [Last accessed on 2023 Apr 08]. 24. Sarawak Government. Soalan Lazim Bantuan Khas Sarawakku Sayang 2022 Available from: https://sarawak.gov.my/web/home/article_view/233/325/ [Last accessed on 2023 Apr 08]. 25. Birkenmaier J, Huang J, Kim Y. Food insecurity and financial access during an economic recession:Evidence from the 2008 SIPP. J Poverty 2016;20:194–213. 26. Miller ME. Food Security and Social Support:Exploring Relationships between Social Resources and Access to Adequate Food [Dissertation] Canada McGill University 2015. 27. Camel SP. Influence of Resources, Resource Loss, and Coping Response on Food Management Practices and Food Security [Dissertation] Hattiesburg The University of Southern Mississippi 2014. 28. Martin KS, Colantonio AG, Picho K, Boyle KE. Self-efficacy is associated with increased food security in novel food pantry program. SSM Popul Health 2016;2:62–7. 29. Bartfield JK, Ojehomon N, Huskey KW, Davis RB, Wee CC. Preferences and self-efficacy for diet modification among primary care patients. Obesity (Silver Spring) 2010;18:430–2. 30. Farzana FD, Rahman AS, Sultana S, Raihan MJ, Haque MA, Waid JL, et al. Coping strategies related to food insecurity at the household level in Bangladesh. PLoS One 2017;12:e0171411.
(1)
1. De Riu G., Meloni S.M., Bozzo C., Meloni F., Tullio A. A double buc�cal fat pad flap for middle palate defect closure—a new technique for palate closure. — Int J Oral Maxillofac Surg. — 2006; 35 (11): 1057—9. PMID: 16828541 2. Liu Y.M., Chen G.F., Yan J.L., Zhao S.F., Zhang W.M., Zhao S., Chen L. Functional reconstruction of maxilla with pedicled buccal fat pad flap, prefabricated titanium mesh and autologous bone grafts. — Int J Oral Maxillofac Surg. — 2006; 35 (12): 1108—13. PMID: 17097269 3. Pinto P.X., Debnath S. Use of pedicled graft of buccal fat pad to line a nasal defect in releasing pushback palatoplasty. — Br J Oral Maxil�lofac Surg. — 2007; 45 (3): 249—50. PMID: 17064829 4. Denes S.A., Tieghi R., Elia G. The buccal fat pad for closure of oro�antral communication. — J Craniofac Surg. — 2016; 27 (3): e327— 30. PMID: 27100645 5. Kim J.T., Sasidaran R. Buccal fat pad: An effective option for fa�cial reconstruction and aesthetic augmentation. — Aesthetic Plast Surg. — 2017; 41 (6): 1362—1374. PMID: 28849246 6. Cohen S.R., Fireman E., Hewett S., Saad A. Buccal fat pad aug�mentation for facial rejuvenation. — Plast Reconstr Surg. — 2017; 139 (6): 1273e-1276e. PMID: 28538560 7. Wang W., Xie Y., Huang R.L., Zhou J., Tanja H., Zhao P., Cheng C., Zhou S., Pu L.L.Q., Li Q. Facial contouring by targeted restoration of facial fat compartment volume: The midface. — Plast Reconstr Surg. — 2017; 139 (3): 563—572. PMID: 28234822 8. Paul M.D. The anterior SMAS approach for facelifting and for buccal fat pad removal. — Aesthetic Plast Surg. — 2017; 41 (5): 1100— 1105. PMID: 28698935 9. Moura L.B., Spin J.R., Spin-Neto R., Pereira-Filho V.A. Buccal fat pad removal to improve facial aesthetics: an established tech�nique? — Med Oral Patol Oral Cir Bucal. — 2018; 23 (4): e478-e484. PMID: 29924767 10. Sezgin B., Tatar S., Boge M., Ozmen S., Yavuzer R. The excision of the buccal fat pad for cheek refinement: Volumetric consider�ations. — Aesthet Surg J. — 2019; 39 (6): 585—592. PMID: 30084868 11. Loukas M., Kapos T., Louis R.G. Jr, Wartman C., Jones A., Hall�ner B. Gross anatomical, CT and MRI analyses of the buccal fat pad with special emphasis on volumetric variations. — Surg Radiol Anat. — 2006; 28 (3): 254—60. PMID: 16528468 12. Robardey G., Le Roux M.K., Foletti J.M., Graillon N., Gormeza�no M., Varoquaux A., Lan R., Chossegros C. The Stensen‘s duct line: A landmark in parotid duct and gland injury and surgery. A pro�spective anatomical, clinical and radiological study. — J Stomatol Oral Maxillofac Surg. — 2019; 120 (4): 337—340. PMID: 30981905 13. Pierrefeu A., Brosset S., Lahon M., Guerid S., Shipkov H., Boucher F., Breton P., Sigaux N., Mojallal A. Transverse facial ar�tery perforators: Anatomical, two- and three-dimensional radio�graphic study. — Plast Reconstr Surg. — 2019; 143 (4): 820e-828e. PMID: 30921143 14. Stringer M.D., Mirjalili S.A., Meredith S.J., Muirhead J.C. Rede�fining the surface anatomy of the parotid duct: an in vivo ultra�sound study. — Plast Reconstr Surg. — 2012; 130 (5): 1032—1037. PMID: 23096603 15.Afzelius P., Nielsen M.Y., Ewertsen C., Bloch K.P. Imaging of the major salivary glands. — Clin Physiol Funct Imaging. — 2016; 36 (1): 1—10. PMID: 25319072 16.Миронцев А.В., Васильев Ю.Л., Жандаров К.А., Колесова Л.Ю. Вариантная анатомия взаимоотношений поперечной артерии лица и протока околоушной железы. — Оперативная хирур�гия и клиническая анатомия (Пироговский научный журнал). — 2022; 4: 31—36. [Mirontsev A.V., Vasil‘ev Yu.L., Zhandarov K.A., Kolesova L.Yu. Comparative anatomy of the interrelations between the transverse facial artery and the parotid duct. — Russian Journal of Opera�tive Surgery and Clinical Anatomy. — 2022; 4: 31—36 (In Russian)]. eLibrary ID: 49916248 17.Traboulsi-Garet B., Camps-Font O., Traboulsi-Garet M., Gay-Es�coda C. Buccal fat pad excision for cheek refinement: A systematic review. — Med Oral Patol Oral Cir Bucal. — 2021; 26 (4): e474-e481. PMID: 34023838 18. Pimentel T., Hadad H., Statkievicz C., Alcantara-Júnior A.G., Vieira E.H., Souza F.Á., Garcia-Júnior I.R. Management of com�plications related to removal of the buccal fat pad. — J Craniofac Surg. — 2021; 32 (3): e238-e240. PMID: 32868718 19.Alcântara M.T., Ribeiro N.R., Abreu D.F. Complications associated with bichectomy surgery: a literature review. — Minerva Dent Oral Sci. — 2021; 70 (4): 155—160. PMID: 33138350 20. Lee J., Nolan P., Baker J. Treatment of parotid sialocele after sus�taining a facial injury. Case report and literature review. — N Y State Dent J. — 2016; 82 (2): 27—32. PMID: 27209715 21.Awana M., Arora S.S., Arora S., Hansraj V. Reconstruction of a trau�matically transected Stensen‘s duct using facial vein graft. — Ann Maxillofac Surg. — 2015; 5 (1): 96—9. PMID: 26389044 22. Lohn J.W., Penn J.W., Norton J., Butler P.E. The course and varia�tion of the facial artery and vein: implications for facial transplanta�tion and facial surgery. — Ann Plast Surg. — 2011; 67 (2): 184—8. PMID: 21712695 23.Cotofana S., Steinke H., Schlattau A., Schlager M., Sykes J.M., Roth M.Z., Gaggl A., Giunta R.E., Gotkin R.H., Schenck T.L. The anatomy of the facial vein: Implications for plastic, reconstruc�tive, and aesthetic procedures. — Plast Reconstr Surg. — 2017; 139 (6): 1346—1353. PMID: 28538555 24.Hanspach J., Nagel A.M., Hensel B., Uder M., Koros L., Laun F.B. Sample size estimation: Current practice and considerations for original investigations in MRI technical development studies. — Magn Reson Med. — 2021; 85 (4): 2109—2116. PMID: 33058265 25.Ovsepyan A.L., Smirnov A.A., Pustozerov E.A., Mokhov D.E., Mokhova E.S., Trunin E.M., Dydykin S.S., Vasil‘ev Y.L., Yakov�lev E.V., Budday S., Paulsen F., Zhivolupov S.A., Starchik D.A. Biomechanical analysis of the cervical spine segment as a method for studying the functional and dynamic anatomy of the human neck. — Ann Anat. — 2022; 240: 151856. PMID: 34793958 26. Landolfi M., Karmarkar S., Bhatia S., Taibah A., Russo A., Sanna M. An easy, cost-effective, and time-conserving method of studying the vascular anatomy of the base of the skull. — Skull Base Surg. — 1995; 5 (3): 181—4. PMID: 17170945
(1)
1. Dharmshaktu G, Dar A, Bhandari S. Are we still misdiagnosing clubfoot? A study of non-clubfoot cases labeled or referred as clubfoot from primary care centers in uttarakhand. Indian Journal of Child Health. 2018;05:249-52 2. Ansar A, Rahman AE, Romero L, Haider MR, Rahman MM, Moinuddin M, et al. Systematic review and meta-analysis of global birth prevalence of clubfoot: a study protocol. BMJ Open. 2018;8(3):e019246. 3. Boo NY, Ong LC. Congenital talipes in Malaysian neonates: incidence, pattern and associated factors. Singapore Med J. 1990;31(6):539-42. 4. Nordin S, Aidura M, Razak S, Faisham W. Controversies in congenital clubfoot : literature review. Malays J Med Sci. 2002;9(1):34-40 5. Faldini C, Fenga D, Sanzarello I, Nanni M, Traina F, Rosa MAA. Prenatal Diagnosis of Clubfoot: A Review of Current Available Methodology. Folia Med (Plovdiv). 2017;59(3):247-53.
(1)
[1] D. J. Abang Tar and M. I. Mahmud, "Minat, Tingkah Laku Distruptif Dan Gaya Pembelajaran Murid Bermasalah Pembelajaran Di Sekolah Rendah," J. Sains Insani, vol. 3, no. 4, pp. 49-64, 2021. [2] N. L. Ahmad, S. S. Looi, H. Wahid, and R. Yusof, "Kepentingan Amalan Pengajaran Dan Pembelajaran Abad 21 Terhadap Pembangunan Pelajar," Int. J. Educ., vol. 4, no. 28, pp. 37-51, 2019. [3] T. M. Amabile, "The social psychology of creativity: A componential conceptualization," J. Pers. Soc.Psychol., vol. 45, pp. 357-356, 1983. [4] "ASEAN Comparative Education Research Journal on Islam and Civilization (ACER-J)," vol. 5, no. 1, pp.58-64. [5] N. S. Azahari and N. M. Rahimi, "Amalan Pembelajaran Teradun Sebagai Satu Pendekatan Pembelajaran Norma Baharu," J. Dunia Pendidik., vol. 4, no. 1, pp. 186-196, 2022. [6] S. M. Chuah and M. Al Amin, "Pengaruh amalan penyeliaan terhadap pengajaran kreatif guru," J. kepimpinan pendidikan, pp. 30-40, 2022. [7] G. A. Davis, "Barriers to Creativity and Creative Attitudes," in The Handbook of Creativity, M. A. Runco, Ed. Academic Press, 1999. [8] R. T. Gandi, M. R. Che Rus, and S. Mohamed, "Pendekatan Penyelidikan Reka Bentuk dan Pembangunan (DDR) Dalam Pembangunan Model Pemikiran Inventif Pelajar Mata Pelajaran Reka Cipta," J. Educ. Res. Indigenous Stud., vol. 3, no. 1, 2021. [9] K. Hambali and M. A. Lubis, "Kepentingan Gamifikasi Dalam Pengajaran Dan Pemudahcaraan (Pdpc) Pendidikan Islam," J. Pendidik. Islam, pp. 195-208, 2022. [10] J. D. Henry and Z. Mahamod, "Penerapan Amalan Kreativiti, Pemikiran Kritis, Kolaborasi dan Komunikasi (4C) Pembelajaran Abad Ke-21 dalam Kalangan Guru Bahasa Melayu," J. Dunia Pendidik., vol. 3, no. 1, pp. 239-248, 2021. [11] S. H. Hj Mohd Yusoff and H. Husain, "Penggunaan perisian aplikasi teknologi maklumat dan komunikasi meningkatkan integrasi domain pembelajaran dalam karya murid belajar gaya visual," Jurnal Penyelidikan Dedikasi, vol. 18, no. 1, 2020. [12] A. R. Iberahim, Z. Mahamod, and W. M. R. Wan Mohamad, "Pembelajaran abad ke-21 dan pengaruhnya terhadap sikap, motivasi dan pencapaian Bahasa Melayu pelajar sekolah," Jurnal Pendidikan Bahasa Melayu, vol. 7, no. 2, pp. 77-88, 2017. [13] A. Ismail, F. L. Muda, A. Sulaiman, M. A. Mohd Nizah, L. Abdul Latiff, M. Sulaiman, S. N. Mat Yacob, and H. M. T. E. Kandil, "Pembentukan pemikiran kreatif dan kritis: Hubungannya dalam menyelesaikan masalah," Sains Insani, vol. 5, no. 1, pp. 43-47, 2020. [14] D. Jenal and H. Ramli, "Developing an Art Language Teaching Module to Increase Mastery of Non-Art Teachers Option in Form One: Membina Modul Pembelajaran dan Pemudahcaraan Bahasa Seni Visual bagi meningkatkan penguasaan Guru-guru bukan Opsyen," Journal of Social Sciences and Humanities(MJSSH), vol. 5, no. 5, pp. 125-140. [15] T. S. A. T. Kasim, N. E. M. Noor, and Y. M. Yusoff, "Komitmen Guru dalam Pelaksanaan E-Pembelajaran Pendidikan Islam," Jurnal Pengajian Islam, pp. 195-208, 2022. [16] C. A. Ladin and S. M. Mazan, "Penggunaan Display Light Board (DLB) Untuk Meningkatkan Kemahiran Teknik Melukis Bentuk Geometri Secara ‘Still Life’," Jurnal Sains Insani, vol. 6, no. 2, 2021. [17] C. L. Lai and A. R. Hamdan, "Faktor Di Luar Kawalan Guru Sekolah Menengah dalam Pengajaran Efektif," in 2nd International Seminar on Quality and Affordable Education (ISQAE 2013), Fakulti Pendidikan Universiti Teknologi Malaysia, 2013. [18] H. Y. Lee, N. M. Nor, and Y. S. Wong, "Need Analysis of a Collaborative-Constructivist Approach in Primary School Visual Arts Education: Analisis Keperluan Pengajaran dan Pembelajaran Pendidikan Seni Visual Berasaskan Kolaboratif-Konstruktivis di Sekolah Rendah," Kupas Seni, vol. 10, pp. 90-103, 2022. [19] I. P. Mahsan, E. S. Mokhtar, and M. Mat Alim, "Isu Pelaksanaan dan Inovasi E-Pembelajaran Pendidikan Seni Visual Sekolah Luar Bandar di Fasa Pandemik Covid19," Journal of Engineering, Technology & Applied Science, vol. 4, no. 3, pp. 131-139, 2022. 20] M. Malik, "Guru perlu bersedia tempuh cabaran revolusi industri," BERNAMA, 2019. [Online]. Available: https://www.bharian.com.my/berita/pendidikan/2019/05/563340/guru-perlu-bersedia-tempuh-cabaran- revolusi-industri. [21] "MALIM: Jurnal Pengajian Umum Asia Tenggara," vol. 7, pp. 41-52. [22] S. M. Mazan and C. A. Ladin, "Penggunaan Display Light Board (DLB) Dalam Meningkatkan Kemahiran Teknik Melukis Bentuk Geometri Secara ‘Still Life’." [23] N. Md Noor, A. H. Husain, and S. H. Mohd Yusoff, "Ekspresi karya seni visual murid-murid di Sekolah Bimbingan Jalinan Kasih, Kuala Lumpur," JURNAL IPDA, vol. 26, no. 1, pp. 78-91, 2020. [24] H. Md Yusoff, M. I. Hamzah, and S. Surat, "Kesahan dan Kebolehpercayaan Instrumen Kraf Kerja," Jurnal Pendidikan Malaysia, vol. 44, no. 2, pp. 61-71, 2019. [25] C. S. Mei and A. A. Mydin, "Pengaruh Amalan Penyeliaan Terhadap Pengajaran Kreatif Guru," Jurnal Kepimpinan Pendidikan, vol. 9, no. 2. [26] M. M. Mohamad Said and N. Yunos, "Hubungan kreativiti dan ilmu pengetahuan." [27] M. A. Mohd Noh, M. F. Ilias, and K. Husain, "Inisiatif dan Usaha Guru dalam Meningkatkan Pengetahuan Semasa Penggunaan Bahan Bantu Mengajar," Journal of Social Science and Humanities, vol. 3, November 2016, pp. 134-144. [28] R. Mohd Nor, N. M. R. Nik Yusoff, and H. Haron, "Pengetahuan Pedagogi Ilmu Kandungan dalam Kalangan Guru Seni Visual Sekolah Menengah di Hulu Langat," Jurnal Pendidikan Malaysia, vol. 44, no.1, pp. 137-150. [29] S. H. Mohd Yusoff and A. H. Husain, "Teknologi Maklumat Dan Komunikasi Dalam Pendidikan Seni Visual Ke Arah Pembelajaran Bermakna," Jurnal Ipda, vol. 26. [30] A. H. Musta'amal, N. Rosmin, N. Mohd Amin, and Y. Buntat, "Rekacipta: Ke Arah Pemupukan Budaya Kreatif dan Inovatif 2nd International Seminar on Quality and Affordable Education (ISQAE 2013)." [31] H. Husain, "Penggunaan perisian aplikasi teknologi maklumat dan komunikasi meningkatkan integrasi domain pembelajaran dalam karya murid belajar gaya visual," Jurnal Penyelidikan Dedikasi, vol. 18, no. 1, pp. 140-160, 2021. [32] R. M. Nor, N. M. R. B. N. Yusoff, and H. B. Haron, "Meneroka kaedah pengajaran guru cemerlang pendidikan seni visual Selangor (GCPSV): Satu Kajian Kes," Malaysian. [33] R. M. Nor, N. M. R. N. Yusoff, and H. Haron, "Pengetahuan pedagogi ilmu kandungan dalam kalangan guru seni visual sekolah menengah di Hulu Langat," Journal Pendidikan Malaysia, vol. 44, no. 1, pp. 137- 150, 2019. [34] H. Halim, "Pergerakan Proses Lukisan Kanak-kanak dalam Lakaran Kasar Seni Visual: The Movement of the Child Drawing Process in Visual Art Rough Sketches," Jurnal Pendidikan Awal Kanak-kanak Kebangsaan, vol. 11, no. 1, pp. 24-39, 2022. [35] N. a. M. Rushdi, "Kreativiti Dalam Proses Pengajaran Dan Pembelajaran," Persidangan Antarabangsa Sains Sosial dan Kemanusiaan ke-5 (PASAK5 2020). [36] R. J. Sternberg, "Wisdom, intelligence, and creativity synthesized," Cambridge University Press, 2003. [37] A. R. Wahab and M. S. Saud, "Pembangunan Instrumen Karakter Kreatif Pelajar Pendidikan Teknikal Dan Latihan Vokasional (TVET)," Anp Journal Of Social Science And Humanities, vol. 2, no. 2, pp. 112-122. [38] A. Wazir, "Pengetahuan pedagogi isi kandungan guru Bahasa Arab sekolah rendah," Universiti Kebangsaan Malaysia, Malaysia, 2016. [39] L. H. Yeh, "Challenges faced by Visual Art Education with the Existence of Classroom Based Assessment in Primary School within District of Hilir Perak: Cabaran yang dihadapi Pendidikan Seni Visual dengan Pentaksiran Bilik Darjah di sekolah rendah daerah Hilir Perak," KUPAS SENI, vol. 9, no. 1, pp. 46-57. [40] N. A. M. Yusoff, "Improving drawing skills among year 6 SK Sri Layang visual arts students by using led trace method: Meningkatkan kemahiran melukis dalam kalangan murid seni visual tahun 6 Sk Sri Layang menggunakan kaedah surih led," Kupas Seni, vol. 10, pp. 23-29, 2022. [41] N. Zulkifli, M. I. Hamzah, and K. Abdul Razak, "Faktor Pendorong Kreativiti Dalam Kalangan Pelajar Politeknik," Asian People Journal, vol. 3, no. 2, pp. 77-85, 2020.
(1)
[1] D. Moher and A. Srivastava, ‘You are invited to submit...’, BMC Med., vol. 13, p. 180, Aug. 2015, doi: 10.1186/S12916-015-0423-3/TABLES/1. [2] E. Mercier, P. A. Tardif, L. Moore, N. Le Sage, and P. A. Cameron, ‘Invitations received from potential predatory publishers and fraudulent conferences: A 12-month early-career researcher experience’, Postgrad. Med. J., vol. 94, no. 1108, pp. 104–108, Feb. 2018, doi: 10.1136/POSTGRADMEDJ-2017-135097. [3] G. Richtig, M. Berger, B. Lange-Asschenfeldt, W. Aberer, and E. Richtig, ‘Problems and challenges of predatory journals’, J. Eur. Acad. Dermatology Venereol., vol. 32, no. 9, pp. 1441– 1449, Sep. 2018, doi: 10.1111/JDV.15039. [4] J. Beall, ‘Predatory publishers are corrupting open access’, Nature, vol. 489, no. 7415, p. 179, Sep. 2012, doi: 10.1038/489179a. [5] D. Butler, ‘Investigating journals: The dark side of publishing’, Nature, vol. 495, no. 7442, pp. 433–435, Mar. 2013, doi: 10.1038/495433A. [6] J. Beall, ‘Predatory publishing is just one of the consequences of gold open access’, Learn. Publ., vol. 26, no. 2, pp. 79–84, Apr. 2013, doi: 10.1087/20130203. [7] J. Beall, ‘Scholarly open-access publishing and the problem of predatory publishers’, J. Biol. Phys. Chem., vol. 14, no. 1, pp. 22–24, Jun. 2014, doi: 10.4024/02BE14F.JBPC.14.01. [8] J. Beall, ‘Predatory journals: Ban predators from the scientific record’, Nature, vol. 534, no. 7607, p. 326, Jun. 2016, doi: 10.1038/534326A. [9] J. Beall, ‘Predatory journals and the breakdown of research cultures’, Inf. Dev., vol. 31, no. 5, pp. 473–476, Nov. 2015, doi: 10.1177/0266666915601421. [10] T. F. Frandsen, ‘Are predatory journals undermining the credibility of science? A bibliometric analysis of citers’, Scientometrics, vol. 113, no. 3, pp. 1513–1528, Dec. 2017, doi: 10.1007/S11192-017-2520-X. [11] D. F. Jimenez and D. N. Garza, ‘Predatory Publishing and Academic Integrity’, World Neurosurg., vol. 105, pp. 990–992, Sep. 2017, doi: 10.1016/j.wneu.2017.05.157. [12] A. Grzybowski, R. Patryn, and J. Sak, ‘Predatory journals and dishonesty in science’, Clin. Dermatol., vol. 35, no. 6, pp. 607–610, Nov. 2017, doi: 10.1016/j.clindermatol.2017.07.003. [13] T. Shamim, ‘Strategies to curb young researchers from predatory publishers’, J. Adv. Med. Educ. Prof., vol. 6, no. 2, p. 93, Apr. 2018, Accessed: Dec. 15, 2022. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856910/ [14] A. de La Blanchardière, F. Barde, N. Peiffer-Smadja, and H. Maisonneuve, ‘Predatory journals: A real threat for medical research. 1. Identify these journals and understand how they work’, Rev. Med. Interne, vol. 42, no. 6, pp. 421–426, Jun. 2021, doi: 10.1016/j.revmed.2021.03.329. [15] J. Beall, ‘Medical Publishing Triage - Chronicling Predatory Open Access Publishers’, Ann. Med. Surg., vol. 2, no. 2, pp. 47–49, 2013, doi: 10.1016/S2049-0801(13)70035-9. [16] A. de La Blanchardière, F. Barde, N. Peiffer-Smadja, and H. Maisonneuve, ‘Predatory journals: A real threat for medical research. 2 Assess their consequences and initiate a response’, Rev. Med. Interne, vol. 42, no. 6, pp. 427–433, Jun. 2021, doi: 10.1016/j.revmed.2021.03.327. [17] A. Beshyah, M. Basher, and S. Beshyah, ‘A bibliometric analysis of the international medical literature on predatory publishing’, Ibnosina J. Med. Biomed. Sci., vol. 12, no. 01, pp. 23–32, Mar. 2020, doi: 10.4103/IJMBS.IJMBS_25_20. [18] J. Beall, ‘Medical publishing and the threat of predatory journals’, Int. J. Women’s Dermatology, vol. 2, no. 4, p. 116, Dec. 2016, doi: 10.1016/J.IJWD.2016.08.002. [19] J. Beall, ‘Dangerous predatory publishers threaten medical research’, J. Korean Med. Sci., vol. 31, no. 10, pp. 1511–1513, 2016, doi: 10.3346/JKMS.2016.31.10.1511. [20] O. Laccourreye, F. Rubin, and H. Maisonneuve, ‘“Predatory” journals threatening the scientific medical press’, Eur. Ann. Otorhinolaryngol. Head Neck Dis., vol. 135, no. 1, pp. 37–39, Feb. 2018, doi: 10.1016/j.anorl.2017.08.003. [21] M. D. Krasowski, J. C. Lawrence, A. S. Briggs, and B. A. Ford, ‘Burden and Characteristics of Unsolicited Emails from Medical/Scientific Journals, Conferences, and Webinars to Faculty and Trainees at an Academic Pathology Department’, J. Pathol. Inform., vol. 10, no. 1, p. 16, Jan. 2019, doi: 10.4103/jpi.jpi_12_19. [22] J. Beall, ‘Essential Information about Predatory Publishers and Journals’, Int. High. Educ., no. 86, pp. 2–3, May 2016, doi: 10.6017/IHE.2016.86.9358. [23] D. E. Irawan et al., ‘Era baru publikasi di Indonesia: status jurnal open access di Directory of Open Access Journal (DOAJ)’, Berk. Ilmu Perpust. dan Inf., vol. 14, no. 2, p. 133, Dec. 2018, doi: 10.22146/BIP.32920. [24] C. Shen and B. C. Björk, ‘“Predatory” open access: A longitudinal study of article volumes and market characteristics’, BMC Med., vol. 13, no. 1, Oct. 2015, doi: 10.1186/S12916-015-0469-2. [25] A. V. Yurevich and M. A. Yurevich, ‘Rubbish in Science’, Her. Russ. Acad. Sci., vol. 91, no. 4, pp. 445–453, Jul. 2021, doi: 10.1134/S1019331621040158. [26] A. A. Patak, ‘Fake open access trapped the top three Indonesian universities’, unpublished, 2014. [27] R. E. Bartholomew, ‘Science for sale: The rise of predatory journals’, J. R. Soc. Med., vol. 107, no. 10, pp. 384–385, Oct. 2014, doi: 10.1177/0141076814548526. [28] S. B. Demir, ‘Predatory journals: Who publishes in them and why?’, J. Informetr., vol. 12, no. 4, pp. 1296–1311, Nov. 2018, doi: 10.1016/J.JOI.2018.10.008. [29] M. H. Kearney et al., ‘Predatory publishing: What authors need to know’, Res. Nurs. Heal., vol. 38, no. 1, pp. 1–3, Feb. 2015, doi: 10.1002/NUR.21640. [30] S. Kurt, ‘Why do authors publish in predatory journals?’, Learn. Publ., vol. 31, no. 2, pp. 141–147, Apr. 2018, doi: 10.1002/LEAP.1150. [31] D. A. Forero et al., ‘Negative Effects of “Predatory” Journals on Global Health Research’, Ann. Glob. Heal., vol. 84, no. 4, p. 589, Nov. 2018, doi: 10.29024/AOGH.2389. [32] M. Berger and J. Cirasella, ‘Beyond Beall’s list: Better understanding predatory publishers’, Coll. Res. Libr. News, vol. 76, no. 3, pp. 132–135, Mar. 2015, doi: 10.5860/CRLN.76.3.9277. [33] J. Beall, ‘What I learned from predatory publishers’, Biochem. Medica, vol. 27, no. 2, pp. 273–278, 2017, [Online]. Available: https://doi.org/10.11613/BM.2017.029 [34] W. Strielkowski, ‘Predatory journals: Beall’s List is missed’, Nature, vol. 544, p. 416, Apr. 2017, doi: 10.1038/544416b. [35] A. Asadi, N. Rahbar, M. Asadi, F. Asadi, and K. Khalili Paji, ‘Online-based approaches to identify real journals and publishers from hijacked ones’, Sci. Eng. Ethics, vol. 23, no. 1, pp. 305–308, Feb. 2017, doi: 10.1007/s11948-015-9747-9. [36] T. Shamim, ‘Polite invitation to submit article: Predatory journal’s new strategy’, Saudi J. Anaesth., vol. 13, no. 3, p. 281, Jul. 2019, doi: 10.4103/SJA.SJA_189_19. [37] D. Rachmawati, ‘PHISING SEBAGAI SALAH SATU BENTUK ANCAMAN DALAM DUNIA CYBER’, J. SAINTIKOM, vol. 13, no. 3, pp. 209–216, 2014. [38] A. Latimer, ‘Predatory Conferences: What Social Workers Need to Know’, J. Soc. Work Educ., 2021, doi: 10.1080/10437797.2021.1977754. [39] M. Dadkhah, M. D. Jazi, and S. Pacukaj, ‘Fake conferences for earning real money’, Mediterr. J. Soc. Sci., vol. 6, no. 2, pp. 11–12, Mar. 2015, doi: 10.5901/MJSS.2015.V6N2P11. [40] H. Ritchie et al., ‘Coronavirus Pandemic (COVID-19)’, Our World in Data, 2020. https://ourworldindata.org/coronavirus [41] L. M. Baker, M. P. Benge, A. Zagonel, J. Shellhouse, C. R. Boyer, and P. Stokes, ‘Don’t Fake It, Make It! Thriving in Virtual Conferences and Meetings’, Edis, vol. 2020, no. 4, pp. 1–4, 2020, doi: 10.32473/edis-wc365-2020. [42] N. Ayedee and A. Kumar, ‘Indian education system and growing number of online conferences: Scenario under COVID-19’, Asian J. Manag., vol. 11, no. 4, pp. 395–401, 2020, doi: 10.5958/2321-5763.2020.00060.8. [43] D. Kagan, G. F. Alpert, and M. Fire, ‘Zooming Into Video Conferencing Privacy and Security Threats’, arXiv Prepr., Jul. 2020, doi: 10.48550/arxiv.2007.01059. [44] J.-L. Mergny, ‘Announcement - The fake meeting society’, Biochimie, vol. 93, 2011, doi: 10.1016/S0300-9084(11)00044-7. [45] A.-I. Petrisor, ‘Evolving strategies of the predatory journals’, Malaysian J. Libr. Inf. Sci., vol. 21, no. 1, pp. 1–17, Jan. 2016, doi: 10.22452/MJLIS.VOL21NO1.1. [46] D. Pecorari, ‘Predatory Conferences: What Are the Signs?’, J. Acad. Ethics, 2021, doi: 10.1007/S10805-021-09406-4. [47] A. Cortegiani, A. Manca, and A. Giarratano, ‘Predatory journals and conferences: Why fake counts’, Curr. Opin. Anaesthesiol., vol. 33, no. 2, pp. 192–197, Apr. 2020, doi: 10.1097/ACO.0000000000000829. [48] S. Kahan and R. F. Kushner, ‘New Year’s Resolution: Say No to Fake Journals and Conferences’, Obesity, vol. 25, no. 1, pp. 11–12, 2017. [49] D. Dagens, ‘5 Predator publishing or fake science? A case series of 75 unsolicited emails received from “predator journals”’, BMJ Evidence-Based Med., vol. 24, pp. A3–A4, Jul. 2019, doi: 10.1136/BMJEBM-2019-EBMLIVE.5. [50] C. Laine and M. A. Winker, ‘Identifying predatory or pseudo-journals’, Biochem. Medica, vol. 27, no. 2, pp. 285–91, 2017, doi: 10.11613/BM.2017.031. [51] A. Six-Means, ‘Predatory Publications: What Are They, How They Impact Nursing, and How to Identify Them’, J. Pediatr. Surg. Nurs., Sep. 2022, doi: 10.1097/JPS.0000000000000362. [52] M. H. Oermann et al., ‘Study of Predatory Open Access Nursing Journals’, J. Nurs. Scholarsh., vol. 48, no. 6, pp. 624–632, Nov. 2016, doi: 10.1111/JNU.12248. [53] L. Shamseer et al., ‘Potential predatory and legitimate biomedical journals: Can you tell the difference? A cross-sectional comparison’, BMC Med., vol. 15, no. 1, Mar. 2017, doi: 10.1186/S12916-017-0785-9. [54] H. Sharma and S. Verma, ‘Predatory conferences in biomedical streams: An invitation for academic upliftment or predator’s looking for prey’, Saudi J. Anaesth., vol. 14, no. 2, p. 212, 2020, doi: 10.4103/SJA.SJA_668_19:10.4103/SJA.SJA_668_19. [55] A. Manca, L. Cugusi, A. Cortegiani, G. Ingoglia, D. Moher, and F. Deriu, ‘Predatory journals enter biomedical databases through public funding’, BMJ, vol. 371, Dec. 2020, doi: 10.1136/BMJ.M4265. [56] J. Galipeau et al., ‘A scoping review of competencies for scientific editors of biomedical journals’, BMC Med., vol. 14, no. 1, Feb. 2016, doi: 10.1186/S12916-016-0561-2. [57] Z. Huseynova, N. Pandis, and C. M. Faggion, ‘PRESUMED PREDATORY JOURNALS ARE ABUNDANT IN ORAL HEALTH’, J. Evid. Based. Dent. Pract., vol. 21, no. 2, Jun. 2021, doi: 10.1016/j.jebdp.2021.101539. [58] R. Van Den Berg, N. Nezami, V. Nguyen, J. K. Sicklick, and C. R. Weiss, ‘A solution to academic radiology’s experience with solicitation e-mails from predatory journals’, Am. J. Roentgenol., vol. 216, no. 1, pp. 233–240, Jan. 2021, doi: 10.2214/AJR.20.22923. [59] J. R. Yan et al., ‘Predatory publishing in orthopaedic research’, J. Bone Jt. Surg. - Am. Vol., vol. 100, no. 21, Nov. 2018, doi: 10.2106/JBJS.17.01569. [60] A. J. Maddy and A. Tosti, ‘Predatory journals in dermatology’, Br. J. Dermatol., vol. 177, no. 1, pp. 307–309, Jul. 2017, doi: 10.1111/BJD.15072. [61] S. J. Bakri and S. M. Shah, ‘Predatory Publishing in Ophthalmology: A Call for Awareness and Action’, Am. J. Ophthalmol., vol. 221, pp. 207–210, Jan. 2021, doi: 10.1016/j.ajo.2020.08.009. [62] A. Manca, G. Martinez, L. Cugusi, D. Dragone, Z. Dvir, and F. Deriu, ‘The surge of predatory open-access in neurosciences and neurology’, Neuroscience, vol. 353, pp. 166–173, Jun. 2017, doi: 10.1016/J.NEUROSCIENCE.2017.04.014. [63] P. D. Delgado-López and E. M. Corrales-García, ‘Influence of Internet and Social Media in the Promotion of Alternative Oncology, Cancer Quackery, and the Predatory Publishing Phenomenon’, Cureus, vol. 10, no. 5, p. e2617, May 2018, doi: 10.7759/CUREUS.2617. [64] B. Hansoti, M. I. Langdorf, and L. S. Murphy, ‘Discriminating Between Legitimate and Predatory Open Access Journals: Report from the International Federation for Emergency Medicine Research Committee’, West. J. Emerg. Med., vol. 17, no. 5, p. 507, Sep. 2016, doi: 10.5811/WESTJEM.2016.7.30328. [65] T. Nguyen, R. McIntire, R. Ottwell, M. Hartwell, and M. Vassar, ‘Evaluation of Predatory Journal Publication in Systematic Reviews in the Top Five Emergency Medicine Journals: A Cross- Sectional Analysis’, in Oklahoma State University Center for Health Sciences Research Days 2021, Feb. 2021, vol. 7, no. 1, pp. 343–354. doi: 10.2/JQUERY.MIN.JS. [66] A. Cortegiani, F. Sanfilippo, J. Tramarin, and A. Giarratano, ‘Predatory open-access publishing in critical care medicine’, J. Crit. Care, vol. 50, pp. 247–249, Apr. 2019, doi: 10.1016/j.jcrc.2018.12.016. [67] C. Bianchini, C. Consentino, M. Paci, and M. Baccini, ‘Open Access Physical Therapy Journals: Do Predatory Journals Publish Lower-Quality Randomized Controlled Trials?’, Arch. Phys. Med. Rehabil., vol. 101, no. 6, pp. 969–977, Jun. 2020, doi: 10.1016/j.apmr.2019.12.012. [68] A. Mudry, ‘Polluting and harassing “otorhinolaryngological” emails: Has the time arrived to talk openly about it?’, Eur. Ann. Otorhinolaryngol. Head Neck Dis., 2022, doi: 10.1016/j.anorl.2022.03.004. [69] R. J. Dinis-Oliveira, ‘Predatory journals and meetings in forensic sciences: what every expert needs to know about this “parasitic” publishing model’, Forensic Sci. Res., vol. 6, no. 4, pp. 303–309, 2021, doi: 10.1080/20961790.2021.1989548. [70] I. Masic, ‘Predatory Publishing – Experience with OMICS International’, Med. Arch., vol. 71, no. 5, p. 307, Oct. 2017, doi: 10.5455/MEDARH.2017.71.304-307. [71] R. R. Al Hakim et al., ‘Aplikasi Algoritma Dijkstra dalam Penyelesaian Berbagai Masalah’, Expert J. Manaj. Sist. Inf. dan Teknol., vol. 11, no. 1, pp. 42–47, 2021, doi: 10.36448/expert.v11i1.1939. [72] R. R. Al Hakim, C. D. Imtiyaaz, D. Setyawaty, F. Rahayu, and P. Rianti, ‘Daily Behaviour of Long-tailed Macaque in the Captive, Semi-wild, and Wild Habitats: Preliminary Reports’, Indones. J. Primatol., vol. 1, no. 01, pp. 25–32, Oct. 2022, [Online]. Available: https://journal.ipb.ac.id/index.php/primatology/article/view/43749 [73] European Society of Medicine, ‘ESMED General Assembly 2022 - European Society of Medicine’, Aug. 2022. https://esmed.org/conferences/2022assembly/ (accessed Dec. 16, 2022). [74] R. R. Al Hakim, E. Rusdi, and M. A. Setiawan, ‘Android Based Expert System Application for Diagnose COVID-19 Disease: Cases Study of Banyumas Regency’, J. Intell. Comput. Heal. Informatics, vol. 1, no. 2, pp. 1–13, 2020, doi: 10.26714/jichi.v1i2.5958. [75] European Society of Medicine, ‘Registration Conference’, 2022 ESMED General Assembly , 2021. https://esmed.org/registration-conference/ (accessed Dec. 17, 2022). [76] Office of Information Technology Brown University, ‘European Society of Medicine solicitations’, Phishing Email (on campus), Oct. 26, 2021. https://it.brown.edu/phish-bowl-alerts/europeansociety- medicine-solicitations (accessed Dec. 17, 2022). [77] G. Trentacosti and P. Braun, ‘UG/UMCG authors falling prey to fraudulent/predatory publishing practices’, Open Science Blog, Jun. 21, 2021. https://www.rug.nl/library/open-access/blog/ugumcg- authors-falling-prey-to-fraudulent-predatory-publishing-practices?lang=en (accessed Dec. 17, 2022). [78] ResearchGate, ‘Dear Authors. Please who can give me an information aboutEuropean Society of Medicine, with thanks’, Discussion, Oct. 27, 2021. https://www.researchgate.net/post/Dear_Authors_Please_who_can_give_me_an_information_about European_Society_of_Medicine_with_thanks (accessed Dec. 17, 2022). [79] Flaky Academic Conferences, ‘European Society of Medicine (ESMED) Congresses and Events’, Nov. 27, 2020. http://flakyc.blogspot.com/2020/11/european-society-of-medicine-esmed.html (accessed Dec. 17, 2022). [80] Riddled, ‘I light-heartedly gave a list of names which, for all I knew, I might hear:Hugh MurrayConstantin PetriePeter SmallSignor Beniamino BariThe Honourable Alex O’Brannigan, Bart.Kurt FreundMr John P. de Salis, M.A.Dr Solway GarrBonaparte GosworthLegs O’Hagan’, Mar. 21, 2020. http://eusa-riddled.blogspot.com/2020/03/i-light-heartedly-gave-list-of-names.html (accessed Dec. 17, 2022). [81] European Society of Medicine, ‘Special Issue : Advancements in COVID 19 – 2nd issue’, 2022. https://esmed.org/special-issue-advancements-in-covid-19-2nd/ (accessed Dec. 17, 2022). [82] A. Manca, D. Moher, L. Cugusi, Z. Dvir, and F. Deriu, ‘How predatory journals leak into PubMed’, CMAJ, vol. 190, no. 35, pp. E1042–E1045, Sep. 2018, doi: 10.1503/CMAJ.180154. [83] W. Strielkowski, ‘Predatory Publishing: What Are the Alternatives to Beall’s List?’, Am. J. Med., vol. 131, no. 4, pp. 333–334, Apr. 2018, doi: 10.1016/j.amjmed.2017.10.054. [84] W. H. Walters, ‘The citation impact of the Open Access accounting journals that appear on Beall’s List of potentially predatory publishers and journals’, J. Acad. Librariansh., vol. 48, no. 1, Jan. 2022, doi: 10.1016/j.acalib.2021.102484. [85] E. Kulczycki, M. Hołowiecki, Z. Taşkın, and F. Krawczyk, ‘Citation patterns between impactfactor and questionable journals’, Scientometrics, vol. 126, no. 10, pp. 8541–8560, Oct. 2021, doi: 10.1007/S11192-021-04121-8. [86] J. Beall, ‘Best practices for scholarly authors in the age of predatory journals’, Ann. R. Coll. Surg. Engl., vol. 98, no. 2, pp. 77–79, 2016, doi: 10.1308/RCSANN.2016.0056. [87] Y. Masten and A. Ashcraft, ‘Due diligence in the open-access explosion era: Choosing a reputable journal for publication’, FEMS Microbiol. Lett., vol. 364, no. 21, Nov. 2017, doi: 10.1093/FEMSLE/FNX206. [88] J. Buitrago Ciro, ‘How are academic libraries in Spanish-speaking Latin America responding to new models of scholarly communication and predatory publishing?’, J. Librariansh. Inf. Sci., vol. 54, no. 3, pp. 373–388, Sep. 2022, doi: 10.1177/09610006211016533. [89] A. R. Memon, ‘Revisiting the term predatory open access publishing’, J. Korean Med. Sci., vol. 34, no. 13, Apr. 2019, doi: 10.3346/JKMS.2019.34.E99. [90] S. Beshyah, ‘Predatory publishing: A wake-up call for editors and authors in the Middle East and Africa’, Ibnosina J. Med. Biomed. Sci., vol. 09, no. 05, pp. 123–125, Oct. 2017, doi: 10.4103/IJMBS.IJMBS_26_17.
(1)
1. Dryden R et al What do we know about who does and does not attend general health checks? Findings from a narrative scoping review BMC Public Health 2012 12 1 723 doi 10 1186 1471 2458 12 723 2. Wantland DJ et al The effectiveness of Web based vs non Web based interventions a meta analysis of behavioral change outcomes J Med Internet Res 2004 6 4 e 40 3. Powell BJ, et al A refined compilation of implementation strategies results from the Expert Recommendations for Implementing Change ( project Implementation Science 2015 10 1 21 4. Webb MJ et al Experiences of General Practitioners and Practice Support Staff Using a Health and Lifestyle Screening App in Primary Health Care Implementation Case Study JMIR mHealth and uHealth 2018 6 4 e 105 5. Diez Canseco F et al Integration of a Technology Based Mental Health Screening Program Into Routine Practices of Primary Health Care Services in Peru (The Allillanchu Project) Development and Implementation Journal of medical Internet research 2018 20 3 e 100 6. Krist AH et al Adoption, reach, implementation, and maintenance of a behavioral and mental health assessment in primary care Annals of family medicine 2014 12 6 525 33 7. Scribano PV et al Feasibility of computerized screening for intimate partner violence in a pediatric emergency department Pediatric emergency care 2011 27 8 710 6
(1)
1. Dryden R et al. What do we know about who does and does not attend general health checks? Findings from a narrative scoping review. BMC Public Health. 2012. 2. Tachakra S et al. Mobile e-health: the unwired evolution of telemedicine. Telemed J E Health. 2003. 3. Brownson RC et al. Designing for dissemination among public health researchers: findings from a national survey in the United States. Am J Public Health. 2013. 4. Johnson HM,et al. My Hypertension Education and Reaching Target (MyHEART): Development and Dissemination of a Patient-Centered Website for Young Adults with Hypertension. JMIR Cardio. 2017. 5. Ordunez, P. et al. Disseminating cardiovascular disease risk assessment with a PAHO mobile app: a public eHealth intervention. Rev Panam Salud Publica. 2015.
(1)
[1] D. Xie, X. Li, T. Zhou, and Y. Feng, “Estimating the contribution of environmental variables to water quality in the postrestoration littoral zones of Taihu Lake using the APCS-MLR model,” Sci. Total Environ., vol. 857, 2023, doi: 10.1016/j.scitotenv.2022.159678. [2] S. Chen et al., “Deformation and Force Analysis of Wood-Piled Island Cofferdam Based on Equivalent Bending Stiffness Principle,” Buildings, vol. 12, no. 8, 2022, doi: 10.3390/buildings12081104. [3] M. Gut[1] R. Budiarto, Kebijakan energi: menuju sistem energi yang berkelanjutan. Samudra Biru, 2011. [2] B. Sitorus, “Diversifikasi sumber energi terbarukan melalui penggunaan air buangan dalam sel elektrokimia berbasis mikroba,” Jurnal Elkha, vol. 2, no. 1, 2010. [3] A. S. Samsudin, H. M. Lai, and M. I. N. Isa, “Biopolymer materials based carboxymethyl cellulose as a proton conducting biopolymer electrolyte for application in rechargeable proton battery,” Electrochim Acta, vol. 129, pp. 1–13, 2014. [4] A. S. Samsudin, W. M. Khairul, and M. I. N. Isa, “Characterization on the potential of carboxy methylcellulose for application as proton conducting biopolymer electrolytes,” J Non Cryst Solids, vol. 358, no. 8, pp. 1104–1112, 2012. [5] M. F. Shukur, Y. M. Yusof, S. M. M. Zawawi, H. A. Illias, and M. F. Z. Kadir, “Conductivity and transport studies of plasticized chitosan-based proton conducting biopolymer electrolytes,” Phys Scr, vol. 2013, no. T157, p. 014050, 2013. [6] S. Widyaningsih and H. Diastuti, “Pengaruh medium perendam terhadap sifat mekanik, morfologi, dan kinerja membran nata de coco,” Molekul, vol. 3, no. 1, pp. 28–33, 2008. [7] Y. Xue, L. Qi, Z. Lin, G. Yang, M. He, and J. Chen, “High-strength regenerated cellulose fiber reinforced with cellulose nanofibril and nanosilica,” Nanomaterials, vol. 11, no. 10, Oct. 2021, doi: 10.3390/nano11102664. [8] M. I. Maulana and H. Intan Syahbanu, “Sintesis dan Karakterisasi Material Konduktif Film Komposit Polipirol (Ppy)/SELULOSA BAKTERI,” Jurnal Kimia Khatulistiwa, vol. 6, no. 3. [9] J. Xu, Z. Gan, Y. Cheng, and J. Liu, “Discourse-Aware Neural Extractive Text Summarization,” Oct. 2019, [Online]. Available: http://arxiv.org/abs/1910.14142 [10] K. Aswini, N. O. Gopal, N. Shobana, C. Sudalaimani, and S. Uthandi, “Insights into the properties of bacterial cellulose produced by Acetobacter senegalensis MA1 and uncovering the novel bioactive metabolites of its spent medium,” Biomass Convers Biorefin, pp. 1–16, 2022. [11] Y. Hu et al., “Enhanced metallicity boosts hydrogen evolution capability of dual- bimetallic Ni–Fe nitride nanoparticles,” Materials Today Physics, vol. 15, Dec. 2020, doi: 10.1016/j.mtphys.2020.100267. [12] D. Jang and S. Lee, “Correlating thermal conductivity of carbon fibers with mechanical and structural properties,” Journal of Industrial and Engineering Chemistry, vol. 89, pp. 115–118, Sep. 2020, doi: 10.1016/j.jiec.2020.06.026. [13] H. Wang, L. Bian, P. Zhou, J. Tang, and W. Tang, “Core–sheath structured bacterial cellulose/polypyrrole nanocomposites with excellent conductivity as supercapacitors,” J Mater Chem A Mater, vol. 1, no. 3, pp. 578–584, 2013. [14] H. K. Lin and W. C. Say, “Study of pyrite oxidation by cyclic voltammetric, impedance spectroscopic and potential step techniques,” J Appl Electrochem, vol. 29, pp. 987–994, 1999. [15] J. Sheng, T. Chen, R. Wang, Z. Zhang, F. Hua, and R. Yang, “Ultra-light cellulose nanofibril membrane for lithium-ion batteries,” J Memb Sci, vol. 595, p. 117550, 2020. [16] M. Maidawati, “Identifikasi Dan Analisis Senyawa Metabolit Sekunder Ekstrak Daun Sicerek (Clausena excavata),” Jurnal Penelitian Dan Pengkajian Ilmiah Eksakta, vol. 1, no. 2, pp. 98–104, 2022. [17] Y. Liu et al., “Microstructure and mechanical properties of laser metal deposited Ti6Al4V alloy with near equiaxed β grain structure,” Journal of Materials Research and Technology, vol. 22, pp. 1935–1947, 2023. [18] S. W. SW Suciyati, P. P Manurung, J. Junaidi, S. Sembiring, and R. Situmeang, “Synthesis and Characterization of Nanocellulose from Cladophora sp.,” Ecology, Environment and Conservation, vol. 28, no. 2, pp. 521–527, 2022. [19] J. Ariksa et al., “Transparent and antimicrobial cellulose film from ginger nanofiber 1 2 Hairul Abral a).” [20] T. Lapailaka and R. Triandi, “Penentuan ukuran Kristal (crystallite size) lapisan tipis PZT dengan metode XRD melalui pendekatan persamaan Debye Scherrer,” Erudio Journal of Educational Innovation, vol. 1, no. 2, 2013. [21] H. E. G. Prasetya, “Membran Elektrolit Polimer Kitosan-Polyvinil Alkohol pada Direct Methanol Fuel Cell,” Journal of Research and Technology, vol. 8, no. 2, pp. 313–321, 2022. [22] H. Abral et al., “Anti-UV, antibacterial, strong, and high thermal resistant polyvinyl alcohol/Uncaria gambir extract biocomposite film,” Journal of Materials Research and Technology, vol. 17, pp. 2193–2202, Mar. 2022, doi: 10.1016/j.jmrt.2022.01.120. [23] H. Suryanto, A. S. Pahlevi, and U. Yanuhar, “Effect of bacterial cellulose reinforcement on morphology and tensile properties of starch-based biocomposite,” IOP Conf Ser Mater Sci Eng, vol. 1034, no. 1, p. 012167, Feb. 2021, doi: 10.1088/1757- 899x/1034/1/012167. [24] I. Arlindia, “Analisis Pencemaran Danau Maninjau dari Nilai TDS dan Konduktivitas Listrik,” Jurnal Fisika Unand, vol. 4, no. 4, 2015. [25] M. D. Levi, C. Lopez, E. Vieil, and M. A. Vorotyntsev, “Influence of ionic size on the mechanism of electrochemical doping of polypyrrole films studied by cyclic voltammetry,” Electrochim Acta, vol. 42, no. 5, pp. 757–769, 1997. [26] D. S. Winatapura, W. A. Adi, P. Yustinus, and E. Sukirman, “Pengaruh Penambahan Ag2o terhadap Peningkatan Rapat Arus Kritis Superkonduktor Yba2cu3o7-x Hasil Proses Pelelehan,” Jurnal Sains Materi Indonesia, vol. 8, pp. 144–149, 2018. [27] B. Santosa, W. Wirawan, and R. E. Muljawan, “Pemanfaatan molase sebagai sumber karbon alternatif dalam pembuatan nata de coco,” Teknologi Pangan: Media Informasi dan Komunikasi Ilmiah Teknologi Pertanian, vol. 10, no. 2, pp. 61–69, 2019. [28] E. Syafri, A. Kasim, H. Abral, and A. Asben, “Cellulose nanofibers isolation and characterization from ramie using a chemical-ultrasonic treatment,” Journal of Natural Fibers, vol. 16, no. 8, pp. 1145–1155, Nov. 2019, doi: 10.1080/15440478.2018.1455073. [29] M. Lay, J. A. Méndez, M. Delgado-Aguilar, K. N. Bun, and F. Vilaseca, “Strong and electrically conductive nanopaper from cellulose nanofibers and polypyrrole,” Carbohydr Polym, vol. 152, pp. 361–369, Nov. 2016, doi: 10.1016/j.carbpol.2016.06.102. [30] H. K. Chitte, G. N. Shinde, N. V. Bhat, and V. E. Walunj, “Synthesis of Polypyrrole Using Ferric Chloride (FeCl< sub>3</sub>) as Oxidant Together with Some Dopants for Use in Gas Sensors,” J Sens Technol, vol. 01, no. 02, pp. 47–56, 2011, doi: 10.4236/jst.2011.12007. [31] H. Abral, V. Lawrensius, D. Handayani, and E. Sugiarti, “Preparation of nano-sized particles from bacterial cellulose using ultrasonication and their characterization,” Carbohydr Polym, vol. 191, pp. 161–167, 2018. [32] D. Müller, C. R. Rambo, D.o.s.recouvreux, L. M. Porto, and G. M. O. Barra, “Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers,” Synth Met, vol. 161, no. 1–2, pp. 106–111, Jan. 2011, doi: 10.1016/j.synthmet.2010.11.005.
(1)
[1] E. G. Brockerhoff et al., “Forest biodiversity, ecosystem functioning and the provision of ecosystem services,” Biodivers. Conserv., vol. 26, no. 13, pp. 3005–3035, 2017, doi: 10.1007/s10531-017-1453-2. [2] J. Alroy, “Effects of habitat disturbance on tropical forest biodiversity,” Proc. Natl. Acad. Sci. U. S. A., vol. 114, no. 23, pp. 6056–6061, 2017, doi: 10.1073/pnas.1611855114. [3] Y. Basset et al., “Arthropod distribution in a tropical rainforest: Tackling a four dimensional puzzle,” PLoS One, vol. 10, no. 12, pp. 1–22, 2015, doi: 10.1371/journal.pone.0144110. [4] F. Molleman, A. Kop, P. M. Brakefield, P. J. De Vries, and B. J. Zwaan, “Vertical and temporal patterns of biodiversity of fruit-feeding butterflies in a tropical forest in Uganda,” Biodivers. Conserv., vol. 15, no. 1, pp. 107–121, 2006, doi: 10.1007/s10531- 004-3955-y. [5] L. P. Martins, E. da C. Araujo Junior, A. R. P. Martins, M. Duarte, and G. G. Azevedo, “Species diversity and community structure of fruit-feeding butterflies (Lepidoptera: Nymphalidae) in an Eastern Amazonian forest,” Pap. Avulsos Zool., vol. 57, no. 38, pp. 481–489, 2017, doi: 10.11606/0031- 1049.2017.57.38. [6] C. S. Gintoron and F. Abang, “Composition of FruitFeeding Butterflies (Lepidoptera: Nymphalidae) in a Peat Swamp Forest, Kota Samarahan, Sarawak,” Serangga, vol. 19, no. 1, pp. 1–17, 2014. [7] P. J. Devries, L. G. Alexander, I. A. Chacon, and J. A. Fordyce, “Similarity and difference among rainforest fruit-feeding butterfly communities in Central and South America,” J. ofAnimalEcology 2012, vol. 81, pp. 472–482, 2012, doi: 10.1111/j.1365- 2656.2011.01922.x. [8] O. Comay, | Oz, B. Yehuda, | Racheli SchwartzTzachor, and | Dubi Benyamini, “Environmentalcontrols on butterfly occurrence and species richness in Israel: The importance of temperature over rainfall,” Ecol. Evol., vol. 11, pp. 12035–12050, 2021, doi: 10.1002/ece3.7969. [9] C. S. Gintoron and F. Abang, “Temporal Diversity of the Nymphalids in Kubah National Park, Sarawak, Malaysia,” Trop. Nat. Hist., vol. 21, no. 2, pp. 285– 298, 2021. [10] H. P. Hazebroek and A. K. Abang Morshidi, National Parks of Sarawak. Kota Kinabalu, Sabah: Natural History Publications (Borneo), 2000. [11] K. Otsuka, Butterlies of Borneo. Tokyo: Tobishima Corporation, 1988. [12] E. Tsukada, Butterflies of the South-East Asian islands Vol V: Nymphalidae (II). Tokyo: Azumino Butterflies Research Institute, 1991. [13] A. Whitworth, J. Villacampa, A. Brown, R. Pillco Huarcaya, R. Downie, and R. Macleod, “Past Human Disturbance Effects upon Biodiversity are Greatest in the Canopy; A Case Study on Rainforest Butterflies,” PLoS One, vol. 11, no. 3, pp. 1–20, 2016, doi: 10.1371/journal.pone.0150520. [14] A. Nakamura et al., “Forests and Their Canopies: Achievements and Horizons in Canopy Science,” Trends Ecol. Evol., vol. 32, no. 6, pp. 438–451, Jun. 2017, doi: 10.1016/j.tree.2017.02.020. [15] J. Barlow, W. L. Overal, I. S. Araujo, T. A. Gardner, and C. A. Peres, “The value of primary, secondary and plantation forests for fruit-feeding butterflies in the Brazilian Amazon,” J. Appl. Ecol., vol. 44, no. 5, pp. 1001–1012, 2007, doi: 10.1111/j.1365- 2664.2007.01347.x. [16] E. Haber, “Baseline Assessment of Butterfly Biodiversity and Community Composition at the Firestone Center for Restoration Ecology, Costa Rica,” 2005. [Online]. Available: papers2://publication/uuid/438C9749-11B2-413C9B0F-E3E1B054FD92. [17] P. J. DeVries, D. Murray, and R. Lande, “Species diversity in vertical, horizontal, and temporal dimensions of a fruit-feeding butterfly community in an Ecuadorian rainforest,” Biol. J. Linn. Soc., vol. 62, no. 3, pp. 343–364, 1997, doi: 10.1006/bijl.1997.0155. [18] J. Beck, F. Mandel, and M. Peer, “Geometrid moth (Lepidoptera: Geometridae) in Borneo: How homogeneous are assemblages from a ‘uniform’ lowland primary forest?,” J. Zool. Soc. Wallacea, vol. 2, pp. 44–53, 2006. [19] S. G. Christharina and F. Abang, “Diversity and abundance of the fruit-feeding butterflies (Lepidoptera: Nymphalidae) in Kubah National Park, Sarawak, Southwest Borneo,” 2014. [20] C. S. Gintoron and F. Abang, “Temporal Diversity of the Nymphalids in Kubah National Park, Sarawak, Malaysia,” Trop. Nat. Hist., vol. 21, no. 2, pp. 285– 298, 2021. [21] K. C. Hamer et al., “Ecology of Butterflies in Natural and Selectively Logged Forests of Northern Borneo : The Importance of Habitat Heterogeneity,” J. Appl. Ecol., vol. 40, no. 1, pp. 150–162, 2003. [22] E. A. Egbe, G. B. Chuyong, B. A. Fonge, and K. S. Namuene, “Forest disturbance and natural regeneration in an African rainforest at Korup National Park, Cameroon,” Int. J. Biodivers. Conserv., vol. 4, no. 11, pp. 377–384, Aug. 2012, doi: 10.5897/ijbc12.031. [23] S. Pardonnet, “Effect of Tree-Fall Gaps on FruitFeeding Nymphalidae Assemblages in a Peruvian Rainforest,” Linköpings Universitet, 2010. [24] K. C. Hamer and J. K. Hill, “Scale-dependent effects of habitat disturbance on species richness in tropical forests,” Conserv. Biol., vol. 14, no. 5, pp. 1435–1440, 2000, doi: 10.1046/j.1523-1739.2000.99417.x. [25] W. Vanreusel and H. Van Dyck, “When functional habitat does not match vegetation types: A resourcebased approach to map butterfly habitat,” Biol. Conserv., vol. 135, no. 2, pp. 202–211, 2007, doi: 10.1016/j.biocon.2006.10.035. [26] A. S. Corbet and H. M. Pendlebury, The Butterflies of the Malay Peninsula. Kuala Lumpur: Malayan Nature Society, 1992. [27] A. J. Dumbrell and J. K. Hill, “Impacts of selective logging on canopy and ground assemblages of tropical forest butterflies: Implications for sampling,” Biol. Conserv., vol. 125, no. 1, pp. 123–131, 2005, doi: 10.1016/j.biocon.2005.02.016. [28] J. Ghazoul, “Impact of logging on the richness and diversity of forest butterflies in a tropical dry forest in Thailand,” Biodivers. Conserv., vol. 11, no. 3, pp. 521–541, 2002, doi: 10.1023/A:1014812701423. [29] M. Uehara-Prado, K. S. Brown, and A. V. L. Freitas, “Species richness, composition and abundance of fruitfeeding butterflies in the Brazilian Atlantic Forest: Comparison between a fragmented and a continuous landscape,” Glob. Ecol. Biogeogr., vol. 16, no. 1, pp. 43–54, 2007, doi: 10.1111/j.1466-8238.2006.00267.x. [30] C. S. Gintoron and F. Abang, “Overall Diversity Of Fruit-Feeding Butterflies (Lepidoptera: Nymphalidae) Along Vertical Gradient In A Peat Swamp Forest, Kota Samarahan, Sarawak,” Borneo J. Resour. Sci. Technol., vol. 4, no. 2, pp. 53–68, 2014. [31] F. A. Ramos, “Nymphalid butterfly communities in an Amazonian forest fragment.,” J. Res. Lepid., vol. 35, pp. 29–41, 2000. [32] J. Beck and C. Vun Khen, “Beta-diversity of geometrid moths from northern Borneo: Effects of habitat, time and space,” J. Anim. Ecol., vol. 76, no. 2, pp. 230–237, 2007, doi: 10.1111/j.1365- 2656.2006.01189.x.
(1)
[1] El-Medany, W.M., & Hussain, M.R. (2007) FPGA-Based Advanced Real Traffic Light Controller System Design. Proceeding of 4th IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, ISBN: 978-1-4244-1347-8, pg.100–105. [2] Chan, S.S., Deshpande, R.S. & Rana, J.G. (2009) Design of Intelligent Traffic Light Controller Using Embedded System. Proceeding of 2nd International Conference on Emerging Trends in Engineering and Technology, ISBN: 978-1-4244-5250-7, pg.1086-1091 [3] Liu, Y. & Chen. X. (2009) Design of Traffic Lights Controlling System Based on PLC and Configuration Technology. Proceeding of International Conference on Multimedia Information Networking and Security 2009, ISBN: 978-0-7695-3843-3, pg.561-563 [4] Kulkarni, G.H. & Waingankar, P.G. (2007) Fuzzy logic based traffic light controller. Proceeding of International Conference on Industrial and Information Systems 2007, ISBN: 978-7-4244-1151-1, pg. 107-110 [5] Shi, S., Hongli, T. & Yandong, Z. (2009) Design of Intelligent Traffic Light Controller Based on VHDL. Proceeding of 2nd International Workshop on Knowledge Discovery and Data Mining 2009, ISBN: 978-0-7695-3543-2, pg. 272-275 [6] Norhuzaimin, J. & Maimun, H.H. (2005) The Design of High Speed UART. Proceeding of Asia Pacific Conference on Applied Electromagnetics, ISBN 0-7803-9431-3, pg. 306-310.
(1)
1.Elvir-Lazo OL, White PF. Postoperative Pain Management After Ambulatory Surgery: Role of Multimodal Analgesia. Anesthesiol Clin 2010;28(2):217-224. doi:10.1016/j. anclin.2010.02.011 2. Joshi GP, Ogunnaike BO. Consequences of inadequate postoperative pain relief and chronic persistent postoperative pain. Anesthesiol Clin North America 2005;23(1):21-36. doi:10.1016/j.atc.2004.11.013 3. Peck TE, Sue H. Pharmacology for Anaesthesia and Intensive Care. doi:10.1017/CB09780511722172.011 4. Paul K. Sikka, Shawn T. Beaman JAS. Basic Clinical Anesthesia.; 2015. doi:10.1007/978-1-4939-1737-2 5. Lee CY. 2006. Manual of Anaesthesia. Singapore: McGrawHill Education (Asia) 6. Ip HYV, Abrishami A, Peng PWH, Wong J, Chung F. Predictors of postoperative pain and analgesic consumption: a qualitative systematic review. Anesthesiology 2009;111(3):657-677. doi:10.1097/ ALN.0b013e3181aae87a 7. Raja. Predicting Postoperative Pain Based on Preoperative (editorial). Anesthesiology 2010;(6):1311-1312. doi:10.1097/ ALN.0b013e3181dcd5cc 8. Ganzberg S. The Opioid Challenge. Anesth Prog 2016;63:113-115 9. Clarke H, Soneji N, Ko DT, Yun L, Wijeysundera DN. Rates and risk factors for prolonged opioid use after major surgery: population based cohort study. Br Med J 2014;348:g1251-g1251. doi:10.1136/bmj.g1251 10. Buvanendran A, Kroin JS. Multimodal analgesia for controlling acute postoperative pain. Curr Opin Anaesthesiol 2009;22(5):588-593. doi:10.1097/ACO.0b013e328330373a 11. Schug SA. Choice of Opioid for Acute Pain Management. Pain Med 2008;9(6):773-774. doi:https://doi-org.ezproxy. anzca.edu.au/10.1111/j.1526-4637.2008.00505.x 12. Tan E choo, Lim Y, Teo Y ying, Goh R, Law H yang, Sia AT. Ethnic Differences in Pain Perception and PatientControlled Analgesia Usage for Postoperative Pain. J Pain 2008;9(9):849-855. doi:10.1016/j.jpain.2008.04.004 13. Rathmell JP, Wu CL, Sinatra RS, et al. Acute Post-Surgical Pain Management: A Critical Appraisal of Current Practice. Reg Anesth Pain Med 2006;31(4 SUPPL.):1-42. doi:10.1016/j.rapm.2006.05.002 14. ASA Task Force. Practice Guidelines For Acute Pain Management In The Perioperative Setting. Anesthesiology 2012;116(2):248-273. doi:10.1097/ALN.0b013e31823c1030
(1)
[1] E. Manihuruk, H. Harianto, and N. Kusnadi, “ANALISIS FAKTOR YANG MEMENGARUHI PETANI MEMILIH POLA TANAM UBI KAYU SERTA EFISIENSI TEKNIS DI KABUPATEN LAMPUNG TENGAH,” J. AGRISEP, vol. 17, no. 2, pp. 139–150, 2018. [2] N. Ramankutty et al., “Trends in Global Agricultural Land Use: Implications for Environmental Health and Food Security,” Annu. Rev. Plant Biol., vol. 69, no. 1, pp. 789–815, 2018. [3] M. Sepe and M. I. Djafar, “Perpaduan Tanaman Refugia Dan Tanaman Kubis Pada Berbagai Pola Tanam Dalam Menarik Predator Dan Parasitoid Dalam Penurunan Populasi Hama,” AGROVITAL J. Ilmu Pertan., vol. 3, no. 2, p. 55, 2018. [4] J. Göpel et al., “Future land use and land cover in Southern Amazonia and resulting greenhouse gas emissions from agricultural soils,” Reg. Environ. Chang., vol. 18, no. 1, pp. 129–142, 2018. [5] H. Yin, A. V. Prishchepov, T. Kuemmerle, B. Bleyhl, J. Buchner, and V. C. Radeloff, “Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series,” Remote Sens. Environ., vol. 210, pp. 12–24, 2018. [6] C. A. Barker, N. E. Turley, J. L. Orrock, J. A. Ledvina, and L. A. Brudvig, “Agricultural land-use history does not reduce woodland understory herb establishment,” Oecologia, vol. 189, no. 4, pp. 1049–1060, 2019. [7] R. Santoso, W. Kurniawan, and G. Setyawan, “Perancangan Sistem Pemetaan Ruangan Secara Dua Dimensi Menggunakan Sensor Ultrasonik,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 3, pp. 192–205, 2017. [8] S. Sendari et al., “Pemetaan Arena Kerja Menggunakan Sensor Ultrasonik Pada Robot Omnidireksional,” J. FORTECH, vol. 1, no. 1, pp. 20–27, 2020. [9] A. Muliawan, M. Syaryadhi, and Z. Zulhelmi, “Desain Prototipe Sistem Pemetaan Dasar Sungai Menggunakan Sensor Ultrasonik Berbasis Mikrokontroler ATMega328P,” KITEKTRO J. Komputer, Inf. Teknol. dan Elektro, vol. 2, no. 3, 2017. [10] R. R. Al Hakim, Y. Z. Arief, A. Pangestu, and A. Jaenul, “Framework Pangan45.id, Start-Up Android Bidang Pangan Untuk Mendukung Kemandirian dan Ketahanan Pangan Indonesia,” in Seminar Nasional Akselerasi Teknologi Pangan dan Industri Perdesaan 2020, 2020, pp. 1–7. [11] C. Verdouw, H. Sundmaeker, B. Tekinerdogan, D. Conzon, and T. Montanaro, “Architecture framework of IoT-based food and farm systems: A multiple case study,” Comput. Electron. Agric., vol. 165, p. 104939, 2019. [12] R. R. Al Hakim, A. Pangestu, A. Jaenul, and Ropiudin, “Desain Manajemen Irigasi Kontrol Jarak Jauh Berbasis IoT dengan Terintegrasi Android,” in Seminar Nasional Perteta – FTIP Unpad 2021, 2021, pp. 1–4. [13] A. Pangestu, M. N. Mohammed, S. Al-Zubaidi, S. H. K. Bahrain, and A. Jaenul, “An internet of things toward a novel smart helmet for motorcycle: Review,” in AIP Conference Proceedings, 2021, vol. 2320, no. 1, p. 050026. [14] A. Pangestu, M. Yusro, W. Djatmiko, and A. Jaenul, “The Monitoring System of Indoor Air Quality Based on Internet of Things,” Spektra J. Fis. dan Apl., vol. 5, no. 2, pp. 141–152, 2020. [15] I. N. Islam and A. Pangestu, “PERANCANGAN ALAT PENGERING DAN PENSTERIL PAKAIAN MENGGUNAKAN BIMETAL DAN SINAR ULTRAVIOLET BERBASIS IOT,” in Prosiding Penelitian Pendidikan dan Pengabdian 2021, 2021. [16] S. Pal and S. Ziaul, “Detection of land use and land cover change and land surface temperature in English Bazar urban centre,” Egypt. J. Remote Sens. Sp. Sci., vol. 20, no. 1, pp. 125–145, 2017. [17] R. R. Al Hakim, E. Rusdi, and M. A. Setiawan, “Android Based Expert System Application for Diagnose COVID-19 Disease : Cases Study of Banyumas Regency,” J. Intell. Comput. Heal. Informatics, vol. 1, no. 2, pp. 1–13, 2020. [18] T. Thamaraimanalan, S. P. Vivekk, G. Satheeshkumar, and P. Saravanan, “Smart Garden Monitoring System Using IOT,” Asian J. Appl. Sci. Technol. (Open Access Q. Int. J., vol. 2, no. 2, pp. 186–192, 2018. [19] M. Sheth and P. Rupani, “Smart Gardening Automation using IoT with BLYNK App,” Proc. Int. Conf. Trends Electron. Informatics, ICOEI 2019, vol. 2019-April, no. Icoei, pp. 266–270, 2019. [20] S. K. Sinha, B. Singh, and A. Kumar Gupta, “IOT Based Smart Garden Monitoring System,” vol. 8, no. 10, pp. 380–383, 2017. [21] U. Timm, J. Kraitl, K. Schnurstein, and H. Ewald, “Photometric sensor system for a non-invasive real-time hemoglobin monitoring,” Adv. Biomed. Clin. Diagnostic Syst. XI, vol. 8572, no. March, p. 857204, 2013. [22] M. A. Yetti Yuniati , Melvi Ulvan, “Implementasi Modul Global Positioning System (GPS) Pada Sistem Tracking Bus Rapid Transit (BRT) Lampung,” Univ. Lampung. Lampung, vol. 14, no. 2, pp. 150–156, 2016. [23] A. R. H. Martawireja and H. Supriyanto, “Penentuan Lintasan Pergerakan Quadcopter Berbasis GPS (Global Positioning System),” J. Teknol. dan Rekayasa Manufaktur, vol. 1, no. 2, pp. 1–14, 2019. [24] R. R. Al Hakim, G. E. Setyowisnu, and A. Pangestu, “Rancang Bangun Media Pembelajaran Matematika Berbasis Android pada Materi Persamaan Diferensial,” Kontinu J. Penelit. Didakt. Mat., vol. 4, no. 2, pp. 82–91, 2020.
(1)
[1] Endroyo, B., Yuwono, B. E., & Mardapi, D. (2015). Model of learning/training of Occupational Safety & Health (OSH) based on industry in the construction industry. Procedia Engineering, 125, 83-88. [2] Aziz, S. F. A., & Osman, F. (2019). Does compulsory training improve occupational safety and health implementation? The case of Malaysian. Safety science, 111, 205-212. [3] Michaels, D., & Wagner, G. R. (2020). Occupational Safety and Health Administration (OSHA) and worker safety during the COVID-19 pandemic. Jama. [4] Jaunzems, K., Green, L., & Leith, D. (2020). Virtual Reality Training for Workers in High-Risk Occupations. In Tracing Behind the Image (pp. 150-160). Brill Rodopi. [5] Lawson, G., Roper, T., Shaw, E., Hsieh, M. K., & Cobb, S. V. (2020). Multimodal virtual environments: an opportunity to improve fire safety training?. Policy and Practice in Health and Safety, 18(2), 155-168. [6] Mahmood, N. H. N., Shamsudin, N. M., & Rahim, A. R. A. (2017, October). RECONSIDERING CURRENT PRACTICES OF OCCUPATIONAL SAFETY AND HEALTH (OSH) TRAINING: EVALUATION ON THE EFFECTIVENESS TRAINING METHOD. In e-PROCEEDINGS (p. 95). [7] Sileyew, K. J. (2020). Systematic industrial OSH advancement factors identification for manufacturing industries: A case of Ethiopia. Safety Science, 132, 104989. [8] Vondráčková, T., Voštová, V., &Nývlt, V. (2017). The human factor as a cause of failures in building structures. In MATEC Web of Conferences (Vol. 93, p. 03005). EDP Sciences. [9] Pietrafesa, E., Bentivenga, R., Lalli, P., Capelli, C., Farina, G., & Stabile, S. (2020, June). Becoming Safe: A Serious Game for Occupational Safety and Health Training in a WBL Italian Experience. In International Conference in Methodologies and intelligent Systems for Techhnology Enhanced Learning (pp. 264-271). Springer, Cham. [10] Rauh, S. F., Koller, M., Schäfer, P., Meixner, G., Bogdan, C., & Viberg, O. (2021). MR On-SeT: A Mixed Reality Occupational Health and Safety Training for World-Wide Distribution. International Journal of Emerging Technologies in Learning, 15(5). [11] National Institute for Occupational Safety and Health. (2015, January 13). Hierarchy of Controls. U.S Centers for Disease Control and Prevention. Retrieved from https://www.cdc.gov/niosh/topics/hierarchy/default.html [12] Foulis, M. (2021, May 3). Welding firm ordered to pay $300K after fatal explosion. Canadian Occupational Safety newsletter. Retrieved from https://www.thesafetymag.com/ca/topics/convictions/welding-firm-ordered-to-pay-300k-after-fatal-explosion/253846 [13] Human Resource Development Fund (2020, January 3). HRDF approved more than 1 million training places [press release]. Retrieved 5 May 2021, from https://hrdcorp.gov.my/wp-content/uploads/2021/03/1.-20200103-Press-Statement-on-HRDFs-2019-Achievements.pdf [14] The National Institute of Occupational Safety and Health. (n.d). Statistics. Ministry of Human Resources Malaysia. Retrieved from http://www.niosh.com.my/online-statistic [15] Occupational Safety and Health Act (1994). Retrieved 5 May 2021, from https://www.dosh.gov.my/index.php/legislation/acts/23-02-occupational-safety-and-health-act-1994-act-514/file [16] Offshore Petroleum Industry Training Organisation (OPITO). (n.d). About OPITO Standards.Retrieved from https://opito.com/standards-and-qualifications/about-opito-standards [17] Tews, M. J., & Noe, R. A. (2019). Does training have to be fun? A review and conceptual model of the role of fun in workplace training. Human Resource Management Review, 29(2), 226-238. [18] Cohen, A., Colligan, M. J., Sinclair, R., Newman, J., & Schuler, R. (1998). Assessing occupational safety and health training. Cincinnati, OH: National Institutes of Health, 1-174. [19] Konijn, A. M., Lay, A. M., Boot, C. R., & Smith, P. M. (2018). The effect of active and passive occupational health and safety (OHS) training on OHS awareness and empowerment to participate in injury prevention among workers in Ontario and British Columbia (Canada). Safety science, 108, 286-291. [20] Holte, K. A., & Follo, G. (2018). Making occupational health and safety training relevant for farmers: Evaluation of an introductory course in occupational health and safety in Norway. Safety science, 109, 368-376. [21] Aryal, A., Parish, M., & Rohlman, D. (2019). Generalizability of total worker health® online training for young workers. International Journal of Environmental Research and Public Health, 16(4). https://doi.org/10.3390/ijerph16040577 [22] Vignoli, M., Nielsen, K., Guglielmi, D., Mariani, M. G., Patras, L., &Peirò, J. M. (2021). Design of a safety training package for migrant workers in the construction industry. Safety Science, 136, 105124. https://doi.org/https://doi.org/10.1016/j.ssci.2020.105124 [23] Lee, K. (2012). Augmented reality in education and training. TechTrends, 56(2), 13-21. [24] Lee, Y. J., & Lee, D. (2015). Factors influencing learning satisfaction of migrant workers in Korea with e-learning-based occupational safety and health education. Safety and health at work, 6(3), 211-217. [25] Gilotta, S., Spada, S., Ghibaudo, L., & Isoardi, M. (2019). A technology corner for operator training in manufacturing tasks. Advances in Intelligent Systems and Computing, 824, 935–943. https://doi.org/10.1007/978-3-319-96071-5_96 [26] Borgen, K. B., Ropp, T. D., & Weldon, W. T. (2021). Assessment of Augmented Reality Technology’s Impact on Speed of Learning and Task Performance in Aeronautical Engineering Technology Education. International Journal of Aerospace Psychology. https://doi.org/10.1080/24721840.2021.1881403 [27] Liu, P., Li, C., Xiao, C., Zhang, Z., Ma, J., Gao, J., Shao, P., Valerio, I., Pawlik, T. M., Ding, C., Yilmaz, A., & Xu, R. (2021). A Wearable Augmented Reality Navigation System for Surgical Telementoring Based on Microsoft HoloLens. Annals of Biomedical Engineering, 49(1), 287–298. https://doi.org/10.1007/s10439-020-02538-5 [28] Martins, B. R., Jorge, J. A., & Zorzal, E. R. (2021). Towards augmented reality for corporate training. Interactive Learning Environments. https://doi.org/10.1080/10494820.2021.1879872 [29] Li, X., Yi, W., Chi, H.-L., Wang, X., & Chan, A. P. C. (2018). A critical review of virtual and augmented reality (VR/AR) applications in construction safety. Automation in Construction, 86, 150–162. https://doi.org/10.1016/j.autcon.2017.11.003 [30] Hasanzadeh, S., Polys, N. F., & De La Garza, J. M. (2020). Presence, Mixed Reality, and Risk-Taking Behavior: A Study in Safety Interventions. IEEE Transactions on Visualization and Computer Graphics, 26(5), 2115–2125. https://doi.org/10.1109/TVCG.2020.2973055 [31] Le, Q. T., Pedro, A. K. E. E. M., Lim, C. R., Park, H. T., Park, C. S., & Kim, H. K. (2015). A framework for using mobile based virtual reality and augmented reality for experiential construction safety education. International Journal of Engineering Education, 31(3), 713-725. [32] Pereira, R. E., Gheisari, M., & Esmaeili, B. (2018). Using panoramic augmented reality to develop a virtual safety training environment. In Construction Research Congress 2018 (pp. 29-39). [33] Joshi, S., Hamilton, M., Warren, R., Faucett, D., Tian, W., Wang, Y., & Ma, J. (2021). Implementing Virtual Reality technology for safety training in the precast/prestressed concrete industry. Applied ergonomics, 90, 103286. [34] Vigoroso, L., Caffaro, F., Cremasco, M. M., & Cavallo, E. (2021). Innovating occupational safety training: A scoping review on digital games and possible applications in agriculture. International Journal of Environmental Research and Public Health, 18(4), 1–23. https://doi.org/10.3390/ijerph18041868 [35] Shirokov, Y. A. (2020). On improving the effectiveness of training in the field of occupational safety and health. Bezopasnost’ Truda v Promyshlennosti, 2020(11), 89–94. https://doi.org/10.24000/0409-2961-2020-11-89-94 [36] Cerezo-Narváez, A., Córdoba-Roldán, A., Pastor-Fernández, A., Aguayo-González, F., Otero-Mateo, M., & Ballesteros-Pérez, P. (2019). Training competences in industrial risk prevention with lego® serious play®: A case study. Safety, 5(4). https://doi.org/10.3390/safety5040081 [37] Somerkoski, B., Oliva, D., Tarkkanen, K., &Luimula, M. (2020). Digital Learning Environments - Constructing Augmented and Virtual Reality in Fire Safety. ACM International Conference Proceeding Series, 103–108. https://doi.org/10.1145/3377571.3377615 [38] Zabala-Vargas, S., García-Mora, L., Arciniegas-Hernández, E., Reina-Medrano, J., & Colombia, B. (2021). Strengthening Motivation in the Mathematical Engineering Teaching Processes-A Proposal from Gamification and Game-Based Learning. International Journal of Emerging Technologies in Learning, 16(6). [39] Keller, J.M., (1987). Development and use of the ARCS model of instructional design. Journal of instructional development, 10(3), p.2. [40] Alzahrani, N. M. (2020). Augmented reality: A systematic review of its benefits and challenges in e-learning contexts. Applied Sciences, 10(16), 5660. [41] Kaplan, A. D., Cruit, J., Endsley, M., Beers, S. M., Sawyer, B. D., & Hancock, P. A. (2020). The effects of virtual reality, augmented reality, and mixed reality as training enhancement methods: a meta-analysis. Human factors, 0018720820904229. [42] Kamal, A. A., & Junaini, S. N. (2019). The effects of design-based learning in teaching augmented reality for pre-university students in the ict competency course. International Journal of Scientific and Technology Research, 8(12), 2726-2730. [43] Yang, S., Carlson, J. R., & Chen, S. (2020). How augmented reality affects advertising effectiveness: The mediating effects of curiosity and attention toward the ad. Journal of Retailing and Consumer Services, 54, 102020. [44] Chen, M. P., Wang, L. C., Zou, D., Lin, S. Y., Xie, H., & Tsai, C. C. (2020). Effects of captions and English proficiency on learning effectiveness, motivation and attitude in augmented-reality-enhanced theme-based contextualized EFL learning. Computer Assisted Language Learning, 1-31. [45] Koenig, C., Ismael, M., & McCall, R. (2021). OST-HMD for Safety Training. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12615 LNCS, 342–352. https://doi.org/10.1007/978-3-030-68449-5_34 [46] Chang, Y. S., Hu, K. J., Chiang, C. W., &Lugmayr, A. (2020). Applying Mobile Augmented Reality (AR) to teach Interior Design students in layout plans: Evaluation of learning effectiveness based on the ARCS Model of learning motivation theory. Sensors, 20(1), 105. [47] Wahyu, Y., Suastra, I. W., Sadia, I. W., &Suarni, N. K. (2020). The Effectiveness of Mobile Augmented Reality Assisted Stem-Based Learning on Scientific Literacy and Students' Achievement. International Journal of Instruction, 13(3), 343-356. [48] Bork, F., Lehner, A., Eck, U., Navab, N., Waschke, J., & Kugelmann, D. (2020). The Effectiveness of Collaborative Augmented Reality in Gross Anatomy Teaching: A Quantitative and Qualitative Pilot Study. Anatomical Sciences Education. [49] Corvino, A. R., Garzillo, E. M., Arena, P., Cioffi, A., Monaco, M. G. L., & Lamberti, M. (2018). Augmented reality for health and safety training program among healthcare workers: An attempt at a critical review of the literature. In International Conference on Human Systems Engineering and Design: Future Trends and Applications (pp. 711-715). Springer, Cham. [50] Khan, T., Johnston, K., & Ophoff, J. (2019). The impact of an augmented reality application on learning motivation of students. Advances in Human-Computer Interaction, 2019. [51] Ibáñez, M. B., Portillo, A. U., Cabada, R. Z., &Barrón, M. L. (2020). Impact of augmented reality technology on academic achievement and motivation of students from public and private Mexican schools. A case study in a middle-school geometry course. Computers & Education, 145, 103734. [52] Georgiou, Y., & Kyza, E. A. (2018). Relations between student motivation, immersion and learning outcomes in location-based augmented reality settings. Computers in Human Behavior, 89, 173-181. [53] Ahmad, N., & Junaini, S. (2020). Augmented Reality for Learning Mathematics: A Systematic Literature Review. International Journal of Emerging Technologies in Learning (iJET), 15(16), 106-122. [54] Sáez-López, J. M., Cózar-Gutiérrez, R., González-Calero, J. A., & Gómez Carrasco, C. J. (2020). Augmented reality in higher education: An evaluation program in initial teacher training. Education Sciences, 10(2), 26. [55] Bacca, J., Baldiris, S., &Fabregat, R. (2018). Insights into the factors influencing student motivation in augmented reality learning experiences in vocational education and training. Frontiers in psychology, 9, 1486.
(1)
[1] E. Wilson, Fashion and Everyday Life: London and New York. [2] A. Freedman, Fashion after fashion, Fashion Theory 27 (2018) 1-8. [3] R. S. Lokhande, P.U. Singare, D.S. Pimple, Study on physico-chemical parameters of wastewater effluents from Taloja industrial area of Mumbai, India, Int. J. Ecosyst. 1 (2011) 1-9. [4] M. M. Nasr, M. A. Gondal, Z. S. Seddigi, Detection of hazardous pollutants in chrome-tanned leather using locally developed laser-induced breakdown spectrometer, Environ. Monit. Assess. 175 (2011) 387-95. [5] A. Tarantola, How leather is slowly killing the people and places that make it; 2014. [6] Z. Mikoczy, L. Hagmar, Cancer incidence in the Swedish leather tanning industry: updated findings 1958–99, Occup. Environ. Med. 62 (2005) 461-4. [7] One Green Planet, Why leather is disgusting and cruel, 2014. [8] S. Yagoub, Biodegradation of leather solid waste (Doctoral dissertation, The University of Northampton). [9] S.K. Rastogi, C. Kesavachandran, F. Mahdi, A. Pandey, Occupational cancers in leather tanning industries: A short review, Indian J. Occup. Environ. Med. 11 (2007) 3. [10] L. Skov, The role of trade fairs in the global fashion business, Curr. Sociol. 54 (2006) 764-83. [11] A. Payne, D. Brough, P. Musk, Will we soon be growing our own vegan leather at home? The Conversation, 2016. [12] C. Chen, B.Y. Liu. Changes in major components of tea fungus metabolites during prolonged fermentation, J. Appl. Microbiol. 89 (2000) 834-9. [13] J. Martínez Leal, L. Valenzuela Suárez, R. Jayabalan, J. Huerta Oros, A. Escalante-Aburto, A review on health benefits of kombucha nutritional compounds and metabolites, CYTA-J Food, 16 (2018) 390-9. [14] R. Jayabalan, R.V. Malbaša, E.S. Lončar, J.S. Vitas, M. Sathishkumar, A review on kombucha tea—microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus, Compr. Rev. Food Sci. Food Saf. 13 (2014) 538-50. [15] A. Chusna, I. Akra, D. N. Enden, S. Ganiyasa, P. Pranandika Jaya, L.S. Gita, T. Intan, Sweet potato (Ipomoea Batatas L.) based microbial cellulose as advanced biomaterial for sustainable leather production, Suranaree J. Sci. Technol. 26 (2019) 78-83. [16] W.N. Goh, A. Rosma, B. Kaur, A. Fazilah, A.A. Karim, R. Bhat, Fermentation of black tea broth (Kombucha): I. Effects of sucrose concentration and fermentation time on the yield of microbial cellulose, Int. Food Res. J. 19 (2012) 109-117. [17] C. Nam, Y.A. Lee, RETHINK II: Kombucha Shoes for Scarlett and Rhett. In International Textile and Apparel Association Annual Conference Proceedings (Vol. 73, No. 1). Iowa State University Digital Press, 2016. [18] V. Kumar, V.K. Joshi, Kombucha: Technology, microbiology, production, composition and therapeutic value, Int. J. Food Ferment. Tec. 6 (2016) 13-24. [19] I. A. Hassan, E. J. AL-Kalifawi, Factors Influence on the yield of bacterial cellulose of Kombucha (Khubdat humza), Baghdad Sci. J. 11 (2014) 1420-28. [20] F. Yoshinaga, N. Tonouchi, K. Watanabe, Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material, Biosci. Biotechnol. Biochem. 61 (1997) 219-24. [21] T. A. Mukadam, K. Punjabi, S.D. Deshpande, S.P. Vaidya, A.S. Chowdhary. Isolation and characterization of bacteria and yeast from Kombucha tea, Int. J. Curr. Microbiol. Appl. Sci. 5 (2016) 32-41. [22] A. Budhiono, B. Rosidi, H. Taher, M. Iguchi, Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system, Carbohydr. Polym. 40 (1999) 137-43. [23] A. Jagannath, S.S. Manjunatha, N. Ravi, P. S. Raju, The effect of different substrates and processing conditions on the textural characteristics of bacterial cellulose (nata) produced by Acetobacter xylinum, J. Food Process Eng. 34 (2011) 593-608. [24] A. Kurosumi, C. Sasaki, Y. Yamashita, Y. Nakamura, Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693, Carbohydr. Polym. 76 (2009) 333-5. [25] M. Velásquez-Riaño, V. Bojacá, Production of bacterial cellulose from alternative low-cost substrates, Cellulose 24 (2017) 2677-98. [26] C. Nam, Y.A. Lee. Multilayered cellulosic material as a leather alternative in the footwear industry, Cloth Text Res. J. 37 (2019) 20-34. Defect and Diffusion Forum Vol. 411 65 [27] V. Revin, E. Liyaskina, M. Nazarkina, A. Bogatyreva, M. Shchankin. Cost-effective production of bacterial cellulose using acidic food industry by-products, Braz. J. Microbiol. 49 (2018)151-9. [28] K. Watanabe, S. Yamanaka, Effects of oxygen tension in the gaseous phase on production and physical properties of bacterial cellulose formed under static culture conditions, Biosci. Biotechnol. Biochem. 59 (1995) 65-8. [29] L.H. Herbst, The role of nitrogen from fruit pulp in the nutrition of the frugivorous bat Carollia perspicillata, Biotropica (1986) 39-44. [30] K.A. Zahan, K. Nordin, M. Mustapha, M.N. Mohd Zairi, Effect of incubation temperature on growth of Acetobacter xylinum 0416 and bacterial cellulose production, Appl. Mech. Mater. 815 (2015) 3-8. [31] V.T. Nguyen, B. Flanagan, M.J. Gidley, G.A. Dykes, Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha, Curr. Microbiol. 57 (2008) 449. [32] Leather Dictionary. Thickness of leather; 2020. [33] A. S. Amarasekara, D. Wang, T. L. Grady, A comparison of kombucha SCOBY bacterial cellulose purification methods, SN Appl. Sci. 2 (2020) 240. [34] Y. A. Tapias, M.A. Peltzer, J.F. Delgado, A.G. Salvay, Kombucha tea by-product as source of novel materials: Food Bioproc. Tech. 13 (2020) 1166-80.
(1)
[1] Fajri Munawarah, Sulaiman Ar, Gustina Fitri. 2019. Palm Shell Ash Substitution against the Performance of Wear-Coated Asphalt Concrete Mixture (AC-WC). Banda Aceh: Lhokseumawe State Polytechnic. [2] Ministry of Public Works. 2018. General Specifications of Roads And Bridges. Jakarta: Directorate General of Wildlife Development. [3] Kurnia, Aztri Yuli, et al. "Utilization of Shell Waste and Palm Bunch Ash Against the Characteristics of Laston Wearing Course and Binder Course." UNIID Symposium II 2017 2.1 (2017): 507-512. [4] Silvia Sukirman. 2003. Hot Mix Asphalt Concrete. Jakarta: Ganit. [5] Salma Alwi, et al. 2020. The effect of using palm shell ash as a filler on Mmarshall characteristics in asphalt concrete – binder course (AC – BC) mixtures. Samarinda State Polytechnic. [6] Mukhlis, Lusyana, et al. 2019. Performance analysis of residual strength index (IKS) of asphalt concrete wearing course (AC-WC) mixture with palm shell as a substitution of fine aggregates. Sultan Ageng Tirtayasa University.
(1)
1. FAO. A regional rice strategy for sustainable food security in Asia and the Pacific: Final edition. Bangkok: Food and Agriculture Organization of the United Nations; 2014. 2. Garbach K, Thanh TAV, Buchori D, Boualaphanh C, Ketelaar JW, Gemmill- Herren B. The multiple goods and services of Asian rice production systems. Rome: Food and Agriculture Organization of the United Nations; 2014. 3. Marten GG. Productivity, stability, sustainability, equitability and autonomy as properties for agroecosystem assessment. Agric Syst. 1988:291–316. 4. Maclean JL, Dawe DC, Hettel GP. Rice almanac: Source book for the most important economic activity on earth. 3rd ed. Wallingford: CABI Pub; 2002. 5. Greenland DJ. The sustainability of rice farming. Wallingford: Cab International; 1997. 6. Asmiwyati IGAAR, Mahendra MS, Arifin NHS, Ichinose T. Recognizing indigenous knowledge on agricultural landscape in Bali for micro climate and environment control. Procedia Environ Sci. 2015;28:623–9. https:// doi. org/ 10. 1016/j. proenv. 2015. 07. 073. 7. Tekken V, Spangenberg JH, Burkhard B, Escalada M, Stoll-Kleemann S, Truong DT, Settele J. “Things are different now”: Farmer perceptions of cultural ecosystem services of traditional rice landscapes in Vietnam and the Philippines. Ecosyst Serv. 2017;25:153–66. https:// doi. org/ 10. 1016/j. ecoser. 2017. 04. 010. 8. Setyawan AD. Review: Biodiversity conservation strategy in a native perspective; Case study of shifting cultivation at the Dayaks of Kalimantan. Nus Biosci. 2010;2:97–108. https:// doi. org/ 10. 13057/ nusbi osci/ n0202 08. 9. Kendawang JJ, Tanaka S, Soda R, Seman L, Wasli ME, Sakurai K. Difference of rice farming practices of the Iban in a national boundary area in Borneo and its socio-economic background. Tropics. 2005;14:295–307. https:// doi. org/ 10. 3759/ tropi cs. 14. 295. 10. Brosius JP, Lovelace W, Marten GG. Ethnoecology: an approach to understanding traditional agricultural knowledge. In: Marten GG, editor. Traditional agriculture in Southwest Asia: a human ecology perspective. Boulder: Westview Press; 1986. p. 187–98. 11. Berkes F, Colding J, Folke C. Rediscovery of traditional ecological knowledge as adaptive management. Ecol Appl. 2000;10:1251–62. https:// doi. org/ 10. 2307/ 26412 80. 12. Castonguay AC, Burkhard B, Müller F, Horgan FG, Settele J. Resilience and adaptability of rice terrace social-ecological systems: a case study of a local community’s perception in Banaue. Philippines Ecol Soc. 2016. https:// doi. org/ 10. 5751/ ES- 08348- 210215. 13. Camacho LD, Combalicer MS, Yeo-Chang Y, Combalicer EA, Carandang AP, Camacho SC, et al. Traditional forest conservation knowledge/ technologies in the Cordillera, Northern Philippines. For Policy Econ. 2012;22:3–8. https:// doi. org/ 10. 1016/j. forpol. 2010. 06. 001. 14. Cramb RA, Colfer CJP, Dressler W, Laungaramsri P, Le QT, Mulyoutami E, et al. Swidden transformations and rural livelihoods in Southeast Asia. Hum Ecol. 2009;37:323–46. https:// doi. org/ 10. 1007/ s10745- 009- 9241-6. 15. Mertz O, Leisz SJ, Heinimann A, Rerkasem K, Dressler W, et al. Who counts? Demography of swidden cultivators in Southeast Asia. Hum Ecol. 2009;37:281–9. https:// doi. org/ 10. 1007/ s10745- 009- 9249-y. 16. Riu-Bosoms C, Vidal-Amat T, Duane A, Fernandez-Llamazares A, Guèze M, Luz AC, et al. Exploring indigenous landscape classification across different dimensions: a case study from the Bolivian Amazon. Landsc Res. 2015;40:318–37. https:// doi. org/ 10. 1080/ 01426 397. 2013. 829810. 17. Campos M, Velázquez A, Verdinelli GB, Priego-Santander ÁG, McCall MK, Boada M. Rural people’s knowledge and perception of landscape: a case study from the Mexican Pacific Coast. Soc Nat Resour. 2012;25:759–74. 18. Poderoso RA, Peroni N, Hanazaki N. Gender influences in the perception and use of the landscape in a rural community of German immigrant descendants in Brazil. J Ethnobiol. 2017;37:779–97. https:// doi. org/ 10. 2993/ 0278- 0771- 37.4. 779. 19. Porter-Bolland L, Ellis EA, Guariguata MR, Ruiz-Mallén I, Negrete- Yankelevich S, Reyes-García V. Community managed forests and forest protected areas: an assessment of their conservation effectiveness across the tropics. For Ecol Manag. 2012;268:6–17. https:// doi. org/ 10. 1016/j. foreco. 2011. 05. 034. 20. Becker CD, Ghimire K. Synergy between traditional ecological knowledge and conservation science supports forest preservation in Ecuador. Conserv Ecol. 2003. https:// doi. org/ 10. 5751/ ES- 00582- 080101. 21. Munyua HM, Stilwell C. Three ways of knowing: agricultural knowledge systems of small-scale farmers in Africa with reference to Kenya. Libr Inf Sci Res. 2013;35:326–37. https:// doi. org/ 10. 1016/j. lisr. 2013. 04. 005. 22. Camacho LD, Gevaña DT, Carandang AP, Camacho SC. Indigenous knowledge and practices for the sustainable management of Ifugao forests in Cordillera, Philippines. Int J Biodivers Sci Ecosyst Serv Manag. 2016;12:5–13. https:// doi. org/ 10. 1080/ 21513 732. 2015. 11244 53. 23. Minh ND, Trịnh MV, Wassmann R, Hòa TD, Khải NM. Farmer’s perception and farming practices in rice production under changing climate: Case study in Quảng Nam province. VNU J Sci Earth Environ Sci. 2014;30:25–40. 24. Berg H, Ekman Söderholm A, Söderström A-S, Tam NT. Recognizing wetland ecosystem services for sustainable rice farming in the Mekong Delta. Vietnam Sustain Sci. 2017;12:137–54. https:// doi. org/ 10. 1007/ s11625- 016- 0409-x. 25. FAO. Globally Important Agricultural Heritage Systems, Geographical Indications and Slow Food Presidia: Technical note. 2020. https:// www. fao. org/3/ cb185 4en/ cb185 4en. pdf. Accessed 12 Jan 2022. 26. Reyes SRC, Miyazaki A, Yiu E, Saito O. Enhancing sustainability in traditional agriculture: indicators for monitoring the conservation of Globally Important Agricultural Heritage Systems (GIAHS) in Japan. Sustainability. 2020. https:// doi. org/ 10. 3390/ su121 45656. 27. Gao X, Roder G, Jiao Y, Ding Y, Liu Z, Tarolli P. Farmers’ landslide risk perceptions and willingness for restoration and conservation of world heritage site of Honghe Hani Rice Terraces. China Landslides. 2020;17:1915– 24. https:// doi. org/ 10. 1007/ s10346- 020- 01389-4. 28. Aguilar CHM, Altoveros NC, Borromeo TH, Dayo MHF, Koohafkan P. Traditional rice-based agroecosystem in Kiangan, Ifugao, Philippines: drivers of change, resilience, and potential trajectories. Agroecol Sustain Food Sys. 2021;45:296–316. https:// doi. org/ 10. 1080/ 21683 565. 2020. 18138 61. 29. Cramb R, Sujang PS. ‘Shifting ground’: renegotiating land rights and rural livelihoods in Sarawak, Malaysia. Asia Pac Viewp. 2011;52:136–47. https:// doi. org/ 10. 1111/j. 1467- 8373. 2011. 01446.x. 30. Hansen TS, Mertz O. Extinction or adaptation? Three decades of change in shifting cultivation in Sarawak. Malaysia Land Degrad Dev. 2006;17:135–48. https:// doi. org/ 10. 1002/ ldr. 720. 31. van Gevelt T, Abok H, Bennett MM, Fam SD, George F, Kulathuramaiyer N, et al. Indigenous perceptions of climate anomalies in Malaysian Borneo. Glob Environ Change. 2019. https:// doi. org/ 10. 1016/j. gloen vcha. 2019. 101974. 32. Sakai S, Choy YK, Kishimoto-Yamada K, Takano KT, Ichikawa M, Samejima H, et al. Social and ecological factors associated with the use of non-timber forest products by people in rural Borneo. Biol Conserv. 2016;204:340–9. https:// doi. org/ 10. 1016/j. biocon. 2016. 10. 022. 33. Falak S, Chiun LM, Wee AY. Sustainable rural tourism: an indigenous community perspective on positioning rural tourism. Tourism. 2016;64:311–27. 34. Echoh DU, Nor NM, Gapor SA, Masron T. Issues and problems faced by rural farmers in paddy cultivation: a case study of the Iban paddy cultivation in Kuala Tatau, Sarawak. J Reg Rural Dev Plann. 2017;1:174–82. https:// doi. org/ 10. 29244/ jp2wd. 2017.1. 2. 174- 182. 35. Amster M. Where spirit and bulldozer roam: environmental and anxiety in highland Borneo. J Study Relig Nat Cult. 2008;2:74–92. https:// doi. org/ 10. 1558/ jsrnc. v2i1. 74. 36. Tanaka S, Wasli ME, Kendawang JJ, Sakurai K. The impacts of the alteration in agriculture on the environment and ecosystem in Sarawak, Malaysia. Kuroshio Sci. 2014;8:7–14. 37. Chua WP. Resisting dams and plantations: indigenous identity in Sarawak. Envirolab Asia. 2017;1:1–16. https:// doi. org/ 10. 5642/ envir olaba sia. 20170 101. 08. 38. Hoki M. Farming operations and labor requirement for paddy cultivation in Sarawak, East Malaysia. South East Asian Stud. 1997;15:457–71. 39. Filho AAR, Adams C, Murrieta RSS. The impacts of shifting cultivation on tropical forest soil: a review. Bol Mus Para Emílio Goeldi Cienc Hum. 2013;8:693–727. 40. Hosen N, Nakamura H, Hamzah A. Adaptation to climate change: Does traditional ecological knowledge hold the key? Sustainability. 2020. https:// doi. org/ 10. 3390/ su120 20676. 41. Wartmann FM, Purves RS. ‘This is not the jungle, this is my barbecho’: semantics of ethnoecological landscape categories in the Bolivian Amazon. Landsc Res. 2018;43:77–94. https:// doi. org/ 10. 1080/ 01426 397. 2016. 12698 82. 42. Liu J, Liu X, Wang Y, Li Y, Jiang Y, Fu Y, Wu J. Landscape composition or configuration: which contributes more to catchment hydrological flows and variations? Landsc Ecol. 2020;35:1531–51. https:// doi. org/ 10. 1007/ s10980- 020- 01035-3. 43. Dominik C, Seppelt R, Horgan FG, Settele J, Václavík T. Landscape composition, configuration, and trophic interactions shape arthropod communities in rice agroecosystems. J Appl Ecol. 2018;55:2461–72. https:// doi. org/ 10. 1111/ 1365- 2664. 13226. 44. Ali MP, Kabir MMM, Haque SS, Afrin S, Ahmed N, Pittendrigh B, Qin X. Surrounding landscape influences the abundance of insect predators in rice field. BMC Zool. 2020. https:// doi. org/ 10. 1186/ s40850- 020- 00059-1. 45. Mariel J, Carrière SM, Penot E, Danthu P, Rafidison V, Labeyrie V. Exploring farmers’ agrobiodiversity management practices and knowledge in clove agroforests of Madagascar. People Nat. 2021;3:914–28. https:// doi. org/ 10. 1002/ pan3. 10238. 46. Méndez VE, Lok R, Somarriba E. Interdisciplinary analysis of homegardens in Nicaragua: micro-zonation, plant use and socioeconomic importance. Agrofor Syst. 2001;51:85–96. https:// doi. org/ 10. 1023/A: 10106 22430 223. 47. Gantuya B, Avar Á, Babai D, Molnár Á, Molnár Z. “A herder’s duty is to think”: landscape partitioning and folk habitats of mongolian herders in a mountain forest steppe (Khuvsugul-Murun region). J Ethnobiol Ethnomed. 2019. https:// doi. org/ 10. 1186/ s13002- 019- 0328-x. 48. Molnár Z, Gellény K, Margóczi K, Biró M. Landscape ethnoecological knowledge base and management of ecosystem services in a Székely- Hungarian pre-capitalistic village system (Transylvania, Romania). J Ethnobiol Ethnomed. 2015. https:// doi. org/ 10. 1186/ 1746- 4269- 11-3.
(1)
[1] F. Balali, J. Nouri, A. Nasiri, and T. Zhao, ‘‘IoT platform: Smart devices, gateways, and communication networks,’’ in Data Intensive Industrial Asset Management. Cham, Switzerland: Springer, 2020, pp. 67–77. [2] L. Xue, Q. Huang, S. Zhang , H. Huang , and W. Wang, “A Lightweight Three-Factor Authentication and Key Agreement Scheme for Multigateway WSNs in IoT” in Security and Communication Networks Volume 2021, Article ID 3300769, 15 pages https://doi.org/10.1155/2021/3300769I. [3] S. AlJanah, N. Zhang and S. W. Tay, "A Multifactor Multilevel and Interaction Based (M2I) Authentication Framework for Internet of Things (IoT) Applications," in IEEE Access, vol. 10, pp. 47965-47996, 2022, doi: 10.1109/ACCESS.2022.3170844. [4] W. Liu, X. Wang and W. Peng, "Secure Remote Multi-Factor Authentication Scheme Based on Chaotic Map Zero-Knowledge Proof for Crowdsourcing Internet of Things," in IEEE Access, vol. 8, pp. 8754-8767, 2020, doi: 10.1109/ACCESS.2019.2962912. [5] Q. Jiang, S. Zeadally, J. Ma and D. He, "Lightweight three-factor authentication and key agreement protocol for internet-integrated wireless sensor networks," in IEEE Access, vol. 5, pp. 3376-3392, 2017, doi: 10.1109/ACCESS.2017.2673239. [6] Ara, T., & Prabhakar, M. (2019). Multifactor authentication and key management protocol for WSN-assisted IoT communication. Journal of Telecommunications and Information Technology, (3), 17-26. doi:10.26636/jtit.2019.134019 [7] Z. Li, Z. Yang, P. Szalachowski and J. Zhou, "Building Low-Interactivity Multifactor Authenticated Key Exchange for Industrial Internet of Things," in IEEE Internet of Things Journal, vol. 8, no. 2, pp. 844-859, 15 Jan.15, 2021, doi: 10.1109/JIOT.2020.3008773. [8] R. Vinoth, L. J. Deborah, P. Vijayakumar and N. Kumar, "Secure Multifactor Authenticated Key Agreement Scheme for Industrial IoT," in IEEE Internet of Things Journal, vol. 8, no. 5, pp. 3801-3811, 1 March1, 2021, doi: 10.1109/JIOT.2020.3024703. [9] D. Wang, D. He, P. Wang, and C. Chu, “Anonymous two-factor authentication in distributed systems: Certain goals are beyond attainment,” IEEE Trans. Depend. Secure Comput., vol. 12, no. 4, pp. 428–442, Jul./Aug. 2015. [10] D. Wang and P. Wang, “Two birds with one stone: Two-factor authentication with security beyond conventional bound,” IEEE Trans. Depend. Secure Comput., vol. 15, no. 4, pp. 708–722, Jul./Aug. 2018. [11] D. Wang and P. Wang, “On the anonymity of two-factor authentication schemes for wireless sensor networks,” Comput. Netw., vol. 73, pp. 41–57, Nov. 2014. [Online]. Available: https://doi.org/10.1016 /j.comnet.2014.07.010 [12] C. G. Ma, D. Wang, and S. D. Zhao, “Security flaws in two improved remote user authentication schemes using smart cards,” Int. J. Commun. Syst., vol. 27, no. 10, pp. 2215–2227, 2014. [13] B. Chatterjee, D. Das, S. Maity and S. Sen, "RF-PUF: Enhancing IoT Security Through Authentication of Wireless Nodes Using In-Situ Machine Learning," in IEEE Internet of Things Journal, vol. 6, no. 1, pp. 388-398, Feb. 2019, doi: 10.1109/JIOT.2018.2849324. [14] Kebande, V. R., Awaysheh, F. M., Ikuesan, R. A., Alawadi, S. A., & Alshehri, M. D. (2021). A blockchain-based multi-factor authentication model for a cloud-enabled internet of vehicles. Sensors, 21(18) doi:10.3390/s21186018 [15] Khalid, H., Hashim, S. J., Ahmad, S. M. S., Hashim, F., & Chaudhary, M. A. (2021). A new hybrid online and offline multi-factor cross-domain authentication method for iot applications in the automotive industry. Energies, 14(21) doi:10.3390/en14217437 [16] Abuarqoub, A. (2020). D-FAP: Dual-factor authentication protocol for mobile cloud connected devices. Journal of Sensor and Actuator Networks, 9(1) doi:10.3390/jsan9010001 [17] Alshahrani, M. M. (2021). Secure multifactor remote access user authentication framework for iot networks. Computers, Materials and Continua, 68(3), 3235-3254. doi:10.32604/cmc.2021.015310 [18] S. Atiewi et al., "Scalable and Secure Big Data IoT System Based on Multifactor Authentication and Lightweight Cryptography," in IEEE Access, vol. 8, pp. 113498-113511, 2020, doi: 10.1109/ACCESS.2020.3002815.
(1)
[1] F. Bray, et al., Global Cancer Statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin. 68 (6) (2018) 394–424. [2] L. Tharmarajah, Complementary and alternative therapies for breast cancer worldwide, Lett. Health Biol. Sci. 3 (2) (2018) 27–32. 11[ 3] A.R. Burke, et al., The resistance of breast cancer stem cells to conventional hyperther- mia and their sensitivity to nanoparticle-mediated photothermal therapy, Biomaterials 33 (10) (2012) 2961–2970. [4] S.-R. Ji, et al., Carbon nanotubes in cancer diagnosis and therapy, Biochim. Biophys. Acta Rev.Cancer 1806 (1) (2010) 29–35. [5] H.K. Moon, S.H. Lee, H.C. Choi, In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes, ACS Nano 3 (11) (2009) 3707–3713. [6] J.R. Ostberg, et al., Regulatory potential of fever-range whole body hyperthermia on langerhans cells and lymphocytes in an antigen-dependent cellular immune response, J. Immunol. 167 (5) (2001) 2666–2670. [7] T. Kikumori, et al., Anti-cancer effect of hyperthermia on breast cancer by magnetite nanoparticle-loaded anti-HER2 immunoliposomes, Breast Cancer Res. Treat. 113 (3) (2009) 435. [8] N. Kawai, et al., Anticancer effect of hyperthermia on prostate cancer mediated by mag- netite cationic liposomes and immune-response induction in transplanted syngeneic rats, Prostate 64 (4) (2005) 373–381. [9] S. Toraya-Brown, S. Fiering, Local tumour hyperthermia as immunotherapy for metas- tatic cancer, Int. J. Hyperth. 30 (8) (2014) 531–539. [10] J. Stauffer, M. Paulides, Hyperthermia therapy for cancer, 2014. [11] W. Yin, et al., High-throughput synthesis of single-layer MoS2 nanosheets as a near- infrared photothermal-triggered drug delivery for effective cancer therapy, ACS Nano 8 (7) (2014) 6922–6933. [12] Z. Zhang, J. Wang, C. Chen, Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging, Adv. Mater. 25 (28) (2013) 3869–3880. [13] N. Datta, et al., Local hyperthermia combined with radiotherapy and-/or chemotherapy: recent advances and promises for the future, Cancer Treat. Rev. 41 (9) (2015) 742–753. [14] W.F.A.W.M. Zawawi, et al., Hyperthermia by near infrared radiation induced immune cells activation and in ltration in breast tumor, Sci. Rep. 11 (1) (2021) 1–13. [15] P. Wust, et al., Hyperthermia in combined treatment of cancer, Lancet Oncol. 3 (8) (2002) 487–497. [16] C.J. Gannon, et al., Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency eld, Cancer 110 (12) (2007) 2654–2665. [17] N. Jafaripour, et al., Synthesize and characterization of a novel cadmium selenide nano- particle with iron precursor applicable in hyperthermia of cancer cells, Int. J. Nanosci. Nanotechnol. 17 (2) (2021) 77–90. [18] A. Naja nezhad, et al., Hydroxyapatite-M-type strontium hexaferrite: a new composite for hyperthermia applications, J. Alloys Compd. 734 (2018) 290–300. [19] M.M. Salmani, et al., Synergic effects of magnetic nanoparticles on hyperthermia-based therapy and controlled drug delivery for bone substitute application, J. Supercond. Nov. Magn. 33 (2020) 2809–2820. [20] A. Burke, et al., Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation, Proc. Natl. Acad. Sci. 106 (31) (2009) 12897–12902 (p. pnas. 0905195106). [21] J. Silvestre, N. Silvestre, J. De Brito, Review on concrete nanotechnology, Eur. J. Envi- ron. Civ. Eng. 20 (4) (2016) 455–485. [22] J. Lee, et al., Gold nanoparticles in breast cancer treatment: promise and potential pit- falls, Cancer Lett. 347 (1) (2014) 46–53. [23] C. Wang, et al., Immunological responses triggered by photothermal therapy with car- bon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis, Adv. Mater. 26 (48) (2014) 8154–8162. [24] A. Jolesch, et al., Hsp70, a messenger from hyperthermia for the immune system, Eur. J. Cell Biol. 91 (1) (2012) 48–52. [25] G. Multhoff, et al., The role of heat shock protein 70 (Hsp70) in radiation-induced im- munomodulation, Cancer Lett. 368 (2) (2015) 179–184. [26] B.R. Cassileth, G. Deng, Complementary and alternative therapies for cancer, Oncologist 9 (1) (2004) 80–89. [27] R. Singh, S.V. Torti, Carbon nanotubes in hyperthermia therapy, Adv. Drug Deliv. Rev. 65 (15) (2013) 2045–2060. [28] C.L. Ursini, et al., Study of cytotoxic and genotoxic effects of hydroxyl-functionalized multiwalled carbon nanotubes on human pulmonary cells, J. Nanomater. 2012 (2012) 7. Biomaterials Advances 134 (2022) 112586 [29] N. Kobayashi, H. Izumi, Y. Morimoto, Review of toxicity studies of carbon nanotubes, J. Occup. Health 59 (5) (2017) 394–407 (p. 17–0089-RA). [30] N.A. Zawawi, et al., Effect of acid oxidation methods on multiwalled carbon nanotubes (MWCNT) for drug delivery application, Int. J. Adv. Sci. Res. Manag. 1 (11) (2016) 14–22. [31] J.T. Robinson, et al., High performance in vivo near-IR (> 1 μm) imaging and photothermal cancer therapy with carbon nanotubes, Nano Res. 3 (11) (2010) 779–793. [32] A. Osorio, et al., H2SO4/HNO3/HCl—functionalization and its effect on dispersion of carbon nanotubes in aqueous media, Appl. Surf. Sci. 255 (5) (2008) 2485–2489. [33] S. Wang, S.P. Jiang, X. Wang, Polyelectrolyte functionalized carbon nanotubes as a sup- port for noble metal electrocatalysts and their activity for methanol oxidation, Nano- technology 19 (26) (2008), 265601. [34] N.A. Buang, et al., Characteristic of mild acid functionalized multiwalled carbon nano- tubes towards high dispersion with low structural defects, Dig. J. Nanomater. Biostruct. 7 (1) (2012) 33–39. [35] Z. Sobhani, et al., Photothermal therapy of melanoma tumor using multiwalled carbon nanotubes, Int. J. Nanomedicine 12 (2017) 4509. [36] J. Kathi, K.-Y. Rhee, J.H. Lee, Effect of chemical functionalization of multi-walled car- bon nanotubes with 3-aminopropyltriethoxysilane on mechanical and morphological properties of epoxy nanocomposites, Compos. A: Appl. Sci. Manuf. 40 (6–7) (2009) 800–809. [37] M. Ibrahim, Functionalized Multiwalled Carbon Nanotubes for Salicylic Acid And Pseudoephiderine Drug Carrier System. Universiti Teknologi Malaysia, UTM, 2010 (Thesis, Master of Science (Chemistry)). [38] J.W. Fisher, et al., Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation, Cancer Res. 70 (23) (2010) 9855–9864. [39] P. Srivastava, Heat shock proteins in immune response to cancer: the fourth paradigm, Experientia 50 (11–12) (1994) 1054–1060. [40] X. Wang, et al., MWCNT-mediated combinatorial photothermal ablation and chemo- immunotherapy strategy for the treatment of melanoma, J. Mater. Chem. B 8 (19) (2020) 4245–4258. [41] S. Somersan, et al., Primary tumor tissue lysates are enriched in heat shock proteins and induce the maturation of human dendritic cells, J. Immunol. 167 (9) (2001) 4844–4852. [42] G. Wang, et al., Magnetic uid hyperthermia inhibits the growth of breast carcinoma and downregulates vascular endothelial growth factor expression, Oncol. Lett. 7 (5) (2014) 1370–1374. [43] E.J. Comparetti, V.d.A. Pedrosa, R. Kaneno, Carbon nanotube as a tool for ghting can- cer, Bioconjug. Chem. 29 (3) (2017) 709–718. [44] X. Hou, et al., Nanoparticle-based photothermal and photodynamic immunotherapy for tumor treatment, Int. J. Cancer 143 (12) (2018) 3050–3060. [45] C. Liu, et al., Treg cells promote the SREBP1-dependent metabolic tness of tumor- promoting macrophages via repression of CD8+ T cell-derived interferon-γ, Immunity 51 (2) (2019) 381–397.e6. [46] S. Lee, et al., Immunogenic effect of hyperthermia on enhancing radiotherapeutic ef - cacy, Int. J. Mol. Sci. 19 (9) (2018) 2795. [47] H. Huang, et al., It's getting hot in here: targeting cancer stem-like cells with hyperther- mia, J. Stem Cell Transplant. Biol. 2 (2) (2017). [48] W. Ou, et al., Combination of NIR therapy and regulatory T cell modulation using layer- by-layer hybrid nanoparticles for effective cancer photoimmunotherapy, Theranostics 8 (17) (2018) 4574. [49] J. Hu, et al., Response of regulatory T cells to classic heat stroke in mice, Exp. Ther. Med. 16 (6) (2018) 4609–4615. [50] J. Domagala, et al., The tumor microenvironment—a metabolic obstacle to NK cells' ac- tivity, Cancers 12 (12) (2020) 3542. [51] S.S. Evans, E.A. Repasky, D.T. Fisher, Fever and the thermal regulation of immunity: the immune system feels the heat, Nat. Rev. Immunol. 15 (6) (2015) 335–349. [52] E.Y. Komarova, et al., Extracellular Hsp70 reduces the pro-tumor capacity of mono- cytes/macrophages co-cultivated with cancer cells, Int. J. Mol. Sci. 21 (1) (2020) 59.
(1)
[1] F. Grigioni, M. Enriquez-Sarano, L. H. Ling, K. R. Bailey, J. B. Seward, A. J. Tajik, et al., "Sudden death in mitral regurgitation due to flail leaflet," Journal of the American College of Cardiology, vol. 34, pp. 2078-2085, (1999). [2] B. Baccani, F. Domenichini, and G. Pedrizzetti, "Model and influence of mitral valve opening during the left ventricular filling," Journal of Biomechanics, vol. 36, pp. 355-61, (2003). [3] D. H. Adams, R. Rosenhek, and V. Falk, "Degenerative mitral valve regurgitation: best practice revolution," European Heart Journal, vol. 31, pp. 1958-1966, (2010). [4] J. Sathananthan, P. Raudkivi, and A. Kerr, "Mitral Valve Repair for Mitral Valve Prolapse: The Auckland Experience," Heart, Lung and Circulation, vol. 22, Supplement 1, p. S238, (2013). [5] Z. G. Turi, "Mitral Valve Disease," Circulation, vol. 109, pp. e38-e41, (2004). [6] C. Loardi, F. Alamanni, M. Trezzi, S. Kassem, L. Cavallotti, E. Tremoli, et al., "Biology of mitral valve prolapse: The harvest is big, but the workers are few," International Journal of Cardiology, vol. 151, pp. 129-135, (2011). [7] L. Waite, J. Fine, G. Veres, and G. Szabó, "A Lumped-Parameter Model of Mitral Valve Blood Flow for Assessment of Diastolic Left Ventricular Filling," in World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany pp. 1984-1987, (2010). [8] C. S. Lam, I. Anand, S. Zhang, W. Shimizu, C. Narasimhan, S. W. Park, et al., "Asian Sudden Cardiac Death in Heart Failure (ASIAN‐HF) registry," European journal of heart failure, vol. 15, pp. 928-936, (2013). [9] P. Hammer, P. Nido, and R. Howe, "Anisotropic Mass-Spring Method Accurately Simulates Mitral Valve Closure from Image-Based Models," in Functional Imaging and Modeling of the Heart. vol. 6666, D. Metaxas and L. Axel, Eds., ed: Springer Berlin Heidelberg, pp. 233-240, (2011) [10] J. S. Grashow, A. P. Yoganathan, and M. S. Sacks, "Biaixal stress-stretch behavior of the mitral valve anterior leaflet at physiologic strain rates," Annals of Biomedical Engineering, vol. 34, pp. 315-25, (2006). [11] F. N. Delling, L. L. Kang, S. B. Yeon, K. V. Kissinger, B. Goddu, W. J. Manning, et al., "CMR Predictors of Mitral Regurgitation in Mitral Valve Prolapse," JACC: Cardiovascular Imaging, vol. 3, pp. 1037-1045, (2010). [12] M. Al-Atabi, D. M. Espino, and D. W. L. Hukins, "Computer and Experimental Modelling of Blood Flow through the Mitral Valve of the Heart," Journal of Biomechanical Science and Engineering, vol. 5, pp. 78-84, (2010). [13] A. Avanzini and G. Donzella, "Coupled Fluid-Structural Analysis of Heart Mitral Valve," in COMSOL Conference 2008, Hannover, Germany, (2008). [14] D. Adams, A. Anyanwu, P. Rahmanian, and F. Filsoufi, "Current concepts in mitral valve repair for degenerative disease," Heart Failure Reviews, vol. 11, pp. 241-257, (2006). [15] D. Adams, A. Anyanwu, L. Sugeng, and R. Lang, "Degenerative mitral valve regurgitation: Surgical echocardiography," Current Cardiology Reports, vol. 10, pp. 226-232, (2008). [16] D. M. Espino, D. W. L. Hukins, D. E. T. Shepherd, M. A. Watson, and K. Buchan, "Determination of the pressure required to cause mitral valve failure," Medical Engineering & Physics, vol. 28, pp. 36-41, (2006). [17] E. L. FOSTER, "Evaluation of Mitral Valve Regurgitation: Implications for Percutaneous Mitral Valve Repair," (2005). [18] M. Enriquez-Sarano and T. M. Sundt, "Early Surgery Is Recommended for Mitral Regurgitation," Circulation, vol. 121, pp. 804-812, (2010). [19] M. De Bonis and S. F. Bolling, "Mitral valve surgery: wait and see vs. early operation," European Heart Journal, (2012). [20] R. M. Suri, J. Vanoverschelde, F. Grigioni, and et al., "Association between early surgical intervention vs watchful waiting and outcomes for mitral regurgitation due to flail mitral valve leaflets," The Journal of American Medical Association, vol. 310, pp. 609-616, (2013). [21] H. V. Schaff, R. M. Suri, and M. Enriquez-Sarano, "Indications for Surgery in Degenerative Mitral Valve Disease," Seminars in Thoracic and Cardiovascular Surgery, vol. 19, pp. 97-102, (2007). [22] H. Baumgartner, J. Hung, J. Bermejo, J. B. Chambers, A. Evangelista, B. P. Griffin, et al., "Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice," European Journal of Echocardiography, vol. 10, pp. 1-25, (2009). [23] P. A. Grayburn and P. Bhella, "Grading Severity of Mitral Regurgitation by Echocardiography: Science or Art?," JACC: Cardiovascular Imaging, vol. 3, pp. 244-246, (2010). [24] X. Ma, H. Gao, B. E. Griffith, C. Berry, and X. Luo, "Image-based fluid–structure interaction model of the human mitral valve," Computers & Fluids, vol. 71, pp. 417-425, (2013). [25] J. M. Richards, E. J. Farrar, B. G. Kornreich, N. Moїse, and J. T. Butcher, "The mechanobiology of mitral valve function, degeneration, and repair," Journal of Veterinary Cardiology, vol. 14, pp. 47-58, (2012). [26] M. Vermeulen, B. Van Der Smissen, T. Claessens, R. Kaminsky, P. Segers, P. Verdonck, et al., "Mitral Valve Leakage Quantification by Means of Experimental and Numerical Flow Modeling," in Acta Mechanica Slovaca vol. 14, ed, 2010, p. 18. [27] N. Stergiopulos, B. E. Westerhof, J. J. Meister, and N. Westerhof, "The four-element Windkessel model," in Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine. Proceedings of the 18th Annual International Conference of the IEEE pp. 1715-1716 vol.4, (1996). [28] D. Burkhoff and K. Sagawa, "Ventricular efficiency predicted by an analytical model," Am J Physiol, vol. 250, pp. R1021-7, (1986). [29] B. W. Smith, J. G. Chase, R. I. Nokes, G. M. Shaw, and G. Wake, "Minimal haemodynamic system model including ventricular interaction and valve dynamics," Medical Engineering & Physics, vol. 26, pp. 131-139, (2004). [30] S. Paeme, K. Moorhead, J. G. Chase, B. Lambermont, P. Kolh, V. D'orio, et al., "Mathematical multi-scale model of the cardiovascular system including mitral valve dynamics. Application to ischemic mitral insufficiency," BioMedical Engineering OnLine, vol. 10, p. 86, (2011). [31] B. W. Smith, J. Geoffrey Chase, G. M. Shaw, and R. I. Nokes, "Experimentally verified minimal cardiovascular system model for rapid diagnostic assistance," Control Engineering Practice, vol. 13, pp. 1183-1193, (2005). [32] S. Paeme, K. Moorhead, J. G. Chase, B. Lambermont, P. Kolh, P. Lancellotti, et al., "Structural model of the mitral valve included in a cardiovascular closed-loop model: Static and dynamic validation," (2012). [33] K. T. Moorhead, S. Paeme, J. G. Chase, P. Kolh, L. Pierard, C. E. Hann, et al., "A simplified model for mitral valve dynamics," Comput Methods Programs Biomed, vol. 109, pp. 190-6, (2013). [34] K. Hemalatha, M. Manivannan, and S. Thanikachalam, "Numerical simulation of cardiac valve flow velocity patterns in normal and abnormal conditions," in Communication Control and Computing Technologies (ICCCCT), 2010 IEEE International Conference on pp. 536-539, (2010). [35] W. P. Santamore and D. Burkhoff, "Hemodynamic consequences of ventricular interaction as assessed by model analysis," Am J Physiol, vol. 260, pp. H146-57, (1991). [36] D. Burkhoff, I. Mirsky, and H. Suga, "Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers," American Journal of Physiology - Heart and Circulatory Physiology, vol. 289, pp. H501-H512, (2005). [37] C. E. Hann, J. G. Chase, T. Desaive, C. Froissart, J. Revie, D. Stevenson, et al., "Unique parameter identification for cardiac diagnosis in critical care using minimal data sets," Computer methods and programs in biomedicine, vol. 99, pp. 75-87, (2010). [38] W. S. Bram, J. G. Chase, M. S. Geoff, and I. N. Roger, "Simulating transient ventricular interaction using a minimal cardiovascular system model," Physiological Measurement, vol. 27, p. 165, (2006). [39] P. Segers, N. Stergiopulos, J. J. Schreuder, B. E. Westerhof, and N. Westerhof, "Left ventricular wall stress normalization in chronic pressure-overloaded heart: a mathematical model study," Am J Physiol Heart Circ Physiol, vol. 279, pp. H1120-7, (2000). [40] P. Antoine, C. D. Pierre, P. Sabine, K. Sarah, J. G. Chase, and D. Thomas, "Simulation of Left Atrial Function Using a Multi-Scale Model of the Cardiovascular System," PLoS ONE, vol. 8, (2013). [41] D. J. Stevenson, C. E. Hann, G. J. Chase, J. Revie, G. M. Shaw, T. Desaive, et al., "Estimating the driver function of a cardiovascular system model," in UKACC International Conference on Control 2010 pp. 1-6, (2010). [42] P. A. Grayburn, "How to measure severity of mitral regurgitation," Postgraduate medical journal, vol. 84, pp. 395-402, (2008). [43] P. A. Grayburn, "The Importance of Regurgitant Orifice Shape in Mitral Regurgitation⁎," JACC: Cardiovascular Imaging, vol. 4, pp. 1097-1099, (2011). [44] A.-H. Hakki, A. S. Iskandrian, C. E. Bemis, D. Kimbiris, G. S. Mintz, B. L. Segal, et al., "A simplified valve formula for the calculation of stenotic cardiac valve areas," Circulation, vol. 63, pp. 1050-1055, (1981). [45] M. Grigioni, C. Daniele, G. D'Avenio, U. Morbiducci, C. Del Gaudio, and V. Barbaro, "A study of discharge coefficient in bileaflet valves," in Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE pp. 127-130, (2001). [46] R. P. Jong, K. Osman, and M. A. H. M. Adib, "Determination of correlation between backflow volume and mitral valve leaflet young modulus from two dimensional echocardiogram images," AIP Conference Proceedings, vol. 1440, pp. 604-611, (2012). [47] C. E. Hann, J. G. Chase, and G. M. Shaw, "Efficient implementation of non-linear valve law and ventricular interaction dynamics in the minimal cardiac model," Computer Methods and Programs in Biomedicine, vol. 80, pp. 65-74, (2005). [48] S. Paeme, K. Moorhead, J. G. Chase, C. E. Hann, B. Lambermont, P. Kolh, et al., "Mathematical model of the mitral valve and the cardiovascular system Application for studying and monitoring valvular pathologies," in Control 2010, UKACC International Conference on pp. 1-6, (2010). [49] R. P. Jong, K. Osman, and M. A. H. M. Adib, "Determination of correlation between backflow volume and mitral valve leaflet young modulus from two dimensional echocardiogram images," AIP Conference Proceedings, vol. 1440, pp. 604-611, (2012).
(1)
[1] F. N. P. Irzan, D. P. Kartikasari, and A. Bhawiyuga, “Implementasi Sistem Tracking Posisi Ambulans pada Smart Dispatcher Menggunakan Metode Komunikasi Publish /Subscribe,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 1, pp. 413–420, 2020. [2] X. Wang and L. Xu, “The factors underlying drivers ’ unwillingness to give way to ambulances : An application of an extended theory of planned behavior,” J. Transp. Heal., vol. 20, no. January, p. 101000, 2021, doi: 10.1016/j.jth.2020.101000. [3] S. Yoon and L. A. Albert, “A dynamic ambulance routing model with multiple response,” Transp. Res. Part E Logist. Transp. Rev., vol. 133, no. November, pp. 1–18, 2020, doi: 10.1016/j.tre.2019.11.001. [4] N. V. Amalia, R. P. Priyanti, and P. Nahariyani, “Efektivitas Penggunaan Ambulance Siaga Desa Dalam Transportasi Pre Hospital,” J. Ilm. Keperawatan (Scientific J. Nursing), vol. 4, no. 1, pp. 52–63, 2018, doi: 10.33023/jikep.v4i1.135. [5] A. Zarkeshev and C. Csiszár, “Patients’ Willingness to Ride on a Driverless Ambulance: A Case Study in Hungary,”Transp. Res. Procedia, vol. 44, no. 2019, pp. 8–14, 2020, doi: 10.1016/j.trpro.2020.02.002. [6] F. Fukushima and T. Moriya, “Objective evaluation study on the shortest time interval from fire department departure to hospital arrival in emergency medical services using a global positioning system ― potential for time savings during ambulance running,” IATSS Res., 2020, doi: 10.1016/j.iatssr.2020.08.001. [7] M. Li, A. Carter, J. Goldstein, T. Hawco, J. Jensen, and P. Vanberkel, “Determining ambulance destinations when facing offload delays using a Markov decision process,” Omega (United Kingdom), no. xxxx, p. 102251, 2020, doi: 10.1016/j.omega.2020.102251. [8] S. Wajid, N. Nezamuddin, and A. Unnikrishnan, “Optimizing Ambulance Locations for Coverage Enhancement of Accident Sites in South Delhi,” Transp. Res. Procedia, vol. 48, pp. 280–289, 2020, doi: 10.1016/j.trpro.2020.08.022. [9] Y. Z. Chen, S. F. Shen, T. Chen, and R. Yang, “Path optimization study for vehicles evacuation based on Dijkstra algorithm,” in Procedia Engineering, Jan. 2014, vol. 71, pp. 159–165, doi: 10.1016/j.proeng.2014.04.023. [10] C. M. Huang, C. C. Yang, C. Y. Tseng, and C. H. Chou, “A centralized traffic control mechanism for evacuation of emergency vehicles using the DSRC protocol,” 2009, doi: 10.1109/ISWPC.2009.4800550. [11] K. S. Sandeep Sagar, D. M. Fazaluddeen, G. S. Harish, and G. Narendra Kumar, “Real Time Patient Monitoring System Interfacing Metro Rail and Ambulance,” 2019, doi: 10.1109/ViTECoN.2019.8899531. [12] R. R. Al Hakim, E. Rusdi, and M. A. Setiawan, “Android Based Expert System Application for Diagnose COVID-19 Disease : Cases Study of Banyumas Regency,” J. Intell. Comput. Heal. Informatics, vol. 1, no. 2, pp. 1–13, 2020, doi: 10.26714/jichi.v1i2.5958. [13] R. R. Al Hakim, “Pencegahan Penularan Covid-19 Berbasis Aplikasi Android Sebagai Implementasi Kegiatan KKN Tematik Covid-19 di Sokanegara Purwokerto Banyumas,” Community Engagem. Emerg. J., vol. 2, no. 1, pp. 7–13, Aug. 2021, doi: 10.37385/ceej.v2i1.125. [14] R. R. Al Hakim, “Aplikasi Sistem Pakar Diagnosa Penyakit Covid-19 Berbasis Android: Studi Kasus Kabupaten Banyumas,” Sekolah Tinggi Manajemen Informatika dan Komputer Widya Utama, 2020. [15] R. R. Al Hakim, G. E. Setyowisnu, and A. Pangestu, “Rancang Bangun Media Pembelajaran Matematika Berbasis Android pada Materi Persamaan Diferensial,” Kontinu J. Penelit. Didakt. Mat., vol. 4, no. 2, pp. 82–91, 2020, doi: dx.doi.org/10.30659/kontinu.4.2.82-91. [16] A. Jacobsson, L. Kurland, and E. Höglund, “Direct in-hospital admission via ambulance (DIVA): A retrospective observational study,” Int. Emerg. Nurs., vol. 52, no. October 2019, p. 100906, 2020, doi: 10.1016/j.ienj.2020.100906.
(1)
[1] F. N. P. Irzan, D. P. Kartikasari, and A. Bhawiyuga, “Implementasi Sistem Tracking Posisi Ambulans pada Smart Dispatcher Menggunakan Metode Komunikasi Publish / Subscribe,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 1, pp. 413–420, 2020. [2] X. Wang and L. Xu, “The factors underlying drivers ’ unwillingness to give way to ambulances : An application of an extended theory of planned behavior,” J. Transp. Heal., vol. 20, no. January, p. 101000, 2021, doi: 10.1016/j.jth.2020.101000. [3] S. Yoon and L. A. Albert, “A dynamic ambulance routing model with multiple response,” Transp. Res. Part E Logist. Transp. Rev., vol. 133, no. November, pp. 1–18, 2020, doi: 10.1016/j.tre.2019.11.001. [4] N. V. Amalia, R. P. Priyanti, and P. Nahariyani, “Efektivitas Penggunaan Ambulance Siaga Desa Dalam Transportasi Pre Hospital,” J. Ilm. Keperawatan (Scientific J. Nursing), vol. 4, no. 1, pp. 52–63, 2018, doi: 10.33023/jikep.v4i1.135. [5] A. Zarkeshev and C. Csiszár, “Patients’ Willingness to Ride on a Driverless Ambulance: A Case Study in Hungary,” Transp. Res. Procedia, vol. 44, no. 2019, pp. 8–14, 2020, doi: 10.1016/j.trpro.2020.02.002. [6] F. Fukushima and T. Moriya, “Objective evaluation study on the shortest time interval from fire department departure to hospital arrival in emergency medical services using a global positioning system ― potential for time savings during ambulance running,” IATSS Res., 2020, doi: 10.1016/j.iatssr.2020.08.001. [7] M. Li, A. Carter, J. Goldstein, T. Hawco, J. Jensen, and P. Vanberkel, “Determining ambulance destinations when facing offload delays using a Markov decision process,” Omega (United Kingdom), no. xxxx, p. 102251, 2020, doi: 10.1016/j.omega.2020.102251. [8] S. Wajid, N. Nezamuddin, and A. Unnikrishnan, “Optimizing Ambulance Locations for Coverage Enhancement of Accident Sites in South Delhi,” Transp. Res. Procedia, vol. 48, pp. 280–289, 2020, doi: 10.1016/j.trpro.2020.08.022. [9] Y. Z. Chen, S. F. Shen, T. Chen, and R. Yang, “Path optimization study for vehicles evacuation based on Dijkstra algorithm,” in Procedia Engineering, Jan. 2014, vol. 71, pp. 159–165, doi: 10.1016/j.proeng.2014.04.023. [10] R. R. Al Hakim et al., “Aplikasi Algoritma Dijkstra dalam Penyelesaian Berbagai Masalah,” Expert J. Manaj. Sist. Inf. dan Teknol., vol. 11, no. 1, pp. 42–47, 2021, doi: 10.36448/expert.v11i1.1939. [11] R. R. Al Hakim, P. Purwono, Y. Z. Arief, A. Pangestu, and A. Jaenul, “Implementation of Dijkstra Algorithm with React Native to Determine the GPS-Based Shortest Range of Covid-19 Distribution,” Int. J. Electr. Eng. Informatics, vol. inpress, 2021. [12] Y. D. Rosita, E. E. Rosyida, and M. A. Rudiyanto, “Implementation of dijkstra algorithm and multi-criteria decision-making for optimal route distribution,” Procedia Comput. Sci., vol. 161, pp. 378–385, Jan. 2019, doi: 10.1016/j.procs.2019.11.136. [13] R. R. Al Hakim et al., “Design and Development Smart-iMbulance for Efficiency of Road Emergency Priorities,” J. Innov. Res. Knowl., vol. 1, no. 2, pp. 167-172, 2021, doi: 10.53625/jirk.v1i2. [14] R. R. Al Hakim, E. Rusdi, and M. A. Setiawan, “Android Based Expert System Application for Diagnose COVID-19 Disease : Cases Study of Banyumas Regency,” J. Intell. Comput. Heal. Informatics, vol. 1, no. 2, pp. 1–13, 2020, doi: 10.26714/jichi.v1i2.5958.
(1)
1. Foley, C.M.; and Vinnakota, S. (1997). Inelastic analysis of partially restrained unbraced steel frames. Engineering Structures, 19(11), 891-902. 2. Li, G.; Qi, C.; and Luo, J. (2012). Nonlinear finite element analysis of steel frame with semi-rigid connections. Applied Mechanics and Materials, 226, 1199-1202. 3. Chiorean, C.G. (2017). Second-order flexibility-based model for nonlinear inelastic analysis of 3D semi-rigid steel frameworks. Engineering Structures, 136, 547-579. 4. Thai, H.T.; and Kim, S.E. (2015). Second-order distributed plasticity analysis of steel frames with semi-rigid connections. Thin-Walled Structures, 94, 120-128. 5. Hadianfard, M.A.; and Razani, R. (2003). Effects of semi-rigid behavior of connections in the reliability of steel frames. Structural Safety, 25, 123-138. 6. Kartal, M.E.; Basaga, H.B.; Bayraktar, A.; and Muvafik, M. (2010). Effects of semi-rigid connection on structural responses. Electronic Journal of Structural Engineering, 10(10), 22-35. 7. Batkov, E.; Tarasova, D.; Andreev, K.; and Limarenko, I. (2016). Technologies, equipment and construction materials for underground infrastructure development: shear forces in bolts of semi-rigid joints for steel constructions. Procedia Engineering, 165, 1595-1603. 8. Chen, Z.; Xu, H.; Zhao, Z.; Yan, X.; and Zhao, B. (2016). Investigation on the mechanical behavior of suspend-dome with semirigid joints. Journal of Constructional Steel Research, 122, 14-24.
(1)
1. Food and Agriculture Organization. Global Food Losses and Food Waste - Extent, Causes, and Prevention. Rome 2011. Available: www.fao.org/3/ i2697e/i2697e.pdf 2. US Department of Agriculture. USDA and EPA Launch U.S. Food Waste Challenge : Calls on both Public Sector and Private Industry to reduce food waste. Washington, USA: US department of agriculture,; 2013; Available from: https://www. usda.gov/media/press-releases/2013/06/04/ usda-and-epa-launch-us-food-waste-challenge. 3. Parfitt, J.; Barthel, M.; Macnaughton, S.; Food waste within food supply chains: quantification and potential for change to 2050. Philosophical Transactions of the Royal Society B: Biological Sciences. 2010, 365, 3065-81, doi: 10.1098/ rstb.2010.0126. 4. Food and Agriculture Organization. Food Loss and Food Waste. 2020; Available from: http:// www.fao.org/food-loss-and-food-waste/en/. 5. High-Level Panel of Experts. Food losses and waste in the context of sustainable food systems Sweden: Stockholm Environment Institute, 2015. Available: https://www.siani.se/wp-content/ uploads/2017/10/siani_policy_brief_flw_hlpe_ june_23_web.pdf 6. Lipinski, B.; Hanson, C.; Waite, R.; Searchinger, T.; Lomax, J.; Kitinoja, L.; Reducing Food Loss and Waste. Washington, DC: Working Paper, Installment 2 of Creating a Sustainable Food Future; 2013. 7. Thi, N.B.D.; Lin, C.Y.; Kumar, G.; Waste-towealth for valorization of food waste to hydrogen and methane towards creating a sustainable ideal source of bioenergy. Journal of Cleaner Production 2016, 122, 29-41, doi: 10.1016/j. jclepro.2016.02.034. 8. Hani, A.; Malaysia throws away 17,000 tonnes of food daily. The Malaysian Reserve. 2022 15 February 9. Abdullah, N.I.; Impact of food wastage. The Star. 2016 26 May. 10. Jereme, I.; Siwar, C.; Rawshan, A.B.; Basri, A.; Food wastes and food security: The case of Malaysia. International Journal of Advanced and Applied Sciences 2017, 4, 6-13, doi: 10.21833/ ijaas.2017.08.002. 11. Fatoumata, J.; Norshamliza, C.; Consumers’ Awareness and Knowledge about Food Waste in Selangor, Malaysia. International Journal of Business and Economic Affairs 2017, 2. Available: http://www.ijbea.com/ojs/index.php/ijbea/ article/view/56. 12. Kasavan, S.; Mohamed, A.F.; Abdul Halim, S.; Drivers of food waste generation: Case study of island-based hotels in Langkawi, Malaysia. Waste Management 2019, 91, 72-9, doi: 10.1016/j. wasman.2019.04.055. 13. Zainal, D.; Hassan, K.A.; Factors Influencing Household Food Waste Behaviour in Malaysia. International Journal of Research in Business, Economics and Management 2019, 3, 56-71, Available: https://www.ijrbem.com/volume-3- issue-3-may-june-2019/. 14. Fegalo, K.; Ismail, T.H.; Household Purchase and Generation of Food Waste in Malaysia (Sri Serdang and Taman Connaught Cheras Kuala Lumpur). Advances in Recycling & Waste Management 2017, 2, 1-8, doi: 10.4172/2475-7675.1000139. 15. Amirudin, N.; Gim, T-H.T.; Impact of perceived food accessibility on household food waste behaviors: A case of the Klang Valley, Malaysia. Resources, Conservation and Recycling 2019, 151,104335. doi: 10.1016/j. resconrec.2019.05.011. 16. Loh, C.T.; Moorthy, K.; Gunasaygaran, N.; Chong, S.L.; Omapathi, D.; Ho, J.Y.; et al. Intention to reduce food waste: A study among Malaysians. Journal of the Air & Waste Management Association 2021, 71, 890-905, doi: 10.1080/10962247.2021.1900001. 17. Cochran, W.; Sampling Techniques: John Wiley & Sons, Inc.; 1977. 18. Córdova, A.; Methodological Note: Measuring Relative Wealth using Household Asset Indicators. Americas Barometer Insights. 2009, 1-9, Available: https://www.vanderbilt.edu/lapop/insights/ I0806en_v2.pdf. 19. Rahman, M.M.; Viknesraj, S.; Jantan, Z.; Knowledge, Attitude and Practice of Household Food Wastages among Villagers in Sekuau, Sibu, Sarawak. CMPH Bulletin 2018, 5, 30-9. 20. Aktas, E.; Sahin, H.; Topaloglu, Z.; Oledinma, A.; Huda, A.K.S.; Irani, Z.; et al. A consumer behavioural approach to food waste. Journal of Enterprise Information Management 2018, 31, 658-73, doi: 10.1108/JEIM-03-2018-0051. 21. van der, Werf, P.; Seabrook, J.; Gilliland. J.; Food for naught: Using the theory of planned behaviour to better understand household food wasting behaviour. The Canadian Geographer / Le Géographe canadien 2019, 63, 478-93, doi: 10.1111/cag.12519. 22. Wong, L.T.; Rahman, M.M.; Psychometric Evaluation of a Questionnaire for Measuring Food Waste Behaviour and Food Security at the Household Level. The Indonesian Journal of Public Health 2022, 17, 184-95, doi: 10.20473/ijph. v17i2.2022.184-195. 23. Hair, J.; Babin, B.; Black, W.; Anderson, R.; Multivariate Data Analysis. 8th edition ed: Pearson Education Inc.; 2018. 24. Cooper, J.; Introduction to Data Management: Statistical Associates Publishers; 2015. 25. IBM SPSS. IBM SPSS Statistics for Windows. 27 ed 2020. 26. Mahalanobis, P.C.; On the Generalized Distance in Statistics. Proceedings of the National Institute of Science of India 1936, 2, 49-55. 27. Cook, D.; Detection of Influential Observation in Linear Regression. Technometrics 1977, 19, 15- 8. doi: 10.1080/00401706.1977.10489493. 28. Aguinis, H.; Gottfredson, R.; Joo, H.; Best- Practice Recommendations for Defining, Identifying, and Handling Outliers. Organizational Research Methods 2013, 16, 270-301, doi: 10.1177/1094428112470848. 29. Stancu, V.; Haugaard, P.; Lähteenmäki, L.; Determinants of consumer food waste behaviour: Two routes to food waste. Appetite 2016, 96, 7-17, doi: 10.1016/j.appet.2015.08.025. 30. Visschers, V.; Wickli, N.; Siegrist, M.; Sorting out food waste behaviour: A survey on the motivators and barriers of self-reported amounts of food waste in households. Journal of Environmental Psychology 2016, 45, 66-78, doi: 10.1016/j. jenvp.2015.11.007. 31. McDermott, M.; Oliver, M.; Svenson, A.; Simnadis, T.; Beck, E.; Coltman, T.; The theory of planned behaviour and discrete food choices: a systematic review and meta-analysis. International Journal of Behavioral Nutrition and Physical Activity 2015, 12, 162, doi: 10.1186/s12966-015-0324-z. 32. Russell, S.; Young, W.; Unsworth, K., Robinson, C.; Bringing habits and emotions into food waste behaviour. Resources, Conservation and Recycling 2017, 125, 107-14, doi: 10.1016/j. resconrec.2017.06.007. 33. Ham, M.; Jeger, M.; Ivković, A.F.; The role of subjective norms in forming the intention to purchase green food. Economic Research- Ekonomska Istraživanja 2015, 28, 738-48, doi: 10.1080/1331677X.2015.1083875. 34. Armitage, C.; Conner, M.; Efficacy of the Theory of Planned Behaviour: A meta-analytic review. British Journal of Social Psychology 2001, 40, 471- 99, doi: 10.1348/014466601164939. 35. Stefan, V.; van Herpen, E.; Tudoran, A.A.; Lähteenmäki, L.; Avoiding food waste by Romanian consumers: The importance of planning and shopping routines. Food Quality and Preference 2013, 28, 375-81, doi: 10.1016/j. foodqual.2012.11.001 36. Ismail, M.K.; Vija, Kumaran, V.; Munawwarah, S.N.; Muhamad, M.Z.; Sarifuddin, S.; COVID-19 Outbreak: An Analysis of Malaysian Household Income Class During Movement Control Orders (MCO). Asia Proceed.ings of Social Sciences 2021; 39, doi: 10.31580/apss.v7i1.1738. 37. Graham-Rowe, E.; Jessop, D.; Sparks, P.; Predicting household food waste reduction using an extended theory of planned behaviour. Resources, Conservation and Recycling 2015, 101, 194-202, doi: 10.1016/j.resconrec.2015.05.020. 38. Secondi, L.; Principato, L.; Laureti, T.; Household food waste behaviour in EU-27 countries: A multilevel analysis. Food Poicy 2015, 56, 25-40, doi: 10.1016/j.foodpol.2015.07.007. 39. Wolla, S.A.; Sullivan, J.; Education, Income, and Wealth: PAGE ONE Economics. Federal Reserve Bank of St. Louis; 2017. 40. Neff, R.; Spiker, M.; Truant, P.; Wasted Food: U.S. Consumers' Reported Awareness, Attitudes, and Behaviors. PLOS ONE 2015, 10, e0127881, doi: 10.1371/journal.pone.0127881 41. Grasso, A.; Olthof, M.; Boevé, A.; van Dooren, C.; Lähteenmäki, L.; Brouwer, I.; Socio-Demographic Predictors of Food Waste Behavior in Denmark and Spain. Sustainability 2019, 11, 3244, doi: 10.3390/ su11123244. 42. Quested, T.; Luzecka, P.; Household food and drink waste: A people focus: Waste & Resources Action Programme 2014. Available: https:// refreshcoe.org/wp-content/uploads/2017/08/ People-focused-report-v6_5-full.pdf 43. Aschemann-Witzel, J.; De Hooge. I.; Amani, P.; Bech-Larsen, T.; Oostindjer, M.; Consumer-Related Food Waste: Causes and Potential for Action. Sustainability 2015, 7, 6457-77, doi: 10.3390/ su7066457. 44. Food and Agriculture Organization. World fertilizer trends and outlook to 2018. 2015. 45. Nederhof, A.; Methods of coping with social desirability bias: A review. European Journal of Social Psychology 1985, 15, 263-80, doi: 10.1002/ ejsp.2420150303.
(1)
1. Foster, R., & Turkki, N. (2021). EcoJustice Approach to Dance Education. Journal of Dance Education, 23(2), 91–101. https://doi.org/10.1080/15290824.2021.1906430 2. Hegna, H. M., & Ørbæk, T. (2024). Traces of embodied teaching and learning: A review of empirical studies in higher education. Teaching in Higher Education, 29(2), 420-441. https://doi.org/10.1080/13562517.2021.1989582 3. Zhang, L. (2019). The problems and solutions of dance education in universities. Open Journal of Social Sciences, 7(05), 240. https://doi.org/10.4236/jss.2019.75021 4. Li, M. (2023). Analysis of Dance Art Performance in Dance Education. Art and Performance Letters, 4(9), 80-85. 5. https://doi.org/10.23977/artpl.2023.040915 6. Hsia, L. H., Huang, I., & Hwang, G. J. (2016). Effects of different online peer-feedback approaches on students' performance skills, motivation and self-efficacy in a dance course. Computers & Education, 96, 55-71. 7. https://doi.org/10.1016/j.compedu.2016.02.004 8. Schino, G., van Klaveren, L. M., Gallegos González, H. G., & Cox, R. F. (2024). Applying bodily sensation maps to art-elicited emotions: An explorative study. Psychology of Aesthetics, Creativity, and the Arts, 18(3), 315. 9. https://doi.org/10.1037/aca0000444 10. Warburton, E. C. (2019). Dance pedagogy. The Bloomsbury companion to dance studies, 81. 11. Lou, M. (2021). Innovative Design of University Dance Course System Based on Big Data Analysis Technology. In International Conference On Signal And Information Processing, Networking And Computers (pp. 763-769). 12. https://doi.org/10.1007/978-981-19-4775-9_98 13. Meindersma, B. (2022). Dance/Movement Therapy Combined with Tai-chi as a Regulation Strategy for Children Who Have Experienced Trauma: Developing a Method. 14. Saumaa, H. (2022). Dance emotions. Integrative and Complementary Therapies, 28(3), 134-137. 15. https://doi.org/10.1089/ict.2022.29022.hsa 16. Xuan, J., On, L. K., & Cheang, S. C. (2021). Curriculum Standards, Content and Practice of Chinese Dance Teachers’ Higher Education Training. Date: 18-19 October2021, 22. 17. George, D. (2020). The Natural Body in Somatics Dance Training. Oxford University Press, USA. 18. Takamatsu, M. (1996). Analyses of the Concepts and Framework of T. Hanna's. Somatics. Journal of the Philosophy of Sport and Physical Education, 18(1), 21-32. https://doi.org/10.9772/jpspe1979.18.21 19. Fernandes, C. (2015). When Whole (ness) is more than the Sum of the Parts: somatics as contemporary epistemological field. Revista Brasileira de Estudos da Presença, 5, 9-38. 20. https://doi.org/10.1590/2237-266047585 21. Green, J. (2007). Student bodies: Dance pedagogy and the soma. In International handbook of research in arts education (pp. 1119-1135). Dordrecht: Springer Netherlands. 22. Aitken, A., Dobson, M., Ezcurra, M., Mitchell, C., & Strong-Wilson, T. (2018). The Arts in Curriculum: Aesthetics, Embodiment and Well-Being. Journal of the Canadian Association for Curriculum Studies, 16(1), 1-5. https://doi.org/10.25071/1916-4467.40370 23. Lovecky, D. V. (1986). Can you hear the flowers sing? Issues for gifted adults. Journal of Counseling and Development, 64(9), 572-575. 24. Hooper, S. E. (1941). Whitehead's philosophy: Actual entities. Philosophy, 16(63), 285-305. 25. https://doi.org/10.1017/S0031819100002564 26. Moroye, C. M., & Uhrmacher, P. B. (2012). Standards, not standardization: Orchestrating aesthetic educational experiences. Language Arts Journal of Michigan, 28(1), 13. https://doi.org/10.9707/2168-149X.1934 27. Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity research journal, 24(1), 92-96. https://doi.org/10.1080/10400419.2012.650092 28. Wang, Z. (2024). Evaluation of Creativity in Contemporary Dance in Terms of Audience Perception. Creativity Research Journal, 36(2), 234-244. https://doi.org/10.1080/10400419.2022.2107849 29. Malinin, L. H. (2019). How radical is embodied creativity? Implications of 4E approaches for creativity research and teaching. Frontiers in psychology, 10, 2372. https://doi.org/10.3389/fpsyg.2019.02372 30. Brodie, J. A., & Lobel, E. E. (2014). Dance and somatics: Mind-body principles of teaching and performance. McFarland. 31. Fong, A., & Askun Celik, D. (2023). Global Leadership Under Oneness: Connecting Conscious Parts to Conscientious Wholes. In Consciousness-Based Leadership and Management, Volume 2: Organizational and Cultural Approaches to Oneness and Flourishing (pp. 157-179). Cham: Springer International Publishing. 32. Dabir, A. A., & West, K. (2021, December). Vedic Perspective on the Mind-Body Problem. In Jijnasa-2021 International Virtual Conference (p. 42). 33. Panera, C. (2023). Embodying Heaven: The Ancient Philosophy of Dance in China. Journal of Daoist Studies, 16(16), 19-40. https://doi.org/10.1353/dao.2023.0001 34. Zafeiroudi, A. (2021). Intersections between modern and contemporary dance and yoga practice: A critical analysis of spiritual paths through body movement and choreography. Academic Journal of Interdisciplinary Studies, 10(4), 1-15. https://doi.org/10.36941/ajis-2021-0094 35. Kurnaedy, K. M. (2022). Our love affair with dance. FriesenPress. 36. Lin, Z. (2016). On Chinese Tai Chi culture: contemporary values and international communication. Asian Social Science, 12(10), 273-277. https://doi.org/10.5539/ass.v12n10p273 37. McGee, R. W. (2024). Tai Chi, Qigong and the Treatment of Breast Cancer. Biomedical Journal of Scientific & Technical Research, 54(3), 46024-46027. http://doi.org/10.26717/BJSTR.2024.54.008566 38. Wu, C. C., Xiong, H. Y., Zheng, J. J., & Wang, X. Q. (2022). Dance movement therapy for neurodegenerative diseases: A systematic review. Frontiers in Aging Neuroscience, 14, 975711. 39. https://doi.org/10.3389/fnagi.2022.975711 40. You, Y., Min, L., Tang, M., Chen, Y., & Ma, X. (2021). Bibliometric evaluation of global tai chi research from 1980–2020. International Journal of Environmental Research and Public Health, 18(11), 6150. 41. https://doi.org/10.3390/ijerph18116150 42. Wang, Z. (2020). A study on Yang Shi Tai Chi Chuan in Bartenieff Fundamentals Perspectives. Trans-, 8, 95-127. 43. Lin, J., Ning, S., Lyu, S., Gao, H., Shao, X., Tan, Z. & Chen, Y. (2024). The effects of different types of Tai Chi exercises on preventing falls in older adults: a systematic review and network meta-analysis. Aging clinical and experimental research, 36(1), 65. https://doi.org/10.1007/s40520-023-02674-7 44. Kuramoto, A. M. (2006). Therapeutic benefits of Tai Chi exercise: research review. WMJ-MADISON-, 105(7), 42. 45. Rampengan, D. D., Gunawan, F. A., Rampengan, J. A., Ramadhan, R. N., Iqhrammullah, M., & Yufika, A. (2024). Effectiveness of Tai Chi as a non-invasive intervention for mild cognitive impairment in the elderly: A comprehensive review and meta-analysis. Narra J, 4(1). https://doi.org/10.52225/narra.v4i1.724 46. Ma, X., & Jennings, G. (2021). “Hang the Flesh off the Bones”: Cultivating an “Ideal Body” in Taijiquan and Neigong. International Journal of Environmental Research and Public Health, 18(9), 4417. 47. https://doi.org/10.3390/ijerph18094417 48. Henning, M., Feng, X. J., Chen, Y., Moir, F., Krageloh, C. U., Hobson, J., & Webster, C. S. (2021). Mindfulness in tai chi chuan as practiced amongst higher education students with implications for health and learning: A narrative review. https://doi.org/10.21926/obm.icm.2104033 49. Chenail, R. J. (2012). Conducting qualitative data analysis: Qualitative data analysis as a metaphoric process. Qualitative Report, 17(1), 248-253. http://doi.org/10.46743/2160-3715/2012.1818 50. Kallio, H., Pietilä, A. M., Johnson, M., & Kangasniemi, M. (2016). Systematic methodological review: developing a framework for a qualitative semi‐structured interview guide. Journal of advanced nursing, 72(12), 2954-2965. https://doi.org/10.1111/jan.13031 51. Elliott, V. (2018). Thinking about the coding process in qualitative data analysis. Qualitative report, 23(11). 52. https://doi.org/10.46743/2160-3715/2018.3560 53. Yu, H. B., Chang, Y. H., Liao, P. Y., & Tsai, Y. S. (2018). Effect of Tai Chi Chuan training on main performance during dance movements. Biomedical Research, 29(13), 2690-2696. 54. Vidal, A. C., Montoya-Herrera, J., & Cano, R. P. (2022). The Ideographic Image of Tai Chi Chuan Movement score as a training resource for the actor. Kepes, 19(25), 223-256. https://doi.org/10.17151/kepes.2022.19.25.9 55. Cui, L., Tao, S., Yin, H. C., Shen, Q. Q., Wang, Y., Zhu, L. N., & Li, X. J. (2021). Tai Chi Chuan alters brain functional network plasticity and promotes cognitive flexibility. Frontiers in Psychology, 12, 665419. 56. https://doi.org/10.3389/fpsyg.2021.665419 57. Vintila, J. M. (2021). Emancipating the Dancing Body: Bridging the Interdependency of Aesthetic Theory with Separated Roles in Contemporary Dance to Solidify the Phenomenology of Creative Movement Causation. 58. http://hdl.handle.net/10315/38475 59. Ekweariri, D. (2021). Appreciation of Art as a Perception Sui Generis: Introducing Richir’s Concept of “Perceptive” Phantasia. Frontiers in Psychology, 12, 576608. https://doi.org/10.3389/fpsyg.2021.576608 60. Dou, X., Li, H., & Jia, L. (2021). The linkage cultivation of creative thinking and innovative thinking in dance choreography. Thinking Skills and Creativity, 41, 100896. https://doi.org/10.1016/j.tsc.2021.100896 61. Jaque, S. V., Thomson, P., Zaragoza, J., Werner, F., Podeszwa, J., & Jacobs, K. (2020). Creative flow and physiologic states in dancers during performance. Frontiers in Psychology, 11, 1000. 62. https://doi.org/10.3389/fpsyg.2020.01000 63. Sheets-Johnstone, M. (2024). Exploring the aesthetic uniqueness of the art of dance. In The New Yearbook for Phenomenology and Phenomenological Philosophy (pp. 256-278). Routledge. 64. Bastos, C. (2024). Yoga, emotion, and behaviour: becoming conscious of habitual social roles. Journal of Contemporary Religion, 1-19. https://doi.org/10.1080/13537903.2024.2347048 65. Timmons, W. (2024, July). Associations between body awareness, body trauma and joint hypermobility in the context of dance. In Medical Problems of Performing Artists: 42nd Performing Arts Medicine Symposium. 66. Jin, J., & Martin, R. (2019). Exploring the past to navigate the future: examining histories of higher dance education in China in an internationalized context. Research in Dance Education, 20(2), 225-240. 67. https://doi.org/10.1080/14647893.2019.1566304
(2)
[1] F. Pelisser, A. Barcelos, D. Santos, M. Peterson, A. M. Bernardin, Lightweight concrete production with low Portland cement consumption, J. Clean. Prod. 23 (2012): 68-74. [2] D. Pedro, J. de Brito, R. Veiga, Mortars made with fine granulate from shredded tires, J. Mater. Civ. Eng. ASCE 25 (2013): 519–529. [3] A. M. Rashad, A comprehensive overview about recycling rubber as fine aggregate replacement in traditional cementitious materials, Int. J. Sustain. Built Environ. 5 (2016): 46-82. [4] S. Meherier, M. S. Alam, N. Banthia, Mechanical behavior of cement mortar with varying replacement level of crumb rubber 1-11, 2015. [5] G. A. Rao, Long-term drying shrinkage of mortar—influence of silica fume and size of fine aggregate. Cement Concrete. Res. 31 (2001) 171-175. [6] Y. Yu, H. Zhu, Influence of rubber size on properties of crumb rubber mortars, Mater. 9 (2016): 1–12. [7] Turatsinze, J. L. Granju, S. Bonnet, Positive synergy between steel-fibres and rubber aggregates: Effect on the resistance of cement-based mortars to shrinkage cracking, Cem. Concr. Res. 36 (2006): 1692–1697. [8] H. Singh, S. Bansal, Effect of Silica Fume on the Compressive Strength of Cement-Silica Fume Mortars. Int. J. Res. Eng. Technol. 4 (2017): 623–627. [9] A. I. Kirsanov, O. N. Stolyarov, Mechanical properties of synthetic fibers applied to concrete reinforcement, Magazine of Civil Engineering 80 (2018): 15–23. [10] Y. A. Orban, D. L. Manea, C. Aciu, A. Mustea, Virtual manufacturing and mechanical properties of synthetic fiber-reinforced mortars, Procedia Manuf. 22 (2018): 262–267. [11] A. T. Vehicle, M. Baker, Temperature Properties of Polyester Mortar, Practice 6 (1999) 107– 111. [12] F. N. A. Nora, S. M. Bida, N. A. M. Nasir, M. S. Jaafar, Mechanical properties of lightweight mortar modified with oil palm fruit fibre and tire crumb, Constr. Bldg. Mater. 73 (2014): 544–550. [13] M. A. Sanjuan, C. Argiz, J. C. Gálvez, A. Moragues, Effect of silica fume fineness on the improvement of Portland cement strength performance, Constr. Build. Mater. 96 (2015): 55-64. [14] ASTM International, Standard Specification for Extended Life Mortar for Unit Masonry, American Society for Testing Material 95 (2003): 2–5. [15] W. J. Song, W. G. Qiao, X. X. Yang, D. G. Lin, Y. Z. Li, Mechanical properties and constitutive equations of crumb rubber mortars. Constr. Build. Mater. 172 (2018) 660–669.
(1)
[1] Francis R.A. & Lorimer, J. (2011). Urban reconciliation ecology: The potential of living roofs and walls. Journal of Environmental Management, 92(6), 1429-1437. [2] Pitman S. D., Daniels C. B. & Ely M. E. (2015). Green infrastructure as life support: Urban nature and climate change. Transactions of the Royal Society of South Australia, 139(1), 97-112. [3] Daemei A. B., Azmoodeh M., Zamani Z. & Khotbehsara E. M. (2018). Experimental and simulation studies on the thermal behavior of vertical greenery system for temperature mitigation in urban spaces. Journal of Building Engineering, https://doi.org/10.1016/j.jobe.2018.07.024. [4] Scarpa M., Mazzali U. & Peron F. (2014). Modeling the energy performance of living walls: Validation against field measurements in temperate climate. Energy and Buildings, https://doi.org/10.1016/j.enbuild.2014.04.014. [5] Solera Jimenez M. (2018). Green walls: A sustainable approach to climate change, a case study of London. Architectural Science Review, https://doi.org/10.1080/00038628.2017.1405789. [6] Susorova I., Azimi P. & Stephens B. (2014). The effects of climbing vegetation on the local microclimate, thermal performance, and air infiltration of four building facade orientations. Building and Environment, https://doi.org/10.1016/j.buildenv.2014.03.011. [7] Cameron R. W., Taylor J. E. & Emmett M. R. (2014). What’s ‘cool’ in the world of green façades? How plant choice influences the cooling properties of green walls. Building and Environment, https://doi.org/10.1016/j.buildenv.2013.12.005. [8] Mårtensson L. M., Wuolo A., Fransson A. M. & Emilsson T. (2014). Plant performance in living wall systems in the Scandinavian climate. Ecological Engineering, https://doi.org/10.1016/j.ecoleng.2014.07.027. [9] Safikhani T., Abdullah A. M., Ossen D. R. & Baharvand M. (2014). Thermal impacts of vertical greenery systems. Environmental and Climate Technologies, 14(1), 5-11. [10] Coma J., Pérez G., de Gracia A., Burés S., Urrestarazu M. & Cabeza L. F. (2017). Vertical greenery systems for energy savings in buildings: A comparative study between green walls and green facades. Building and Environment, https://doi.org/10.1016/j.buildenv.2016.11.014. [11] Pérez G., Rincón L., Vila A., González J. M. & Cabeza L. F. (2011). Green vertical systems for buildings as passive systems for energy savings. Applied Energy, 88(12), 4854-4859. [12] Wong N. H., Tan A. Y. K., Tan P. Y. & Wong N. C. (2009). Energy simulation of vertical greenery systems. Energy and Buildings, 41(12), 1401-1408. [13] Bustami R. A., Belusko M., Ward J. & Beecham S. (2018). Vertical greenery systems: A systematic review of research trends. Building and Environment, https://doi.org/10.1016/j.buildenv.2018.09.045. [14] Magliocco A. & Perini K. (2015). The perception of green integrated into architecture: Installation of a green facade in Genoa, Italy. AIMS Environmental Science, 2(4), 899-909. [15] Pérez-Urrestarazu L., Blasco-Romero A. & Fernández-Cañero R. (2017). Media and social impact valuation of a living wall: The case study of the Sagrado Corazon hospital in Seville (Spain). Urban Forestry and Urban Greening, https://doi.org/10.1016/j.ufug.2017.04.002. [16] Wong N. H., Tan A. Y. K., Tan P. Y., Sia A. & Wong N. C. (2010). Perception studies of vertical greenery systems in Singapore. Journal of Urban Planning and Development, 136(4), 330-338. [17] Asgarzadeh M., Koga T., Yoshizawa N., Munakata J. & Hirate K. (2010). Investigating green urbanism: Building oppressiveness. Journal of Asian Architecture and Building Engineering, 9(2), 555-562. [18] Bureau of Meteorology. (2018). Adelaide in summer 2018. Australian Government. http://www.bom.gov.au/ climate/current/season/sa/archive/201802.adelaide.shtml. [19] Bureau of Meteorology. (2018). Greater Adelaide in summer 2018-2019: Warmer and drier than average. Australian Government. http://www.bom.gov.au/climate/current/season/sa/adelaide.shtml. [20] Stav, Y. (2016). Transfunctional Living Walls - Designing Living Walls for Environmental and Social Benefits. Queensland University of Technology. [21] Abdul-Rahman, Wang C., Rahim A. M., Loo S C. & Miswan N. (2014). Vertical greenery systems (VGS) in urban tropics. Open House International, 39(4), 42-52. [22] Collins R., Schaafsma M. & Hudson M. D. (2017). The value of green walls to urban biodiversity. Land use Policy, https://doi.org/10.1016/j.landusepol.2017.02.025. [23] Mårtensson L. M., Fransson A. M. & Emilsson T. (2016). Exploring the use of edible and evergreen perennials in living wall systems in the Scandinavian climate. Urban Forestry and Urban Greening, https://doi.org/10.1016/J.UFUG.2015.12.001. [24] Perini K., Ottelé M., Haas E. M. & Raiteri R. (2013). Vertical greening systems, a process tree for green façades and living walls. Urban Ecosystems, 16(2), 265-277. [25] Parker J. & Zingoni de Baro M. E. (2019). Green infrastructure in the urban environment: A systematic quantitative review. Sustainability, https://doi.org/10.3390/su11113182. [26] Irga P. J., Braun J. T., Douglas A. N. J., Pettit T., Fujiwara S., Burchett M. D. & Torpy F. R. (2017). The distribution of green walls and green roofs throughout Australia: Do policy instruments influence the frequency of projects? Urban Forestry and Urban Greening, https://doi.org/10.1016/j.ufug.2017.03.026. [27] Riley B. (2017). The state of the art of living walls: Lessons learned. Building and Environment, https://doi.org/10.1016/j.buildenv.2016.12.016.
(1)
1. Franko, M. (2023). Dancing modernism/performing politics. Indiana University Press. 2. Welch, S. (2019). The Phenomenology of a Performative Knowledge System. Springer International Publishing. https://doi.org/10.1007/978-3-030-04936-2 3. Varela, P. (2021). Transcendence–trance ‘n dance (performance). Proceedings of Polititcs of the machines-Rogue Research 2021 3, 105-111. 4. Souza, E. T. D. (2020). Embodiment, Somatics and Dance: some possible links. Revista Brasileira de Estudos da Presença, 10. https://doi.org/10.1590/2237-266092446 5. James, M. B. (2021). Breath Awareness for Dancers in Higher Education: Somatic Practice as an Alternative Approach to Movement Education. 6. Kong, Z. (2021). Research on the Development of Dance Breath. Art and Performance Letters, 2(1), 61-65. 7. Kramer, P. (2012). Bodies, Rivers, Rocks and Trees: Meeting agentic materiality in contemporary outdoor dance practices. Performance Research, 17(4), 83–91. https://doi.org/10.1080/13528165.2012.712316 8. Kieft, E. (2022). Dancing in the muddy temple: A moving spirituality of land and body. Rowman & Littlefield. 9. Heiti, W. (2020). The Dance of Perception: The Rôle of the Imagination in Simone Weil’s Early Epistemology. Imagination and Art: Explorations in Contemporary Theory, 304-331.https://doi.org/10.1163/9789004436350_015 10. Brodie, J. A., & Lobel, E. E. (2014). Dance and somatics: Mind-body principles of teaching and performance. McFarland. 11. Howard, J. (2009). Breathing the dance: an experience of Middendorf Breathwork. DTAA Quarterly, Volume 8, No’s 1 and 2. 12. Good, B. (2015). Somatic Value System for Life and its Integration into Dance Practices. 13. Celichowska, R., & Hawkins, E. (2000). The Erick Hawkins modern dance technique. Princeton Book Company. 14. Reichling, M. J. (1990). Images of Imagination. Journal of Research in Music Education, 38(4), 282–293. https://doi.org/10.2307/3345225 15. Hsu, Y., Peng, L. P., Wang, J. H., & Liang, C. (2014). Revising the imaginative capability and creative capability scales: Testing the relationship between imagination and creativity among agriculture students. International Journal of Learning, Teaching and Educational Research, 6(1), 57-70. 16. Brennan, M. A. (1983). Dance creativity measures: A reliability study. Research Quarterly for Exercise and Sport, 54(3), 293-295. https://doi.org/10.1080/02701367.1983.10605308 17. Guilford, J. P., & Hoepfner, R. (1971). The analysis of intelligence. Mcgraw-hill series in psychology. 18. Morita, J., Nagai, Y., & Moritsu, T. (2013). Relations between body motion and emotion: Analysis based on Laban Movement Analysis. In Proceedings of the Annual Meeting of the Cognitive Science Society (Vol. 35, No. 35). 19. Beining, B. F. A. (2023). Rollercoaster of Emotions: How Non-dancers Understand Emotions that are Communicated Nonverbally through Dance Performances. Journal of Undergraduate Research. 20. Bojner Horwitz, E., Korošec, K., & Theorell, T. (2022). Can Dance and Music Make the Transition to a Sustainable Society More Feasible? Behavioral Sciences, 12(1), 11. https://doi.org/10.3390/bs12010011 21. James, M. B., & Stockman, C. (2020). Sartre and somatics for the pedagogy of movement in contemporary dance. Dance, Movement & Spiritualities, 6(1), 119–131. https://doi.org/10.1386/dmas_00006_1 22. Borreson, E. (2011). Integrating Mind and Body with Taiji. Yang-Sheng Editorial Board, 18. 23. Chappell, K. A., & Hathaway, C. (2019). Creativity and dance education research. Oxford University Press. https://doi.org/10.1093/acrefore/9780190264093.013.386 24. Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach’s alpha. International Journal of Medical Education, 2, 53–55. https://doi.org/10.5116/ijme.4dfb.8dfd 25. Davis, R. B., & Mukamal, K. J. (2006). Hypothesis testing: means. Circulation, 114(10), 1078-1082. https://doi.org/10.1161/CIRCULATIONAHA.105.586461 26. Hair, J. F. (2009). Multivariate data analysis. 27. Oey, S. (2022). "With Every Breath, I Build the House": Marintan Sirait's Building a House and Its Performative Quality. Southeast of Now: Directions in Contemporary and Modern Art in Asia 6(1), 69-93. https://doi.org/10.1353/sen.2022.0003. 28. Jerak, T., Vidrih, A., & Žvelc, G. (2018). The experience of attunement and misattunement in dance movement therapy workshops. The Arts in Psychotherapy, 60, 55–62. https://doi.org/10.1016/j.aip.2018.06.001 29. Warburton, E. C. (2011). Of Meanings and Movements: Re-Languaging Embodiment in Dance Phenomenology and Cognition. Dance Research Journal, 43(2), 65–84. https://doi.org/10.1017/s0149767711000064 30. Carey, K., Moran, A., & Rooney, B. (2019). Learning choreography: An investigation of motor imagery, attentional effort, and expertise in modern dance. Frontiers in Psychology, 10, 422. https://doi.org/10.3389/fpsyg.2019.00422 31. Dodds, S. (Ed.). (2019). The Bloomsbury companion to dance studies. Bloomsbury Publishing.
(1)
1. Fuller, J.M. Landfill cap designs using geosynthetic clay liners. In Geosynthetic Clay Liners, Proceedings of the International Symposium, Nuremberg, Germany, 16–17 April 2002; CRC Press: London, UK, 2020; p. 129. [CrossRef] 2. Zhang, D.; Wang, J.; Chen, C. Gas and liquid permeability in the variably saturated compacted loess used as an earthen final cover material in landfills. Waste Manag. 2020, 105, 49–60. [CrossRef] [PubMed] 3. NSWEPA. Draft Environmental Guidelines: Solid Waste Landfills, 2nd ed.; NSW EPA: Sydney, Australia, 2015. 4. Fan, X.; Zhu, W.; Qian, Y.; Wu, S.; Shu, S.; Lin, N. Increasing the Hydraulic Conductivity of Solidified Sewage Sludge for Use as Temporary Landfill Cover. Adv. Civ. Eng. 2019, 2019, 8163563. [CrossRef] 5. Vinitha, V.N.; Latha, P.; Jaya, V. Permeability study of modified forms of sewage sludge suitable for temporary landfill cover material. In Recent Advances in Materials, Mechanics and Management, Proceedings of the 3rd International Conference on Materials, Mechanics and Management (IMMM 2017), Trivandrum, Kerala, India, 13–15 July 2017; CRC Press: London, UK, 2019; p. 183. [CrossRef] 6. He, J.; Li, F.; Li, Y.; Cui, X.-L. Modified sewage sludge as temporary landfill cover material. Water Sci. Eng. 2015, 8, 257–262. [CrossRef] 7. ILBS. Environmental Quality Act 1974 (Act 127), Regulations, Rules & Orders: Environmental Quality (Control of Pollution from Solid Waste Transfer Station and Landfill) Regulations 2009 (as at 10th June 2019); International Law Book Services: Kuala Lumpur, Malaysia, 2019. 8. Zhang, P.; Zhang, G.; Wang, W. Ultrasonic treatment of biological sludge: Floc disintegration, cell lysis and inactivation. Bioresour. Technol. 2007, 98, 207–210. [CrossRef] 9. Balkaya, M. Assessment of the geotechnical aspect of the use of paper mill sludge as landfill cover and bottom liner material. Desalination Water Treat. 2019, 172, 70–77. [CrossRef] 10. Sharma, A.; Kaushik, M.K.; Naval, S. Present Status of MSW Disposal in Jalandhar and Suitability of Tire Derived Aggregates as a Drainage Material in Cover System of Landfill. J. Innov. Res. Sci. Eng. Technol. 2016, 5, 1111–1118. [CrossRef] 11. Inazumi, S. Waste Sludge Barrier for Landfill Cover System. Doctoral Dissertation, Kyoto University, Kyoto, Japan, 2003. [CrossRef] 12. Durak, S.G.; Özçoban, M. ¸S.; Balcıo ˘glu, E.B.; Salmanli, Ö.M.; Demirkol, G.; Tüfekci, N. The Effect of Leachate on the Compacted and Consolidated Clay Soils. Eurasian J. Environ. Res. 2017, 1, 36–47. 13. D ˛abska, A. Hydraulic Conductivity of Compacted Lime-Softening Sludge Used as Landfill Liners. Water Air Soil Pollut. 2019, 230, 280. [CrossRef] 14. Ozcoban, M.S.; Cetinkaya, N.; Celik, S.O.; Demirkol, G.T.; Cansiz, V.; Tufekci, N. Hydraulic conductivity and removal rate of compacted clays permeated with landfill leachate. Desalination Water Treat. 2013, 51, 6148–6157. [CrossRef] Sustainability 2023, 15, 4229 14 of 15 15. Edil, T.B.; Sandstrom, L.K.; Berthouex, P.M. Interaction of Inorganic Leachate with Compacted Pozzolanic Fly Ash. J. Geotech. Eng. 1992, 118, 1410–1430. [CrossRef] 16. Safari, E. Preliminary Assessment of Proposed Soil Liner Compatibility with Leachate at New Landfill of Tehran. J. Biol. Sci. 2006, 6, 324–330. [CrossRef] 17. Wang, G.; Gao, Y.; Tang, Y. Research on the mechanism for chemical clogging and its effect on the stability of tailing dam. Bulg. Chem. Commun. 2017, 49, 228–233. 18. Francisca, F.M.; Glatstein, D.A. Long term hydraulic conductivity of compacted soils permeated with landfill leachate. Appl. Clay Sci. 2010, 49, 187–193. [CrossRef] 19. VanGulck, J.F.; Rowe, R.K. Evolution of clog formation with time in columns permeated with synthetic landfill leachate. J. Contam. Hydrol. 2004, 75, 115–139. [CrossRef] [PubMed] 20. Sunil, B.M.; Shrihari, S.; Nayak, S. Soil-leachate interaction and their effects on hydraulic conductivity and compaction characteristics. In Proceedings of the 12th International Conference on Computer Methods and Advances in Geomechanics, Goa, India, 1–6 October 2008; Volume 3, pp. 2380–2386. 21. Ray, S.; Mishra, A.K.; Kalamdhad, A.S. Hydraulic performance, consolidation characteristics and shear strength analysis of bentonites in the presence of fly-ash, sewage sludge and paper-mill leachates for landfill application. J. Environ. Manag. 2022, 302, 113977. [CrossRef] [PubMed] 22. Shang, K. Mechanical Characteristics and Micro-Mechanism of Modified Dredged Sludge Based on Calcium-Containing Solid Waste Used as Landfill Cover Materials. Processes 2022, 10, 451. [CrossRef] 23. Rosli, N.A.; Aziz, H.A.; Selamat, M.R.; Lim, L.L.P.; Zawawi, M.H. Effect of compaction on physical properties of a sewage sludge and red gypsum mixture as intermediate landfill cover. Constr. Build. Mater. 2021, 289, 123153. [CrossRef] 24. Zakaria, S.N.F.; Aziz, H.A. Characteristic of leachate at Alor Pongsu Landfill Site, Perak, Malaysia: A comparative study. IOP Conf. Ser. Earth Environ. Sci. 2018, 140, 012013. [CrossRef] 25. Yong, Z.J. Papan Landfill Leachate Treatment Using a Sequencing Batch Reactor and Coagulation. Doctoral Dissertation, UTAR, Perak, Malaysia, 2017. 26. Mohamad, M.; Abustan, I.; Samuding, K.; Mohamad, A.; Mohamad, N. Enhancement of Landfill Daily Cover in Minimizing the Migration of Heavy Metals in Landfill Leachate by Using Natural Soil, Pressmud Empty Fruit Bunch (EFB) in Pulau Burung Landfill. Int. J. Adv. Eng. Manag. Sci. 2017, 3, 37–47. 27. Aziz, S.Q.; Aziz, H.A.; Yusoff, M.S.; Bashir, M.J.; Umar, M. Leachate characterization in semi-aerobic and anaerobic sanitary landfills: A comparative study. J. Environ. Manag. 2010, 91, 2608–2614. [CrossRef] 28. Zerrouqi, Z.; Tazi, M.R.; Chafi, A.; Zerrouqi, A. Impact of Sewage Sludge Leaching on Soil Constituents and Quality. Environ. Res. Eng. Manag. 2020, 76, 87–96. [CrossRef] 29. Geng, H.; Xu, Y.; Zheng, L.; Gong, H.; Dai, L.; Dai, X. An overview of removing heavy metals from sewage sludge: Achievements and perspectives. Environ. Pollut. 2020, 266, 115375. [CrossRef] [PubMed] 30. Mohamed, B.A.; Ruan, R.; Bilal, M.; Khan, N.A.; Awasthi, M.K.; Amer, M.A.; Leng, L.; Hamouda, M.A.; Vo, D.N.; Li, J. Copyrolysis of sewage sludge and biomass for stabilizing heavy metals and reducing biochar toxicity: A review. Environ. Chem. Lett. 2022, 1–20. [CrossRef] 31. Rosli, N.A.B.; Aziz, H.A.; Selamat, M.R.; Lim, L.L.P. A mixture of sewage sludge and red gypsum as an alternative material for temporary landfill cover. J. Environ. Manag. 2020, 263, 110420. [CrossRef] 32. APHA; WEF. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005; pp. 258–259. 33. Minitab Inc. Minitab (Version 17), 17th ed.; Minitab Statistical Software; State College: Centre County, PA, USA, 2015. 34. Söderberg, T.U.; Kleja, D.B.; Åström, M.; Jarsjö, J.; Fröberg, M.; Svensson, A.; Augustsson, A. Metal solubility and transport at a contaminated landfill site–From the source zone into the groundwater. Sci. Total Environ. 2019, 668, 1064–1076. [CrossRef] 35. Ayres, D.M.; Davis, A.P.; Gietka, P.M. Removing heavy metals from wastewater. Eng. Res. Cent. Rep. 1994, 90, 1–21. 36. Fang, H.Y. Soil Stabilization and Grouting. Foundation Engineering Handbook; Springer Science & Business Media: New York, NY, USA, 2013. 37. Šiler, P.; Koláˇrová, I.; Sehnal, T.; Másilko, J.; Opravil, T. The Determination of the Influence of pH Value of Curing Conditions on Portland Cement Hydration. Procedia Eng. 2016, 151, 10–17. [CrossRef] 38. Kjeldsen, P.; Barlaz, M.A.; Rooker, A.P.; Baun, A.; Ledin, A.; Christensen, T.H. Present and Long-Term Composition of MSW Landfill Leachate: A Review. Crit. Rev. Environ. Sci. Technol. 2002, 32, 297–336. [CrossRef] 39. Malaysian Meteorological Department. Determination of Z-R Relationship and Inundation Analysis for Kuantan River Basin. 2017. Available online: https://www.met.gov.my/data/research/researchpapers/2017/researchpaper_201702.pdf (accessed on 18 April 2019). 40. Markoviˇc, G.; Zele ˇnáková, M.; Káposztásová, D.; Hudáková, G. Rainwater infiltration in the urban areas. WIT Trans. Ecol. Environ. 2014, 181, 313–320. [CrossRef] 41. Phenrat, T.; Marhaba, T.F.; Rachakornkij, M. XRD and unconfined compressive strength study for a qualitative examination of calcium–arsenic compounds retardation of cement hydration in solidified/stabilized arsenic–iron hydroxide sludge. J. Environ. Eng. 2007, 133, 595–607. [CrossRef] Sustainability 2023, 15, 4229 15 of 15 42. Wang, Y.X.; Ding, J.W.; Hong, Z.S. Compressive Strength Characteristics and Volume Change of Sewage Sludge Matrices Solidified by a New Binder. Adv. Mater. Res. 2011, 255–260, 2819–2823. [CrossRef]
(1)
1. G. Adamo, S. Campora, G. Ghersi, Chapter 3 – Functionalization of nanoparticles in specific targeting and mechanism release. Nanostruct Nov Ther. (2017), 57–80. https:// doi. org/ 10. 1016/ B978-0- 323- 46142-9. 00003-7 2. M. Altaf, S. Manoharadas, M. T. Zeyad, Green synthesis of cerium oxide nanoparticles using Acorus calamus extract and their antibiofilm activity against bacterial pathogens. Microsc Res Technol. 84 (8), 1638–1648 (2021) https:// doi. org/ 10. 1002/ jemt. 23724. 3. S. Malik, K. Muhammad, Y. Waheed, Nanotechnology: A revolution in modern industry. Mol. (2023), 28, 661. https:// doi. org/ 10. 3390/ 2Fmol ecule s2802 0661 4. J.T. Dahle, Y. Arai (2015). Environmental geochemistry of cerium: Applications and toxicology of cerium oxide nanoparticles. Int J Environ Res Public Health. 12, 1253–1278. https:// doi. org/ 10. 3390/ ijerp h1202 01253. 5. S. Scirè, L. Palmisano, in Cerium Oxide (CeO2): Synthesis, Properties and Applications, ed. By S. Scirè, L. Palmisano (Elsevier, 2019), p. 1–12. https:// doi. org/ 10. 1016/ B978-0- 12- 815661- 2. 00001-3 6. A. Dhall, W. Self (2018). Cerium oxide nanoparticles: A brief review of their synthesis methods and biomedical applications. Antioxid. 7, 97. https:// doi. org/ 10. 3390/ antio x7080 097. 7. M. Nyoka, Y. E. Choonara, P. Kumar, P. P. D. Kondiah, V. Pillay, Synthesis of cerium oxide nanoparticles using various methods: Implications for biomedical applications. Nanomater. 10, 242 (2020) https:// doi. org/ 10. 3390/ nano1 00202 42. 8. R. Bakkiyaraj, G. Bharath, K. H. Ramsait, A. Abdel-Wahab, E. H. Alsharaeh, S. Chen, M. Balakrishnan . Solution combustionsynthesis and physico-chemical properties of ultrafine CeO2 nanoparticles and their photocatalytic activity. RSC Adv. 6, 51238– 51245 (2016) https:// doi. org/ 10. 1039/ C6RA0 0382F. 9. G. Basina, K. Polychronopoulou, A. Zedan, K. Dimos, M. Katsiotis, A. Fotopoulos, I. Ismail, V. Tzitzios . Ultrasmall metal-doped CeO2 nanoparticles for low-temperature CO oxidation. ACS Appl Nano Mater. 3 (11), 10805–10813 (2020) https:// doi. org/ 10. 1021/ acsanm. 0c020 90. 10. W.M. Al-Shawafi, N. Salah, A. Alshahrie, Y.M. Ahmed, S.S. Moselhy, A.H. Hammad, M.A. Hussain, A. Memic, Size controlled ultrafine CeO2 nanoparticles produced by the microwave assisted route and their antimicrobial activity. J Mater Sci: Mater Med. , 28, 177 (2017) https:// doi. org/ 10. 1007/ s10856- 017- 5990-8 11. Kim, J., Hong, G., Mazalueskaya, L., Hsu, J.C., Rosario-Berrios, D.N., Grosser, T., Cho-Park, P.F., Cormode, D.P. Ultrasmall antioxidant cerium oxide nanoparticles for regulation of acute inflammation. ACS Appl Mater Interfaces., 13(51), 60852–60864. (2021) https:// doi. org/ 10. 1021/ 2Facs ami. 1c161 26 12. S. Rajeshkumar, P. Naik, Synthesis and biomedical applications of Cerium oxide nanoparticles – A Review. Biotechnol Rep. 17, 1–5. (2018) https:// doi. org/ 10. 1016/j. btre. 2017. 11. 008. 13. Ghawade, S.P., Pande, K.N., Dhoble, S.J., Deshmukh, A.D. Tuning, The properties of ZnS semiconductor by the addition of graphene. Nanoscale Compd Semicond Optoelectron Appl. (2022), 351–381. https:// doi. org/ 10. 1016/ B978-0- 12- 824062- 5. 00005-1 14. J. A. Darr, J. Zhang, N. M. Makwana, X. Weng, Continuous Hydrothermal Synthesis of Inorganic Nanoparticles: Applications and Future Directions. Chem Rev. 117, 11125– 11238 (2017) https:// doi. org/ 10. 1021/ acs. chemr ev. 6b004 17. 15. I. Munir, G. Yesiloz. Novel Size-Tunable and Straight Forward Ultra- Small Nanoparticle Synthesis in a Varying Concentration Range of Glycerol as a Green Reducing Solvent. ACS Omega. 8 (31), 28456– 28466 (2023) https:// doi. org/ 10. 1021/ acsom ega. 3c026 97. 16. P.A. Yurova, N.Y. Tabachkova, I.A. Stenina, A.B. Yaroslavtsev, Properties of ceria nanoparticles with surface modified by acidic groups. J Nanopart Res. 22, 318 (2020). https:// doi. org/ 10. 1007/ s11051- 020- 05049-5 17. A. Manuja, B. Kumar, R. Kumar, D. Chhabra, M. Ghosh, M. Manuja, B. Brar, Y. Pal, B. N. Tripathi, M. Prasad. Metal/metal oxide nanoparticles: Toxicity concerns associated with their physical state and remediation for biomedical applications. Toxicol Rep. 8, 1970–1978 (2021) https:// doi. org/ 10. 1016/j. toxrep.2 021. 11. 020. 18. T. Ogholaja, D.O. Njobuenwu, M. Fairweather, in Computer Aided Chemical Engineering, ed. By A. Espuña, M. Graells, L. Puigjaner (Elsevier, 2017), 40, p. 79–84. https:// doi. org/ 10. 1016/ B978-0- 444- 63965-3. 50015-5 19. D.J. Smith, in RSC Nanoscience and Nanotechnology, ed. By A.I. Kirkland, S.J. Haigh (Royal Society of Chemistry, 2015), p. 1–29. https:// doi. org/ 10. 1039/ 97817 82621 867- 00001 20. N. Raval, R. Maheshwari, D. Kalyane, S.R. Youngren-Ortiz, M.B. Chougule, R.K. Tekade, in Basic Fundamentals of Drug Delivery, ed. By R.K. Tekade (Elsevier, 2018), p. 369–400. https:// doi. org/ 10. 1016/ B978-0- 12- 817909- 3. 00010-8 21. R. Bakkiyaraj, M. Balakrishnan, G. Bharath, N. Ponpandian, Facile synthesis, structural characterization, photocatalytic and antimicrobial activities of Zr doped CeO2 nanoparticles. J Alloy Compd. 724, 555–564 (2017) https:// doi. org/ 10. 1016/j. jallc om. 2017. 07. 049 22. M. Chelliah, J. B. B. Rayappan, and U. M. Krishnan, Synthesis and characterization of cerium oxide nanoparticles by hydroxide mediated approach. J Appl Sci. 12 (16), 1734–1737 (2012) https:// doi. org/ 10. 3923/ jas. 2012. 1734. 1737. 23. P.V. Valsaraj, Divyarthana, Structural, optical and antimicrobial properties of green synthesized cerium oxide nanoparticles. AIP Conf Proc. 2162, 020022 (2019) https:// doi. org/ 10. 1063/1. 51302 32 24. S.A. Khan, S.B. Khan, L.U. Khan, A. Farooq, K. Akhtar, A.M. Asiri, in Handbook of Materials Characterization, ed. By S.K. Sharma (Springer International Publishing, 2018), p. 317–344. https:// doi. org/ 10. 1007/ 978-3- 319- 92955-2_9 25. M. Panahi-Kalamuei, S. Alizadeh, M. Mousavi-Kamazani, and M. Salavati-Niasari, Synthesis and characterization of CeO2 nanoparticles via hydrothermal route. J Ind Eng Chem. 21, 1301–1305 (2014) https:// doi. org/ 10. 1016/j. jiec. 2014. 05. 046. 26. G. EkaPutri, Y. Rilda, S. Syukri, A. Labanni, and S. Arief, Highly antimicrobial activity of cerium oxide nanoparticles synthesized using Moringa oleifera leaf extract by a rapid green precipitation method. J Mater Res Technol. 15, 2355–2364 (2021) https:// doi. org/ 10. 1016/j. jmrt. 2021. 09. 075. 27. R. Bakkiyaraj, M. Balakrishnan, R. Subramanian, Synthesis, structural characterisation, optical studies of CeO2 nanoparticles and its cytotoxic activity. Mater Res Innov. 21 (6), 351– 357 (2016) https:// doi. org/ 10. 1080/ 14328 917. 2016. 12652 56. 28. T. Divya, C. Anjali, K.R. Sunajadevi, K. Anas, N.K. Renuka, Influence of hydrothermal synthesis conditions on lattice defects in cerium oxide. J Solid State Chem. 300 (2021). https:// doi. org/ 10. 1016/j. jssc. 2021. 122253 29. W. Kang, D. O. Ozgur, A. Varma, Solution Combustion Synthesis of High Surface Area CeO2 Nanopowders for Catalytic Applications: Reaction Mechanism and Properties. ACS Appl Nano Mater. 1 (2), 675–685 (2018) https:// doi. org/ 10. 1021/ acsanm. 7b001 54. 30. N.M. Shamhari, B.S. Wee, S.F. Chin, K.Y. Kok, Synthesis and characterization of zinc oxide nanoparticles with small particle size distribution. Acta Chim Slov. 5(3), 678–685 (2018) https:// doi. org/ 10. 17344/ acsi. 2018. 4213 31. R. Guo, J. Wang, S. An, J. Zhang, G. Zhou, L. Guo, Effect of cerium oxide prepared under different hydrothermal time on electrocatalytic performance of Pt-based anode catalysts. J Rare Earths. 38 (4), 384–394 (2020) https:// doi. org/ 10. 1016/j. jre. 2019. 05. 010. 32. S. Kurajica, I. Minga, M. Guliš, V. Mandić, I. Simčić, High Surface Area Ceria Nanoparticles via Hydrothermal Synthesis Experiment Design. J Nanomater. 2016, 7274949 (2016) https:// doi. org/ 10. 1155/ 2016/ 72749 49 33. M. W. Iqbal, Y. Yu, D. S. A. Simakov, Enhancing the surface area stability of the cerium oxide reverse water gas shift nanocatalyst via reverse microemulsion synthesis. Catal Today. 407, 230–243 (2021) https:// doi. org/ 10. 1016/j. cattod. 2021. 11. 029.
(1)
[1] Gagg, Colin R. "Cement and concrete as an engineering material: An historic appraisal and case study analysis." Engineering Failure Analysis 40 (2014): 114-140. https://doi.org/10.1016/j.engfailanal.2014.02.004 [2] Climate change: The massive CO2 emitter you may not know about (2018, December 17). BBC News. [3] Rubenstein, M. Emissions from the Cement Industry (2012, May 9). Columbia Climate School. [4] Garside, M. Cement production worldwide from 1995 to 2022 (2023, April 11). Statista. [5] Wong, J. Pertama eyes full capacity in October for smelting plant (2018, Jun 25). The Star. [6] Wong, J. OM smelting plant on track to achieve output target (2022, September 12). The Star. [7] Wong, J. Pertama Ferroalloys to invest RM2.81bil in plant (2022, October 17). The Star. [8] Chen, Meng, Jianming Wei, Runhua Zhang, Lipei Jia, Qiqi Yao, and Anchao Han. "Analysis of Basic Physical and Chemical Characteristics of Manganese Slag before and after Solidification and Its Feasibility as Highway Slope." Materials 14, no. 19 (2021): 5530. https://doi.org/10.3390/ma14195530 [9] Tangstad, Merete, Sergey Bublik, Shokouh Haghdani, Kristian Etienne Einarsrud, and Kai Tang. "Slag properties in the primary production process of Mn-Ferroalloys." Metallurgical and Materials Transactions B (2021): 1-20. https://doi.org/10.1007/s11663-021-02347-8 [10] Lee, Young E., and Leiv Kolbeinsen. "Behavior of slag in ferromanganese and silicomanganese smelting process." Metallurgical and Materials Transactions B 52, no. 5 (2021): 3142-3150. https://doi.org/10.1007/s11663-021-02242-2 [11] Shahidan, Shahiron, Eeydzah Aminuddin, Khairiyah Mohd Noor, Nurul Izzati Raihan Ramzi Hannan, and Nur Amira Saiful Bahari. "Potential of hollow glass microsphere as cement replacement for lightweight foam concrete on thermal insulation performance." In MATEC Web of Conferences, vol. 103, p. 01014. EDP Sciences, 2017. https://doi.org/10.1051/matecconf/201710301014 [12] Groot, Dick R., D. Kazadi, Herbert Pollmann, J. de Villiers, Thomas Redtmann, and Joalet Steenkamp. "The recovery of manganese and generation of a valuable residue from ferromanganese slags by a hydrometallurgical route." In Proceedings of the Thirteenth International Ferroalloys Congress, Efficient Technologies in Ferroalloy Industry, Almaty, Kazakhstan, pp. 9-13. 2013. [13] Frias, Moisés, M. Isabel Sánchez de Rojas, Jesús Santamaría, and Cristina Rodríguez. "Recycling of silicomanganese slag as pozzolanic material in Portland cements: Basic and engineering properties." Cement and Concrete Research 36, no. 3 (2006): 487-491. https://doi.org/10.1016/j.cemconres.2005.06.014 [14] Nath, S. K., and Sanjay Kumar. "Evaluation of the suitability of ground granulated silico-manganese slag in Portland slag cement." Construction and Building Materials 125 (2016): 127-134. https://doi.org/10.1016/j.conbuildmat.2016.08.025 [15] Altun, I. Akın, and İsmail Yılmaz. "Study on steel furnace slags with high MgO as additive in Portland cement." Cement and Concrete Research 32, no. 8 (2002): 1247-1249. https://doi.org/10.1016/s0008-8846(02)00763-9 [16] Liang, Duo Qiang, Feng Qin, Xu Guang Li, and Ji Bo Jiang. "Mechanical performances of concrete made with manganese slag." Applied Mechanics and Materials 117 (2012): 1185-1189. https://doi.org/10.4028/www.scientific.net/AMM.117-119.1185 [17] Wang, Ya-guang, Feng-lan Han, Shi-zhen Zhao, and Jing-qiu Mu. "Preparation and characterization of manganese slag and Fly ash-based Geopolymer." In MATEC Web of Conferences, vol. 130, p. 04006. EDP Sciences, 2017. https://doi.org/10.1051/matecconf/201713004006 Journal of Advanced Research in Applied Mechanics Volume 116, Issue 1 (2024) 62-74 74 [18] Marsh, A. T. M., T. Yang, S. Adu-Amankwah, and S. A. Bernal. "Utilization of metallurgical wastes as raw materials for manufacturing alkali-activated cements." In Waste and Byproducts in Cement-Based Materials, pp. 335-383. Woodhead Publishing, 2021. https://doi.org/10.1016/B978-0-12-820549-5.00009-7 [19] Nath, Susanta Kumar, Navneet Singh Randhawa, and Sanjay Kumar. "A review on characteristics of silico-manganese slag and its utilization into construction materials." Resources, Conservation and Recycling 176 (2022): 105946. https://doi.org/10.1016/j.resconrec.2021.105946 [20] Drinčić, Ana, Irena Nikolić, Tea Zuliani, Radmila Milačič, and Janez Ščančar. "Long-term environmental impacts of building composites containing waste materials: Evaluation of the leaching protocols." Waste management 59 (2017): 340-349. http://dx.doi.org/10.1016/j.wasman.2016.11.003 [21] Liu, Qiang, Jun Li, Zhongyuan Lu, Xiaoying Li, Jun Jiang, Yunhui Niu, and Yi Xiang. "Silicomanganese slag: Hydration mechanism and leaching behavior of heavy metal ions." Construction and Building Materials 326 (2022): 126857. https://doi.org/10.1016/j.conbuildmat.2022.126857 [22] Chub-uppakarn, Tanan, Thanakorn Chompoorat, Thanakit Thepumong, Worathep Sae-Long, Anupong Khamplod, and Sumate Chaiprapat. "Influence of partial substitution of metakaolin by palm oil fuel ash and alumina waste ash on compressive strength and microstructure in metakaolin-based geopolymer mortar." Case Studies in Construction Materials 19 (2023): e02519. https://doi.org/10.1016/j.cscm.2023.e02519 [23] Phiangphimai, Chattarika, Gonganok Joinok, Tanakorn Phoo-ngernkham, Sakonwan Hanjitsuwan, Nattapong Damrongwiriyanupap, Worathep Sae-Long, Piti Sukontasukkul, and Prinya Chindaprasirt. "Shrinkage, compressive and bond strengths of alkali activated/cement powder for alternative coating applications." Construction and Building Materials 400 (2023): 132631. https://doi.org/10.1016/j.conbuildmat.2023.132631 [24] Damrongwiriyanupap, Nattapong, Todsaporn Srikhamma, Chittinat Plongkrathok, Tanakorn Phoo-ngernkham, Worathep Sae-Long, Sakonwan Hanjitsuwan, Piti Sukontasukkul, Long-yuan Li, and Prinya Chindaprasirt. "Assessment of equivalent substrate stiffness and mechanical properties of sustainable alkali-activated concrete containing recycled concrete aggregate." Case Studies in Construction Materials 16 (2022): e00982. https://doi.org/10.1016/j.cscm.2022.e00982 [25] Phoo-ngernkham, Tanakorn, Sakonwan Hanjitsuwan, Cherdsak Suksiripattanapong, Jaksada Thumrongvut, Jirayut Suebsuk, and Sermsak Sookasem. "Flexural strength of notched concrete beam filled with alkali-activated binders under different types of alkali solutions." Construction and Building Materials 127 (2016): 673-678. https://doi.org/10.1016/j.conbuildmat.2016.10.053 [26] Maho, Buchit, Piti Sukontasukkul, Gritsada Sua-Iam, Manote Sappakittipakorn, Darrakorn Intarabut, Cherdsak Suksiripattanapong, Prinya Chindaprasirt, and Suchart Limkatanyu. "Mechanical properties and electrical resistivity of multiwall carbon nanotubes incorporated into high calcium fly ash geopolymer." Case Studies in Construction Materials 15 (2021): e00785. https://doi.org/10.1016/j.cscm.2021.e00785 [27] BSI. BS EN 12390-1:2021: Testing hardened concrete - Part 1: Shape, dimensions and other requirements for specimens and moulds. London: British Standards Institution; 2021. [28] BSI. BS EN 12390-2:2019: Testing hardened concrete - Part 2: Making and curing specimens for strength tests. London: British Standards Institution; 2019. [29] BSI. BS EN 12350-2:2019: Testing fresh concrete - Part 2: Slump test. London: British Standards Institution; 2019. [30] Nen, E. "Leaching characteristics of moduled or monolithic building and waste materials." The TANK Test 7375 (2005): 2004. [31] BSI. BS EN 12390-3:2019: Testing hardened concrete - Part 3: Compressive strength of test specimens. London: British Standards Institution; 2019. [32] BSI. BS EN 12390-5:2019: Testing hardened concrete - Part 5: Flexural strength of test specimens. London: British Standards Institution; 2019.
(1)
1. Ganeshan RM, Mamoowala N, Ward M, Sochart D. Acute compartment syndrome risk in fracture fixation with regional blocks. BMJ Case Rep 2015; 2015:bcr2015210499. 2. Rodgers WB, Waters PM, Hall JE. Chronic Monteggia lesions in children. Complications and results of reconstruction. J Bone Joint Surg Am 1996;78(9): 1322-1329. 3. Dugdale TW, Schutzer SF, Deafenbaugh MK, Bartosh RA. Compartment syndrome complicating use of the hemi-lithotomy position during femoral nailing. A report of two cases. J Bone Joint Surg Am 1989; 71(10):1556-1557. 4. Mubarak SJ, Hargens AR. Acute compartment syndromes. Surg Clin North Am 1983;63(3):539-565. 5. Janzing HM, Broos PL. Routine monitoring of compartment pressure in patients with tibial fractures: Beware of overtreatment! Injury 2001;32(5):415-421. 6. Himel HN, Ahmad M, Parmett SR, Strauss HW, May JW. Effect of the timing of tourniquet release on postoperative hematoma formation: an experimental animal study. Plast Reconstr Surg 1989;83(4):692- 697. 7. Wolfe, Hotchkiss, Pederson, Kozin. Green's Operative th Hand Surgery. 6 edition. Philadelphia: Churchill Livingstone; 2010: 15. 8. Sharma N, Singh V, Agrawal A, Bhargava R. Proximal tibial fractures with impending compartment syndrome managed by fasciotomy and internal fixation: A retrospective analysis of 15 cases. Indian J Orthop 2015;49(5):502-509. 9. Helfet DL, Suk M. Minimally invasive percutaneous plate osteosynthesis of fractures of the distal tibia. J Krishna Inst Med Sci Univ 2004; 3(1):120-124. 10. Jindal R, Swarnkar M. Outcomes are local: a cross sectional patient specific study of risk factors for surgical site infections in major abdominal surgeries. J Krishna Inst Med Sci Univ 2020; 9(1):43-50
(1)
1. Garrido G, Gomez-Reino JJ, Fernandez-Dapica P, Palenque E, Prieto S. A review of peripheral tuberculous arthritis. InSeminars in arthritis and rheumatism 1988 Nov 30 (Vol. 18, No. 2, pp. 142-149). WB Saunders. 2. Mohapatra D, Sarangi G, Paty BP, Das P, Mohapatra A, Chayani N, Patnaik G. Tuberculous Synovitis of Knee Joint. 3. Nissapatorn V, Kuppusamy I, Rohela M, Anuar AK, Fong MY. Extrapulmonary tuberculosis in Peninsular Malaysia: retrospective study of 195 cases. Southeast Asian Journal of Tropical Medicine and Public Health. 2004;35(2):39-45. 4. Lidder S, Lang K, Haroon M, Shahidi M, El-Guindi M. Tuberculosis of the knee. Orthopedic reviews. 2009 Oct 26;1(2):24. 5. Erdem H, Baylan O, Simsek I, Dinc A, Pay S, Kocaoglu M. Delayed diagnosis of tuberculous arthritis. Japanese journal of infectious diseases. 2005 Dec 1;58(6):373. 6. De Backer AI, Vanhoenacker FM, Sanghvi DA. Imaging features of extraaxial musculoskeletal tuberculosis. Indian Journal of Radiology and Imaging. 2009 Jul 1;19(3):176. 7. Spiegel DA, Singh GK, Banskota AK. Tuberculosis of the musculoskeletal system. Techniques in Orthopaedics. 2005 Jun 1;20(2):167-78.Emily S.L. — Tuberculous synovitis of the knee with unusually thick synovial granulation tissue: A Case report Int. J Orthop Surg. 6 : 1531-2968, 2007. 8. Su JY, Huang TL, Lin SY. Total knee arthroplasty in tuberculous arthritis. Clinical orthopaedics and related research. 1996 Feb 1;323:181-7. 9. Eskola AN, Santavirta SE, Konttinen YT, Tallroth K, Lindholm ST. Arthroplasty for old tuberculosis of the knee. Journal of Bone & Joint Surgery, British Volume. 1988 Nov 1;70(5):767-9.
(1)
1. Gaubert, P., A. Antunes, H. Meng, L. Miao, S. Peigné, F. Justy, F. Njiokou, S. Dufour, E. Danquah, J. Alahakoon, E. Verheyen, W.T. Stanley, S.J. O'Brien, W.E. Johnson and S.J. Luo. 2018. “The complete phylogeny of pangolins: scaling up resources for the molecular tracing of the most trafficked mammals on earth,” Journal of Heredity Vol. 109, pp. 347–359. 2. Gaudin, T. 2009. “The phylogeny of living and extinct pangolins (Mammalia, Pholidota) and associated taxa: a morphology based analysis,” Journal of Mammalian Evolution Vol. 16, pp. 235–305. 3. Gaudin, T.J., R.J. Emry and B. Pogue. 2006. “A new genus and species of pangolin (Mammalia, Pholidota) from the Late Eocene of Inner Mongolia, China,” Journal of Vertebrate Paleontology Vol. 26, pp. 146–159.
(1)
1. Gee, G.V.A. & I. Das. 2019a. Extreme philately. The most unusual stamps of the World. Part 1. Journal of the Philatelic Society of Kuching, Sarawak 11(1):27–66. Gee, G.V.A. & I. Das. 2019b. Extreme philately. The most unusual stamps of the World. Part2. Journal of the Philatelic Society of Kuching, Sarawak 11(2):50–90.
(1)
[1] Giacomo Degli Antoni, Giuseppe Vittucci Marzetti, Recycling and Waste Generation (2019). An Estimate of the Source Reduction Effect of Recycling Programs, Ecological Economics, Volume 161, p.p 321-329, [2] Relationship between recycling rate and air pollution (2015). Waste management in the state of Massachusetts, Waste Management, Volume 40, Pages 192-203 [3] Ziraba, A. K., Haregu, T. N., & Mberu, B. (2016). A review and framework for understanding the potential impact of poor solid waste management on health in developing countries. Archives of public health = Archives belges de sante publique, 74, 55. https://doi.org/10.1186/s13690-016-0166-4 [4] Dodbiba, G., Fujita, T., 2004. Progress in separating plastic materials for recycling. Phys. Sep. Sci. Eng. 13 (3–4), 165–182. [5] Wu, G., Li, J., Xu, Z., 2013. Triboelectrostatic separation for granular plastic waste recycling: A review. Waste Manage. 33 (3), 585–597. [6] Rahman, M.O., Hussain, A., Basri, H., 2014. A critical review on wastepaper sorting techniques. Int. J. Environ. Sci. Technol. 11 (2), 551–564 [7] Gundupalli et al., 2017, S.P. Gundupalli, S. Hait, A. Thakur A review on automated sorting of source-separated municipal solid waste for recycling Waste Manag., 60 (2017), pp. 56-74 [8] S. Wahidah and A. Ghafar, “Food Waste in Malaysia : Trends , Current Practices and Key Challenges,” pp. 1–10, 2017 [9] Hoornweg D, Bhada-Tata P. Urban development series, knowledge papers. Washington: World Bank; 2012. What a Waste: A Global Review of Solid Waste Management. [10] Elsaid, S. and Aghezzaf, E. (2015), "A framework for sustainable waste management: challenges and opportunities", Management Research Review, Vol. 38 No. 10, pp. 1086-1097. [11] Lim, W. J., Chin, N. L., Yusof, A. Y., Yahya, A., & Tee, T. P. (2016). Food waste handling in Malaysia and comparison with other Asian countries. International Food Research Journal, 23, S1–S6. [12] Adam Conner-Simons, 2019 April,16. Robots that can sort recycling: CSAIL’s "RoCycle" system uses in-hand sensors to detect if an object is paper, metal or plastic, Retrieved date: 2020, April 1, http://news.mit.edu/2019/mit-robots-can-sort-recycling-0416. [13] K. Chahine and B. Ghazal, Automatic sorting of solid wastes using sensor fusion, International Journal of Engineering and Technology 9 (6) :4408-4414 [14] S. Z. Diya et al., "Developing an Intelligent Waste Sorting System with Robotic Arm: A Step towards Green Environment," 2018 International Conference on Innovation in Engineering and Technology (ICIET), Dhaka, Bangladesh, 2018, pp. 1-6. [15] S. Kulkarni and S. Junghare, "Robot based indoor autonomous trash detection algorithm using ultrasonic sensors," 2013 International Conference on Control, Automation, Robotics and Embedded Systems (CARE), Jabalpur, 2013, pp. 1-5. [16] J. Huang, T. Pretz and Z. Bian, "Intelligent solid waste processing using optical sensor-based sorting technology," 2010 3rd International Congress on Image and Signal Processing, Yantai, 2010, pp. 1657-1661. [17] ZenRobotics Recycler–Robotic sorting using machine learning TJ Lukka, T Tossavainen, JV Kujala, T Raiko Proceedings of the International Conference on Sensor-Based Sorting (SBS). [18] Sathish Paulraj Gundupalli, Subrata Hait, Atul Thakur, Multi-material classification of dry recyclables from municipal solid waste based on thermal imaging, Waste Management, Volume 70, 2017, Pages 13-21. [19] Sathish Paulraj Gundupalli, Subrata Hait, Atul Thakur, Classification of metallic and non-metallic fractions of e-waste using thermal imaging-based technique, Process Safety and Environmental Protection, Volume 118, 2018, Pages 32-39. [20] B. M. Chinnathurai, R. Sivakumar, S. Sadagopan and J. M. Conrad, "Design and implementation of a semi-autonomous waste segregation robot," SoutheastCon 2016, Norfolk, VA, 2016, pp. 1-6. [21] Artzai Picon, Aranzazu Bereciartua, Jone Echazarra, Ovidiu Ghita, Paul F. Whelan, Pedro M. Iriondo, "Real-time hyperspectral processing for automatic nonferrous material sorting," J. Electron. Imag. 21(1) 013018 (4 April 2012) [22] Guérin, J., Thiery, S., Nyiri, E., & Gibaru, O. (2018). Unsupervised robotic sorting: Towards autonomous decision-making robots, Journal of Artificial Intelligence and Applications (IJAIA), March 2018, Volume 9, Number 2. [23] S.T. Wagland, F. Veltre, P.J. Longhurst, Development of an image-based analysis method to determine the physical composition of a mixed waste material, Waste Management, Volume 32, Issue 2, 2012, Pages 245-248. [24] Wen Xiao, Jianhong Yang, Huaiying Fang, Jiangteng Zhuang, Yuedong Ku, A robust classification algorithm for separation of construction waste using NIR hyperspectral system, Waste Management, Volume 90, 2019, Pages 1-9. [25] Chao Wang, Zhili Hu, Qiu Pang, Lin Hua, Research on the classification algorithm and operation parameters optimization of the system for separating non-ferrous metals from end-of-life vehicles based on machine vision, Waste Management, Volume 100, 2019, Pages 10-17. [26] R. Mattone, G. Campagiorni, F. Galati, Sorting of items on a moving conveyor belt. Part 1: a technique for detecting and classifying objects, Robotics and Computer-Integrated Manufacturing, Volume 16, Issues 2–3, 2000, Pages 73-80. [27] Aziz, F., Arof, H., Mokhtar, N., Shah, N. M., Khairuddin, A. S. M., Hanafi, E., & Talip, M. S. A. (2018). Waste level detection and HMM based collection scheduling of multiple bins. PLoS ONE, 13(8), 1–14. https://doi.org/10.1371/journal.pone.0202092 [28] Hannan, M. A., Zaila, W. A., Arebey, M., Begum, R. A., & Basri, H. (2014). Feature extraction using Hough transform for solid waste bin level detection and classification. Environmental Monitoring and Assessment, 186(9), 5381–5391. https://doi.org/10.1007/s10661-014-3786-6 [29] Bai, J., Lian, S., Liu, Z., Wang, K., & Liu, D. (2018). Deep Learning Based Robot for Automatically Picking up Garbage on the Grass. IEEE Transactions on Consumer Electronics, PP(c), 1. https://doi.org/10.1109/TCE.2018.2859629 [30] Zhang, P., Zhao, Q., Gao, J., Li, W., & Lu, J. (2019). Urban Street Cleanliness Assessment Using Mobile Edge Computing and Deep Learning. IEEE Access, 7, 63550–63563. https://doi.org/10.1109/ACCESS.2019.2914270 [31] Shylo, S., & Harmer, S. W. (2016). Millimeter-wave imaging for recycled paper classification. IEEE Sensors Journal, 16(8), 2361–2366. https://doi.org/10.1109/JSEN.2015.2512106\[34] [32] C. Bircanoğlu, M. Atay, F. Beşer, Ö. Genç and M. A. Kızrak, "RecycleNet: Intelligent Waste Sorting Using Deep Neural Networks," 2018 Innovations in Intelligent Systems and Applications (INISTA), Thessaloniki, 2018, pp. 1-7. [33] C. Zhihong, Z. Hebin, W. Yanbo, L. Binyan and L. Yu, "A vision-based robotic grasping system using deep learning for garbage sorting," 2017 36th Chinese Control Conference (CCC), Dalian, 2017, pp. 11223-11226. [34] Sarc, R., Curtis, A., Kandlbauer, L., Khodier, K., Lorber, K.E. and Pomberger, R. (2019), “Digitalisation and intelligent robotics in value chain of circular economy oriented waste management – a review”, Waste Management, Vol. 95 No. 7, pp. 476-492. [35] Srivasta, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research, 15(1), 1929–1958. [36] Rawat, W., & Wang, Z. (2017). Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review. Neural Computation, 29(9), 2352–2449. [37] Van Engelen, J. E., & Hoos, H. H. (2020). A survey on semi-supervised learning. Machine Learning, 109(2), 373–440. [38] Li, N., Zhao, X., Yang, Y., & Zou, X. (2016). Objects Classification by Learning-Based Visual Saliency Model and Convolutional Neural Network. Computational Intelligence and Neuroscience, 2016, 12. [39] Ramalingam, B., Lakshmanan, A. K., Ilyas, M., Le, A. V., & Elara, M. R. (2018). Cascaded Machine-Learning Technique for Debris Classification in Floor-Cleaning Robot Application. Applied Sciences (Switzerland), 8(12), 1–19. [40] Michelucci, U. (2018). Applied deep learning: a case-based approach to understanding deep neural networks. Apress.
(1)
1. Gnanajobitha G, Paulkumar K, Vanaja M (2013) Fruit-mediated synthesis of silver nanoparticles using Vitis vinifera and evaluation of their antimicrobial efficacy. Nanostructure Chemistry 3(67):1–6 2. Duran N, Marcato PD, Alves OL (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Nanotechnology 3:1–7 3. Ingle A, Gade A, Pierrat S (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Current Nanoscience 4:141–144 4. Taylor PL (2005) Usher AL. Burrell RE. Impact of heat on nanocrystalline silver dressings. Part I: chemical and biological properties. Biomaterials 26: 7221–7229 5. Yang M, Pang G, Jiang L, Feng S (2005) Hydrothermal synthesis of onedimensional zinc oxides with different precursors. Nanotechnology 17:206–212 6. Hasanpoor M, Aliofkhazraei M, Delavari H (2015) Microwave-assisted synthesis of zinc oxide nanoparticle. 5th International Biennial Conference on Ultrafine Grained and Nanostructured Materials, UFGNSM15. Procedia Material Science 11:320–325 7. Xu HY, Wang H (2004) Hydrothermal synthesis of zinc oxide powders with controllable morphology. Ceramics International 30:93–97 8. Kılıç B, Gür E, Tüzemen S (2012) Nanoporous ZnO photoelectrode for dyesensitized solar cell. J Nanomater DOI. https://doi.org/10.1155/2012/ 474656 9. Li B, Wang Y (2011) Hierarchically assembled porous ZnO microstructures and applications in a gas sensor. Superlattice Microst 49:433–440 10. Vimala K, Sundarraj S, Paulpandi M, Vengatesan S, Kannan S (2013) Green synthesized doxorubicin loaded zinc oxide nanoparticles regulate the Bax and Bcl-2 expression in breast and colon carcinoma. Process Biochem 49: 160–172 11. Venkatachalam P, Jayaraj M, Manikandan R, Geetha N, Rene ER, Sharma NC et al (2016) Zinc oxide nanoparticles (ZnO NPs) alleviate heavy metalinduced toxicity in Leucaena leucocephala seedlings: a physiochemical analysis. Plant Physiol Biochem 110:59–69 12. Elumalai K, Velmurugan S (2015) Green synthesis, characterization and antibacterial activities of zinc oxide nanoparticles from the leaf extract of Azadirachtaindica (L.). Applied Surface Science 345:329–336 13. Matinise N, Fuku XG, Kaviyarasu K, Mayedwa N, Maaza M (2017) ZnO nanoparticles via Moringa oleifera green synthesis: physical properties and mechanism of formation. Applied Surface Science 406:339–347 14. Mohamad NAN, Arham NA, Jai J, Hadi A (2014) Plant extract as reducing agent in synthesis of metallic nanoparticles: a review. Advanced Materials Research 832(2014):350–355 15. Dubey SP, Lahtinen M, Sarkka H, Sillanpaa M (2010) Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids. Colloids Surf B 80(2010):26–33 16. Christensen L, Vivekanandhan S, Misra M, Mohanty AK (2011) Biosynthesis of silver nanoparticles using Murraya Koenigii: an investigation on the effect of broth concentration in reduction mechanism and particle size. Advanced Materials Letters 2(2011):429–434 17. Dwivedi AD, Gopal K (2010) Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids and Surf A 369(2010):27–33 18. Sathishkumar M, Sneha K, Yun Y-S (2010) Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresource Technology 101(2010): 7958–7965 19. Michiels JA, Kevers C, Pincemail J, Defraigne JO, Dommes J (2012) Extraction conditions can greatly influence antioxidant capacity assays in plant food matrices. Food Chem 130(2012):986–993 20. Gunalana S, Sivaraja R, Rajendranb V (2012) Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Program of Natural Science Material International 22(6):693–700 21. Akinpelu DA (2001) Antimicrobial activity of Anarcardium occidentale bark. Fitoterapia 72:286–287 22. Doss VA, Thangavel KP (2011) Antioxidant and antimicrobial activity using different extracts of Anacardium occidentale L. International Journal of Applied Biology and Pharmaceutical Technology 2:436–443 23. Souza NC, Oliveira JM, Morrone MS, Albanus RD, Amarante MSM, Camillo CS, Langassner SMZ, Gelain DP, Moreira JCF, Dalmolin RJS, Pasquali MAB (2017) Antioxidant and anti-inflammatory properties of Anacardium occidentale leaf extract. Evidence-Based. Complementary and Alternative Medicine Article ID 2787308, 8 pages. 24. Dahake AP, Joshi VD, Joshi AB (2009) Antimicrobial screening of different extract of Anacardium occidentale Linn. leaves. Interdisciplinary Journal of Contemporary Research in Business 1:856–858 25. Varghese J, Tumkur VK, Ballal V, Bhat GS (2013) Antimicrobial effect of Anacardium occidentale leaf extract against pathogens causing periodontal disease. Advances in Bioscience and Biotechnology 4:15–18 26. Srisawat S, Teanpaisan R, Wattanapiromsakul C, Worapamorn W (2005) Antibacterial activity of some Thai plants against Porphymonas gingivalis. International Association for Dental Research, 20th Southeast Asia Division & Southeast Asia Association for Dental Education, 16th Annual Scientific Meeting, Malacca 1-4 27. Ojezele MO, Agunbiade S (2013) Phytochemical constituents and medicinal properties of different extracts of Anacardium Occidentale and Psidium Guajava. Asian Journal of Biomedical and Pharmaceutical Sciences 3(16):20– 23 28. Fadeyi OE, Olatunji GA, Ogundele VA (2015) Isolation and characterization of the chemical constituents of Anacardium occidentale cracked bark. Nat Prod Chem Res 3(5):1000192 29. Bastos TM, Russo HM, Moretti NS, Schenkman S, Marcourt L, Gupta MP, Wolfender J-L, Queiroz EF, Soares MBP (2019) Chemical constituents ofAnacardium occidentale as inhibitors of Trypanosoma cruzi Sirtuins. Molecules 24:1299 30. Heny DS, Philip D, Mathew J (2013) Synthesis of platinum nanoparticles using dried Anacardium occidentale leaf and its catalytic and thermal applications. Spectrochemica Acta Part A: Molecular and Biomolecular Spectroscopy 114:267–271 31. Droepenu EK, Asare EA (2019) Morphology of green synthesized ZnO nanoparticles using low temperature hydrothermal technique from aqueous Carica papaya extract. Nanoscience and Nanotechnology 9(1):29– 36 32. Trease GE, Evans WC (1989). Pharmacognosy. 13th. ELBS/Bailliere Tindall, London. 345-346, 535-536, 772-773. 33. Moazzen MAM, Borghei SM, Taleshi T (2012) Change in the morphology of ZnO nanoparticles upon changing the reactant concentration. Appl Nanosci 3:295–302 34. Droepenu EK, Boon SW, Chin SF, Kuan YK, Zaini BA, Asare EA (2019) Comparative evaluation of antibacterial efficacy of biological synthesis of ZnO nanoparticles using fresh leaf extract and fresh stem-bark of Carica papaya. Nano Biomed Eng 11(3):264–271 35. Umaru IJ, Badruddin FA, Assim ZB, Umaru HA (2018b) Antibacterial and cytotoxic actions of chloroform crude extract of Leptadenia hastata(pers)Decnee. Clinical Medical Biochemistry 4:1–4 36. Umaru IJ, Badruddin FA, Assim ZB, Umaru HA (2018) Antimicrobial properties of Leptadenia hastata(pers)decne leaves extract. International Journal of Pharmacy and Pharmaceutical Sciences 10(2):149–152 37. Sharmila G, Thirumarimurugan M, Muthukumaran C (2019) Green synthesis of ZnO nanoparticles using Tecoma castanifolia leaf extract: characterization and evaluation of its antioxidant, bactericidal and anticancer activities. Microchemical Journal 145:578–587 38. Sharma H, Kumar K, Choudhary C, Mishra PK, Vaidya B (2016) Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug. Artificial cells, nanomedicine, and biotechnology 44(2):672– 679 39. Jain P, Singh SK, Sharma HP, Basri F (2014). Phytochemical screening and antifungal activity of Semecarpus anacardium L. (an anti-cancer plant). Int. J. Pharm. Sci. Res. (IJPSR), 5(5), 1884-1891. 40. Socrates G (2001) Infrared and Raman characteristic group frequencies, tables and charts, 3rd edn. Wiley, Ltd. Chichester. New York. Weinheim. Toronto. Brisbane. Singapore 41. Dobrucka R, Dugaszewska J (2015) Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J Biological Sci 23(4):517–523 42. Gopal VVR, Kamila S (2017) Effect of temperature on the morphology of ZnO nanoparticles: a comparative study. Applied Nanoscience 7(3-4):75–82 43. Rao MD, Guatam P (2016) Synthesis and characterization of ZnO nanoflowers using Chlamydomonas reinhardtii: a green approach. Environ Prog Sustain Energy:1–7 44. Zheng Y, Fu L, Han F, Wang A, Cai W, Yu J, Yang J, Peng F (2015) Green biosynthesis and characterization of zinc oxide nanoparticles using Corymbia citriodora leaf extract and their photocatalytic activity. Green Chemistry Letters and Reviews 8(2):59–63 45. Tripathi RM, Bhadwal AS, Gupta RK, Singh P, Shrivastav A, Shrivastav BR (2014) ZnO nanoflowers: novel biogenic synthesis and enhanced photocatalytic activity. J Photochem Photobiol B Biol 141:288–295 46. Mohammadi-Aloucheh R, Habibi-Yangjeh A, Bayrami A, Latifi-Navid S, Asadi A (2018) Enhanced anti-bacterial activities of ZnO nanoparticles and ZnO/ CuO nanocomposites synthesized using Vaccinium arctostaphylos L. fruit extract. Artificial Cells Nanomedicine and Biotechnology 46(1):1200–1209 47. Gupta A, Srivastava P, Bahadur L, Amalnerkar DP, Chauhan R (2014) Comparison of physical and electrochemical properties of ZnO prepared via different surfactant-assisted precipitation routes. Appl Nanosci 5(7):787–794 48. Imran K (2013) Structural and optical properties of Zr doped ZnO nano particles. Opt Mater 35:1189–1193 49. Mornani EG, Mosayebian P, Dorranian D, Behzad K (2016) Effect of calcination temperature on the size and optical properties of synthesized ZnO nanoparticles. Journal of Ovonic Research 12(2):75–80 50. Yung MMN, Mouneyrac C, Leung KMY (2014) Ecotoxicity of zinc oxide nanoparticles in the marine environment. Encyclopedia of Nanotechnology:1–17 51. Talam S, Karumuri SR, Gunnam N (2012) Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. ISRN Nano Article ID 372505: 1–6 52. Akhil K, Khan SS (2017) Effect of humic acid on the toxicity of bare and capped ZnO nanoparticles on bacteria, algal and crustacean systems. J Photochem Photobio B 167:136–149 53. Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ (2015) Green synthesis of metallic nanoparticles via biological entities. Materials 8(11): 7278–7308 54. Stankic S, Suman S, Haque F, Vidic J (2016) Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. J Nanobiotechnol 14(1):73 55. Ayepola OO, Ishola RO (2009) Evaluation of antimicrobial activity of Anacardium occidentale L. Advances in Medical and Dental Sciences 3:1–3 56. Chung KT, Wong TY, Huang YW, Lin Y (1998) Tannins and human health: a review. Critical Reviews in Food Science and Nutrition. 38:421–464
(1)
[1] Godoy Jr, C. H. (2021). Augmented Reality for Education: A Review. Augmented Reality for Education: A Review, 5(6). 10.38124/IJISRT20JUN256 [2] Ke, F., & Hsu, Y. C. (2015). Mobile augmented-reality artifact creation as a component of mobile computer-supported collaborative learning. The Internet and Higher Education, 26, 33-41. https://doi.org/10.1016/j.iheduc.2015.04.003 [3] Kamal, A. A., & Junaini, S. N. (2019). The effects of design-based learning in teaching augmented reality for pre-university students in the ict competency course. International Journal of Scientific and Technology Research, 8(12), 2726-2730. [4] Mystakidis, S., Christopoulos, A., & Pellas, N. (2021). A systematic mapping review of augmented reality applications to support STEM learning in higher education. Education and Information Technologies, 1-45. https://doi.org/10.1007/s10639-021-10682-1 [5] Anikina, O. V., & Yakimenko, E. V. (2015). Edutainment as a modern technology of education. Procedia-Social and Behavioral Sciences, 166, 475-479. https://doi.org/10.1016/j.sbspro.2014.12.558 [6] Jalaluddin, I., Ismail, L., & Darmi, R. (2020). Developing vocabulary knowledge among low achievers: Mobile augmented reality (MAR) practicality. International Journal of Information and Education Technology, 10(11), 813-819. [7] L. H. Tho and C. A. Daud, Science Form 3. Selangor Darul Ehsan, Malaysia: SASBADI SDN. BHD., 2019. [Online]. Available: https://sasbadisb.com/download-centre/textbook/dual-languageprogramme-dlp/science-dlp/science-form-3-dlp [8] “Nota Sains Tingkatan 3”, DnoApps, 07-Aug-2020. [Online]. Available: https://m.apkpure.com/nota-sains-tingkatan- 3/com.dnoapps.notasainstingkatan3 [9] T. Tan, “Cell world,” Genetic Engineering & Biotechnology News, 22-Oct-2018. [Online]. Available: https://www.genengnews.com/resources/cell-world/. [10] “Space 4D+,” AppAdvice. 2015. [Online]. Available: https://appadvice.com/app/space-4d/1018109847. [11] Lewis, J. R (2006). Usability testing. In G. Salvendy (Ed.), Handbook of Human Factors and Ergonomics (3rd ed.) (pp. 1275-1316). New York, NY: John Wiley. [12] Mohsin, N. F., Jali, S. K., Arnab, S., Bandan, M. I., & Ma, M. (2022). The Adoption of Digital Games Among Older Adults. International Journal of Advanced Computer Science and Applications, 13(2). [13] Kamal, A. A., Junaini, S. N., & Hashim, A. H. (2022). Evaluating the Effectiveness and Usability of AR-based OSH Application: HazHunt. International Journal of Advanced Computer Science and Applications, 13(5). [14] Dutta, R., Mantri, A., & Singh, G. (2022). Evaluating system usability of mobile augmented reality application for teaching Karnaugh-Maps. Smart Learning Environments, 9(1), 1-27. [15] Bangor, A., Kortum, P. T., & Miller, J. T. (2008). An empirical evaluation of the system usability scale. Intl. Journal of Human–Computer Interaction, 24(6), 574-594.
(1)
[1] Gonzalez, R.C., Woods, R.E.: ‘Digital image processing’ (Pearson/Prentice Hall, USA, 2010, 3rd Edn), p. 976 [2] Hill, D.L.G., Batchelor, P.G., Holden, M., et al.: ‘Medical image registration’, Phys. Med. Biol., 2001, 46, pp. 1–45 [3] Witt, N., Wong, T.Y., Hughes, A.D., et al.: ‘Abnormalities of retinal microvascular structure and risk of mortality from ischemic heart disease and stroke’, Hypertension, 2006, 47, (5), pp. 975–981 [4] James, M.: ‘Cost effectiveness analysis of screening for sight threatening diabetic eye disease’, Br. Med. J., 2000, 320, (7250), pp. 1627–1631 [5] Abbasi-sureshjani, M. F. S., Romeny, H., Sarti, A.: ‘Analysis of vessel connectivities in retinal images by cortically inspired spectral clustering’, J. Math. Imaging Vis., 2016, 56, (1), pp. 158–172 [6] Kipli, K., Jiris, C., Sahari, S. K., et al.: ‘Morphological and otsu‘ s thresholding -based retinal blood vessel segmentation for detection of retinopathy’, Int. J. Eng. Tecnol., 2018, 7, (3.18), pp. 16–20 [7] De Silva, D. A., Manzano, J.J.F., Liu, E.Y., et al.: ‘Retinal microvascular changes and subsequent vascular events after ischemic stroke’, Neurology, 2011, 77, (9), pp. 896–903 [8] Henderson, A.D., Bruce, B.B., Newman, N.J., et al.: ‘Hypertension-related eye abnormalities and the risk of stroke’, Rev. Neurol. Dis., 2011, 8, (404), pp. 1–9 [9] Kawasaki, R., Xie, J., Cheung, N., et al.: ‘Retinal microvascular signs and risk of stroke: the multi-ethnic study of atherosclerosis (MESA)’, Stroke, 2012, 43, (12), pp. 3245–3251 [10] Moss, H.E.: ‘Retinal vascular changes are a marker for cerebral vascular diseases’, Curr. Neurol. Neurosci. Rep., 2016, 15, (7), pp. 1–9 [11] Grosso, A.: ‘Hypertensive retinopathy revisited: some answers, more questions’, Br. J. Ophthalmol., 2005, 89, (12), pp. 1646–1654 [12] Ong, Y., Wong, T., Klein, R., et al.: ‘Hypertensive retinopathy and risk of stroke’, Hypertension, 2013, 62, (4), pp. 706–711 [13] Cheung, C. Y. L., Tay, W.T., Ikram, M.K., et al.: ‘Retinal microvascular changes and risk of stroke: the Singapore malay eye study’, Stroke, 2013, 44, (9), pp. 2402–2408 [14] Doubal, F. N., Hokke, P. E., Wardlaw, J. M.: ‘Retinal microvascular abnormalities and stroke: a systematic review’, J. Neurol. Neurosurg. Psychiatry, 2009, 80, (2), pp. 158–165 [15] Baker, M.L., Hand, P.J., Wang, J.J., et al.: ‘Retinal signs and stroke: revisiting the link between the eye and brain’, Stroke, 2008, 39, (4), pp. 1371–1379 [16] Al-Diri, B., Hunter, A., Steel, D., et al.: ‘REVIEW - a reference data set for retinal vessel profiles’. Conf. Proc. IEEE Eng. Med. Biol. Soc, Vancouver, BC, Canada, 2008, pp. 2262–2265 [17] Hoque, M. E., Kipli, K., Zulcaffle, T.M.A., et al.: ‘Feature extraction method of retinal vessel diameter’. 2018 IEEE-EMBS Conf. on Biomedical Engineering and Sciences (IECBES), Kuching, Malaysia, 2018, pp. 279–283 [18] Kipli, K., Hoque, M.E., Lim, L.T., et al.: ‘A review on the extraction of quantitative retinal microvascular image feature’, Comput. Math. Methods Med., 2018, 2018, pp. 1–21 [19] Guedri, H., Ben Abdallah, M., Echouchene, F., et al.: ‘Novel computerized method for measurement of retinal vessel diameters’, Biomedicines, 2017, 5, (2), p. 12 [20] Al-Diri, B., Hunter, A., Steel, D.: ‘An active contour model for segmenting and measuring retinal vessels’, IEEE Trans. Med. Imaging, 2009, 28, (9), pp. 1488–1497 [21] Aliahmad, B., Kumar, D. K.: ‘Adaptive Higuchi ‘ s dimension-based retinal vessel diameter measurement’. 2016 38th Annual Int. Conferenece of the IEEE Engineering in Medicine and Biology Society(EMBC), Orlando, FL, USA, 2016, pp. 1308–1311 [22] City, I., Xu, X., Niemeijer, M., et al.: ‘Retinal vessel width measurements based on a graph-theoretic method’. Proc. - Int. Symp. Biomed. Imaging, Chicago, IL, USA, 2011, pp. 641–644 [23] Xu, X., Niemeijer, M., Song, Q., et al.: ‘Vessel boundary delineation on fundus images using graph-based approach’, IEEE Trans. Med. Imaging, 2011, 30, (6), pp. 1184–1191 [24] Aliahmad, B., Kumar, D. K., Janghorban, S., et al.: ‘Retinal vessel diameter measurement using multi-step regression method’. 2012 ISSNIP Biosignals Biorobotics Conf. Biosignals Robot. Better Safer Living, Manaus, Brazil, 2012, pp. 1–4 [25] Lupaşcu, C.A., Tegolo, D., Trucco, E.: ‘Accurate estimation of retinal vessel width using bagged decision trees and an extended multiresolution hermite model’, Med. Image Anal., 2013, 17, (8), pp. 1164–1180 [26] Vázquez, S. G., Barreira, N., Penedo, M.G., et al.: ‘Evaluation of SIRIUS retinal vessel width measurement in REVIEW dataset’. Proc. CBMS 2013– 26th IEEE Int. Symp. Comput. Med. Syst., Porto, Portugal, 2013, pp. 71–76 [27] Kumar, D. K., Aliahmad, B., Hao, H.: ‘Retinal vessel diameter measurement using unsupervised linear discriminant analysis’, ISRN. Ophthalmol., 2012, 2012, pp. 1–7 [28] Hoque, M. E., Kipli, K., Zulcaffle, T.M.A., et al.: ‘Segmentation of retinal microvasculature based on iterative self-organizing data analysis technique (ISODATA)’. 2019 Int. UNIMAS STEM 12th Eng. Conf. EnCon 2019 - Proc., Kuching, Malaysia, 2019, pp. 59–64 [29] Wang, L., Zhang, Y., Feng, J.: ‘On the Euclidean distances of images’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (8), pp. 1334–1339 [30] Pratt, W.K.: ‘Digital image processing’ (John Wiley & Sons, Inc, USA, 2001, 3rd Edn.)
(1)
1. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. http://www.deeplearningbook.org. 2. Gupta M, Rajnish K, Bhattacharjee V. Impact of parameter tuning for optimizing deep neural network models for predicting software faults. Sci Program. 2021;1–17.https://doi.org/10.1155/2021/6662932. 3. Sulayman N. Deep Learning-based Predictive Model of mRNA Vaccine Deterioration: An Analysis of the Stanford COVID-19 mRNA Vaccine Dataset. Baghdad Sci. J . 2023;20(4(SI):1451-8. https://doi.org/10.21123/bsj.2023.8504. 4. Zhou P, Feng J, Ma C, et al. Towards theoretically understanding why sgd generalizes better than adam in deep learning. Adv Neural Inf Process Syst. 2020;33:21285–21296. 5. Wotaifi TA, Dhannoon BN. An Effective Hybrid Deep Neural Network for Arabic Fake News Detection. Baghdad Sci. J . 2023;20(4):1392. https://doi.org/10.21123/bsj.2023.7427. 6. Aggarwal CC. Neural networks and deep learning: A textbook. 2nd ed. Springer International Publishing; 2023. https://doi.org/10.1007/978-3-031-29642-0 7. Abadi M, Barham P, Chen J, et al. TensorFlow: A system for large-scale machine learning. 2016. 8. Mou L, Jin Z. Tree-Based Convolutional Neural Networks: Principles and Applications. 1st ed. Springer Publishing Company, Incorporated; 2018. https://doi.org/10.1007/978-981-13-1870-2 9. Tian Y, Zhang Y, Zhang H. Recent Advances in Stochastic Gradient Descent in Deep Learning. Mathematics. 2023;11(3):682. http://dx.doi.org/10.3390/math11030682. 10. Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. In: Teh YW, Titterington DM, editors. AISTATS, JMLR Proceedings, vol. 9; 2010. p. 249–256.
(1)
1. Goyen M, Barkhausen J, Markschies NA, Debatin JF. The pelvic digitea rare developmental anomaly. A case report with CT correlation and review of the literature. Acta Radiol. 2000;41(4):317e319. 2. Ogul H, Pirimoglu B, Genc B, Bayraktutan U, Kantarci M. The pelvic digit anomaly in a patient with multiple fractures: does it mimic the fracture? Am J Emerg Med. 2013;31(10):1537 e1e2. 3. Sullivan D, Cornwell WS. Pelvic rib. Report of a case. Radiology. 1974;110(2):355e357. 4. Moreta-Suarez J, de Ugarte-Sobron OS, Sanchez-Sobrino A, Martinez-De Los Mozos JL. The pelvic digit: a rare congenital anomaly as a cause of hip pain. J Orthop Case Rep. 2012;2(4):19e22. 5. Khatri K, Goyal D, Paul R, Sandhu HS. Two pelvic digits on same side: double trouble? J Clin Diagn Res. 2015;9(6):RD04eRD05. 6. Maegele M. Pelvic digit as a rare cause of chronic hip pain and functional impairment: a case report and review of the literature. J Med Case Rep. 2009;3:139. 7. Greenspan A, Norman A. The "pelvic digit"ean unusual developmental anomaly. Skeletal Radiol. 1982;9(2):118e122. 8. Carton P, Filan D. Arthroscopic resection of a large bony exostosis arising from the anterior inferior iliac spine causing extra-articular hip impingement: a case series. J Orthop Case Rep. 2016;6(5):76e80. 9. Hoeffel C, Hoeffel JC, Got I. Bilateral pelvic digits. A case report and review of the literature. R€ofo. 1993;158(3):275e276. 10. Rijal L, Nepal P. Multiple Pelvic digits: a rare congenital anomaly. Eur J Orthop Surg Traumatol. 2010;20(5):411e413.
(1)
1.G. Quincot, M. Azenha, J. Barros and R. Faria, Projetos De Investigação Cientifica E Desenvolvimento Tecnologico Portugal, 2011. Show Context Google Scholar 2.K. DeAngelis, "Methods of Soil Analysis: Part I Physical and mineralogical properties; American Society of Agronomy Madison Wisconsin USA", Meas. soil moisture content by Gravim. method, pp. 1-2, 2007. Show Context Google Scholar 3.J. Hu, Using Moisture Sensor to Monitor Fresh Concrete Uniformity, vol. 6, 2005. Show Context Google Scholar 4.M. Jamil, M. K. Hassan, H. M. A. Al-Mattarneh and M. F. M. Zain, "Concrete dielectric properties investigation using microwave nondestructive techniques", Materials and Structures/Materiaux et Constructions, vol. 46, no. 1-2, pp. 77-87, 2013. Show Context CrossRef Google Scholar 5.M. Nazmul A, "Concrete Moisture Content Measurement Using Interdigitated Near-Field Sensors", Story Hear. Blog, vol. 10, no. 7, pp. 1243-1248, 2014. Show Context Google Scholar 6.Q. Kong, Q. Feng and G. Song, "Water presence detection in a concrete crack using smart aggregates", International Journal of Smart and Nano Materials, vol. 6, no. 3, pp. 149-161, 2015. Show Context CrossRef Google Scholar 7.S. Zhou, F. Deng, L. Yu, B. Li, X. Wu and B. Yin, "A novel passive wireless sensor for concrete humidity monitoring", Sensors (Switzerland), vol. 16, no. 9, 2016. Show Context CrossRef Google Scholar 8.C. Strangfeld, S. Johann, M. Muller and M. Bartholmai, "Embedded passive RFID-based sensors for moisture monitoring in concrete", Proc. IEEE Sensors, vol. 2017-Decem, pp. 1-3, 2017. Show Context View Article Full Text: PDF (489KB) Google Scholar 9.A. Hasan, R. Bhattacharyya and S. Sarma, "Towards pervasive soil moisture sensing using RFID tag antenna-based sensors", 2015 IEEE Int. Conf. RFID Techno!. Appl. RFID-TA 2015 pp, pp. 165-170, 2016. Show Context View Article Full Text: PDF (807KB) Google Scholar 10.S. G. N. Murthy, "Batteryless Wireless RFID based Embedded Sensors for Long Term Monitoring of Reinforced Concrete Structures", 2015 Int. Symp. Non-Destructive Test. Civ. Eng., pp. 1-8, 2015. Show Context Google Scholar 11.P. Sinhmar, "Specified Density Concrete - A Transition", Int. J. Adv. Technol. Eng. Res., vol. 1, no. 1, pp. 30-35, 2012. Show Context Google Scholar 12.M. Jamil, M. K. Hassan, H. M. A. Al-Mattarneh and M. F. M. Zain, "Concrete dielectric properties investigation using microwave nondestructive techniques", Mater. Struct. Constr., vol. 46, no. 1-2, pp. 77-87, 2013. Show Context CrossRef Google Scholar
(1)
[1] G. Saon, H. Soltau, D. Nahamoo, and M. Picheny, Speaker adaptation of neural network acoustic models using i-vectors, 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, 2013, 55–59. [2] Y. Miao, H. Zhang, and F. Metze, Speaker adaptive training of deep neural network acoustic models using i-vectors, IEEE/ACM Transactions on Audio, Speech, and Language Processing, 23, 2015, 1938–1949. [3] L. Sarı, N. Moritz, T. Hori, and J. Le Roux, Unsupervised speaker adaptation using attention-based speaker memory for end-to-end asr, 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, 7384–7388. [4] W. H. Kang and N. S. Kim, Unsupervised learning of total variability embedding for speaker with random digit strings, APPLIED SCIENCES-BASEL, 9, 2019. [5] A. Nagrani, J. S. Chung, W. Xie, and A. Zisserman, Voxceleb: Large-scale speaker verification in the wild, Computer Speech and Language, 60, 2020. [6] D. V. Thanh, T. P. Viet, and T. N. T. Thu, Deep speaker verification model for low-resource languages and vietnamese dataset, 2021, 442–451. [7] D. Snyder, D. Garcia-Romero, D. Povey, and S. Khudanpur, Deep neural network embeddings for text-independent speaker verification, International Speech Communication Association, INTERSPEECH, International Speech Communication Association, 2017, 999–1003. [8] S. Baghel, S. Ramoji, S. Sidharth, H. Ranjana, P. Singh, S. Jain, P. R. Chowdhuri, K. Kulkarni, S. Padhi, D. Vijayasenan, and S. Ganapathy, DISPLACE Challenge: diarization of speaker and language in conversational environments, ArXiv.Org, 2023. [9] Z. Wang and J. H. L. Hansen, Multi-source domain adaptation for text-independent forensic speaker recognition, IEEE/ACM Transactions on Audio Speech and Language Processing, 30, 2022, 60–75. [10] H. Gish, M. H. Siu, and R. Rohlicek, Segregation of speakers for speech recognition and speaker identification, Proceedings - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, 2, 1991,873–876. [11] S. S. Chen and G. P. S., Speaker, environment and channel change detection and clustering via the bayesian information criterion, DARPA Broadcast News Transcription and Understanding Workshop, 1998, 127–132. [12] U. Jain, M. A. Siegler, S.-J. Doh, E. Gouvea, J. Huerta, P. J. Moreno, B. Raj, and R. M. Stern, Recognition of continuous broadcast news with multiple unknown speakers and environments, DARPA Speech Recognition Workshop, 1996, 61. [13] W. W. Lin, M. W. Mak, and J. T. Chien, Multisource i-vectors domain adaptation using maximum mean discrepancy based autoencoders, IEEE/ACM Transactions on Audio Speech and Language Processing, 26, 2018, 2412–2422. [14] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur, X-Vectors: Robust dnn embeddings for speaker recognition, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Institute of Electrical and Electronics Engineers Inc., 2018, 5329–5333. [15] P. Cabañas-Molero, M. Lucena, J. M. Fuertes, P. Vera-Candeas, and N. Ruiz-Reyes, Multimodal speaker diarization for meetings using volume-evaluated srp-phat and video analysis, Multimedia Tools and Applications, 77, 2018, 27685–27707. [16] K. Akesbi and S. Gandhi, Diarizers: A repository for fine-tuning speaker diarization models, https://github.com/huggingface/diarizers, 2024 (accessed 23.10.2024). [17] T. J. Park, N. Kanda, D. Dimitriadis, K. J. Han, S. Watanabe, and S. Narayanan, A review of speaker diarization: recent advances with deep learning, Computer Speech and Language, 72, 2022. [18] Z. Jin, Y. Yang, M. Shi, W. Kang, X. Yang, Z. Yao, F. Kuang, L. Guo, L. Meng, L. Lin, Y. Xu, S.-X. Zhang, and D. Povey, LibriheavyMix: A 20,000-hour dataset for single-channel reverberant multi-talker speech separation, asr and speaker diarization, 2024,702–706. [19] V. Khoma, Y. Khoma, V. Brydinskyi, and A. Konovalov, Development of supervised speaker diarization system based on the pyannote audio processing library, Sensors (Basel, Switzerland), 23, 2023. [20] L. Besacier, E. Barnard, A. Karpov, and T. Schultz, Automatic speech recognition for under-resourced languages: a survey, Speech Communication, 2014. [21] S. S. Juan, Exploiting Resources from Closely-Related Languages for Automatic Speech Recognition in Low-Resource Languages from Malaysia, PhD dissertation, Grenoble-Alpes University, France, 2015. [22] I. Aman and R. Mustaffa, Social variation of malay language in kuching, sarawak, malaysia:a study on accent, identity and integration, 2009. [23] J. T. Collins, The study of sarawak malay in context, 2021. [24] D. M. Eberhard, G. F. Simons, and C. D. Fennig, Ethnologue: Languages of the World., Twenty-seventh Online version., Dallas, Texas: SIL International, 2024. [25] L. Shamseer, D. Moher, M. Clarke, D. Ghersi, A. Liberati, M. Petticrew, P. Shekelle, L. A. Stewart, D. G. Altman, A. Booth, A. W. Chan, S. Chang, T. Clifford, K. Dickersin, M. Egger, P. C. Gøtzsche, J. M. Grimshaw, T. Groves, M. Helfand, J. Higgins, T. Lasserson, J. Lau, K. Lohr, J. McGowan, C. Mulrow, M. Norton, M. Page, M. Sampson, H. Schünemann, I. Simera, W. Summerskill, J. Tetzlaff, T. A. Trikalinos, D. Tovey, L. Turner, and E. Whitlock, Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015: elaboration and explanation, BMJ (Clinical Research Ed.), 350, 2015. [26] S. Alharbi, M. Alrazgan, A. Alrashed, T. Alnomasi, R. Almojel, R. Alharbi, S. Alharbi, S. Alturki, F. Alshehri, and M. Almojil, Automatic speech recognition: systematic literature review, IEEE Access, 9, 2021,131858–131876. [27] C. Deka, A. Shrivastava, A. K. Abraham, S. Nautiyal, and P. Chauhan, AI-Based Automated Speech Therapy Tools for Persons with Speech Sound Disorder: A Systematic Literature Review, Speech, Language and Hearing, 2024. [28] M. S. Jahan and M. Oussalah, A systematic review of hate speech automatic detection using natural language processing, Neurocomputing, 546, 2023,126232. [29] M. M. Kabir, M. F. Mridha, J. Shin, I. Jahan, and A. Q. Ohi, A survey of speaker recognition: fundamental theories, recognition methods and opportunities, IEEE Access, 9, 2021,79236 – 79263. [30] X. A. Miro, S. Bozonnet, N. Evans, C. Fredouille, G. Friedland, and O. Vinyals, Speaker Diarization: A review of recent research, IEEE Transactions on Audio, Speech and Language Processing, 20, 2012,356–370. [31] V. Sethuram, A. Prasad, and R. R. Rao, Optimal trained artificial neural network for telugu speaker diarization, Evolutionary Intelligence, 13, 2020, 631–648. [32] A. Q. Ohi, M. F. Mridha, M. A. Hamid, and M. M. Monowar, Deep speaker recognition: process, progress, and challenges, IEEE Access, 9, 2021,89619–89643. [33] S. Meignier and T. Merlin, LIUM SPKDIARIZATION: An open source toolkit for diarization, 2010. [34] S. Kanwal, K. Malik, K. Shahzad, and Z. A. F. and Nawaz, Urdu named entity recognition: corpus generation and deep learning, ACM Transactions on Asian And Low-Resource Language Information, 19, 2020. [35] A. Jati and P. Georgiou, Neural predictive coding using convolutional neural networks toward unsupervised learning of speaker characteristics, IEEE/ACM Transactions on Audio Speech and Language Processing, 27, 2019,1577 – 1589. [36] J. Karadayi, C. Scaff, J. Stieglitz, and A. Cristia, Diarization in maximally ecological recordings: data from tsimane children, 6th Workshop on Spoken Language Technologies for Under-Resourced Languages, SLTU 2018, 2018, 30–35. [37] H. Taherian, Z.-Q. Wang, and W. DeLiang, Deep learning based multi-channel speaker recognition in noisy and reverberant environments, Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, 2019, 4070 – 4074. [38] X. A. Miro, S. Bozonnet, N. Evans, C. Fredouille, G. Friedland, and O. Vinyals, Speaker diarization: a review of recent research, IEEE Transactions on Audio, Speech and Language Processing, 20, 2012, 356–370. [39] E. Alsharhan and A. Ramsay, Investigating the effects of gender, dialect, and training size on the performance of arabic speech recognition, Language Resources And Evaluation, 54, 2020,975–998. [40] Q. Li, F. L. Kreyssig, C. Zhang, and P. C. Woodland, Discriminative neural clustering for speaker diarisation, 2021 IEEE Spoken Language Technology Workshop, SLT 2021 - Proceedings, 2021, 574 – 581. [41] M. K. Nammous, K. Saeed, and P. Kobojek, Using a small amount of text-independent speech data for a bilstm-scale speaker identification approach, Journal Of King Saud University-Computer And Information Sciences, 34, 2022,764–770. [42] A. Mane, J. Bhopale, R. Motghare, and P. Chimurkar, An overview of speaker recognition and implementation of speaker diarization with transcription, International Journal of Computer Applications, 175, 2020,1–6. [43] N. Kanda, S. Horiguchi, Y. Fujita, Y. Xue, K. Nagamatsu, and S. Watanabe, Simultaneous speech recognition and speaker diarization for monaural dialogue recordings with target-speaker acoustic models, 2019 IEEE Automatic Speech Recognition and Understanding Workshop, ASRU 2019 - Proceedings, 2019, 31 – 38. [44] Z. Bai and X.-L. Zhang, Speaker recognition based on deep learning: an overview, Neural Networks, 140, 2021,65 – 99. [45] G. A. Levow, Investigating speaker diarization of endangered language data, COMPUTEL 2023 - 6th Workshop on the Use of Computational Methods in the Study of Endangered Languages, Proceedings of the Workshop, Association for Computational Linguistics, 2023, 38–44. [46] H. Bredin, R. Yin, J. M. Coria, G. Gelly, P. Korshunov, M. Lavechin, Di. Fustes, H. Titeux, W. Bouaziz, and M.-P. Gill, Pyannote.Audio: neural building blocks for speaker diarization, ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2020, 7124 – 7128. [47] J. Karadayi, C. Scaff, J. Stieglitz, and A. Cristia, Diarization in maximally ecological recordings: data from tsimane children, 6th Workshop on Spoken Language Technologies for Under-Resourced Languages, SLTU 2018, 2018, 30–35. [48] R. Jahangir, Y. W. Teh, N. A. Memon, G. Mujtaba, M. Zareei, U. Ishtiaq, M. Z. Akhtar, and I. Ali, Text-independent speaker identification through feature fusion and deep neural network, IEEE Access, 8, 2020,32187–32202. [49] A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, and K. Shaalan, Speech recognition using deep neural networks: a systematic review, IEEE Access, 7, 2019,19143–19165. [50] T. J. Park, K. J. Han, J. Huang, X. He, B. Zhou, P. Georgiou, and S. Narayanan, Speaker diarization with lexical information, Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, 2019, 391 – 395. [51] M. Diez, L. Burget, S. Wang, J. Rohdin, and H. Černocký, Bayesian hmm based x-vector clustering for speaker diarization, Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, 2019, 346 – 350. [52] F. Landini, S. Wang, M. Diez, L. Burget, P. Matejka, K. Zmolikova, L. Mosner, A. Silnova, O. Plchot, O. Novotny, H. Zeinali, and J. Rohdin, But system for the second dihard speech diarization challenge, ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2020, 6529 – 6533. [53] A. A. Joshy and R. Rajan, Automated Dysarthria Severity Classification: A study on acoustic and deep learning techniques, IEEE Transactions on Neural Systems And Rehabilitation Engineering, 30, 2022,1147–1157. [54] N. Ryant, K. Church, C. Cieri, A. Cristia, J. Du, S. Ganapathy, and M. Liberman, The second dihard diarization challenge: dataset, task, and baselines, Interspeech, 2019-September, 2019, 978–982. [55] M. Diez, L. Burget, and P. Matějka, Speaker diarization based on bayesian hmm with eigenvoice priors, Speaker and Language Recognition Workshop, ODYSSEY 2018, 2018, 147 – 154. [56] E. Prud’hommeaux, R. Jimerson, R. Hatcher, and K. Michelson, Automatic speech recognition for supporting endangered language, Language Documentation & Conservation, 15, 2021, 491–513.
(1)
[1] Guba, E. G., & Lincoln, Y. S. (1994). Competing paradigms in qualitative research. In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research (pp. 105–117). Sage Publications. [2] Velez, A. M. (2008). Evaluating research methods: Assumptions, strengths, and weaknesses of three educational research paradigms.Academic Exchange Extra, 9. https://www.academia.edu/2975957/Evaluating_research_methods_Assumptions_strengths_and_weaknesses_of_three_research_paradigms. [3] Van de Mortel, T. F. (2008). Faking it: Social desirability response bias in self-report research. The Australian Journal of Advanced Nursing, 25(4), 40–48. [4] DiCicco‐Bloom, B., & Crabtree, B. F. (2006). The qualitative research interview. Medical Education, 40(4), 314–321. [5] Huang, N. , Tang, F. , Dong, W. , & Xu, C. . (2022). Draw your art dream: diverse digital art synthesis with multimodal guided diffusion [6] Rippegather, D. . (2021). Virtual museum to showcase engineering innovation. Welding and Cutting(2), 20. [7] Zhou, Y., Feng, T., Shuai, S., Xiangdong, L. I., Sun, L., & Duh, B. L. (2022). Edvam: a 3D eye-tracking dataset for visual attention modeling in a virtual museum, 23(1), 12. [8] Delaplaine, S. (2022). The Brave New Virtual Art World The Evolution of Digital Art: NFTs and their Effects on the Art Market in 2021 (Doctoral dissertation, Sotheby's Institute of Art-New York).
(1)
1. Haddad et al. Acetabular Reconstruction with more listed allograft and ring support. Just 1999;14(7):788-795. Arthroplasty 2. Sameer Jain, Richard J. Grogan, Peter V. Giannoudis. Option for managing severe Acetabular bone loss in revision hip arthroplasty. A systematic review. Hip Int 2014;24(2):109-122.
(1)
[1] H. A. Halim, M. I. Hamzah, and H. Zulkifli, “A systematic review on the formative assessment practice in teaching and learning in secondary school,” International Journal of Evaluation and Research in Education (IJERE), vol. 13, no. 2, pp. 1173–1183, Apr. 2024, doi: 10.11591/ijere.v13i2.26187. [2] R. Stiggins, “The revolutionary international transformation of educational assessment,” in Educational Assessment: the Influence of Paul Black on Research, Pedagogy and Practice, Bloomsbury Publishing, 2023, pp. 79–91. doi: 10.5040/9781350288522.ch-6. [3] P. Black and D. Wiliam, “Classroom assessment and pedagogy,” Assessment in Education: Principles, Policy and Practice, vol. 25, no. 6, pp. 551–575, Nov. 2018, doi: 10.1080/0969594X.2018.1441807. [4] A. M. Lui and H. L. Andrade, “The next black box of formative assessment: a model of the internal mechanisms of feedback processing,” Frontiers in Education, vol. 7, Feb. 2022, doi: 10.3389/feduc.2022.751548. [5] L. H. Schellekens, H. G. J. Bok, L. H. de Jong, M. F. van der Schaaf, W. D. J. Kremer, and C. P. M. van der Vleuten, “A scoping review on the notions of Assessment as Learning (AaL), Assessment for Learning (AfL), and Assessment of Learning (AoL),” Studies in Educational Evaluation, vol. 71, p. 101094, Dec. 2021, doi: 10.1016/j.stueduc.2021.101094. [6] J. H. Nieminen, M. Bearman, and J. Tai, “How is theory used in assessment and feedback research? A critical review,” Assessment and Evaluation in Higher Education, vol. 48, no. 1, pp. 77–94, Jan. 2023, doi: 10.1080/02602938.2022.2047154. [7] M. E. Barnes and L. Qasserras, “Low assessment literacy in an assessment-obsessed field: What teacher candidates learn about assessment during teacher education,” Journal of Curriculum and Pedagogy, pp. 1–26, May 2024, doi: 10.1080/15505170.2024.2354187. [8] H. T. Gebremariam and A. D. Gedamu, “Assessment for learning strategies: Amharic language teachers’ practice and challenges in Ethiopia,” International Journal of Language Education, vol. 6, no. 2, pp. 128–140, Jun. 2022, doi: 10.26858/ijole.v6i2.20505. [9] H. T. Gebremariam and A. D. Gedamu, “Primary school teachers’ assessment for learning practice for students’ learning improvement,” Frontiers in Education, vol. 8, Apr. 2023, doi: 10.3389/feduc.2023.1145195. [10] Z. Yan and S. Pastore, “Are teachers literate in formative assessment? The development and validation of the teacher formative assessment literacy scale,” Studies in Educational Evaluation, vol. 74, p. 101183, Sep. 2022, doi: 10.1016/j.stueduc.2022.101183. [11] A. Coombs and C. DeLuca, “Mapping the constellation of assessment discourses: a scoping review study on assessment competence, literacy, capability, and identity,” Educational Assessment, Evaluation and Accountability, vol. 34, no. 3, pp. 279–301, Aug. 2022, doi: 10.1007/s11092-022-09389-9. [12] L. Wang, I. Lee, and M. Park, “Chinese university EFL teachers’ beliefs and practices of classroom writing assessment,” Studies in Educational Evaluation, vol. 66, p. 100890, Sep. 2020, doi: 10.1016/j.stueduc.2020.100890. [13] S. Schut, S. Heeneman, B. Bierer, E. Driessen, J. van Tartwijk, and C. van der Vleuten, “Between trust and control: Teachers’ assessment conceptualisations within programmatic assessment,” Medical Education, vol. 54, no. 6, pp. 528–537, Jun. 2020, doi: 10.1111/medu.14075. [14] P. D. Nichols and G. Gianopulos, “Arguing about the effectiveness of assessments for the classroom,” Journal of Mathematical Behavior, vol. 61, p. 100839, Mar. 2021, doi: 10.1016/j.jmathb.2020.100839. [15] K. Schildkamp, F. M. van der Kleij, M. C. Heitink, W. B. Kippers, and B. P. Veldkamp, “Formative assessment: A systematic review of critical teacher prerequisites for classroom practice,” International Journal of Educational Research, vol. 103, p. 101602, 2020, doi: 10.1016/j.ijer.2020.101602. [16] F. Van Der Kleij and L. Adie, “Towards effective feedback: an investigation of teachers’ and students’ perceptions of oral feedback in classroom practice,” Assessment in Education: Principles, Policy and Practice, vol. 27, no. 3, pp. 252–270, May 2020, doi: 10.1080/0969594X.2020.1748871. [17] R. Goh and K. H. Kiat Tan, “Teachers’ qualitatively different ways of experiencing assessment feedback: Implications for teacher assessment literacy,” Chinese Journal of Applied Linguistics, vol. 46, no. 2, pp. 253–269, 2023, doi: 10.1515/CJAL-2023-0207. [18] A. de Bruin, L. J. Hoversten, and C. D. Martin, “Interference between non-native languages during trilingual language production,” Journal of Memory and Language, vol. 128, p. 104386, Feb. 2023, doi: 10.1016/j.jml.2022.104386. [19] W. Fanrong and S. Bin, “Language assessment literacy of teachers,” Frontiers in Psychology, vol. 13, May 2022, doi: 10.3389/fpsyg.2022.864582. [20] I. Gozali, I. Fitriyah, U. Widiati, and B. Y. Cahyono, “Celebrating mistakes: the alignment of assessment for learning (AfL) and motivational strategy (MotS) in a constrained context,” Applied Research on English Language, vol. 12, no. 4, pp. 71–102, 2023, doi: 10.22108/are.2024.139553.2178. [21] M. Wyatt, “Research into second language learners’ and teachers’ self‐efficacy beliefs: making the connections,” TESOL Quarterly, vol. 55, no. 1, pp. 296–307, Mar. 2021, doi: 10.1002/tesq.3010. [22] C. Rouffet, C. van Beuningen, and R. de Graaff, “Constructive alignment in foreign language curricula: an exploration of teaching and assessment practices in Dutch secondary education,” Language Learning Journal, vol. 51, no. 3, pp. 344–358, May 2023, doi: 10.1080/09571736.2022.2025542. [23] P. P. Chen and S. M. Bonner, “A framework for classroom assessment, learning, and self-regulation,” Assessment in Education: Principles, Policy and Practice, vol. 27, no. 4, pp. 373–393, Jul. 2020, doi: 10.1080/0969594X.2019.1619515. [24] P. Black and D. Wiliam, “Assessment and classroom learning,” International Journal of Phytoremediation, vol. 21, no. 1, pp. 7–74, Mar. 1998, doi: 10.1080/0969595980050102. [25] R. Morris, T. Perry, and L. Wardle, “Formative assessment and feedback for learning in higher education: A systematic review,” Review of Education, vol. 9, no. 3, Oct. 2021, doi: 10.1002/rev3.3292. [26] [27] L. S. Vygotsky, Mind-in-Society. Harvard University Press, 1978. S. Newman and A. Latifi, “Vygotsky, education, and teacher education,” Journal of Education for Teaching, vol. 47, no. 1, pp. 4–17, Jan. 2021, doi: 10.1080/02607476.2020.1831375. [28] D. Boud and P. Dawson, “What feedback literate teachers do: an empirically-derived competency framework,” Assessment and Evaluation in Higher Education, vol. 48, no. 2, pp. 158–171, Feb. 2023, doi: 10.1080/02602938.2021.1910928. [29] E. Molloy, D. Boud, and M. Henderson, “Developing a learning-centred framework for feedback literacy,” Assessment and Evaluation in Higher Education, vol. 45, no. 4, pp. 527–540, May 2020, doi: 10.1080/02602938.2019.1667955. [30] N. Sultana, “Language assessment literacy: an uncharted area for the English language teachers in Bangladesh,” Language Testing in Asia, vol. 9, no. 1, p. 1, Dec. 2019, doi: 10.1186/s40468-019-0077-8. [31] Z. Yan and G. T. L. Brown, “Assessment for learning in the Hong Kong assessment reform: A case of policy borrowing,” Studies in Educational Evaluation, vol. 68, p. 100985, Mar. 2021, doi: 10.1016/j.stueduc.2021.100985. [32] A. Khushk, M. I. Dacholfany, D. Abdurohim, and N. Aman, “Social learning theory in clinical setting: Connectivism, Constructivism, and Role Modeling Approach,” Health Economics and Management Review, vol. 3, no. 3, pp. 40–50, 2022, doi: 10.21272/hem.2022.3-04. [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] R. K. Yin, Case study research and applications: design and methods. Sage Publication, Inc, 2018. D. Silverman, Doing qualitative research. Sage Publications Ltd, 2021. J. Swain and B. King, “Using informal conversations in qualitative research,” International Journal of Qualitative Methods, vol. 21, p. 160940692210850, Jan. 2022, doi: 10.1177/16094069221085056. V. Braun and V. Clarke, “One size fits all? What counts as quality practice in (reflexive) thematic analysis?” Qualitative Research in Psychology, vol. 18, no. 3, pp. 328–352, Jul. 2021, doi: 10.1080/14780887.2020.1769238. M. E. Kiger and L. Varpio, “Thematic analysis of qualitative data: AMEE Guide No. 131,” Medical Teacher, vol. 42, no. 8, pp. 846–854, Aug. 2020, doi: 10.1080/0142159X.2020.1755030. J. Soratto, D. E. P. de Pires, and S. Friese, “Thematic content analysis using ATLAS.ti software: potentialities for research in health,” Revista Brasileira de Enfermagem, vol. 73, no. 3, 2020, doi: 10.1590/0034-7167-2019-0250. K. D. Vattøy and S. M. Gamlem, “Teacher–student interactions and feedback in English as a foreign language classrooms,” Cambridge Journal of Education, vol. 50, no. 3, pp. 371–389, May 2020, doi: 10.1080/0305764X.2019.1707512. C. Evertsen, I. Størksen, and N. Kucirkova, “Professionals’ Perceptions of the classroom assessment scoring system as a structure for professional community and development,” European Early Childhood Education Research Journal, vol. 30, no. 5, pp. 701–714, Sep. 2022, doi: 10.1080/1350293X.2022.2031245. H. D. Brown and P. Abeywickrama, Language assessment principles and classroom practise. Pearson, 2019. M. J. Veugen, J. T. M. Gulikers, and P. den Brok, “We agree on what we see: teacher and student perceptions of formative assessment practice,” Studies in Educational Evaluation, vol. 70, p. 101027, Sep. 2021, doi: 10.1016/j.stueduc.2021.101027. J. Enu, “Factors affecting teacher educators adoption of formative assessment strategies in the mathematics classroom,” Journal of Education and Learning (EduLearn), vol. 15, no. 4, pp. 483–489, Nov. 2021, doi: 10.11591/edulearn.v15i4.20341. H. P. Bui and T. T. T. Nguyen, “Classroom assessment and learning motivation: Insights from secondary school EFL classrooms,” IRAL - International Review of Applied Linguistics in Language Teaching, vol. 62, no. 2, pp. 275–300, Jun. 2024, doi: 10.1515/iral- 2022-0020. Z. Gan, C. Leung, J. He, and H. Nang, “Classroom assessment practices and learning motivation: A case study of Chinese EFL students,” TESOL Quarterly, vol. 53, no. 2, pp. 514–529, Jun. 2019, doi: 10.1002/tesq.476. A. C. Koenka, “Grade expectations: the motivational consequences of performance feedback on a summative assessment,” Journal of Experimental Education, vol. 90, no. 1, pp. 88–111, Jan. 2022, doi: 10.1080/00220973.2020.1777069. Z. Gan, Z. An, and F. Liu, “Teacher feedback practices, student feedback motivation, and feedback behavior: How are they associated with learning outcomes?” Frontiers in Psychology, vol. 12, Jun. 2021, doi: 10.3389/fpsyg.2021.697045. S. M. Brookhart and J. H. McMillan, Classroom assessment and educational measurement. New York: Routledge, 2019. doi: 10.4324/9780429507533. A. Rasooli, C. DeLuca, L. Cheng, and A. Mousavi, “Classroom assessment fairness inventory: a new instrument to support perceived fairness in classroom assessment,” Assessment in Education: Principles, Policy and Practice, vol. 30, no. 5–6, pp. 372–395, Nov. 2023, doi: 10.1080/0969594X.2023.2255936. C. F. DiCarlo, A. B. Meaux, and E. H. LaBiche, “Exploring mindfulness for perceived teacher stress and classroom climate,” Early Childhood Education Journal, vol. 48, no. 4, pp. 485–496, Jul. 2020, doi: 10.1007/s10643-019-01015-6.
(1)
[1] Hao, J., Li, W., Zhai, J., and Chen, H. 2019. Progress in Highstrain Perovskite Piezoelectric Ceramics. Materials Science and Engineering R: Reports. 135: 1-57. Doi:10.1016/j.mser.2018.08.001. [2] Kumar, A., Sharma, A., Kumar, R., Vaish, R., Chauhan, V. S., and Bowen, C. R. 2015. Piezoelectric Materials Selection for Sensor Applications using Finite Element and Multiple Attribute Decision-making Approaches. Journal of Advanced Dielectrics. 5(1). Doi:10.1142/S2010135X15500034. [3] Moriana, A. D., and Zhang, S. 2018. Lead-free Textured Piezoceramics using Tape Casting: A Review. Journal of Materiomics. 4(4): 277-303. Doi:10.1016/j.jmat.2018.09.006. [4] Izzuddin, I., Mohammad, M. H., Zainuddin, Z., and Janil, N. H. 2019. Piezoelectric Enhancements in K0.5Na0.5NbO3- based Ceramics via Structural Evolutions. Ceramics International. 45(14): 17204-17209. Doi:10.1016/j.ceramint.2019.05.275. [5] Khorrami, G. H., Kompany, A., and Khorsand Zak, A. 2013. A Facile Sol-gel Approach to Synthesize KNN Nanoparticles at Low Temperature. Materials Letters. 110: 172-175. Doi:10.1016/j.matlet.2013.07.115. [6] Piskin, C., Karacasulu, L., Bortolotti, M., and Vakifahmetoglu, C. 2021. Synthesis of Potassium–sodium Niobate (KNN) from NbO2. Open Ceramics. 7. Doi:10.1016/j.oceram.2021.100159. [7] Li, H., Hao, Y., Lin, Z., et al. 2022. (K,Na)NbO3 Lead-free Piezoceramics Prepared by Microwave Sintering and Solvothermal Powder Synthesis. Solid State Communications. 353: 114871. Doi:10.1016/J.SSC.2022.114871. [8] Feizpour, M., Ebadzadeht, T., and Jenko, D. 2015. Solidstate Sintering of (K0.5Na0.5)NbO3 Synthesized from an Alkali-carbonate-based Low-temperature Calcined Powder. Materiali in Tehnologije. 49(6): 975-982. Doi:10.17222/mit.2015.315 [9] Rani, R., Sharma, S., Quaglio, M., et al. 2017. A Novel Low Temperature Synthesis of KNN Nanoparticles by Facile Wet Chemical Method. Materials Sciences and Applications. 08(03): 247-257. Doi:10.4236/msa.2017.83017. [10] Popovič, A., Bencze, L., Koruza, J., and Malič, B. 2015. Vapour Pressure and Mixing Thermodynamic Properties of the KNbO3-NaNbO3 System. RSC Advances. 5(93): 76249- 76256. Doi:10.1039/c5ra11874c. [11]. Quintero, M. C., Rincón, M., Osorio-Guillén, J. M., López, D., and Londoño-Badillo, F. A. 2019. Grinding Methods Effects on the Synthesis of Potassium-Sodium Niobate Powders by Oxide Mixing. TecnoLógicas. 22(46): 15-23. Doi:10.22430/22565337.1269. [12] Ahmad, N. A., Aziz, D. S. A., Daud, N. H. M., Noor, R., and Khan, A. A. 2020. Synthesis and Characterization of Leadfree Piezoelectric (K0.5Na0.5)NbO3 Produced with Improved Calcination Temperature. Jurnal Teknologi. 82(2): 139-147. Doi:10.11113/jt.v82.13992. [13] Wei, N., Wang, J., Li, B., Huan, Y., and Li, L. 2015. Improvement of the Piezoelectric and ferroelectric Properties of (K, Na)0.5NbO3 Ceramics via Two-step Calcination-milling Route. Ceramics International. 41(8): 9555-9559. Doi:10.1016/j.ceramint.2015.04.015. [14] Zhang, N., Zheng, T., and Wu, J. 2020. Lead-Free (K,Na)NbO3-based Materials: Preparation Techniques and Piezoelectricity. ACS Omega. 5(7): 3099-3107. Doi:10.1021/acsomega.9b03658. [15] Li, B. Y., Chen, X. M., Liu, M. D., Yu Z. De., Lian, H. L., and Zhou, J. P. 2021. Improved Ferroelectric and Piezoelectric Properties of (Na0.5K0.5)NbO3 Ceramics via Sintering in Low Oxygen Partial Pressure Atmosphere and Adding LiF. Journal of Advanced Dielectrics. 11(2). Doi:10.1142/S2010135X21500120. [16] Nandini, R. N., Krishna, M., Suresh, A. V., and Narasimha Rao, K. 2018. Effect of Calcination Kinetics and Microwave Sintering Parameters on Dielectric and Peizo-electric Properties of (K0.5Na0.5) NBO3 Ceramics. Iranian Journal of Materials Science and Engineering. 15(2): 14-31. Doi:10.22068/ijmse.15.2.14. [17] Gul, M., Gurbuz, M., Gokceyrek, A. B., Toktas, A., Kavas, T., and Dogan, A. 2020. Influence of Particle Size and Sintering Temperatures on Electrical Properties of 0.94Na0.5Bi0.5TiO3-0.06BaTiO3 Lead Free Ceramics. Archives of Metallurgy and Materials. 65: 609-614. Doi:10.24425/amm.2020.132799. [18] Dávila, L. F., Quintero, M. C., and Londoño, F. A. 2021. Influence of Synthesis Process on the Structural and Microstructural Behavior of Neodymium Doped Sodium and Potassium Niobate Powders. Journal of Physics: Conference Series. 2046(1). Doi:10.1088/1742- 6596/2046/1/012054. [19] Malič, B., Koruza, J., Hreščak, J., et al. 2015. Sintering of Lead-free Piezoelectric Sodium Potassium Niobate Ceramics. Materials. 8(12): 8117-8146. Doi:10.3390/ma8125449. [20] Ye, G., Wade-Zhu, J., Zou, J., Zhang, T., Button, T. W., and Binner, J. 2020. Microstructures, Piezoelectric Properties and Energy Harvesting Performance of Undoped (K0.5Na0.5)NbO3 Lead-free Ceramics Fabricated via Twostep Sintering. Journal of the European Ceramic Society. 40(8): 2977-2988. Doi:10.1016/j.jeurceramsoc.2020.02.035. [21] Ohbayashi, K. 2016. Piezoelectric Properties and Microstructure of (K,Na)NbO3–KTiNbO5 Composite LeadFree Piezoelectric Ceramic. Piezoelectric Materials http://dx.doi.org/10.5772/62869. [22] Ji, Jae-Hoon, Moon, Un-Chul, Kwon, Hyuck-In, Koh, JungHyuk. 2017. The Two-step Sintering Effect on the Dielectric and Piezoelectric Properties of (Na,K)NbO3-BiScO3 Leadfree Ceramics. Ceramics International. 43. Doi:10.1016/j.ceramint.2017.05.237.
(1)
[1] H. Bach, N. Neuroth, The Properties of Optical Glass, Berlin, Springer, (1998). [2] K. Terashima, S. Tamura, S. H. Kim, T. Yoko, Journal of the American Ceramic Society, 80, 11, (1997). [3] S. M. Iskandar, M. K. Halimah, W. M. Daud, H. A. A. Sidek, M. K. Zaman, Solid State Science and Technology, 18, 2,(2010). [4] K. Maheshvaran, P. K. Veeran, K. Marimuthu, Solid State Sciences, 17, (2013). [5] M. K. Halimah, W. M. Daud, H. A. A.Sidek, A. W.Zaidan, A. S. Zainal, Mater. Sci. Pol, 28, (2010). [6] Z. K. Zhao, X. L. Lin, Y. T. Dai, Cheminform, 42, 36, (2011). [7] H. Doweidar, Y. B. Saddeek, Journal of Non-Crystalline Solids, 356(28), (2010). [8] M. R. Reddy, V. R. Kumar, N. Veeraiah, A. Rao, Indian Journal of Pure and Applied Physics, 33(1), (1995). [9] B. Eraiah, Bulletin of Materials Science, 29, 4, (2006). [10] M. K. Halimah, W. H. Chiew, H. A. A. Sidek, W. M. Daud, Z. A. Wahab, A. M. Khamirul, S. M. Iskandar, Sains Malaysiana, 43(6), (2014). [11] S. Rosmawati, H. A. A. Sidek, A. T. Zainal, H. Mohd Zobir, Journal of Applied Sciences,8,(2008). [12] N. A. Muhammad, K. H. Mohamed, S. S. Zulkefly, D. W. Mohamad, Journal of Nanomaterials, 3, (2013). [13] S. S. Hajer, M. K. Halimah, Z. Azmi, M. N. Azlan, Chalcogenide Letters, 11(11), (2014). [14] Pavani, P. Gayathri, K. Sadhana, and V. C. Mouli,Physica B: Condensed Matter,406(6),(2011). [15] N. B. Mohamed, A. K. Yahya, M. S. M. Deni, S. N. Mohamed, M. K. Halimah, H. A. A. Sidek, Journal of Non-Crystalline Solids, 356(33), (2010). [16] E. Yousef, M. Hotzel, C. Rüssel, Journal of Non-Crystalline Solids, 353(4), (2007). [17] B. Bhatia, S. L. Meena, V. Parihar, M. Poonia, New Journal of Glass and Ceramics, 5(03), 44, (2015). [18] M. N. Azlan, M. K. Halimah, S. Z. Shafinas, W. M. Daud,Chalcogenide Letters, 11(7), (2014). [19] R. A. El-Mallawany, Tellurite Glasses Handbook: Physical Properties And Data. CRC press,(2011). [20] J. N. Ayuni, M. K. Halimah, Z. A. Talib, H. A. A. Sidek, W. M. Daud, A. W. Zaidan, A. M. Khamirul, In IOP Conference Series: Materials Science and Engineering, 17(1), IOP Publishing.(2011).
(1)
[1] HEALE, R. and TWYCROSS, A. (2015) Validity and reliability in quantitative research. Evidence-Based Nursing, 18, pp. 66–67. [2] FRAENKEL, J.R., WALLEN, N.E., and HYUN, H. (2009) How to Design and Evaluate Research in Education. 8th ed. New York: McGraw-Hill. [3] ENGINEERING ACCREDITATION COUNCIL MALAYSIA (2010) [Online] Available from: http://www.eac.org.my/web/about_EAC.html [Accessed 13/09/20]. [4] INTERNATIONAL ENGINEERING ALLIANCE (2014) 25 years Washington accord, 1989-2014: Celebrating international engineering education standards and recognition. [Online] Available from: https://www.ieagreements.org/assets/Uploads/Documents/History/25YearsWashingtonAccord-A5booklet-FINAL.pdf [Accessed 13/09/20]. [5] SPADY, W.G. (1994) Outcome-Based Education: Critical Issues and Answers. Arlington, Virginia: American Association of School Administration. [6] ANUAR, A., SHUAIB, N.H., SAHARI, K.S.M., and ABIDIN, I.Z. (2009) Continual for Mechanical Engineering Programme in UNITEN. In: Proceedings of the International Conference on Engineering Education, Kuala Lumpur, December 2009. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, pp. 19–24. [7] DAHARI, Z., NGAH, U.K., and MOHAMAD, N. (2012) Continuous quality improvement (CQI) implementation in electrical & electronic engineering final year projects. In: Proceedings of the 4th International Congress on Engineering Education, Georgetown, December 2012. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, pp. 1–5. [8] EL-MAADDAWY, T., EL-HASSAN, H., AL JASSMI, H., and KAMAREDDINE, L. (2019) Applying Outcomes-Based Learning in Civil Engineering Education. In: Proceedings of the IEEE Global Engineering Education Conference, Dubai, April 2019. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, pp. 986–989. [9] JANGALI, S.G. and GAITONDE, V.N. (2020) Attaining competencies in Programme Outcomes through Open-Ended Experiments. Africa Education Review, 17 (1), pp. 116–140. [10] KARMAN, S., HASIKIN, K., TING, H., NG, S., ABDUL WAHAB, A., LIM, E., HAMZAID, N., and ABAS, W. (2011) OBE Implementation and Design of Continual Quality Improvement (CQI) for Accreditation of Biomedical Engineering Program University of Malaya. In: OSMAN, N.A.A., ABAS, W.A.B.W., WAHAB, A.K.A., and TING, H.N. (eds.) 5th Kuala Lumpur International Conference on Biomedical Engineering 2011. IFMBE Proceedings, Vol. 35. Berlin, Heidelberg: Springer, pp. 20-24. [11] LONG, C.Y. and JERN, K.P. (2014) Proposed new strategy in CQI at course module level through students’ feedbacks in UNITEN. In: Proceedings of the IEEE 6th Conference on Engineering Education, Kuala Lumpur, December 2014. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, pp. 95–98. [12] MISRAN, N., MOKRI, S.S., HUSAIN, H., and ZAKI, W.M.D.W. (2011) Continual Quality Improvement Process for Undergraduate Programs. Procedia - Social and Behavioral Sciences, 18, pp. 565–574. [13] SIKANDER, T., AZIZ, H., WASIM, A., HUSSAIN, S., and JAHANZAIB, M. (2017) Continuous Quality Improvement Framework: a Case of Industrial Engineering Department. International Journal of Cognitive Research in Science, Engineering and Education, 5 (1), pp. 107-119. [14] TAKRIFF, M.S., ABDULLAH, S.R.S., MOHAMMAD, A.B., and ANUAR, N. (2011) Students’ feedback in the continuous quality improvement cycle of engineering education. In: Proceedings of the IEEE Global Engineering Education Conference, Amman, April 2011. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, pp. 374–377. [15] TSHAI, K.Y., HO, J.-H., YAP, E.H., and NG, H.K. (2014) Outcome-based Education – The Assessment of Programme Educational Objectives for an Engineering Undergraduate Degree. Engineering Education, 9 (1), pp. 74–85. [16] ZEYNAL, H., ZAKARIA, Z., ANISSEH, M., and MANSOORZADEH, S. (2017) Strategic implementation of outcome-based education system in Buein-Zahra Technical University of Iran. In: Proceedings of the IEEE 9th International Conference on Engineering Education, Kanazawa, November 2017. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, pp. 122-127. [17] ENGINEERING ACCREDITATION COUNCIL (2017) Engineering Programme Accreditation Manual. [Online] Available from: http://www.eac.org.my/web/document/EAC Manual 2017.pdf [Accessed 13/09/20]. [18] AZIZ, A., MEGAT MOHD NOOR, M., ABANG ALI, A., and JAAFAR, M. (2005) A Malaysian outcome-based engineering education model. International Journal of Engineering and Technology, 2 (1), pp. 14–21. [19] PHELAN, C. and WREN, J. (2007) Exploring Reliability in Academic Assessment. [Online] Available from: https://www.uni.edu/chfasoa/reliabilityandvalidity.htm [Accessed 13/09/20]. [20] CRESWELL, J.W. (2012) Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research. 4th ed. Boston, Massachusetts: Pearson Education. [21] THE GRAIDE NETWORK (2018) Importance of Validity and Reliability in Classroom Assessments. [Online] Available from: https://www.thegraidenetwork.com/blog-all/2018/8/1/the-two-keys-to-quality-testing-reliability-and-validity [Accessed 13/09/20]. [22] CENTER ON STANDARDS AND ASSESSMENT IMPLEMENTATION (2018) CSAI Update: Valid and Reliable Assessments. [Online] Available from: https://files.eric.ed.gov/fulltext/ED588476.pdf [Accessed 13/09/20]. [23] THE MATHWORKS (n.d.) Boxplot. [Online] Available from: https://www.mathworks.com/help/stats/boxplot.html [Accessed 13/09/20]. [24] TAVAKOL, M. and DENNICK, R. (2011) Making sense of Cronbach’s alpha. International Journal of Medical Education, 2, pp. 53–55. [25] UCLA: STATISTICAL CONSULTING GROUP (n.d.) What does Cronbach’s alpha mean? [Online] Available from: https://stats.idre.ucla.edu/spss/faq/what-does-cronbachs-alpha-mean/ [Accessed 13/09/20]. [26] GOFORTH, C. (2015) Using and Interpreting Cronbach’s Alpha. [Online] Available from: https://data.library.virginia.edu/using-and-interpreting-cronbachs-alpha/ [Accessed 13/09/20].
(1)
1) Hermawan, H. Pengenalan pada biomaterial (2019) INA-Rxiv. Cited 1 time. Source: Scopus 2) Wen, C.E., Yamada, Y., Shimojima, K., Chino, Y., Hosokawa, H., Mabuchi, M. Compressibility of porous magnesium foam: Dependency on porosity and pore size (2004) Materials Letters, 58 (3-4), pp. 357-360. Cited 265 times. DOI: 10.1016/S0167-577X(03)00500-7 Source: Scopus 3) Wang, X.J., Xu, D.K., Wu, R.Z., Chen, X.B., Peng, Q.M., Jin, L., Xin, Y.C., Zhang, Z.Q., Liu, Y., Chen, X.H., Chen, G., Deng, K.K., Wang, H.Y. What is going on in magnesium alloys? (2018) Journal of Materials Science and Technology, 34 (2), pp. 245-247. Cited 529 times. DOI: 10.1016/j.jmst.2017.07.019 Source: Scopus 4) Zhang, S., Zhang, X., Zhao, C., Li, J., Song, Y., Xie, C., Tao, H., Zhang, Y., He, Y., Jiang, Y., Bian, Y. Research on an Mg-Zn alloy as a degradable biomaterial (2010) Acta Biomaterialia, 6 (2), pp. 626-640. Cited 1122 times. DOI: 10.1016/j.actbio.2009.06.028 Source: Scopus 5) Myrissa, A., Agha, N.A., Lu, Y., Martinelli, E., Eichler, J., Szakács, G., Kleinhans, C., Willumeit-Römer, R., Schäfer, U., Weinberg, A.-M. In vitro and in vivo comparison of binary Mg alloys and pure Mg (2016) Materials Science and Engineering C, 61, pp. 865-874. Cited 115 times. DOI: 10.1016/j.msec.2015.12.064 Source: Scopus 6) Yusop, A.H.M., Alsakkaf, A., Kadir, M.R.A., Sukmana, I., Nur, H. Corrosion of porous Mg and Fe scaffolds: a review of mechanical and biocompatibility responses (2021) Corrosion Engineering Science and Technology, 56 (4), pp. 310-326. Cited 12 times. DOI: 10.1080/1478422X.2021.1879427 Source: Scopus 7) Yang, Y., He, C., Dianyu E, Yang, W., Qi, F., Xie, D., Shen, L., Peng, S., Shuai, C. Mg bone implant: Features, developments and perspectives (2020) Materials and Design, 185, art. no. 108259, . Cited 281 times. DOI: 10.1016/j.matdes.2019.108259 Source: Scopus 8) Staiger, M.P., Pietak, A.M., Huadmai, J., Dias, G. Magnesium and its alloys as orthopedic biomaterials: A review (2006) Biomaterials, 27 (9), pp. 1728-1734. Cited 3835 times. DOI: 10.1016/j.biomaterials.2005.10.003 Source: Scopus 9) Yusop, A.H., Bakir, A.A., Shaharom, N.A., Abdul Kadir, M.R., Hermawan, H. Porous biodegradable metals for hard tissue scaffolds: A review (2012) International Journal of Biomaterials, art. no. 641430, . Cited 177 times. DOI: 10.1155/2012/641430 Source: Scopus 10) Niu, X., Fan, Y., Liu, X., Li, X., Li, P., Wang, J., Sha, Z., Feng, Q. Repair of bone defect in femoral condyle using microencapsulated chitosan, nanohydroxyapatite/collagen and poly(l-lactide)-based microsphere-scaffold delivery system (2011) Artificial Organs, 35 (7), pp. E119-E128. Cited 51 times. DOI: 10.1111/j.1525-1594.2011.01274.x Source: Scopus 11) Jasmawati, N., Djuansjah, J.R.P., Kadir, M.R.A., Sukmana, I. Porous magnesium scaffolds for bone implant applications: a review (2015) Adv Mater Res, 1125, pp. 437-440. Cited 9 times. 12) Hermawan, H. Updates on the research and development of absorbable metals for biomedical applications (2018) Progress in Biomaterials, 7 (2), pp. 93-110. Cited 177 times. DOI: 10.1007/s40204-018-0091-4 Source: Scopus 13) Zhuang, H., Han, Y., Feng, A. Preparation, mechanical properties and in vitro biodegradation of porous magnesium scaffolds (2008) Materials Science and Engineering C, 28 (8), pp. 1462-1466. Cited 159 times. DOI: 10.1016/j.msec.2008.04.001 Source: Scopus 14) Rahmitasari, F. Scaffold 3D kitosan dan kolagen sebagai graft pada kasus kerusakan tulang (Study Pustaka) (2016) Jurnal material kedokteran gigi, 5 (2), pp. 1-7. Cited 3 times. Source: Scopus 15) Gupta, P., Adhikary, M., M, J.C., Kumar, M., Bhardwaj, N., Mandal, B.B. Biomimetic, Osteoconductive Non-mulberry Silk Fiber Reinforced Tricomposite Scaffolds for Bone Tissue Engineering (2016) ACS Applied Materials and Interfaces, 8 (45), pp. 30797-30810. Cited 124 times. DOI: 10.1021/acsami.6b11366 Source: Scopus 16) Hao, Z., Song, Z., Huang, J., Huang, K., Panetta, A., Gu, Z., Wu, J. The scaffold microenvironment for stem cell based bone tissue engineering (2017) Biomaterials Science, 5 (8), pp. 1382-1392. Cited 114 times. DOI: 10.1039/c7bm00146k Source: Scopus 17) Yazdimamaghani, M., Razavi, M., Vashaee, D., Moharamzadeh, K., Boccaccini, A.R., Tayebi, L. Porous magnesium-based scaffolds for tissue engineering (2017) Materials Science and Engineering C, 71, pp. 1253-1266. Cited 207 times.DOI: 10.1016/j.msec.2016.11.027 Source: Scopus 18) Md Saad, A.P., Prakoso, A.T., Sulong, M.A., Basri, H., Wahjuningrum, D.A., Syahrom, A. Impacts of dynamic degradation on the morphological and mechanical characterisation of porous magnesium scaffold (2019) Biomechanics and Modeling in Mechanobiology, 18 (3), pp. 797-811. Cited 24 times. DOI: 10.1007/s10237-018-01115-z Source: Scopus 19) Yang, Y., Wang, G., Liang, H., Gao, C., Peng, S., Shen, L., Shuai, C. Additive manufacturing of bone scaffolds (2019) International Journal of Bioprinting, 5 (1), art. no. 148, . Cited 129 times. DOI: 10.18063/IJB.v5i1.148 Source: Scopus 20) Cheng, M.-Q., Wahafu, T., Jiang, G.-F., Liu, W., Qiao, Y.-Q., Peng, X.-C., Cheng, T., Zhang, X.-L., He, G., Liu, X.-Y. A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration (2016) Scientific Reports, 6, art. no. 24134, . Cited 169 times. DOI: 10.1038/srep24134 Source: Scopus 21) Saputra, R.A., Burhanudin, Y., Nur, H., Wicaksono, M.A., Sukmana, I. (2019) Pengaruh Sebaran Titanium Pieces Space Holder (TPSH) Terhadap Kualitas Magnesium Berpori Untuk Aplikasi Scaffold Tulang Mampu Terdegradasi, pp. 228-238. Cited 1 time. Source: Scopus 22) Wicaksono, M.A., Burhanuddin, Y., Nur, H., Savetlana, S., Sukmana, I. (2019) Pengaruh Variasi Suhu Sintering Terhadap Sifat Fisik Dan Mekanik Produk Magnesium Berpori Untuk Aplikasi Implan Tulang, pp. 239-248. Cited 1 time. Source: Scopus 23) Sukmana, I., Savetlana, S., Burhanudin, Y., Wicaksono, M.A., Nur, H. Fabricating and Testing of Porous Magnesium Through Powder Metallurgy Technique using TWSH (Titanium Wire Space Holder) for Biodegradable Bone Scaffold Material (2019) Journal of Engineering and Scientific Research (JESR), 1 (2), pp. 78-83. Cited 1 time. Source: Scopus 24) Kusharjanto, S., Mulyani, R.H. Pengaruh Temperatur Proses Semi-Solid Casting pada Paduan Magnesium AZ91D terhadap Kekerasan dan Struktur Mikro (2016) Prosiding SNIPS 2016, pp. 883-890. Cited 1 time. Source: Scopus 25) Qi, Y., Contreras, K.G., Jung, H.-D., Kim, H.-E., Lapovok, R., Estrin, Y. Ultrafine-grained porous titanium and porous titanium/magnesium composites fabricated by space holder-enabled severe plastic deformation (2016) Materials Science and Engineering C, 59, pp. 754-765. Cited 17 times. DOI: 10.1016/j.msec.2015.10.070 Source: Scopus 26) Iqbal, M., Sukmana, I., Burhanuddin, Y. Studi Sifat Mekanik Magnesium AZ31 Hasil proses Pengecoran Tekan (Squeeze Casting) (2018) Jurnal Energi dan Manufaktur, 11 (1), pp. 1-5. Cited 1 time. Source: Scopus 27) Civantos, A., Giner, M., Trueba, P., Lascano, S., Montoya-García, M.-J., Arévalo, C., Vázquez, M.Á., Allain, J.P., Torres, Y. In vitro bone cell behavior on porous titanium samples: Influence of porosity by loose sintering and space holder techniques (2020) Metals, 10 (5), art. no. 696, . Cited 23 times. DOI: 10.3390/met10050696 Source: Scopus
(1)
[1] H.N. Englyst, J.H. Cummings, Improved method for measurement of dietary fibre as the non-starch polysaccharides (NSPs) in plant foods, J. Assoc. Off. Anal. Chem. 71 (1988) 808– 814. [2] P.J. Harris, L.R. Ferguson, Dietary fibre: its composition and role in protection against colorectal cancer, Mut. Res. 290 (1993) 97–110. [3] P.J. Harris, R.D. Hartley, Detection of bound ferulic acid in cell walls of the Gramineae by ultraviolet fluorescence microscopy, Nature 259 (1976) 508–510. [4] P.J. Harris, R.D. Hartley, K.H. Lowry, Phenolic constituents of mesophyll and non-mesophyll cell walls from leaf laminae of Lolium perenne, J. Sci. Food Agric. 31 (1980) 959–962. [5] R.D. Hartley, P.J. Harris, Phenolic constituents of the cell walls of dicotyledons, Biochem. Syst. Ecol. 9 (1981) 189– 203. [6] P.J. Harris, M.R. Kelderman, M.F. Kendon, R.J. McKenzie, Monosaccharide composition of unlignified cell walls of monocotyledons in relation to the occurrence of wall-bound ferulic acid, Biochem. Syst. Ecol. 25 (1997) 167–179. [7] P.J. Harris, Compositions of monocotyledon cell walls: implications for biosystematics, in: K.L. Wilson D.A. Morrison (Eds.), Monocots: Systematics and Evolutions, CSIRO, Melbourne, 2000, pp. 114–126. [8] B.G. Smith, P.J. Harris, Ferulic acid is esterified to glucuronoarabinoxylans in pineapple cell walls, Phytochemistry 56 (2001) 513–519. [9] J. Ralph, S. Quideau, J.H. Grabber, R.D. Hatfield, Identification and synthesis of new ferulic acid dehydrodimers present in grass cell walls, J. Chem. Soc., Perkin Trans. 1 (1994) 3485–3498. [10] J. Ralph, R.D. Hatfield, J.H. Grabber, H.G. Jung, S. Quideau, R.F. Helm, Cell wall cross-linking in grasses by ferulates and diferulates, in: N.G. Lewis, S. Sarkanen (Eds.), Lignin and Lignan Biosynthesis, American Chemical Society, Washington, DC, 1998, pp. 209–236. [11] M. Bunzel, J. Ralph, J. Marita, H. Steinhart, Identification of 4-O-5� -coupled diferulic acid from insoluble cereal fiber, J. Agric. Food Chem. 48 (2000) 3166–3169. [12] P.A. Kroon, C.B. Faulds, P. Ryden, J.S. Robertson, G. Williamson, Release of covalently bound ferulic acid from fiber in the human colon, J. Agric. Food Chem. 45 (1997) 661–667. [13] L.R. Ferguson, Role of plant polyphenols in genomic stability, Mut. Res. 475 (2001) 89–112. [14] E. Graf, Antioxidant potential of ferulic acid, Free Rad. Biol. Med. 13 (1992) 435–448. [15] M.T. Garcia-Conesa, G.W. Plumb, K.W. Waldron, J. Ralph, G. Williamson, Ferulic acid dehydrodimers from wheat bran: isolation, purification and antioxidant properties of 8-O-4-diferulic acid, Redox Rep. 3 (1997) 319–323. [16] A.W. Wood, M.T. Huang, R.L. Chang, H.L. Newmark, R.E. Lehr, H. Yagi, J.M. Sayer, D.M. Jerina, A.H. Conney, Inhibition of the mutagenicity of bay-region diol epoxides of polycyclic aromatic hydrocarbons by naturally occuring plant phenols: exceptional activity of ellagic acid, Proc. Natl. Acad. Sci. U.S.A. 79 (1982) 5513–5517. [17] A.J. Alldrick, J. Flynn, I.R. Rowland, Effects of plant-derived flavonoids and polyphenolic acids on the activity of mutagens from cooked food, Mut. Res. 163 (1986) 225– 232. [18] J. Yamada, Y. Tomita, Antimutagenic activity of caffeic acid and related compounds, Biosci. Biotechnol. Biochem. 60 (1996) 328–329. [19] K. Wakabayashi, T. Hoson, S. Kamisaka, Osmotic stress suppresses cell wall stiffening and the increase in cell wall-bound ferulic and diferulic acids in wheat coleoptiles, Plant Physiol. 113 (1997) 967–973. [20] L.R. Ferguson, Antimutagens as cancer chemopreventive agents in the diet, Mut. Res. 307 (1994) 395–410. [21] S. Quideau, J. Ralph, Lignin–ferulate cross-links in grasses. Part 4. Incorporation of 5-5-coupled diferulate into lignin, J. Chem. Soc., Perkin Trans. 1 (1997) 2351–2358. [22] B.G. Smith, P.J. Harris, Polysaccharide composition of unlignified cell walls of pineapple (Ananas comosus (L.) Merr.) fruit, Plant Physiol. 107 (1995) 1399–1409. [23] W.A. Jensen, Botanical Histochemistry: Principles and Practice, Freeman and Co., San Francisco, 1962. [24] R.D. Hartley, E.C. Jones, Phenolic components and degradability of cell walls of grass and legume species, Phytochemistry 16 (1977) 1531–1534. [25] S.M. Carnachan, P.J. Harris, Ferulic acid is bound to the primary cell walls of all gymnosperm families, Biochem. Syst. Ecol. 28 (2000) 865–879. [26] R.T. Dorr, Bleomycin pharmacology: mechanism of action and resistance, and clinical pharmacokinetics, Sem. Oncol. 19 (2 (Suppl 5)) (1992) 3–8. [27] L.F. Povirk, M.J.F. Austin, Genotoxicity of bleomycin, Mut. Res. 257 (1991) 127–143. [28] A.R. Collins, V.L. Dobson, M. Dusinska, G. Kennedy, R. Stetina, The comet assay: what can it really tell us? Mut. Res. 375 (1997) 183–193. [29] H. Ahsan, N. Parveen, N.U. Khan, S.M. Hadi, Prooxidant, antioxidant and cleavage activities on DNA of curcumin and its derivatives demethoxycurcumin and bisdemethoxycurcumin, Chem. Biol. Interact. 121 (1999) 161–175. [30] N. Frank, J. Knauft, F. Amelung, J. Nair, H. Wesch, H. Bartsch, No prevention of liver and kidney tumors in long-Evans cinnamon rats by dietary curcumin but inhibition at other sites and of metastases, Mut. Res. 523–524 (2003) 127–136.
(1)
1. How to Properly Use Sublingual and Buccal Tablets by USC Clinical Pharmacy available at https://www.youtube.com/watch?v=vKrSEuEbp8I 2. How to Inject Insulin by My Doctor - Kaiser Permanente available at https://www.youtube.com/watch?v=cmUXo4Crrm0 3. Droplet Pen Needles Instruction For Use by HTL-STREFA available at https://www.youtube.com/watch?v=gpHhBMLvHDw&t=8s
(1)
[1] H. S. Lee, J. H. Lee, and H. S. Kim, “Activities of ankle muscles during gait analyzed by simulation using human musculoskeletal model,” Journal of Exercise Rehabilitation, Vol. 15, No. 2, pp. 229-234, 2019 [2] S. Mahadas, K. Mahadas, and G. K. Hung, “Biomechanics of the golf swing using Opensim,” Computers in Biology and Medicine, Vol. 105, pp. 39-45, 2019 [3] Y. Wang, X. Li, P. Huang, G. Li, and P. Fang, “An analysis of biomechanical characteristics of gait based on musculoskeletal model,” in Proc. IEEE Int. Conf. Cyborg Bionic Sys. (CBS), Oct. 2018, pp. 151-154 [4] S. Mohamaddan, M. Andrew-Munot, S. J. Tanjong, S. Z. D. Dawal, K. Case, and A. Hanafusa, “Investigation of the usage of oil palm harvesting tools on work related musculoskeletal disorders of lower limb,” in Proc. IEEE 3rd Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS), May 2021, pp. 41-44 [5] S. Mohamaddan, M. A. Rahman, M. Andrew-Munot, S. J. Tanjong, B. M. Deros, S. Z. M. Dawal, and K. Case, “Investigation of oil palm harvesting tools design and technique on work-related musculoskeletal disorders of the upper body,” International Journal of Industrial Ergonomics, Vol. 86, 2021 [6] M. Cardona and C. E. G. Cena, “Biomechanical analysis of the lower limb: A full-body musculoskeletal model for muscle-driven simulation,” IEEE Access, Vol. 7, 2019. [7] S. L. Delp, F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen, “OpenSim: Open-source software to create and analyze dynamic simulations of movement,” IEEE Transactions On Biomedical Engineering, Vol. 54, No. 11, 2007 [8] M. F. Ashari, A. Hanafusa, and S. Mohamaddan, “Evaluation of Upper Limb Muscle Activation Using Musculoskeletal Model with Wearable Assistive Device,” Applied Bionics and Biomechanics, 2022 [9] K. R. S. Holzbaur, W. M. Murray, and S. L. Delp, “A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control,” Annals of Biomedical Engineering, Vol. 33. No. 6, pp. 829-840, 2005 [10] A. Rajagopal, C. L. Dembia, M. S. DeMers, D. D. Delp, J. L. Hicks, and S. L. Delp, “Full body musculoskeletal model for muscle-driven simulation of human gait,” IEEE Trans. Biomed. Eng., Vol. 63, No. 10, pp. 2068-2079, 2016 [11] A. Seth, J. L. Hicks, T. K. Uchida, A. Habib, C. L. Dembia, J. J. Dunne, C. F. Ong, M. S. DeMers, A. Rajagopal, M. Millard, S. R. Hamner, E. M. Arnold, J. R. Yong, S. K. Lakshmikanth, M. A. Sherman, J. P. Ku, and S. L. Delp, “OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement,’ PLoS Comput Biol, Vol. 14. No. 7, 2018 [12] M. Jackson, B. Michaud, P. Tetreault, and M. Begon, “Improvements in measuring shoulder joint kinematics,” Journal of Biomechanics, Vol. 45, pp. 2180-2183, 2012 [13] A. Ladermann, S. Chague, F.C. Kolo, and C. Charbonnier, “Kinematics of the shoulder joint in tennis players,” Journal of Science and Medicine in Sport, Vol. 19, pp. 56-63, 2016 [14] R. J Varghese, B. P. L. Lo, and G.-Z. Yang, “Design and Prototyping of a Bio-Inspired Kinematic Sensing Suit for the Shoulder Joint: Precursor to a Multi-DoF Shoulder Exosuit,” IEEE Robotics and Automation Letters, Vol. 5, No. 2, 2020 [15] Z. Z. Major, C. Vaida, K. A. Major, P. Tucan, E. Brusturean, B. Gherman, I. Birlescu, R. Craciunas, I. Ulinici, G. Simori, et al., “Comparative Assessment of Robotic versus Classical Physical Therapy Using Muscle Strength and Range of Motion Testing in Neurological Diseases,” Journal of Personalized Medicine, 2021
(1)
[1] Hu, M., Zhang, X., Li, Y., Yang, H. and Tanaka, K. (2019) Flood Mitigation Performance of Low Impact Development Technologies under Different Storms for Retrofitting an Urbanized Area. Journal of Cleaner Production, 222, 373-380. https://doi.org/10.1016/j.jclepro.2019.03.044 [2] Kuok, K.K., Harun, S., Shamsuddin, S.M. and Chiu, P.C. (2010) Evaluation of Daily Rainfall-Runoff Model Using Multilayer Perceptron and Particle Swarm Optimization Feed forward Neural Networks. Journal of Environmental Hydrology, 18, 1-16. [3] Paithankar, D.N. and Taji, S.G. (2020) Investigating the Hydrological Performance of Green Roofs Using Storm Water Management Model. Materials Today: Proceedings, 32, 943-950. https://doi.org/10.1016/j.matpr.2020.05.085 [4] Bai, Y., Zhao, N., Zhang, R. and Zeng, X. (2018) Storm Water Management of Low Impact Development in Urban Areas Based on SWMM. Water, 11, Article 33. https://doi.org/10.3390/w11010033 [5] Kuok, K.K., Chiu, P.C., Rahman, M.R., Bakri, M.K.B. and Chin, M.Y. (2021) Performance of Rainwater Harvesting Systems in Institutional Buildings under Different Reliability and Future Economy Benefits. Journal of Hunan University Natural Sciences, 48, 58-66. [6] Taghizadeh, S., Khani, S. and Rajaee, T. (2021) Hybrid SWMM and Particle Swarm Optimization Model for Urban Runoff Water Quality Control by Using Green Infrastructures (LID-BMPs). Urban Forestry & Urban Greening, 60, Article ID: 127032. https://doi.org/10.1016/j.ufug.2021.127032 [7] Louis, Y.H.T., Kuok, K.K., Imteaz, M., Lai, W.Y. and Derrick, K.X.L. (2019) Development of Whale Optimization Neural Network for Daily Water Level Forecasting. International Journal of Advanced Trends in Computer Science and Engineering, 8, 354-362. https://doi.org/10.30534/ijatcse/2019/04832019 [8] Lai, W.Y., Kuok, K.K., Gato-Trinidad, S. and Ling, K.X. (2019) A Study on Sequential K-Nearest Neighbor (SKNN) Imputation for Treating Missing Rainfall Data. International Journal of Advanced Trends in Computer Science and Engineering, 8, 363-368. https://doi.org/10.30534/ijatcse/2019/05832019 [9] Zhang, S., Lin, Z., Zhang, S. and Ge, D. (2021) Stormwater Retention and Detention Performance of Green Roofs with Different Substrates: Observational Data and Hydrological Simulations. Journal of Environmental Management, 291, Article ID: 112682. https://doi.org/10.1016/j.jenvman.2021.112682 [10] Yang, M., Zhang, Y. and Pan, X. (2020) Improving the Horton Infiltration Equation by Considering Soil Moisture Variation. Journal of Hydrology, 586, Article ID: 124864. https://doi.org/10.1016/j.jhydrol.2020.124864 [11] Fauzi, M.A., Malek, N.A. and Othman, J. (2013) Evaluation of Green Roof System for Green Building Projects in Malaysia. International Journal of Environmental and Ecological Engineering, 7, 75-81. [12] Ismail, W.Z.W., Abdullah, M.N., Hashim, H. and Rani, W.S.W. (2018) An Overview of Green Roof Development in Malaysia and a Way forward. AIP Conference Proceeding, 2016, Article ID: 020058. https://doi.org/10.1063/1.5055460 [13] Liu, R., Stanford, R.L., Deng, Y., Liu, D., Liu, Y. and Yu, S.L. (2020) The Influence of Extensive Green Roofs on Rainwater Runoff Quality: A Field-Scale Study in Southwest China. Environmental Science and Pollution Research, 27, 12932-12941. https://doi.org/10.1007/s11356-019-06151-5 [14] Kuok, K.K., Harun, S. and Chan, C.P. (2011) Investigation Best Number of Tanks for Hydrological Tank Model for Rural Catchment in Humid Region. Journal of the Institution of Engineers, 72, 1-11. [15] Vijayaraghavan, K. and Raja, F.D. (2014) Design and Development of Green Roof Substrate to Improve Runoff Water Quality: Plant Growth Experiments and Adsorption. Water Research, 63, 94-101. https://doi.org/10.1016/j.watres.2014.06.012 [16] Seyedabadi, M.R., Eicker, U. and Karimi, S. (2021) Plant Selection for Green Roofs and Their Impact on Carbon Sequestration and the Building Carbon Footprint. Environmental Challenges, 4, Article ID: 100119. https://doi.org/10.1016/j.envc.2021.100119 [17] NPS: National Park Service (2021) Green Roof Benefits. U.S. Department of the Interior. https://www.nps.gov/tps/sustainability/new-technology/green-roofs/benefits.htm [18] Kuok, K.K., Chiu, P.C. and Mersal, M.E. (2017) Investigation of Sarawak River Kiri Sedimentation before and after Bengoh Dam Construction. International Journal of Geology, Agriculture and Environmental Sciences, 5, 9-12. [19] MSMA2 (2012) Urban Stormwater Management Manual for Malaysia. Department of Irrigation and Drainage Malaysia. [20] Sarawak Government (2022) Sarawak Population. The Official Portal of Sarawak Government. https://sarawak.gov.my/web/home/article_view/240/175/ [21] Kuok, K.K. and Chiu, P.C. (2019) Space-Saving Rainwater Harvesting Tanks for Double Storey Houses in Kuching, Sarawak. International Journal of Engineering & Technology, 8, 38-43. [22] DID (2022) Recorded Flood Event in Sarawak (2021). Department of Irrigation & Drainage Sarawak. https://did.sarawak.gov.my/page-0-317-1517-Recorded-Flood-Event-in-Sarawak-20 21.html [23] Kuok, K.K., Ziet, L.Z. and PoChan, C. (2013) Flood Map Development by Coupling Satellite Maps and Three-Dimensional Drafting Software: Case Study of the Sarawak River Basin. Water SA, 39, 175-182. https://hdl.handle.net/10520/EJC131249 https://doi.org/10.4314/wsa.v39i1.18 [24] Kueh, S.M. and Kuok, K.K. (2016) Precipitation Downscaling Using the Artificial Neural Network BatNN and Development of Future Rainfall Intensity-Duration-Frequency Curves. Climate Research, 68, 73-89. https://doi.org/10.3354/cr01383 [25] Kuok, K.K. and Chan, C.P. (2012) Particle Swarm Optimization for Calibrating and Optimizing Xinanjiang Model Parameters. International Journal of Advanced Computer Science and Applications, 3. https://doi.org/10.14569/IJACSA.2012.030917 [26] Kuok, K.K. and Chiu, P.C. (2020) Optimal Rainwater Harvesting Tank Sizing for Different Types of Residential Houses: Pilot Study in Kuching, Sarawak. Journal of Engineering Science and Technology, 15, 541-554. [27] Kuok, K.K. and Chiu, P.C. (2018) Indigenous Drinking-Water Consumption Pattern of Residents in Kuching City: Results of a Pilot Study. Journal of Water, Sanitation and Hygiene for Development, 8, 817-824. https://doi.org/10.2166/washdev.2018.004 [28] Weatherspark (2022) Climate and Average Weather Year Round in Kuching. Cedar Lake Ventures, Inc. https://weatherspark.com/y/121569/AverageWeather-in-Kuching-Malaysia-Year-R ound [29] USEPA (2015) Storm Water Management Model User’s Manual Version 5.1. United States Environmental Protection Agency. [30] Gironás, J., Roesner, L.A., Rossman, L.A. and Davis, J. (2010) A New Applications Manual for the Storm Water Management Model (SWMM). Environmental Modelling & Software, 25, 813-814. https://doi.org/10.1016/j.envsoft.2009.11.009 [31] Hamouz, V. and Muthanna, T.M. (2019) Modelling of Green and Grey Roofs in Cold Climates Using EPA’s Storm Water Management Model. In: Mannina, G., Ed., UDM 2018: New Trends in Urban Drainage Modelling, Springer, Cham, 385-391. https://doi.org/10.1007/978-3-319-99867-1_65 [32] Liu, R. and Fassman-Beck, E. (2017) Hydrologic Response of Engineered Media in Living Roofs and Bioretention to Large Rainfalls: Experiments and Modeling. Hydrological Processes, 31, 556-572. https://doi.org/10.1002/hyp.11044 [33] Soulis, K.X., Valiantzas, J.D., Ntoulas, N., Kargas, G. and Nektarios, P.A. (2017) Simulation of Green Roof Runoff under Different Substrate Depths and Vegetation Covers by Coupling a Simple Conceptual and a Physically Based Hydrological Model. Journal of Environmental Management, 200, 434-445. https://doi.org/10.1016/j.jenvman.2017.06.012 [34] Alfredo, K., Montalto, F. and Goldstein, A. (2010) Observed and Modeled Performances of Prototype Green Roof Test Plots Subjected to Simulated Low- and High-Intensity Precipitations in a Laboratory Experiment. Journal of Hydrologic Engineering, 15, 444-457. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000135 [35] Yio, M.H.N., Stovin, V., Werdin, J. and Vesuviano, G. (2013) Experimental Analysis of Green Roof Substrate Detention Characteristics. Water Science & Technology, 68, 1477-1486. https://doi.org/10.2166/wst.2013.381 [36] Vesuviano, G., Sonnenwald, F. and Stovin, V. (2014) A Two-Stage Storage Routing Model for Green Roof Runoff Detention. Water Science & Technology, 69, 1191-1197. https://doi.org/10.2166/wst.2013.808 [37] IGN (2011) BD TOPO® Descriptif de contenu. Institut Géographique National. http://professionnels.ign.fr/ [38] IAU-IDF (2008) Base de connaissance sur le Mode d’Occupation du Sol (MOS). Institut d’Aménagement et d’Urbanisme de l’Ile de France. http://www.iau-idf.fr/ [39] Köhler, M., Schmidt, M., Grimme, F.W., Laa, M., de Assunção Paiva, V.L. and Tavares, S. (2002) Green Roofs in Temperate Climates and in the Hot-Humid Tropics—Far beyond the Aesthetics. Environmental Management and Health, 13, 382-391. https://doi.org/10.1108/09566160210439297 [40] Berndtsson, J.C., Bengtsson, L. and Jinno, K., (2009) Runoff Water Quality from Intensive and Extensive Vegetated Roofs. Ecological Engineering, 35, 369-380. https://doi.org/10.1016/j.ecoleng.2008.09.020 [41] Gregoire, B.G. and Clausen, J.C. (2011) Effect of a Modular Extensive Green Roof on Stormwater Runoff and Water Quality. Ecological Engineering, 37, 963-969. https://doi.org/10.1016/j.ecoleng.2011.02.004 [42] Yang, J., Qian, Y. and Peng, G. (2008) Quantifying Air Pollution Removal by Green Roofs in Chicago. Atmospheric Environment, 42, 7266-7273. https://doi.org/10.1016/j.atmosenv.2008.07.003 [43] Xue, M. and Farrell, C. (2020) Use of Organic Wastes to Create Lightweight Green Roof Substrates with Increased Plant-Available Water. Urban Forestry & Urban Greening, 48, Article ID: 126569. https://doi.org/10.1016/j.ufug.2019.126569
(1)
1. Huvos AG, Rosen G, Dabska M, Marcove RC. Mesenchymal chondrosarcoma: A clinicopathologic analysis of 35 patients with emphasis on treatment. Cancer.1983;51(7):1230–1237 2. Imbriaco M, Larson SM, Yeung HW, Mawlawi OR, Erdi Y, Venkatraman ES, Scher HI. A new parameter for measuring metastatic bone involvement by prostate cancer: the bone scan index.Clin Cancer Res. 1998;4:1765–1772 3. Girish G, Finlay K, Morag Y, Brandon C, Jacobson J, Jamadar D. Imaging review of skeletal tumors of the pelvis--part I: benign tumors of the pelvis. ScientificWorldJournal. 2012 Epub 2012 May 15 4. Gandikota Girish, Karen Finlay, David Fessell, Deepa Pai, Qian Dong, and David Jamadar. Imaging Review of Skeletal Tumors of the Pelvis Malignant Tumors and Tumor Mimics ScientificWorldJournal Published online 2012 April 19 5. Ryzewicz M, Manaster BJ, Naar E, Lindeque B. Low-grade cartilage tumors: diagnosis and treatment. Orthopedics. 2007 Jan;30(1):35-46 6. Brien EW, Mirra JM, Kerr R. Benign and malignant cartilage tumors of bone and joint: their anatomic and theoretical basis with an emphasis on radiology, pathology and clinical biology. I. The intramedullary cartilage tumors. Skeletal Radiol. 1997 Jun;26(6):325-53 7. Llauger J, Palmer J, Amores S, Bagué S, Camins A. Primary tumors of the sacrum: diagnostic imaging. AJR Am J Roentgenol. 2000 Feb;174(2):417-24. 8. Cheville JC, Tindall D, Boelter C, Jenkins R, Lohse CM, Pankratz VS, Sebo TJ, Davis B, Blute ML. Metastatic prostate carcinoma to bone. Cancer. 2002;95:1028–1036. 9. Bubendorf L, Schopfer A, Wagner U, Sauter G, Moch H, Wili N, Gasser TC, Mihatsch MJ. Metastatic patterns of prostate cancer: an autopsy study of 1589 patients. Hum Path.2000;31:578–583. 10. Madewell JE, Ragsdale BD, Sweet DE.Radiologic and pathologic analysis of solitary bone lesions. Part I: internal margins.Radiol Clin North Am. 1981 Dec;19(4):715-48 11. Messiou C, Cook G, deSouza NM. Imaging metastatic bone disease from carcinoma of the prostate. Br. J. Cancer (2009) 12. Lecouvet FE, Geukens D, Stainier A, Jamar F, Jamart J, d'Othée BJ, Therasse P, Vande Berg B, Tombal B. Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high-risk prostate cancer: diagnostic and cost-effectiveness and comparison with current detection strategies.J Clin Oncol. 2007 Aug 1;25(22):3281-7 13. Reiner J. Wirbel, Michael Schulte, Bernd Maier, Martin Koschnik, and Wolf E. Mutschler. Chondrosarcoma of the Pelvis: Oncologic and Functional Outcome Sarcoma. 2000 December; 4(4): 161–168 14. Pring ME, Weber KL, Unni KK, Sim FH.Chondrosarcoma of the pelvis. A review of sixty-four cases.J Bone Joint Surg Am. 2001 Nov;83-A(11):1630-42 15. Gupta, G.; Hafiz, A.; Gandhi, J. S Radiation-induced chondrosarcomas: A case report with review of literature. Journal of Cancer Research & Therapeutics;Jul-Sep2010, Vol. 6 Issue 3, p394
(1)
[1] Iijima, Sumio. "Carbon nanotubes: past, present, and future." Physica B: Condensed Matter 323, no. 1-4 (2002): 1-5. [2] Hu, J. L., C. C. Yang, and J. H. Huang. "Vertically-aligned carbon nanotubes prepared by water-assisted chemical vapor deposition." Diamond and related materials 17, no. 12 (2008): 2084-2088. [3] Liu, Hao, Yong Zhang, Ruying Li, Xueliang Sun, Fengping Wang, Zhifeng Ding, Philippe Mérel, and Sylvain Desilets. "Aligned synthesis of multi-walled carbon nanotubes with high purity by aerosol assisted chemical vapor deposition: Effect of water vapor." Applied surface science 256, no. 14 (2010): 4692-4696. [4] Zainal, Muhammad Thalhah, Mohd Fairus Mohd Yasin, and Mazlan Abdul Wahid. "Optimizing flame synthesis of carbon nanotubes: experimental and modelling perspectives." Jurnal Teknologi 78, no. 8-4 (2016). [5] Zainal, Muhammad Thalhah, Mohd Fairus Mohd Yasin, and Mazlan Abdul Wahid. "Optimizing flame synthesis of carbon nanotubes: experimental and modelling perspectives." Jurnal Teknologi 78, no. 8-4 (2016). [6] Bower, Chris, Otto Zhou, Wei Zhu, D. J. Werder, and Sungho Jin. "Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition." Applied Physics Letters 77, no. 17 (2000): 2767-2769. [7] Lee, Cheol Jin, Jeunghee Park, and A. Yu Jeong. "Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition." Chemical Physics Letters 360, no. 3-4 (2002): 250-255. [8] Suriani, A. B., N. A. Asli, M. Salina, M. H. Mamat, A. A. Aziz, A. N. Falina, M. Maryam et al. "Effect of iron and cobalt catalysts on the growth of carbon nanotubes from palm oil precursor." In IOP Conference Series: Materials Science and Engineering, vol. 46, no. 1, p. 012014. IOP Publishing, 2013. [9] Hou, Shuhn-Shyurng, De-Hua Chung, and Ta-Hui Lin. "High-yield synthesis of carbon nano-onions in counterflow diffusion flames." Carbon 47, no. 4 (2009): 938-947. [10] Ferguson, Selina C., Ambarish Dahale, Babak Shotorban, Shankar Mahalingam, and David R. Weise. "The role of moisture on combustion of pyrolysis gases in wildland fires." Combustion science and technology 185, no. 3 (2013): 435-453.
(1)
[1] I. Kaizuka, A. Jäger Waldau, dan J. Donoso, Snapshot of Global PV Markets 2023 Task 1 Strategic PV Analysis and Outreach PVPS, IEA- PVPS T1-44:2023. France: IEA PVPS, 2023. [Daring]. [2] A. Pribadi, “Semakin Ekonomis, Pengguna PLTS Atap Diharapkan Terus Bertambah,” Energi Baru Terbarukan dan Konversi Energi (EBTKE). Diakses: 22 September 2023. [Daring]. [3] A. Zayyinun dan M. Widyartono, “Prototipe Mesin Stirling Menggunakan Panas Sinar Matahari Sebagai Energi Alternatif,” Jurnal Teknik Elektro, vol. 9, no. 2, hlm. 459–466, 2020. [4] I. Wahidin dan R. Hidayat, “Perancangan Pembangkit Tenaga Listrik Tenaga Surya Dengan Panel Surya Monocrystalline 60 Wp,” Jurnal Ilmiah Wahana Pendidikan, Juli, vol. 2023, no. 14, hlm. 378–387, doi: 10.5281/zenodo.8173835. [5] R. Abdullah dan S. Subiyanto, “Sistem Hibrida Pembangkit Listrik Energi Terbarukan Terhubung Grid Dengan Kerangka Referensi Natural,” Jetri : Jurnal Ilmiah Teknik Elektro, vol. 16, no. 1, hlm. 1–16, Agu 2018, doi: 10.25105/jetri.v16i1.2940. [6] A. Wibowo, “Instalasi Panel Listrik Surya”. Semarang: Yayasan Prima Agus Teknik, 2022. [7] O. A. Rozak, M. Marfin, I. Irvan, dan J. Setiawan, “Analisis Pengaruh Kondisi Cuaca Pada Efisiensi Sel Surya Monocrystalline, Polycrystalline dan Thin Film,” EPIC Journal of Electrical Power Instrumentation and Control, vol. 5, no. 2, hlm. 186, Jan 2023, doi: 10.32493/epic.v5i2.28401. [8] Susilo Budi, “Mengenal Iklim dan Cuaca Di Indonesia”. Yogyakarta: DIVA Press, 2021. [9] S. Widyawati Putri, G. Marausna, dan E. Eko Prasetiyo, “Analisis Pengaruh Intensitas Cahaya Matahari Terhadap Daya Keluaran Pada Panel Surya,” Teknika STTKD: Jurnal Teknik, Elektronik, Engine, vol. 8, no. 1, hlm. 29–37, Jul 2022, doi: 10.56521/teknika.v8i1.442. [10] Jamaaluddin, “Buku Petunjuk Pengoperasian Pembangkit Listrik Tenaga Surya (PLTS)”. Sidoarjo: UMSIDA Press, 2021. [11] Q. Lagarde, B. Beillard, S. Mazen, M. S. Denis, dan J. Leylavergne, “Performance ratio of photovoltaic installations in France: Comparison between inverters and micro-inverters,” Journal of King Saud University - Engineering Sciences. King Saud University, 2021. doi: 10.1016/j.jksues.2021.11.007. [12] S. Tiwari, R. Pandey, dan A. Goswami, “Performance Comparison of 3kW Residential Grid-Connected Photovoltaic System between Micro-inverter and String-inverter Topology using System Advisor Model,” International Research Journal of Engineering and Technology, vol. 08, no. 09, hlm. 1129–1131, Sep 202. [13] S. Nahela, I. Fauzi Faridyan, N. Arief Rachman, A. Risdiyanto, dan B. Susanto, “Analisis Perbandingan Supply Arus Grid-Tied Inverter Panel Surya Dan Pln Pada Beban 400 Watt Terhadap Radiasi Matahari,” Ketenagalistrikan dan Energi Terbarukan, vol. 18, no. 2, hlm. 69–78, 2019. [14] Ryan Rezky Ramadhan, I. M. Moch, Abdul Hafid, dan Adriani, “ANALISIS PLTS ON GRID,” Vertex Elektro, vol. 14, no. 1, hlm. 12–25, Feb 2022. [15] Salmaa, “Penelitian Eksperimen: Tujuan, Jenis, Langkah, Contoh,” Penerbit Depublish. Diakses: 22 September 2023. [16] M. Syaban dan E. Ratnaningrum, “Statistika Penelitian”, vol. 3. Bandung: Informatika Bandung, 2021. [17] Solargis, “Global Solar Atlas,” World Bank Group. Diakses: 21 Mei 2023.
(1)
1. INDONESIA ENERGY OUTLOOK 2018, Badan Pengkajian dan Penerapan Teknologi, ISBN 978-602-1328-05-7, 2018. 2. Undang-Undang No. 10 tahun 1997 tentang Ketenaganukliran, 10 April 1997. 3. Sekretariat Kabinet Republik Indonesia, “Penggunaan Tenaga Nuklir di Indonesia: Aspek Hukum”, 10 Agustus 2015. 4. Undang-Undang No. 30 tahun 2007 tentang Energi, 10 Agustus 2007. 5. Benny D. Setianto, Benturan UU dalam Pendirian PLTN 6. Undang-Undang No. 17, tahun 2007: Rencana Pembangunan Jangka Panjang Nasional (RPJPN) 2005-2025. 7. Peraturan Pemerintah No. 79, tahun 2014: Kebijakan Energi Nasional. 8. Peraturan Presiden Republik Indonesia Nomor 22 Tahun 2017 Tentang Rencana Umum Energi Nasional. 9. Peraturan Presiden No. 2, tahun 2015: Rencana Pembangunan Jangka Menengah Nasional 2015-2019. 10. Keputusan Menteri ESDM No. 1567K/21/MEM/2018 tentang Rencana Usaha Penyediaan Tenaga Listrik PT PLN (Persero) 2018-2027, 13 Maret 2018. 11. N. Soraya, “Surplus Daya 169 MW, PLN Dukung Investasi Masuk Kalbar”, Tribun News, 15 Mei 2018. 12. H. B. Pratomo, “80 Persen listrik Kalimantan Barat masih diimpor dari Malaysia”, Merdeka.com, 4 Oktober 2018. 13. Peraturan Menteri Energi Dan Sumber Daya Mineral Republik Indonesia nomor 4 Tahun 2017 tentang Objek Vital Nasional Bidang Energi dan Sumber Daya Mineral, 11 Januari 2017. 14. “2 Pembangkit di Kalbar Beroperasi”, Bisnis.com, 8 Mei 2017.
(1)
[1] Innes, J. E., and Booher, D. E. (2004). Reframing public participation: strategies for the 21st century. Planning Theory and Practice, 5(4), pp. 419–436. [2] Omar, D., Ling, O., and Leh, H. (2009). Malaysian development planning system: Kuala Lumpur Structure Plan and public participation. Asian Social Science, 5(3), pp. 30–36. [3] Edwards, R., and Holland, J. (2013). What is qualitative interviewing? “What is?” Research Methods Series, (Vol. 7). [4] Guest, G., Bunce, A., and Johnson, L. (2006). How many interviews are enough? Field Methods, 18(1), pp. 59–82. [5] Creswell John W 1998 Qualitative inquiry and research design: Choosing among five traditions Sage Publications Inc. Thousand Oaks p 51-65 [6] Mason, M. (2010). Sample size and saturation in PhD studies using qualitative interviews. Forum: Qualitative Social Research, 11(3), pp. 1–13. [7] Marshall, Bryan; Cardon, Peter; Poddar, Amit; Fontenot, R. (2013). Does sample size matter in qualitative research?: A review of qualitative interviews in is research. Journal of Computer Information Systems, 54(1), pp. 11–22. [8] Morse, J. M. (2000). Determining sample size. Qualitative Health Research, 10(1), pp. 3–5. [9] Guest, G., Namey, E., and McKenna, K. (2017). How many focus groups are enough? Building an evidence base for nonprobability sample sizes. Field Methods, 29(1), pp. 3–22. [10] Braun V and Clarke V 2006 Using thematic analysis in psychology Qualitative Research in Psychology 3(2) p 77–101. [11] Salonga, S., (2018). Types of transcription: Verbatim vs Intelligent vs Edited Transcription. Retrieved from https://www.globalme.net/blog/verbatim-vs-intelligent-vs-edited- transcription.
(1)
1. International Agency for Research on Cancer (IARC), “Global Can-cer Observatory [Internet],“ 2020, https://gco.iarc.fr/today/data/factsheets/cancers/15-428-Lung-fact-sheet.pdf.2. C. J. Ng, C. H. Teo, N. Abdullah, W. P. Tan, and H. M. Tan, “Rela-tionships Between Cancer Pattern, Country Income and GeographicalRegion in Asia,” BMC Cancer 15, no. 1 (2015): 613.3. M. B. Schabath and M. L. Cote, “Cancer Progress and Priorities:Lung Cancer,” Cancer Epidemiology, Biomarkers & Prevention 28, no.10 (2019): 1563–1579.4. C. Zappa and S. A. Mousa, “Non-small Cell Lung Cancer: CurrentTreatment and Future Advances,” Translational Lung Cancer Research5, no. 3 (2016): 288–300.5. I. I. Wistuba, E. Brambilla, and M. Noguchi, “Classic Anatomic Pa-thology and Lung Cancer,” in IASLC Thoracic Oncology, Second ed.(Philadelphia: Elsevier, 2018), 143–163.e4.6. S. Tomassini, N. Falcionelli, P. Sernani, L. Burattini, and A. F. Drag-oni, “Lung Nodule Diagnosis and Cancer Histology Classification FromComputed Tomography Data by Convolutional Neural Networks: ASurvey,” Computers in Biology and Medicine 146 (2022): 105691.7. W. D. Travis, “Lung Cancer Pathology,” Clinics in Chest Medicine 41,no. 1 (2020): 67–85.8. P. Marentakis, P. Karaiskos, V. Kouloulias, et al., “Lung Cancer His-tology Classification From CT Images Based on Radiomics and DeepLearning Models,” Medical & Biological Engineering & Computing 59,no. 1 (2021): 215–226.9. B. Amini, S. Y. Huang, J. Tsai, M. F. Benveniste, H. H. Robledo, andE. Y. Lee, “Primary Lung and Large Airway Neoplasms in Children,”Radiologic Clinics of North America 51, no. 4 (2013): 637–657.10. L. Horn, R. Eisenberg, D. Gius, et al., “Cancer of the Lung,” in Abel-off's Clinical Oncology (Philadelphia: Elsevier, 2014), 1143–1192.e13.11. C. A. French, “Respiratory Tract and Mediastinum,” in Cytology(Philadelphia: Elsevier, 2014), 59–104.12. C. M. Rudin, E. Brambilla, C. Faivre-Finn, and J. Sage, “Small- celllung cancer,” Nature Reviews. Disease Primers 7, no. 1 (2021): 3.13. M. A. Beckles, S. G. Spiro, G. L. Colice, and R. M. Rudd, “InitialEvaluation of the Patient With Lung Cancer*,” Chest 123, no. 1 (2003):97S–104S.14. A. E. Simon, D. Juszczyk, N. Smyth, et al., “Knowledge of Lung Can-cer Symptoms and Risk Factors in the UK: Development of a Measureand Results From a Population-Based Survey,” Thorax 67, no. 5 (2012):426–432.15. H. M. Schuller, “The Impact of Smoking and the Influence of OtherFactors on Lung Cancer,” Expert Review of Respiratory Medicine 13, no.8 (2019): 761–769.16. K. Chaitanya Thandra, A. Barsouk, K. Saginala, J. Sukumar Aluru,and A. Barsouk, “Epidemiology of Lung Cancer,” Współczesna Onkolo-gia 25, no. 1 (2021): 45–52.17. W. Y. Lim, C. S. Tan, E. Y. Loy, R. Omkar Prasad, A. Seow, and K. S.Chia, “Lung Cancer Incidence in Singapore: Ethnic and Gender Differ-ences,” Lung Cancer 84, no. 1 (2014): 23–30.18. L. Tang, W. Y. Lim, P. Eng, et al., “Lung Cancer in Chinese Women:Evidence for an Interaction Between Tobacco Smoking and Exposure toInhalants in the Indoor Environment,” Environmental Health Perspec-tives 118, no. 9 (2010): 1257–1260.19. L. A. Tse, I. T. s. Yu, H. Qiu, J. S. K. Au, and X. r. Wang, “A Case–Ref-erent Study of Lung Cancer and Incense Smoke, Smoking, and Residen-tial Radon in Chinese Men,” Environmental Health Perspectives 119, no.11 (2011): 1641–1646.20. Y. S. Cheng, W. E. Bechtold, C. C. Yu, and I. F. Hung, “IncenseSmoke: Characterization and Dynamics in Indoor Environments,”Aerosol Science and Technology 23, no. 3 (1995): 271–281.21. J. T. Friborg, J. Yuan, R. Wang, W. Koh, H. Lee, and M. C. Yu, “In-cense Use and Respiratory Tract Carcinomas,” Cancer 113, no. 7 (2008):1676–1684.22. W. J. Seow and Q. Lan, “Domestic Incense Use and Lung Cancerin Asia: A Review,” Reviews on Environmental Health 31, no. 1 (2016):155–158.23. Pew Research Centre, “Buddhism, Islam and Religious Pluralism inSouth and Southeast Asia [Internet],” 2023, https://www.pewresearch.org/relig ion/2023/09/12/ buddh ism-islam-and-relig ious-plura lism-in-south-and-southeast-asia/.24. T. T. Geng, T. H. Jafar, J. M. Yuan, and W. P. Koh, “Long-Term In-cense Use and the Risk of End- Stage Renal Disease Among Chinese inSingapore: The Singapore Chinese Health Study,” BMC Nephrology 20,no. 1 (2019): 9.25. A. Pan, M. L. Clark, L. W. Ang, M. C. Yu, J. M. Yuan, and W. P. Koh,“Incense Use and Cardiovascular Mortality Among Chinese in Singa-pore: The Singapore Chinese Health Study,” Environmental Health Per-spectives 122, no. 12 (2014): 1279–1284 26. K. B. Yeatts, M. El- Sadig, H. I. Ali, et al., “Conducting Environmen-tal Health Research in the Arabian Middle East: Lessons Learned and Opportunities,” Environmental Health Perspectives 120, no. 5 (2012):632–636.27. B. Moeran, “Making Scents of Smell: Manufacturing and Consum-ing Incense in Japan,” Hum Organ [Internet] 68, no. 4 (2009): 439–450,http://www.jstor.org/stable/44148577.28. J. J. Jetter, Z. Guo, J. A. McBrian, and M. R. Flynn, “Characteriza-tion of Emissions From Burning Incense,” Science of the Total Environ-ment 295, no. 1–3 (2002): 51–67.29. V. K. Yadav, N. Choudhary, S. Heena Khan, et al., “Incense and In-cense Sticks: Types, Components, Origin and Their Religious Beliefsand Importance Among Different Religions,” Journal of Bio Innovation9, no. 6 (2020): 1420–1439.30. T. C. Lin, G. Krishnaswamy, and D. S. Chi, “Incense Smoke: Clini-cal, Structural and Molecular Effects on Airway Disease,” Clinical andMolecular Allergy 6, no. 1 (2008): 3.31. T. C. Tran and P. J. Marriott, “Characterization of Incense Smokeby Solid Phase Microextraction—Comprehensive Two-DimensionalGas Chromatography (GC×GC),” Atmospheric Environment 41, no. 27(2007): 5756–5768.32. P. Navasumrit, M. Arayasiri, O. M. T. Hiang, et al., “Potential HealthEffects of Exposure to Carcinogenic Compounds in Incense Smoke inTemple Workers,” Chemico-Biological Interactions 173, no. 1 (2008):19–31.33. S. E. Guo, P. A. Ratner, S. C. Tseng, et al., “Exposure to IncenseBurning, Biomarkers, and the Physical Health of Temple Workers inTaiwan,” Environmental Science and Pollution Research 30, no. 45(2023): 101804–101816.34. L. C. Koo, J. H. C. Ho, C. Y. Ho, et al., “Personal Exposure to Ni-trogen Dioxide and Its Association With Respiratory Illness in HongKong,” American Review of Respiratory Disease 141, no. 5_pt_1 (1990):1119–1126.35. International Agency for Research on Cancer (IARC), “AgentsClassified by the IARC Monographs, Volumes 1–136 [Internet],” 2022,https://monographs.iarc.who.int/agents-classified-by-the-iarc/.36. National Toxicology Program (NTP), Report on Carcinogens, Fif-teenth Edition [Internet] (Research Triangle Park, NC: U.S. Departmentof Health and Human Services, Public Health Service, 2021), https://ntp.niehs.nih.gov/go/roc15.37. K. C. Chen, S. W. Tsai, R. H. Shie, C. Zeng, and H. Y. Yang, “IndoorAir Pollution Increases the Risk of Lung Cancer,” International Journalof Environmental Research and Public Health 19, no. 3 (2022): 1164.38. R. MacLennan, J. da Costa, N. E. Day, C. H. Law, Y. K. Ng, and K.Shanmugaratnam, “Risk Factors for Lung Cancer in Singapore Chi-nese, a Population With High Female Incidence Rates,” InternationalJournal of Cancer 20, no. 6 (1977): 854–860.39. M. Chan-Yeung, “Risk Factors Associated With Lung Cancer inHong Kong,” Lung Cancer 40, no. 2 (2003): 131–140.40. L. C. Koo, J. H. C. Ho, S. Tominaga, et al., “Is Chinese Incense SmokeHazardous to Respiratory Health?,” Indoor and Built Environment 4, no.6 (1995): 334–343.41. L. C. Koo and J. H. C. Ho, “Diet as a Confounder of the AssociationBetween Air Pollution and Female Lung Cancer: Hong Kong Studieson Exposures to Environmental Tobacco Smoke, Incense, and CookingFumes as Examples,” Lung Cancer 14 (1996): S47–S61.42. M. J. Page, J. E. McKenzie, P. M. Bossuyt, et al., “The PRISMA 2020Statement: An Updated Guideline for Reporting Systematic Reviews,”BMJ 372 (2021): n71.43. G. A. Wells, B. Shea, D. O'Connell, et al., “The Newcastle-OttawaScale (NOS) for assessing the quality of nonrandomised studies in meta-analyses [Internet],“ https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.44. W. w. Dong, D. L. Zhang, Z. H. Wang, C. Z. Lv, P. Zhang, and H.Zhang, “Different Types of Diabetes Mellitus and Risk of Thyroid Can-cer: A Meta-Analysis of Cohort Studies,” Front Endocrinol (Lausanne)13 (2022): 971213.45. S. Dietrich, S. Jacobs, J. Zheng, K. Meidtner, L. Schwingshackl, andM. B. Schulze, “Gene-Lifestyle Interaction on Risk of Type 2 Diabetes: ASystematic Review,” Obesity Reviews 20, no. 11 (2019): 1557–1571.46. W. G. Cochran, “The Comparison of Percentages in Matched Sam-ples,” Biometrika 37, no. 3–4 (1950): 256–266.47. J. Higgins, “Measuring Inconsistency in Meta-Analyses,” BMJ 327,no. 7414 (2003): 557–560.48. S. Greenland and J. M. Robins, “Estimation of a Common EffectParameter From Sparse Follow-Up Data,” Biometrics 41, no. 1 (1985):55–68.49. N. Mantel and W. Haenszel, “Statistical Aspects of the Analysis ofData From Retrospective Studies of Disease,” JNCI Journal of the Na-tional Cancer Institute 22 (1959): 719–748.50. M. Egger, G. D. Smith, M. Schneider, and C. Minder, “Bias in Meta-Analysis Detected by a Simple, Graphical Test,” BMJ 315, no. 7109(1997): 629–634.51. S. Balduzzi, G. Rücker, and G. Schwarzer, “How to Perform a Meta-Analysis With R: A Practical Tutorial,” Evidence-Based Mental Health22, no. 4 (2019): 153–160.52. R Core Team, R: A Language and Environment for Statistical Com-puting [Internet] (Vienna, Austria: R Foundation for Statistical Comput-ing, 2023), https://www.R-project.org/.53. W. Li, L. A. Tse, J. S. K. Au, F. Wang, H. Qiu, and I. T. S. Yu, “Second-hand Smoke Enhances Lung Cancer Risk in Male Smokers: An Interac-tion,” Nicotine & Tobacco Research 18, no. 11 (2016): 2057–2064.54. Y. L. Lo, C. F. Hsiao, G. C. Chang, et al., “Risk Factors for PrimaryLung Cancer Among Never Smokers by Gender in a Matched Case–Control Study,” Cancer Causes & Control 24, no. 3 (2013): 567–576.55. T. Hussain, O. S. Al-Attas, N. M. Al-Daghri, et al., “Induction ofCYP1A1, CYP1A2, CYP1B1, Increased Oxidative Stress and Inflamma-tion in the Lung and Liver Tissues of Rats Exposed to Incense Smoke,”Molecular and Cellular Biochemistry 391, no. 1–2 (2014): 127–136.56. T. Hussain, O. S. Al-Attas, S. A. Alrokayan, et al., “Deleterious Ef-fects of Incense Smoke Exposure on Kidney Function and Architecturein Male Albino Rats,” Inhalation Toxicology 28, no. 8 (2016): 364–373.57. National Toxicology Program (NTP), “NTP Toxicology and Carcino-genesis Studies of Isobutyl Nitrite (CAS No. 542–56-3) in F344 Rats andB6C3F1 Mice (Inhalation Studies),” National Toxicology Program Tech-nical Report Series 448 (1996): 1–302.58. C. Lin, P. Lo, H. Wu, C. Chang, and L. Wang, “Association BetweenIndoor Air Pollution and Respiratory Disease in Companion Dogsand Cats,” Journal of Veterinary Internal Medicine 32, no. 3 (2018):1259–1267.59. A. Zierenberg-Ripoll, R. E. Pollard, S. L. Stewart, et al., “AssociationBetween Environmental Factors Including Second-Hand Smoke andPrimary Lung Cancer in Dogs,” Journal of Small Animal Practice 59,no. 6 (2018): 343–349.60. S. P. Kim, S. J. Lee, S. H. Nam, and M. Friedman, “Elm Tree (Ulmusparvifolia) Bark Bioprocessed With Mycelia of Shiitake (Lentinus Edo-des) Mushrooms in Liquid Culture: Composition and Mechanism ofProtection Against Allergic Asthma in Mice,” Journal of Agriculturaland Food Chemistry 64, no. 4 (2016): 773–784.61. L. A. Tse, F. Wang, M. C. s. Wong, J. S. k. Au, and I. T. s. Yu, “Risk As-sessment and Prediction for Lung Cancer Among Hong Kong ChineseMen,” BMC Cancer 22, no. 1 (2022): 585.62. L. A. Tse, I. T. s. Yu, J. S. K. Au, et al., “Environmental TobaccoSmoke and Lung Cancer Among Chinese Nonsmoking Males: Might Adenocarcinoma be the Culprit?,” American Journal of Epidemiology169, no. 5 (2008): 533–541.63. R. K. Phukan, B. J. Saikia, P. K. Borah, E. Zomawia, G. S. Sekhon,and J. Mahanta, “Role of Household Exposure, Dietary Habits andGlutathione S-Transferases M1, T1 Polymorphisms in Susceptibility toLung Cancer Among Women in Mizoram India,” Asian Pacific Journalof Cancer Prevention 15, no. 7 (2014): 3253–3260.64. M. Anita, K. Raj, K. Anurag, K. Rajeev, S. Dhananjay Kumar, and D.Puja, “A Case–Control Study of Lung Cancer at a Tertiary Care Hospitalof Western Maharashtra, India,” Medical Journal of Dr DY Patil Vidyap-eeth 16, no. 3 (2023): 336–342.65. K. Chen, C. Hsiao, G. Chang, et al., “Hormone Replacement Therapyand Lung Cancer Risk in Chinese,” Cancer 110, no. 8 (2007): 1768–1775.66. S. C. Chen, R. H. Wong, L. J. Shiu, M. C. Chiou, and H. Lee, “Expo-sure to Mosquito Coil Smoke May Be a Risk Factor for Lung Cancer inTaiwan,” Journal of Epidemiology 18, no. 1 (2008): 19–25.67. J. Tung, W. Huang, J. Yang, et al., “Auramine O, an Incense SmokeIngredient, Promotes Lung Cancer Malignancy,” Environmental Toxi-cology 32, no. 11 (2017): 2379–2391.68. C. Tu, B. Wang, F. Cheng, et al., “Incense Burning Smoke SensitizesLung Cancer Cells to EGFR TKI by Inducing AREG Expression,” Amer-ican Journal of Cancer Research 8, no. 12 (2018): 2575–2589.69. J. J. Yang, D. Yu, W. Wen, et al., “Tobacco Smoking and Mortality inAsia,” JAMA Network Open 2, no. 3 (2019): e191474.70. M. Shariful Islam, M. Rashid, M. I. Sizear, et al., “Cigarette Smokingand Associated Factors Among Men in Five South Asian Countries: APooled Analysis of Nationally Representative Surveys,” PLoS One 17, no.11 (2022): e0277758.71. C. T. Sreeramareddy, P. M. S. Pradhan, I. A. Mir, and S. Sin, “Smok-ing and Smokeless Tobacco Use in Nine South and Southeast AsianCountries: Prevalence Estimates and Social Determinants From Demo-graphic and Health Surveys,” Population Health Metrics 12, no. 1 (2014):22.72. V. Lee, A. Li, and J. Li, “Burden of Smoking in Asia-Pacific Coun-tries,” Tobacco Induced Diseases 19, no. April (2021): 1–5.73. A. S. Kim, H. J. Ko, J. H. Kwon, and J. M. Lee, “Exposure to Second-hand Smoke and Risk of Cancer in Never Smokers: A Meta-Analysisof Epidemiologic Studies,” International Journal of Environmental Re-search and Public Health 15, no. 9 (2018): 1981.74. O. Shrestha, “Incense Stick: An Overlooked Source of Health Haz-ard,” Journal of Nepal Medical Association 58, no. 230 (2020): 823–825.75. V. K. Yadav, P. Malik, V. Tirth, et al., “Health and EnvironmentalRisks of Incense Smoke: Mechanistic Insights and Cumulative Evi-dence,” Journal of Inflammation Research 15 (2022): 2665–2693.76. N. Fuentes, M. Silva Rodriguez, and P. Silveyra, “Role of Sex Hor-mones in Lung Cancer,” Experimental Biology and Medicine 246, no. 19(2021): 2098–2110.77. M. T. Dorak and E. Karpuzoglu, “Gender Differences in Cancer Sus-ceptibility: An Inadequately Addressed Issue,” Frontiers in Genetics 3(2012): 3.78. L. May, K. Shows, P. Nana- Sinkam, H. Li, and J. W. Landry, “SexDifferences in Lung Cancer,” Cancers (Basel) 15, no. 12 (2023): 3111.79. J. M. Araujo, A. Prado, N. K. Cardenas, et al., “Repeated Observationof Immune Gene Sets Enrichment in Women With Non-small Cell LungCancer,” Oncotarget 7, no. 15 (2016): 20282–20292.80. L. Mikkonen, P. Pihlajamaa, B. Sahu, F. P. Zhang, and O. A. Jänne,“Androgen receptor and androgen-dependent gene expression in lung,”Molecular and Cellular Endocrinology 317, no. 1–2 (2010): 14–24.81. D. Durovski, M. Jankovic, and S. Prekovic, “Insights Into AndrogenReceptor Action in Lung Cancer,” Endocrine 4, no. 2 (2023): 269–280.82. A. R. Michmerhuizen, D. E. Spratt, L. J. Pierce, and C. W. Speers,“ARe We There Yet? Understanding Androgen Receptor Signaling inBreast Cancer,” NPJ Breast Cancer 6, no. 1 (2020): 47.83. J. Semenas, C. Allegrucci, A. S. Boorjian, P. N. Mongan, and J. LiaoPersson, “Overcoming Drug Resistance and Treating Advanced Pros-tate Cancer,” Current Drug Targets 13, no. 10 (2012): 1308–1323.84. A. M. Vinggaard, C. Hnida, and J. C. Larsen, “Environmental Poly-cyclic Aromatic Hydrocarbons Affect Androgen Receptor ActivationIn Vitro,” Toxicology 145, no. 2–3 (2000): 173–183.85. Z. Guo, J. J. Jetter, and J. A. McBrian, “Rates of Polycyclic AromaticHydrocarbon Emissions From Incense,” Bulletin of Environmental Con-tamination and Toxicology 72, no. 1 (2004): 186–193.86. C. Chang, S. O. Lee, S. Yeh, and T. M. Chang, “Androgen Receptor(AR) Differential Roles in Hormone-Related Tumors Including Pros-tate, Bladder, Kidney, Lung, Breast and Liver,” Oncogene 33, no. 25(2014): 3225–3234.87. M. Becerra-Diaz, M. Song, and N. Heller, “Androgen and AndrogenReceptors as Regulators of Monocyte and Macrophage Biology in theHealthy and Diseased Lung,” Frontiers in Immunology 11 (2020): 1698.88. E. Barbier, J. Carpentier, O. Simonin, et al., “Oxidative Stress andInflammation Induced by Air Pollution-Derived PM2.5 Persist in theLungs of Mice After Cessation of Their Sub- Chronic Exposure,” Envi-ronment International 181 (2023): 108248.89. X. Hu, L. He, J. Zhang, et al., “Inflammatory and Oxidative StressResponses of Healthy Adults to Changes in Personal Air Pollutant Ex-posure,” Environmental Pollution 263 (2020): 114503.90. I. S. Mudway, F. J. Kelly, and S. T. Holgate, “Oxidative Stress in AirPollution Research,” Free Radical Biology & Medicine 151 (2020): 2–6.91. N. H. Hisamuddin, J. Jalaludin, S. Abu Bakar, and M. T. Latif, “TheInfluence of Environmental Polycyclic Aromatic Hydrocarbons (PAHs)Exposure on DNA Damage Among School Children in Urban TrafficArea, Malaysia,” International Journal of Environmental Research andPublic Health 19, no. 4 (2022): 2193.92. M. Becerra-Díaz, A. B. Strickland, A. Keselman, and N. M. Heller,“Androgen and Androgen Receptor as Enhancers of M2 MacrophagePolarization in Allergic Lung Inflammation,” Journal of Immunology201, no. 10 (2018): 2923–2933.93. M. H. E. Tan, J. Li, H. E. Xu, K. Melcher, and E.-L. Yong, “AndrogenReceptor: Structure, Role in Prostate Cancer and Drug Discovery,” ActaPharmacologica Sinica 36, no. 1 (2015): 3–23.94. O. Raaschou-Nielsen, Z. J. Andersen, R. Beelen, et al., “Air Pollu-tion and Lung Cancer Incidence in 17 European Cohorts: ProspectiveAnalyses From the European Study of Cohorts for Air Pollution Effects(ESCAPE),” Lancet Oncology 14, no. 9 (2013): 813–822.95. H. C. Lee, Y. H. Lu, Y. L. Huang, S. L. Huang, and H. C. Chuang, “AirPollution Effects to the Subtype and Severity of Lung Cancers,” FrontMed (Lausanne) 9 (2022): 835026.96. W. Hill, E. L. Lim, C. E. Weeden, et al., “Lung Adenocarcinoma Pro-motion by Air Pollutants,” Nature 616, no. 7955 (2023): 159–167.
(1)
[1]I. Odun-Ayo, M. Ananya, F. Agono, and R. Goddy-Worlu, “Cloud Computing Architecture: A Critical Analysis,” 2018 18th International Conference on Computational Science and Applications (ICCSA), pp. 1–7, Jul. 2018, doi: 10.1109/iccsa.2018.8439638. [2]M. Reece, T. E. Lander, M. Stoffolano, A. Sampson, J. Dykstra, S. Mittal et al., "Systemic Risk and Vulnerability Analysis of Multi-cloud Environments", arXiv preprint, 2023. [3]M. M. Al-Sayed, H. A. Hassan, and F. A. Omara, “CloudFNF: An ontology structure for functional and non-functional features of cloud services,” Journal of Parallel and Distributed Computing, vol. 141, pp. 143–173, Jul. 2020, doi: 10.1016/j.jpdc.2020.03.019. [4]N. E. H. Bouzerzour, S. Ghazouani, and Y. Slimani, “A survey on the service interoperability in cloud computing: Client‐centric and provider‐centric perspectives,” Software: Practice and Experience, vol. 50, no. 7, pp. 1025–1060, Jan. 2020, doi: 10.1002/spe.2794. [5]K. Sana, N. Hassina, and B.-B. Kadda, “Towards a Reference Architecture for Interoperable Clouds,” 2021 8th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 229–233, Apr. 2021, doi: 10.1109/iceee52452.2021.9415944. [6]K. Benhssayen and A. Ettalbi, “Semantic Interoperability Framework for IAAS Resources in Multi-Cloud Environment,” International Journal of Computer Science and Network Security, vol. 21, no. 2, Feb. 2021, doi: 10.22937/ijcsns.2021.21.2.1. [7]K. Benhssayen and A. Ettalbi, “An Extended Framework for Semantic Interoperability in PaaS and IaaS Multi-cloud,” Digital Technologies and Applications, pp. 415–424, 2022, doi: 10.1007/978-3-031-02447-4_43. [8]S. Challita, F. Zalila, and P. Merle, “Specifying Semantic Interoperability between Heterogeneous Cloud Resources with the FCLOUDS Formal Language,” 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 367–374, Jul. 2018, doi: 10.1109/cloud.2018.00053. [9]J. Oliveira de Carvalho, F. Trinta, and D. Vieira, “PacificClouds: A Flexible MicroServices based Architecture for Interoperability in Multi-Cloud Environments,” Proceedings of the 8th International Conference on Cloud Computing and Services Science, pp. 448–455, 2018, doi: 10.5220/0006705604480455. [10]C. Anglano, M. Canonico, and M. Guazzone, “EasyCloud: a Rule based Toolkit for Multi-platform Cloud/Edge Service Management,” 2020 Fifth International Conference on Fog and Mobile EdgeComputing (FMEC), pp. 188–195, Apr. 2020, doi:10.1109/fmec49853.2020.9144821. [11]C. Anglano, M. Canonico, and M. Guazzone, “EasyCloud: Multi-clouds made easy,” 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC), pp. 526–531, Jul. 2021, doi:10.1109/compsac51774.2021.00078. [12]D. Androcec and R. Picek, “Cloud ERP API Ontology,” 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET), pp. 1–5, Jul. 2022, doi:10.1109/icecet55527.2022.9873020. [13]N. Bassiliades, M. Symeonidis, P. Gouvas, E. Kontopoulos, G. Meditskos, and I. Vlahavas, “PaaSport semantic model: An ontology for a platform-as-a-service semantically interoperable marketplace,” Data & Knowledge Engineering, vol. 113, pp. 81–115, Jan. 2018, doi:10.1016/j.datak.2017.11.001. [14]N. E. H. Bouzerzour, S. Ghazouani, and Y. Slimani, “Cloud interoperability based on a generic cloud service description: Mapping OWL-S to GCSD,” 2020 IEEE 29th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), pp. 70–75, Sep. 2020, doi:10.1109/wetice49692.2020.00022. [15]N. E. H. Bouzerzour and Y. Slimani, “Towards a MaaS Service for Cloud Service Interoperability,” Proceedings of the 10th International Conference on Model-Driven Engineering and Software Development, pp. 72–83, 2022, doi: 10.5220/0010911400003119. [16]G. G. Castañé, H. Xiong, D. Dong, and J. P. Morrison, “An ontology for heterogeneous resources management interoperability and HPC in the cloud,” Future Generation Computer Systems, vol. 88, pp. 373–384, Nov. 2018, doi: 10.1016/j.future.2018.05.086. [17]B. Mane, A. Magalhaes, G. Quinteiro, R. Maciel, and D. Claro, “A Domain Specific Language to Provide Middleware for Interoperability among SaaS and DaaS/DBaaS through a Metamodel Approach,” Proceedings of the 23rd International Conference on Enterprise Information Systems, pp. 83–94, 2021, doi:10.5220/0010459600830094. [18]A. Zeid, S. Sundaram, M. Moghaddam, S. Kamarthi, and T. Marion, “Interoperability in Smart Manufacturing: Research Challenges,” Machines, vol. 7, no. 2, p. 21, Apr. 2019, doi:10.3390/machines7020021. [19]G. T. Ayem, S. G. Thandekkattu, and N. R. Vajjhala, “Review of Interoperability Issues Influencing Acceptance and Adoption of Cloud Computing Technology by Consumers,” Intelligent Systems and Sustainable Computing, pp. 49–58, 2022, doi: 10.1007/978-981-19-0011-2_5. [20]B. Varghese and R. Buyya, “Next generation cloud computing: New trends and research directions,” Future Generation Computer Systems, vol. 79, pp. 849–861, Feb. 2018, doi: 10.1016/j.future.2017.09.020. [21]R. L. Grossman et al., “A Framework for the Interoperability of Cloud Platforms: Towards FAIR Data in SAFE Environments,” Scientific Data, vol. 11, no. 1, Feb. 2024, doi: 10.1038/s41597-024-03041-5. [22]C. Ramalingam and P. Mohan, “An Efficient Applications Cloud Interoperability Framework Using I-Anfis,” Symmetry, vol. 13, no. 2, p. 268, Feb. 2021, doi: 10.3390/sym13020268. [23]K. Kaur, DR. S. Sharma, and DR. K. S. Kahlon, “Interoperability and Portability Approaches in Inter-Connected Clouds,” ACM Computing Surveys, vol. 50, no. 4, pp. 1–40, Oct. 2017, doi: 10.1145/3092698. [24]C. Ramalingam and P. Mohan, “Addressing Semantics Standards for Cloud Portability and Interoperability in Multi Cloud Environment,” Symmetry, vol. 13, no. 2, p. 317, Feb. 2021, doi:10.3390/sym13020317. [25]G. Zacharewicz et al., “Model-based approaches for interoperability of next generation enterprise information systems: state of the art and future challenges,” Information Systems and e-Business Management, vol. 15, no. 2, pp. 229–256, May 2016, doi: 10.1007/s10257-016-0317-8. [26]M. J. Heron, V. L. Hanson, and I. Ricketts, “Open Source and Accessibility: Advantages and Limitations,” Journal of Interaction Science, vol. 1, no. 1, p. 2, 2013, doi: 10.1186/2194-0827-1-2. [27]H. Brabra, A. Mtibaa, L. Sliman, W. Gaaloul, and F. Gargouri, “Semantic Web Technologies in Cloud Computing: A Systematic Literature Review,” 2016 IEEE International Conference on Services Computing (SCC), pp. 744–751, Jun. 2016, doi:10.1109/scc.2016.102. [28]Z. A. Adhoni and D. Lal, “Framework, semantic and standard approaches in multi-clouds to achieve interoperability: A survey,” Journal of Integrated Science and Technology, vol. 10, no. 2, 2022. [29]E. Femi Aminu, I. O. Oyefolahan, M. Bashir Abdullahi, and M. T. Salaudeen, “A Review on Ontology Development Methodologies for 1974 Developing Ontological Knowledge Representation Systems for various Domains,” International Journal of Information Engineering and Electronic Business, vol. 12, no. 2, pp. 28–39, Apr. 2020, doi:10.5815/ijieeb.2020.02.05. [30]J. Agbaegbu, O. T. Arogundade, S. Misra, and R. Damaševičius, “Ontologies in Cloud Computing—Review and Future Directions,” Future Internet, vol. 13, no. 12, p. 302, Nov. 2021, doi:10.3390/fi13120302. [31]Y. Serhane, A. Sekkaki, K. Benzidane, and M. Abid, “Cost Effective Cloud Storage Interoperability Between Public Cloud Platforms,” International Journal of Communication Networks and Information Security (IJCNIS), vol. 12, no. 3, Apr. 2022, doi:10.17762/ijcnis.v12i3.4822. [32]A. Patel and S. Jain, “Present and future of semantic web technologies: a research statement,” International Journal of Computers and Applications, vol. 43, no. 5, pp. 413–422, Jan. 2019, doi:10.1080/1206212x.2019.1570666. [33]A. Rejeb et al., “Charting Past, Present, and Future Research in the Semantic Web and Interoperability,” Future Internet, vol. 14, no. 6, p. 161, May 2022, doi: 10.3390/fi14060161. [34]I. Harrow et al., “Ontology mapping for semantically enabled applications,” Drug Discovery Today, vol. 24, no. 10, pp. 2068–2075, Oct. 2019, doi: 10.1016/j.drudis.2019.05.020. [35]N. Noy and D. Mcguinness, “Ontology Development 101: A Guide to Creating Your First Ontology,” Knowledge Systems Laboratory, vol. 32, Jul. 2001. [36]M. M. Al-Sayed, H. A. Hassan, and F. A. Omara, “Towards evaluation of cloud ontologies,” Journal of Parallel and Distributed Computing, vol. 126, pp. 82–106, Apr. 2019, doi: 10.1016/j.jpdc.2018.12.005. [37]C. Reyes-Peña and M. Tovar-Vidal, “Ontology: Components and Evaluation, a Review,” Research in Computing Science, vol. 148, no. 3, pp. 257–265, Dec. 2019, doi: 10.13053/rcs-148-3-21. [38]A. Hogan, “RDF Schema and Semantics,” The Web of Data, pp. 111–183, 2020, doi: 10.1007/978-3-030-51580-5_4. [39]D. Allemang, J. Hendler, and F. Gandon, “Semantic Web for the Working Ontologist,” Jul. 2020, doi: 10.1145/3382097. [40]BSI Group, “BS ISO/IEC 22123-1:2021 Information technology. Cloud computing - Vocabulary”, Knowledge BSI Group, 28 Feb 2021, doi:10.3403/30408969. [41]M. Kostoska, M. Gusev, and S. Ristov, “An Overview of Cloud Interoperability,” Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, vol. 8, pp. 873–876, Oct. 2016, doi: 10.15439/2016f463. [42]Z. A. Adhoni and N. Dayanand Lal, “Taxonomy for Classification of Cloud Service (Paas) Interoperability,” Information Systems for IntelligentSystems, pp. 69–75, 2023, doi:10.1007/978-981-19-7447-2_7. [43]M. Bauer et al., “Towards Semantic Interoperability Standards based on Ontologies,” AIOTI White Paper, Oct. 2019, doi:10.13140/rg.2.2.26825.29282. [44]E. B. Gürsel and A. Tarek, “Analysis Of Interoperability In Cloud Computing,” Proceedings of the 2019 5th International Conference on Computer and Technology Applications, pp. 189–192, Apr. 2019, doi:10.1145/3323933.3324089. [45]B. D. Martino, A. Esposito, and G. Cretella, “From business process models to the cloud: a semantic approach,” International Journal ofHigh Performance Computing and Networking, vol. 12, no. 4, p. 368, 2018, doi: 10.1504/ijhpcn.2018.096718. [46]J. Alonso et al., “Understanding the challenges and novel architectural models of multi-cloud native applications – a systematic literature review,” Journal of Cloud Computing, vol. 12, no. 1, Jan. 2023, doi:10.1186/s13677-022-00367-6. [47]G. Abbas, A. Mehmood, J. Lloret, M. S. Raza, and M. Ibrahim, “FIPA‐based reference architecture for efficient discovery and selection of appropriate cloud service using cloud ontology,” International Journalof Communication Systems, vol. 33, no. 14, Jul. 2020, doi:10.1002/dac.4504. [48]E. L. F. Ribeiro, M. Souza, and D. B. Claro, “MIDAS-OWL: An Ontology for Interoperability between Data and Service Cloud Layers,” XVII Brazilian Symposium on Information Systems, pp. 1–8, Jun. 2021, doi: 10.1145/3466933.3466953. [49]A. Banu and A. Ameen, “Transforming Medical Data into Ontologies for Improving Semantic Interoperability,” Emerging IT/ICT and AITechnologies Affecting Society, pp. 71–85, Aug. 2022, doi:10.1007/978-981-19-2940-3_5. [50]N. M. Hamdan and N. Admodisastro, “Towards a Reference Architecture for Semantic Interoperability in Multi-Cloud Platforms,” International Journal of Advanced Computer Science and Applications, vol. 14, no. 12, 2023, doi:10.14569/ijacsa.2023.0141254. [51]J. Soldatos, E. Troiano, P. Kranas, and A. Mamelli, “A Reference Architecture Model for Big Data Systems in the Finance Sector,” BigData and Artificial Intelligence in Digital Finance, pp. 3–28, 2022, doi:10.1007/978-3-030-94590-9_1. [52]F. Liu et al., “NIST cloud computing reference architecture,” National Institute of Standards and Technology, 2011. doi: 10.6028/nist.sp.500-292. [53]L. Coyne et al., “IBM Private, Public, and Hybrid Cloud Storage Solutions”, 5th ed. IBM Redbooks, 2018. [54]BSI Group, “BS ISO/IEC 22123-2:2023 Information technology. Cloud computing - Concepts,” Knowledge BSI Group, doi:10.3403/30408972u. [55]R. Rosselló-Móra, “Taxonomy,” Encyclopedia of Astrobiology, pp. 1648–1649, 2011, doi: 10.1007/978-3-642-11274-4_1562. [56]K. Aalijah, R. Irfan, U. Umar, and S. Nayab, “Automatic Taxonomy Generation and Incremental Evolution on Apache Spark Parallelization Framework,” KIET Journal of Computing andInformation Sciences, vol. 5, no. 1, pp. 15–36, Feb. 2022, doi: 10.51153/kjcis.v5i1.83. [57]N. Loutas, E. Kamateri, and K. Tarabanis, “A Semantic Interoperability Framework for Cloud Platform as a Service,” 2011 IEEE Third International Conference on Cloud ComputingTechnology and Science, pp. 280–287, Nov. 2011, doi: 10.1109/cloudcom.2011.45. [58]T. Labidi, Z. Sakhrawi, A. Sellami, and A. Mtibaa, “An Ontology-Based Approach for Preventing Incompatibility Problems of Quality Requirements During Cloud SLA Establishment,” Computational Collective Intelligence, pp. 663–675, 2019, doi: 10.1007/978-3-030-28377-3_55.
(1)
[1] I. P. Sari, “Evaluasi Kualitas Jaringan Internet Pemerintah Daerah Kota Padang Panjang Menggunakan Metode Quality of Service,” J. Sistim Inf. dan Teknol., 2022, doi: 10.37034/jsisfotek.v4i1.116. [2] asri S. D. Manuel, “Analisis Perbandingan Kualitas Jaringan Wireless ISP Pada Layanan Xz dan Yz Menggunakan Metode QOS Di Lingkungan Rumah,” J. Tek. Inform. dan Sist. Inf., no. x, pp. 1–10, 2023. [3] s Sirmayanti and N. Khaerani Hamzidah, “Studi Komparatif QoS pada Aplikasi Video Meeting Tool dalam Jaringan 4G LTE Menggunakan Wireshark Comparative Study of QoS on Video Meeting Tool Application in 4G LTE Network Using Wireshark,” Sistemasi, vol. 12, no. index 1, pp. 31–40, 2022, [Online]. Available: http://sistemasi.ftik.unisi.ac.id. [4] I. Forenbacher, S. Husnjak, I. Jovović, and M. Bobić, “Throughput of an ieee 802.11 wireless network in the presence of wireless audio transmission: A laboratory analysis,” Sensors, 2021, doi: 10.3390/s21082620. [5] M. Hasbi and N. R. Saputra, “Analisis Quality of Service ( Qos ) Jaringan Internet Kantor Pusat King Bukopin Dengan Menggunakan Wireshark,” Univ. Muhammadiyah Jakarta, vol. 12, no. 1, pp. 1–7, 2021, [Online]. Available: https://jurnal.umj.ac.id/index.php/just-it/article/view/13596. [6] P. R. Utami, “Analisis Perbandingan Quality of Service Jaringan Internet Berbasis Wireless Pada Layanan Internet Service Provider (Isp) Indihome Dan First Media,” J. Ilm. Teknol. dan Rekayasa, 2020, doi: 10.35760/tr.2020.v25i2.2723. [7] Vanny Andini, Lipur Sugiyanta, and Bachren Zaini, “Analisis Kinerja Parameter Throughput Dan Delay Akses Internet Di Smk Karyaguna Jakarta Selatan,” PINTER J. Pendidik. Tek. Inform. dan Komput., vol. 4, no. 2, pp. 41–44, 2020, doi: 10.21009/pinter.4.2.8. [8] J. Leomanz Bartolomiussihosa, A. Virgono, and R. M. Negara, “Analisis Performansi Baremetal Provisioning pada Openstack Platform Berbasis Remote Virtualisasi Menggunakan Layanan Ironic Baremetal Provisioning Performance Analysis Of Openstack Platform Based on Remote Virtualization Using Ironic,” Jppi, vol. 11, no. 2, pp. 173–190, 2021, doi: 10.17933/jppi.v11i2.330. [9] B. Zieliński, “Assessment of iPerf as a Tool for LAN Throughput Prediction,” Int. J. Electron. Telecommun., 2023, doi: 10.24425/ijet.2023.146501. [10] V. A. Saputro and S. Raharjo, “Pengaruh Penggunaan Beacon Interval Dalam Meningkatkan Throughput Jaringan Wireless IEEE 802.11ax,” J. SISKOM-KB (Sistem Komput. dan Kecerdasan Buatan), 2022, doi: 10.47970/siskom-kb.v6i1.324. [11] V. A. Saputro, S. Raharjo, and E. Pramono, “Pengaruh Wireless Security Protocol Pada Throughput Jaringan Wireless 802.11ax,” vol. 23, no. 2, pp. 1–7, 2021. [12] I. Romana, G. F. Nama, and H. D. Septama, “Analisa Performance Jaringan Gigabit Ethernet Local Area Network (LAN) Universitas Lampung,” J. Inform. dan Tek. Elektro Terap., 2021, doi: 10.23960/jitet.v9i1.2257. [13] D. Qadri, T. Y. Arif, and A. Azmi, “Analisis Tingkat Kinerja Jaringan Wireless Ieee 802.11 N Menggunakan Mikrotik” J. Komputer, Inf. Teknol. dan Elektro, 2021, doi: 10.24815/kitektro.v6i2.21848. [14] Endang Widi Winarni, Teori dan Praktik Penelitian Kuantitatif, Kualitatif, PTK, R & D. 2018. [15] S. Lepaja, A. Maraj, I. Efendiu, and S. Berzati, “The impact of the security mechanisms in the throughput of the WLAN networks,” 2018 7th Mediterr. Conf. Embed. Comput. MECO 2018 - Incl. ECYPS 2018, Proc., no. February 2020, pp. 1–5, 2018, doi: 10.1109/MECO.2018.8406067.
(1)
[1]Iqbal, Muhammad Saqib, Zulhasni Abdul Rahim, and Syed Aamer Hussain. "Digital Disruption and COVID-19: A Review on the Paradigm Shift in Pakistan."Journal of Advanced Research in Applied Sciences and Engineering Technology24, no. 1 (2021): 28-36.https://doi.org/10.37934/araset.24.1.2836[2]Eldokhny, Amany Ahmed, and Amr Mohammed Drwish. "Effectiveness of augmented reality in online distance learning at the time of the COVID-19 pandemic."International Journal of Emerging Technologies in Learning (Online)16, no. 9 (2021): 198.https://doi.org/10.3991/ijet.v16i09.17895[3]Hanafi, Hafizul Fahri, Mohd Helmy Abd Wahab, Kung-Teck Wong, Abu Zarrin Selamat, Muhamad Hariz Muhamad Adnan, and Fatin Hana Naning. "Mobile Augmented Reality Hand Wash (MARHw): Mobile application to guide community to ameliorate handwashing effectiveness to oppose COVID-19 disease."International Journal of Integrated Engineering12, no. 5 (2020): 217-223.https://doi.org/10.30880/ijie.2020.12.05.028[4]Ahmad, Nur, and Syahrul Junaini. "Augmented reality for learning mathematics: A systematic literature review."International Journal of Emerging Technologies in Learning (iJET)15, no. 16 (2020): 106-122.https://doi.org/10.3991/ijet.v15i16.14961[5]Kalana, MOHD HA, SYAHRUL N. Junaini, and AHMAD H. Fauzi. "Mobile augmented reality for biology learning: Review and design recommendations."Journal of Critical Reviews7, no. 12 (2020): 579-585.https://doi.org/10.31838/jcr.07.12.104 [6]Kamal, Ahmad Alif, and Syahrul Nizam Junaini. "The effects of design-based learning in teaching augmented reality for pre-university students in the ict competency course."International Journal of Scientific and Technology Research8, no. 12 (2019): 2726-2730.[7]Fajrie, Nur, and Imaniar Purbasari. "Augmented Reality Media Development in Early Childhood Learning System During the Covid 19 Pandemic Era." InProceedings of the 5th International Conference on Learning Innovation and Quality Education, pp. 1-7. 2021.https://doi.org/10.1145/3516875.3516999[8]Kaplan, Alexandra D., Jessica Cruit, Mica Endsley, Suzanne M. Beers, Ben D. Sawyer, and Peter A. Hancock. "The effects of virtual reality, augmented reality, and mixed reality as training enhancement methods: A meta-analysis."Human factors63, no. 4 (2021): 706-726.https://doi.org/10.1177/0018720820904229[9]Sahin, Dilara, and Rabia Meryem Yilmaz. "The effect of Augmented Reality Technology on middle school students' achievements and attitudes towards science education."Computers & Education144 (2020): 103710.https://doi.org/10.1016/j.compedu.2019.103710[10]Paat, Meike, Hadi Sutopo, and Nurliani Siregar. "Developing augmented reality application on komodo dragon for elementary school children during the new normal of covid-19 pandemic."Journal of Theoretical and Applied Information Technology(2021): 2761-2769.[11]Putra, Andika Bagus Nur Rahma, Yee Mei Heong, Dewi Sabrina Meidyanti, and Anita Dwi Rahmawati. "Hi World: The Virtual Book Learning Integrated Augmented Reality to Increase Knowledge of Covid-19 Prevention in The Learning Process Post-Pandemic Era."International Journal of Interactive Mobile Technologies16, no. 6 (2022). https://doi.org/10.3991/ijim.v16i06.29001[12]Suppan, Mélanie, Gaud Catho, Tomás Robalo Nunes, Valérie Sauvan, Monique Perez, Christophe Graf, Didier Pittet, Stephan Harbarth, Mohamed Abbas, and Laurent Suppan. "A serious game designed to promote safe behaviors among health care workers during the COVID-19 pandemic: Development of “Escape COVID-19”."JMIR serious games8, no. 4 (2020): e24986. https://doi.org/10.2196/24986[13]Gaspar, Juliano De Souza, Eura Martins Lage, Fernando José Da Silva, Érico Mineiro, Isaias José Ramos De Oliveira, Igor Oliveira, Rayner Guilherme De Souza, Juan Rodrigues Oliveira Gusmão, Camila Fernanda Donadoni De Souza, and Zilma Silveira Nogueira Reis. "A mobile serious game about the pandemic (COVID-19-did you know?): design and evaluation study."JMIR serious games8, no. 4 (2020): e25226. https://doi.org/10.2196/25226[14]Vasilevski, Nikolche, and James Birt. "Analysing construction student experiences of mobile mixed reality enhanced learning in virtual and augmented reality environments."Research in Learning Technology28 (2020). https://doi.org/10.25304/rlt.v28.2329[15]Silva, Fábio, Ricardo Ferreira, Abílio Castro, Pedro Pinto, and João Ramos. "Experiments on Gamification with Virtual and Augmented Reality for Practical Application Learning." InMethodologies and Intelligent Systems for Technology Enhanced Learning, 11th International Conference 11, pp. 175-184. Springer International Publishing, 2022. https://doi.org/10.1007/978-3-030-86618-1_18[16]Knierim, Pascal, Francisco Kiss, Maximilian Rauh, and Albrecht Schmidt. "Tangibility is overrated: Comparing learning experiences of physical setups and their virtual equivalent in augmented reality." InProceedings of the 19th International Conference on Mobile and Ubiquitous Multimedia, pp. 299-305. 2020. https://doi.org/10.1145/3428361.3428379[17]Low, Darren Yi Sern, Phaik Eong Poh, and Siah Ying Tang. "Assessing the impact of augmented reality application on students’ learning motivation in chemical engineering."Education for Chemical Engineers39 (2022): 31-43. https://doi.org/10.1016/j.ece.2022.02.004[18]Lee, Juhee. "Problem-based gaming via an augmented reality mobile game and a printed game in foreign language education."Education and Information Technologies27, no. 1 (2022): 743-771. https://doi.org/10.1007/s10639-020-10391-1[19]Cai, Ying, Zilong Pan, and Min Liu. "Augmented reality technology in language learning: A meta-analysis."Journal of Computer Assisted Learning38, no. 4 (2022): 929-945. https://doi.org/10.1111/jcal.12661[20]Teo, Timothy, Saeed Khazaie, and Ali Derakhshan. "Exploring teacher immediacy-(non) dependency in the tutored augmented reality game-assisted flipped classrooms of English for medical purposes comprehension among the Asian students."Computers & Education179 (2022): 104406. https://doi.org/10.1016/j.compedu.2021.104406[21]Marín-Díaz, Verónica, Begoña Sampedro, and Jorge Figueroa. "Augmented reality in the secondary education classroom: Teachers’ visions."Contemporary Educational Technology14, no. 2 (2022): ep348. https://doi.org/10.30935/cedtech/11523[22]O'cathain, Alicia, Elizabeth Murphy, and Jon Nicholl. "The quality of mixed methods studies in health services research."Journal of health services research & policy13, no. 2 (2008): 92-98. https://doi.org/10.1258/jhsrp.2007.007074 [23]O’Brien, Bridget C., Ilene B. Harris, Thomas J. Beckman, Darcy A. Reed, and David A. Cook. "Standards for reporting qualitative research: a synthesis of recommendations."Academic medicine89, no. 9 (2014): 1245-1251. https://doi.org/10.1097/ACM.0000000000000388[24]Lewis, James R. "The system usability scale: past, present, and future."International Journal of Human–Computer Interaction34, no. 7 (2018): 577-590. https://doi.org/10.1080/10447318.2018.1455307[25]Singh, Gurkaran, Megan MacGillivray, Patricia Mills, Jared Adams, Bonita Sawatzky, and W. Ben Mortenson. "Patients’ perspectives on the usability of a mobile app for self-management following spinal cord injury."Journal of Medical Systems44 (2020): 1-9. https://doi.org/10.1007/s10916-019-1487-y
(1)
[1] I. Tekin, O. Gencel, A. Gholampour, O. H. Oren, F. Koksal, and T. Ozbakkaloglu, “Recycling zeolitic tuff and marble waste in the production of eco-friendly geopolymer concretes,” J. Clean. Prod., vol. 268, p. 122298, 2020, doi: 10.1016/j.jclepro.2020.122298. [2] Z. G. Ralli and S. J. Pantazopoulou, “State of the art on geopolymer concrete,” Int. J. Struct. Integr., vol. 12, no. 4, pp. 511–533, 2020, doi: 10.1108/IJSI-05-2020-0050. [3] P. Duxson, A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. Van Deventer, “Geopolymer technology: The current state of the art,” J. Mater. Sci., vol. 42, no. 9, pp. 2917–2933, 2007, doi: 10.1007/s10853-006-0637-z. [4] X. Li, C. Bai, Y. Qiao, X. Wang, K. Yang, and P. Colombo, “Preparation, properties and applications of fly ash-based porous geopolymers: A review,” J. Clean. Prod., vol. 359, no. December 2021, p. 132043, 2022, doi: 10.1016/j.jclepro.2022.132043. [5] X. Y. Zhuang et al., “Fly ash-based geopolymer: Clean production, properties and applications,” J. Clean. Prod., vol. 125, pp. 253–267, 2016, doi: 10.1016/j.jclepro.2016.03.019. [6] J. Singh and S. P. Singh, “Geopolymerization of solid waste of non-ferrous metallurgy – A review,” J. Environ. Manage., vol. 251, no. August, p. 109571, 2019, doi: 10.1016/j.jenvman.2019.109571. [7] H. Xu and J. S. J. Van Deventer, “The geopolymerisation of alumino-silicate minerals,” Int. J. Miner. Process., vol. 59, no. 3, pp. 247–266, 2000, doi: 10.1016/S0301-7516(99)00074-5. [8] Q. Fu, W. Xu, X. Zhao, M. X. Bu, Q. Yuan, and D. Niu, “The microstructure and durability of fly ash-based geopolymer concrete: A review,” 2021. doi: 10.1016/j.ceramint.2021.07.190. [9] I. Ismail, S. A. Bernal, J. L. Provis, R. San Nicolas, S. Hamdan, and J. S. J. Van Deventer, “Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash,” Cem. Concr. Compos., vol. 45, pp. 125–135, 2014, doi: 10.1016/j.cemconcomp.2013.09.006. [10] A. Fernández-Jiménez and A. Palomo, “Composition and microstructure of alkali activated fly ash binder: Effect of the activator,” Cem. Concr. Res., vol. 35, no. 10, pp. 1984–1992, 2005, doi: 10.1016/j.cemconres.2005.03.003. [11] A. Hassan, M. Arif, and M. Shariq, “Use of geopolymer concrete for a cleaner and sustainable environment – A review of mechanical properties and microstructure,” J. Clean. Prod., vol. 223, pp. 704–728, 2019, doi: 10.1016/j.jclepro.2019.03.051. [12] U. C. C. S. Siciliano, J. Zhao, A. C. Constâncio Trindade, M. Liebscher, V. Mechtcherine, and F. de Andrade Silva, “Influence of curing temperature and pressure on the mechanical and microstructural development of metakaolin-based geopolymers,” Constr. Build. Mater., vol. 424, p. 135852, Apr. 2024, doi: 10.1016/J.CONBUILDMAT.2024.135852. [13] P. Rovnaník, “Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer,” Constr. Build. Mater., vol. 24, no. 7, pp. 1176–1183, 2010, doi: 10.1016/j.conbuildmat.2009.12.023. [14] M. G. Khalil, F. Elgabbas, M. S. El-Feky, and H. El-Shafie, “Performance of geopolymer mortar cured under ambient temperature,” Constr. Build. Mater., vol. 242, p. 118090, 2020, doi: 10.1016/j.conbuildmat.2020.118090. [15] M. Triwulan, J. J. Ekaputri, and N. F. Priyanka, “The Effect of Temperature Curing on Geopolymer Concrete,” MATEC Web Conf., vol. 97, pp. 0–5, 2017, doi: 10.1051/matecconf/20179701005. [16] D. S. V. P. Sandeep Hake, Dr. Rajaram Damgir, “Effect of Temperature And Curing Type On Geopolymer Concrete,” Int. J. Adv. Res. Sci. Eng., vol. 5, no. (01), 2016. [17] R. Kumar et al., “Machine and deep learning methods for concrete strength Prediction: A bibliometric and content analysis review of research trends and future directions,” Appl. Soft Comput., vol. 164, p. 111956, Oct. 2024, doi: 10.1016/J.ASOC.2024.111956. [18] N. Ya’acob, M. D. I. Zuraimi, A. A. A. Rahman, A. L. Yusof, and D. M. Ali, “Real-Time Pavement Crack Detection Based on Artificial Intelligence,” J. Adv. Res. Appl. Sci. Eng. Technol., vol. 38, no. 2, pp. 71–82, 2024, doi: 10.37934/araset.38.2.7182. [19] K. P. Rusna and V. G. Kalpana, “Using Artificial Neural Networks for the Prediction of the Compressive Strength of Geopolymer Fly Ash,” Eng. Technol. Appl. Sci. Res., vol. 12, no. 5, pp. 9120–9125, 2022, doi: 10.48084/etasr.5185. [20] G. Tanuja and R. Meesala Chakradhara, “Prediction of compressive strength of geopolymer concrete using machine learning techniques,” 2021. doi: https://doi.org/10.1002/suco.202100354. [21] A. T. Huynh et al., “A machine learning-assisted numerical predictor for compressive strength of geopolymer concrete based on experimental data and sensitivity analysis,” Appl. Sci., vol. 10, no. 21, pp. 1–16, Nov. 2020, doi: 10.3390/app10217726. [22] H. U. Dike, Y. Zhou, K. K. Deveerasetty, and Q. Wu, “Unsupervised Learning Based On Artificial Neural Network: A Review,” 2018 IEEE Int. Conf. Cyborg Bionic Syst. CBS 2018, pp. 322–327, 2018, doi: 10.1109/CBS.2018.8612259. [23] A. S. Jamal and A. N. Ahmed, “Estimating compressive strength of high-performance concrete using different machine learning approaches,” Alexandria Eng. J., vol. 114, no. April 2024, pp. 256–265, 2025, doi: 10.1016/j.aej.2024.11.084. [24] Y. Seki, A. Shibayama, M. Nishiyama, and M. Kikuchi, “Machine learning models for predicting the compressive strengths of ordinary Portland cement concrete and alkali-activated materials,” Sustain. Mater. Technol., vol. 42, no. October, p. e01191, 2024, doi: 10.1016/j.susmat.2024.e01191. [25] T. Kohonen, “The self-organizing map,” Neurocomputing, vol. 21, no. 1–3, pp. 1–6, 1998, doi: 10.1016/S0925-2312(98)00030-7.
(1)
1. J. Alotaibi and B. Yousif, Biolubricants and the potential of waste cooking oil, in Ecotribology. 2016, Springer. p. 125-143. 2. S. Debnath, M.M. Reddy, and Q.S. Yi, Environmental friendly cutting fluids and cooling techniques in machining: a review. J. Cleaner Prod., 2014. 83: p. 33-47. 3. R. Katna, K. Singh, N. Agrawal, and S. Jain, Green manufacturing—performance of a biodegradable cutting fluid. Mater Manuf Process, 2017. 32(13): p. 1522-1527. 4. E. Rahim and H. Sasahara, A study of the effect of palm oil as MQL lubricant on high speed drilling of titanium alloys. Tribology Int, 2011. 44(3): p. 309-317. 5. K. Wickramasinghe, G. Perera, and H. Herath, Formulation and performance evaluation of a novel coconut oil–based metalworking fluid. Mater Manuf Process, 2017. 32(9): p. 1026-1033. 6. M. Bermingham, W. Sim, D. Kent, S. Gardiner, and M. Dargusch, Tool life and wear mechanisms in laser assisted milling Ti–6Al–4V. Wear, 2015. 322: p. 151-163. 7. Y. Luo, L. Yang, and M. Tian, Influence of bio-lubricants on the tribological properties of Ti6Al4V alloy. Journal of Bionic Engineering, 2013. 10(1): p. 84-89. 8. R. Kreivaitis, M. Gumbytė, K. Kazancev, J. Padgurskas, and V. Makarevičienė, A comparison of pure and natural antioxidant modified rapeseed oil storage properties. Industrial Crops and Products, 2013. 43: p. 511-516. 9. C. Martin-Rios, C. Demen-Meier, S. Gössling, and C. Cornuz, Food waste management innovations in the foodservice industry. Waste management, 2018. 79: p. 196-206. 10. H.S. Hafid, A.R. Nor'Aini, M.N. Mokhtar, A.T. Talib, A.S. Baharuddin, and M.S.U. Kalsom, Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment. Waste Management, 2017. 67: p. 95-105. 11. H.S. Ng, P.E. Kee, H.S. Yim, P.-T. Chen, Y.-H. Wei, and J.C.-W. Lan, Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts. Bioresource technology, 2020. 302: p. 1-37. 12. K. Tamrin, S. Zakariyah, and N. Sheikh, Multi-criteria optimization in CO2 laser ablation of multimode polymer waveguides. Optics and Lasers in Engineering, 2015. 75: p. 48-56. 13. K. Tamrin and A. Zahrim, Determination of optimum polymeric coagulant in palm oil mill effluent coagulation using multiple-objective optimisation on the basis of ratio analysis (MOORA). Environmental Science and Pollution Research, 2017. 24(19): p. 15863-15869. 14. K. Tamrin, S. Zakariyah, K. Hossain, and N. Sheikh, Experiment and prediction of ablation depth in excimer laser micromachining of optical polymer waveguides. Advances in Materials Science and Engineering, 2018. vol. 2018: p. 1-9. 15. N. Ahmad and T.V. Janahiraman, Modelling and prediction of surface roughness and power consumption using parallel extreme learning machine based particle swarm optimization, in Proc ELM-2014 Vol 2. 2015, Springer. p. 321-329. 16. M. Dashtbayazi, Artificial neural network-based multiobjective optimization of mechanical alloying process for synthesizing of metal matrix nanocomposite powder. Mater Manuf Process, 2012. 27(1): p. 33-42. 17. G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, Extreme learning machine: theory and applications. Neurocomputing, 2006. 70(1-3): p. 489-501. 18. A. Mustafa, Modelling of the hole quality characteristics by Extreme Learning Machine in fiber laser drilling of Ti-6Al-4V. J Manuf Process, 2018. 36: p. 138-148. 19. O. Anicic, S. Jović, H. Skrijelj, and B. Nedić, Prediction of laser cutting heat affected zone by extreme learning machine. Optics Lasers Eng., 2017. 88: p. 1-4. 20. Ž. Ćojbašić, D. Petković, S. Shamshirband, C.W. Tong, S. Ch, P. Janković, N. Dučić, and J. Baralić, Surface roughness prediction by extreme learning machine constructed with abrasive water jet. Precis. Eng., 2016. 43: p. 86-92. 21. G. Quintana, X. Gomez, J. Delgado, and J. Ciurana, Influence of cutting parameters on cycle time, surface roughness, dimensional error and cutting forces in milling operations on aluminium 6082 sculptured surface geometry. Int J Machining Machinability Mater, 2010. 8(3-4): p. 339-355. 22. H. Ding, N. Shen, and Y.C. Shin, Thermal and mechanical modeling analysis of laser-assisted micro-milling of difficult-to-machine alloys. J Mater Process Tech, 2012. 212(3): p. 601-613. 23. Z. Ullah, M.A. Bustam, and Z. Man, Characterization of waste palm cooking oil for biodiesel production. International Journal of Chemical Engineering and Applications, 2014. 5(2): p. 134-137. 24. F. Ucar, O. Alcin, B. Dandil, and F. Ata, Power quality event detection using a fast extreme learning machine. Energies, 2018. 11(1): p. 1-14. 25. G. Feng, G.-B. Huang, Q. Lin, and R. Gay, Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans. Neural Netw, 2009. 20(8): p. 1352-1357.
(1)
[1] Jamru, L. R., & Rahaman, Z. A. (2018). Combination of spatial logistic regression and geographical information systems in modelling wetland changes in Setiu basin, Terengganu. In IOP Conference Series: Earth and Environmental Science (Vol. 169, No. 1, p. 012106).IOP Publishing. [2] Linda Roziani, J., Zullyadini, A. R., & Wan Ruslan, I. (2013). Permodelan perubahan tanah bencah di lembangan sungai Setiu, Terengganu menggunakan logistik regresi dan aplikasi Sistem Maklumat Geografi (GIS). International Journal of Environment, Society andSpace, 1(1), 75-97. [3] Jamru, L. R., Sharil, M. N., & Yusoh, M. P. (2023). Assessing the evolution of paddy cultivation in kota belud, sabah using gis and remote sensing techniques. Planning Malaysia, 21. [4] Jamru, L. R., Sharil, M. N., Jafar, A., Eboy, O. V., Atang, C., & Talib, M. A. (2023). The effectiveness of remote sensing techniques for land use classification in Kota Belud, Sabah. Asian Journal of Research in Education and Social Sciences, 5(2), 90-97. [5] Næsset, E. (2002). Predicting forest stand characteristics with airborne scanning laser using apractical two-stage procedure and field data. Remote sensing of environment. 80(1), 88–99. [6] Wehr, A., & Lohr, U. (1999). Airborne laser scanning—an introduction and overview. ISPRS Journal of photogrammetry and remote sensing, 54(2-3), 68-82. [7] Persson, Å. J. U. H., Holmgren, J., Söderman, U., & Olsson, H. (2004). Tree species classification of individual trees in Sweden by combining high resolution laser data with high resolution near-infrared digital images. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(8), 204-207. [8] Hyyppä, J., Hyyppä, H., Leckie, D., Gougeon, F., Yu, X., & Maltamo, M. (2008). Review of methods of small‐footprint airborne laser scanning for extracting forest inventory data in boreal forests. International Journal of Remote Sensing, 29(5), 1339-1366. [9] Holmgren, J., Nilsson, M. and Olsson, H. (2003). Estimation of tree height and stem volume on plots using airborne laser scanning. Forest Science. 49(3), 419–428. [10] Jamru L. R, Hashim. 2019. LiDAR Sensing for biophysical structure of vegetation in Sub-urban Kluang, Johor, International Graduate Conference of Built Environment & Surveying. Vol 1,507-515. doi: 10.7717/peerj.4397 ISSN: 2167-8359 [11] Jamru L. R, Hashim. 2018. Treetop detection from LiDAR using local maxima algorithm. ACRS 39th (Remote Sensing Enabling Prosperity). Vol 5, pg 2692-2700 [12] Lindah Roziani Jamru. 2018. Correction pit free canopy height model derived from LiDAR data for the broad leaf tropical forest. IOP Conf. Ser.: Earth Environ. Sci. 169 012113 [13] Jamru, L.R. and Hashim, M., 2015. Modeling LiDAR cloud point to estimate tree height and delineation of tree crown for selected vegetation in suburban Kluang, Johor. In 36th Asian Conference on Remote Sensing: Fostering Resilient Growth in Asia
(1)
[1] Japan Aerospace Exploration Agency (JAXA) (2019) Digital Surface Model “ALOS World 3D - 30m” (AW3D30). https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm (Accessed in January 2019) [2] Jabatan Pengairan dan Saliran (JPS) (2019) SELANGOR : On-Line River Level Data (m) - above Mean Sea Level. http://publicinfobanjir.water.gov.my/View/OnlineFloodInfo/ PublicWaterLevel.aspx?scode=SEL (Accessed in March 2019) [3] Lembaga Urus Air Selangor (LUAS) (2019) Dam profile. https://iwrims.luas.gov.my/main.cfm?lang=2 (Accessed in April 2019) [4] Jabatan Pengairan dan Saliran (JPS) (2017) SELANGOR : Rainfall On-Line Data (mm). http://publicinfobanjir.water.gov.my/View/OnlineFloodInfo/ PublicWaterLevel.aspx?scode=SEL (Accessed in November 2017) [5] Jabatan Mineral dan Geosains Malaysia (JMG) (1985) Geological map of Peninsular Malaysia. Scale 1:750,000 [6] Jabatan Mineral dan Geosains Malaysia (JMG) (2008) Hydrogeological map of Peninsular Malaysia. Scale 1:500,000 [7] Jabatan Perancangan Bandar dan Desa Negeri Selangor (JPBD) (2018) Laporan Tinjauan – Kajian Rancangan Struktur Negeri Selangor 2035 (B101.1: Bekalan Air). [8] L. C. Peng, M. S. Leman, K. Hassa, B. M. Nasib, and R. Karim (2004) Stratigraphic lexicon of Malaysia. Geological Society of Malaysia. Kuala Lumpur. [9] C. S. Hutchison and D. N. K. Tan (2009) Geology of Peninsular Malaysia. Geological Society of Malaysia. Kuala Lumpur. [10] S. M. S. Tan (2005) Karstic features of Kuala Lumpur limestone. Jurutera. Number 6 June 2005. [11] N. Roslan (2017) The potential susceptibility of urban hardrock aquifers to hydraulic and contaminant stresses: The case of Shah Alam, Malaysia. PhD Thesis. University of Birmingham. Published [12] Top Glove Sdn. Bhd. (TGSB) (2015a) Report on soil investigation works for Lot 5105 (Beside F14) warehouse project, Mukim, Kapar, Daerah Klang, Selangor Darul Ehsan. Unpublished [13] Top Glove Sdn. Bhd. (TGSB) (2015b) Report on soil investigation works for proposed 1 unit glove manufacturing factory (F30) and 1 unit TNB SSU 33KV at Lot 4983 and 4984, Klang, Selangor for Top Glove Sdn. Bhd. Unpublished [14] Top Glove Sdn. Bhd. (TGSB) (2016) Soil investigation report for Factory 19, Lot 5094, Mukim Kapar, Daerah Klang, Selangor Darul Ehsan. Unpublished [15] P. E. Stek (2008) Urban groundwater extraction in Kuala Lumpur, Malaysia. Master Thesis. University of Twene (Published) [16] W. M. Z. W. Ismail, I. Yusoff, and B. E. A. Rahim (2013). Simulation of horizontal well performance using Visual MODFLOW. Environ Earth Sci., 68:1119-1126
(1)
[1] J. Bennedsen, and M.E. Caspersen, “Failure rates in introductory programming,” ACM SIGcSE Bulletin, 2007. 39(2): p. 32-36. [2] Vihavainen, A., J. Airaksinen, and C. Watson. A systematic review of approaches for teaching introductory programming and their influence on success. in Proceedings of the tenth annual conference on International computing education research. 2014. [3] Vihavainen, A., M. Luukkainen, and J. Kurhila. Using students’ programming behavior to predict success in an introductory mathematics course. in Educational Data Mining 2013. 2013. Memphis, Tennessee, USA: Citeseer. [4] Noor, F.H., F.S. Mohamad, and J.L. Minoi. Learning Programming using Lego Mindstorms: Analysis of Learner Experiences. In 2020 IEEE 8th R10 Humanitarian Technology Conference (R10-HTC). 2020. Kuching, Malaysia: IEEE. [5] Medeiros, R.P., G.L. Ramalho, and T.P. Falcão, A systematic literature review on teaching and learning introductory programming in higher education. IEEE Transactions on Education, 2018. 62(2): p. 77-90. [6] Robins, A., J. Rountree, and N. Rountree, Learning and teaching programming: A review and discussion. Computer science education, 2003. 13(2): p. 137-172. [7] Gomes, A.J. and A.J. Mendes. A study on student performance in first year CS courses. in Proceedings of the fifteenth annual conference on Innovation and technology in computer science education. 2010. [8] Tew, A.E., C. Fowler, and M. Guzdial, Tracking an innovation in introductory CS education from a research university to a two-year college. ACM SIGCSE Bulletin, 2005. 37(1): p. 416-420. [9] Milne, I. and G. Rowe, Difficulties in learning and teaching programming—views of students and tutors. Education Information technologies, 2002. 7(1): p. 55-66. [10] Utting, I., et al. A fresh look at novice programmers’ performance and their teachers’ expectations. in Proceedings of the ITiCSE working group reports conference on Innovation and technology in computer science education-working group reports. 2013. [11] Pears, A., et al. A survey of literature on the teaching of introductory programming. in Working group reports on ITiCSE on Innovation technology in computer science education. 2007. New York, NY, United States. [12] Papp-Varga, Z., P. Szlávi, and L. Zsakó. ICT teaching methods–Programming languages. in Annales Mathematicae et Informaticae. 2008. [13] Linn, M.C. and M.J. Clancy, The case for case studies of programming problems. Communications of the ACM, 1992. 35(3): p. 121-132. [14] Tirronen, V. and V. Isomöttönen. Making teaching of programming learning-oriented and learner-directed. in Proceedings of the 11th Koli Calling International Conference on Computing Education Research. 2011. [15] Fitzgerald, S., et al., Debugging from the student perspective. IEEE Transactions on Education, 2009. 53(3): p. 390-396. [16] Barkman, S. and K. Machtmes, Solving Problems Survey. Youth Life Skills Evaluation project at Penn State. Instrument also cited by the CYFAR Life Skills Project at Texas A M University http://www. Humanserviceresearch. com Recommended by the CYFAR Life Skills Project, Youth Development Initiative, Texas AM University, 2002. [17] Korkmaz, Ö., R. Çakir, and M.Y. Özden, A validity and reliability study of the computational thinking scales (CTS). Computers in human behavior, 2017. 72: p. 558-569.
(1)
1. J. Bohata, M. Komanec, J. Spáčil, Z. Ghassemlooy, S. Zvánovec, and R. Slavík, "24–26 GHz radio-over-fiber 2. and free-space optics for fifth generation systems," Opt. Lett. 43, 1035-1038, 2018. 3. M. P. Brown and K. Austin, Appl. Phys. Letters 85, 2503–2504 (2004). I. E. Lee and al., “Practical implementation and performance study of a hard switched hybrid FSO/RF Link under controlled fog environment”, 9th International Symposium on Communication Systems, Networks & Digital Sign (CSNDSP), 2014. 4. H. Tapse and al., “'Hybrid optical/RF channel performance analysis for Turbo codes”', IEEE transactions on communications, Vol. 59, No. 5, 2011. 5. M. Al Naboulsi and al, “Propagation of optical and infrared waves in the atmosphere”, pp. 481-495, 2005. 6. A. Alkholidi and K. Altowij, “effect of clear Atmospheric turbulence on quality of free space optical communications in western Asia”, ISBN: 978-953-51-0170-3, 2012. 7. “Optical Fiber Loss and Attenuation,” Fosco Connect, 2017. [Article Online] 8. Gerd Keiser, Optical Fiber Communications 5th Ed Gerd Keiser, 5th ed. Asia: Mc Graw Hill Education, 2016. 9. A. Sharma and S. Rana, “Comprehensive Study of Radio over Fiber with different Modulation Techniques – A Review,” Int. J. Comput. Appl., vol. 170, no. 4, pp. 22–25, 2017. 10. M. A. Ali, '”Free space lasers propagation at different weather conditions'”, Al Mustansiriyah, J. Sci, Vol. 23, No 2, 2012
(1)
[1] J. Bohata, M. Komanec, J. Spáčil, Z. Ghassemlooy, S. Zvánovec, and R. Slavík, "24– 26 GHz radio-over-fiber and free-space optics for fifth generation systems," Opt. Lett. 43, 1035-1038, 2018. [2] M. P. Brown and K. Austin, Appl. Phys. Letters 85, 2503–2504 (2004). I. E. Lee and al., “Practical implementation and performance study of a hard switched hybrid FSO/RF Link under controlled fog environment”, 9th International Symposium on Communication Systems, Networks & Digital Sign (CSNDSP), 20zaki. [3] H. Tapse and al., “'Hybrid optical/RF channel performance analysis for Turbo codes”', IEEE transactions on communications, Vol. 59, No. 5, 2011. [4] M. Al Naboulsi and al, “Propagation of optical and infrared waves in the atmosphere”, pp. 481-495, 2005. [5] A. Alkholidi and K. Altowij, “effect of clear Atmospheric turbulence on quality of free space optical communications in western Asia”, ISBN: 978-953-51-0170-3, 2012. [6] Fanmeng Wang, Tian Cheng, Anzi Xu, Zhuomin He, Peilin Jiang, Bingcheng Zhu, "An FSO Tracking System for Gaussian Beams", 2020 IEEE 6th International and Conference on Computer Communications (ICCC), pp.965-969, 2020 [7] A. Majumdar, “Free-space laser performance the communication in atmospheric channel”, Journal of optical Communication, 2005. [8] A. Sharma and S. Rana, “Comprehensive Study of Radio over Fiber with different Modulation Techniques – A Review,” Int. J. Comput. Appl., vol. 170, no. 4, pp. 22–25, 2017. [9] M. A. Ali, ‘” Free space lasers propagation at different weather conditions'”, Al Mustansiriyah, J. Sci, Vol. 23, No 2, 2012. [10] C. Engg, “Optimization of WDM-FSO link using Multiple Beams under different rain conditions,” Int. J. Adv. Res. Electron. Commun. Eng., vol. 4, no. 5, pp. 1125–1131, 2015. [11] Feng, X., et al.: 60 Gbit/s coherent wavelength-division multiplexing free-space optical modulating retro-reflector in a turbulence-tunable atmospheric cell. Opt. Commun. 448, 111–115 (2019). [12] Rahman, A., et al.: A new modulation technique to improve received power under turbulence effects for free space optical communication. IOP Conference Series: Materials Science and Engineering. IOP Publishing, Bristol (2020) [13] Saxena, P., Mathur, A., Bhatnagar, M.R.: BER performance of an optically pre-amplified FSO system under turbulence and pointing errors with ASE noise. J. Opt. Commun. Netw. 9(6), 498–510 (2017) [14] A. N. Zaki and al., “Dramatic atmospheric turbulence effects on submarine laser communication Systems and free space optics”, International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), Vol. 3, March 2011. [15] Cherifi A., Bouazza B.S., Al-Ayedi M., Rashidi C.B.M. Aljunid S.A., 2021."Development and Performance Improvement of a New Two-Dimensional Spectral/Spatial Code Using the Pascal Triangle Rule for OCDMA System", Journal of Optical Communications, 42 (1), pp. 149 - 158 [16] Alayedi M., Cherifi A., Hamida A.F., Rashidi C.B.M., Bouazza.S.2020."Performance improvement of multi access OCDMA system based on a new zero cross correlation code",IOP Conference Series: Materials Science and Engineering, 767 (1), art. no. 012042, [17] Nawawi N.M., Anuar M.S., Rashidi C.B.M., Aljunid S.A., Rahman A.K., Junita M.N., "Dispersion Abdullah S.R.2015. compensation dense wavelength division multiplexing (DC DWDM) for nonlinearity analysis at various propagation distance and input power",I4CT 2015 - 2015 2nd International Conference on Computer, Communications, and Control Technology, Art Proceeding, art. no. 7219595, pp. 346 - 349. [18] Shreesh Kumar Shrivastava, Sujata Sengar, Shree Prakash Singh and Soyinka Nath (2020), Threshold optimization for modified switching scheme of hybrid FSO/RF system in the presence of strong atmospheric turbulence, Journal: Photonic Network Communications, 2020, Volume 40, Number 2, Page 103 [19] Ebrahim E. Elsayed and Bedir B. Yousif (2020), Performance evaluation and enhancement of the modified OOK based IM/DD techniques for hybrid fiber/FSO communication over WDM-PON systems, Journal: Optical and Quantum Electronics, 2020, Volume 52, Number 9 [20] Laialy Darwesh and Natan S. Kopeika (2020), Deep Learning for Improving Performance of OOK Modulation Over FSO Turbulent Channels, Journal: IEEE Access, 2020, Volume 8, Page 155275
(1)
[1] Jelinek, E. M., Bittersohl, B., Martiny, F., Scharfstädt, A., Krauspe, R., & Westhoff, B, 2012, The 8-plate versus physeal stapling for temporary hemiepiphyseodesis correcting genu valgum and genu varum: a retrospective analysis of thirty five patients. International orthopaedics, 36(3), 599–605. https://doi.org/10.1007/s00264-011-1369-5. [2] Teresa Cappello,2021, Expanded Indications for Guided Growth in Pediatric Extremities. JPosna. Volume 3 (1), 1-14. https://doi.org/10.55275/JPOSNA-2021-217. [3] Mycoskie P. J., 1981, Complications of osteotomies about the knee in children. Orthopedic. 4(9), 1005–1015. https://doi.org/10.3928/0147-7447-19810901-04. [4] Phemister, D.B. (1933). Operative Arrestment of Longitudinial Growth of Bones in The Treatment of Deformities, Journal of Bone and Joint Surgery. American Volume. 15, 1-15. Corpus ID: 74166208. [5] Blount, W.P, Clarke, 1949, Control of bone growth by epiphyseal stapling; a preliminary report. The Journal of bone and joint surgery. American volume. 31A(3), 464–478. PMID: 18153890. [6] Campens, C., Mousny, M., & Docquier, P. L., 2010, Comparison of three surgical epiphysiodesis techniques for the treatment of lower limb length discrepancy. Acta orthopaedica Belgica. 76(2), 226–232. PMID: 20503949. [7] Nazareth, A., Gyorfi, M. J., Rethlefsen, S. A., Wiseley, B., Noonan, K., & Kay, R. M ,2020, Comparison of plate and screw constructs versus screws only for anterior distal femoral hemiepiphysiodesis in children. Journal of pediatric orthopedics. Part B, 29(1), 53–61. https://doi.org/10.1097/BPB.0000000000000661. [8] Böhm, S., Krieg, A. H., Hefti, F., Brunner, R., Hasler, C. C., & Gaston, M. ,2013, Growth guidance of angular lower limb deformities using a one-third two-hole tubular plate. Journal of children's orthopaedics, 7(4), 289–294. https://doi.org/10.1007/s11832-013-0520-9. [9] Stevens P. M., 2007, Guided growth for angular correction: a preliminary series using a tension band plate. Journal of pediatric orthopedics, 27(3), 253–259. https://doi.org/10.1097/BPO.0b013e31803433a1. [10] Wiemann, J. M., 4th, Tryon, C., & Szalay, E. A. ,2009, Physeal stapling versus 8-plate hemiepiphysiodesis for guided correction of angular deformity about the knee. Journal of pediatric orthopedics, 29(5), 481–485. https://doi.org/10.1097/BPO.0b013e3181aa24a8. [11] Stevens P. M., 2023, Guided growth for FKFD: Historical perspective and insights. Journal of children's orthopaedics, 17(3), 291. https://doi.org/10.1177/18632521231172994. [12] Lebe M, van Stralen RA, Buddhdev P. ,2022, Guided Growth of the Proximal Femur for the Management of the 'Hip at Risk' in Children with Cerebral Palsy-A Systematic Review. Children (Basel).;9(5):609. Published 2022 Apr 25. doi:10.3390/children9050609. [13] Wang KK, Novacheck TF, Rozumalski A, Georgiadis AG., 2019, Anterior Guided Growth of the Distal Femur for Knee Flexion Contracture: Clinical, Radiographic, and Motion Analysis Results. J Pediatr Orthop.; 39(5): e360-e365. doi:10.1097/BPO.0000000000001312. [14] Bouchard M., 2017, Guided Growth: Novel Applications in the Hip, Knee, and Ankle. J Pediatr Orthop.;37 Suppl 2: S32-S36. doi:10.1097/BPO.0000000000001022. [15] Metaizeau JD, Denis D, Louis D., 2019, new femoral derotation technique based on guided growth in children. Orthop Traumatol Surg Res.; 105(6):1175-1179. doi: 10.1016/j.otsr.2019.06.005. [16] Danino B, Rödl R, Herzenberg JE, et al., 2018, Guided growth: preliminary results of a multinational study of 967 physes in 537 patients. J Child Orthop. 12(1):91-96. doi:10.1302/1863-2548.12.170050. [17] Portinaro N, Turati M, Cometto M, Bigoni M, Davids JR, Panou A. ,2019, Guided Growth of the Proximal Femur for the Management of Hip Dysplasia in Children with Cerebral Palsy. J Pediatr Orthop.;39(8): e622-e628. doi:10.1097/BPO.0000000000001069. [18] Westberry DE, Carpenter AM, Thomas JT, Graham GD, Pichiotino E, Hyer LC., 2020, Guided Growth for Ankle Valgus Deformity: The Challenges of Hardware Removal. J Pediatr Orthop.; 40(9): e883-e888. doi:10.1097/BPO.0000000000001583. [19] Gottliebsen M, Shiguetomi-Medina JM, Rahbek O, Møller-Madsen B., 2016, Guided growth: mechanism and reversibility of modulation. J Child Orthop.; 10(6):471-477. doi:10.1007/s11832-016-0778-9. [20] Rethlefsen, S. A., Hanson, A. M., Wren, T. A. L., Abousamra, O., & Kay, R. M. ,2020, Anterior distal femoral hemiepiphysiodesis with and without patellar tendon shortening for fixed knee flexion contractures in children with cerebral palsy. Journal of children's orthopaedics, 14(5), 415–420. https://doi.org/10.1302/1863-2548.14.200154.
(1)
[1] J. Flöck, K. Friedrich, Q. Yuan, On the friction and wear behaviour of PAN-and pitch-carbon fiber reinforced PEEK composites, Wear, 225 (1999) 304-311. [2] F. Mata, V. Gaitonde, S. Karnik, J.P. Davim, Influence of cutting conditions on machinability aspects of PEEK, PEEK CF 30 and PEEK GF 30 composites using PCD tools, Journal of materials processing technology, 209 (2009) 1980-1987. [3] N.P. Padture, Advanced structural ceramics in aerospace propulsion, Nature materials, 15 (2016) 804. [4] M. Grujicic, B. Pandurangan, B. d’Entremont, The role of adhesive in the ballistic/structural performance of ceramic/polymer–matrix composite hybrid armor, Materials & Design, 41 (2012) 380-393. [5] Z. Stadler, K. Krnel, T. Kosmač, Friction and wear of sintered metallic brake linings on a C/C-SiC composite brake disc, Wear, 265 (2008) 278-285. [6] W. Krenkel, F. Berndt, C/C–SiC composites for space applications and advanced friction systems, Materials Science and Engineering: A, 412 (2005) 177-181. [7] K. Tamrin, Y. Nukman, N. Sheikh, M. Harizam, Determination of optimum parameters using grey relational analysis for multi-performance characteristics in CO 2 laser joining of dissimilar materials, Optics and Lasers in Engineering, 57 (2014) 40-47. [8] K. Tamrin, Y. Nukman, S. Zakariyah, Laser lap joining of dissimilar materials: a review of factors affecting joint strength, Materials and Manufacturing Processes, 28 (2013) 857-871. [9] K. Tamrin, Y. Nukman, N. Sheikh, Laser spot welding of thermoplastic and ceramic: An experimental investigation, Materials and Manufacturing Processes, 30 (2015) 1138-1145. [10] K. Tamrin, S. Zakariyah, N. Sheikh, Multi-criteria optimization in CO 2 laser ablation of multimode polymer waveguides, Optics and Lasers in Engineering, 75 (2015) 48-56. [11] K. Tamrin, S. Zakariyah, K. Hossain, N. Sheikh, Experiment and Prediction of Ablation Depth in Excimer Laser Micromachining of Optical Polymer Waveguides, Advances in Materials Science and Engineering, 2018 (2018). [12] S.S. Zakariyah, P.P. Conway, D.A. Hutt, D.R. Selviah, K. Wang, J. Rygate, J. Calver, W. Kandulski, Fabrication of polymer waveguides by laser ablation using a 355 nm wavelength Nd: YAG laser, Journal of Lightwave Technology, 29 (2011) 3566-3576. [13] K. Tamrin, Y. Nukman, I. Choudhury, S. Shirley, Multiple-objective optimization in laser cutting of different thermoplastics, Optics and Lasers in Engineering, 67 (2014) 57-65. [14] I. Choudhury, P. Chuan, Experimental evaluation of laser cut quality of glass fibre reinforced plastic composite, Optics and Lasers in Engineering, 51 (2013) 1125-1132. [15] I. Choudhury, S. Shirley, Laser cutting of polymeric materials: an experimental investigation, Optics & Laser Technology, 42 (2010) 503-508. [16] I. Choudhury, W. Chong, G. Vahid, Hole qualities in laser trepanning of polymeric materials, Optics and Lasers in Engineering, 50 (2012) 1297-1305. [17] M. Imran, P. Mativenga, A. Gholinia, P. Withers, Assessment of surface integrity of Ni superalloy after electrical-discharge, laser and mechanical micro-drilling processes, The International Journal of Advanced Manufacturing Technology, 79 (2015) 1303-1311. [18] H. Sezer, L. Li, M. Schmidt, A. Pinkerton, B. Anderson, P. Williams, Effect of beam angle on HAZ, recast and oxide layer characteristics in laser drilling of TBC nickel superalloys, International Journal of Machine Tools and Manufacture, 46 (2006) 1972-1982. [19] R.S. Bunker, A review of shaped hole turbine film-cooling technology, Journal of heat transfer, 127 (2005) 441-453. [20] L. Romoli, F. Fischer, R. Kling, A study on UV laser drilling of PEEK reinforced with carbon fibers, Optics and lasers in Engineering, 50 (2012) 449-457. [21] L. Romoli, C. Rashed, G. Lovicu, G. Dini, F. Tantussi, F. Fuso, M. Fiaschi, Ultrashort pulsed laser drilling and surface structuring of microholes in stainless steels, CIRP Annals-Manufacturing Technology, 63 (2014) 229-232. [22] S. Aoyagi, H. Izumi, Y. Isono, M. Fukuda, H. Ogawa, Laser fabrication of high aspect ratio thin holes on biodegradable polymer and its application to a microneedle, Sensors and Actuators A: Physical, 139 (2007) 293-302. [23] J. Oh, K. Liu, T. Medina, F. Kralick, H.M. Noh, A novel microneedle array for the treatment of hydrocephalus, Microsystem Technologies, 20 (2014) 1169-1179. [24] H. Hocheng, C. Tsao, The path towards delamination-free drilling of composite materials, Journal of materials processing technology, 167 (2005) 251-264. [25] F. Makhdum, V.A. Phadnis, A. Roy, V.V. Silberschmidt, Effect of ultrasonically-assisted drilling on carbon-fibre-reinforced plastics, Journal of Sound and Vibration, 333 (2014) 5939-5952. [26] D. Herzog, P. Jaeschke, O. Meier, H. Haferkamp, Investigations on the thermal effect caused by laser cutting with respect to static strength of CFRP, International journal of machine tools and manufacture, 48 (2008) 1464-1473. [27] R. Biswas, A. Kuar, S. Sarkar, S. Mitra, A parametric study of pulsed Nd: YAG laser micro-drilling of gamma-titanium aluminide, Optics & Laser Technology, 42 (2010) 23-31. [28] M. Hanon, E. Akman, B.G. Oztoprak, M. Gunes, Z. Taha, K. Hajim, E. Kacar, O. Gundogdu, A. Demir, Experimental and theoretical investigation of the drilling of alumina ceramic using Nd: YAG pulsed laser, Optics & Laser Technology, 44 (2012) 913-922. [29] A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, A. Tünnermann, High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system, Optics express, 16 (2008) 8958-8968. [30] W. Li, R. Zhang, Y. Liu, C. Wang, J. Wang, X. Yang, L. Cheng, Effect of different parameters on machining of SiC/SiC composites via pico-second laser, Applied Surface Science, 364 (2016) 378-387. [31] F. Al-Sulaiman, B. Yilbas, M. Ahsan, CO 2 laser cutting of a carbon/carbon multi-lamelled plain-weave structure, Journal of materials processing technology, 173 (2006) 345-351. [32] J. Mathew, G. Goswami, N. Ramakrishnan, N. Naik, Parametric studies on pulsed Nd: YAG laser cutting of carbon fibre reinforced plastic composites, Journal of Materials Processing Technology, 89 (1999) 198-203. [33] A. Salama, L. Li, P. Mativenga, A. Sabli, High-power picosecond laser drilling/machining of carbon fibre-reinforced polymer (CFRP) composites, Applied Physics A, 122 (2016) 73. [34] M. Okasha, P. Mativenga, N. Driver, L. Li, Sequential laser and mechanical micro-drilling of Ni superalloy for aerospace application, CIRP Annals-Manufacturing Technology, 59 (2010) 199-202. [35] K. Voisey, S. Fouquet, D. Roy, T. Clyne, Fibre swelling during laser drilling of carbon fibre composites, Optics and lasers in engineering, 44 (2006) 1185-1197. [36] W. Rodden, S. Kudesia, D. Hand, J. Jones, A comprehensive study of the long pulse Nd: YAG laser drilling of multi-layer carbon fibre composites, Optics Communications, 210 (2002) 319-328. [37] P. Moreno, C. Méndez, A. García, I. Arias, L. Roso, Femtosecond laser ablation of carbon reinforced polymers, Applied Surface Science, 252 (2006) 4110-4119. [38] Z. Li, H. Zheng, G. Lim, P. Chu, L. Li, Study on UV laser machining quality of carbon fibre reinforced composites, Composites Part A: Applied Science and Manufacturing, 41 (2010) 1403-1408. [39] O. Yalukova, I. Sarady, Investigation of interaction mechanisms in laser drilling of thermoplastic and thermoset polymers using different wavelengths, Composites science and technology, 66 (2006) 1289-1296. [40] N. Ren, L. Jiang, D. Liu, L. Lv, Q. Wang, Comparison of the simulation and experimental of hole characteristics during nanosecond-pulsed laser drilling of thin titanium sheets, The International Journal of Advanced Manufacturing Technology, 76 (2015) 735-743. [41] F. Brandi, N. Burdet, R. Carzino, A. Diaspro, Very large spot size effect in nanosecond laser drilling efficiency of silicon, Optics Express, 18 (2010) 23488-23494. [42] T. Canel, A.U. Kaya, B. Celik, Parameter optimization of nanosecond laser for microdrilling on PVC by Taguchi method, Optics & Laser Technology, 44 (2012) 2347-2353. [43] W. Hu, Y.C. Shin, G.B. King, Micromachining of metals, alloys, and ceramics by picosecond laser ablation, Journal of manufacturing science and engineering, 132 (2010) 011009. [44] A. Spiro, M. Lowe, G. Pasmanik, Drilling rate of five metals with picosecond laser pulses at 355, 532, and 1064 nm, Applied Physics A, 107 (2012) 801-808. [45] N. Muhammad, D. Whitehead, A. Boor, W. Oppenlander, Z. Liu, L. Li, Picosecond laser micromachining of nitinol and platinum–iridium alloy for coronary stent applications, Applied Physics A, 106 (2012) 607-617. [46] Y. Liu, C. Wang, W. Li, L. Zhang, X. Yang, G. Cheng, Q. Zhang, Effect of energy density and feeding speed on micro-hole drilling in C/SiC composites by picosecond laser, Journal of Materials Processing Technology, 214 (2014) 3131-3140. [47] R. Zhang, W. Li, Y. Liu, C. Wang, J. Wang, X. Yang, L. Cheng, Machining parameter optimization of C/SiC composites using high power picosecond laser, Applied Surface Science, 330 (2015) 321-331. [48] C. Wang, L. Zhang, Y. Liu, G. Cheng, Q. Zhang, K. Hua, Ultra-short pulse laser deep drilling of C/SiC composites in air, Applied Physics A, 111 (2013) 1213-1219. [49] N. Krstulović, S. Shannon, R. Stefanuik, C. Fanara, Underwater-laser drilling of aluminum, The International Journal of Advanced Manufacturing Technology, 69 (2013) 1765-1773. [50] A. Nath, D. Hansdah, S. Roy, A.R. Choudhury, A study on laser drilling of thin steel sheet in air and underwater, Journal of Applied Physics, 107 (2010) 123103. [51] N. Iwatani, H.D. Doan, K. Fushinobu, Optimization of near-infrared laser drilling of silicon carbide under water, International Journal of Heat and Mass Transfer, 71 (2014) 515-520. [52] Y. Yan, L. Li, K. Sezer, W. Wang, D. Whitehead, L. Ji, Y. Bao, Y. Jiang, CO 2 laser underwater machining of deep cavities in alumina, Journal of the European Ceramic Society, 31 (2011) 2793-2807.
(1)
1. Jiang, J.; Pi, J.; Cai, J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinor. Chem. Appls 2018, 1-18, https://doi.org/10.1155/2018/1062562. 2. Chaudhary, S.; Umar, A.; Bhasin, K.K.; Baskoutas, S. Chemical sensing applications of ZnO nanomaterials. Mater. 2018, 11, 1-38, https://doi.org/10.3390/ma11020287. 3. Sarmah, K.; Pratihar, S. Synthesis, characterization and photocatalytic application of iron oxalate capped Fe, Fe-Cu, FeCo, and Fe-Mn oxide nanomaterial. ACS Sustain. Chem. Eng. 2017, 5, 310-324, https://doi.org/10.1021/acssuschemeng.6b01673. 4. Das, P.; Sarmah, K.; Hussain, N.; Pratihar, S.; Das, S.; Bhattacharyya, P.; Patil, S.A.; Kim, H.S.; Iqbal, M.; Khazie, A.; Bhattacharyya, S.S. Novel synthesis of an iron oxalate capped iron oxide nanomaterial; a unique soil conditioner and slow release eco-friendly source of iron sustenance in plants. RSC Adv. 2016, 6, 103012-25, https://doi.org/10.1039/C6RA18840K. 5. Alshamsi, H.A.H.; Hussein, B.S. Hydrothermal preparation of silver doping zinc oxide nanoparticles: synthesis, characterization and photocatalytic activities. Orient. J. Chem. 2018, 34, 1898-1907, https://dx.doi.org/10.13005/ojc/3404025. 6. Jin, S-E.; Jin, H-E. Synthesis, characterization, and three-dimensional structure generation of zinc oxide-based nanomedicine for biomedical applications. Pharma. 2019, 11, 575, 1-26, https://doi.org/10.3390/pharmaceutics11110575. 7. Kwoka, M.; Lyson-Sypien, B.; Kulis, A.; Maslyk, M.; Borysiewicz, M.A.; Kaminska, E.; Szuber, J. Surface properties of nanostructured, porous ZnO thin films prepared by direct current reactive magnetron sputtering. Mater. 2018, 11, 131, https://doi.org/10.3390ma11010131. 8. Ren, X.; Zi, W.;Wei, Q.; Liu, S. Fabrication gallium/graphene core–shell Nanoparticles by pulsed laser deposition and their applications in surface enhanced Raman scattering. Mater. Lett. 2015, 143, 194–196, https://doi.org/10.1016/j.matlet.2014.12.089. 9. Chhikara, D.; Senthil, K.M.; Srivatsa, K.M.K. On the synthesis of Zn/ZnO core–shell solid microspheres on quartz substrate by thermal evaporation technique. Superlatt. Microstruc. 2015, 82, 368–377, https://doi.org/10.1016/j.spmi.2015.02.036. 10. Varnamkhasti, M.G.; Fallah, H.R.; Zadsar, M. Effect of heat treatment on characteristics of nanocrystalline ZnO films by electron beam evaporation. Vacuum 2012, 86, 871–875, https://doi.org/10.1016/j.vacuum.2011.03.017. 11. Maleki-Ghaleh, H.; Shahzadeh, M.; Hoseinizadeh, S.A.; Arabi, A.; Aghaie, E.; Siadati, M.H. Evaluation of the photoelectro-catalytic behavior of nano-structured ZnO films fabricated by electrodeposition process. Mater. Lett. 2016, 169, 140–143, https://doi.org/10.1016/j.matlet.2016.01.090. 12. Zhu, L.; Li, Y.; Zeng, W. Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties. Appl. Surf. Sci 2018, 427, 281-287, https://doi.org/10.1016/j.apsusc.2017.08.229. 13. Brahma, S.; Shivashankar, S.A. Microwave irradiation assisted rapid growth of ZnO nanorods over metal coated/electrically conducting substrate. Mater. Lett 2020, 264, 127370, https://doi.org/10.1016/j.matlet.2020.127370. 14. Dwivedi, S.; Wahab, R.; Khan, F.; Mishra, Y.K.; Musarrat, J.; Al-Khedhairy, A.A. Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLOS ONE 2014, 9, e111289, https://doi.org/10.1371/journal.pone.0111289. 15. Sahu, K.; Kuriakose, S.; Singh, J.; Satpati, B.; Mohapatra, S. Facile synthesis of ZnO nanoplates and nanoparticle aggregates for highly efficient photocatalytic degradation of organic dyes. J. Phys. Chem. Sol. 2018, 121, 186-195, https://doi.org/10.1016/j.jpcs.2018.04.023. 16. Ghorbani, H.R.; Mehr, F.P.; Pazoki, H.; Rahmani, B.M. Synthesis of ZnO nanoparticles by precipitation method. Orient. J. Chem. 2015, 31, 1219-1221, https://doi.org/10. 13005/ojc/310281. 17. Gopal, V.R.V.; Kamila, S. Effect of temperature on the morphology of ZnO nanoparticles: a comparative study. Appl. Nanosci. 2017, 7, 75–82, https://doi.org/10.1007/s13204-017-0553-3. 18. Mahdavi, R.; Talesh, S.S.A. The effect of ultrasonic irradiation on the structure, morphology and photocatalytic performance of ZnO nanoparticles by sol-gel method. Ultrason. Sonochem. 2017, 39, 504-510, https://doi.org/10.1016/j.ultsonch.2017.05.012. 19. Droepenu, E.K.; Wee, B.S.; Chin, S.F.; Kok, K.Ying.; Zaini, B.A.; Asare, E.A. Comparative evaluation of antibacterial efficacy of biological synthesis of ZnO nanoparticles using fresh leaf extract and fresh stem-bark of Carica papaya. Nano Biomed. Eng. 2019, 11, 264-271, https://doi.org/10.5101/nbe.v11i3.p264-271. 20. Ghanbari, M.; Bazarganipour, M.; Salavati-Niasari, M. Photodegradation and removal of organic dyes using cui nanostructures, green synthesis and characterization. Separa. Purific. Technol. 2017, 173, 27-36, https://doi.org/10.1016/j.seppur.2016.09.003. 21. Kalpana, V.N.; Rajeswari, V.D. A review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs. Bioinorg. Chem. Appls 2018, 1-12, https://doi.org/10.1155/2018/3569758. 22. Chu, H.O.; Wang, Q. Shi, Y-J.; Song, S.; Liu, W.; Zhou, S.; Gibson, D.; Alajlani, Y.; Li. C. Structural, optical properties and optical modelling of hydrothermal chemical growth derived ZnO nanowires. Trans. Nonferrous Met. Soc. China 2020, 30, 191-199, https://doi.org/10.1016/S1003-6326(19)65191-5. 23. Rocha, L.S.R.; Foschini, C.R.; Silva, C.C.; Longo, E.; Simoes, A.Z. Novel ozone gas sensor based on ZnO nanostructures grown by the microwave-assisted hydrothermal route. Ceram. Int. 2016, 42, 4539-4545, https://doi.org/10.1016/j.ceramint.2015.11.145. 24. Li, X.; Wang, C.; Zhou, X.; Liu, J.; Sun, P.; Lu, G. Gas sensing properties of flower-like ZnO prepared by microwave-assisted technique. RSC Adv. 2014, 4, 47319-47324, https://doi.org/10.1039/C4RA07425D. 25. Vahidi, A.; Vaghari, H.; Najian, Y.; Najian, M.J.; Jafarizadeh-Malmiri, H. Evaluation of three different green fabrication methods for the synthesis of crystalline ZnO nanoparticles using Pelargonium zonale leaf extract. Green Proc. & Synth. 2019, 8, 302-308, https://doi.org/10.1515/gps-2018-0097. 26. Satheshkumar, M.; Anand, B.; Muthuvel, A.; Rajarajan, M.; Mohana, V.; Sundaramanickam, A. Enhanced photocatalytic dye degradation and antibacterial activity of biosynthesized ZnO‑NPs using curry leaves extract with coconut water. Nanotechnol. Environ. Eng. 2020, 5, 1-11, https://doi.org/10. 1007/s41204-020-00093-x. 27. Wojnarowicz, J.; Chudoba, T.; Lojkowski, W. A Review of microwave synthesis of zinc oxide nanomaterials: reactants, process parameters and morphologies. Nanomater. 2020, 10, 1086, 1-140, https://doi.org/10.3390/nano10061086. 28. Saberon, S.I.; Maguyon-Detras, M.C.; Migo, M.V.P.; Herrera, M.U.; Manalo, R.D. Microwave-assisted synthesis of zinc oxide nanoparticles on paper. Key Engineering Mater. 2018, 775, 163-168, https://doi.org/10.4028/www.scientific.net/KEM.775.163. 29. Yang, G.; Park, S.-J. Conventional and microwave hydrothermal synthesis and application of functional materials: A review. Mater. 2019, 12, 1177, https://doi.org/10.3390/ma12071177. 30. Jalouli, B.; Abbasi, A.; Khoei, M.S.M. A comment on: “Conventional and microwave hydrothermal synthesis and application of functional materials: A review”. Mater. 2019, 12, 3631, https://doi.org/10.3390/ma12213631. 31. Rana, K.; Rana, S. Microwave reactors: A brief review on its fundamental aspects and applications. Open Acc. Lib. J. 2014, 1, 1–20, https://doi.org/10.4236/OALIB.1100686 32. Kim, T.; Lee, J.; Lee, K.-H. Microwave heating of carbon-based solid materials. Carbon Lett. 2014, 15, 15–24, https://doi.org/10.5714/CL.2014.15.1.015. 33. Mohan, S.; Vellakkat, M.; Aravind, A.; Rekha, U. Hydrothermal synthesis and characterization of zinc oxide nanoparticles of various shapes under different reaction conditions. Nano Express 2020, 1-25, https://doi.org/10.1088/2632-959X/abc813. 34. Ming, O.U.; Lin, M.A.; Limei, X.U.; Haizhen, L.I.; Zhuomei, Y.; Zhifeng, L.A.N. Microwave-assisted synthesis of hierarchical ZnO nanostructures and their photocatalytic properties. MATEC Web of Conferences 2016, 67, 1-7. 35. Suwanboon, S.; Klubnuan, S.; Jantha, N.; Amornpitoksuk, P.; Bangrak, P. Influence of alkaline solutions on morphology of ZnO prepared by hydrothermal method for using as photocatalyst and bactericidal agent. Mater. Lett. 2014, 115, 275-278, https://doi.org/10.1016/j.matlet.2013.10.066. 36. Zhu, L.; Li, Y.; Zeng, W. Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties. Appl. Surf. Sci. 2018, 427, 281-287, https://doi.org/10.1016/j.apsusc.2017.08.229. 37. Zhou, Q.; Xie, B.; Jin, L.; Chen, W.; Li, J. Hydrothermal synthesis and responsive characteristics of hierarchical zinc oxide nanoflowers to sulfur dioxide. J. Nanotechnol. 2016, 1-6, https://doi.org/10.1155/2016/2083948. 38. Perillo, P.M.; Atia, M.N.; Rodríguez, D.F. Studies on the growth control of ZnO nanostructures synthesized by the chemical method. Revista Matéria 2018, 22, 1-7, https://doi.org/10.1590/S1517-707620180002.0467. 39. Alver, U.; Tanriverdi, A.; Akgul, O. Hydrothermal preparation of ZnO electrodes synthesized from different precursors for electrochemical supercapacitors. Synthetic Mater. 2016, 211, 30-34, https://doi.org/10.1016j.synthmet.2015.11.008. 40. Amin, G.; Asif, M.H.; Zainelabdin, A.; Zaman, S.; Nur, O.; Willander, M. Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method. J. Nanomater. 2011, 1-10, https://doi.org/10.1155/2011/269692. 41. Sarangi, S. N., Acharya, S., and Biswal, S. K. (2018). Different morphology of ZnO nanostructures using hydrothermal and electro-deposition technique. Aspects in Mining and Mineral Science, 1, AMMS.000515, 92-93. 42. Li, J.; Wu, Q.; Wu, J. Synthesis of nanoparticles via solvothermal and hydrothermal methods. Handb. Nano. 2016, 295–328, https://doi.org/10.1007/978-3-319-15338-4_17. 43. Zak, A.K.; Razali, R.; Majid, W.H.A.; Darroudi, M. Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles. Int. J. Nanomed. 2011, 6, 1399–1403, https://doi.org/10.2147/IJN.S19693. 44. Bai, X.; Li, L.; Liu, H.; Tan, L.; Liu, T.; Meng, X. Solvothermal synthesis of ZnO nanoparticles and anti-infection application in vivo. ACS Appl. Mater. Interface 2015, 7, 1308–1317, https://doi.org/10.1021/am507532p. 45. Šarić, A.; Štefanić, G.; Dražić, G.; Gotić, M. Solvothermal synthesis of zinc oxide microspheres. J. Alloys Compd. 2015, 652, 91−99, https://doi.org/10.1016/j.jallcom.2015.08.200. 46. Šarić, A.; Gotić, M.; Štefanić, G.; Dražić, G. Synthesis of ZnO particles using water molecules generated in esterification reaction. J. Mol. Struct. 2017, 1140, 12−18, https://doi.org/10.1016/j.molstruc.2016.10.057. 47. Ludi, B.; Niederberger, M. Zinc oxide nanoparticles: Chemical mechanisms and classical and non-classical crystallization. Dalton Trans. 2013, 42, 12554−12568, https://doi.org/10.1039/C3DT50610J. 48. Zare, M.; Namratha, K.; Byrappa, K.; Surendra, D.M.; Yallappa, S.; Hungund, B. Surfactant assisted solvothermal synthesis of ZnO nanoparticles and study of their antimicrobial and antioxidant properties. J. Mater. Sci. Technol. 2018, 1059, 1-9, https://doi.org/10.1016/j.jmst.2017.09.014. 49. Wojnarowicz, J.; Chudoba, T.; Gierlotka, S.; Sobczak, K.; Lojkowski, W. Size control of cobalt-doped ZnO nanoparticles obtained in microwave solvothermal synthesis. Crystals 2018, 8, 179, 1-18, https://doi.org/10.3390/cryst8040179. 50. Wojnarowicz, J.; Chudoba, T.; Koltsov, I.; Gierlotka, S.; Dworakowska, S. Lojkowski, W. Size control mechanism of ZnO nanoparticles obtained in microwave solvothermal synthesis. Nanotechnol. 2018, 29, 065601, https://doi.org/10.1088/1361-6528/aaa0ef. 51. Wojnarowicz, J.; Opalinska, A.; Chudoba, T.; Gierlotka, S.; Mukhovskyi, R.; Pietrzykowska, E.; Sobczak, K.; Lojkowski, W. Effect of water content in ethylene glycol solvent on the size of ZnO nanoparticles prepared using microwave solvothermal synthesis. J. Nanomater. 2016, 1-15, https://doi.org/10.1155/2016/2789871. 52. Wu, M.-L.; Chen, D.-H.; Huang, T.C. Preparation of Pd/Pt bimetallic nanoparticles in water/AOT/isooctane microemulsion. J. Colloid and Interface Sci. 2001, 243, 102-108, https://doi.org/10.1006/jcis.2001.7887. 53. Brahma, S.; Jaiswal, P.; Suresh, K.S.; Lo, K.-Y.; Suwas, S.; Shivashankar, S.A. Effect of substrates and surfactants over the evolution of crystallographic texture of nanostructured ZnO thin films deposited through microwave irradiation. Thin Solid Films 2015, 593, 81–90, https://doi.org/10.1016/j.tsf.2015.09.005. 54. Xin, Z.; Li, L.; Zhang, X.; Zhang, W. Microwave-assisted hydrothermal synthesis of chrysanthemum-like Ag/ZnO prismatic nanorods and their photocatalytic properties with multiple modes for dye degradation and hydrogen production. RSC Adv. 2018, 8, 6027–6038, https://doi.org/10.1039/C7RA12097D. 55. Shen, X.; Sun, J.; Zhu, G.; Ji, Z.; Chen, Z.; Li, N. Morphological syntheses of ZnO nanostructures under microwave irradiation. J. Mater. Sci. 2013, 48, 2358–2364, https://doi.org/10.1007/s10853-012-7017-7. 56. Razali, R.; Zak, A.K.; Majid, W.H.A.; Darroudi, M. Solvothermal synthesis of microspheres ZnO nanostructures in DEA media. Ceram. Int. 2011, 37, 3657-3663, https://doi.org/10.1016/j.ceramint.2011.06.026. 57. Idiawati, R.; Mufti, N.; Taufiq, A.; Wisodo, H.; Laila, I.K.R.; Fuad, A. Effect of growth time on the characteristics of ZnO nanorods. IOP Conf. Series: Mater. Sci. Eng. 2017, 202, 012050, https://doi.org/10.1088/1757-899X/202/1/012050. 58. de Peres, M.L.; Delucis, R.A.; Amico, S.C.; Gatto, D.A. Zinc oxide nanoparticles from microwave-assisted solvothermal process: Photocatalytic performance and use for wood protection against xylophagous fungus. Nanomater & Nanotechnol. 2019, 9, 1–8, https://doi.org/10.1177/1847980419876201. 59. Dimitriev, Y.; Ivanova, Y.; Iordanova, R. History of sol-gel science and technology (review). J. Univ. Chem. Technol. & Metallu. 2008, 43, 181-192. 60. Parihar, V.; Raja, M.; Paulose, R. A brief review of structural, electrical and electrochemical properties of zinc oxide nanoparticles. Rev. Adv. Mater. Sci. 2018, 53, 119-130, https://doi.org/10.1515/rams-2018-0009. 61. Catauro, M.; Tranquillo, E.; Poggetto, G.D.; Pasquali, M.; Dell’Era, A.; Ciprioti, S. Influence of the heat treatment on the particles size and on the crystalline phase of TiO2 synthesized by sol-gel method. Materials 2018, 11, 2364, https://doi.org/10.3390/ma11122364. 62. Livage, J.; Henry, M.; Sanchez, C. Sol-gel chemistry of transition metal oxides. Prog. Solid State Chem. 1988. 18, 259–341, https://doi.org/10.1016/0079-6786(88)90005-2. 63. Parashar, M.; Shukla, V.K.; Singh, R. Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. J. Mater. Sci: Mater Electron, 2020, 31, 3729-3749, https://doi.org/10.1007/s10854-020-02994-8. 64. Singh, G.; Singh, S.P. Synthesis of zinc oxide by sol-gel method and to study its structural properties. AIP Conference Proceedings 2020, 2220, 020184, https://doi.org/10.1063/5.0001593. 65. Chen, X.; Wu, Z.; Liu, D.; Gao, Z. Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res. Lett. 2017, 12, 1-10, https://doi.org/10.1186/s11671-0711904-4. 66. Shaikh, R.S.; Ravangave, L.S. Effect of reaction time on some characterization of ZnO nanoparticles. Int. Res. J. Sci. & Eng., Special Issue A2 2018, 187-191, ISSN: 2322-0015. 67. Hasnidawani, J.N.; Azlina, H.N.; Norita, H.; Bonnia, N.N.; Ratim, S.; Ali, E.S. Synthesis of ZnO nanostructures using sol-gel method. Procedia Chem. 2016, 19, 211 – 216, https://doi.org/10.1016/j.proche.2016.03.095. 68. Iwamura, T.; Goto, S.; Sakaguchi, M.; Chujo, Y. Synthesis of submicrometer zinc oxide particles and zinc oxide nanowires using microwave irradiation. Chem. Lett. 2016, 45, 508–510, https://doi.org/10.1246/cl.160081. 69. Iwamura, T.; Adachi, K.; Chujo, Y. Simple and rapid eco-friendly synthesis of cubic octamethylsilsesquioxane using microwave irradiation. Chem. Lett. 2010, 39, 354-355, https://doi.org/10.1246/cl.2010.354. 70. Vanaja, A.; Rao, K.S. Effect of solvents on particle structure, morphology and optical properties of zinc oxide nanoparticles. Int. J. Adv. Mater. Sci. Eng. (IJAMSE) 2015, 4, 1-8, https://doi.org/10.14810/ijamse.2015.4201. 71. Borm, P.J.A.; Robbins, D.; Haubold, S.; Kuhlbusch, T.; Fissan, H.; Donaldson, K.; Schins, R.; Stone, V.; Kreyling, W.; Lademann, J.; Krutmann, J.; Warheit, D.; Oberdorster, E. The potential risk of nanomaterials: A review carried out for ECETOC. Part. Fibre Toxicol. 2006, 3, 11–45, https://doi.org/10.1186/1743-8977-3-11. 72. Khan, M.F.; Ansari, A.H.; Hameedullah, M.; Ahmad, E.; Husain, F.M.; Zia, Q.; Baig, U.; Zaheer, M.R.; Alam, M.M.; Khan, A.M.; AlOthman, Z.A.; Ahmad, I.; Ashraf, G.M.; Aliev, G. Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano-antibiotics. Scientific Reports 2016, 6, 1-12, https://doi.org/10.1038/srep27689. 73. Brintha, S.R.; Ajitha, M. Synthesis and characterization of ZnO nanoparticles via aqueous solution, sol-gel and hydrothermal methods. J. Appl. Chem. (IOSR-JAC) 2015, 8, 66-72. 74. Sayari, A.; EI Mir, L. Structural and characterization of Ni and Al Co-doped ZnO nanopowders synthesized via the sol-gel process. Kona Powder and Particle Journal 2016, 32, 154-162, https://doi.org/10.14356/kona.2015003 75. Shohany, B.G.; Zak, A.K. Doped ZnO nanostructures with selected elements - Structural, morphology and optical properties: A review. Ceramics Int. 2019, 46, 5507-5520, https://doi.org/10.1016/j.ceramint.2019.11.051. 76. Yousefi, R.; Zak, A.K.; Jamali-Sheini, F. The effect of group-I elements on the structural and optical properties of ZnO nanoparticles, Ceramics Int. 2013, 39, 1371–1377, https://doi.org/10.1016/j.ceramint.2012.07.076. 77. Hameed, A.S.H.; Karthikeyan, C.; Sasikumar, S.; Kumar, V.S.; Kumaresan, S.; Ravi, G. Impact of alkaline metal ions Mg2+, Ca2+, Sr2+ and Ba2+ on the structural, optical, thermal and antibacterial properties of ZnO nanoparticles prepared by the co-precipitation method. J. Mater. Chem. B 2013, 1, 5950–5962, https://doi.org/10.1039/C3TB21068E. 78. Zak, A.K.; Majid, W.H.A.; Abrishami, M.E.; Yousefi, R.; Parvizi, R. Synthesis, magnetic properties and X-ray analysis of Zn0.97X0.03O nanoparticles (X = Mn, Ni, and Co) using Scherrer and size-strain plot methods. Solid State Sci. 2012, 14, 488-494, https://doi.org/10.1016/J.solidstatesciences.2012.01.019. 79. Kaur, P.; Kumar, S.; Chen, C.L.; Hsu, Y-Y.; Chan, T-S.; Dong, C-L.; Srivastava, C.; Singh, A.; Rao, S.M. Investigations on structural, magnetic and electronic structure of Gd-doped ZnO nanostructures synthesized using sol–gel technique. Appl. Phys. A 2016, 122, 161, https://doi.org/10.1007/s00339-016-9707-5. 80. Barreto, G.; Morales, G.; Cañizo, A.; Eyler, N. Microwave assisted synthesis of ZnO tridimensional nanostructures. Procedia Mater. Sci. 2015, 8, 535 – 540, https://doi.org/10.1016/j.mspro.2015.04.106. 81. Hasanpoor, M.; Aliofkhazraei, M.; Delavari, H. Microwave-assisted synthesis of zinc oxide nanoparticles. Procedia Mater. Sci. 2015, 11, 320–325, https://doi.org/10.1016/j.mspro.2015.11.101. 82. Byzynski, G.; Pereira, A.P. Volanti, D.P.; Ribeiro, C.; Longo, E. High-performance ultraviolet-visible driven ZnO morphologies photocatalyst obtained by microwave-assisted hydrothermal method. J. Photochem. & Photobio. A: Chem. 2018, 353, 358-367, https://doi.org/10.1016/j.jphotochem.2017.11.032. 83. Sadhukhan, P.; Kundu, M.; Rana, S.; Kumar, R.; Das, J.; Sil, P.C. Microwave induced synthesis of ZnO nanorods and their efficacy as a drug carrier with profound anticancer and antibacterial properties. Toxicol Reports 2019, 6, 176-185, https://doi.org/10.1016/j.toxrep.2019.01.006. 84. Markovic, S.; Simatovic, I.S.; Ahmetovic, S.; Veselinovic, L.; Stojadinovic, S.; Rac, V.; Skapin, S.D.; Bogdanovic, D.B.; Castvan, I.J.; Uskokovic, D. Surfactant-assisted microwave processing of ZnO particles: a simple way for designing the surface-to-bulk defect ratio and improving photo(electro)catalytic properties. RSC Adv. 2019, 9, 17165-17178, https://doi.org/10.1039/C9RA02553G. 85. Thi, V.H.T.; Lee, B-K. Great improvement on tetracycline removal using ZnO rod-activated carbon fiber composite prepared with a facile microwave method. J. Hazard. Mater. 2016, 324, 329-339, https://doi.org/10.1016/j.jhazmat.2016.10.066. 86. Sun, H.; Sun, L.; Sugiura, T.; White, M.S.; Stadler, P.; Sariciftci, N.S.; Masuhara, A.; Yoshida, T. Microwave-assisted hydrothermal synthesis of structure-controlled ZnO nanocrystals and their properties in dye-sensitized solar cells. Electrochem. 2017, 85, 253–261, https://doi.org/10.5796/electrochemistry.85.253. 87. Wannapop, S.; Somdee, A.; Thongtem, T.; Thongtem, S. Synthesis of ZnO nanostructures by microwave irradiation for energy conversion material in for dye sensitized solar cells and materials for photocatalytic dye degradation applications. J. Ceram. Soc. Japan 2019, 127, 428-434, https://doi.org/10.2109/jcersj2.19015. 88. Pulit-Prociak, J.; Banach, M. Effect of process parameters on the size and shape of nano- and micrometric zinc oxide. Acta Chim. Slov. 2016, 63, 317–322, https://doi.org/10.17344/acsi.2016.2245. 89. Pauzi, N.; Zain, N.M.; Yusof, N.A.A. Microwave-assisted synthesis of ZnO nanoparticles stabilized with Gum Arabic: effect of microwave irradiation time on ZnO nanoparticles size and morphology. Bullet. Chem. React. Eng. & Catal. 2019, 14, 182-188, https://doi.org/10.9767/bcrec.14.1.3320.182-188. 90. Gray, R.J.; Jaafar, A.H.; Verrelli, E.; Kemp, N.T. Method to reduce the formation of crystallites in ZnO nanorod thin-films grown via ultra-fast microwave heating. Thin Solid Films 2018, 662, 116-122, https://doi.org/10.1016/j.tsf.2018.07.03.034. 91. Marzouqi, F.A.; Adawi, H.A.; Qi, K.; Liu, S-y.; Kim, Y.; Selvaraj, R. A green approach to the microwave-assisted synthesis of flower-like ZnO nanostructures for reduction of Cr(VI). Toxicol. Environ. Chem. 2019, 101, 1–12, https://doi.org/10.1080/02772248.2019.1635602. 92. Wasly, H.S.; El-Sadek, M.S.A.; Henini, M. Influence of reaction time and synthesis temperature on physical properties of ZnO nanoparticles synthesized by hydrothermal method. Appl. Phys. A 2018, 124, 76, https://doi.org/10.1007/s00339-017-1482-4. 93. Bayrami, A.; Ghorbani, E.; Pouran, S.R.; Habibi-Yangjeh, A.; Khataee, A.; Bayrami, M. Enriched zinc oxide nanoparticles by Nasturtium officinale leaf extract: Joint ultrasound-microwave-facilitated synthesis, characterization, and implementation for diabetes control and bacterial inhibition. Ultrasonics-Sonochemistry 2019, 58, 104613, 1-8, https://doi.org/10.1016/j.ultsonch.2019.104613. 94. Bayrami, A.; Parvinroo, S.; Habibi-Yangjeh, A.; Pouran, S.R. Bio-extract-mediated ZnO nanoparticles: microwave-assisted synthesis, characterization and antidiabetic activity evaluation. Artificial Cells, Nanomed. & Biotechnol. 2018, 46, 730–739, https://doi.org/10.1080/21691401.2017.1337025. 95. Chae, H.U.; Rana, A.H.S.; Park, Y-J.; Kim, H-S. High-speed growth of ZnO nanorods in preheating condition using microwave-assisted growth method. J. Nanosci. Nanotechnol. 2018, 18, 2041–2044, https://doi.org/10.1166/jnn.2018.14971. 96. Chauhan, D.S.; Gopal, C.S.A.; Kumar, D.; Mahato, N.; Quraishi, M.A.; Cho, M.H. Microwave induced facile synthesis and characterization of ZnO nanoparticles as efficient antibacterial agents. Mater. Discovery 2018, 11, 19-25, https://doi.org/10.1016/j.md.2018.05.001. 97. Fang, M.; Liu, Z.W. Controllable size and photoluminescence of ZnO nanorod arrays on Si substrate prepared by microwave-assisted hydrothermal method, Ceramics Int. 2017, 43, 6955-6962, https://doi.org/10.1016/j.ceramint.2017.02.119. 98. Giridhar, M.; Naik, H.S.B.; Sudhamani, C.N.; Prabakara, M.C.; Kenchappa, R.; Venugopal, N.; Patil, S. Microwave-assisted synthesis of water-soluble styrylpyridine dye-capped zinc oxide nanoparticles for antibacterial applications. J. Chin. Chem, Soc. 2019, 1–8, https://doi.org/10.1002/jccs.201900029. 99. Goswami, S.R.; Singh, M. Microwave-mediated synthesis of zinc oxide nanoparticles: a therapeutic approach against Malassezia species. The Institution of Engineering and Technology Biotechnology 2018, 1-6, https://doi.org/10.1049/iet-nbt.2018.0007. 100. Hirai, Y.; Furukawa, K.; Sun, H.; Matsushima, Y.; Shito, K.; Masuhara, A.; Ono, R.; Shimbori, Y.; Shiroishi, H.; White, M.S.; Yoshida, T. Microwave‑assisted hydrothermal synthesis of ZnO and Zn‑terephthalate hybrid nanoparticles employing benzene dicarboxylic acids. Microsyst Technol. 2017, 1-10, https://doi.org/10.1007/s00542-017-3392-y. 101. Sooksaen, P.; Chuankrerkkul, N. Morphology-design and semiconducting characteristics of zinc oxide nanostructures under microwave irradiation. Integrated Ferroelectrics 2017, 91-102, https://doi.org/10.1080/10584587.2017.1285194. 102. Jaafar, N.F.; Najman, A.M.M.; Marfura, A.; Jusoh, N.W.C. Strategies for the formation of oxygen vacancies in zinc oxide nanoparticles used for photocatalytic degradation of phenol under visible light irradiation. J. Photochem. & Photobio A: Chem. 2019, 388, 112202, 1-10, https://doi.org/10.1016/j.jphotochem.2019.112202. 103. Malik, L.A.; Bashir, A.; Manzoor, T.; Pandith, A.H. Microwave-assisted synthesis of glutathione-coated hollow zinc oxide for the removal of heavy metal ions from aqueous systems. RSC Adv. 2019, 9, 15976 –15985, https://doi.org/10.1039/C9RA00243. 104. Al-Sabahi, J.; Bora, T.; Al-Abri, M.; Dutta, J. Controlled defects of zinc oxide nanorods for efficient visible light photocatalytic degradation of phenol. Mater. 2016, 9, 238, 1-10, https://doi.org/10.3390/ma9040238. 105. Pimentel, A.; Ferreira, S.H.; Nunes, D.; Calmeiro, T.; Martins, R.; Fortunato, E. Microwave synthesized ZnO nanorod arrays for UV sensors: A seed layer annealing temperature study. Mater. 2016, 9, 299, 1-15, https://doi.org/10.3390/ma9040299. 106. Tan, S.T.; Tan, C.H.; Chong, W.Y.; Yap, C.C.; Umar, A.A.; Ginting, R.T.; Lee, H.B.; Lim, K.S.; Yahaya, M.; Salleh, M.M. Microwave-assisted hydrolysis preparation of highly crystalline ZnO nanorod array for room temperature photoluminescence-base CO gas sensor. Sensors and Actuators B 2016, 227, 304–312, https://doi.org/10.1016/j.snb.2015.12.058 107. Song, H.; Zhu, K.; Liu, Y.; Zhai, X. Microwave-assisted synthesis of ZnO and its photocatalytic activity in degradation of CTAB. Rus. J. Phys. Chem. A 2017, 91, 59–62, https://doi.org/10.1134/S003602441701. 108. Nandi, A.; Nag, P.; Saha, H.; Majumdar, S. Precursor dependent morphologies of microwave assisted ZnO nanostructures and their VOC detection properties. Mater. Today: Proceedings 2018, 5, 9831-9838, https://doi.org/10.1016/j.matpr.2017.10.174. 109. Papadaki, D.; Foteinis, S.; Mhlongo, G.H.; Nkosi, S.S.; Motaung, D.E.; Ray, S.S.; Tsoutsos, T.; Kiriakidis, G. Life cycle assessment of facile microwave-assisted zinc oxide (ZnO) nanostructures. Sci. Tot. Environ. 2017, 586, 566-575, https://doi.org/10.1016/j.scitotenv.2017.02.019. 110. Quirino, M.R.; Oliveira, M.J.C.; Keyson, D.; Lucena, G.L.; Oliveira, J.B.L.; Gama, L. Synthesis of zinc oxide by microwave hydrothermal method for application to transesterification of soyabean oil (biodiesel). Mater. Chem. Phys. 2016, 185, 24-30, https://doi.org/10.1016/j.matchemphys.2016.09.06. 111. Witkowski, B.S.; Dluzewski, P.; Kaszewski, J.; Sylwia, L.W. Ultra-fast epitaxial growth of ZnO nano/microrods on a GaN substrate, using the microwave-assisted hydrothermal method. Mater. Chem. Phys. 2018, 205, 16-22, https://doi.org/10.1016/j.matchemphys.2017.11.00. 112. Thankachan, R.M.; Joy, N.; Abraham, J.; Kalarikkal, N.; Thomas, S.; Oluwafemi, O.S. Enhanced photocatalytic performance of ZnO nanostructures produced via a quick microwave assisted route for the degradation of rhodamine in aqueous solution. Mater. Res. Bull. 2017, 85, 131-139, https://doi.org/10.1016/j.materresbull.2016.09.009. 113. Husham, M.; Hamidon, M.N.; Paiman, S.; Abuelsamen, A.A.; Farhat, O.F.; Al-Dulaimi, A.A. Synthesis of ZnO nanorods by microwave-assisted chemical-bath deposition for highly sensitive self-powered UV detection application. Sensors and Actuators A 2017, 263, 166-173, https://doi.org/10.1016/j.sna.2017.05.041. 114. Salah, N.; AL-Shawafi, W.M.; Alshahrie, A.; Baghdadi, N.; Soliman, Y.M.; Memic, A. Size controlled, antimicrobial ZnO nanostructures produced by the microwave assisted route. Mater. Sci. & Eng. C 2019, 99, 1164–1173, https://doi.org/10.1016/j.msec.2019.02.077. 115. Sakata, K.; Macounová, K.M., Nebel, R.; Krtil, P. pH dependent ZnO nanostructures synthesized by hydrothermal approach and surface sensitivity of their photoelectrochemical behaviour. SN Appl. Sci. 2020, 2, 203, 1-8, https://doi.org/10.1007/s42452-020-1975-1. 116. Sekhar, M.C.; Ramana, M.V. Instant synthesis of ZnO nanoparticles by microwave hydrothermal method. Int. J. NanoSci. Nanotechnol. 2017, 8, 17-23, ISSN: 0974-3081. 117. Šarić, A.; Despotović, I.; Štefanić, G. Alcoholic solvent influence on ZnO synthesis: A joint experimental and theoretical study. J. Phys. Chem. C 2019, 123, 29394−2940, https://doi.org/10.1021/acs.jpcc.9b07411. 118. Ahammed, K.R.; Ashaduzzaman, M.; Paul, S.C.; Nath, M.R.; Bhowmik, S.; Saha, O.; Rahaman, M.M.; Bhowmik, S.; Aka, T.D. Microwave assisted synthesis of zinc oxide (ZnO) nanoparticles in a noble approach: utilization for antibacterial and photocatalytic activity. SN Appl. Sci. 2020, 2, 955, 1-14, https://doi.org/10.1007/s42452-020-2762-8. 119. Xiangyang, B.; Linlin, L.; Huiyu, L.; Longfei, T.; Tianlong, L.; Xianwei, M. Small molecule ligand solvothermal synthesis of ZnO nanoparticles and anti-infection application in vivo. ACS Appl. Mater. Interfaces 2015, 7, 1308-1317, https://doi.org/10.1021/am507532p. 120. Angaiah, S.; Arunachalam, S.; Murugadoss, V.; Vijayakumar, G. A Facile Polyvinylpyrrolidone assisted solvothermal synthesis of zinc oxide nanowires and nanoparticles and their influence on the photovoltaic performance of dye sensitized solar cell. ES Energy Environ. 2019, 4, 59–65, https://doi.org/10.30919/esee8c280. 121. Feng, W.; Huang, P.; Wang, B.; Wang, C.; Wang, W.; Wang, T.; Chen, S.; Lv, R.; Qin, Y.; Ma, J. Solvothermal synthesis of ZnO with different morphologies in dimethylacetanamide media. Ceramics Int. 2015, 42, 2250-2256, https://doi.org/10.1016/j.ceramint.2015.10.018. 122. Mao, Y.; Li, Y.; Zou, Y.; Shen, X.; Zhu, L.; Liao, G. Solvothermal synthesis and photocatalytic properties of ZnO micro/nanostructures. Ceramics Int. 2018, 45, 1724-1729, https://doi.org/10.1016/j.ceramint.2018.10.054. 123. Wojnarowicz, J.; Chudoba, T.; Gierlotka, S.; Lojkowski, W. Effect of microwave radiation power on the size of aggregates of ZnO NPs prepared using microwave solvothermal synthesis. Nanomater. 2018, 8, 343, 1-17, https://doi.org/10.3390/nano8050343. 124. Nuraqeelah, M.S.; Wee, B.S.; Chin, S.F.; Kok, K.Y. Synthesis and characterization of zinc oxide nanoparticles with small particle size distribution. Acta Chim. Slov. 2018, 65, 578–585, https://doi.org/10.17344/acsi.2018.4213. 125. Yao, Q.; Wang, C.; Fan, B.; Wang, H.; Sun, Q.; Jin, C.; Zhang, H. One-step solvothermal deposition of ZnO nanorod arrays on a wood surface for robust superamphiphobic performance and superior ultraviolet resistance. Scientific Reports 2016, 6, 35505, 1-11, https://doi.org/10.1038/srep35505. 126. Bhatta, L.K.G.; Bhatta, U.M.; Venkatesh, K. Facile microwave-assisted synthesis of zinc oxide and characterization. J. Scienti. Industr. Res. 2019, 78, 173-176, ISSN: 0975-1084. 127. Jamatia, T.; Skoda, D.; Urbanek, P.; Munster, L.; Sevcik, J.; Kuritka, I. Microwave-assisted particle size-controlled synthesis of ZnO nanoparticles and its application in fabrication of PLED device. Applied Nanotechnology and Nanoscience International Conference (ANNIC 2018), IOP Conf. Series: J. Phys: Conf. Series, 1310 2019, 012012, https://doi.org/10.1088/1742-6596/1310/1/012012. 128. Karthikeyan, L.; Akshaya, M.V.; Basu, P.K. Microwave assisted synthesis of ZnO and Pd-ZnO nanospheres for UV photodetector. Sensors and Actuators A: Physical 2017, 264, 90-95, https://doi.org/10.1016/j.sna.2017.06.013. 129. Kumar, V.; Gohain, M.; Som, S.; Kumar, V.; Bezuindenhoudt, B.C.B.; Swart, H.C. Microwave assisted synthesis of ZnO nanoparticles for lighting and dye removal application. Physica B: Condensed Matter 2016, 480, 36-41, https://doi.org/10.1016/j.physb.2015.07.020. 130. Pimentel, A.; Rodrigues, J.; Duarte, P.; Nunes, D.; Costa, F.M.; Monteiro, T.; Martins, R.; Fortunato, E. Effect of solvents on ZnO nanostructures synthesized by solvothermal method assisted by microwave radiation: a photocatalytic study. J. Mater. Sci. 2015, 50, 5777-5787, https://doi.org/10.1007/s10853-015-9125-7. 131. Saloga, P.E.J.; Thünemann, A.F. Microwave-assisted synthesis of ultrasmall zinc oxide nanoparticles. Langmuir 2019, 35, 12469−12482, https://doi.org/10.1021/acs.langmuir.9b01921. 132. Skoda, D.; Urbanek, P.; Sevcik, J.; Munster, L.; Antos, J.; Kuritka, I. Microwave-assisted synthesis of colloidal ZnO nanocrystals and their utilization in improving polymer light emitting diodes efficiency. Mater. Sci. Eng. B 2018, 232, 22-32, https://doi.org/10.1016/j.mseb.2018.10.013. 133. Ikono, R.; Akwalia, P.R.; Siswanto, Wahyu, B.W.; Sukarto, A.; Rochman, N.T. Effect of pH variation on particle size and purity of nano zinc oxide synthesized by sol-gel method. Int. J. Eng. & Technol. (IJET-IJENS) 2012, 12, 5-9. 134. Divya, B.; Karthikeyan, C.; Rajasimman, M. Chemical synthesis of zinc oxide nanoparticles and its application of dye decolourization. Int. J. Nanosci. Nanotechnol. 2018, 14, 267-275. 135. Prasad, T.; Halder, S.; Goyat, M.S.; Dhar, S.S. Morphological dissimilarities of ZnO nanoparticles and its effect on thermo-physical behavior of epoxy composites. Polymer Composites 2018, 39, 135-145, https://doi.org/10.1002/pc.23914. 136. Ashraf, R., Riaz, S., Khaleeq-ur-Rehman, M., and Naseem, S. (2013). Synthesis and characterization of ZnO nanoparticles. The 2013 World Congress on Advances in Nano, Biomechanics, Robotics and Energy Research (ANBRE13), Seoul, Korea, August, 25-28, 2013. 137. Muñoz-Fernandez, L.; Sierra-Fernandez, A.; Miloševic, O.; Rabanal, M.E. Solvothermal synthesis of Ag/ZnO and Pt/ZnO nanocomposites and comparison of their photocatalytic behaviors on dyes degradation. Adv. Powd. Technol. 2016, 27, 983-993, https://doi.org/10.1016/j.apt.2016.03.021. 138. Vakili, B.; Shahmoradi, B.; Maleki, A.; Safari, M.; Yang, J.; Pawar, R.R.; Lee, S-M. Synthesis of immobilized cerium doped ZnO nanoparticles through the mild hydrothermal approach and their application in the photodegradation of synthetic wastewater. J. Mol. Liq. 2018, 280, 230-237, https://doi.org/10.1016/j.molliq.2018.12.103. 139. Gupta, R.; Eswar, N.K.; Modak, J.M.; Madras, G. Effect of morphology of zinc oxide in ZnO-CdS-Ag tenary nanocomposite towards photocatalytic inactivation of E. coli under UV and visible light. Chem. Eng. J. 2017, 307, 966-980, https://doi.org/10.1016/j.cej.2016.08.142. 140. Yuvaraj, S.; Fernandez, A.C.; Sundararajan, M.; Dash, C.S.; Sakthivel, P. Hydrothermal synthesis of ZnO–CdS nanocomposites: Structural, optical and electrical behaviour. Ceramics Int. 2020, 46, 391-402, https://doi.org/10.1016/j.ceramint.2019.08.274. 141. Manavalan, S.; Veerakumar, P.; Chen, S-M.; Lin, K-C. Three-dimensional zinc oxide nanostars anchored on graphene oxide for voltammetric determination of methyl parathion. Microchimica Acta 2020, 187, 1-13, https://doi.org/10.1007/s00604-019-4031-3. 142. Rakkesh, R.A.; Durgalakshmi, D.; Karthe, P.; Balakumar, S. Anisotropic growth and strain-induced tunable optical properties of Ag–ZnO hierarchical nanostructures by a microwave synthesis method. Mater. Chem. Phys. 2020, 244, 122720, https://doi.org/10.1016/j.matchemphys.2020.122720. 143. Xin, Z.; Li, L.; Zhang, X.; Zhang, W. Microwave-assisted hydrothermal synthesis of chrysanthemum-like Ag/ZnO prismatic nanorods and their photocatalytic properties with multiple modes for dye degradation and hydrogen production. RSC Adv. 2018, 8, 6027, https://doi.org/10.1039/C7RA12097D. 144. Sankar ganesh, R.; Navaneethan, M.; Mani, G.K.; Ponnusamy, S.; Tsuchiya, K.; Muthamizhchelvan, C.; Kawasaki, S.; Hayahawa, Y. Influence of Al doping on structural, morphological, optical and gas sensing properties of ZnO nanorods. J. Alloys & Compounds 2017, 698, 555-564, https://doi.org/10.1016/j.jallcom.2016.12.187. 145. Gabriela, B.; Camila, M.; Volanti, D.P.; Ferrer, M.M.; Gouveia, A.F.; Cauê, R.; Juan, A.; Elson, L. The interplay between morphology and photocatalytic activity in ZnO and N-doped ZnO crystals. Mater. & Design 2017, 120, 363-375, https://doi.org/10.1016/j.matdes.2017.02.020. 146. Wojnarowicz, J.; Omelchenko, M.; Szczytko, J.; Chudoba, T.; Gierlotka, S.; Majhofer, A.; Twardowski, A.; Lojkowski, W. Structural and magnetic properties of Co-Mn codoped ZnO nanoparticles obtained by microwave solvothermal synthesis. Crystals 2018, 8, 410, https://doi.org/10.3390/cryst8110410. 147. Gao, X.; Zhang, T.; Wu, Y.; Yang, G.; Tan, M.; Li, X.; Xie, H.; Pan, J.; Tan, Y. Isobutanol synthesis from syngas on Zn-Cr based catalysts: New insights into the effect of morphology and facet of ZnO nanocrystal. Fuel 2018, 217, 21-30, https://doi.org/10.1016/j.fuel.2017.12.065. 148. Aksoy, S.; Caglar, Y. Synthesis of Mn doped ZnO nanopowders by MW-HTS and its structural, morphological and optical characteristics. J. Alloys and Compounds 2019, 781, 929-935, https://doi.org/10.1016/j.jallcom.2018.12.101. 149. Wojnarowicz, J.; Mukhovskyi, R.; Pietrzykowska, E.; Kusnieruk, S.; Mizeracki, J.; Lojkowski, W. Microwave solvothermal synthesis and characterization of manganese-doped ZnO nanoparticles. Beilstein J. Nanotechnol. 2016, 7, 721–732, https://doi.org/10.3762/bjnano.7.64. 150. Guruvammal, D.; Selvaraj, S.; Sundar, S.M. Structural, optical and magnetic properties of Co doped ZnO DMS nanoparticles by microwave irradiation method. J. Magnetism and Magnetic Mater. 2018, 452, 335-342, https://doi.org/10.1016/j.jmmm.2017.12.097. 151. Jayathilake, D.S.Y.; Peiris, T.A.N.; Sagu, J.S.; Potter, D.B.; Wijayantha, K.G.U.; Carmalt, C.J.; Southee, D.J. Microwave-assisted synthesis and processing of Al-doped, Ga-doped, and Al, Ga-codoped ZnO for the pursuit of optimal conductivity for transparent conducting film fabrication. ACS Sustainable Chem. Eng. 2017, 5, 4820−4829, https://doi.org/10.1021/acssuschemeng.7b00263. 152. Kadam, A.N.; Kim, T.G.; Shin, D-S.; Garadkar, K.M.; Park, J. Morphological evolution of Cu doped ZnO for enhancement of photocatalytic activity. J. Alloys and Compounds 2017, 710, 102-113, https://doi.org/10.1016/j.jallcom.2017.03.150. 153. Liu, K.; Qin, Y.; Muhammad, Y.; Zhu, Y.; Tang, R.; Chen, N.; Shi, H.; Zhang, H.; Tong, Z.; Yu, B. Effect of Fe3O4 content and microwave reaction time on the properties of Fe3O4/ZnO magnetic nanoparticles. J. Alloys and Compounds 2019, 781, 790-799, https://doi.org/10.1016/j.jallcom.2018.12.085. 154. Meng, Q.; Cui, J.; Tang, Y.; Han, Z.; Zhao, K.; Zhang, G.; Diao, Q. Solvothermal synthesis of dual-porous CeO2-ZnO composite and its enhanced acetone sensing performance. Ceramics Int. 2019, 45, 4103-4107, https://doi.org/10.1016/j.ceramint.2018.10.239. 155. Neupane, G.R.; Kaphle, A.; Hari, P. Microwave-assisted Fe-doped ZnO nanoparticles for enhancement of silicon solar cell efficiency. Solar Energy Materials and Solar Cells 2019, 201, 110073, https://doi.org/10.1016/j.solmat2019.110073. 156. Rosowska, J.; Kaszewski, J.; Witkowski, B.; Wachnicki, Ł.; Kuryliszyn-Kudelska, I.; Godlewski, M. The effect of iron content on properties of ZnO nanoparticles prepared by microwave hydrothermal method. Optical Mater. 2020, 109, 110089, https://doi.org/10.1016/j.optmat.2020.110089. 157. Das, S.; Das, S.; Sutradhar, S. Effect of Gd3+ and Al3+ on optical and dielectric properties of ZnO nanoparticle prepared by two-step hydrothermal method. Ceramics Int. 2017, 43, 6932-6941, https://doi.org/10.1016/j.ceramint.2017.02.116. 158. Vinoditha, U.; Sarojini, B.K.; Sandeep, K.M.; Narayana, B.; Maidur, S.R.; Patil, P.S.; Balakrishna, K.M. Defects‑induced nonlinear saturable absorption mechanism in europium‑doped ZnO nanoparticles synthesized by facile hydrothermal method. Appl. Phys. A 2019, 125, 1-11, https://doi.org/10.1007/s00339-019-2732-4. 159. Lin, L-Y.; Kavadiya, S.; Karakocak, B.B.; Nie, Y.; Raliya, R.; Wang, S.T.; Berezin, M.Y.; Biswas, P. ZnO1−x/carbon dots composite hollow spheres: Facile aerosol synthesis and superior CO2 photoreduction under UV, visible and near-infrared irradiation. Appl. Cataly. B: Environ. 2018, 230, 36–48, https://doi.org/10.1016/j.apcatb.2018.02.018. 160. Obaidullah, Md.; Furusawa, T.; Siddiquey, I.A.; Sato, M.; Suzuki, N. Synthesis of ZnO-Al2O3 core-shell nanocomposite materials by fast and facile microwave irradiation method and investigation of their optical properties. Adv. Powder. Technol. 2017, 28, 2678-2686, https://doi.org/10.1016/j.apt.2017.07.020.
(1)
1. JICA. (2020). Chapter 1: Hazardous waste – Characteristics, principles, management, and definition. In The study on mater plan for hazardous waste Management in Romania Final Report Japan International Cooperation Agency Volume 1 Main report: Strategy and action plan. Accessed in April 2022 at https://openjicareport.jica.go.jp/pdf/11737699_04.pdf 2. EEA. (2016). Prevention of hazardous waste in Europe – The status in 2015. EEA Report No 35/2016. Accessed in April 2022 at https://www.eea.europa.eu/publications/waste-prevention- in- europe/file 3. The World Counts Hazardous Waste Statistics-The World Counts. Available online: https://www.theworldcounts.com/counters/waste_pollution_facts/hazardous_waste_statistics. Accessed 22 May 2019. 4. Yan, J., Liu, Y., & Li, Z. (2020, March). Present situation of hazardous waste generation in China and grey model prediction. In IOP conference series: Earth and environmental science (Vol. 467, No. 1, p. 012179). IOP Publishing.. 2 Management of Various Sources of Hazardous Waste 62 5. Duan, H., Huang, Q., Wang, Q., Zhou, B., & Li, J. (2008). Hazardous waste generation and management in China: A review. Journal of Hazardous Materials, 158(2–3), 221–227. https://doi.org/10.1016/j.jhazmat.2008.01.106 6. Maalouf, A., Maryev, V. A., Smirnova, T. S., & Mavropoulos, A. (2020). Current waste man-agement status and trends in Russian Federation: Case study on industrial symbiosis. In Handbook of solid waste management: Sustainability through circular economy (pp. 1–27). https://doi.org/10.1007/978-981- 15- 7525- 9_15- 1 7. Yavrom, D. (2021). An overview of hazardous waste generation. United States Environmental Protection Agency 2019 biennial report data from the generation and management form. Accessed in June 2022 at https://rcrapublic.epa.gov/rcra-public- web/action/posts/2 8. Akpan, V. E., & Olukanni, D. O. (2020). Hazardous waste management: An African overview. Recycling, 5(3), 15. https://doi.org/10.3390/recycling5030015 9. ChartsBin.com, Hazardous Waste by Country, viewed 30th March, 2022. http://chartsbin.com/view/42087 10. Basel Convention. (2018). Waste without frontiers II. Global trends in generation and trans-boundary movements of hazardous wastes and other wastes. Accessed in April 2022 at https://www.basel.int/Portals/4/Basel%20Convention/docs/pub/WasteWithoutFrontiersII.pdf 11. UNSD. (2011). Hazardous waste generation. Environmental indicators. Accessed in April 2022 at https://unstats.un.org/unsd/environment/hazardous.htm 12. LaGrega, M. D., Buckingham, P. L., & Evans, J. C. (2010). Hazardous waste management. Waveland Press. 13. Saleh, H. E. D. M. (2016). Introductory chapter: Introduction to hazardous waste management. Management of Hazardous Wastes, 1. https://doi.org/10.5772/64245 14. Slack, R., & Letcher, T. M. (2011, January). Chemicals in waste: Household hazardous waste. In Waste (pp. 181–195). Academic. https://doi.org/10.1016/B978-0- 12- 381475- 3.10013- 0 15. Chaiyarit, J., & Intarasaksit, P. (2021). Household hazardous waste characterization and quan-tification at source in Thailand. Journal of the Air & Waste Management Association, 71(8), 989–994. https://doi.org/10.1080/10962247.2021.1906355 16. Edokpayi, J. N., Odiyo, J. O., Durowoju, O. S., & Adetoro, A. (2017). Household hazard-ous waste management in Sub-Saharan Africa. Household Hazardous Waste Management, 61. https://doi.org/10.5772/66292 17. Adejumo, I. O., & Adebiyi, O. A. (2020). Agricultural solid wastes: Causes, effects, and effective management. Strategies of Sustainable Solid Waste Management, 8. https://doi.org/10.5772/intechopen.93601 18. Lemmons, R. (2021). Agricultural hazardous wastes. Climate Policy Watcher. Accessed in April 2022 at https://www.climate-policy- watcher.org/waste- management/agricultural- hazardous-wastes.html 19. Tan, M., & Sim, L. L. (2006). 300 tonnes of toxic waste emitting ammonia fumes. The Star. Access online in March 2022 at https://www.thestar.com.my/news/nation/2006/01/12/300-tonnes- of- toxic- waste- emitting- ammonia- fumes 20. Yap, C. K., Peng, S. H. T., & Leow, C. S. (2019). Contamination in Pasir Gudang Area, Peninsular Malaysia: What can we learn from Kim Kim River chemical waste contamina-tion? International Journal of Humanities and Education Development (IJHED), 1(2), 84–87. https://doi.org/10.22161/jhed.1.2.4 21. Shah, M. F. (2019). 2.43 tonnes of chemical waste collected on day dumping was reported. The Star. Access online on March 2022 at https://www.thestar.com.my/news/nation/2019/03/14/2-43- tonnes- of- chemical- waste- collected- on- day- dumping- was- reported/ 22. Ibrahim, M. F., Hod, R., Toha, H. R., Mohammed Nawi, A., Idris, I. B., Mohd Yusoff, H., & Sahani, M. (2021). The impacts of illegal toxic waste dumping on children’s health: A review and case study from Pasir Gudang, Malaysia. International Journal of Environmental Research and Public Health, 18(5), 2221. https://doi.org/10.3390/ijerph18052221 23. Globaltimes. (2014). Nine biggest water pollution disasters in China (since 2010). Access online in May 2022 at https://www.globaltimes.cn/content/854711.shtml N. A. Rosli et al. 63 24. You, L. (2021). Shandong family dies from gas poisoning after illegal dumping. Sixth Tone Access online on May 2022 at https://www.sixthtone.com/news/1006793/shandong-family-dies- from- gas- poisoning- after- illegal- dumping#:~:text=Download%20on%20the- ,Shandong%20Family%20Dies%20From%20Gas%20Poisoning%20After%20Illegal%20Dumping,poured%20in%20a%20public%20sewer 25. VnExpress. (2016). Vietnam suffers 50 major toxic waste scandals in 2016. Access online in March 2022 at https://e.vnexpress.net/news/news/vietnam-suffers- 50- major- toxic- waste- scandals-in- 2016- 3521238.html 26. Murray, B. (2016). Vietnamese factory caught dumping industrial waste. Access online in March 2022 at https://www.aa.com.tr/en/asia-pacific/vietnamese-factory- caught- dumping- industrial- waste- /715068 27. Chu, L. T. (2016). Tile company found dumping raw sewage into river in southern Vietnam. Tuoi Tre/Tuoi Tre News Access online in March 2022 at https://tuoitrenews.vn/news/business/20161227/tile-company- found- dumping- raw- sewage- into- river- in- southern- vietnam/38857.html 28. MMWR. (2005). Improper disposal of hazardous substances and resulting injuries – Selected states, January 2001–March 2005. 54(36), 897–899. Accessed in April 2022 at https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5436a2.htm 29. Eto, K. (2000). Minamata disease. Neuropathology, 20, 14–19. 30. Fujikura, M. (2011). Japan’s efforts against the illegal dumping of industrial waste. Environmental Policy and Governance, 21(5), 325–337. https://doi.org/10.1002/eet.581 31. Kaji, M. (2012). Role of experts and public participation in pollution control: The case of itai-itai disease in Japan1. Ethics in Science and Environmental Politics, 12(2), 99–111. https://doi.org/10.3354/esep00126 32. Hasni, M. J. (2014). Niigata Minamata disease: A revisit. Malaysian Journal of Public Health Medicine, 14(1), 47–54. 33. Liu, S. F. (1992). The Koko incident: Developing international norms for the transboundary movement of hazardous waste. Journal of Natural Resources & Environmental Law, 8, 121. 34. van Wingerde, K. (2015). The limits of environmental regulation in a globalized economy. Lessons from the Probo Koala case. In The Routledge handbook of white-Collar and corporate crime in Europe (pp. 260–274). 35. Dongo, K., Tiembré, I., Koné, B. A., Zurbrügg, C., Odermatt, P., Tanner, M., et al. (2012). Exposure to toxic waste containing high concentrations of hydrogen sulphide illegally dumped in Abidjan, Côte d’Ivoire. Environmental Science and Pollution Research, 19(8), 3192–3199. https://doi.org/10.1007/s11356-012- 0823- 2 36. USEPA. (2022). Learn the basics of hazardous waste. Accessed in April 2022 at https://www.epa.gov/hw/learn-basics- hazardous- waste 37. Noor Artika, H., Yusof, M. Z., & Nor Faiza, M. T. (2019). An overview of scheduled wastes management in Malaysia. Journal of Wastes and Biomass Management (JWBM), 1(2), 1–4. https://doi.org/10.26480/jwbm.02.2019.01.04 38. Aja, O. C., Al-Kayiem, H. H., Zewge, M. G., & Joo, M. S. (2016). Overview of hazardous waste management status in Malaysia. In Management of hazardous wastes. InTech Publishers. https://doi.org/10.5772/63682 39. Van Ewijk, S., & Stegemann, J. A. (2016). Limitations of the waste hierarchy for achieving absolute reductions in material throughput. Journal of Cleaner Production, 132, 122–128. https://doi.org/10.1016/j.jclepro.2014.11.051 40. F. N. C, A. (2014). Hazardous waste Vitrification by plasma gasification process. IOSR Journal of Environmental Science, Toxicology and Food Technology, 8(3), 15–19. https://doi.org/10.9790/2402-08311519 41. Rekos, K. C., Charisteidis, I. D., Tzamos, E., Palantzas, G., Zouboulis, A. I., & Triantafyllidis, K. S. (2022). Valorization of hazardous organic solid wastes towards fuels and chemicals via fast (catalytic) pyrolysis. Sustainable Chemistry, 3(1), 91–111. https://doi.org/10.3390/suschem3010007 2 Management of Various Sources of Hazardous Waste 64 42. Zhang, T. C., Surampalli, R. Y., Tyagi, R. D., & Benerji, S. K. (2017). Biological treatment of hazardous waste. In Current developments in biotechnology and bioengineering: Solid waste management (pp. 311–340). https://doi.org/10.1016/B978-0- 444- 63664- 5.00014- 9 43. Singh, I. B., Chaturvedi, K., Morchhale, R. K., & Yegneswaran, A. H. (2007). Thermal treat-ment of toxic metals of industrial hazardous wastes with fly ash and clay. Journal of Hazardous Materials, 141(1), 215–222. https://doi.org/10.1016/j.jhazmat.2006.06.112 44. ILBS. (2018). Environmental quality Act 1974 (Act 127), Regulations, Rules and Orders, Kuala Lumpur, Malaysia. 45. Zainu, Z. A. (2019). Development of policy and regulations for hazardous waste management in Malaysia. Journal of Science, Technology and Innovation Policy, 5(2), 34–42. https://doi.org/10.11113/jostip.v5n2.45 46. Kenji, A. (2021). Malaysia announces 12th Malaysia plan (2021–2025): Incorporating EPR regulations on e-waste. Enviliance ASIA. Access online in March at https://enviliance.com/regions/southeast-asia/my/report_4619 47. Che Jamin, N., & Mahmood, N. Z. (2015). Scheduled waste management in Malaysia: An overview. Advanced Materials Research, 1113, 841–846. https://doi.org/10.4028/www.scien-tific.net/AMR.1113.841 48. Yusup, M. Z., Mahmood, W. H. W., Salleh, M. R., & Ab Rahman, M. N. (2015). The imple-mentation of cleaner production practices from Malaysian manufacturers' perspectives. Journal of Cleaner Production, 108, 659–672. https://doi.org/10.1016/j.jclepro.2015.07.102 49. Yang, X. J. (2013). China’s rapid urbanization. Science, 342(6156), 310–310. https://doi.org/10.1126/science.342.6156.310-a 50. Wang, W., Jiang, J., Wu, X., & Liang, S. (2000). The current situation of solid waste gen-eration and its environmental contamination in China. Journal of Material Cycles and Waste Management, 2(2), 65–69. https://doi.org/10.1007/s10163-000- 0027- 6 51. Kanwal, Q., Zeng, X., & Li, J. (2022). Drivers-pressures-state-impact-response framework of hazardous waste management in China. Critical Reviews in Environmental Science and Technology, 52(16), 2930–2961. https://doi.org/10.1080/10643389.2021.1902225 52. Ministry of Environment. (2010). Report on the State Illegal Dumping of Industrial Waste (fiscal year 2008). 53. Ministry of Environment. (2008). Trends in the past to years relating to waste policies (Regarding initiatives to date, current situation), Central Environment Committee, Waste/Recycling Committee, Expert Group on Waste Treatment System, meeting 1, document 3.
(1)
[1]J. Li et al., "A Preclinical System Prototype for Focused Microwave Breast Hyperthermia Guided by Compressive Thermoacoustic Tomography," in IEEE Transactions on Biomedical Engineering, doi: 10.1109/TBME.2021.3059869. [2]D. B. Rodrigues, J. Ellsworth and P. Turner, "Feasibility of Heating Brain Tumors Using a 915 MHz Annular Phased-Array," in IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 4, pp. 423-427, April 2021, doi: 10.1109/LAWP.2021.3050142. [3]D. G. Serrano-Díaz, C. J. Trujillo-Romero, A. Vera and L. Leija, "Effect of the Water Bolus and Tissue Thickness Over the Heat Distribution Generated by a RF Applicator Used as an Auxiliar to Treat Bone Tumors," 2021 Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges (GMEPE/PAHCE), 2021, pp. 1-6, doi: 10.1109/GMEPE/PAHCE50215.2021.9434838. [4]J. Tesarik, J. Vrba and H. D. Trefna, "Non-invasive Thermometry During Hyperthermia Using Differential Microwave Imaging Approach," 2021 15th European Conference on Antennas and Propagation (EuCAP), 2021, pp. 1-4, doi: 10.23919/EuCAP51087.2021.9411253. [5]A. Abd Rahman, K. Kamardin and Y. Yamada, "Focusing Lens Design to Achieve Small Focal Spot Size in Human Body," 2020 International Symposium on Antennas and Propagation (ISAP), 2021, pp. 633-634, doi: 10.23919/ISAP47053.2021.9391139. [6]K. Kaur, "Archimedes Spiral Antenna for the Microwave Hyperthermia," 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 2021, pp. 302-3054, doi: 10.1109/ICACITE51222.2021.9404754. [7]J. Li, L. Xu and X. Wang, "A Computational Study on Number of Elements in Antenna Array for Focused Microwave Breast Hyperthermia," 2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC), 2019, pp. 1-3, doi: 10.1109/IMBIOC.2019.8777809. [8]D. Vrba, J. Vrba, D. B. Rodrigues and P. Stauffer, "Zero-order mode microwave applicator for hyperthermia treatment of cancer," 2019 European Microwave Conference in Central Europe (EuMCE), 2019, pp. 440-443. [9]J. Li and X. Wang, "Comparison of Two Small Circularly Polarized Antennas for Focused Microwave Hyperthermia," 2019 13th European Conference on Antennas and Propagation (EuCAP), 2019, pp. 1-4. [10]M. Sarabi and W. Perger, “A Novel Leaky Wave Antenna for Hyperthermia,” in 2019 IEEE Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), 2019, pp. 1–4. [11]D. Baskaran and K. Arunachalam, “Computer simulations of 434 MHz Electromagnetic Phased Array for thermal therapy of locally advanced breast cancer,” in 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), 2019, no. March, pp. 1–4. [12]S. Singh, S. P. Singh, and D. Singh, “Compact Conformal Multilayer Slot Antenna for Hyperthermia,” in 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), 2019, vol. 1, no. March. [13]G. Chakaravarthi and K. Arunachalam, “A compact microwave patch applicator for hyperthermia treatment of cancer,” Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf., vol. 2014, pp. 5320–5322, 2014. [14]A. Arya, S. Sharma, P. Yadav, and R. Dindha, “Performance Comparison between Rectangular & Circular Patch Antenna Array with EBG Structure Abstract:,” Int. J. Appl. Eng. Res., vol. 7, no. 11, 2012. [15]J. Vrba and B. Vrbova, “Microwave Thermotherapy: Study of Hot-Spots Induced by Electromagnetic Surface Waves,” EUCAP 2013, pp. 3125–3126, 2013. [16]S. Mizushina, M. Matsuda, K. Matsui, Y. Hasamura, and T. Sugiura, “Effect of water filled bolus on the precision of microwave eadiometris measurement. pdf,” in IEEE-MTT-S Digest, 1990, pp. 541–544. [17]D. Senic, A. Sarolic, C. L. Holloway, and J. M. Ladbury, “Whole-Body Specific Absorption Rate Assessment of Lossy Objects Exposed to a Diffuse Field Inside a Reverberant Environment,” vol. 59, no. 3, pp. 813–822, 2017. [18]D. T. Le, L. Hamada, S. Watanabe, and T. Onishi, “A Fast Estimation Technique for Evaluating the Specific Absorption Rate of Multiple-Antenna Transmitting Devices,” vol. 65, no. 4, pp. 1947–1957, 2017. [19]R. R. Wildeboer, P. Southern, and Q. A. Pankhurst, “On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials,” J. Phys. D. Appl. Phys., vol. 47, no. 49, 2014. [20]A. Z. El Dein and A. Amr, “Specific absorption rate (SAR) induced in human heads of various sizes when using a mobile phone,” in 2010 7th International Multi-Conference on Systems, Signals and Devices, SSD-10, 2010, vol. I, pp. 1–5. [21]P. S. Kumar and B. C. Mohan, “Dual-band Microstrip Patch Antenna Design with Inverted-E Slot and U-Slot,” in 2016 11th International Conference on Industrial and Information Systems (ICIIS), 2016, no. 2, pp. 3–7. [22]N. Yoshio, O. Chikara, T. Yasushi, K. Mokoto, and M. Shinsaku, “Development of Heating Equipment with Lens Applicator for Localized Microwave Hyperthermia,” in International Symposium on Electromagnetic Compatibility, 1984, vol. 5, no. 1, pp. 751–753.
(1)
1.J. L. Provis and S. A. Bernal, “Geopolymers and Related Alkali-Activated Materials,” Annual Review of Materials Research44, no. 1 (July 2014): 299–327. ttps://doi.org/10.1146/annurev-matsci-070813-113515 2.M. F. Awalludin, O. Sulaiman, R. Hashim, and W. N. A. W. Nadhari, “An Overview of the Oil Palm Industry in Malaysia and Its Waste Utilization through Thermochemical Conversion, Specifically via Liquefaction,” Renewable and Sustainable Energy Reviews 50 (October 2015): 1469–1484. https://doi.org/10.1016/j.rser.2015.05.085 3.S. O. Bamaga, M. W. Hussin, and M. A. Ismail, “Palm Oil Fuel Ash: Promising Supplementary Cementing Materials,” KSCE Journal of Civil Engineering 17, no. 7 (November 2013): 1708–1713. https://doi.org/10.1007/s12205-013-1241-9 4.M. H. Ahmad, U. Tun, and H. Onn, “Compressive Strength of Palm Oil Fuel Ash Concrete,” in International Conference on Construction and Building Technology (Kuala Lumpur, Malaysia: Universiti Teknologi Petronas, 2008), 297–306. 5.V. Sata, C. Jaturapitakkul, and K. Kiattikomol, “Influence of Pozzolan from Various By-Product Materials on Mechanical Properties of High-Strength Concrete,” Construction and Building Materials 21, no. 7 (July 2007): 1589–1598. https://doi.org/10.1016/j.conbuildmat.2005.09.011 6.A. S. M. A. Awal and I. A. Shehu, “Evaluation of Heat of Hydration of Concrete Containing High Volume Palm Oil Fuel Ash,” Fuel 105 (March 2013): 728–731. https://doi.org/10.1016/j.fuel.2012.10.020 7.N. Asim, M. Alghoul, M. Mohammad, M. H. Amin, M. Akhtaruzzaman, N. Amin, and K. Sopian, “Emerging Sustainable Solutions for Depollution: Geopolymers,” Construction and Building Materials 199 (February 2019): 540–548. https://doi.org/10.1016/j.conbuildmat.2018.12.043 8.R. H. Kupaei, U. J. Alengaram,M. Z. B. Jumaat, and H. Nikraz, “Mix Design for Fly Ash Based Oil Palm Shell Geopolymer Lightweight Concrete,” Construction and Building Materials 43 (June 2013): 490–496. https://doi.org/10.1016/j.conbuildmat.2013.02.071 9.E. Khankhaje, M. W. Hussin, J. Mirza, M. Rafieizonooz, M. R. Salim, H. C. Siong, and M. N. M. Warid, “On Blended Cement and Geopolymer Concretes Containing Palm Oil Fuel Ash,” Materials & Design 89 (January 2016): 385–398. https://doi.org/10.1016/j.matdes.2015.09.140 10.H. M. Hamada, G. A. Jokhio, F. M. Yahaya, A. M. Humada, and Y. Gul, “The Present State of the Use of Palm Oil Fuel Ash (POFA) in Concrete,” Construction and Building Materials 175 (June 2018): 26–40. https://doi.org/10.1016/j. conbuildmat.2018.03.227 11.T. Z. H. Ting, M. Z. Y. Ting, M. E. Rahman, and V. Pakrashi, “Palm Oil Fuel Ash: Innovative Potential Applications asSustainable Materials in Concrete,” in Reference Module in Materials Science and Materials Engineering (Amsterdam, the Netherlands: Elsevier, 2019), 1–10. https://doi.org/10.1016/B978-0-12-803581-8.11317-7 12.N. Ranjbar, A. Behnia, B. Alsubari, P. M. Birgani, and M. Z. Jumaat, “Durability and Mechanical Properties of Self- Compacting Concrete Incorporating Palm Oil Fuel Ash,” Journal of Cleaner Production 112, Part 1 (January 2016): 723–730. https://doi.org/10.1016/j.jclepro.2015.07.033 13.J.-H. Tay and K.-Y. Show, “Use of Ash Derived from Oil-Palm Waste Incineration as a Cement Replacement Material,” Resources, Conservation and Recycling 13, no. 1 (April 1995): 27–36. https://doi.org/10.1016/0921-3449(94) 00012-T14.W. Tangchirapat, T. Saeting, C. Jaturapitakkul, K. Kiattikomol, and A. Siripanichgorn, “Use of Waste Ash from Palm Oil Industry 15. H. M. Hamada, F. M. Yahaya, K. Muthusamy, G. A. Jokhio, and A. M. Humada, “Fresh and Hardened Properties of Palm Oil Clinker Lightweight Aggregate Concrete Incorporating Nano-Palm Oil Fuel Ash,” Construction and Building Materials 214 (July 2019): 344–354. https://doi.org/10.1016/j.conbuildmat.2019.04.101 16.P. Chindaprasirt and S. Rukzon, “Strength, Porosity and Corrosion Resistance of Ternary Blend Portland Cement, Rice Husk Ash and Fly Ash Mortar,” Construction and Building Materials 22, no. 8 (August 2008): 1601–1606. https://doi.org/ 10.1016/j.conbuildmat.2007.06.010 17.M. Z. Al-Mulali, H. Awang, H. P. S. A. Khalil, and Z. S. Aljoumaily, “The Incorporation of Oil Palm Ash in Concrete as a Means of Recycling: A Review,” Cement and Concrete Composites 55 (January 2015): 129–138. https://doi.org/10.1016/j. cemconcomp.2014.09.007 18.K. Muthusamy, J. Mirza, N. A. Zamri, M. W. Hussin, A. P. P. A. Majeed, A. Kusbiantoro, and A. M. A. Budiea, “Properties of High Strength Palm Oil Clinker Lightweight Concrete Containing Palm Oil Fuel Ash in Tropical Climate,” Construction and Building Materials 199 (February 2019): 163–177. https://doi.org/10.1016/j.conbuildmat.2018.11.211 19. B. H. Nagaratnam, M. A. Mannan, M. E. Rahman, A. K. Mirasa, A. Richardson, and O. Nabinejad, “Strength and Microstructural Characteristics of Palm Oil Fuel Ash and Fly Ash as Binary and Ternary Blends in Self-Compacting Concrete,” Construction and Building Materials 202 (March 2019): 103–120. https://doi.org/10.1016/j.conbuildmat. 2018.12.139 20.A. Munir, A. Abdullah, Huzaim, Sofyan, Irfandi, and Safwan, “Utilization of Palm Oil Fuel Ash (POFA) in Producing Lightweight Foamed Concrete for Non-structural Building Material,” Procedia Engineering 125 (2015): 739–46. https:// doi.org/10.1016/j.proeng.2015.11.119 21.N. A. A. Bari, N. A. Abdullah, R. Yusuff, N. Ismail, and A. Jaapar, “Environmental Awareness and Benefits of Industrialized Building Systems (IBS),” Procedia - Social and Behavioral Sciences 50 (2012): 392–404. https://doi.org/ 10.1016/j.sbspro.2012.08.044 22.S. M. A. Kabir, U. J. Alengaram, M. Z. Jumaat, A. Sharmin, and A. Islam, “Influence of Molarity and Chemical Composition on the Development of Compressive Strength in POFA Based Geopolymer Mortar,” Advances in Materials Science and Engineering 2015 (2015): 15. https://doi.org/10.1155/2015/647071 23.Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM C618-17a (West Conshohocken, PA: ASTM International, approved October 1, 2008). https://doi.org/10.1520/C0618-17A 24.P. Chindaprasirt, C. Jaturapitakkul, W. Chalee, and U. Rattanasak, “Comparative Study on the Characteristics of Fly Ash and Bottom Ash Geopolymers,” Waste Management 29, no. 2 (February 2009): 539–543. https://doi.org/10.1016/j. wasman.2008.06.023 25.A. M. Mustafa, A. Bakri, H. Kamarudin, M. Bnhussain, I. K. Nizar, A. R. Rafiza, and Y. Zarina, “Microstructure of Different NaOH Molarity of Fly Ash- Based Green Polymeric Cement,” Journal of Engineering and Technology Research 3, no. 2 (2011): 44–49. 26.A. Islam, U. J. Alengaram, M. Z. Jumaat, and I. I. Bashar, “The Development of Compressive Strength of Ground Granulated Blast Furnace Slag-Palm Oil Fuel Ash-Fly Ash Based Geopolymer Mortar,” Materials & Design 56 (April 2014): 833–841. https://doi.org/10.1016/j.matdes.2013.11.080 27.P. Chindaprasirt, S. Homwuttiwong, and C. Jaturapitakkul, “Strength and Water Permeability of Concrete Containing Palm Oil Fuel Ash and Rice Husk-Bark Ash,” Construction and Building Materials 21, no. 7 (July 2007): 1492–1499. https://doi.org/10.1016/j.conbuildmat.2006.06.015 28.Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. [50-mm] Cube Specimens), ASTM C109/C109M-12 (West Conshohocken, PA: ASTM International, approved December 1, 2008). https://doi. org/10.1520/C0109_C0109M-12 29. Standard Test Method for Measurement of Rate of Absorption of Water by-Hydraulic-Cement Concretes, ASTM C1585-13(West Conshohocken, PA: ASTM International, approved July 1, 2011). https://doi.org/10.1520/C1585-13 30.S. A. Bernal, E. D. Rodríguez, R. M. de Gutiérrez, J. L. Provis, and S. Delvasto, “Activation of Metakaolin/Slag Blends Using Alkaline Solutions Based on Chemically Modified Silica Fume and Rice Husk Ash,” Waste and Biomass Valorization 3, no. 1 (March 2012): 99–108. https://doi.org/10.1007/s12649-011-9093-3 31.M. A. Salih, A. A. A. Ali, and N. Farzadnia, “Characterization of Mechanical and Microstructural Properties of Palm Oil Fuel Ash Geopolymer Cement Paste,” Constrcution and Building Materials 65 (August 2014): 592–603. https://doi.org/10.1016/j.conbuildmat.2014.05.031 32.N. M. Altwair, M. A. M. Johari, and S. F. S. Hashim, “Influence of Calcination Temperature on Characteristics and Pozzolanic Activity of Palm Oil Waste Ash,” Australian Journal of Basic and Applied Sciences 5, no. 11 (2011): 1010–1018. 33.D. A. Runyut, S. Robert, I. Ismail, R. Ahmadi, and N. A. S. B. A. Samat, “Microstructure andMechanical Characterizationof Alkali-Activated Palm Oil Fuel Ash,” Journal of Materials in Civil Engineering 30, no. 7 (July 2018): 1–7. https://doi.org/ 10.1061/(ASCE)MT.1943-5533.0002303 34.A. Fernández-Jiménez and A. Palomo, “Mid-Infrared Spectroscopic Studies of Alkali-Activated Fly Ash Structure,”Microporous and Mesoporous Materials 86, nos. 1–3 (November 2005): 207–214. https://doi.org/10.1016/j. micromeso.2005.05.057 35.N. Nadziri, I. Ismail, and S. Hamdan, “Binding Gel Characterization of Alkali-Activated Binders Based on Palm Oil FuelAsh (POFA) and Fly Ash,” Journal of Sustainable Cement-Based Materials 7, no. 1 (2017): 1–14. https://doi.org/10.1080/21650373.2017.1299054 https://doi.org/10.1007/s10853-013-7152-9
(1)
[1] Johnson, J. E., Takenaka, T., Ping, K. A. H., Honda, S., & Tanaka, T. (2009). Advances in the 3-D forward–backward time-stepping (FBTS) inverse scattering technique for breast cancer detection. IEEE Transactions on Biomedical Engineering, 56(9), 2232-2243. [2] Scapaticci, R., Bucci, O. M., Catapano, I., & Crocco, L. (2014). Differential microwave imaging for brain stroke followup. International Journal of Antennas and Propagation, 2014, 1-11. [3] Moriyama, T., Salucci, M., Oliveri, G., Tenuti, L., Rocca, P., & Massa, A. (2014). Multi-scaling deterministic imaging for GPR survey. In Antenna Measurements & Applications, 2014 IEEE Conference on (pp. 1-3). IEEE. [4] Salucci, M., Tenuti, L., Poli, L., & Massa, A. (2017). Buried object detection and imaging through innovative processing of GPR data. In Antennas and Propagation, 2017 11th European Conference on (pp. 1703-1706). IEEE. [5] Catapano, I., Affinito, A., Gennarelli, G., di Maio, F., Loperte, A., & Soldovieri, F. (2014). Full three-dimensional imaging via ground penetrating radar: Assessment in controlled conditions and on field for archaeological prospecting. Applied Physics A, 115(4), 1415-1422. [6] Lai, J., Li, M., Li, P., & Li, W. (2017). A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. arXiv preprint arXiv:1706.06949. [7] Hu, G., Salo, M., & Vesalainen, E. V. (2016). Shape identification in inverse medium scattering problems with a single far-field pattern. SIAM Journal on Mathematical Analysis, 48(1), 152-165. [8] Li, P. A. N. (2011). Electromagnetic inverse scattering problems (Doctoral dissertation). Zhejiang University. [9] Aramini, R. (2011). Computational inverse scattering via qualitative methods (Doctoral dissertation). University of Trento. [10] Tanaka, T., Kuroki, N., & Takenaka, T. (2003). Filtered forward-backward time-stepping method applied to reconstruction of dielectric cylinders. Journal of Electromagnetic Waves and Applications, 17(2), 253-270. [11] Moriyama, T., Oliveri, G., Salucci, M., & Takenaka, T. (2014). A multi-scaling forward-backward time-stepping method for microwave imaging. IEICE Electronics Express, 11(16), 1-12. [12] Rocca, P., Benedetti, M., Donelli, M., Franceschini, D., & Massa, A. (2009). Evolutionary optimization as applied to inverse scattering problems. Inverse Problems, 25(12), 1-61. [13] Belkebir, K., Baussard, A., & Premel, D. (2005). Edge-preserving regularization scheme applied to modified gradient method to reconstruct two-dimensional targets from data laboratory-controlled. Progress in Electromagnetics Research, 54, 1-17. [14] Zakaria, A., Gilmore, C., & LoVetri, J. (2010). Finite-element contrast source inversion method for microwave imaging. Inverse Problems, 26(11), 1-21. [15] Chen, X., Xu, K., Shen, F., Ran, L., & Zhong, Y. (2015). Subspace-based optimization method coupled with multiplicative regularization for edge-preserving inversion. In Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2015 IEEE International Symposium on (pp. 898-899). IEEE. [16] Ye, X., Poli, L., Oliveri, G., Zhong, Y., Agarwal, K., Massa, A., & Chen, X. (2015). Multi-resolution subspace-based optimization method for solving three-dimensional inverse scattering problems. Journal of the Optical Society of America A, 32(11), 2218-2226. [17] Zhong, Y., Lambert, M., Lesselier, D., & Chen, X. (2016). A new integral equation method to solve highly nonlinear inverse scattering problems. IEEE Transactions on Antennas and Propagation, 64(5), 1788-1799. [18] Yong, G., Ping, K. A. H., Sahrani, S., Marhaban, M. H., Saripan, M. I., Moriyama, T., & Takenaka, T. (2017). Profile Reconstruction Utilizing Forward-Backward Time-Stepping with the Integration of Automated Edge-Preserving Regularization Technique for Object Detection Applications. Progress in Electromagnetics Research, 54, 125-135. [19] Ng, S. W., Ping, K. A. H., Sahrani, S., Marhaban, M. H., Saripan, M. I., Moriyama, T., & Takenaka, T. (2016). Preliminary results on estimation of the dispersive dielectric properties of an object utilizing frequency-dependent forward-backward time-stepping technique. Progress in Electromagnetics Research, 49, 61-68. [20] Rekanos, I. T., Yioultsis, T. V., & Tsiboukis, T. D. (1999). Inverse scattering using the finite-element method and a nonlinear optimization technique. IEEE Transactions on Microwave Theory and Techniques, 47(3), 336-344. [21] Moriyama, T., & Takenaka, T. (2015). Filtered forward-backward time-stepping method without information on incident field. In Microwave Symposium, 2015 IEEE 15th Mediterranean (pp. 1-4). IEEE. [22] Pastorino, M. (2007). Stochastic optimization methods applied to microwave imaging: A review. IEEE Transactions on Antennas and Propagation, 55(3), 538-548. [23] Garcia-Fernandez, M., Garcia, C., Alvarez, Y., & Las-Heras, F. (2015). Influence of contour smoothness and electric size on the profile reconstruction of metallic objects using hybrid optimization. In EUROCON 2015-International Conference on Computer as a Tool, IEEE (pp. 1-6). IEEE. [24] Moriyama, T., Salucci, M., Tanaka, T., & Takenaka, T. (2016). Image reconstruction from total electric field data with no information on incident field. Journal of Electromagnetic Waves and Applications, 30(9), 1162-1170. [25] Rekanos, I. T. (2008). Shape reconstruction of a perfectly conducting scatterer using differential evolution and particle swarm optimization. IEEE Transactions on Geoscience and Remote Sensing, 46(7), 1967-1974. [26] Donelli, M., Franceschini, G., Martini, A., & Massa, A. (2006). An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems. IEEE Transactions on Geoscience and Remote Sensing, 44(2), 298-312. [27] Karaboga, N. (2005). Digital IIR filter design using differential evolution algorithm. EURASIP Journal on Applied Signal Processing, 2005, 1269-1276. [28] Takenaka, T., Tanaka, T., Harada, H., & He, S. (1997). FDTD approach to time‐domain inverse scattering problem for stratified lossy media. Microwave and Optical Technology Letters, 16(5), 292-296. [29] Takenaka, T., Jia, H., & Tanaka, T. (2000). Microwave imaging of electrical property distributions by a forward-backward time-stepping method. Journal of Electromagnetic Waves and Applications, 14(12), 1609-1626. [30] Sun, J., Zhang, Q., & Tsang, E. P. (2005). DE/EDA: A new evolutionary algorithm for global optimization. Information Sciences, 169(3-4), 249-262. [31] Gürbüz, T. U., Aslanyürek, B., Yapar, A., Şahintürk, H., & Akduman, I. (2014). A nonlinear microwave breast cancer imaging approach through realistic body–breast modeling. IEEE Transactions on Antennas and Propagation, 62(5), 2596-2605. [32] Scapaticci, R., Di Donato, L., Catapano, I., & Crocco, L. (2012). A feasibility study on microwave imaging for brain stroke monitoring. Progress in Electromagnetics Research, 40, 305-324. [33] Bao, G., Li, P., Lin, J., & Triki, F. (2015). Inverse scattering problems with multi-frequencies. Inverse Problems, 31(9), 1-21. [34] Russell Luke, D., & Potthast, R. (2006). The point source method for inverse scattering in the time domain. Mathematical Methods in The Applied Sciences, 29(13), 1501-1521. [35] Elizabeth, M. A, Ping, K. A. H., Wei, N. S., Wan Zainal Abidin, W. A., Masri, T., Othman, A. K., Moriyama, T., & Takenaka, T. (2012). 2-D reconstruction of breast image using Forward-Backward Time-Stepping method for breast tumour detection. In Applied Electromagnetics, 2012 IEEE Asia-Pacific Conference on (pp. 70-73). IEEE. [36] Zhou, H., & Zhang, H. J. (2011). Increasing the efficiency of forward–backward time-stepping reconstruction method. In Proceedings of Progress in Electromagnetics Research Symposium (pp. 878-881). [37] Takenaka, T., Moriyama, T., Ping, K. A. H., & Yamasaki, T. (2010). Microwave breast imaging by the filtered forward-backward time-stepping method. In Electromagnetic Theory, 2010 URSI International Symposium on (pp. 946-949). IEEE. [38] Ibrahim, P. M., Ping, K. A. H., Wei, N. S., Guang, Y., Rajaee, N., & Anyi, M. (2016). Elliptic filter and iterative inversion method for buried object detection applications. Applied Mechanics and Materials, 833, 164–169. [39] Jamali, N. H., Ping, K. A. H., Sahrani, S., Mat, D. A. A., Marhaban, M. H., Saripan, M. I., & Takenaka, T. (2017). Image reconstruction based on combination of inverse scattering technique and total variation regularization method. Indonesian Journal of Electrical Engineering and Computer Science, 5(3), 569-576. [40] Chie, A. S. C., Ping, K. A. H., Guang, Y., Wei, N. S., & Rajaee, N. (2016). Preliminary results of integrating Tikhonov’s regularization in Forward-Backward Time-Stepping technique for object detection. Applied Mechanics and Materials, 833, 170-175. [41] Ping, K. A. H., Moriyama, T., Takenaka, T., & Tanaka, T. (2009). Two-dimensional Forward-Backward Time-Stepping approach for tumor detection in dispersive breast tissues. In 2009 Mediterrannean Microwave Symposium (pp. 1-4). IEEE. [42] Moriyama, T., & Takenaka, T. (2015). Inverse scattering approach with measurement of only total electric field. Microwave and Optical Technology Letters, 57(1), 137-141. [43] Moriyama, T., Oliveri, G., Massa, A., & Takenaka, T. (2011). Iterative multiscaling strategy incorporated into time domain inverse scattering method for cross-borehole imaging. In Geoscience and Remote Sensing Symposium, 2011 IEEE International (pp. 846-849). IEEE. [44] Caorsi, S., Donelli, M., Franceschini, D., & Massa, A. (2002). An iterative multiresolution approach for microwave imaging applications. Microwave and Optical Technology Letters, 32(5), 352-356. [45] Caorsi, S., Donelli, M., Franceschini, D., & Massa, A. (2003). A new methodology based on an iterative multiscaling for microwave imaging. IEEE Transactions on Microwave Theory and Techniques, 51(4), 1162-1173. [46] Caorsi, S., Donelli, M., & Massa, A. (2004). Detection, location, and imaging of multiple scatterers by means of the iterative multiscaling method. IEEE Transactions on Microwave Theory and Techniques, 52(4), 1217-1228. [47] Brown, J.Q., Bydlon, T.M., Richards, L.M., Yu, B., Kennedy, S.A., Geradts, J., Wilke, L.G., Junker, M.K., Gallagher, J., Barry, W.T. and Ramanujam, N. (2010). Optical assesssment of tumor resection margins in the breast. IEEE Journal of Selected Topics in Quantum Electronics, 16(3), 530-544. [48] Grzegorczyk, T. M., Meaney, P. M., & Paulsen, K. D. (2014). Microwave tomographic imaging for breast cancer chemotherapy monitoring. In Antennas and Propagation, 2014 8th European Conference on (pp. 702-703). IEEE. [49] Yong, G., Ping, K. A. H., Chie, A. S. C., Ng, S. W., & Masri, T. (2015). Preliminary study of Forward-Backward Time-Stepping technique with edge-preserving regularization for object detection applications. In BioSignal Analysis, Processing and Systems, 2015 International Conference on (pp. 77-81). IEEE. [50] Charbonnier, P., Blanc-Féraud, L., Aubert, G., & Barlaud, M. (1997). Deterministic edge-preserving regularization in computed imaging. IEEE Transactions on Image Processing, 6(2), 298-311. [51] Siang, K. C. and John, C. K. M. (2016). A review of lung cancer research in Malaysia. Medical J Malaysia, 71(1), 70–78. [52] Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424. [53] Tanaka, T., Takenaka, T., & He, S. (1999). An FDTD approach to the time‐domain inverse scattering problem for an inhomogeneous cylindrical object. Microwave and Optical Technology Letters, 20(1), 72-77. [54] Johnson, J. E., Takenaka, T., & Tanaka, T. (2008). Two-dimensional time-domain inverse scattering for quantitative analysis of breast composition. IEEE Transactions on Biomedical Engineering, 55(8), 1941-1945. [55] Elizabeth, M. A., Ping, K. A. H., Rajaee, N. B., & Moriyama, T. (2015). Chebyshev filter applied to an inversion technique for breast tumour detection. International Journal of Research in Engineering & Technology, 4(6), 210–218. [56] Qiu, D., Zhou, H., Takenaka, T., & Tanaka, T. (2006). Source‐group method to speed up the reconstruction of objects from radar data by using the FBTS method. Microwave and Optical Technology Letters, 48(1), 67-71. [57] Moriyama, T., Yamaguchi, Y., Ping, K. A. H., Tanaka, T., & Takenaka, T. (2008). Parallel processing of forward-backward time-stepping method for time domain inverse scattering. PIERS Online, 4(6), 695-700. [58] Nawawi, J., Sahrani, S., Ping, K. A. H., Awang Mat, D. A., & Abang Zaidel, D. N. (2016). Iterative refinement in inverse scattering technique with median filter. In Applied Electromagnetics, 2016 IEEE Asia-Pacific Conference on (pp. 62-67). IEEE. [59] Azman, A., Sahrani, S., Ping, K. A. H., & Mat, D. A. A. (2017). A New Approach for Solving Inverse Scattering Problems with Overset Grid Generation Method. Telecommunication Computing Electronics and Control, 15(2), 820-828. [60] Yee, K. (1966). Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on Antennas and Propagation, 14(3), 302-307. [61] Schneider, J. B. (2017). Understanding the finite-difference time-domain method. School of Electrical Engineering and Computer Science Washington State University. Retrieved from https://www.eecs.wsu.edu/~schneidj/ufdtd/ufdtd [62] Chevalier, M. W., Luebbers, R. J., & Cable, V. P. (1997). FDTD local grid with material traverse. IEEE Transactions on Antennas and Propagation, 45(3), 411-421. [63] Samimi, A., & Simpson, J. J. (2016). Parallelization of 3-D Global FDTD Earth-Ionosphere Waveguide Models at Resolutions on the Order of∼ 1 km and Higher. IEEE Antennas and Wireless Propagation Letters, 15, 1959-1962. [64] Shankar, V., Mohammadian, A. H., & Hall, W. F. (1990). A time-domain, finite-volume treatment for the Maxwell equations. Electromagnetics, 10(1-2), 127-145. [65] Chen, Z., Fan, W., & Yang, S. (2016). Towards the wave-equation based explicit FDTD method without numerical instability. In Computational Electromagnetics, 2016 IEEE International Conference on (pp. 265-267). IEEE. [66] Nieter, C., Cary, J. R., Werner, G. R., Smithe, D. N., & Stoltz, P. H. (2009). Application of Dey–Mittra conformal boundary algorithm to 3D electromagnetic modeling. Journal of Computational Physics, 228(21), 7902-7916. [67] Shi, R., Yang, H., & Gao, L. (2015). An Adaptive Time Step FDTD Method for Maxwell’s Equations. IEEE Antennas and Wireless Propagation Letters, 14, 1706-1709. [68] Sarris, C. D. (2011). Extending the stability limit of the FDTD method with spatial filtering. IEEE Microwave and Wireless Components Letters, 21(4), 176-178. [69] Wei, X. K., Diamanti, N., Zhang, X., Annan, A. P., & Sarris, C. D. (2017). Spatially-filtered FDTD subgridding for ground penetrating radar numerical modeling. In Advanced Ground Penetrating Radar, 2017 9th International Workshop on (pp. 1-4). IEEE. [70] Berenger, J. P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2), 185-200. [71] Reuter, C. E., Joseph, R. M., Thiele, E. T., Katz, D. S., & Taflove, A. (1994). Ultrawideband absorbing boundary condition for termination of waveguiding structures in FD-TD simulations. IEEE Microwave and Guided Wave Letters, 4(10), 344-346. [72] Salmasi, M., & Potter, M. E. (2016). FDTD discretization of Maxwell's equations on a face-centered-cubic grid. In Antennas and Propagation, 2016 IEEE International Symposium on (pp. 2017-2018). IEEE. [73] Zygiridis, T. T., Kantartzis, N. V., & Tsiboukis, T. D. (2016). Development of optimized operators based on spherical-harmonic expansions for 3D FDTD schemes. International Journal of Applied Electromagnetics and Mechanics, 51(s1), S57-S66. [74] Van Londersele, A., De Zutter, D., & Ginste, D. V. (2016). A new hybrid implicit–explicit FDTD method for local subgridding in multiscale 2-D TE scattering problems. IEEE Transactions on Antennas and Propagation, 64(8), 3509-3520. [75] Sandeep, S., & Gasiewski, A. J. (2012). Electromagnetic analysis of radiometer calibration targets using dispersive 3D FDTD. IEEE Transactions on Antennas and Propagation, 60(6), 2821-2828. [76] Wanjun, S., & Hou, Z. (2016). Analysis of electromagnetic wave propagation and scattering characteristics of plasma shealth via high order ADE-ADI FDTD. Journal of Electromagnetic Waves and Applications, 30(10), 1321-1333. [77] Mo, Q., Yeh, H., Lin, M., & Manocha, D. (2017). Outdoor sound propagation with analytic ray curve tracer and Gaussian beam. The Journal of the Acoustical Society of America, 141(3), 2289-2299. [78] Chen, J., Hao, G., & Liu, Q. H. (2017). Using the ADI-FDTD method to simulate graphene-based FSS at terahertz frequency. IEEE Transactions on Electromagnetic Compatibility, 59(4), 1218-1223. [79] Chungang, J., Lixin, G., & Wei, L. (2016). Parallel FDTD method for EM scattering from a rough surface with a target. In Antennas, Propagation and EM Theory, 2016 11th International Symposium on (pp. 569-572). IEEE. [80] Kourtzanidis, K., Rogier, F., & Boeuf, J. P. (2015). ADI-FDTD modeling of microwave plasma discharges in air towards fully three-dimensional simulations. Computer Physics Communications, 195, 49-60. [81] Ireland, D., & Abbosh, A. (2013). Modeling human head at microwave frequencies using optimized Debye models and FDTD method. IEEE Transactions on Antennas and Propagation, 61(4), 2352-2355. [82] Luo, Z., Fan, D., Farmer, P., & Martin, G. (2017). Obtaining geologically conformable tomographic models through anisotropic-diffusion preconditioning. In SEG Technical Program Expanded Abstracts 2017 (pp. 5691-5695). Society of Exploration Geophysicists. [83] Blackledge, J., Hamalainen, T., & Joutsensalo, J. (2009). Inverse Scattering Solutions with Applications to Electromagnetic Signal Processing. ISAST Transactions on Electronics and Signal Processing, 1(4), 1-18. [84] Shrestha, S. (2014). Image denoising using new adaptive based median filters. Signal & Image Processing : An International Journal, 5(4), 1-13. [85] Zhu, J., Wen, J., & Zhang, Y. (2013). A new algorithm for SAR image despeckling using an enhanced lee filter and median filter. In Image and Signal Processing, 2013 6th International Congress on (1, pp. 224-228). IEEE. [86] Fan, W., Wang, K., Cayre, F., & Xiong, Z. (2015). Median filtered image quality enhancement and anti-forensics via variational deconvolution. IEEE Transactions on Information Forensics and Security, 10(5), 1076-1091. [87] Chou, H. H., Lin, H. W., & Chang, J. R. (2014). A sparsity-ranking edge-preservation filter for removal of high-density impulse noises. AEU-International Journal of Electronics and Communications, 68(11), 1129-1135. [88] Gir, R., Jain, L., & Rai, R. (2015). Speckle reduction of synthetic aperture radar images using median filter and savitzky-golay filter. International Journal of Computer Applications, 113(11), 38-43. [89] Zheng, Y., Zhang, X., Hou, B., & Liu, G. (2014). Using combined difference image and k-Means clustering for SAR image change detection. IEEE Geoscience and Remote Sensing Letters, 11(3), 691-695. [90] Hong, G., Zhang, A., Zhou, F., & Brisco, B. (2014). Integration of optical and synthetic aperture radar (SAR) images to differentiate grassland and alfalfa in Prairie area. International Journal of Applied Earth Observation and Geoinformation, 28, 12-19. [91] Zhao, Y., Liu, J. G., Zhang, B., Hong, W., & Wu, Y. R. (2015). Adaptive total variation regularization based SAR image despeckling and despeckling evaluation index. IEEE Transactions on Geoscience and Remote Sensing, 53(5), 2765-2774. [92] Agrawal, A., & Mishra, P. K. (2016). Restoration and de-noising of digital image based on non-linear diffusion filter for different type of noises. International Journal of Engineering Science and Computing, 6(10), 2608-2610. [93] Moll, J., Kelly, T. N., Byrne, D., Sarafianou, M., Krozer, V., & Craddock, I. J. (2014). Microwave radar imaging of heterogeneous breast tissue integrating a priori information. Journal of Biomedical Imaging, 2014(17), 1-10. [94] Khare, C., & Nagwanshi, K. K. (2012). Image restoration technique with non linear filter. International Journal of Advanced Science and Technology, 39, 67-74. [95] Ma, Z., He, K., Wei, Y., Sun, J., & Wu, E. (2013). Constant time weighted median filtering for stereo matching and beyond. In Proceedings of the IEEE International Conference on Computer Vision (pp. 49-56). [96] Pang, J., Zhang, S., & Zhang, S. (2016). A median filter based on the proportion of the image variance. In Information Technology, Networking, Electronic and Automation Control Conference, IEEE (pp. 123-127). IEEE. [97] Agarwal, S., Singh, O. P., & Nagaria, D. (2017). Encrypted Image Denoising using Adaptive Weighted Median Filter. Indian Journal of Science and Technology, 10(18), 1-8. [98] Bhateja, V., Tripathi, A., & Gupta, A. (2014). An improved local statistics filter for denoising of SAR images. In Recent Advances in Intelligent Informatics (pp. 23-29). Springer, Cham. [99] Rahimi, M., & Yazdi, M. (2015). A new hybrid algorithm for speckle noise reduction of SAR images based on mean-median filter and SRAD method. In Pattern Recognition and Image Analysis, 2015 2nd International Conference on (pp. 1-6). IEEE. [100] Zhang, Q., Xu, L., & Jia, J. (2014). 100+ times faster weighted median filter (WMF). In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2830-2837). [101] Kulkarni, R. N., & Bhaskar, P. C. (2014). Decision based median filter algorithm using resource optimized FPGA to extract impulse noise. International Journal of Reconfigurable and Embedded Systems, 3(1), 1-10. [102] Bhateja, V., Rastogi, K., Verma, A., & Malhotra, C. (2014). A non-iterative adaptive median filter for image denoising. In Signal Processing and Integrated Networks, 2014 International Conference on (pp. 113-118). IEEE. [103] Bhateja, V., Verma, A., Rastogi, K., Malhotra, C., & Satapathy, S. C. (2014). Performance improvement of decision median filter for suppression of salt and pepper noise. In Advances in Signal Processing and Intelligent Recognition Systems (pp. 287-297). Springer, Cham. [104] Liang, J., He, W., Ji, D., & Wang, L. (2015). Image reconstruction algorithm for modified SART based on PM model. In Computational Intelligence and Security, 2015 11th International Conference on (pp. 175-178). IEEE. [105] Correia, T., & Arridge, S. (2016). Patch-based anisotropic diffusion scheme for fluorescence diffuse optical tomography—part 1: technical principles. Physics in Medicine & Biology, 61(4), 1439-1451. [106] Tsiotsios, C., & Petrou, M. (2013). On the choice of the parameters for anisotropic diffusion in image processing. Pattern Recognition, 46(5), 1369-1381. [107] Ji, D., Hu, C., & Yang, H. (2015). Image reconstruction algorithm for in-line phase contrast imaging computed tomography with an improved anisotropic diffusion model. Journal of X-ray Science and Technology, 23(3), 311-320. [108] Guan, F., Ton, P., Ge, S., & Zhao, L. (2014). Anisotropic diffusion filtering for ultrasound speckle reduction. Science China Technological Sciences, 57(3), 607-614. [109] Zhang, X., Feng, X., Wang, W., Zhang, S., & Dong, Q. (2013). Gradient-based Wiener filter for image denoising. Computers & Electrical Engineering, 39(3), 934-944. [110] Xu, J., Jia, Y., Shi, Z., & Pang, K. (2016). An improved anisotropic diffusion filter with semi-adaptive threshold for edge preservation. Signal Processing, 119, 80-91. [111] Rafati, M., Arabfard, M., Zadeh, M. R. R., & Maghsoudloo, M. (2016). Assessment of noise reduction in ultrasound images of common carotid and brachial arteries. IET Computer Vision, 10(1), 1-8. [112] Mendrik, A. M., Vonken, E. J., Witkamp, T., Prokop, M., Van Ginneken, B., & Viergever, M. A. (2014). Using the fourth dimension to distinguish between structures for anisotropic diffusion filtering in 4D CT perfusion scans. In International Workshop on Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data (pp. 79-87). Springer, Cham. [113] Abdallah, M. B., Malek, J., Azar, A. T., Belmabrouk, H., Monreal, J. E., & Krissian, K. (2016). Adaptive noise-reducing anisotropic diffusion filter. Neural Computing and Applications, 27(5), 1273-1300. [114] Garg, A., & Goyal, K. (2014). Regularization Methods to Solve Various Inverse Problems. International Journal of Science and Research, 3(8), 1840–1845. [115] Niu, S., Gao, Y., Bian, Z., Huang, J., Chen, W., Yu, G., Liang, Z. and Ma, J. (2014). Sparse-view x-ray CT reconstruction via total generalized variation regularization. Physics in Medicine & Biology, 59(12), 2997–3017. [116] Zhuge, X., Palenstijn, W. J., & Batenburg, K. J. (2016). TVR-DART: a more robust algorithm for discrete tomography from limited projection data with automated gray value estimation. IEEE Transactions on Image Processing, 25(1), 455-468. [117] Sanders, T., Gelb, A., Platte, R. B., Arslan, I., & Landskron, K. (2017). Recovering fine details from under-resolved electron tomography data using higher order total variation ℓ1 regularization. Ultramicroscopy, 174, 97-105. [118] Mehranian, A., Rahmim, A., Ay, M. R., Kotasidis, F., & Zaidi, H. (2013). An ordered‐subsets proximal preconditioned gradient algorithm for edge‐preserving PET image reconstruction. Medical Physics, 40(5), 1-14. [119] Gerace, I., Martinelli, F., & Tonazzini, A. (2014). Demosaicing of noisy color images through edge-preserving regularization. In Computational Intelligence for Multimedia Understanding, 2014 International Workshop on (pp. 1-5). IEEE. [120] Gong, G., Zhang, H., & Yao, M. (2014). Construction model for total variation regularization parameter. Optics Express, 22(9), 10500-10508. [121] Gu, X., & Gao, L. (2009). A new method for parameter estimation of edge-preserving regularization in image restoration. Journal of Computational and Applied Mathematics, 225(2), 478-486. [122] Bahy, R. M., Salama, G. I., & Mahmoud, T. A. (2014). Adaptive regularization-based super resolution reconstruction technique for multi-focus low-resolution images. Signal Processing, 103, 155-167. [123] Cho, W., Seo, S., & You, J. (2014). Edge-preserving denoising method using variation approach and gradient distribution. In Big Data and Smart Computing, 2014 International Conference on (pp. 139-144). IEEE. [124] Boudaoud, A., Burian, A., Borowska-Wykręt, D., Uyttewaal, M., Wrzalik, R., Kwiatkowska, D., & Hamant, O. (2014). FibrilTool, an ImageJ plug-in to quantify fibrillar structures in raw microscopy images. Nature Protocols, 9(2), 457-463. [125] Chen, L. Y., Pan, M. C., & Pan, M. C. (2013). Flexible near-infrared diffuse optical tomography with varied weighting functions of edge-preserving regularization. Applied Optics, 52(6), 1173-1182. [126] Jung, J. E., & Lee, S. J. (2015). Edge-preserving iterative reconstruction for transmission tomography using convex weighted median priors. In Nuclear Science Symposium and Medical Imaging Conference, 2015 IEEE (pp. 1-3). IEEE. [127] Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1-4), 259-268. [128] Zhang, J., Liu, S., Xiong, R., Ma, S., & Zhao, D. (2013). Improved total variation based image compressive sensing recovery by nonlocal regularization. In Circuits and Systems, 2013 IEEE International Symposium on (pp. 2836-2839). IEEE. [129] Tourbier, S., Bresson, X., Hagmann, P., Thiran, J. P., Meuli, R., & Cuadra, M. B. (2014). Efficient total variation algorithm for fetal brain MRI reconstruction. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 252-259). Springer, Cham. [130] Matakos, A., Ramani, S., & Fessler, J. A. (2013). Accelerated edge-preserving image restoration without boundary artifacts. IEEE Transactions on Image Processing, 22(5), 2019-2029. [131] Bhujle, H., & Chaudhuri, S. (2014). Novel speed-up strategies for non-local means denoising with patch and edge patch based dictionaries. IEEE Transactions on Image Processing, 23(1), 356-365. [132] Chan, R. H., Liang, H., Wei, S., Nikolova, M., & Tai, X. C. (2015). High-order total variation regularization approach for axially symmetric object tomography from a single radiograph. Inverse Problems & Imaging, 9(1), 55–77. [133] Dong, W., Zhang, L., Shi, G., & Li, X. (2013). Nonlocally centralized sparse representation for image restoration. IEEE Transactions on Image Processing, 22(4), 1620-1630. [134] Zhang, K., Tao, D., Gao, X., Li, X., & Xiong, Z. (2015). Learning multiple linear mappings for efficient single image super-resolution. IEEE Transactions on Image Processing, 24(3), 846-861. [135] Khan, A., Waqas, M., Ali, M. R., Altalhi, A., Alshomrani, S., & Shim, S. O. (2016). Image de-noising using noise ratio estimation, K-means clustering and non-local means-based estimator. Computers & Electrical Engineering, 54, 370-381. [136] Jia, L., Li, M., Zhang, P., Wu, Y., & Zhu, H. (2016). SAR image change detection based on multiple kernel K-means clustering with local-neighborhood information. IEEE Geoscience and Remote Sensing Letters, 13(6), 856-860. [137] Salucci, M., Sartori, D., Anselmi, N., Randazzo, A., Oliveri, G., & Massa, A. (2013). Imaging buried objects within the second-order Born approximation through a multiresolution-regularized inexact-Newton method. In Electromagnetic Theory, Proceedings of 2013 URSI International Symposium on (pp. 116-118). IEEE. [138] Salucci, M., Rocca, P., Oliveri, G., & Massa, A. (2014). An innovative Frequency Hopping multi-zoom inversion strategy for GPR subsurface imaging. In Ground Penetrating Radar, 2014 15th International Conference on (pp. 619-623). IEEE. [139] Salucci, M., Poli, L., Anselmi, N., & Massa, A. (2017). Multifrequency particle swarm optimization for enhanced multiresolution GPR microwave imaging. IEEE Transactions on Geoscience and Remote Sensing, 55(3), 1305-1317. [140] Dixit, A. (2014). Adaptive Kmeans Clustering for Color and Gray Image [Source Code]. Retrieved from https://www.mathworks.com/matlabcentral/fileexchange/45057-adaptive-kmeans-clustering-for-color-and-gray-image [141] Bhatia, S. K. (2004). Adaptive K-Means Clustering. In FLAIRS Conference (pp. 695-699). [142] Grove, O., Berglund, A. E., Schabath, M. B., Aerts, H. J., Dekker, A., Wang, H., & Gillies, R. J. (2015). Data from: Quantitative computed tomographic descriptors associate tumour shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma. The Cancer Imaging Archive. [143] Anderson, V., & Rowley, J. (1998). Tissue dielectric properties calculator. Clayton, Victoria, Australia: Telstra Research Laboratories. [144] Holman, B. F., Cuplov, V., Millner, L., Hutton, B. F., Maher, T. M., Groves, A. M., & Thielemans, K. (2015). Improved correction for the tissue fraction effect in lung PET/CT imaging. Physics in Medicine & Biology, 60(18), 7387-7402. [145] Hartsgrove, G., Kraszewski, A., & Surowiec, A. (1987). Simulated biological materials for electromagnetic radiation absorption studies. Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association, 8(1), 29-36. [146] Chen, X., Wang, H., Zhao, B., & Shi, X. (2009). Lung ventilation functional monitoring based on electrical impedance tomography. Transactions of Tianjin University, 15(1), 7-12. [147] Ketata, M., Dhieb, M., Hmida, G. B., Ghariani, H., & Lahiani, M. (2015). UWB pulse propagation in human tissue: Comparison between Gaussian and square waves shape. In Sciences and Techniques of Automatic Control and Computer Engineering, 2015 16th International Conference on (pp. 158-162). IEEE. [148] Babarinde, O. J., Jamlos, M. F., Soh, P. J., Schreurs, D. P., & Beyer, A. (2016). Microwave imaging technique for lung tumour detection. In Microwave Conference, 2016 German (pp. 100-103). IEEE. [149] Wang, J. R., Sun, B. Y., Wang, H. X., Pang, S., Xu, X., & Sun, Q. (2014). Experimental study of dielectric properties of human lung tissue in vitro. Journal of Medical and Biological Engineering, 34(6), 598-604. [150] Nawawi, J., Sahrani, S., & Ping, K. A. H. (2017). Automated Scaling Region of Interest (AS-ROI) in inverse scattering method for tomographic image reconstruction. In Progress in Electromagnetics Research Symposium-Fall, 2017 (pp. 1648-1653). IEEE. [151] Joseph, E. J., Ping, K. A. H., Kipli, K., Awang Mat, D. A., Sahrani, S., Abang Zaidel, D. N., ... & Marhaban, M. H. (2017). Integration of Image Segmentation Method in Inverse Scattering for Brain Tumour Detection. Progress in Electromagnetics Research, 61, 111-122. [152] Komarov, V., Wang, S., & Tang, J. (2005). Permittivity and measurements. Encyclopedia of RF and Microwave Engineering. Hoboken, N.J.: John Wiley & Sons, Inc. [153] Lee, H., & Um, S. W. (2015). Probability of lung cancer based on the size threshold and volume-doubling time for lung nodules detected in low-dose CT screening. Annals of Translational Medicine, 3(2), 1-2.
(1)
[1] J. Simon, E. Flahaut, M. Golzio, Overview of carbon nanotubes for biomedical applications, Materials 12 (4) (2019) 624. [2] A. Kavosi, et al., The toxicity and therapeutic effects of single-and multi-wall carbon nanotubes on mice breast cancer, Sci. Rep. 8 (1) (2018) 1–12. [3] Y. Yan, R. Wang, Y. Hu, R. Sun, T. Song, X. Shi, S. Yin, Stacking of doxorubicin on folic acid-targeted multiwalled carbon nanotubes for in vivo chemotherapy of tumors, Drug Deliv. 25 (1) (2018) 1607–1616. [4] M.F. Cordeiro, et al., Toxicological assessment of PEGylated single-walled carbon nanotubes in early developing zebrafish, Toxicol. Appl. Pharmacol. 347 (2018) 54–59. [5] N.A. Zawawi, et al., Effect of acid oxidation methods on multiwalled carbon nanotubes (MWCNT) for drug delivery application, Int. J. Adv. Sci. Res. Manage. 1 (11) (2016) 14–22. [6] C.L. Lay, H.Q. Liu, H.R. Tan, Y.e. Liu, Delivery of paclitaxel by physically loading onto poly (ethylene glycol)(PEG)-graftcarbon nanotubes for potent cancer therapeutics, Nanotechnology 21 (6) (2010) 065101. [7] S. Sharma, S. Naskar, K. Kuotsu, Metronomic chemotherapy of carboplatin-loaded PEGylated MWCNTs: Synthesis, characterization and in vitro toxicity in human breast cancer, Carbon Lett. 30 (4) (2020) 435–447. [8] Sun, Z., et al., Carbon nanotubes enhance cytotoxicity mediated by human lymphocytes in vitro. PLoS One, 2011. 6(6): p. e21073. [9] M. Rafiee, L. Dargahi, A. Eslami, E. Beirami, M. Jahangiri-rad, S. Sabour, F. Amereh, Neurobehavioral assessment of rats exposed to pristine polystyrene nanoplastics upon oral exposure, Chemosphere 193 (2018) 745–753. [10] A. Singhal, Long-term adverse effects of early growth acceleration or catch-up growth, Ann. Nutr. Metab. 70 (3) (2017) 236–240. [11] Manzoor, H. and H. Bhatt, Prerenal Kidney Failure. 2020.
(1)
1. J. Tonetti, S. Ruatti, V. Lafontan, F. Loubignac, P. Chiron, H. Sari-Ali, et al. Is femoral head fracture-dislocation management improvable: a retrospective study in 110 cases Orthop Traumatol Surg Res, 96 (2011), pp. 623–631 2. Hougaard K1 , Thomsen PB. Traumatic posterior fracturedislocation of the hip with fracture of the femoral head or neck, or both J Bone Joint Surg Am. 1988 Feb;70(2):233-9. 3. Zehi K1 , Karray S, Litaiem T, Douik M. Fracture-luxation of the femur head. Apropos of 10 cases Acta Orthop Belg. 1997 Dec;63(4):268-73 4. Guan H1 , Liu X, Su J, Zhang C, Sun J, Fu Q Treatment and short-term effect analysis of Pipkin fracture Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2009 Mar;23(3):265-7 5.Dreinhöfer.KE1 , Schwarzkopf.SR, Haas.NP, Tscherne H Femur head dislocation fractures. Long-term outcome of conservative and surgical therapy Unfallchirurg. 1996 Jun;99(6):400-9 6. Schmidt AH1 , Leighton R, Parvizi J, Sems A, Berry DJ. Optimal arthroplasty for femoral neck fractures: is total hip arthroplasty the answer?JOrthopTrauma. 2009Jul;23(6):42833.doi:10.1097/BOT.0 b013e3181761490
(1)
1. Justinger C., Schlüter C., Oliviera-Frick V., Kopp B.,Rubie C., Schilling M.K. Increased growth factor expression after hepatic and pancreatic resection. Oncol Rep 2008; 20(6):1527–1531. 2. Ong K.H., Huang S.K.-H., Yen C.-S., Tian Y.-F., Sun D.-P.Simultaneous retroperitoneal robotic partial nephrectomy and hepatectomy for synchronous renal-cell carcinoma and hepatocellular carcinoma in a cirrhotic patient. J Endourol Case Rep 2016; 2(1): 215–217, https://doi.org/10.1089/cren.2016.0096. 3. Sun J., Yang T., Yang Y., Liu W., Song J. Synchronous double primary malignancies of the liver and kidney: a case report. Oncol Lett 2016; 11(3): 2057–2060, https://doi.org/10.3892/ol.2016.4194. 4. Murodov A.I., Kadyrov Z.A. Simultaneous videoendoscopic surgery in comorbid diseases of abdominal organs and retroperitoneal space. Meditsinskiy vestnik Bashkortostana 2017; 12(3): 129–134. 5. Forni Е., Meriggi F. Liver autotransplantation: technique and results. Annaly khirurgicheskoy gepatologii 1998; 3(2):24–29. 6. Filin A.V., Dydykin S.S., Scherbyuk A.N., Gulyaev V.A.Method of transient multiple removal and subsequent reimplantation of abdominal and retroperitoneal organs with multisystemic neoplastic lesions in experiment. Patent RU 2601100. 2017. 7. Brekhov E.I., Gulyaev V.A., Dydykin S.S., Pavlov A.V. Method of multiple removal of abdominal and retroperitoneal organs for transplantation. Patent RU 1819579. 1993.
(1)
[1] J. Xiong, “Research Evolution of Digital Museums in China. Science Insights,” vol. 34, no. 2, pp. 183–190, 2020. Available: https://doi.org/10.15354/si.20.ar016 [2] T. Jiang, X. Gan, Z. Liang, & G. Luo, “AIDM: artificial intelligent for digital museum autonomous system with mixed reality and software-driven data collection and analysis,” Automated Software Engineering, vol. 29, no. 1. Available: https://doi.org/10.1007/s10515- 021-00315-9 [3] Z. Huiying, and H. Jialiang, “Virtual reality design of Chinese classical furniture digital museum,” The International Journal of Electrical Engineering & Education, pp. 1–12, May. 2020, doi: 002072092092854. [4] N. Meehan, “Digital Museum Objects and Memory: Postdigital Materiality, Aura and Value,” Curator: The Museum Journal, vol. 65, no. 1, pp. 417–434, 2020. Available: https://doi.org/10.1111/cura.12361 [5] G. Cao and K. Zeng, “Design of Digital Museum Narrative Space Based on Perceptual Experience Data Mining and Computer Vision,” 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), Coimbatore, India, 2021, pp. 444–448, doi: 10.1109/ICAIS50930.2021.9395789. [6] T. L. Chen, Y. C. Lee, & C. S. Hung, “A Study on the Effects of Digital Learning Sheet Design Strategy on the Learning Motivation and Learning Outcomes of Museum Exhibition Visitors,” Education Sciences, vol. 12, no. 2, 2022. Available: https://eric.ed.gov/?id=EJ1339861 [7] W. Bao, & H. Zhang, “Artificial Intelligence and VR Environment Design of Digital Museum Based on Embedded Image Processing,” Wireless Communications and Mobile Computing, pp.1–9, 2022. Available: https://doi.org/10.1155/2022/7888791 [8] N. M. Mogajane, “Digital technology impact in the access, preservation and curation of indigenous artefacts at Mafikeng Museum.” Repository.nwu.ac.za, Jul. 2022 [online]. Available: https://repository.nwu.ac.za/handle/10394/40159 [9] L. Barbieri, F. Bruno, & M. Muzzupappa, “Virtual museum system evaluation through user studies,” Journal of Cultural Heritage, vol. 26, pp. 101–108, 2017. Available: https://doi.org/10.1016/j.culher.2017.02.005 [10]L. Zhang, & Y. Gao, “UI Design and Optimization Method for Museum Display Based on User Behavior Recommendation,” Wireless Communications and Mobile Computing, no. e2814216, 2022. Available: https://doi.org/10.1155/2022/2814216 [11]J. Li, J. He, & X. Zhou, “Design of Museum Cultural Relics multi view virtual display system based on AR-VR fusion technology,” IEEE Xplore, Apr. 2021. Available: https://doi.org/10.1109/ICSP51882.2021.9408927 [12]Y. Fu, & T. Fu, “Design of a simulation system for authenticity reproduction of cultural relics images in digital museums based on data mining,” IEEE Xplore, Jan. 2022. Available: https://doi.org/10.1109/ICPECA53709.2022.9719064 [13]J. Zhang, “User Experience Perspectives on the Application of Interactivity Design Based on Sensor Networks in Digital Museum Product Display,” Journal of Sensors, 2022, no. e8335044. Available: https://doi.org/10.1155/2022/8335044 [14]Y. Wu, Q. Jiang, H. Liang, & S. Ni, “What Drives Users to Adopt a Digital Museum? A Case of Virtual Exhibition Hall of National Costume Museum,” SAGE Open, vol. 12, no. 1, doi: 215824402210821 [15]C. Li, Y. Song, Z. Feng, Y. Wang, and Z. Li, “Feature Model Visualised Configuration Method of Digital Museum,” Journal of System Simulation, vol. 28, no. 1, 2016, pp. 83–90. Available online at: https://ijcnis.org 203 Design of Digital Museum System Based on Optimised Virtual Reality Technology [16]J. Zhao, L. Guo, & Y. Li, “Application of Digital Twin Combined with Artificial Intelligence and 5G Technology in the Art Design of Digital Museums,” Wireless Communications and Mobile Computing, 2022, pp. 1–12. Available: https://doi.org/10.1155/2022/8214514 [17]T. Giannini, & J. P. Bowen, “Museums and Digital Culture: From Reality to Digitality in the Age of COVID-19,” Heritage, vol. 5, no. 1, pp. 192–214. Available: https://doi.org/10.3390/heritage5010011
(1)
[1] Kaplan, M. F. (1958). Compressive strength and ultrasonic pulse velocity relationships for concrete in columns. ACI Journal Proceedings, 54(2), 675-688. https://doi.org/10.14359/11462 [2] Knaze, P. & Beno, P. (1984). The use of combined non-destructive testing methods to determine the compressive strength of concrete. Materials and Structures, 17(3). 207-210. https://doi.org/10.1007/ BF02475246 [3] Jaafar, M. S., Thanoon, W. A., Khan, S. R. M. & Trikha, D. N. (2002). Strength estimation of concrete in different environments using UPV. Pertanika Journal of Science & Technology, 10(2), 179–186. [4] Trtnik, G., Kavčič, F. & Turk, G. (2009). Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks. Ultrasonics, 49(1), 53-60. https://doi.org/10.1016/j.ultras.2008.05.001 [5] Wang, C.-C., Wang, H.-Y., Chen, C.-H. & Huang, C. (2015). Prediction of compressive strength using ultrasonic pulse velocity for CLSM with waste LCD glass concrete. Civil Engineering and Architecture, 9(6), 691-700. https://doi.org/10.17265/1934-7359/2015.06.007 [6] Ashrafian, A., Amiri, M. J. T., Rezaie-Balf, M., Ozbakkaloglu, T. & Lotfi-Omran, O. (2018). Prediction of compressive strength and ultrasonic pulse velocity of fiber reinforced concrete incorporating nano silica using heuristic regression methods. Construction and Building Materials, 190, 479-494. https://doi.org/10.1016/j.conbuildmat.2018.09.047 [7] Jose, S., George, V. R., Rodrigues, A., John, J., & Venu, D. (2018). A study on strength characteristics of bacterial concrete. International Research Journal of Engineering and Technology, 5(3), 2939-2942. [8] Hong, S., Yoon, S., Kim, J., Lee, C., Kim, S. & Lee, Y. (2020). Evaluation of condition of concrete structures using ultrasonic pulse velocity method. Applied Sciences, 10, 706. https://doi.org/10.3390/app10020706 [9] Bolborea, B., Baera, C., Dan, S., Gruin, A., Burduhos-Nergis, D.-D. & Vasile, V. (2021). Concrete compressive strength by means of ultrasonic pulse velocity and moduli of elasticity. Materials, 14, 7018. https://doi.org/10.3390/ma14227018 [10] Karimaei, M., Dabbaghi. F., Dehestani, M. & Rashidi, M. (2021). Estimating compressive strength of concrete containing untreated coal waste aggregates using ultrasonic pulse velocity. Materials, 14, 647. https://doi.org/10.3390/ma14030647 [11] Zárate, D. M., Cárdenas, F., Forero, E. F. & Peña, F. O. (2022). Strength of concrete through ultrasonic pulse velocity and uniaxial compressive strength, International Journal of Technology, 13(1), 103-114. https://doi.org/10.14716/ijtech.v13i1.4819 [12] Lin, Y.-C., Lin, Y. & Cheng, C.-C. (2022). A unified equation for prediction of concrete strength at various ages using the ultrasonic pulse velocity. Applied Sciences, 12, 8416. https://doi.org/10.3390/app12178416 [13] Lin, Y., Kuo, S.-F., Hsiao, C. & Lai, C.-P. (2007). Investigation of pulse velocity-strength relationship of hardened concrete, ACI Materials Journal, 104(4), 344-350. https://doi.org/10.14359/18823 [14] Al-Nu’Man, B. S., Aziz, B. R., Abdulla, S. A. & Khaleel, S. E. (2015). Compressive strength formula for concrete using ultrasonic pulse velocity. International Journal of Engineering and Technology, 26(1), 9-13. https://doi.org/10.14445/22315381/ijett-v26p203 [15] Al-Nu’Man, B. S., Aziz, B. R., Abdulla, S. A. & Khaleel, S. E. (2016). Effect of aggregate content on the concrete compressive strength - Ultrasonic pulse velocity relationship. American Journal of Civil Engineering and Architecture, 4(1), 1-5. https://doi.org/10.12691/ajcea-4-1-1 [16] Al-Aasm, H. S. (2018). Empirical formula for assessment concrete compressive strength by using ultrasonic pulse velocity. International Journal of Engineering and Technology, 7, 113-117. https://doi.org/10.14419/ ijet.v7i4.20.25860 [17] Lin, Y.-C. Lin, Y. & Chan, C.-C. (2016). Use of ultrasonic pulse velocity to estimate strength of concrete at various ages. Magazine of Concrete Research, 68(14), 739-749. https://doi.org/10.1680/jmacr.15.00025 [18] BS EN 12504-4 (2004). Testing Concrete – Part 4: Determination of Ultrasonic Pulse Velocity. British Standards Institution. [19] Jones, R. (1962). Nondestructive Testing of Concrete. Cambridge University Press. [20] Elvery, R. H. & Ibrahim, L. A. M. (1976). Ultrasonic assessment of concrete strength at early ages. Magazine of Concrete Research, 28(97), 181-190. https://doi.org/10.1680/macr.1976.28.97.181 [21] Raouf, Z. & Ali, Z. M. (1983). Assessment of concrete characteristics at an early age by ultrasonic pulse velocity. Journal of Building Research, 2, 31-44. [22] Popovics, S. Rose, J. L. & Popovics, J. S. (1990). The behaviour of ultrasonic pulses in concrete. Cement and Concrete Research, 20(2), 259-270. https://doi.org/10.1016/0008-8846(90)90079-d [23] Nash't, I. H., A'bour, S. H. & Sadoon, A. A. (2005). Finding an unified relationship between crushing strength of concrete and non-destructive tests. The 3rd Middle East Nondestructive Testing Conference and Exhibition. https://www.ndt.net/article/mendt2005/pdf/p04.pdf [24] Atici, U. (2011). Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network. Expert Systems with Applications, 38(8), 9609-9618. https://doi.org/10.1016/j.eswa.2011.01.156 [25] Ali-Benyahia, K., Sbartaï, Z.-M, Breysse, D., Kenai, S. & Ghrici, M. (2017). Analysis of the single and combined non-destructive test approaches for on-site concrete strength assessment: General statements based on a real case-study. Case Studies in Construction Materials, 6, 109-119. https://doi.org/10.1016/ j.cscm.2017.01.004 [26] Lee, Y. T., Hong, S. U., Kim, S. H. & Park, J. (2014). Estimation of compressive strength of concrete member using ultrasonic pulse velocity method. Key Engineering Materials, 605, 143-146. https://doi.org/10.4028/ www.scientific.net/kem.605.143 [27] Huang, Q., Gardoni, P., & Hurlebaus, S. (2011). Predicting concrete compressive strength using ultrasonic pulse velocity and rebound number. ACI Materials Journal, 108(4), 403-412. https://doi.org/10.14359/51683113 [28] RILEM (1994). NDT 4 recommendation for in situ concrete strength determination by combined non-destructive methods. In RILEM Recommendations for the Testing and Use of Constructions Materials. CRC Press, pp. 92-98. [29] Ju, M., Park, K. & Oh, H. (2017). Estimation of compressive strength of high strength concrete using non-destructive technique and concrete core strength. Applied Sciences, 7(12), 1249. https://doi.org/10.3390/ app7121249 [30] Hernández Oroza, A. & Cuetara Ricardo, J. R. (2023). Evaluation of SonReb models for estimating compressive strength in Cuban cement and aggregate concrete. Revista ALCONPAT, 13(1), 97-111. https://doi.org/ 10.21041/ra.v13i1.602 [31] Popovics, S. & Popovics, J. S. (1991). Effect of stresses on the ultrasonic pulse velocity in concrete. Materials and Structures, 24(1), 15-23. https://doi.org/10.1007/bf02472676 [32] ACI 228 (1988). In-place methods for determination of strength of concrete. ACI Materials Journals, 85(5), 446-471. [33] Hsu, T. T. C., Slate, F. O., Sturman, G. M. & Winter, G. (1963). Microcracking of plain concrete and the shape of the stress-strain curve. Journal of American. Concrete Institute, 60, 209-224. [34] Neville, A. M. (2011). Properties of Concrete. Pearson. [35] DOE (1988). Design of Normal Concrete Mixes. Watford: Building Research Establishment. Department of the Environment. [36] BS EN 1992-1-1 (2004). Eurocode 2: Design of Concrete Structures – Part 1-1: General Rules and Rules for Buildings. British Standards Institution. [37] BS EN 12390-1 (2000). Testing Hardened Concrete - Part 1: Shape, dimensions and Other Requirements for Specimens and Moulds. British Standards Institution. [38] BS EN 12390-2 (2009). Testing Hardened Concrete - Part 2: Making and curing Specimens for Strength Tests. British Standards Institution. [39] BS EN 12390-3 (2009).Testing Hardened Concrete - Part 3: Compressive Strength of Test Specimens. British Standards Institution. [40] Bungey, J. H. (1980). The Validity of Ultrasonic Pulse Velocity Testing of In-Place Concrete for Strength. NDT International, pp. 296-300. [41] ACI 318. (2022). Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute. [42] Slate, F. O. & Hover K. C. (1984). Microcracking in concrete. In Carpinteri, A. & Ingraffea, A. R. (Eds.). Fracture Mechanics of Concrete: Material Characterization and Testing. Martinus Nijhoff, pp. 137-58.
(1)
1: Karger C, Kishi T, Schneider L, Fitoussi F, Masquelet AC. Treat-ment of posttraumatic bone defects by the induced mem-brane technique. Orthop Traumatol Surg Res. 2012;98(1):97-102. DOI: 10.1016/j.otsr.2011.11.001 2: Masquelet AC, Fitoussi F, Begue T, Muller GP. Reconstruction of the long bones by induced membrane and spongy auto-graft. Ann Chir Plast Esthat 2000; 345 (3): 346-53.PMID: 10929461 3: Steinhausen E, Lefering R, Glombitza M, et al. Bioactive glass S53P4 vs. autologous bone graft for filling defects in patients with chronic osteomyelitis and infected non-unions - a single center experience. J Bone Jt Infect. 2021;6(4):73-83. DOI: 10.5194/jbji-6-73-2021 Ibrahim et al. Brunei International Medical Journal. 2024;20:112 5 4: Camargo AFF, Baptista AM, Natalino R, Cmamargo OP. Bioac-tive glass in cavitary bone defect: a comparative experimental study in rabbits. ActaOrtop Bras. 2015; 23(4): 202-7.DOI: 10.1590/1413-785220152304147538 5: Skaggs DL, Samuelson MA, Hale JM, Kay RM, Tolo VT. Com-plications of posterior iliac crest bone grafting in spine surgery in children. Spine (Phila Pa 1976). 2000;25(18):2400-2.DOI: 10.1097/00007632-200009150-00021 6: Saha A, Shah S, Waknis P, Bhujbal P, Aher S, Vaswani V. Com-parison of minimally invasive versus conventional open har-vesting technique for iliac bone graft in secondary alveolar bone grafting in cleft palate patients: a systematic review. J Korean Assoc Oral Maxillofac Surg. 2019;45(5):241-53. DOI: 10.5125/jkaoms.2019.45.5.241 7: Gouron R, Deroussen F, Plancq MC, Collet LM. Bone defect reconstruction in children using the induced membrane tech-nique: A series of 14 cases. Orth & Trau: Surg & Res 2013; 99: 837-4. DOI: 10.1016/j.otsr.2013.05.005 8: Lindfors NC, Koski I, Heikkila JT, Mattila K, Aho AJ. A prospec-tive randomized 14-year-old follow-up study of bioactive glass and autogenous bone as bone graft substitutes in be-nign bone tumors. J Biomed Mater Res. 2010; 94(1): 157-64. DOI: 10.1002/jbm.b.31636 9: Lindfors, N., Geurts, J., Drago, L., Arts, J. J., Juutilainen, V., Hyvönen, P., Suda, A. J., Domenico, A., Artiaco, S., Alizadeh, C., Brychcy, A., Bialecki, J., & Romanò. C. L. Antibacterial Bioactive Glass, S53P4, for Chronic Bone Infections - A Multinational Study. Advances in experimental medicine and biology. 2017; 971: 81–92. DOI: 10.1007/5584_2016_156 10: T.A.G. Van Vugt, J.A.P. Geurts, T.J. Blokhuis. Treatment of in-fected tibial non-unions using a BMAC and S53P4 BAG com-bination for reconstruction of segmental bone defects: A clinical case series.
(1)
1. Kementerian Sekretariat Negara RI: Undang-Undang Cipta Kerja. , Indonesia (2020). 2. Pemerintah Indonesia: Peraturan Pemerintah Republik Indonesia Nomor 07 Tahun 2021 tentang Kemudahan, Pelindungan, dan Pemberdayaan Koperasi dan Usaha Mikro, Kecil, dan Menengah. , Indonesia (2021). 3. He, M.Q.Y., Peiris, K.D.A., Myers, M.: IT governance strategies for SMEs in the fourth industrial Revolution. Proc. 23rd Pacific Asia Conf. Inf. Syst. Secur. ICT Platf. 4th Ind. Revolution, PACIS 2019. (2019). 4. Ramaswamy, M. (Southern U.: Information Technology Strategies For Small Businesses. Issues Inf. Syst. 20, 216–225 (2019). 5. Kominfo: Tingkatkan Produktivitas dan Nilai Tambah UMKM melalui Teknologi Digital, https://www.kominfo.go.id/content/detail/30276/tingkatkan-produktivitas-dan-nilai-tambah-umkm-melalui-teknologi-digital/0/berita, last accessed 2022/03/02. 6. Westland, J.: IT Governance: Definitions, Frameworks and Planning, https://www.projectmanager.com/blog/it-governance-frameworks-definitions. 7. ISACA: Governance and Management Objectives. (2018). 8. Yubo, H.: IT Risk Control for Internet Finance Based on COBIT. Proc. - 2020 Int. Conf. Big Data Artif. Intell. Softw. Eng. ICBASE 2020. 275–278 (2020). https://doi.org/10.1109/ICBASE51474.2020.00064. 9. Agitha, N., Anjarwani, S.E., Azizah, M.I., Yunus, I.R., Witjaksono, R.W.: Implementation of COBIT 4.1 to Define and Maintain Infrastructure of Information Technology at Regional Public Hospital in West Nusa Tenggara. 2020 Int. Conf. Adv. Data Sci. E-Learning Inf. Syst. ICADEIS 2020. 5–9 (2020). https://doi.org/10.1109/ICADEIS49811.2020.9277015. 10. Buehring, S.: ITIL: What is ITIL®?, (2018). 11. Mahalle, A., Yong, J., Tao, X.: ITIL process management to mitigate operations risk in cloud architecture infrastructure for banking and financial services industry. Web Intell. 18, 239–248 (2020). https://doi.org/10.3233/WEB-200444. 12. Dayal, R., Vijayakumar, V., Kushwaha, R.C., Kumar, A., Ambeth Kumar, V.D., Kumar, A.: A cognitive model for adopting ITIL framework to improve IT services in Indian IT industries. J. Intell. Fuzzy Syst. 39, 8091–8102 (2020). https://doi.org/10.3233/JIFS-189131. 13. Berger, D., Shashidhar, N., Varol, C.: Using ITIL 4 in Security Management. 8th Int. Symp. Digit. Forensics Secur. ISDFS 2020. 1–6 (2020). https://doi.org/10.1109/ISDFS49300.2020.9116257. 14. White, S.K.: What is CMMI? A model for optimizing development processes, https://www.cio.com/article/2437864/process-improvement-capability-maturity-model-integration-cmmi-definition-and-solutions.html, last accessed 2022/01/03. 15. Mahmoud, Z., Solyman, A., Elhag, A.A.M.: Harmonized software quality improvement models for sudanese SME based on CMMI. Proc. Int. Conf. Comput. Control. Electr. Electron. Eng. 2019, ICCCEEE 2019. (2019). https://doi.org/10.1109/ICCCEEE46830.2019.9071148. 16. Li, W., Wang, Y., Hou, H., Zhao, X.: Software quality evaluation model of smart electricity meters based on CMMI. 2020 5th Int. Conf. Comput. Commun. Syst. ICCCS 12 2020. 157–161 (2020). https://doi.org/10.1109/ICCCS49078.2020.9118592. 17. White, S.K.: What is TOGAF? An enterprise architecture methodology for business, https://www.cio.com/article/3251707/what-is-togaf-an-enterprise-architecture-methodology-for-business.html, last accessed 2022/03/10. 18. Girsang, A.S., Abimanyu, A.: Development of an enterprise architecture for healthcare using togaf adm. Emerg. Sci. J. 5, 305–321 (2021). https://doi.org/10.28991/esj-2021-01278. 19. Dores, A., Fitrianah, D., Meilina, P.: IS/IT Framework for Disaster Mitigation on Forest Fires Using TOGAF. 5th Int. Conf. Inf. Manag. ICIM 2019. 252–256 (2019). https://doi.org/10.1109/INFOMAN.2019.8714663. 20. Kumaragunta Harisaiprasad: COBIT 2019 and COBIT 5 ComparisonTitle, https://www.isaca.org/resources/news-and-trends/industry-news/2020/cobit-2019-and-cobit-5-comparison, last accessed 2022/06/13. 21. ITILTraining: What’s changed with the ITIL 4 update?, https://www.itiltraining.com/uk/ITIL4-whats-new, last accessed 2022/06/15. 22. ISACA: CMMI Institute Expands CMMI V2.0 to Include Services and Supplier Management, https://www.isaca.org/en/why-isaca/about-us/newsroom/press-releases/2018/cmmi-institute-expands-cmmi-v2-to-include-services-and-supplier-management, last accessed 2022/06/15. 23. White, S.K.: What’s new in TOGAF 10?, https://www.cio.com/article/400374/whats-new-in-togaf-10.html%0A, last accessed 2022/06/11. 24. Kementerian Koperasi dan Usaha Kecil dan Menengah: Data UMKM, https://kemenkopukm.go.id/data-umkm/?Z5t48x8N2JyP34BJEKormtKjqZCBJZsacc8No7AzrN6pq9ohsl, last accessed 2022/02/18. 25. Canhoto, A.I., Quinton, S., Pera, R., Molinillo, S., Simkin, L.: Digital strategy aligning in SMEs: A dynamic capabilities perspective. J. Strateg. Inf. Syst. 30, (2021). https://doi.org/10.1016/j.jsis.2021.101682. 26. Cenamor, J., Parida, V., Wincent, J.: How entrepreneurial SMEs compete through digital platforms: The roles of digital platform capability, network capability and ambidexterity. J. Bus. Res. 100, 196–206 (2019). https://doi.org/10.1016/j.jbusres.2019.03.035. 27. Somohano-Rodríguez, F.M., Madrid-Guijarro, A., López-Fernández, J.M.: Does Industry 4.0 really matter for SME innovation? J. Small Bus. Manag. 00, 1–28 (2020). https://doi.org/10.1080/00472778.2020.1780728. 28. Cimini, C., Boffelli, A., Lagorio, A., Kalchschmidt, M., Pinto, R.: How do industry 4.0 technologies influence organisational change? An empirical analysis of Italian SMEs. J. Manuf. Technol. Manag. 32, 695–721 (2021). https://doi.org/10.1108/JMTM-04-2019-0135. 29. Arman, A.A., Ruhman, G., Hurriyati, R.: Design of EA development guideline for small enterprises based on TOGAF 9.1. Adv. Intell. Syst. Comput. 657, 210–219 (2018). https://doi.org/10.1007/978-3-319-67223-6_20. 30. Kato, M., Charoenrat, T.: Business continuity management of small and medium sized enterprises: Evidence from Thailand. Int. J. Disaster Risk Reduct. 27, 577–587 (2018). https://doi.org/10.1016/j.ijdrr.2017.10.002.
(1)
[1] Kffuri CW, Lopes MA, Ming LC, Odonne G, Kinupp VF. Antimalarial plants used by indigenous peopleofthe UpperRio Negro in Amazonas, Brazil. JournalofEthnopharmacology.2016;178:188-98. [2] Shamsudin R, Ariffin SH, Zainol @ Abdullah WN, Azmi NS, Abdul Halim AA. Modelling the Kinetics of Color and Texture Changes of Dabai (Canarium odontophyllum Miq.) during Blanching. Agronomy. 2021;11(11). [3] Abdul Fattah Ab R, Mohd Zahid A, Norhasmillah Abu H, Josephine Anak E, Mohd Syafiq A, Ashraf AR, et al. The impact of (Canarium Odontophyllum Miq.) Dabai Optimum Soaking Condition Towards the Development of Dabai Peanut Spread Physicochemical Properties and Sensory Evaluation. Journal Of Agrobiotechnology. 2021;12(2). [4] Jelani N, Azlan A, A I, Khoo HE, muhammad alinafiah S. Fatty acid profiles and antioxidant properties of dabai oil. ScienceAsia. 2017;43:347. [5] Jelani A, Azlan A, Khoo HE, Razman M. Fatty acid profile and antioxidant properties of oils extracted from dabai pulp using supercritical carbon dioxide extraction. International Food Research Journal. 2019;26:1587-98. [6] Hanim F, Prasad K, A I, Yuon L, Azlan A. Antioxidant capacity of underutilized Malaysian Canarium odontophyllum (dabai) Miq. fruit. Journal of Food Composition and Analysis. 2010; 23: 777-81. [7] Gülçin I, Alwasel S. Metal Ions, Metal Chelators and Metal Chelating Assay as Antioxidant Method. Processes. 2022;10:132. [8] Mohammed HH, Laftah WA, Noel Ibrahim A, Che Yunus MA. Extraction of essential oil from Zingiber officinale and statistical optimization of process parameters. RSC Advances. 2022; 12(8): 4843-51. [9] Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology. 1995;28(1):25-30. [10] 1. Geng M, Ren M, Liu Z, Shang X. Free radical scavenging activities of pigment extract from Hibiscus syriacus L. petals in vitro. African Journal of Biotechnology. 2012;11:429-35. [11] Naithani V, Singhal AK, Chaudhary M. Comparative evaluation of Metal Chelating, Antioxidant and Free Radical Scavenging activity of TROIS and six products commonly used to control pain and inflammation associated with Arthritis. Int Drug Dev Res. 2011;3:208-16. [12] Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative Stress: Harms and Benefits for Human Health. Oxidative medicine and cellular longevity. 2017; 2017: 8416763-
(1)
[1]Khan, A., Al-Zahrani, A. and Al-Harbi. S. (2018). Design of an IoT smart home system. 15th Learning and Technology Conference (L&T), 1-5 [2]Khan, W. M. and Zualkernan, I. A. (2018). SensePods: A zigBee-based tangible smart home interface. IEEE Transactions on Consumer Electronics, 64,2, 145-152[3]Guo, C., Wang, H., Dai, H., Cheng, S., Wang, T. (2018). Fraud risk monitoring system for e-banking transactions. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress, 100–105[4]CristóvãoVeríssimo, J. M. (2016). Enablers and restrictors of mobile banking app use: A fuzzy set qualitative comparative analysis (fsQCA), Journal of Business Research, 69,11, 5456- 5460[5]Kodali, R. K., Jain, V., Bose, S., and Boppana, L. (2016). IoT based smart security and home automation system. International Conference on Computing Communication and Automation (ICCCA), 1286-1289[6]Frincu, M., and Draghici, R. (2016). Towards a scalable cloud enabled smart home automation architecture for demand response. 2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), 1-6[7]Carbone, P., Gévay, G. E., Hermann, G., Katsifodimos, A., Soto, J., Markl, V. et al. (2017). Large-s cale data stream processing systems. In Handbook on Big Data Technologies, Springer, (pp.219-260) [8]Aydin, A. A., Anderson, K. M. (2017). Batch to real-time: incremental data collection and analytics platform. Proceedings of the 50th Hawaii international conference on system sciences, 5911-5920[9]Pang, S., Ozawa, S. and Kasabov, K. (2005). Incremental linear discriminant analysis for classification of data streams. IEEE Trans. Syst. Man, Cybern. Part B Cybern., 35,5, 905–914[10]Fu, C., Carrio, A., Olivares-Mendez, M. A., Campoy, P. (2014). Online learning-based robust visual tracking for autonomous landing of Unmanned Aerial Vehicles. Proceedings of the International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, 649–655[11]Yu, H. (2019). Incremental learning of bayesian networks from concept-drift data. Proceedings of the 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), China, 701-704 [12]Doan, T., Kalita, J. (2016). Sentiment analysis of restaurant reviews on yelp with incremental learning. Proceedings of the 15th IEEE International Conference on Machine Learning and Applications (ICMLA), USA, 697-700[13]Yu, J., Gwak, J., Lee, S., Jeao, M. (2015). An incremental learning approach for re stricted boltzmann machines. Proceedings of the International Conference on Control, Automation and Information Sciences (ICCAIS), China, 113-117[14]Babenko, B., Yang, M. H., Belongie, S. (2009). Visual tracking with online multiple instance learning. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, USA, 983–990[15]Zhang, S., Zeng, J. and Zhang, Z. (2017). Password guessing time based on guessing entropy and long-tailed password distribution in the large-scale password dataset. 11th IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID), 6–10[16]Devi, R. and Sujatha, P. (2017). A study on biometric and multi-modal biometric system modules, applications, techniques and challenges. Conf. Emerg. Devices Smart Syst. ICEDSS 2017, 267–271[17]Ko, T. (2005). Multimodal biometric identification for large user population using fingerprint, face and iris recognition. Proc. - Appl. Imag. Pattern Recognit. Work. 218–223 Joseph et al. , International Journal of Integrated Engineering Vol. 13 No. 2 (2021) p. 119-126 126[18]Liu, C. , Jang, Y. M., Ozawa, S., and Lee, M. (2011). Incremental 2-directional 2-dimensional linear discriminant analysis for multitask pattern recognition. Proc. Int. Jt. Conf. Neural Networks, 2911–2916[19]Ji, S. and Ye, J. (2008). Generalized linear discriminant analysis: A unified framework and efficient model selection,” IEEE Trans. Neural Networks, 19,10, 1768–1782[20]Joseph, A. A., Jang, Y. M., Ozawa, S., Lee, M. (2012). Extension of incremental linear discriminant analysis to online feature extraction under nonstationary environments. Proceedings of 19th international conference on neural information processing, 640–647 [21]Joseph, A. A., Jang, Y. M., Ozawa, S., and Lee, M. (2014). An incremental linear discriminant analysis for data streams under non-stationary environment. Trans. of Institute of Systems, Control and Information Engineers, 27,4, 133-140[22]Hisada, M., Ozawa, S., Kau. Z., Kasabov, N. (2010). Incremental linear discriminant analysis for evolving feature spaces in multitask pattern recognition problems. Evolving System 1,1, 17–27[23]Pawar, K. B. , Mirajkar, F., Biradar, V., and Fatima, R. (2017). A novel practice for face classification. Int. Conf. Curr. Trends Comput. Electr. Electron. Commun. 822–825 [24]Kaur, K. (2012). K-nearest neighbor classification approach for face and fingerprint at feature level fusion. Int. J. Comput. Appl. 60,14, 13-17[25]M. Madkour, D., Ahmed, M., & Mohamed, W. F. (2019). Automatic face and hijab segmentation using convolutional network. International Journal of Integrated Engineering, 11,7, 61-66[26]Ismail, A., Ahmad, S. A., Che Soh, A., Hassan, K., & Harith, H. H. (2019). Improving convolutional neural network (CNN) architecture (miniVGGNet) with batch normalization and learning rate decay factor for image classification. International Journal of Integrated Engineering, 11,4, 51-59
(1)
1. Kinsella K, Phillips DR. Global aging: the challenge of success. Popul Bull. 2005;60(1):1–44. 2. Gray WK, Richardson J, McGuire J, et al. Frailty screening in lowand middle-income countries: a systematic review. J Am Geriatr Soc. 2016;64(4):806–823. 3. Siriwardhana DD, Hardoon S, Rait G, Weerasinghe MC, Walters KR. Prevalence of frailty and prefrailty among communitydwelling older adults in low-income and middle-income countries: a systematic review and meta-analysis. BMJ Open. 2018;8(3):e018 195–e018195. 4. Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. Lancet. 2013;381(9868):752–762. 5. Thompson MQ, Theou O, Adams RJ, Tucker GR, Visvanathan R. Frailty state transitions and associated factors in South Australian older adults. Geriatr Gerontol Int. 2018;18(11):1549–1555. 6. Theou O, Andrew M, Ahip S, et al. The Pictorial Fit-Frail Scale: developing a visual scale to assess frailty. Can Geriatr J. 2019;22(2):64–74. 7. Wallace LMK, McGarrigle L, Rockwood K, Andrew MK, Theou O. Validation of the Pictorial Fit-Frail Scale in a memory clinic setting. Int Psychogeriatr. 2020;32(9);1063–1072. doi:10.1017/ S1041610219000905. 8. Mcgarrigle L, Squires E, Wallace LMK, et al. Investigating the feasibility and reliability of the Pictorial Fit-Frail Scale. Age Ageing. 2019;48(6):832–837. 9. Embong J, Amir K, Nawawi A, Razali RM, Justine M, Justine M. Prevalence, risk factors and measures of frailty in Malaysia: a scoping review. Malay J Med Heal Sci. 2021;17(14):307–318. 10. Azreena E, Suriani I, Muhamad J, Hanafah PF. Factors associated with health literacy among type 2 diabetes mellitus patients attending government among type 2 diabetes mpatients attending a government health clinic. Int J Public Heal Clin Sci. 2016;3(6):50–64. 11. Ahip SS, Shariff-Ghazali S, Lukas S, et al. Translation, adaptation and pilot testing of the Pictorial Fit-Frail Scale (PFFS) for use in Malaysia—the PFFS-Malay version (PFFS-M). Malaysian Fam physician. 2021;16(2):27–36. 12. Leppink J, Pérez-fuster P. We need more replication research—a case for test-retest reliability. Perspect Med Educ. 2017;6(3): 158–164. 13. The University of Adelaide. The SEARCH- Frailty screening and management [Online]. https://health.adelaide.edu.au/ frailty-healthy-ageing/resources#search-frailty-screening-andmanagement. Accessed 27th July 2021. 14. Tombaugh TN, McIntyre NJ. The Mini-Mental State Examination: a comprehensive review. J Am Geriatr Soc. 1992;40(9):922–935. Downloaded from https://academic.oup.com/fampra/advance-article/doi/10.1093/fampra/cmac089/6660931 by guest on 11 August 2022 10 PFFS-M testing in Malaysia 15. Woo J, Yu R, Wong M, Yeung F, Wong M, Lum C. Frailty screening in the community using the FRAIL scale. J Am Med Dir Assoc. 2015;16(5):412–419. 16. da Câmara SMA, Alvarado BE, Guralnik JM, Guerra RO, Maciel ACC. Using the Short Physical Performance Battery to screen for frailty in young-old adults with distinct socioeconomic conditions. Geriatr Gerontol Int. 2013;13(2):421–428. 17. Podsiadlo D, Richardson S. The timed ‘up & go’: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142–148. 18. Theou O, Mallery K, Wallace L, Goldstein J, Andrew M, Rockwood K. Picturing frailty: the development of the pictorial ft-frail scale. Gerontologist. 2016;56(Suppl3):318. 19. Searle SD, Mitnitski A, Gahbauer EA, Gill TM, Rockwood K. A standard procedure for creating a frailty index. BMC Geriatr. 2008;8:1–10. 20. Ambagtsheer RC, Visvanathan R, Dent E, Yu S, Schultz TJ, Beilby J. Commonly used screening instruments to identify frailty among community-dwelling older people in a general practice (primary care) setting: a study of diagnostic test accuracy. J Gerontol A Biol Sci Med Sci. 2020;75(6):1134–1142. 21. Martin Bland J, Altman D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327(8476):307–310. 22. Cicchetti DV. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess. 1994;6(4):284–290. 23. Martin D. Statistical methods for health care research. BH Munro (Ed.). Philadelphia: Lippincott. 2000. ISBN 0 7817 2175 X. Physiother Res Int. 2002;7(3):188–189. 24. Longevity TLH. Care for ageing populations globally. Lancet Heal Longev. 2021;2(4):e180. 25. Chehrehgosha M, Alizadeh-Khoei M, Behnampour N, Sharif F, Fadaye Vatan R, Aminalroaya R. Diagnosis of frailty in geriatric patients: is the Pictorial Fit-Frail Scale an appropriate screening tool in hospital settings? Casp J Intern Med. 2021;12(3): 307–314. 26. Ysea-Hill O, Sani TN, Nasr LA, et al. Concurrent validity of Pictorial Fit-Frail Scale (PFFS) in older adult male veterans with different levels of health literacy. Gerontol Geriatr Med. 2021;7:23337214211003804. 27. Lee H-J, Son Y-J. Associated factors and health outcomes of health literacy and physical frailty among older adults: a systematic review. Res Gerontol Nurs. 2022;15(1):14–39. 28. Garrard JW, Cox NJ, Dodds RM, Roberts HC, Sayer AA. Comprehensive geriatric assessment in primary care: a systematic review. Aging Clin Exp Res. 2020;32(2):197–205. 29. Travers J, Romero-Ortuno R, Bailey J, Cooney M-T. Delaying and reversing frailty: a systematic review of primary care interventions. Br J Gen Pract. 2019;69(678):e61–e69. 30. National Health Service England. Identifying frailty. [Online]. https://www.england.nhs.uk/ourwork/clinical-policy/olderpeople/frailty/frailty-risk-identifcation. Accessed on 23rd July 2021.
(1)
[1] K. M. Lee, C. W. Lai, K. S. Ngai, J. C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: a review, Water Res. 88 (2016) 428–448. [2] R. M. Alwan, Q. A. Kadhim, K. M. Sahan, A. R. Ali, R. J. Mahdi, N. A. Kassim, A. N. Jassim, Synthesis of Zinc Oxide Nanoparticles via Sol–Gel Route and Their Characterization, Nanosci. Nanotech. 5 (2015) 1-6. [3] A. J. Gimenez, J. M. Yanez-Limon, J. M. Seminario, ZnO- paper based photoconductive UV sensor, J. Phys. Chem. C. 115 (2011) 282–287. [4] Y. Wei, Y. Li, X. Liu, Y. Xian, G. Shi, L. Jin, ZnO nanorods/Au hybrid nanocomposites for glucose biosensor. Biosens. Bioelectron. 26 (2010) 275–278. [5] K. Chitra, G. Annadurai, Antimicrobial activity of wet chemically engineered spherical shaped ZnO nanoparticles on food borne pathogen, Int. Food. Res. J. 20 (2013), 59-64. [6] M. El-Kemary, H. El-Shamy, I. El-Mehasseb, Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles, J. Lumin. 130 (2010), 2327-2331. [7] A. Moezzi, A-M. McDonagh, M. B. Cortie, Zinc oxide particles: synthesis, properties and applications, Chem. Eng. J. 185-186 (2012) 1-22. [8] N. A. Salahuddin, M. El-Kemary, E. M. Ibrahim, Synthesis and Characterization of ZnO Nanoparticles via Precipitation Method: Effect of Annealing Temperature on Particle Size. Nanosci. Nanotechnol. 5 (2015) 82-88. [9] S. Y. Purwaningsih, S. Pratapa, Triwikantoro, Darminto, Nano-sized ZnO Powders Prepared by Co-precipitation Method with Various pH. AIP Conference Proceedings, 1725, 020063 (2016). [10] S. Fabbiyola, L. J. Kennedy, T. Ratnaji, J. J. Vijaya, U. Aruldoss, M. Bououdina, Effect of Fe-doping on the structural, optical and magnetic properties of ZnO nanostructures synthesized by co-precipitation method, Ceram. Int. 42 (2016), 1588–1596. [11] A. A. M. Farag, M. Cavaş, F. Yakuphanoglu, F. M. Amanullah, Photoluminescence and optical properties of nanostructure Ni doped ZnO thin films prepared by sol–gel spin coating technique, J. Alloy Compd. 509 (2011), 7900–7908. [12] P. M. Perillo, M. N. Atia, D. F. Rodríguez, Studies on the Growth Control of ZnO Nanostructures synthesized by the Chemical Method, Rev. Mater. 22 (2018), 1-7. [13] H. Zeng, J. Cui, B. Cao, U. Gibson, Y. Bando, D. Golberg, Electrochemical deposition of ZnO nanowire arrays: organization, doping, and properties, Sci. Adv. Mater. 2 (2010) 336–358. [14] M. Gusatti, D. A. R. Souza, N. C. Kuhnen, H. G. Riella, Growth of Variable Aspect Ratio ZnO Nanorods by Solochemical Processing. J. Mater. Sci. Technol. 31 (2015) 10–15. [15] Y. Sato, K. Yanagisawa, N. Oka, S. I. Nakamura, Y. Shigesato, Tilted aligned expitatial La0.7Sr0.3MnO3 nanocolumnar films with enhanced low-field magnetoresistance by pulsed laser oblique-angle deposition, Cryst. Growth Des. 11 (2009) 5405-5409. [16] Ž. Petrović, M. Ristić, M. Marciuš, M. Ivanda, V. Durina, S. Music, Hydrothermal processing of electrospun fibers in the synthesis of 1D ZnO nanoparticles, Mater. Lett. 176 (2016) 278–281. [17] J. P. Mosnier, R. J. O’Haire, E. McGlynn, M. O. Henry, S. J. McDonnell, M. A. Boyle, K. G. McGuigan, ZnO films grown by pulsed-laser deposition onsoda lime glass substrates for the ultraviolet inactivation of staphylococcus epidermis biofilms. Sci. Technol. Adv. Mater. 10 (2009), 045003. [18] CH-H. Lee, D-W. Kim, Thickness dependence of microstructure and properties of ZnO thin Films deposited by metal-organic chemical vapor deposition using ultrasonic nebulization, Thin solid films, 546 (2013) 38–41. [19] J. Wojnarowicz, A. Opalinska, T. Chudoba, S. Gierlotka, R. Mukhovskyi, E. Pietrzykowska, K. Sobczak, W. Lojkowski, Effect of Water Content in Ethylene Glycol Solvent on the Size of ZnO Nanoparticles Prepared Using Microwave Solvothermal Synthesis, J. Nanomater, 2016, 1-15. [20] A. K. Zak, R. Razali, W. H. Majid, M. Darroudi, Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles, Int. J. Nanomed. 6 (2011) 1399–1403. [21] M. S. Nuraqeelah, B. S. Wee, S. F. Chin, K. Y. Kok, Synthesis and characterization of zinc oxide nanoparticles with small particle size distribution, Acta Chim Slov 65 (2018) 578–585. [22] R. Hashemabadi, E. Zamani, F. Rezaei, S. Bagheri, A. Zebardasti, A. Aslani, Solvothermal synthesis, characterization and optical properties of ZnO and ZnO-MgO, Mixed nanoparticles, Int. J. Nanomater. Chem. 1 (2014), 5-8. [23] J. Lian, Y. Liang, F.-L. Kwong, Z. Ding, D. H. L. Ng, Template-free solvothermal synthesis of ZnO nanoparticles with controllable size and their size-dependent optical properties, Mater. Lett. 66 (2012) 318–320. [24] J. Xie, P. Li, Y. Wang, Y. Wei, Synthesis of needle- and flower-like ZnO microstructures by a simple aqueous solution route, J. Phys. Chem. Solids. 70 (2009) 112 – 116. [25] N. Samaele, P. Amornpitoksuk, S. Suwanboon, Effect of pH on the morphology and optical properties of modified ZnO particles by SDS via a precipitation method, Powder Technol. 203 (2010) 243–247. [26] E. K. Droepenu, E. A. Asare, Morphology of Green Synthesized ZnO Nanoparticles Using Low Temperature Hydrothermal Technique from Aqueous Carica papaya Extract, Nanosci. Nanotech. 9 (2019): 29-36. [27] E. K. Droepenu, S. W. Boon, S. F. Chin, Y. K. Kuan, B. A. Zaini, E. A. Asare, . Comparative evaluation of antibacterial efficacy of biological synthesis of ZnO nanoparticles using fresh leaf extract and fresh stem-bark of carica papaya, Nano Biomed. Eng. 11 (2019), 264-271. [28] B.D. Cullity, Elements of X-ray Diffractions, Addison-Wesley, Reading, MA, 102, 1978. [29] A. R. Ramachandra, A. N. Mallika, K. B. Sowri, K. R. Venugopal, Hydrothermal synthesis and characterization of ZnO Nano crystals, Int. J. Min Met Mater Eng. 3 (2015), ISSN 2320–4060. [30] G. Amin, M. H. Asif, A. Zainelabdin, S. Zaman, O. Nur, M. Willander, Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method, J. Nanomater. 5, 269692 (2011) 1-9. [31] D. S. Bai, V.R. Kumar, P. R. Suvarna, Synthesis and Characterization of Zinc Oxide Nanoparticles by Solution Combustion Method: DC Conductivity Studies, Indian J. Adv. Chem. Sci. 5 (2017), 137-141. [32] B. Divya, C. Karthikeyan, M. Rajasimman, Chemical Synthesis of Zinc Oxide Nanoparticles and Its Application of Dye Decolourization, Int. J. Nanosci. Nanotechnol. 14 (2018), 267-275. [33] N. Sangkhaprom, P. Supaphol, V. Pavarajarn, Fibrous zinc oxide prepared by combined electrospinning and Solvothermal techniques, Ceram. Int. 36 (2010), 357–360. [34] A. M. EL-Rafei, M. F. Zawrah, Effect of Alkali Concentration and Reaction Time on the Morphology of ZnO Nano-Microparticles Prepared by Hydrothermal Method, J. Ceram. Sci. Technol. 05 (2014), 193-198. [35] B. G. Wang, E. W. Shi, W. Z. Zhong, Twinning morphologies and mechanisms of ZnO crystallites under hydrothermal conditions, Cryst. Res. Technol. 33 (1998) 937 – 941. [36] M. K. Zahra, Y. Amirali, N. Nima, Optical Properties of Zinc Oxide Nanoparticles Prepared by a One-Step Mechanochemical Synthesis Method. J. Phys. Sci. 26 (2015), 41–51. [37] S-H. Jung, E. Oh, K-H. Lee, Y. Yang, C. G. Park, W. Park, S-H. Jeong, Sonochemical preparation of shape-selective ZnO nanostructures, Cryst. Growth Des. 8 (2008) 265-269. [38] A. B. Lavand, Y. S. Malghe, Synthesis, characterization and visible light photocatalytic activity of nitrogen-doped zinc oxide nanospheres, J. Asian Ceram. Soc. 3 (2015), 305-310. [39] K. Yang, D. Lin, B. Xing, Interactions of humic acid with nanosized inorganic oxides, Langmuir, 25 (2009), 3571–3576. [40] S. W. Bian, I. A. Mudunkotuwa, T. Rupasinghe, V. H. Grassian, Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid, Langmuir, 27 (2011) 6059–6068. [41] T. F. Long, S. Yin, K. Takabatake, P. Zhang, T. Sato, Synthesis and characterization of ZnO nanorods and nanodisks from zinc chloride aqueous solution. Nanoscale Res. Lett. 4 (2009) 247-253. [42] C. Pholnaka, C. Sirisathitkula, S. Suwanboon, D. J. Harding, Effects of Precursor Concentration and Reaction Time on Sonochemically Synthesized ZnO Nanoparticles. Mater. Res. 17 (2014) 405-411. [43] K. Imran, Structural and optical properties of Zr doped ZnO nano particles. Opt. Mater. 35 (2013), 1189-1193 [44] M. A. Riyadh, A. K. Quraish, M. S. Kassim, A. A. Rawaa, J. M. Roaa, A. K. Noor, N. J. Alwan, Synthesis of Zinc Oxide Nanoparticles via Sol-Gel Route and Their Characterization, Nanosci. Nanotechnol. 5 (2015) 1-6. [45] E. G. Mornani, P. Mosayebian, D. Dorranian, K. Behzad, Effect of calcination temperature on the size and optical properties of synthesized ZnO nanoparticles, J. Ovonic Res. 12 (2016), 75 - 80. [46] J. Dharma, A. Pisal, Application note, simple method of measuring the band gap energy value of TiO2 in the powder form using a UV/Vis/NIR Spectrometer, PerkinElmer, Inc. Shelton, CT USA, 2009. [47] S. Talam, S. R. Karumuri, N. Gunnam, Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. ISRN Nano, 2012, Article ID 372505, 1–6. [48] Y. X. Wang, J. Sun, X. Yu, A CTAB-assisted hydrothermal and solvothermal synthesis of ZnO nanopowders, Ceram. Int., 37 (2011) 3431-3436. [49] K. Akhil, S. S. Khan, Effect of humic acid on the toxicity of bare and capped ZnO nanoparticles on bacteria, algal and crustacean systems, J. Photochemistry and. Photobiology B, 167 (2017) 136–149.
(1)
[1] Knight, J. (2012). “Student mobility and internationalization: Trends and tribulations”. Research in Comparative and International Education, 7(1), 20-33. [2] Kehl, K. L. (2006). Differences in self-efficacy and global mindedness between short-term and semester-long study abroad participants at selected Christian universities. Baylor University. [3] Bretag, T., & van der Veen, R. (2017). “‘Pushing the boundaries’: participant motivation and self-reported benefits of short-term international study tours”. Innovations in Education and Teaching International, 54(3), 175-183. [5] Kronholz, J. F., & Osborn, D. S. (2016). “The Impact of Study Abroad Experiences on Vocational Identity among College Students”. Frontiers: The Interdisciplinary Journal of Study Abroad, 27, 70-84. [6] Cleak, H., Anand, J., & Das, C. (2016). “Asking the critical questions: An evaluation of social work students' experiences in an international placement.” The British Journal of Social Work, 46(2), 389-408. [7] Bell, F., Keegan, H., & Zaitseva, E. (2007, September). “Designing virtual student mobility”, In The fourth education in a changing environment conference book (pp. 99-115). [8] Roy, A., Newman, A., & Lahiri-Roy, R. (2022). “Antecedents of short-term international mobility programs: a systematic review and agenda for future research”, Globalisation, Societies and Education, 1-14. [9] Marinoni, G., & van’t Land, H. (2020). “The impact of COVID-19 on global higher education”, International higher education, (102), 7-9. [10] Cairns, D., & França, T. (2022). “Managing Student Mobility during the COVID-19 Pandemic: An Immobility Turn in Internationalized Learning?”, Societies, 12(4), 105. [11] Bryła, P. (2015). “The impact of international student mobility on subsequent employment and professional career: A large-scale survey among Polish former Erasmus students”, Procedia-Social and behavioral sciences, 176, 633-641. [12] Thampi, K. (2021). “Internationalization of social work education in India through student exchanges: challenges and prospects”, Social Work Education, 1-16. [13] Scharoun, L. (2016). “Short-term study tours as a driver for increasing domestic student mobility in order to generate global work-ready students and cultural exchange in Asia Pacific”, Perspectives: Policy and Practice in Higher Education, 20(2-3), 83-89. [14] Slotkin, Michael H., Alexander R. Vamosi, Enrique M. Perez, Christopher J. Durie, and Jarin R. Eisenberg. "Study tours and the diversification of cultural capital acquisition." Journal of International Education in Business 9, no. 1 (2016): 70-86. [15] Curtis, T., & Ledgerwood, J. R. (2018). “Students’ motivations, perceived benefits and constraints towards study abroad and other international education opportunities”, Journal of International Education in Business, 11(1), 63-78. [16] Miller, C. E., Reardon, J., & McCorkle, D. E. (1999). “The effects of competition on retail structure: An examination of intratype, intertype, and intercategory competition”, Journal of Marketing, 63(4), 107-120. [17] Koris, R., Mato-Díaz, F. J., & Hernández-Nanclares, N. (2021). “From real to virtual mobility: Erasmus students’ transition to online learning amid the COVID-19 crisis”, European Educational Research Journal, 20(4), 463-478. [18] Yin R. (2017). “Case study research and applications: Design and methods (6th ed)”, Sage Publications. [19] Camiciottoli, B. C. (2010). “Meeting the challenges of European student mobility: Preparing Italian Erasmus students for business lectures in English”, English for Specific Purposes, 29(4), 268-280. [20] Favale, T., Soro, F., Trevisan, M., Drago, I., & Mellia, M. (2020). “Campus traffic and e-Learning during COVID-19 pandemic”, Computer networks, 176, 107290. [21] Mitchell, K. (2012). “Student mobility and European Identity: Erasmus Study as a civic experience?”, Journal of Contemporary European Research, 8(4). [22] Holtbrügge, D., & Engelhard, F. (2016). “Study abroad programs: Individual motivations, cultural intelligence, and the mediating role of cultural boundary spanning”, Academy of Management Learning & Education, 15(3), 435-455. [23] Hadis, B. F. (2005). “Why are they better students when they come back? Determinants of academic focusing gains in the study abroad experience”, Frontiers: The Interdisciplinary Journal of Study Abroad, 11, 57-70. [24] Cubillos, J. H., & Ilvento, T. (2012). “The impact of study abroad on students' self‐efficacy perceptions”, Foreign Language Annals, 45(4), 494-511. [25] Teichler, U., & Janson, K. (2007). “The professional value of temporary study in another European country: Employment and work of former ERASMUS students”, Journal of studies in International Education, 11(3-4), 486-495. [26] Green, B. (2020). “Can Chinese internationalism Re-flatten the earth? International student mobility, hospitality and Chinese higher education”, Knowledge Cultures, 8(1), 7-10. 27] Lumkes Jr, J. H., Hallett, S., & Vallade, L. (2012). “Hearing versus experiencing: The impact of a short-term study abroad experience in China on students perceptions regarding globalization and cultural awareness”, International Journal of Intercultural Relations, 36(1), 151-159. [28] Potts, D. (2016). “Outcomes of learning abroad programs”, International Education Association of Australia. [29] Shiveley, J., & Misco, T. (2015). “Long-term impacts of short-term study abroad: Teacher perceptions of preservice study abroad experiences”, Frontiers: The Interdisciplinary Journal of Study Abroad, 26, 107-120.
(1)
1. Koli P, Dayma Y, Pareek RK, Jonwal M. Use of Congo red dye-formaldehyde as a new sensitizer-reductant couple for enhanced simultaneous solar energy conversion and storage by photogalvanic cells at the low and artificial sun intensity. Sci Rep. 2020;10(1):1-10. 2. Lianos P. Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen. Appl Catal Environ. 2017;210:235-254. 3. Dincer F. The analysis on photovoltaic electricity generation status, potential and policies of the leading countries in solar energy. Renew Sustain Energy Rev. 2011;15(1):713-720. 4. Razykov TM, Ferekides CS, Morel D, Stefanakos E, Ullal HS, Upadhyaya HM. Solar photovoltaic electricity: current status and future prospects. Solar Energy. 2011;85(8):1580-1608. 5. Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science. 2016;354(6309):206-209. 6. Pai N, Lu J, Gengenbach TR, et al. Silver bismuth sulfoiodide solar cells: tuning optoelectronic properties by sulfide modification for enhanced photovoltaic performance. Adv Energy Mater. 2019;9(5):1803396. 7. Liu H, Zhong'an L, Dongbing Z. Rhodanine-based nonfullerene acceptors for organic solar cells. Sci China Mater. 2019;62(11):1574-1596. TABLE 2 Comparison of electrical properties of GO and rGO with the reported literature Sample name Resistance (Ω) Refs. Reduced graphene oxide/ azobenzene nanocluster (rGO-AzoNC) 27.5 × 103 [63] GO-AZO film 60 × 106 [64] GO-AZO ~5 × 106 [65] GO+K-Azo 3.7 × 106 This Work rGO + K-Azo 1.36 × 103 This work 8 KASHIF ET AL. 8. Meredith P, Wei L, Ardalan A. Nonfullerene acceptors: a renaissance in organic photovoltaics? Adv Energy Mater. 2020; 10(33):2001788. 9. Kushwaha S, Bahadur L. Characterization of some metal-free organic dyes as photosensitizer for nanocrystalline ZnO-based dye sensitized solar cells. Int J Hydrogen Energy. 2011;36(18): 11620-11627. 10. Nagajyothi PC, Devarayapalli KC, Shim J, Prabhakar Vattikuti SV. Highly efficient white-LED-light-driven photocatalytic hydrogen production using highly crystalline ZnFe2O4/MoS2 nanocomposites. Int J Hydrogen Energy. 2020;45(57):32756- 32769. 11. Gomez De Arco L, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano. 2010;4(5):2865-2873. 12. Park H, Brown PR, Bulovi�c V, Kong J. Graphene as transparent conducting electrodes in organic photovoltaics: studies in graphene morphology, hole transporting layers, and counter electrodes. Nano Lett. 2012;12(1):133-140. 13. Petridis C, Konios D, Stylianakis MM, et al. Solution processed reduced graphene oxide electrodes for organic photovoltaics. Nanoscale Horiz. 2016;1(5):375-382. 14. Kim HP, bin Mohd Yusoff AR, Jang J. Organic solar cells using a reduced graphene oxide anode buffer layer. Sol Energy Mater Sol Cells. 2013;110:87-93. 15. Jokar E, Huang ZY, Narra S, et al. Anomalous chargeextraction behavior for Graphene-oxide (GO) and reduced graphene-oxide (rGO) films as efficient p-contact layers for high-performance perovskite solar cells. Adv Energy Mater. 2018;8(3):1701640. 16. Yeo J-S, Kang R, Lee S, et al. Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer. Nano Energy. 2015;12:96-104. 17. Barja S, Garnica M, Hinarejos JJ, Vázquez de Parga AL, Martín N, Miranda R. Self-organization of electron acceptor molecules on graphene. Chem Commun. 2010;46(43):8198- 8200. 18. Wang H, Hu YH. Graphene as a counter electrode material for dye-sensitized solar cells. Energy Environ Sci. 2012;5(8):8182- 8188. 19. Stylianakis M, Konios D, Kakavelakis G, et al. Efficient ternary organic photovoltaics incorporating a graphene-based porphyrin molecule as a universal electron cascade material. Nanoscale. 2015;7(42):17827-17835. 20. Boateng E, Dondapati JS, Thiruppathi AR, Chen A. Significant enhancement of the electrochemical hydrogen uptake of reduced graphene oxide via boron-doping and decoration with Pd nanoparticles. Int J Hydrogen Energy. 2020;45(53):28951- 28963. 21. Shi X-F, Xia XY, Cui GW, et al. Multiple exciton generation application of PbS quantum dots in ZnO@ PbS/graphene oxide for enhanced photocatalytic activity. Appl Catal Environ. 2015; 163:123-128. 22. Shu K, Chao Y, Chou S, et al. A “tandem” strategy to fabricate flexible graphene/polypyrrole nanofiber film using the surfactant-exfoliated graphene for supercapacitors. ACS Appl Mater Interfaces. 2018;10(26):22031-22041. 23. Choi SJ, Choi C, Kim S-J, et al. Highly efficient electronic sensitization of non-oxidized graphene flakes on controlled poreloaded WO3 nanofibers for selective detection of H2S molecules. Sci Rep. 2015;5:8067. 24. Mehmood U, Asghar H, Babar F, Younas M. Effect of graphene contents in polyaniline/graphene composites counter electrode material on the photovoltaic performance of dye-sensitized solar cells (DSSCSs). Sol Energy. 2020;196:132-136. 25. Delekar SD, Dhodamani AG, More KV, et al. Structural and optical properties of nanocrystalline TiO2 with multiwalled carbon nanotubes and its photovoltaic studies using Ru (II) sensitizers. Acs Omega. 2018;3(3):2743-2756. 26. Popp J, Kaiser W, Gagliardi A. Impact of phosphorescent sensitizers and morphology on the photovoltaic performance in organic solar cells. Adv Theory Simul. 2019;2(1):1800114. 27. Gauthier S, Robin-le Guen F, Wojcik L, et al. Synthesis and properties of novel pyranylidene-based organic sensitizers for dye-sensitized solar cells. Dyes Pigm. 2019;171:107747. 28. Miu L, Yan S, Yao H, et al. Insight into the positional effect of bulky rigid substituents in organic sensitizers on the performance of dye-sensitized solar cells. Dyes Pigm. 2019;168:1-11. 29. Kashif M, Ngaini Z, Harry AV, et al. An experimental and DFT study on novel dyes incorporated with natural dyes on titanium dioxide (TiO2) towards solar cell application. Appl Phys A. 2020;126(9):716. 30. Li P, Wang Z, Zhang H. Rigidified and expanded N-annulated perylenes as efficient donors in organic sensitizers for application in solar cells. Phys Chem Chem Phys. 2019;21(20):10488- 10496. 31. Derkowska-Zielinska B, Gondek E, Pokladko-Kowar M, et al. Photovoltaic cells with various azo dyes as components of the active layer. Sol Energy. 2020;203:19-24. 32. Sie CZW, Ngaini Z. Incorporation of kojic acid-azo dyes on TiO2 thin films for dye sensitized solar cells applications. J Sol Energy. 2017;2017:1-10. 33. Faig JJ, Moretti A, Joseph LB, et al. Biodegradable kojic acidbased polymers: controlled delivery of bioactives for melanogenesis inhibition. Biomacromolecules. 2017;18(2):363-373. 34. Sunarti TC, Derosya V, Yuliasih I. Acid modification of Sago Hampas for industrial purposes. Sago Palm. Singapore: Springer; 2018:271-281. 35. Silva WP, Girotto E, Gallardo H, Cristiano R. Synthesis and characterization of photoactive columnar liquid crystals containing azobenzene and quinoxaline moieties. J Mol Liq. 2020; 307:112944. 36. Saleem H, Haneef M, Abbasi HY. Synthesis route of reduced graphene oxide via thermal reduction of chemically exfoliated graphene oxide. Mater Chem Phys. 2018;204:1-7. 37. Sahito IA, Sun KC, Arbab AA, Jeong SH. Synergistic effect of thermal and chemical reduction of graphene oxide at the counter electrode on the performance of dye-sensitized solar cells. Sol Energy. 2019;190:112-118. 38. Jaafar E, Kashif M, Sahari SK, Ngaini Z. Study on morphological, optical and electrical properties of graphene oxide (GO) and reduced graphene oxide (rGO). Materials Science Forum. Switzerland: Trans Tech Publ; 2018. 39. Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y. Evaluation of solution-processed reduced graphene oxide KASHIF ET AL. 9 films as transparent conductors. ACS Nano. 2008;2(3): 463-470. 40. Goharshadi EK, Akhlamadi G, Mahdizadeh SJ. Investigation of graphene oxide nanosheets dispersion in water based on solubility parameters: a molecular dynamics simulation study. RSC Adv. 2015;5(129):106421-106430. 41. Behzad F, Jafarirad S, Samadi A, Barzegar A. A systematic investigation on spectroscopic, conformational, and interactional properties of polypeptide/nanomaterial complex: effects of bio-based synthesized maghemite nanocomposites on human serum albumin. Soft Mater. 2020;18:1-16. 42. Davood R, Faegh H. Surface morphology dynamics in ITO thin films. J Mod Phys. 2012;2012:645–651. 43. Krishnamoorthy K, Veerapandian M, Yun K, Kim SJ. The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon. 2013;53:38-49. 44. Low FW, Lai CW, Abd Hamid SB. Easy preparation of ultrathin reduced graphene oxide sheets at a high stirring speed. Ceram Int. 2015;41(4):5798-5806. 45. Shahriary L, Athawale AA. Graphene oxide synthesized by using modified hummers approach. Int J Renew Energy Environ Eng. 2014;2(01):58-63. 46. Hassan OH, Ibrahim MA, Kudin TIT, Yahya MZA. Physical investigation of thionine-graphene nanocomposite synthesized using different concentrations of graphene oxide. Gading J Sci Technol (e-ISSN: 2637-0018. 2019;2(01):66-74. 47. He J, Fang L. Controllable synthesis of reduced graphene oxide. Curr Appl Phys. 2016;16(9):1152-1158. 48. Chuang C-H, Wang Y-F, Shao Y-C, et al. The effect of thermal reduction on the photoluminescence and electronic structures of graphene oxides. Sci Rep. 2014;4:4525. 49. Alazmi A, Rasul S, Patole SP, Costa PMFJ. Comparative study of synthesis and reduction methods for graphene oxide. Polyhedron. 2016;116:153-161. 50. Jun, SC and Yusoff A, Fundamental of Graphene. Wiley-VCH Verlag GmbH & Co. KGaA; Edited by A. Rashid bin Mohd Yusoff, 2015. 51. Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS. Hydrazine-reduction of graphite-and graphene oxide. Carbon. 2011;49(9):3019-3023. 52. Ferrari AC, Meyer JC, Scardaci V, et al. Raman spectrum of graphene and graphene layers. Phys Rev Lett. 2006;97(18):187401. 53. Wang H, Zhang C, Liu Z, et al. Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J Mater Chem. 2011;21(14):5430-5434. 54. Mohan VB, Brown R, Jayaraman K, Bhattacharyya D. Characterisation of reduced graphene oxide: effects of reduction variables on electrical conductivity. Mater Sci Eng B. 2015;193:49-60. 55. Loryuenyong V, Totepvimarn K, Eimburanapravat P, Boonchompoo W, Buasri A. Preparation and characterization of reduced graphene oxide sheets via water-based exfoliation and reduction methods. Adv Mater Sci Eng. 2013;2013:1-5. 56. Tung VC, Allen MJ, Yang Y, Kaner RB. High-throughput solution processing of large-scale graphene. Nat Nanotechnol. 2009; 4(1):25-29. 57. Mei Q, Zhang K, Guan G, Liu B, Wang S, Zhang Z. Highly efficient photoluminescent graphene oxide with tunable surface properties. Chem Commun. 2010;46(39):7319-7321. 58. Marcano DC, Kosynkin DV, Berlin JM, et al. Improved synthesis of graphene oxide. ACS Nano. 2010;4(8):4806-4814. 59. Thema F, Moloto MJ, Dikio ED, et al. Synthesis and characterization of graphene thin films by chemical reduction of exfoliated and intercalated graphite oxide. J Chem. 2013;2013:1-6. 60. Zhang L, Cole JM, Waddell PG, Low KS, Liu X. Relating electron donor and carboxylic acid anchoring substitution effects in azo dyes to dye-sensitized solar cell performance. ACS Sustain Chem Engin. 2013;1(11):1440-1452. 61. Karim MR, Sheikh MRK, Salleh NM, Yahya R, Hassan A, Hoque MA. Synthesis and characterization of azo benzothiazole chromophore based liquid crystal macromers: effects of substituents on benzothiazole ring and terminal group on mesomorphic, thermal and optical properties. Mater Chem Phys. 2013;140(2–3):543-552. 62. Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696): 666-669. 63. Deka MJ, Sahoo SK, Chowdhury D. P-type and n-type azobenzene nanocluster immobilized graphene oxide nanocomposite. J Photochem Photobiol A Chem. 2019;372:131-139. 64. Zhang X, Feng Y, Huang D, Li Y, Feng W. Investigation of optical modulated conductance effects based on a graphene oxide–azobenzene hybrid. Carbon. 2010;48(11):3236-3241. 65. Zhang X, Feng Y, Lv P, Shen Y, Feng W. Enhanced reversible photoswitching of Azobenzene-functionalized graphene oxide hybrids. Langmuir. 2010;26(23):18508-18511. 66. Qurashi A, Hossain MF, Faiz M, Tabet N, Alam MW, Koteeswara Reddy N. Fabrication of well-aligned and dumbbell-shaped hexagonal ZnO nanorod arrays and their dye sensitized solar cell applications. J Alloys Compd. 2010;503(2): L40-L43. 67. Qurashi A, Subrahmanyam KS, Kumar P. Nanofiller graphene–ZnO hybrid nanoarchitecture: optical, electrical and optoelectronic investigation. J Mater Chem C. 2015;3(45): 11959-11964. 68. Gatti T, Manfredi N, Boldrini C, Lamberti F, Abbotto A, Menna E. A D-π-a organic dye—reduced graphene oxide covalent dyad as a new concept photosensitizer for light harvesting applications. Carbon. 2017;115:746-753. 69. Humayun Q, Kashif M, Hashim U, Qurashi A. Selective growth of ZnO nanorods on microgap electrodes and their applications in UV sensors. Nanoscale Res Lett. 2014;9(1):29.
(1)
[1] K. Sarmah, S. Pratihar, Synthesis, characterization and photocatalytic application of iron oxalate capped Fe, Fe-Cu, Fe-Co, and Fe-Mn oxide nanomaterial. ACS Sustain. Chem. Eng. 5 (2017) 310-324. [2] H. Chen, L. Zhao, G. Wang, W. Fang, Direct growth of ZnO nanorods on biogenic hierarchical rice husk SiO2 and their application to dye degradation, Clean Technol Envir. 19 (2017) 1335-1345. [3] Y. Zhao, N. Yu, X. Dong, H. Yan, Large area growth of ZnO Nanorods arrays on the stainless�steel grid by aqueous solutions, Mater. Res. Innov. 21 (2017) 447-450. [4] M. Husham, M.H. Nizar, S. Paiman, A.A. Abuelsamen, O.F. Farhat, A.A. Al-Dulaimi, Synthesis of ZnO nanorods by microwave-assisted chemical-bath deposition for highly sensitive self�powered UV detection application, Sens. Actuators, A. 263 (2017) 166-173. [5] M. Jeem, L. Zhang, J. Ishioka, T. Shibayama, T. Iwasaki, T. Kato, S. Watanabe, Tuning optoelectrical properties of ZnO nanorods with excitonic defects via submerged illumination, Nano Lett. 17 (2017) 2088-2093. [6] X. Zhu, L. Zhu, Z. Duan, R. Qi, Y. Li, Y. Lang, Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to zebrafish (Danio rerio) early developmental stage, J. Environ. Sci. Health. 43 (2008) 278-284. [7] F. Wang, W. Yang, P. Cheng, S. Zhang, S. Zhang, W. Jiao, Y. Sun, Adsorption characteristics of cadmium onto microplastics from aqueous solutions, Chemosphere. 235 (2019) 1073-1080. [8] R.R. Rosenfeldt, F. Seitz, R. Schulz, M. Bundschuh, Heavy metal uptake and toxicity in the presence of titanium dioxide nanoparticles: A factorial approach using Daphnia magna. Environ. Sci. Technol. 48 (2014) 6965-6972. [9] H. Yin, R. Chen, P.S. Casey, P.C. Ke, T.P. Davis, C. Chen, Reducing the cytotoxicity of ZnO nanoparticles by pre-formed protein corona in supplemented cell culture medium, RSC Adv. 1 (2013) 1-10. [10] F. El-Gohary, A. Tawfik, U. Mahmoud, Comparative study between chemical coagulation/precipitation (C/P) versus coagulation/dissolved air flotation (C/DAF) for pre-treatment of personal care products (PCPs) wastewater, Desalination. 252 (2010) 106–112. [11] S.D. Gisi, G. Lofrano, M. Grassi, M. Notarnicola, Characteristics and adsorption capacities of low-cost sorbent for wastewater treatment: A review, SM&T. 9 (2016) 10–40. [12] S.N. Jain, P.R. Gogate, Adsorption removal of acid violet dye from wastewater using biosorbent obtained from NaOH and H2SO4 activation of fallen leaves of Ficus racemose, J. Mol. Liq. 243 (2017) 132–143. [13] M. Akhtar, S. Iqbal, A. Kausar, M.I. Bhanger, M.A. Shaheen, An economically viable method for the removal of selected divalent metal ions from aqueous solutions using activated rice husk, Colloids Surf. B. 75 (2010) 149–155. [14] G. Vilardi, L. Di Palma, N. Verdone, Heavy metals adsorption by banana peels micro-powder: Equilibrium modelling by non-linear models, Chin. J. Chem. Eng. 26 (2018) 455-464. [15] M. Belalia, M. Bendjelloul, A. Aziz, E.H. Elandaloussi, Surface modification of olive stone waste for enhanced sorption properties of cadmium and lead ions, Acta Chemica IASI. 26 (2018) 281-306. [16] İ. Şentürk, M. Alzein, Adsorption of acid violet 17 onto acid-activated pistachio shell: isotherm, kinetic and thermodynamic studies, Acta Chim. Slov. 67 (2020) 1-15. [17] N.F.S.M. Azani, C.T.H. Chuin, N.S. Abdullah, S.S. Sharifuddin, M.H. Hussin, Characterisation and kinetic studies on activated carbon derived from rubber seed shell for the removal of methylene blue in aqueous solutions, J. Phys. Sci. 30 (2019) 1–20. [18] X. Li, Y. Li, Preparation and modification of biomass carbon and research of the adsorption of copper, IOP Conf Ser Earth Environ Sci. 300 (2019) 1-6. [19] P.S. Vassileva, T.H. Radoykova, A.K. Detcheva, I.A. Avramova, K.I. Aleksieva, S.K. Nenkova, I.V. Valchev, D.R. Mehandjiev. Adsorption of Ag+ ions on hydrolyzed lignocellulosic materials based on willow, paulownia, wheat straw and maize stalks, Int. J. Environ. Sci. Technol. 13 (2016) 1319–1328. [20] M. Pan, X. Lin, J. Xie, X. Huang, Kinetic, equilibrium and thermodynamic studies for phosphate adsorption on aluminium hydroxide modified palygorskite nanocomposites, RSC Adv. 7 (2017) 4492–4500. [21] X. Zhang, X. Wang, Adsorption and desorption of nickel (ii) ions from aqueous solution by a lignocellulose/ montmorillonite nanocomposite, PLOS ONE. (2015) 1-21. [22] C.N. Deepa, S. Suresha, (Biosorption of Ni(II) in aqueous solution and industrial wastewater by leaves of Araucaria cookie, Int. J. Environ. Anal. Chem. 4 (2014) 101-108. [23] N.A. Bahmid, K. Syamsu, A. Maddu, Production of Cellulose Acetate from Oil Palm Empty Fruit Bunches Cellulose, Chem. Eng. Process. 17 (2013) 12-20. [24] M. Elomaa, T. Asplund, P. Soininen, R. Laatikainen, S. Peltonen, S. Hyvärinen, A. Urtti, Determination of the degree of substitution of acetylated starch by hydrolysis, 1 H NMR and TGA/IR, Carbohydrate Polymers. 57 (2004) 261-267. [25] E.K. Droepenu, E.A. Asare, Morphology of green synthesized ZnO nanoparticles using low temperature hydrothermal technique from aqueous Carica papaya extract, J. Nanosci. Nanotechnol. 9 (2019) 29-36. [26] E.K. Droepenu, B. S. Wee, S. F. Chin, K.Y. Kok, E.A. Asare, Synthesis and characterization of single phase ZnO nanostructures via solvothermal method: influence of alkaline source, Biointerface Res. Appl. Chem. 10 (2020) 5648 – 5655. [27] M. Zhou, Z. Wei, H. Qiao, L. Zhu, H. Yang, T. Xia, Particle size and pore structure characterization of silver nanoparticles prepared by confined arc plasma, J. Nanomater. (2009), 1-5. [28] G. Yang, P. Jaakkola, Wood chemistry and isolation of extractives from wood. Literature study for BIOTULI project-Saimaa University of Applied Sciences. (2011) 10-22. [29] A.S. Utami, T.C. Sunarti, N. Isono, M. Hisamatsu, H. Ehara, Preparation of biodegradable foam from sago residue, Sago Palm. 22 (2014) 1–5. [30] R.G. Candido, A.R. Gonçalves, Synthesis of cellulose acetate and carboxymethylcellulose from sugarcane straw. Carbohydr. Polym. 152 (2016) 679686. [31] S. Joshi, B.P. Preparation and characterization of activated carbon from Lapsi (Choerospondias axillaris) seed stone by chemical activation with potassium hydroxide, J. of the Inst. of Eng. 9 (2013) 79–88. [32] R. Wahi, D. Kanakaraju, N.A. Yusuf, Preliminary study on zinc removal from aqueous solution by sago wastes, GJER. 4 (2010) 127-134. [33] Y. Shimizu, J. Hayashi, A new method for cellulose acetylation with acetic acid, TXN. 44 (1988) 451-456. [34] M. Zare, K. Namratha, K. Byrappa, D.M. Surendra, S. Yallappa, B. Hungund, Surfactant assisted solvothermal synthesis of ZnO nanoparticles and study of their antimicrobial and antioxidant properties. J. Mater. Sci. Technol. 1059 (2018) 1-9. [35] R. Malik, D. Ramteke, S. Wate, Physico-chemical and surface characterization of adsorbent prepared from groundnut shell by ZnCl2 activation and its ability to absorb colour. CSIR, 2006. [36] M. Kruk, M. Jaroniec, Gas adsorption characterization of orded organic-inorganic nanocomposite materials. Chem. Mater. 13 (2001) 3169-3183. [37] A. Borhan, N.A. Abdullah, N.A. Rashidi, M.F. Taha, Removal of Cu2+ and Zn2+ from single metal aqueous solution using rubber-seed shell based activated carbon, Procedia Eng. 148 (2016) 694– 701. [38] K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem. 57 (1985) 603-619. [39] K. Sun, J.C. Jiang, Preparation and characterization of activated carbon from rubber-seed shell by physical activation with steam Biomass & Bioenergy. 34 (2010) 539–544. [40] E. Bernard, A. Jimoh, J.O. Odigure, Heavy metals removal from industrial wastewater by activated carbon prepared from coconut shell, Res. J. Chem. Sci. 3 (2013) 3–9. [41] T. Chandrasekaran, A. Arunkumar, K. RiazAhamed, Removal of Pb(II) ions from aqueous solutions using activated carbon prepared from plant Glycosmis mauritiana, J. Chem. Pharm. 8 (2016) 704-711. [42] D. Reddy, K. Seshaiah, A.V.R. Reddy, S.M. Lee, Optimization of Cd(II), Cu(II) and Ni(II) biosorption by chemically modified Moringa oleifera leaves powder, Carbohydr Polym. 88 (2010) 1077-1086. [43] I.E. Agbozu, F.O. Emoruwa, Batch adsorption of heavy metals (Cu, Pb, Fe, Cr, and Cd) from aqueous solution using coconut husk, Afr. J. Environ. Sci. Technol. 8 (2014) 239-246. [44] P.S. Harikumar, B.P. Anisha Aravind, Heavy metal removal from wastewater using Copper alumina Nanocomposite, Am. J. Innov. Res. Appl. Sci. 4 (2016) 35- 44. [45] P. SenthilKumar, S. Ramalingam, C. Senthamarai, M. Niranjanaa, P. Vijayalakshmi, S. Sivanesan, Adsorption of dye from aqueous solution by cashew nutshell: studies on equilibrium isotherm, kinetics and thermodynamics of interaction, Desalination. 261 (2010) 52-60. [46] S.T. Abbas, M. Mustafa, Al-Faize, A.Z. Rah, Adsorption of Pb2+ and Zn2+ ion from oil wells onto activated carbon produced from Rice Husk in batch adsorption process, J. Chem. Pharm.5 (2013) 240-250. [47] S.K. Prabhakaran, K. Vijayaraghavan, R. Balasubramanian, Removal of Cr (VI) ions by spent tea and coffee dusts: reduction to Cr (III) and biosorption, Ind. Eng. Chem. Res. 48 (2009). [48] C.H.C. Tan, S. Sabar, M.H. Hussin, Development of immobilized microcrystalline cellulose as an effective adsorbent for methylene blue dye removal. S. Afr. J. Chem. Eng. 26 (2018) 11–24. [49] S. Parvin, B.K. Biswas, M.A. Rahman, M.H. Rahman, M.S. Anik, M.R. Uddin, (2019). Study on adsorption of Congo red onto chemically modified eggshell membrane, Chemosphere. 236 (2019), 124326. [50] D. Lakherwal, V.K. Rattan, H.P. Singh, Studies on adsorption of nickel by activated carbon in a liquid fluidised bed reactor, Can. Chem. Trans. 4 (2016) 121-132. [51] M.B. Desta, Batch sorption experiments: Langmuir and Freundlich isotherm studies for the adsorption of textile metal ions onto Teff straw (Eragrostis tef) agricultural waste, J. Chem. Thermodyn. (2013) 1–6. [52] H.K. Boparai, M. Joseph, D.M. O’Carroll, Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles, J. Hazard. Mater. 186 (2011) 458–465. [53] Y. Gao, Y. Li, L. Zhang, H. Huang, J. Hu, S.M. Shah, X. Su, Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J. Colloid Interface Sci. 368 (2012) 540–546. [54] F. Deniz, R.A. Kepekci, Dye biosorption onto pistachio by-product: Agreen environment engineering approach, J. Mol. Liq. 219 (2016) 194–200. [55] R. Lafi, A. Hafiane, Removal of methyl orange (MO) from aqueous solution using cationic surfactant modified coffee waste (MCWs). J. Taiwan. Inst. Chem. Eng. 58 (2016) 424– 433. [56] G. Vijayakumar, R. Tamilarasan, M. Dharmendirakumar, Adsorption, Kinetic, Equilibrium and Thermodynamic studies on the removal of basic dye Rhodamine-B from aqueous solution by the use of natural adsorbent perlite, J. Mater. Environ. Sci. 3 (2012) 157-170.
(1)
[1] K. Sobolev, P. Türker, S. Soboleva, and G. Iscioglu, “Utilization of Waste Glass in ECO-cement: Strength Properties and Microstructural Observations,” Waste Management, 27 (7), 971–976, 2006. [2] H.T. Kiang, and D. Hongjian, “Use of waste glass as sand in mortar: part I- fresh, mechanical and durability properties,” Cement & Concrete Composites, 35,109-117, 2013. [3] M. Aly, M. S. J. Hashmi, A. G. Olabi, M. Messeiry, A. I. Hussain, and E. F. Abadir, “Effect of Colloidal nano-silica on the Mechanical and Physical Behaviour of Waste Glass Cement Mortar”. Materials and Design, vol. 33, pp. 127-135, 2012. [4] R. Nassar, and P. Soroushian, “Field Investigatation of Concrete Incorporating Milled Waste Glass,” Journal of Solid Waste Technology and Management, vol. 37, no. 4, pp. 307-318, 2011. [5] R. Nassar, and P. Soroushian, “Strength and Durability of Recycled Aggregate Concrete Containing Milled Glass as Partial Replacement for Cement, Construction and Building Materials, vol. 29, pp. 368–377, 2012. [6] Y. Shao, T. Lefort, S. Moras, and D. Rodriguez, “Studies on concrete containing ground waste glass,” Cement and Concrete Research, vol. 30, no. 1, pp. 91–100, 2000. [7] Shayan, A. Xu, “Value-added utilisation of waste glass in concrete,” Cement and Concrete Research, vol. 34, no. 1, pp. 81–89, 2004. [8] Shi, Y. Wu, C. Riefler, and H. Wang, “Characteristics and pozzolanic reactivity of glass powders,” Cement and Concrete Research, vol. 35,no.5, pp.987–993,2005. [9] Shayan, A. Xu, “Performance of glass powder as a pozzolanic material in concrete: a field trial on concrete slabs,” Cement and Concrete Research, vol. 36, no. 3, pp.457–68, 2006 [10] R. Gopalakrishnan and D. Govindarajan, "Compressive Strength and Electron Paramagnetic Resonance Studies on Waste Glass Admixtured Cement," New Journal of Glass and Ceramics, vol. 1 no. 3, pp. 119-124, 2011. [11] R. Idir, M. Cyr, and A. Tagnit-Hamou, “ Pozzolanic Properties of Fine and Coarse Color Mixed Glass Cullet,” Cement and Concrete Composite,vol.33, pp. 19-29. 2011. [12] E. F. S. Almeida, and E. P. Sichieri, “Thermogravimetric Analysis and Mineralogical Study of Polymer Modified Mortar with Silica Fume,”Materials Research, vol. 9, no. 3, pp. 321-326, 2006. [13] D. Vaiciukyniene, G. Skipkiunas, M. Dauksys, and V. Sasnauskas, Cement Hydration with Zeolite-Based Additive. CHEMIJA, vol. 24, no. 4, pp. 271-278, 2013 [14] L. P. Esteves, “On the Hydration of Water Entrained Cement-Silica System: Combined SEM, XRD and Thermal Analysis in Cement Pastes,”Thermochimic Acta , 518, 27-35, 2011. [15] M. Heikal, S. A. E. Aleem, and W. M. Morsi, “Characteristics of Blended Cements Containing Nano-Silica." Housing and Building National Research Center, vol. 9,pp. 243-255, 2013. [16] M. Aly, M. S. J. Hashmi, A. G. Olabi, M. Messeiry, A. I. Hussain, and E. F. Abadir, “Effect of Nano-Clay and Waste Glass [17] Powder on the Properties of Flax Fibre Reinforced Mortar,” ARPN Journal of Engineering and Applied Sciences, vol. 6, no. 10, pp. 19-28, 2011. [18] J. Elena, and M. D. Lucia, “Application of X Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) Methods to the Portland Cement Hydration Process,” Journal of Applied Engineering Sciences, vol. 2, no. 15,pp. 35-42, 2012.
(2)
[1] Kuriyama, Y., & Yano, K. (2012). Multi-Subcenters Solution Search Algorithm for CFD Optimization Problems and Its Application to Die Casting. Mater. Trans. 53, 367-373 [2] Ibrahim, M. D., Rahman, M. R. A., Khan, A., Mohamad, M. R., Suffian, M. S. Z. M., Yunos, Y. S., Wong, L. K., & Mohtar, M. Z. (2017). Effect of mold designs on molten metal behavior in high-pressure die casting. Journal Physic: Conference Series. 822, 1-6 [3] Niida, A., & Maeda, Y. (2020). Observation of Air Entrapment during Mold Filling of Die Casting Using Water Model Experiment for Mold Filling Simulation. Mater. Trans. 61, 1364-1368 [4] Gaspar, S., & Pasko, J. (2016). The Research of the Fracture Process and Analysis of the Foundry Errors of Die Castings from Hypoeutectic Silumin. MM Science Journal. 2016, 1265-1268 [5] Gaspar, S., & Pasko, J. (2019). Plunger Pressing Speed-Link the Main Factor Influencing the Mechanical Properties of Die Casting. MM Science Journal. 2019, 3490-3493 [6] Moscovitch, N., Gertsberg, G., Nagar, N., Yehuda, R., Fantetti, N., & Bronfin, B. (2007). Design Guidelines for Components Die Cast in Creep-Resistant Magnesium Alloys MRI153M and MRI230D SAE Technical Paper 2007. 01, 1-8 [7] Ebel-Wolf, B., Walther, F., & Eifler, D. (2008). Influence of elevated temperatures on the cyclic deformation behavior of the magnesium die-cast alloys AZ91D and MRI230D. Material Science Engineering. 486, 634-640 [8] Mizutani, M., Yoshida, K., Kawabe, N., & Saikawa, S. (2019). Features and Vehicle Application of Heat Resistant Die Cast Magnesium Alloy SEI Technical Review No. 88 (Osaka: Sumitomo Electric Industries, Ltd.) pp 116-121. [9] Mondal, A. K., Fechner, D., Kumar, S., Dieringa, H., Maier, P., & Kainer, K. U. (2010). Interrupted creep behavior of Mg alloys developed for powertrain applications. Material Science Engineering. 527, 2289- 2296 [10] Sun, Z., Geng, X., Ren, L., & Hu, H. (2020). Microstructure, Tensile Properties and Fracture Behavior of HPDC Magnesium Alloy AZ91. International Journal Material Mechanical Manufacturing.8, 50-56
(1)
1. Kusurkar RA, Ten Cate TJ, Vos CM, Westers P, Croiset G. How motivation affects academic performance: A structural equation modelling analysis. Adv Health Sci Educ Theory Pract 2013;18:57-69. 2. Ryan RM, Deci EL, Vansteenkiste M, Soenens B. Building a science of motivated persons: Self-determination theory’s empirical approach to human experience and the regulation of behavior. Motivation Science 2021;10:1037-11. 3. Dişlen Dağgöl G. The reasons of lack of motivation from the students' and teachers' voices. J Acad Social Sci. 2013;1:35-45. 4. Neak P. The role of parental and community participation in education amid the covid-19 pandemic. Cambodian J Edu Res. 2021;1:69-72, 5. Haroon Z, Azad A, Sharif M, Aslam A, Arshad K, Rafiq S. Covid-19 era: Challenges and solutions in dental education. J Coll Phys Surg Pak. 2020 2020;30:S129-31. 6. Jena PK. Impact of covid-19 on higher education in india. Int J Adv Edu Res. 2020;5:77-81, 7. Mohapatra AK. Editorial: Impact of COVID-19 on higher education. J Manag Public Policy. 2020;11:23-9. 8. Zalat MM, Hamed MS, Bolbol SA. The experiences, challenges, and acceptance of e-learning as a tool for teaching during the covid-19 pandemic among university medical staff. Plos One 2021;16:e0248758. 9. Noori AQ. The impact of covid-19 pandemic on students' learning in higher education in afghanistan. Heliyon. 2021;7:e08113. 10. Mishra L, Gupta T, Shree A. Online teaching-learning in higher education during lockdown period of COVID-19 pandemic. Int J Educ Res Open. 2020;1: 100012. 11. Dhawan S. Online learning: A panacea in the time of covid-19 crisis. J Edu Technol Syst. 2020;49:5-22. 12. Bernama A. Not all students can benefit from online learning teaching. Available at: https://www. bernama.com/en/features/news.php?id51827297. Accessed on 4 September 2020. 13. Timeline: Who's covid-19 response. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-timeline#. Accessed on 19 November 2022. 14. Jalli N. Commentary: E-learning sees no smooth sailing in malaysia and indonesia. Available at: https://www.channelnewsasia.com/commentary/coronavirus-covid-19-malaysia-indonesia-school-e-learning-online-762661. Accessed on 20 November 2022. 15. Shahil FA, Akber Ali N, Feroz R, Nazim Meghani S, Saleem S. Impact of the covid-19 pandemic on mental health and well-being of communities: An exploratory qualitative study protocol. BMJ Open 2020;10:e041641. 16. Kee J, Adamu A. Facing the unknown: Pandemic and higher education in malaysia. Asian Edu Develop Studies. BMJ Open. 2019;5:347. 17. Rafidi R. Address e-learning challenges, students urge New Straits Times. Available at: https://www.nst.com. my/education/2020/06/603056/address-e-learning-challenges-students-urge. Accessed on 20 November 2022. 18. Amir LR, Tanti I, Maharani DA, Wimardhani YS, Julia V, Sulijaya B, et al. Student perspective of classroom and distance learning during covid-19 pandemic in the undergraduate dental study program universitas indonesia. BMC Med Edu. 2020;20:1-8. 19. Sundarasen S, Chinna K, Kamaludin K, Nurunnabi M, Baloch GM, Khoshaim HB, et al. Psychological impact of covid-19 and lockdown among university students in malaysia: Implications and policy recommendations. Int J Environ Res Public health. 2020;17:6206. 20. Stern BS. A comparison of online and face-to-face instruction in an undergraduate foundations of american education course. Contemp Technol Teach Edu. 2004;4:196-213. 21. Winthrop R. Education plus development: Top 10 risks and opportunities for education in the face of covid-19. Available at: https://www.brookings.edu/blog/ education-plus-development/2020/04/10/top-10-risks-and-opportunities-for-education-in-the-face-of-covid-19/, Accessed on 19 November 2022. 22. Lodge JM, Kennedy G, Lockyer L, Arguel A, Pachman M. Understanding difficulties and resulting confusion in learning: An integrative review. Front Edu. 2018;3: 49. 23. Hulley SbC, Ws B, Grady D. Designing clinical research: An epidemiologic approach. City: Philadelphia: Lippincott Williams & Wilkins; 2013:75. 24. Smith J, Onencan. AM. Academic motivation scale (AMS) intrinsic motivation (IM) questionnaire and data. Zenodo. 2020. 25. Baticulon RE, Sy JJ, Alberto NRI, Baron MBC, Mabulay REC, Rizada LGT, Tiu CJS, Clarion CA, Reyes JCB. Barriers to online learning in the time of covid-19: A national survey of medical students in the philippines. Med Sci Edu. 2021;31:615-26. 26. Aboagye E, Yawson JA, Appiah KN. Covid-19 and e-learning: The challenges of students in tertiary institutions. Soc Edu Res. 2020;2:1-8. 27. Ibm SPSS statistics for windows. Available at: https://www.ibm.com/in-en/products/spss-statistics. Accessed on 20 November 2022. 28. Publication manual of the american psychological association. Available at: https://apastyle.apa.org/ products. Accessed on 20 November 2022. 29. Gillett-Swan J. The challenges of online learning: Supporting and engaging the isolated learner. J Learn Design. 2017;10:20. 30. Daniel SJ. Education and the covid-19 pandemic. 2020;49:91-6. 31. Tarhini A, Hone K, Liu X, Tarhini T. Examining the moderating effect of individual-level cultural values on users” acceptance of e-learning in developing countries: A structural equation modeling of an extended technology acceptance model. Interact Learn Environ. 2017;25:306-28. 32. NajmulIslam AKM. Investigating e-learning system usage outcomes in the university context. Comp Edu. 2013;69:387-99. 33. Brophy J. Goal theory: Motivating students to learn. Routledge. 2004;101-32. 34. Leduc-Cummings I, Werner KM, Milyavskaya M, Dominick J, K. , Cole S. Experiencing obstacles during goal pursuit: The role of goal motivation and trait self-control. J Res Personal. 2022;99:104231.
(1)
[1] L. Dobrek, “An Outline of Renal Artery Stenosis Pathophysiology—A Narrative Review”, Life, vol. 11, no. 3, pp. 1-19, 2021. [2] A. Khader, A. Azriff, C. Johny, R. Pai, M. Zuber, K. A. Ahmad, and Z. Ahmad, “Haemodynamics behaviour in normal and stenosed renal artery using computational fluid dynamics,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 51, no. 1, pp. 80-90, 2018. [3] D. Wang, Y. Pan, X. Cai, J. Hing, H. Yan, S. Wang, W. Chan, L. Mei, Y. Zhang, S. Li, T. Wei, Y. L. Zhou, and Y. Wang “Prevalence and associated factors of atherosclerotic plaque and stenosis in renal arteries: A community-based study”, Angiology, vol. 0, no. 0, p. 00033197241238404. 2024. https://doi.org/10.1177/00033197241238404. doi: [4] M. Piechocki, T. Przewłocki, P. Pieniążek, M. Trystuła, J. Podolec, and A. Kabłak-Ziembicka, “A non-coronary, peripheral arterial atherosclerotic disease (carotid, renal, lower limb) in elderly patients—A review PART II—Pharmacological approach for management of elderly patients with peripheral atherosclerotic lesions outside coronary territory,” Journal of Clinical Medicine, vol. 13, no. 5, pp. 1-45, 2024. [5] J. Murphy and F. Boyle, “Predicting neointimal hyperplasia in stented arteries using time-dependant computational fluid dynamics: A review”, Computers in Biology and Medicine, vol. 40, no. 4, pp. 408-418, 2010. doi: https://doi.org/10.1016/j.compbiomed.2010.02.005 [6] M. C. Jundt, E. A. Takahashi, W. S. Harmsen, and S. Misra, “Restenosis rates after drug-eluting stent treatment for stenotic small-diameter renal arteries”, Cardiovascular and Interventional Radiology, vol. 42, no. 9, pp. 1293-1301, 2019. [7] K. Zachrisson, S. Elverfors, G. Jensen, M. Hellstrom, M. Scensson, H. Herlitz, M. Falkenberg, “Long-term outcome of stenting for atherosclerotic renal artery stenosis and the effect of angiographic restenosis”, Acta Radiologica, vol. 59, no. 12, pp. 1438-1445, 2018. [8] R. Gharleghi, H. Wright, V. Luvio, N. Jepson, Z. Luo, A. Senthurnathan, B. Babaei, G. B. Prusty, T. Ray, and S. Beier, “A multi-objective optimization of stent geometries,” Journal of Biomechanics, vol. 125, no. 1, pp. 1-11, 2021. [9] B. Chezeau and C. Vial, “Modeling and Simulation of the Biohydrogen Production Processes,” in Biohydrogen, 2nd Ed. Elsevier B. V., pp. 445483, 2019. [10] P. Wang, H. Qiao, R. Wang, R. Hou, and J. Guo, “The characteristics and risk factors of in-stent restenosis in patients with percutaneous coronary intervention: what can we do”, BMC Cardiovascular Disorders, vol. 20, no. 1, pp. 1-6, 2020. [11] M. A. Hamidah and S. M. C. Hossain, “Modeling analysis of pulsatile non-Newtonian blood flow in a renal bifurcated artery with stenosis,” International Journal of Thermofluids, vol. 22, pp. 1-15, 2024. [12] A. Mandaltsi, A. Grytsan, A. Odudu, J. Kadziela, P. D. Morris, A. Witkowski, T. Ellam, P. Kalra, and A. Marzo, “Non-invasive stenotic renal artery haemodynamics by in silico medicine”, Frontiers in Physiology, vol. 9, pp. 1-10, 2018. [13] X. Song, H. Qiu, S. Wang, Y. Cao, and J. Zhao, “Hemodynamic and geometric risk factors for in-stent restenosis in patients with intracranial atherosclerotic stenosis,” Oxidative Medicine and Cellular Longevity, vol. 2024, pp. 1-15, 2022. [14] S. F. Mohamad, M. S. Bin Shamsul Ismail, M. A. A.-F. Bin Mohd Raffali, D. Farouk, R. M. Ali, and H. H. Che Hassan, “TCTAP C-148 the masquerading pickering; in-stent restenosis of renal artery stenting with contralateral renal artery stenosis presenting with flash acute pulmonary edema,” Journal of the American College of Cardiology, vol. 79, no. 15, Supplement, pp. 351-352, 2022. [15] D. Stojadinovic, I. Zivanovic-Macuzic, M. Jakovcevski, D. Jeremic, M. Kovacevic, and M. Minic, “The anatomy of renal arteries in adults “ Journal of Experimental and Applied Biomedical Research (EABR), vol. 23, no. 2, pp. 147-153, 2022. [16] I. Taib, M. R. A. Kadir, M. H. S. A. Azis, A. Z. Md Khudzari, and K. Osman, “Analysis of hemodynamic differences for stenting patent ductus arteriosus,” Journal of Medical Imaging and Health Informatics, vol. 3, no. 4, pp. 555-560, 2013. [17] P. Hegde, S. Kanjalkar, G. Shenoy, A. Khader, R. Pai, M. Tamahawa, R. Prabhu, and D. S. Rao, “Quantitative haemodynamic study in renal artery bifurcation using CFD,” Journal of Engineering Science and Technology, vol. 16, no. 5, pp. 4079-4099, 2021. [18] Y. Zhao, Y. Shi, Y. Jin, Y. Cao, H. Song, L. Chen, F. Li, X. Li, and W. Chen, “Evaluating short-term and long-term risks associated with renal artery stenosis position and severity: a hemodynamic study”, Bioengineering, vol. 10, no. 9, pp. 1-13, 2023. [19] B. M. Johnston, P. R. Johnston, S. Corney, and D. Kilpatrick, “NonNewtonian blood flow in human right coronary arteries: steady state simulations,” Journal of Biomechanics, vol. 37, no. 5, pp. 709-720, 2004. [20] A. Ismail, B. L. Ademola, L. Yusuf, and M. A. Abdulmalik, “Renal arterial doppler velocimetric indices among healthy subjcts in north west nigeria,” West African Journal of Medicine, vol. 8, no. 1, pp. 40-49, 2019. [21] M. A. Kabir, M. F. Alam, and M. A. Uddin, “Numerical simulation of pulsatile blood flow: a study with normal artery, and arteries with single and multiple stenosis,” Journal of Engineering and Applied Science, vol. 68, no. 1, pp. 1-15, 2021. [22] S. S. Varghese and S. H. Frankel, “Numerical modeling of pulsatile turbulent flow in stenotic vessels,” Journal of Biomechanical Engineering, vol. 125, no. 4, pp. 445-460, 2003. [23] J. F. LaDisa, L. E. Olson, R. C. Molthen, D. Hettrick, P. Pratt, M. D> Hardel, J. Kersten, D. C. Warltier, P. S. Pagel, “Alterations in wall shear stress predict sites of neointimal hyperplasia after stent implantation in rabbit iliac arteries,” American Journal of Physiology-Heart and Circulatory Physiology, vol. 288, no. 5, pp. 2465-2475, 2005. [24] C. Trenti, M. Ziegler, N. Bjarnegård, T. Ebbers, M. Lindenberger, and P. Dyverfeldt, “Wall shear stress and relative residence time as potential risk factors for abdominal aortic aneurysms in males: A 4D flow cardiovascular magnetic resonance case–control study,” Journal of Cardiovascular Magnetic Resonance, vol. 24, no. 1, pp. 1-12, 2022. [25] G. B. Kim, K. H. Park, and S. J. Kim, “Hemodynamics and wall shear stress of blood vessels in aortic coarctation with computational fluid dynamics simulation”, Molecules, vol. 27, no. 4, pp. 1-19, 2022. [26] M. J. Gomez-Garcia, M. Abdelkarim, D. T. Cramb, S. J. Childs, K. D. Rinker, and H. I. Labouta, “Blood vessel wall shear stress determines regions of liposome accumulation in angiogenic vasculature”, Drug Delivery and Translational Research, vol. 0, no. 0, pp.0 , 2024. [27] H. Liu, L. Lan, J. Abrigo, H. L. Ip, Y. Soo, D. Zheng, K. S. L. Wong, D. Wang, L. Shi, T. W. Leung, X. Leng, “Comparison of newtonian and non-newtonian fluid models in blood flow simulation in patients with intracranial arterial stenosis”, Frontiers in Physiology, vol. 12, no. 718540, pp. 1-11, 2021. [28] A. G. Rahma and T. Abdelhamid, “Hemodynamic and fluid flow analysis of a cerebral aneurysm: a CFD simulation”, SN Applied Sciences, vol. 5, no. 2, pp. 1-14, 2023. [29] M. S. Hameed, A. A. Shah, M. I. Khan, A. Ali, I. Hussain, and M. D. Bukhari, “Comparison of blood flow analysis in stenosed and stented carotid artery bifurcation models”, Cogent Engineering, vol. 10, no. 1, pp. 1-19, 2023. [30] A. Javadzadegan, A. Yong, M. Chang, A. C. C. Ng, J. Yiannikas, M. K. C. Ng, M. Behnia, and L. Kritharides, “Flow recirculation zone length and shear rate are differentially affected by stenosis severity in human coronary arteries”, AJP Heart and Circulatory Physiology, vol. 304, no. 4, pp. 559-566, 2013. [31] G.-B. Kim, K.-H. Park, and S.-J. Kim, “Hemodynamics and wall shear stress of blood vessels in aortic coarctation with computational fluid dynamics simulation”, Molecules, vol. 27, no. 4, pp. 1-19, 2022. [32] B. K. Park, “Gray-scale, color doppler, spectral doppler, and contrastenhanced renal artery ultrasound: imaging techniques and features,” Journal of Clinical Medicine, vol. 11, no. 14, pp. 1-12, 2022. [33] S. Al-Katib, M. Shetty, S. M. A. Jafri, and S. Z. H. Jafri, “Radiologic assessment of native renal vasculature: A multimodality review”, RadioGraphics, vol. 37, no. 1, pp. 136-156, 2017. [34] Y. He, N. Duraiswamy, A. O. Frank, and J. E. Moore, “Blood flow in stented arteries: a parametric comparison of strut design patterns in three dimensions,” Journal of Biomechanical Engineering, vol. 127, no. 4, pp. 637-47, 2005. [35] A. Saito, Z. Dai, M. Ono, T. Kanie, Y. Takaoka, A. Mizuno, N. Komiyama, and T. Asano, “The relationship between coronary stent strut thickness and the incidences of clinical outcomes after drug-eluting stent implantation: A systematic review and meta-regression analysis”, Catheterization and Cardiovascular Interventions, vol. 99, no. 3, pp. 575-582, 2022.
(1)
[1]Lee, K. E., Mokhtar, M., Mohd Hanafiah, M., Abdul Halim, A., & Badusah, J. (2016). Rainwater harvesting as an alternative water resource in Malaysia: Potential, policies and development. Journal of Cleaner Production, 126, 218–222. https://doi.org/10.1016/j.jclepro.2016.03.060[2]Sa’don, N. M., Abdul Karim, A. R., Ahamad, Z., & Mariappan, A. (2016). Sarawak Hermic Peat Consolidation Settlement and Shear Strength Behaviour. 15th International Peat Congress 2016, 630–634[3]Rosli, M. A., Daud, Z., Latiff, A. A. A., Rahman, S. E. A., Oyekanmi, A. A., Zainorabidin, A., ... Halim, A. A. (2017). The effectiveness of Peat-AC composite adsorbent in removing color and Fe from landfill leachate. International Journal of Integrated Engineering, 9(3), 35–38 [4]Melayong, G., & Fong, S. (2016). Sustainable Oil Palm Planting on Peat Soils in Sarawak. 15th International Peat Congress 2016, 511–514[5]Garcia-Segura, S., Eiband, M. M. S. G., de Melo, J. V., & Martínez-Huitle, C. A. (2017). Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other technologies. Journal of Electroanalytical Chemistry, 801, 267–299. https://doi.org/10.1016/j.jelechem.2017.07.047[6]Kalathil, H., & M, M. J. (2017). Electrocoagulation of Fertilizer Industry Effluent Using Copper Electrodes. International Journal of Advance Research in Science and Engineering, 6(6), 376–384 [7]Danial, R., Abdullah, L. C., & Sobri, S. (2017). Potential of copper electrodes in electrocoagulation process for glyphosate herbicide removal. MATEC Web of Conferences, 103. https://doi.org/https://doi.org/10.1051/matecconf/201710306019 [8]Zarei, A., Biglari, H., Mobini, M., Dargahi, A., Ebrahimzadeh, G., Narooie, M. R., ... Poursadeghiyan, M. (2018). Disinfecting poultry slaughterhouse wastewater using copper electrodes in the electrocoagulation process. Polish Journal of Environmental Studies, 27(4), 1907–1912. https://doi.org/10.15244/pjoes/78150[9]Safwat, S. M., Hamed, A., & Rozaik, E. (2018). Electrocoagulation/electroflotation of real printing wastewaterusing copper electrodes: A comparative study with aluminum electrodes. Separation Science and Technology (Philadelphia), 54(1), 183–194. https://doi.org/10.1080/01496395.2018.1494744[10]Moussa, D. T., El-Naas, M. H., Nasser, M., & Al-Marri, M. J. (2017). A comprehensive review of electrocoagulation for water treatment: Potentials and challenges. Journal of Environmental Management, 186(1), 24–41. https://doi.org/10.1016/j.jenvman.2016.10.032 [11]Kuokkanen, V., Kuokkanen, T., Ramo, J., & Lassi, U. (2015). Electrocoagulation treatment of peat bog drainage water containing humic substances. Water Research, 79, 79–87. https://doi.org/10.1016/j.watres.2015.04.029[12]Bayramoglu, M., Kobya, M., Can, O. T., & Sozbir, M. (2004). Operating cost analysis of electroagulation of textile dye wastewater. Separation and Purification Technology, 37(2), 117–125. https://doi.org/10.1016/j.seppur.2003.09.002[13]Al-Raad, A. A., Hanafiah, M. M., Naje, A. S., Ajeel, M. A., Basheer, A. O., Aljayashi, T. A., & Toriman, M. E. (2019). Treatment of saline water using electrocoagulation with combined electrical connection of electrodes. Processes, 7. https://doi.org/10.3390/pr7050242[14]Nasrullah, M., Singh, L., Krishnan, S., Sakinah, M., Mahapatra, D. M., & Zularisam, A. W. (2020). Electrocoagulation treatment of raw palm oil mill effluent: Effect of operating parameters on floc growth and structure. Journal of Water Process Engineering, 33. https://doi.org/10.1016/j.jwpe.2019.101114[15]Nandi, B. K., & Patel, S. (2017). Effects of operational parameters on the removal of brilliant green dye from aqueous solutions by electrocoagulation. Arabian Journal of Chemistry, 10, S2961–S2968. https://doi.org/10.1016/j.arabjc.2013.11.032[16]Elnenay, A. E. M. H., Nassef, E., Malash, G. F., & Magid, M. H. A. (2017). Treatment of drilling fluids wastewater by electrocoagulation. Egyptian Journal of Petroleum, 26, 203–208. https://doi.org/10.1016/j.ejpe.2016.03.005[17]Kartikaningsih, D., Shih, Y. J., & Huang, Y. H. (2016). Boron removal from boric acid wastewater by electrocoagulation using aluminum as sacrificial anode. Sustainable Environment Research, 26, 150–155. https://doi.org/10.1016/j.serj.2015.10.004[18]Singh, H., & Mishra, B. K. (2017). Assessment of kinetics behavior of electrocoagulation process for the removal of suspended solids and metals from synthetic water. Environmental Engineering Research, 22(2), 141–148. https://doi.org/10.4491/eer.2016.029[19]Prajapati, A. K., Chaudhari, P. K., Pal, D., Chandrakar, A., & Choudhary, R. (2016). Electrocoagulation treatment of rice grain based distillery effluent using copper electrode. Journal of Water Process Engineering, 11, 1–7. https://doi.org/10.1016/j.jwpe.2016.03.008[20]Ministry of Health Malaysia. (1985). Development of Water Quality Criteria and Standards for Malaysia. Retrieved from https://environment.com.my/wp-content/uploads/2016/05/Drinking-Water-MOH.pdf[21]Department of Environment. (2012). Environmental Quality Act report. Retrieved from https://enviro.doe.gov.my/ekmc/digital-content/malaysia-environmental-quality-report-2017-2/[22]Nur Shahirah, A. R., Othman, N., Khairuddin, M., Talib, M., Fattah, A. R. A., & Supramanium, S. (2020). The Usage of Home Water Filtration System in Malaysia. 12(1), 253–259
(1)
[1] Li, W., Nee, A. and Ong, S. (2017) “A state-of-the-art review of Augmented Reality in Engineering Analysis and Simulation,” Multimodal Technologies and Interaction, 1(3), p. 17. Available at: https://doi.org/10.3390/mti1030017. [2] Maloney, D., Freeman, G. and Robb, A. (2021) “Stay connected in an immersive world: Why teenagers engage in social virtual reality,” Interaction Design and Children [Preprint]. Available at: https://doi.org/10.1145/3459990.3460703. ¬ [3] Mackay, S. et al. (2021) “Understanding the value of the Creative Arts: Place-based perspectives from Regional Australia,” Cultural Trends, 30(5), pp. 391–408. Available at: https://doi.org/10.1080/09548963.2021.1889343. [4] Jati, R.P. (2021) “Hyperlocal media: Promoting local culture,” RSF Conference Series: Business, Management and Social Sciences, 1(6), pp. 09–15. Available at: https://doi.org/10.31098/bmss.v1i6.462. [5] Fauzi, H., Sharif, H.M. and Razak, R.A. (2022) “Virtualization of digitalized cultural assets to promote sustainable heritage tourism in Malaysia,” International Journal of Environment, Architecture, and Societies, 2(2), pp. 85–99. Available at: https://doi.org/10.26418/ijeas.2022.2.2.85-99. [6] Mine, M., van Baar, J., Grundhofer, A., Rose, D. and Yang, B. (2012). Projection-Based Augmented Reality in Disney Theme Parks. Computer, 45(7). [7] Kassim, A. Z. (2019). "Projection-Mapped Installation: The Mixing of Real and Virtual in an Immersive Space". In T. Lucas, K. Samy, W. J. I. Wan Abdullah Thani & Q. D. L. Abdullah (Eds.). juXtaposed: Digital Assimilation of the Arts and Culture (pp. 23-37). Kota Samarahan, Sarawak: UNIMAS Publisher. ISBN:978-967-2298-01-4. [8] Salselas, I. and Penha, R. (2019) “The role of sound in inducing storytelling in immersive environments,” Proceedings of the 14th International Audio Mostly Conference: A Journey in Sound [Preprint]. Available at: https://doi.org/10.1145/3356590.3356619. [9] Oh, J.-E. and Kong, A. (2021) “VR and nostalgia: Using animation in theme parks to enhance visitor engagement,” Journal of Promotion Management, 28(2), pp. 113–127. Available at: https://doi.org/10.1080/10496491.2021.1987951. [10] Harvey, M.L. et al. (1998) “The influence of museum exhibit design on Immersion and psychological flow,” Environment and Behavior, 30(5), pp. 601–627. Available at: https://doi.org/10.1177/001391659803000502. [11] Carvalho, R. & Kox, S. (2013). Mixed Reality Immersive Design: A Study in Interactive Dance. immersive.ACM Multimedia [12] Nakevska, M., Sanden, A. Funk, M., Hu, J. & Rautenberg, M. (2014). Interactive storytelling in a mixed reality environment: The effects of interactivity on user experiences. Entertainment Computing, 52-59 [13] Rossi, D. (2019) “Sar for kids: Spatial augmented reality as a tool for art education,” Advances in Intelligent Systems and Computing, pp. 355–363. Available at: https://doi.org/10.1007/978-3-030-12240-9_38.
(1)
[1] Lu J, Wang Z, Ma X, Tang Q and Li Y 2017 Chemical Engineering Science 165 165-76 [2] Tezcan Un U, Koparal A S and Bakir Ogutveren U 2019 Journal of Environmental Management 90 428–33 [3] Butler E, Hung Y T, Yeh Y L and Ahmad M S 2011 Water 3 495-525 [4] Department of Irrigation and Drainage Sarawak 2018 Resource Centre - Peat Swamp Development [5] Kuokkanen V, Kuokkanen T, Ramo J and Lassi U 2015 Water Research 79 79-87 [6] The Sun Daily 2018 Sarawak needs RM17b to implement water supply programmes under 11MP and 12MP [7] Kuokkanen V, Kuokkanen T, Ramo J, Lassi U and Roininen J 2013 Green and Sustainability Chemistry 16 5232-44 [8] Kuokkanen V, Kuokkanen T, Ramo J and Lassi U 2015 Water Research 7 79-87 [9] Shankar R, Singh L, Mondal P and Chand S 2013 Desalination and Water Treatment 52 7711-22 [10] Fadali O A, Ebrahiem E E, El-Gamil A and Altaher H 2016 Journal of Environmental Science and Technology 9 62-74 [11] Elnenay A E M H, Nassef E, Malash G F and Magid M H A 2017 Egyptian Journal of Petroleum 26 203-8 [12] Kartikaningsih D, Shih Y J and Huang Y H 2016 Sustainable Environment Research 26 150-5 [13] El-Shazly A H, Al-Zahrani A A and Alhamed Y A 2013 Int. J. Electrochem. Sci. 8 3176-85 [14] Can O T and Bayramoglu M 2010 Journal of Hazardous Materials 173 731-6 [15] Nandi B K and Patel S 2017 Arabian Journal of Chemistry 10 2961-8 [16] Ministry of Health Malaysia 2018 Drinking Water Quality Standard [17] Department of Environment Malaysia 2018 National Water Quality Standards
(1)
1. Lu M. Recommendations for preconception care. Am Fam Physician. 2007;76(3):397–400. 2. Centre for Disease Control and Prevention. Preventing and Managing Chronic Disease to Improve the Health of Women and Infants [Fact sheet]. 2006. Retrieved from http://www.idph.state.ia.us/hpcdp/common/pdf/family_health/2012_cdc_factsheet.pdf. Accessed 2 Jan 2015. 3. World Health Organization. Preconception care: Maximising the gains for maternal and child health. 2013. Retrieved from the World Wide Web: http://www.who.int/maternal_child_adolescent/documents/preconception_care_policy_brief.pdf. Accessed 6 Jan 2015. 4. Abu Talib R, Idris IB, Sutan R, Ahmad N, Bakar NA. Exploring the determinant of pre-pregnancy care services usage, reproductive ages women in Kedah, Malaysia. Int J Public Health Res. 2016;6(2):719–26. 5. Muhammad NM, Ruziaton H, Nuraini D, Izan HI, Norizzati BIB, Mohamad RI, Mimi O. Risk factors for women attending pre-pregnancy screening in selected clinics in Selangor. Malays Family Physician. 2014;9(3):20–6. 6. Heyes T, Long S, Mathers N. Preconception care: practice and beliefs of primary care workers. Fam Pract. 2004;21(1):22–7. 7. Mazza D, Chapman A, Michie S. Barriers to the implementation of preconception care guidelines as perceived by general practitioners: a qualitative study. BMC Health Serv Res. 2013;13(1):36. Retrieved from https://doi.org/10.1186/1472-6963-13-36. Accessed on January 8, 2015 8. Talib RA. Exploring the determinant of pre-pregnancy care services usage among reproductive ages women in Kedah, Malaysia. Int J Pub Health Res. 2016;6(2);719–26. 9. Rosliza AM, Majdah M. Male participation and sharing of responsibility in strengthening family planning activities in Malaysia. Malays J Pub Health Med. 2010;10(1):23–7. 10. Singh, D., Lample, M., & Earnest, J. (2014). The involvement of men in maternal health care: cross-sectional, pilot case studies from Maligita and Kibibi, Uganda. Reproductive Health, 11(1), 68. Retrieved February 8, 2015 from the world wide web doi:10.1186/1742-4755-11-68. 11. Kronfol NM. Access and barriers to health care delivery in Arab countries: a review. East Mediterr Health J. 2012;18(12):1239–46. 12. Olayinka OA, Achi OT, Amos AO, Chiedu EM. Awareness and barriers to utilization of maternal health care services among reproductive women in Amassoma community, Bayelsa State. Int J Nurs Midwifery. 2014;6(1):10–15. doi:10.5897/ijnm2013.0108. Accessed 10 Feb 2015. 13. Bakeera SK, Wamala SP, Galea S, State A, Peterson S, Pariyo GW. Community perceptions and factors influencing utilisation of health services in Uganda. Int J Equity Health. 2009;8(25. Retrieved from doi: 10.1186/1475-9276-8-25) Accessed on February 17 2015 14. Otiniano A. D., Muthengi, E., Wakeel, F., Doan, L. C., Ramos D. E. (2006). Perceived Barriers to Preconception Care: Findings from Los Angeles Mommy and Baby (LAMB) Survey. Retrieved from http://publichealth.lacounty.gov/mch/lamb/Results/2007Results/APHABarrierstoPreconception%20Care_101208.pdf. Accessed 3 Jan 2015. 15. Jack BW, Culpepper L. Preconception care. J Family Pract. 1991;32(3):306–15. 16. Okigbo C. Provider education: key to improving young women’s use of reproductive health services in urban Nigeria. Population Reference Bureau (PRB). Policy Fellows Working Papers Series; 2014. Retrieved from http://www.prb.org/pdf14/provider-education-in-nigeria.pdf. Accessed 30 Oct 2016. 17. Bronstein, J. M., Felix, H. C., Bursac, Z., Stewart, M. K., Foushee, H. R., & Klapow, J. (2012). Providing general and preconception health care to low-income women in family planning settings: perception of providers and clients. Maternal and Child. 18. Bayrami R, Roudsari R.L, Hamid Allahverdipour H, Mojgan Javadnoori M, Habibollah Esmaily H. Experiences of women regarding gaps in preconception care services in the Iranian reproductive health care system: a qualitative study. Electron Physician. 2016;8(11):3279–88. 19. Kasim R, Draman N, Kadir AA. Knowledge , Attitudes and Practice of Preconception Care among Women Attending Maternal Health Clinic in Kelantan. 2016;8(4):57–68. 20. M’hamdi, H. I., van Voorst, S. F., Pinxten, W., Hilhorst, M. T., & Steegers, E. A. P. (2016). Barriers in the uptake and delivery of preconception care: exploring the views of care providers. Matern Child Health J, 21(1), 1–8. Retrieved from doi:10.1007/s10995-016-2089-7 21. Ojukwu O, Patel D, Stephenson J, Howden B, Shawe J. General practitioners’ knowledge, attitudes and views of providing preconception care: a qualitative investigation. Ups J Med Sci. 2016;121(4):256–63. Retrieved from doi: 10.1080/03009734.2016.1215853 View ArticlePubMed CentralGoogle Scholar 22. Mazza D, Chapman A. Improving the uptake of preconception care and periconceptional folate supplementation: what do women think? BMC Public Health. 2010;10(1):786. Retrieved from https://doi.org/10.1186/1471-2458-10-786 23. Tuomainen H, Cross-Bardell L, Bhoday M, Qureshi N, Kai J. Opportunities and challenges for enhancing preconception health in primary care: qualitative study with women from ethnically diverse communities. BMJ Open. 2013;3(7):1–10. 24. Van der Zee B, de Beaufort ID, Steegers EAP, Denktaş S. Perceptions of preconception counselling among women planning a pregnancy: a qualitative study. Fam Pract. 2013;30(3):341–6. 25. Rosliza AM, Majdah M. Male participation and sharing of responsibility in strengthening family planning activities in Malaysia. Malays J Public Health Med. 2010;10(1):23–7. 26. Singh, D., Lample, M., & Earnest, J. (2014). The involvement of men in maternal health care: cross-sectional, pilot case studies from Maligita and Kibibi, Uganda. Reproductive Health, 11(1), 68. Retrieved February 8, 2015 from the World Wide Web doi:10.1186/1742-4755-11-68 27. Narang, H., & Singhal, S. (2013). Men as partners in maternal health: an analysis of male awareness and attitude. International Journal of Reproduction, Contraception, Obstetrics and Gynecology, 2(3), 388. Retrieved January 4, 2015 from the World Wide Web doi: 10.5455/2320-1770.ijrcog20130925 28. Kabagenyi A, Jennings L, Reid A, Nalwadda G, Ntozi J, Atuyambe L. Barriers to male involvement in contraceptive uptake and reproductive health services: a qualitative study of men and women’s perceptions in two rural districts in Uganda. Reprod Health. 2014;11(1):21. Retrieved from doi: 10.1186/1742-4755-11-21. Accessed on January 10, 2015 29. Murphy P, Phillips G, Hall A, Brooks S. Women’s Health Stats and Facts. [Fact sheet]. 2011. Retrieved from http://www.acog.org//media/NewsRoom/MediaKit.pdf. 30. Tokunbo O, Abimbola O, Polite I, Gbemiga O. Awareness and perception of preconception care among health workers in Ahmadu Bello University teaching university, Zaria. Trop J Obstet Gynaecol. 2016;33(2):149. Retrieved from https://doi.org/10.4103/0189-5117.192215 31. Dehne KL, Riedner G. Sexually transmitted infections among adolescents: the need for adequate health services. Reprod Health Matters. 2001;9(17):170–83. 32. Ghafari M, Shamsuddin K, Amiri M. Barriers to utilization of health services: perception of postsecondary school Malaysian urban youth. Int J Prev Med. 2014;5(7):805–6. 33. Temel S, Birnie E, Sonneveld HM, Voorham AJJ, Bonsel GJ, Steegers EAP, Denktaş S. Determinants of the intention of preconception care use: lessons from a multi-ethnic urban population in the Netherlands. Int J Pub Health. 2013;58(2):295–304. 34. Chiang C, Labeeb SA, Higuchi M, Mohamed AG, Aoyama A. Barriers to the use of basic health services among women in rural southern Egypt (upper Egypt). Nagoya J Med Sci. 2013;75(3–4):225–31. 35. Scheppers E, van Dongen E, Dekker J, Geertzen J, Dekker J. Potential barriers to the use of health services among ethnic minorities: a review. Fam Pract. 2006;23(3):325–48.
(1)
[1] M. Abd Hamid and S. Mohd Isa, “Exploring the sustainable tourism practices among tour operators in Malaysia,” J. Sustain. Sci. Manag, vol. 15, pp. 68–80. [2] A. Nurhuda, “Benchmarking and Exploring Educational Tourism in Malaysia,” J. English Lang. Teaching, Lit. Cult., vol. 2, no. 1, pp. 1–11. [3] A. K. Patwary, “Examining environmentally responsible behaviour, environmental beliefs and conservation commitment of tourists: a path towards responsible consumption and production in tourism,” Environ. Sci. Pollut. Res., vol. 30, no. 3, pp. 5815–5824. [4] S. Kumar and N. Kumar, “Fuzzy time series-based method for wheat production forecasting,” Int. J. Comput. Appl., vol. 44, no. 12, pp. 5–10. [5] P. Arumugam and V. Anithakumari, “Fuzzy time series method for forecasting Taiwan export data,” Int. J. Eng. Trends Technol., vol. 4, no. 8, pp. 3342–3347. [6] N. F. Rahim, M. Othman, R. Sokkalingam, and E. A. Kadir, “Forecasting crude palm oil prices using fuzzy rule-based time series method,” IEEE Access, vol. 6, pp. 32216–32224. [7] H. L. Wu, “Opportunity and Business Policies and its Impact on Tourism in Malaysia,” Soc. Sci. J. Adv. Res., vol. 3, no. 1, pp. 10–15.
(1)
1.Mackay J, Erikson M, Ross H. The tobacco atlas. New York, NY: The American Cancer Society. Inc; 20132.Gowing LR, Ali RL, Allsop S, Marsden J, Turf EE, West R, et al. Global statistics on addictive behaviours: 2014 status report. Addiction. 2015;110(6):904-19.https://doi.org/10.1111/add.128993.Yahya NA, Saub R, Md Nor M. A randomized control trial of smoking cessation interventions conducted by dentists. Sains Malaysiana. 2018;47(1):131-40.https://doi.org/10.17576/jsm-2018-4701-16 J. Public Heal. Pharm.5(1): 11-21Page | 194.Abildgaard JS, Saksvik P, Nielsen K. How to Measure the Intervention Process? An Assessment of Qualitative and Quantitative Approaches to Data Collection in the Process Evaluation of Organizational Interventions. Front Psychol. 2016;7:1380.https://doi.org/10.3389/fpsyg.2016.013805.World Health Organization. WHO report on the global tobacco epidemic, 2011: warning about the dangers of tobacco: Geneva: World Health Organization; 2011. 6.Lim KH, Teh CH, Pan S, Ling MY, Yusoff MFM, Ghazali SM, et al. Prevalence and factors associated with smoking among adults in Malaysia: Findings from the National Health and Morbidity Survey (NHMS) 2015. Tob Induc Dis. 2018;16:01.https://doi.org/10.18332/tid/821907.Arrazola RA, Ahluwalia IB, Pun E, de Quevedo IG, Babb S, Armour BS. Current tobacco smoking and desire to quit smoking among students aged 13–15 years—global youth tobacco survey, 61 countries, 2012–2015. MMWR Morbidity and mortality weekly report. 2017;66(20):5338.World Health Organization. Global Youth Tobacco Survey (GYTS) Indonesia Report, 2014. New Delhi: WHO Regional Office for South-East Asia; 2015 2015. 9.Aris T, Abd Ghani A, MF MY, Robert T, Tee G, NH MH, et al. Tobacco & E-cigarette Survey Among Malaysian Adolescent (TECMA) 2016. 201610.West R. Tobacco smoking: Health impact, prevalence, correlates and interventions. Psychology & health. 2017;32(8):1018-36.https://doi.org/10.1080/08870446.2017.132589011.Papadakis S, Vaiopoulou J, Kalogiannakis M, Stamovlasis D. Developing and exploring an evaluation tool for educational apps (ETEA) targeting kindergarten children. Sustainability. 2020;12(10):4201.https://doi.org/10.3390/su1210420112.NCSCT. Stop Smoking Service Client Satisfaction Questionnaire. England and Wales: National Centre for Smoking Cessation and Training,; 2021. 13.Bteddini D, Afifi R, Haddad P, Jbara L, Alaouie H, Al Aridi L, et al. Process evaluation and challenges of implementation of a school-based waterpipe tobacco smoking prevention program for teens in Lebanon. Tob Prev Cessat. 2017;3:11.https://doi.org/10.18332/tpc/7008714.Saunders RP, Evans MH, Joshi P. Developing a process-evaluation plan for assessing health promotion program implementation: a how-to guide. Health Promot Pract. 2005;6(2):134-47.https://doi.org/10.1177/152483990427338715.Darker CD, Burke E, Castello S, O’Sullivan K, O’Connell N, Vance J, et al. A process evaluation of ‘We Can Quit’: a community-based smoking cessation intervention targeting women from areas of socio-disadvantage in Ireland. BMC public health. 2022;22(1):1528.https://doi.org/10.1186/s12889-022-13957-516.European Union. The use of the 5 & 3A's protocol 2022 [Available from: https://smokingcessationtraining.com/contents/use-5-3-protocol-smoking-cessation/.17.Utap MS, Tan C, Su AT. Effectiveness of a brief intervention for smoking cessation using the 5A model with self-help materials and using self-help materials alone: A randomised controlled trial. Malays Fam Physician. 2019;14(2):2-918.Wee LH, West R, Tee GH, Yeap L, Chan CMH, Ho BK, et al. Effectiveness of training stop-smoking advisers to deliver cessation support to the UK national proposed standard versus usual care in Malaysia: a two-arm cluster-randomized controlled trial. Addiction. 2021;116(8):2150-61.https://doi.org/10.1111/add.1534619.Krebs P, Norcross J, Nicholson J, Prochaska J. Stages of Change. 2019. p. 296-328.https://doi.org/10.1093/med-psych/9780190843960.003.001020.Limbani F, Goudge J, Joshi R, Maar MA, Miranda JJ, Oldenburg B, et al. Process evaluation in the field: global learnings from seven implementation research hypertension projects in low-and middle-income countries. BMC Public Health. 2019;19(1):953.https://doi.org/10.1186/s12889-019-7261-821.Smith JD, Li DH, Rafferty MR. The Implementation Research Logic Model: A method for planning, executing, reporting, and synthesizing implementation projects. Implementation Science. 2020;15(1):84.https://doi.org/10.1186/s13012-020-01041-822.Kneale D, Thomas J, Harris K. Developing and Optimising the Use of Logic Models in Systematic Reviews: Exploring Practice and Good Practice in the Use of Programme Theory in Reviews. PLoS One. 2015;10(11):e0142187-e.https://doi.org/10.1371/journal.pone.0142187 Community-Based Tobacco Smoking Cessation Programmes Among Adolescents in Sarawak: Lesson Learned from Process EvaluationPage | 2023.Parsons J, Gokey C, Thornton M. Indicators of inputs, activities, outputs, outcomes and impacts in security and justice programming. Vera Institute of Justice. 201324.Mowbray CT, Holter MC, Teague GB, Bybee D. Fidelity Criteria: Development, Measurement, and Validation. The American Journal of Evaluation. 2003;24(3):315-40.https://doi.org/10.1016/S1098-2140(03)00057-225.Rowbotham S, Conte K, Hawe P. Variation in the operationalisation of dose in implementation of health promotion interventions: insights and recommendations from a scoping review. Implementation Science. 2019;14(1):56.https://doi.org/10.1186/s13012-019-0899-x26.Binnie J, Boden Z. Non-attendance at psychological therapy appointments. Mental Health Review Journal. 2016;21(3):231-48.https://doi.org/10.1108/MHRJ-12-2015-003827.IBM SPSS. IBM SPSS Statistics for Windows. 28 ed. Armonk, New York, USA: IBM SPSS; 202128.Nam CS, Ross A, Ruggiero C, Ferguson M, Mui Y, Lee BY, et al. Process Evaluation and Lessons Learned From Engaging Local Policymakers in the B'More Healthy Communities for Kids Trial. Health Educ Behav. 2019;46(1):15-23.https://doi.org/10.1177/109019811877832329.Haynes A, Brennan S, Redman S, Williamson A, Gallego G, Butow P. Figuring out fidelity: a worked example of the methods used to identify, critique and revise the essential elements of a contextualised intervention in health policy agencies. Implement Sci. 2016;11:23.https://doi.org/10.1186/s13012-016-0378-630.Åvitsland A, Ohna SE, Dyrstad SM, Tjomsland HE, Lerum Ø, Leibinger E. The process evaluation of a school-based physical activity intervention: Influencing factors and potential consequences of implementation. Health Education. 2020;120(2):121-39.https://doi.org/10.1108/HE-01-2020-000431.Puschel K, Thompson B, Coronado G, Huang Y, Gonzalez L, Rivera S. Effectiveness of a brief intervention based on the '5A' model for smoking cessation at the primary care level in Santiago, Chile. Health promotion international. 2008;23(3):240-50.https://doi.org/10.1093/heapro/dan01032.Tesema AA, Reta EY, Seid SS. Knowledge on Active Participation in Classroom among Nursing and Midwifery Students. Journal of Education and Learning (EduLearn). 2020;14(3):352-61.https://doi.org/10.11591/edulearn.v14i3.1564533.Holla N, Brantley E, Ku L. Physicians' Recommendations to Medicaid Patients About Tobacco Cessation. Am J Prev Med. 2018;55(6):762-9.https://doi.org/10.1016/j.amepre.2018.07.01334.Office of United States Public Health Service. Interventions for Smoking Cessation and Treatments for Nicotine Dependence. Smoking Cessation: A Report of the Surgeon General [Internet]. 202035.Bee Kiau H, Nor Azlin A, Wong Yi Wah E, Zarihah MZ, Rasimah I, Salmah N, et al. Training Module for Health Care Providers Management in quit smoking programme. 1 ed: Bahagian Pembangunan Kesihatan Keluarga; 2015 2015. 146 p36.Margolis KA, Bernat JK, Keely O’Brien E, Delahanty JC. Online Information About Harmful Tobacco Constituents: A Content Analysis. Nicotine & Tobacco Research. 2017;19(10):1209-15.https://doi.org/10.1093/ntr/ntw22037.Dawood OT, Rashan MA, Hassali MA, Saleem F. Knowledge and perception about health risks of cigarette smoking among Iraqi smokers. J Pharm Bioallied Sci. 2016;8(2):146-51.https://doi.org/10.4103/0975-7406.17173838.Leshargie CT, Alebel A, Kibret GD, Birhanu MY, Mulugeta H, Malloy P, et al. The impact of peer pressure on cigarette smoking among high school and university students in Ethiopia: A systemic review and meta-analysis. PLoS One. 2019;14(10):e0222572.https://doi.org/10.1371/journal.pone.022257239.Mena JA, Ampadu GG, Prochaska JO. The Influence of Engagement and Satisfaction on Smoking Cessation Interventions: A Qualitative Study. Subst Use Misuse. 2017;52(3):322-31.https://doi.org/10.1080/10826084.2016.122576540.Ministry of Health Malaysia. Clinical practice guidelines on treatment of tobacco use disorder. Kuala Lumpur: Tobacco Control Unit & FCTC Secretariat Non-Communicable Disease Section Disease Control Division 2016. Contract No.: MOH/P/PAK/331.16(GU) J. Public Heal. Pharm.5(1): 11-21Page | 2141.Nowak M, Papiernik M, Mikulska A, Czarkowska-Paczek B. Smoking, alcohol consumption, and illicit substances use among adolescents in Poland. Subst Abuse Treat Prev Policy. 2018;13(1):42.https://doi.org/10.1186/s13011-018-0179-942.Sealock T, Sharma S. Smoking Cessation: StatPearls Publishing, Treasure Island (FL); 2018 2021. 43.Kim DJ, Kim SJ. Impact of nearby smoking on adolescent smoking behavior in Korea. Medicine. 2018;97(45):e13125.https://doi.org/10.1097/MD.000000000001312544.van den Brand FA, Nagtzaam P, Nagelhout GE, Winkens B, van Schayck CP. The Association of Peer Smoking Behavior and Social Support with Quit Success in Employees Who Participated in a Smoking Cessation Intervention at the Workplace. International Journal of Environmental Research and Public Health. 2019;16(16):2831.https://doi.org/10.3390/ijerph1616283145.Soulakova JN, Tang CY, Leonardo SA, Taliaferro LA. Motivational Benefits of Social Support and Behavioural Interventions for Smoking Cessation. J Smok Cessat. 2018;13(4):216-26.https://doi.org/10.1017/jsc.2017.2646.Patten CA, Clinic M, Goggin K, Harris KJ, Richter K, Williams K, et al. Relationship of Autonomy Social Support to Quitting Motivation in Diverse Smokers. Addiction research & theory. 2016;24(6):477-82.https://doi.org/10.3109/16066359.2016.117081547.Chean KY, Goh LG, Liew KW, Tan CC, Choi XL, Tan KC, et al. Barriers to smoking cessation: a qualitative study from the perspective of primary care in Malaysia. BMJ Open. 2019;9(7):e025491.https://doi.org/10.1136/bmjopen-2018-02549148.Estreet A, Apata J, Kamangar F, Schutzman C, Buccheri J, O'Keefe AM, et al. Improving Participants' Retention in a Smoking Cessation Intervention Using a Community-based Participatory Research Approach. Int J Prev Med. 2017;8:106.https://doi.org/10.4103/ijpvm.IJPVM_303_17
(1)
1. Makmud MZH et al (2018) Influence of conductive and semi-conductive nanoparticles on the dielectric response of natural ester-based nanofluid insulation. Energies 11(2) 2. Mohamad NA, Azis N, Jasni J (2019) Impact of Fe3O4, CuO and Al2O3 on the AC breakdown voltage of palm oil and coconut oil in the presence of CTAB. Energies 12 3. Oparanti SO et al (2020) Dielectric characterization of palm kernel oil ester-based insulating nanofluid, pp 225–228 4. Sitorus HBH et al (2016) Jatropha curcas methyl ester oil obtaining as vegetable insulating oil. IEEE Trans Dielectr Electr Insul 23(4):2021–2028 5. Abdi S et al (2011) Influence of artificial thermal aging on transformer oil properties. Electr Power Components Syst 39(15):1701–1711 6. Fasehullah M, Wang F, Jamil S (2022) Significantly elevated AC dielectric strength of synthetic ester oil-based nanofluids by varying morphology of CdS nano-additives. J Mol Liq 353:118817 7. Maharana M et al (2019) Condition assessment of aged ester-based nanofluid through physicochemical and spectroscopic measurement. IEEE Trans Instrum Meas 68(12):4853–4863 8. Hariram V et al (2016) Analyzing the fatty acid methyl esters profile of palm kernel biodiesel using GC/MS, NMR and FTIR techniques. J Chem Pharm Sci 9(4):3122–3128 9. Khelifa H, Beroual A, Vagnon E (2023) Effect of conducting and semi-conducting nanoparticles on the AC breakdown voltage and electrostatic charging tendency of synthetic ester. IEEE Trans Dielectr Electr Insul
(1)
[1] Malhotra, V.M, “Making Concrete Greener with Fly Ash”, Concrete International, Vol.21, No.5, May 1999, pp.61-66 [2] Sololev, K., (2009). Engineering of Silica nano particles for optimal performance in nano cement based materials: Nano Technology in Construction, Proceedings of the NICOM3, Prague, 139-148. [3] V . Ershadi; T. Ebadi; A.R Rabano; L. Ershadi; H. Soltanian. (2011). The Effect of Nanosilica on Cement Matrix Permeability in Oil Well to Decrease the Pollution of Receptive Environment. International Journal of Environmental Science and Development vol. 2. [4] American Society for Testing and Material (ASTM) C-125, Standard terminology relating to concrete and concrete aggregates. [5] Larsen, G. “Microscopic Point Measuring: A Quantitative Petrographic Method of Determining the Ca(OH)2 Content of the Cement Paste in Concrete”. Magazine of Concrete Research. 1961. [6] Ylemen, E.R., (2013) Early Hydration of Portland Cement – An Infrared Spectroscopy Perspective Complemented by Calorimeter and Scanning Electron Microscopy. Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden 2013. [7] Conjeand, M., and Boyer, H. (1980), Some Possibilities of Raman Microprobe in Cement Chemistry, Cem. Concr. Res., 10:61.
(1)
[1] Maloney, John, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn Eastmond. "The scratch programming language and environment." ACM Transactions on Computing Education (TOCE) 10, no. 4 (2010): 1-15. https://doi.org/10.1145/1868358.1868363 [2] Harvey, Brian, and Jens Mönig. "Bringing “no ceiling” to scratch: Can one language serve kids and computer scientists." Constructionism 2010, Paris. 2010. [3] Fraser, Neil. "Ten things we've learned from Blockly." In 2015 IEEE Blocks and Beyond Workshop (Blocks and Beyond), pp. 49-50. IEEE, 2015. https://doi.org/10.1109/BLOCKS.2015.7369000 [4] Goode, Joanna, Gail Chapman, and Jane Margolis. "Beyond curriculum: The exploring computer science program." ACM Inroads 3, no. 2 (2012): 47-53. https://doi.org/10.1145/2189835.2189851 [5] Astrachan, Owen, and Amy Briggs. "The CS principles project." ACM Inroads 3, no. 2 (2012): 38-42. https://doi.org/10.1145/2189835.2189849 [6] Weintrop, David. "Block-based programming in computer science education." Communications of the ACM 62, no. 8 (2019): 22-25. https://doi.org/10.1145/3341221 [7] Brennan, Karen, and Mitchel Resnick. "New frameworks for studying and assessing the development of computational thinking." In Proceedings of the 2012 Annual Meeting of the American Educational Research Association, Vancouver, Canada, vol. 1, p. 25. 2012. [8] Zhang, LeChen, and Jalal Nouri. "A systematic review of learning computational thinking through Scratch in K-9." Computers & Education 141 (2019): 103607. https://doi.org/10.1016/j.compedu.2019.103607 [9] Moreno-León, Jesús, and Gregorio Robles. "Code to learn with Scratch? A systematic literature review." In 2016 IEEE Global Engineering Education Conference (EDUCON), pp. 150-156. IEEE, 2016. https://doi.org/10.1109/EDUCON.2016.7474546 [10] Moher, David, Alessandro Liberati, Jennifer Tetzlaff, Douglas G. Altman, and T. PRISMA Group*. "Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement." Annals of Internal Medicine 151, no. 4 (2009): 264-269. https://doi.org/10.7326/0003-4819-151-4-200908180-00135 [11] Erümit, Ali Kürşat. "Effects of different teaching approaches on programming skills." Education and Information Technologies 25, no. 2 (2020): 1013-1037. https://doi.org/10.1007/s10639-019-10010-8 [12] Bowden, Helen Melander. "Problem-solving in collaborative game design practices: epistemic stance, affect, and engagement." Learning, Media and Technology 44, no. 2 (2019): 124-143. https://doi.org/10.1080/17439884.2018.1563106 [13] Budinski, Natalija, Zsolt Lavicza, Kristof Fenyvesi, and Miroslav Novta. "Mathematical and Coding Lessons based on creative origami activities." Open Education Studies 1, no. 1 (2019): 220-227. https://doi.org/10.1515/edu-2019- 0016 [14] Kabak, Kadir, and Agah Tuğrul Korucu. "The effect of students' developing their own digital games on their academic achievement and attitudes towards for English lessons." Participatory Educational Research 8, no. 2 (2021): 74-93. https://doi.org/10.17275/per.21.30.8.2 [15] Chiang, Feng-kuang, and Lian Qin. "A Pilot study to assess the impacts of game-based construction learning, using scratch, on students’ multi-step equation-solving performance." Interactive Learning Environments 26, no. 6 (2018): 803-814. https://doi.org/10.1080/10494820.2017.1412990 [16] Calder, Nigel. "Using Scratch to facilitate mathematical thinking." Waikato Journal of Education 23, no. 2 (2018): 43-58. https://doi.org/10.15663/wje.v23i2.654 [17] da Silva Pereira, Elenise, and Leticia Azambuja Lopes. "Electronic game creation through scratch software: creative and collaborative learning fostering STEAM practices." Acta Scientiae 22, no. 3 (2020): 28-46. https://doi.org/10.17648/acta.scientiae.5535 [18] Estevez, Julian, Gorka Garate, and Manuel Graña. "Gentle introduction to artificial intelligence for high-school students using scratch." IEEE Access 7 (2019): 179027-179036. https://doi.org/10.1109/ACCESS.2019.2956136 [19] Iskrenovic-Momcilovic, Olivera. "Improving geometry teaching with scratch." International Electronic Journal of Mathematics Education 15, no. 2 (2020): em0582. https://doi.org/10.29333/iejme/7807 [20] Ntourou, Vassiliki, Michail Kalogiannakis, and Sarantos Psycharis. "A study of the impact of Arduino and Visual Programming In self-efficacy, motivation, computational thinking and 5th grade students’ perceptions on Electricity." Eurasia Journal of Mathematics, Science and Technology Education 17, no. 5 (2021): em1960. https://doi.org/10.29333/ejmste/10842 [21] Pou, Albert Valls, Xavi Canaleta, and David Fonseca. "Computational thinking and educational robotics integrated into project-based learning." Sensors 22, no. 10 (2022): 3746. https://doi.org/10.3390/s22103746 [22] Rodríguez-Martínez, José Antonio, José Antonio González-Calero, and José Manuel Sáez-López. "Computational thinking and mathematics using Scratch: an experiment with sixth-grade students." Interactive Learning Environments 28, no. 3 (2020): 316-327. https://doi.org/10.1080/10494820.2019.1612448 [23] Jiang, Bo, and Zhixuan Li. "Effect of Scratch on computational thinking skills of Chinese primary school students." Journal of Computers in Education 8, no. 4 (2021): 505-525. https://doi.org/10.1007/s40692-021-00190-z [24] Fagerlund, Janne, Päivi Häkkinen, Mikko Vesisenaho, and Jouni Viiri. "Computational thinking in programming with Scratch in primary schools: A systematic review." Computer Applications in Engineering Education 29, no. 1 (2021): 12-28. https://doi.org/10.1002/cae.22255 [25] P. Rose, Simon, M. P. Jacob Habgood, and Tim Jay. "Designing a programming game to improve children’s procedural abstraction skills in scratch." Journal of Educational Computing Research 58, no. 7 (2020): 1372-1411. https://doi.org/10.1177/0735633120932871 [26] Allsop, Yasemin. "Assessing computational thinking process using a multiple evaluation approach." International Journal of Child-Computer Interaction 19 (2019): 30-55. https://doi.org/10.1016/j.ijcci.2018.10.004 [27] Çakiroğlu, Ünal, S. Sude Suiçmez, Yılmaz B. Kurtoğlu, Ayhan Sari, Suheda Yildiz, and Mücahit Öztürk. "Exploring perceived cognitive load in learning programming via Scratch." Research in Learning Technology 26 (2018). https://doi.org/10.25304/rlt.v26.1888 [28] Hainey, Thomas, Gavin Baxter, and Amanda Ford. "An evaluation of the introduction of games-based construction learning in upper primary education using a developed game codification scheme for scratch." Journal of Applied Research in Higher Education 12, no. 3 (2020): 377-402. https://doi.org/10.1108/JARHE-02-2018-0031 [29] Mladenović, Monika, Saša Mladenović, and Žana Žanko. "Impact of used programming language for K-12 students' understanding of the loop concept." International Journal of Technology Enhanced Learning 12, no. 1 (2020): 79- 98. https://doi.org/10.1504/IJTEL.2020.103817 [30] Hsiao, Hsien-Sheng, Yi-Wei Lin, Kuen-Yi Lin, Chien-Yu Lin, Jheng-Han Chen, and Jyun-Chen Chen. "Using robot-based practices to develop an activity that incorporated the 6E model to improve elementary school students’ learning performances." Interactive Learning Environments 30, no. 1 (2022): 85-99. https://doi.org/10.1080/10494820.2019.1636090 [31] Durak, Hatice Yildiz. "The effects of using different tools in programming teaching of secondary school students on engagement, computational thinking and reflective thinking skills for problem solving." Technology, Knowledge and Learning 25, no. 1 (2020): 179-195. https://doi.org/10.1007/s10758-018-9391-y [32] Chun, Seok-Ju, Yunju Jo, and Seungmee Lee. "The Effect of Programming Classes with Tangible Scratch Blocks on the Programming Interest of 6 th Grade Elementary School Students." International Journal of Information and Education Technology 11, no. 9 (2021): 405-409. https://doi.org/10.18178/ijiet.2021.11.9.1542 [33] Iskrenovic-Momcilovic, Olivera. "Pair programming with scratch." Education and Information Technologies 24 (2019): 2943-2952. https://doi.org/10.1007/s10639-019-09905-3 [34] Wei, Xuefeng, Lin Lin, Nanxi Meng, Wei Tan, and Siu-Cheung Kong. "The effectiveness of partial pair programming on elementary school students’ computational thinking skills and self-efficacy." Computers & Education 160 (2021): 104023. https://doi.org/10.1016/j.compedu.2020.104023
(1)
[1] M. A. Nazir, A. Al-Ansari, N. Abbasi, and K. Almas, "Global prevalence of tobacco use in adolescents and its adverse oral health consequences," (in eng), Open Access Maced J Med Sci, vol. 7, no. 21, pp. 3659-3666, 2019, doi: 10.3889/oamjms.2019.542. [2] Institute for Public Health, "Malaysian burden of disease and injury study 2009–2014," MOH/S/IKU/F4.17(TR), 2017. [Online]. Available: https://iku.moh.gov.my/images/ IKU/Document/REPORT/BOD/BOD2009-2014.pdf [3] K. H. Lim et al., "Smoking among school-going adolescents in selected secondary schools in Peninsular Malaysia- findings from the Malaysian Adolescent Health Risk Behaviour (MyaHRB) study," (in eng), Tob Induc Dis, vol. 15, pp. 9-9, 2017, doi: 10.1186/s12971-016-0108-5. [4] T. Talip, N. Kifli, Z. Murang, and L. Naing, "Smoking initiation and continuation - A qualitativestudy among Bruneian male adolescents," Asian Pacific Journal of Cancer Prevention, vol. 17, no. 7, pp. 3533-3540, 2016, doi: 10.14456/apjcp.2016.130/APJCP.2016.17.7.3533. [5] J. D. Sargent, J. Gabrielli, A. Budney, S. Soneji, and T. A. Wills, "Adolescent smoking experimentation as a predictor of daily cigarette smoking," Drug and Alcohol Dependence, vol. 175, pp. 55-59, 2017, doi:https://doi.org/10.1016/j.dru galcdep.2017.01.038. [6] F. R. M. Ali, I. T. Agaku, S. R. Sharapova, E. A. Reimels, and D. M. Homa, "Onset of Regular Smoking Before Age 21 and Subsequent Nicotine Dependence and Cessation Behavior Among US Adult Smokers," Prev Chronic Dis, vol. 17, p. E06, 2020, doi: 10.5888/pcd17.190176. [7] L. Dierker and E. Donny, "The role of psychiatric disorders in the relationship between cigarette smoking and DSM-IV nicotine dependence among young adults," Nicotine & Tobacco Research: Official Journal of the Society for Research on Nicotine and Tobacco, vol. 10, no. 3, pp. 439-446, 2008, doi: 10.1080/14622200801901898. [8] M. C. Fiore, "US public health service clinical practice guideline: treating tobacco use and dependence," (in eng), Respir Care, vol. 45, no. 10, pp. 1200-1262, 2000. [Online]. Available: http://europepmc.org/abstract/MED/11054899. [9] M. C. Fiore and T. B. Baker, "Clinical practice. Treating smokers in the health care setting," (in eng), N Engl J Med, vol. 365, no. 13, pp. 1222-1231, 2011, doi: 10.1056/NEJMcp1101512. [10] T. Coleman, "ABC of smoking cessation. Use of simple advice and behavioural support," (in eng), BMJ, vol. 328, no. 7436, pp. 397-399, 2004, doi: 10.1136/bmj.328.7436.3 97. [11] H. A. Lando, D. Hennrikus, R. Boyle, D. Lazovich, E. Stafne, and B. Rindal, "Promoting tobacco abstinence among older adolescents in dental clinics," Journal of Smoking Cessation, vol. 2, no. 1, pp. 23-30, 2007, doi: 10.1375/jsc.2.1.23. [12] G. M. Dawson, J. M. Noller, and J. C. Skinner, "Models of smoking cessation brief interventions in oral health," (in eng), N S W Public Health Bull, vol. 24, no. 3, pp. 131-134, 2013, doi: 10.1071/NB12090. [13] A. H. Nur Atikah et al., "Factors associated with different smoking statuses among Malaysian adolescent smokers: a cross-sectional study," BMC Public Health, vol. 19, no. 4, p. 579, 2019, doi: 10.1186/s12889-019-6857-3. [14] R. J. Hayes and L. H. Moulton, Cluster randomised trials. Chapman and Hall/CRC, 2017. [15] A. K. Roble, M. O. Osman, O. P. Lathwal, and A. A. Aden, "Prevalence of cigarette smoking and associated factors among adolescents in Eastern Ethiopia, 2020," (in eng), Subst Abuse Rehabil, vol. 12, pp. 73-80, 2021, doi: 10.2147/SAR.S331349. [16] M. S. Utap, C. Tan, and A. T. Su, "Effectiveness of a brief intervention for smoking cessation using the 5A model with self-help materials and using self-help materials alone: A randomised controlled trial," (in eng), Malays Fam Physician, vol. 14, no. 2, pp. 2-9, 2019. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6818691/ pdf/MFP-14-2-2.pdf. [17] L. H. Wee et al., "Effectiveness of training stop-smoking advisers to deliver cessation support to the UK national proposed standard versus usual care in Malaysia: a two-arm cluster-randomized controlled trial," (in en), Addiction, vol. 116, no. 8, pp. 2150-2161, 2021, doi: 10.1111/add.15346. [18] J. Hartmann-Boyce et al., "Behavioural interventions for smoking cessation: an overview and network meta-analysis," (in eng), The Cochrane database of systematic reviews, vol. 1, p. Cd013229, 2021, doi: 10.1002/14651858.CD013229.pub2. [19] F. Limbani et al., "Process evaluation in the field: Global learnings from seven implementation research hypertension projects in low-and middle-income countries," (in eng), BMC Public Health, vol. 19, no. 1, p. 953, 2019, doi: 10.1186/s12889-019-7261-8. [20] J. Binnie and Z. Boden, "Non-attendance at psychological therapy appointments," Mental Health Review Journal, vol. 21, pp. 231–248, 2016, doi: 10.1108/MHRJ-12-2015-0038. [21] J. H. Hwang and S.-W. Park, "Age at smoking initiation and subsequent smoking among Korean adolescent smokers," (in eng), J Prev Med Public Health, vol. 47, no. 5, pp. 266-272, 2014, doi: 10.3961/jpmph.14.032. [22] N. Walker et al., "Use of e-cigarettes and smoked tobacco in youth aged 14-15 years in New Zealand: Findings from repeated cross-sectional studies (2014-19)," (in eng), The Lancet. Public health, vol. 5, no. 4, pp. e204-e212, Apr 2020, doi: 10.1016/s2468-2667(19)30241-5. [23] J. D. Klein et al., "Delivery and impact of a motivational antervention for smoking cessation: A PROS study," (in eng), Pediatrics, vol. 146, no. 4, p. e20200644, 2020, doi: 10.1542/peds.2020-0644. [24] S. E. Jackson et al., "Comparison of trends in self-reported cigarette consumption and sales in England, 2011 to 2018," (in eng), JAMA network open, vol. 2, no. 8, p. e1910161, 2019, doi: 10.1001/jamanetworkopen.2019.10161. [25] P. M. Pradhan and K. Marahatta, "Cross-sectional survey on quitting attempts among adolescent smokers in Dharan, Eastern Nepal," (in eng), Journal of addiction, vol. 2016, p. 6859291, 2016, doi: 10.1155/2016/6859291. [26] Cambridge Dictionary. Motivation [Online] Available: https://dictionary.cambridge.org/dictionary/english/motivat ion [27] A. Kaufmann, E. J. Malloy, and D. A. F. Haaga, "Examining outcome expectancies for smoking vs. abstinence among adult daily smokers," Addictive behaviors, vol. 102, p. 106140, 2020/03/01/ 2020, doi: https://doi.org/10.1016/j.addbeh.2019.106140. [28] N. Al-Sheyab, K. A. Kheirallah, L. J. T. Mangnall, and R. Gallagher, "Agreement between exhaled breath carbon monoxide threshold levels and self-reported cigarette smoking in a sample of male adolescents in Jordan," (in eng), Int J Environ Res Public Health, vol. 12, no. 1, pp. 841-854, 2015, doi: 10.3390/ijerph120100841. [29] IBM Corp, IBM SPSS Statistics for Windows, Version 27.0. Armonk, NY: IBM Corp (in en), 2020. [30] J. Curtis et al., "y-QUIT: Smoking prevalence, engagement, and effectiveness of an individualized smoking cessation intervention in youth with severe mental illness," (in eng), Front Psychiatry, vol. 9, pp. 683-683, 2018, doi: 10.3389/fpsyt.2018.00683. [31] CAMH. "Nicotine dependence."https://www.camh.ca/en/h ealth-info/mental-illness-and-addiction-index/nicotine-dep endence (accessed. [32] N. A. Goriounova and H. D. Mansvelder, "Short- and long-term consequences of nicotine exposure during adolescence for prefrontal cortex neuronal network function," (in eng), Cold Spring Harb Perspect Med, vol. 2, no. 12, pp. a012120-a012120, 2012, doi: 10.1101/cshperspect.a012120. [33] S. D. Mahajan, G. G. Homish, and A. Quisenberry, "Multifactorial etiology of adolescent nicotine addiction: A review of the neurobiology of nicotine addiction and its implications for smoking cessation pharmacotherapy," Frontiers in Public Health, vol. 9, p. 664748, 2021, doi: 10.3389/fpubh.2021.664748. [34] S. M. Colby et al., "Enhanced motivational interviewing versus brief advice for adolescent smoking cessation: Results from a randomized clinical trial," (in eng), Addictive behaviors, vol. 37, no. 7, pp. 817-823, 2012, doi: 10.1016/j.addbeh.2012.03.011. [35] K. L. Chen et al., "Shared decision-making model for adolescent smoking cessation: Pilot cohort study," (in eng), Int J Environ Res Public Health, vol. 18, no. 20, p. 10970, 2021, doi: 10.3390/ijerph182010970. [36] World Health Organization. "Toolkit for delivering the 5A’s and 5R’sbrief tobacco interventions in primary care." https://apps.who.int/iris/bitstream/handle/10665/112835/97 89241506953_eng.pdf (accessed. [37] M. Broszkiewicz and W. Drygas, "How to motivate an unmotivated patient to quit tobacco smoking?," presented at the EuroPRevent 2016, the Scientific Conference of the European Society of Cardiology (ESC) and the European Association of Cardiovascular Prevention and Rehabilitation (EACPR), Sophia Antipolis, France, 2016. [Online]. Available:https://www.researchgate.net/publicati on/305481106. [38] J. Schimmel, N. George, J. Schwarz, S. Yousif, S. Suner, and J. B. Hack, "Carboxyhemoglobin levels induced by cigarette smoking outdoors in smokers," (in eng), Journal of medical toxicology : official journal of the American College of Medical Toxicology, vol. 14, no. 1, pp. 68-73, 2018, doi: 10.1007/s13181-017-0645-1. [39] P. Simon, G. Kong, D. A. Cavallo, and S. Krishnan-Sarin, "Update of adolescent smoking cessation interventions: 2009–2014," Current Addiction Reports, vol. 2, no. 1, pp. 15–23, 2015, doi: https://doi.org/10.1007/s40429-015-004 0-4. [40] H. Bee Kiau et al., Training Module for Health Care Providers Management in quit smoking programme. Bahagian Pembangunan Kesihatan Keluarga, 2015. [41] N. A. Yahya, R. Saub, and M. A. Mohd Nor, "A randomised control trial of smoking cessation interventions conducted by dentists," Sains Malaysiana, vol. 47, no. 1, pp. 131-140, 2018, doi: 10.17576/jsm-2018-4701-16.
(1)
[1] M. A. Nazir, A. Al-Ansari, N. Abbasi, and K. Almas, “Global prevalence of tobacco use in adolescents and its adverse oral health consequences,” Open Access Macedonian Journal of Medical Sciences, vol. 7, no. 21, pp. 3659-3666, 2019, doi: 10.3889/oamjms.2019.542. [2] R. A. Arrazola, I. B. Ahluwalia, E. Pun, I. de Quevedo, S. Babb, and B. S. Armour, “Current tobacco smoking and desire to quit smoking among students aged 13–15 years-global youth tobacco survey, 61 countries, 2012–2015,” MMWR. Morbidity and Mortality Weekly Report, vol. 66, no. 20, pp . 533-537, 2017. doi: 10.15585/mmwr.mm6620a3. [3] I. K. Jallow, J. Britton, and T. Langley, “Prevalence and determinants of tobacco use among young people in The Gambia,” BMJ Glob Health, vol. 2, no. 4, pp. 1-8, 2017, doi: 10.1136/bmjgh-2017-000482. [4] U. Yusoff, M. Diana, O. Azahadi, H. T. Chien, Y. Norzawati, and S. Riyanti, “Burden of premature mortality in Malaysia,” International Journal of Public Health Research, vol. 3, no. 1, pp. 249–256, 2013. [5] Ministry of Health Malaysia, “Clinical practice guidelines on treatment of tobacco use disorder,” 2016. https://www.moh.gov.my/moh/resources/Penerbitan/CPG/Respiratory/CPG_TobacoDisorder.pdf (accessed Feb. 22, 2022). [6] Ministry of Health Malaysia, “Malaysian burden of disease and injury study 2009–2014,” 2017. https://iku.moh.gov.my/images/IKU/Document/REPORT/BOD/BOD2009-2014.pdf (accessed Feb. 22, 2022). [7] K. H. Lim et al., “Source of cigarettes among youth smokers in Malaysia: Findings from the tobacco and e-cigarette survey among Malaysian school adolescents (TECMA),” Tobacco Induced Diseases, vol. 16, no. 51, pp. 1-9, 2018, doi: 10.18332/tid/96297. [8] K. H. Lim et al., “Tobacco use and other aspects related to smoking among school-going adolescents aged 13-15 years in Malaysia: Analysis of three cross-sectional nationally representative surveys in 2003, 2009 and 2016,” Tobacco Induced Diseases, vol. 18, no. 9, pp. 1–10, Sep. 2020, doi: 10.18332/tid/127231. [9] N. A. Goriounova and H. D. Mansvelder, “Short- and long-term consequences of nicotine exposure during adolescence for prefrontal cortex neuronal network function,” Cold Spring Harbor Perspectives in Medicine, vol. 2, no. 12, pp. 1-14, Dec. 2012, doi: 10.1101/cshperspect.a012120. [10] K. H. Lim et al., “Smoking among school-going adolescents in selected secondary schools in Peninsular Malaysia- findings from the Malaysian adolescent health risk behaviour (MyaHRB) study,” Tobacco Induced Diseases, vol. 15, no. 1, pp. 1–8, Jan. 2017, doi: 10.1186/s12971-016-0108-5. [11] Action on Smoking and Health, “Smoking statistics: Who smokes and how much,” 2021. https://ash.org.uk/information-andresources/fact-sheets/smoking-statistics-who-smokes-and-how-much/ (accessed Feb. 22, 2022). [12] World Health Organization, “WHO report on the global tobacco epidemic, 2013: enforcing bans on tobacco advertising, promotion and sponsorship,” 2013. https://www.who.int/publications-detail-redirect/9789241505871 (accessed Feb. 22, 2022). [13] R. West, “Tobacco smoking: Health impact, prevalence, correlates and interventions,” Psychology & Health, vol. 32, no. 8, pp. 1018–1036, Aug. 2017, doi: 10.1080/08870446.2017.1325890. [14] World Health Organization, “Toolkit for delivering the 5A’s and 5R’sbrief tobacco interventions in primary care,” 2014. https://apps.who.int/iris/bitstream/handle/10665/112835/9789241506953_eng.pdf (accessed Feb. 22, 2022). [15] N. A. Yahya, R. Saub, and M. M. Nor, “A randomised control trial of smoking cessation interventions conducted by dentists.,” Sains Malaysiana, vol. 47, no. 1, pp. 131–140, 2018, doi: 10.17576/jsm-2018-4701-16. [16] G. M. Dawson, J. M. Noller, and J. C. Skinner, “Models of smoking cessation brief interventions in oral health.,” New South Wales Public Health Bulletin, vol. 24, no. 3, pp. 131–134, Dec. 2013, doi: 10.1071/NB12090. [17] S. Papadakis et al., “Very brief advice’ (VBA) on smoking in family practice: A qualitative evaluation of the tobacco user’s perspective,” BMC Family Practice, vol. 21, no. 1, pp. 1-11, Jun. 2020, doi: 10.1186/s12875-020-01195-w. [18] J. Hartmann-Boyce, S. C. Chepkin, W. Ye, C. Bullen, and T. Lancaster, “Nicotine replacement therapy versus control for smoking cessation,” Cochrane Database of Systematic Reviews, vol. 5, no. 5, pp. 1-14, May 2018, doi: 10.1002/14651858.CD000146.pub5. [19] M. S. Utap, C. P. L. Tan, and A. S. Ting, “Effectiveness of a brief intervention for smoking cessation using the 5A model with self-help materials and using self-help materials alone: A randomised controlled trial,” Malaysian Family Physician, vol. 14, no. 2, pp. 2–9, 2019. [20] A. K. Roble, M. O. Osman, O. P. Lathwal, and A. A. Aden, “Prevalence of cigarette smoking and associated factors among adolescents in Eastern Ethiopia, 2020,” Substance Abuse and Rehabilitation, vol. 12, pp. 73–80, Oct. 2021, doi: 10.2147/SAR.S331349. [21] M. Siddiq, M. M. Rahman, and M. F. Gahamat, “Correlates of attempts to quit smoking: A hierarchical multiple linear regression analysis,” IIUM Medical Journal Malaysia, vol. 20, no. 3, pp. 19-26, Jul. 2021, doi: 10.31436/imjm.v20i3.1676. [22] M. B. Terra et al., “Convergent validation study of the contemplation ladder for application via telephone in tobacco users,” Jornal Brasileiro de Psiquiatria, vol. 58, no. 3, pp. 143–149, 2009, doi: 10.1590/S0047-20852009000300001. [23] N. Al-Sheyab, K. Kheirallah, L. Mangnall, and R. Gallagher, “Agreement between exhaled breath carbon monoxide threshold levels and self-reported cigarette smoking in a sample of male adolescents in Jordan,” International Journal of Environmental Research and Public Health, vol. 12, no. 1, pp. 841–854, Jan. 2015, doi: 10.3390/ijerph120100841. [24] IBM Corp, IBM SPSS Statistics for Windows, Version 27.0. New York: IBM Corp, 2020. Accessed: Feb. 22, 2022. [Online]. Available: https://www.ibm.com/support/pages/how-cite-ibm-spss-statistics-or-earlier-versions-spss [25] B. Kuntz and T. Lampert, “Educational differences in smoking among adolescents in Germany: what is the role of parental and adolescent education levels and intergenerational educational mobility?,” International Journal of Environmental Research and Public Health, vol. 10, no. 7, pp. 3015–3032, Jul. 2013, doi: 10.3390/ijerph10073015.
(1)
[1] Mansouri, A., et al., 2016. Production of bioethanol from a mixture of agricultural feedstocks: Biofuels characterization. Fuel, 185: 612- 621 DOI: https://doi.org/10.1016/j.fuel.2016.08.008. [2] Sarkar, N., et al., 2012. Bioethanol production from agricultural wastes: An overview. Renewable energy, 37(1): 19-27 DOI: https://doi.org/10.1016/j.renene.2011.06.045. [3] Reitz, R.D. and G. Duraisamy, 2015. Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, 46: 12-71 DOI: https://doi.org/10.1016/j.pecs.2014.05.003. [4] Jothithirumal, B. and E. Jamesgunasekaran, 2012. Combined Impact of Biodiesel and Exhaust Gas Recirculation on NOx Emissions in Di Diesel Engines. Procedia Engineering, 38: 1457- 1466 DOI: https://doi.org/10.1016/j.proeng.2012.06.180. [5] Kumar, M.S., et al., 2019. Combustion, performance and emission analysis of a diesel engine fueled with methyl esters of Jatropha and fish oil with exhaust gas recirculation. Energy Procedia, 160:. 404-411 DOI: https://doi.org/10.1016/j.egypro.2019.02.174. [6] Rajesh kumar, B. and S. Saravanan, 2015.Effect of exhaust gas recirculation (EGR) on performance and emissions of a constant speed DI diesel engine fueled with pentanol/diesel blends. Fuel, 160: 217-226 DOI: https://doi.org/10.1016/j.fuel.2015.07.089. [7] Saleh, H.E., 2009. Effect of exhaust gas recirculation on diesel engine nitrogen oxide reduction operating with jojoba methyl ester. Renewable Energy, 34(10): 2178-2186 DOI: https://doi.org/10.1016/j.renene.2009.03.024. [8] Outlook, B.E. and R. Dudley. 2019BP Energy Outlook: 2019 edition, The Energy Outlook Explores the Forces Shaping the Global Energy Transition Out to 2040 and the Key Uncertainties Surrounding that Transition. BP Energy Outlook 2019 March 2022]; Available from: https://www.bp.com/content/dam/bp/business�sites/en/global/corporate/pdfs/energy-economics/energy�outlook/bp-energy-outlook-2019.pdf. [9] Teoh, Y.H., et al., 2014. Effects of Jatropha biodiesel on the performance, emissions, and combustion of a converted common�rail diesel engine. RSC Advances,. 4(92): 50739-50751 DOI: http://dx.doi.org/10.1039/C4RA08464K. [10] Teoh, Y.H., et al., 2015. Comparative assessment of performance, emissions and combustion characteristics of gasoline/diesel and gasoline/biodiesel in a dual-fuel engine. RSC Advances, 5(88): p. 71608-71619 DOI: http://dx.doi.org/10.1039/C5RA14624K. [11] Asad, U. and M. Zheng, 2014 Exhaust gas recirculation for advanced diesel combustion cycles. Applied Energy,. 123: 242-252 DOI: https://doi.org/10.1016/j.apenergy.2014.02.073. [12] Galloni, E., G. Fontana, and R. Palmaccio, 2013. Effects of exhaust gas recycle in a downsized gasoline engine. Applied Energy, 105: 99-107 DOI: https://doi.org/10.1016/j.apenergy.2012.12.046. [13] Rhodes, D.B. and J.C. Keck, 1985 Laminar burning speed measurements of indolene-air-diluent mixtures at high pressures and temperatures. SAE Technical Paper, DOI: https://doi.org/10.4271/850047. [14] Francqueville, L. and J.-B. Michel, 2014.On the effects of EGR on spark-ignited gasoline combustion at high load. SAE International Journal of Engines, 7(4): 1808-1823 DOI: https://doi.org/10.4271/2014-01-2628. [15] Lattimore, T., et al., 2016 Investigation of EGR effect on combustion and PM emissions in a DISI engine. Applied Energy,. 161: 256-267 DOI: https://doi.org/10.1016/j.apenergy.2015.09.080. [16] Saravanan, S., 2015. Effect of exhaust gas recirculation (EGR) on performance and emissions of a constant speed DI diesel engine fueled with pentanol/diesel blends. Fuel, 160: 217-226 DOI: https://doi.org/10.1016/j.fuel.2015.07.089. [17] Karabektas, M. and M. Hosoz, 2009. Performance and emission characteristics of a diesel engine using isobutanol–diesel fuel blends. Renewable Energy, 34(6): 1554-1559 DOI: https://doi.org/10.1016/j.renene.2008.11.003
(1)
1. Marçal N, Soares J-B, Pereira G, Guimarães J, Gonçalves M, Godinho T. The management of ingested foreign bodies in an ear, nose, and throat emergency unit: prospective study of 204 cases. Acta Otorrinolaringol (Engl Ed). 2013;64(3):197–203. https://doi.org/10.1016/j.otoeng.2013.05. 001. 2. Thuduvage VS. Migrated fish bone into the neck: a case report. J Med Case Rep. 2021. https://doi.org/10.1186/s13256-021-02968-2. 3. Evans RM, Ahuja A, Williams SR, Hasselt C. The lateral neck radiograph in suspected impacted fish bones-does it have a role? Clin Radiol. 1992;46:121–3. 4. Ngan JH, Fok PJ, Lai EC, Branicki FJ, Wong J. A prospective study on fish bone ingestion: experience of 358 patients. Ann Surg. 1989;211:459–62. 5. Coulier B, Tancredi M-H, Ramboux A. Spiral CT and multidetector-row CT diagnosis of perforation of the small intestine caused by ingested foreign bodies. Eur Radiol. 2004;14(10):1918–25. https://doi.org/10.1007/ s00330-004-2430-1. 6. Goh BKP, Jeyaraj P-R, Chan H-S, Ong H-S, Agasthian T, Chang KTE, et al. A case of fish bone perforation of the stomach mimicking a locally advanced pancreatic carcinoma. Dig Dis Sci. 2004;49(11–12):1935–7. https://doi.org/10.1007/s10620-004-9595-y. 7. Kumar M, Joseph G, Kumar S, Clayton M. Fish bone as a foreign body. J Laryngol Otol. 2003;117(7):568–9. https://doi.org/10.1258/0022215033 22113058. 8. Ell SR, Sprigg A, Maglinte DD, Taylor SD, Ng AC. The radio-opacity of fishbone- species variation. Clin Radiol. 1979;44:597–9. 9. Valente JH, Lemke T, Ridlen M, Ritter D, Clyne B, Reinert SE. Aluminum for- eign bodies: do they show up on x-ray? Emerg Radiol. 2005;12(1–2):30–3. https://doi.org/10.1007/s10140-005-0437-9. 10. Yeung KW, Chang MS, Hsiao CP. Preoperative imaging diagnosis of fish bone perforation of the gastrointestinal tract. J Radiol Sci. 2011;36:215–9. 11. Nicolodi GC, Trippia CR, Caboclo MFFS, de Castro FG, Miller WP, de Lima RR, et al. Intestinal perforation by an ingested foreign body. Radiol Bras. 2016;49(5):295–9. https://doi.org/10.1590/0100-3984.2015.0127. 12. Young CA, Menias CO, Bhalla S, Prasad SR. CT features of esophageal emergencies. Radiographics. 2008;28(6):1541–53. https://doi.org/10. 1148/rg.286085520. 13. Goh BKP, Tan Y-M, Lin S-E, Chow PKH, Cheah F-K, Ooi LLPJ, et al. CT in the preoperative diagnosis of fish bone perforation of the gastrointestinal tract. AJR Am J Roentgenol. 2006;187(3):710–4. https://doi.org/10.2214/ AJR.05.0178.
(1)
1. Marques Pereira P, Schneider A, Pannetier S, Heron D, Hanauer A. Coffin–Lowry syndrome. European Journal of Human Genetics. 2010 Jun;18(6):627-33. 2. Rogers RC. Coffin–Lowry Syndrome. Cassidy and Allanson's Management of Genetic Syndromes. 2021 Feb 19:171-84. 3. Shah AS, Wilson DP. Primary hypertriglyceridemia in children and adolescents. Journal of Clinical Lipidology. 2015 Sep 1;9(5):S20-8. 4. Hanauer A, Young ID. Coffin-Lowry syndrome: clinical and molecular features. Journal of medical genetics. 2002 Oct 1;39(10):705-13. 5. Hunter AG, Partington MW, Evans JA. The Coffin‐Lowry syndrome. Experience from four centres. Clinical genetics. 1982 May;21(5):321-35. 6. Kesler SR, Simensen RJ, Voeller K, Abidi F, Stevenson RE, Schwartz CE, Reiss AL. Altered neurodevelopment associated with mutations of RSK2: a morphometric MRI study of Coffin–Lowry syndrome. Neurogenetics. 2007 Apr;8:143-7. 7. Stephenson JB, Hoffman MC, Russell AJ, Falconer J, Beach RC, Tolmie JL, McWilliam RC, Zuberi SM. The movement disorders of Coffin–Lowry syndrome. Brain and Development. 2005 Mar 1;27(2):108-13. 8. Hunter AG. Coffin‐Lowry syndrome: A 20‐year follow‐up and review of long‐term outcomes. American journal of medical genetics. 2002 Sep 1;111(4):345-55. 9. Tise CG, Matalon DR, Manning MA, Byers HM, Grover M. Short Bones, Renal Stones, and Diagnostic Moans: Hypercalcemia in a Girl Found to Have Coffin-Lowry Syndrome. Journal of Investigative Medicine High Impact Case Reports. 2022 May;10:23247096221101844. 10. Blom DJ. Hypertriglyceridaemia: Aetiology, complications and management. Journal of Endocrinology, Metabolism and Diabetes in South Africa. 2010 Jan 1;15(1):11-7. 11. Correani A, Giretti I, Antognoli L, Monachesi C, Cogo P, D’Ascenzo R, Biagetti C, Carnielli VP. Hypertriglyceridemia and intravenous lipid titration during routine parenteral nutrition in small preterm infants. Journal of Pediatric Gastroenterology and Nutrition. 2019 Nov 1;69(5):619-25. 12. Verma V, Karki B, Gupta SK, Jahan I, Shabuj MK, Moni SC, Dey SK, Shahidullah M, Mannan MA. Serum Lipid Profile in Newborns with Intrauterine Growth Retardation and Its Comparison with Appropriate for Gestation Age Newborns. Asian Journal of Pediatric Research. 2022 Jun 6;9(1):12-23. 13. Khalid S, Beg K, Ambad R. Study of lipid profile in cases of intrauterine growth retardation. Int J Med Res Prof. 2016;2(5):97-102. 14. Jin H, Li H, Qiang S. Coffin-Lowry Syndrome Induced by RPS6KA3 Gene Variation in China: A Case Report in Twins. Medicina. 2022 Jul 20;58(7):958.
(1)
1. Marshall, J. S., & Palmer, W. M. (1948). The distribution of raindrops with size. Journal of 2. Meteorology, 5(4), 165-166. 3. Zhang, W., & Moayeri, N. (1999). Power-Law Parameters of Rain Specific Attenuation. 4. G. Alnwaimi, H. Boujemaa, and K. Arshad, “Optimal packet length for free-space optical communications with average SNR feedback channel,” Journal of Computer Networks and Communications, vol. 2019, Article ID 4703284, 8 pages, 2019. 5. Emiliani, L. D., Luini, L., et al. (2008). Extension of ITU-R method for conversion of rain rate statistics from various integration times to one minute. Electronics Letters, 44(8), 557- 558. 6. A. S. El-Wakeel, N. A. Mohammed, and M. H. Aly, “Free space optical communications system performance under atmospheric scattering and turbulence for 850 and 1550 nm operation,” Applied Optics, vol. 55, no. 26, pp. 7276–7286, 2016. 7. ITU-R P.838, R. (1999). Specific attenuation model for rain for use in prediction methods. 8. Ojo, J. S., Ajewole, M. O., et al. (2008). Rain Rate and Rain Attenuation Prediction for Satellite Communication in KU and KA Bands over Nigeria. Progress In Electromagnetics Research B, 5, 207-223. 9. H. Kaushal, V. K. Jain, and S. Kar, “Free space optical communication,” in Optical Networks, Springer, Berlin, Germany, 2017. 10. A. Z. Suriza, I. M. Rafiqul, A. K. Wajdi, and A. W. Naji, “Effects of rain intensity variation on rain attenuation prediction for Free Space Optics (FSO) links,” in Proceedings of the International Conference on Computer and Communication Engineering (ICCCE '12), pp. 680–685, IEEE, Kuala Lumpur, Malaysia, July 2012. 11. Crane, R. K., & Robinson, P. C. (1997). ACTS propagation experiment: rain-rate distribution observations and prediction model comparisons. Proceedings of the IEEE, 85(6), 946-958. 12. Zhou, X. X., Lee, Y. H., et al. (2009). Conversion model of one-minute rainfall rate distribution in Singapore. Paper presented at the IEEE Antennas and Propagation Society International Symposium, 2009 (APSURSI '09). 13. Argyris N. Stassinakis, George A. Papavgeris, Hector E. Nistazakis, Andreas D. Tsigopoulos, Nikolaos A. Androutsos, George S. Tombras, "Experimental Model Development for the Attenuation Coefficient Estimation of Terrestrial Optical Wireless Links over the Sea", Telecom, vol.2, no.1, pp.93, 2021. 14. ITU-R P.1814, R. (2007). Prediction methods required for the design of terrestrial free-space optical links. 15. Fanmeng Wang, Tian Cheng, Anzi Xu, Zhuomin He, Peilin Jiang, Bingcheng Zhu, "An FSO Tracking System for Gaussian Beams", 2020 IEEE 6th International Conference on Computer and Communications (ICCC), pp.965-969, 2020. 16. Carbonneau, T. H., & Wisley, D. R. (1997). Opportunities and challenges for optical wireless: the competitive advantage of free space telecommunications link in today's crowded marketplace. Wireless Technologies and Systems: Millimeter Wave and Optical, Proc. SPIE, 3232, 119-128.
(1)
[1] Masterman, J. (2003). An introduction to building procurement systems. Routledge. (Masterman, 2003). [2] Alhazmi, T., & McCaffer, R. (2000). Project procurement system selection model. Journal of Construction Engineering and management, 126(3), 176-184. [3] Abd Jalil, A., Nuruddin, A. R., Jaafar, M., & Othuman Mydin, M. A. (2015). New Procurement Method for Housing Projects Implementing IBS Modular System [4] CIOB. (2010). CIOB (The Chartered Institute of Building), 2010. Code of Practice for Project Management for Construction and Development, Wiley-Blackwell, United Kingdom. [5] Jaafar, M. (2010). Level of Satisfaction and Issues with Procurement Systems used in the Malaysian Public Sector, (1991). [6] Abdul Rashid, R., Mat Taib, I., Ahmad, W., Basiron, W., Nasid, M., Wan Ali, W. N., & Mohd Zainordin, Z. (2006). Effect of procurement systems on the performance of construction projects. [7] Abd Rahman, A. B., & Omar, W. (2006). Issues and challenges in the implementation of industrialised building systems in Malaysia. Proceedings of the 6th Asia-Pacific Structural Engineering and Construction Conference, (September), C–45 – C–53. [8] CIDB. (2003). Construction Industry Development Board – CIDB publication National IBS Survey 2003, CIDB Malaysia, Kuala Lumpur. [9] Hassim, S., Jaafar, M. S., & Sazalli, S. A. (2009). The contractor perception towers industrialised building system risk in construction projects in Malaysia. American Journal of Applied Sciences, 6(5), 937. [10]Trikha. (2004). Trikha, D. N., and Ali, A. A. A. (2004). Industrialized Building System (First ed.). Kuala Lumpur: Universiti Putra Malaysia Press. [11]CIDB. (2011). IBS Roadmap 2011-2015, Construction Industry Development Board Malaysia. [12]Oostra, M., Joonson, C., C. (2007) Best practices: Lesson Learned on Building Concept (edited by) Kazi, A. S., Hannus, M., Boudjabeur, S., Malone, A. (2007), Open Building Manufacturing – Core Concept and Industrial Requirement’, Manubuild Consortium and VTT Finland Publication, Finland. [13]Kamar, K. A. M., Alshawi, M., & Hamid, Z. (2009, January). Barriers to industrialized building system (IBS): The case of Malaysia. In BuHu 9th International Postgraduate Research Conference (IPGRC), Salford, United Kingdom. [14]Abd Shukor, A.S., Mohammad,M.F., Mahbub,R. and Ismail,F.Supply Chain Integration in Industralised Building System in the Malaysian Construction Industry The Built & Human Environment Review.Volume 4, Special Issue 1,(2011)108. [15] Faizul, N. A. (2006). Supply chain management in IBS industry. Malaysia International IBS Exhibition, Kuala Lumpur. [16] Jaafar, M and Mahamad, N. JIT Practices from the Perspective of Malaysian IBS Manufacturers, Malaysian Construction Research Journal, 10(1) (2012), 63-76. [17]Kamarul Anuar Mohamad Kamar and Zuhairi Abd Hamid, Supply Chain Strategy for Contractor in Adopting Industrialised Building System (IBS). Australian Journal of Basic and Applied Sciences, 5(12) (2011) 2552-2557. [18]Mohamad Ibrahim Mohamad, Mardhiah Zawawi, M.A.Nekooie, Implementing industrialsed Building System (IBS) in Malaysia: Acceppting and awareness level, problems and strategies, Malaysian Journal of Civil Engineering. 21(2) (2009) 219-234. [19]Bennett, J., & Grice, A. (1990). Procurement systems for building, Quantity Surveying Techniques, New Directions. [20]Newcombe, R. O. B. E. R. T. (1999). Procurement as a learning process. Profitable Partnering in Construction Procurement, 285-94. [21]Ashworth A (2001) Contractual Procedures in the Construction Industry, UNITEC, New Zealand. [22]Love, P. E. (2002). Influence of project type and procurement method on rework costs in building construction projects. Journal of construction engineering and management, 128(1), 18-29. [23]Khalfan, M. M. A., McDermott, P. Vrijhoef, R. and Asad, S. (2005), “Effect of procurement on the integration of supply chain within construction industry”, in Kahkonen, K. and Sexton, M. (Eds.), Understanding the Construction Business and Companies. [24]Songer A D and Molenaar K R (1996) : Selecting Design and Build – Public and Private Sector Owner Attitudess, Journal of Management in Engineering, ASCE. [25]Tabish, S., & Jha, K. N. (2011). Identification and evaluation of success factors for public construction projects. Construction Management and Economics, 29(8), 809-823. [26] Jaafar, M., & Radzi, N. M. (2013). Level of satisfaction and issues with procurement systems used in the Malaysian public sector. Australasian Journal of Construction Economics and Building, The, 13(1), 50. [27]Hall,M.,Holt,R & Graves,A.(2000),”Private finance,public roads:configuring the supply chain in PFI highway construction”.European Journal of Purchasing and supply management 6, 227-235 in Khalfan,M.M.A., McDermott, P., Vrijhoef,R & Asad,S. (2005) “Effect of procurement on he integration of the supply chain within the construction industry” 11th CIB Symposium, 13-16 June.
(1)
[1] Matsuyama, K. (2023). Japan's Push to Boost Birth Rates Is Falling Short for Families. Bloomberg, New York, United States. Available online: https://www.bloomberg.com/news/newsletters/2023-03-06/japan-s-push-to-boost-birth-rates-is-falling-short (accessed on May 2024). [2] Halebić, J., & Moćević, A. (2020). Analysis of Public Debt at Subnational Government Levels: Evidence from Cantons in the Federation of Bosnia and Herzegovina. South East European Journal of Economics and Business, 15(2), 109-123. doi:10.2478/jeb-2020-0019. Emerging Science Journal | Vol. 8, No. 3 [3] Were, M., & Madete, L. (2022). The link between public debt and public investment in Tanzania. WIDER Working Paper. WIDER Working Paper 2022/155, 1-20. doi:10.35188/unu-wider/2022/288-1. [4] Jarju, S. E. (2021). The Determinants of public debt in the Gambia. KDI Central Archives of Public Policy and Management, Sejong, Seoul, South Korea. Available online: https://archives.kdischool.ac.kr/handle/11125/42922 (accessed on April 2024). [5] Hu, X., Zhong, A., Cao, Y., & Wang, W. (2024). The impact of air pollution on cost of debt: Evidence from corporate bond markets. Accounting & Finance. doi:10.1111/acfi.13257. [6] Zandalinas, S. I., Fritschi, F. B., & Mittler, R. (2021). Global Warming, Climate Change, and Environmental Pollution: Recipe for a Multifactorial Stress Combination Disaster. Trends in Plant Science, 26(6), 588-599. doi:10.1016/j.tplants.2021.02.011. [7] Diamond, D. W., & He, Z. (2014). A theory of debt maturity: The long and short of debt overhang. Journal of Finance, 69(2), 719-762. doi:10.1111/jofi.12118. [8] Manasseh, C. O., Abada, F. C., Okiche, E. L., Okanya, O., Nwakoby, I. C., Offu, P., Ogbuagu, A. R., Okafor, C. O., Obidike, P. C., & Nwonye, N. G. (2022). External debt and economic growth in Sub-Saharan Africa: Does governance matter? PLOS ONE, 17(3), e0264082. doi:10.1371/journal.pone.0264082. [9] Misra, S., Gupta, K., & Trivedi, P. (2023). Sub-national government debt sustainability in India: an empirical analysis. Macroeconomics and Finance in Emerging Market Economies, 16(1), 57-79. doi:10.1080/17520843.2021.1948171. [10] Chen, C. J., Ruey-Shan Guo, Wang, S. H., & Lin, Y. H. (2022). Power distance diversification, ownership structure, and business group performance. Journal of Business Research, 151, 70-85. doi:10.1016/j.jbusres.2022.06.041. [11] Dumitrescu, B. A., & Grecu, R. A. (2023). Impact of Financial Factors on the Economic Cycle Dynamics in Selected European Countries. Journal of Risk and Financial Management, 16(12), 492. doi:10.3390/jrfm16120492. [12] Akam, D., Owolabi, O., & Nathaniel, S. P. (2021). Linking external debt and renewable energy to environmental sustainability in heavily indebted poor countries: new insights from advanced panel estimators. Environmental Science and Pollution Research, 28(46), 65300-65312. doi:10.1007/s11356-021-15191-9. [13] Farooq, F., Aurang Zaib, Faheem, M., & Gardezi, M. A. (2023). Public debt and environment degradation in OIC countries: the moderating role of institutional quality. Environmental Science and Pollution Research, 30(19), 55354-55371. doi:10.1007/s11356-023-26061-x. [14] Zafar, S., & Butt, M. S. (2008). Impact of trade liberalization on external debt burden: Econometric evidence from Pakistan. MPRA Paper No. 9548, 1-18. [15] Kızılgöl, Ö.A., & İpek, E. (2014). An Empirical Evaluation of the Relationship between Trade Openness and External Debt: Turkish Case. International Econometric Review, 6(1), 42-58. doi:10.33818/ier.278030. [16] Bölükbaş, M. (2016). The relationship between trade openness and external debt in Turkey: A Cointegration Analysis. Balkan and Near Eastern Journal of Social Sciences, 2(4), 43-48. [17] Brafu-Insaidoo, W. G., Ahiakpor, F., Vera Ogeh, F., & William G, C. (2019). Macro-determinants of short-term foreign debt in Ghana. Cogent Economics & Finance, 7(1), 1630161. doi:10.1080/23322039.2019.1630161. [18] Rodrik, D., & Velasco, A. (1999). Short-term capital flows. National bureau of economic research Cambridge, Cambridge, United States. Available online: https://www.nber.org/papers/w7364 (accessed on May 2024). [19] Sharif Chaudhry, I., Malik, S., & Ramzan, M. (2009). Impact of Foreign Debt on Savings and Investment in Pakistan. Journal of Quality and Technology Management, V(2), 101-115. [20] Akram, N. (2011). Impact of Public Debt on the Economic Growth of Pakistan. The Pakistan Development Review, 50(4II), 599-615. doi:10.30541/v50i4iipp.599-615. [21] de Mendonça, H. F., & Brito, Y. (2021). The link between public debt and investment: an empirical assessment from emerging markets. Applied Economics, 53(50), 5864-5876. doi:10.1080/00036846.2021.1931008. [22] Trecroci, C., & Salotti, S. (2012). Even Worse than You Thought: The Impact of Government Debt on Aggregate Investment and Productivity. SSRN Electronic Journal, 1-42. doi:10.2139/ssrn.2033107. [23] Babu, J. O., Gisore, N., & Lawrence, K. (2018). Does Public Debt Crowd-Out Public Investment in East Africa Community? Research Journal, 2(4), 1-16. [24] Abbas, S., & Wizarat, S. (2018). Military expenditure and external debt in South Asia: A panel data analysis. Peace Economics, Peace Science and Public Policy, 24(3), 20170045. doi:10.1515/peps-2017-0045. [25] Alzahrani, A. A. (2018). The impact of government debt on macroeconomic indicators: evidence from G7 and ASEAN countries. Master Thesis, Eastern Illinois University, Charleston, United States. Emerging Science Journal | Vol. 8, No. 3 [26] Sinha, P., Arora, V., & Bansal, V. (2011). Determinants of Public Debt for middle income and high-income group countries using Panel Data regression. MPRA Paper No. 32079, 1-28. [27] Swamy, V. (2019). Debt and growth: Decomposing the cause-and-effect relationship. International Journal of Finance & Economics, 25(2), 141-156. doi:10.1002/ijfe.1729. [28] Kudła, J. (2018). Determinants of Public Indebtedness in European Union Countries. e-Finance, 14(3), 76-86. doi:10.2478/fiqf2018-0021. [29] Zhao, T., & Liu, Z. (2022). Drivers of CO2 Emissions: A Debt Perspective. International Journal of Environmental Research and Public Health, 19(3), 1847. doi:10.3390/ijerph19031847. [30] Shin, Y., Yu, B., Greenwood-Nimmo, M. (2014). Modelling Asymmetric Cointegration and Dynamic Multipliers in a Nonlinear ARDL Framework. Festschrift in Honor of Peter Schmidt. Springer, New York, United States. doi:10.1007/978-1-4899-80083_9. [31] Pesaran, M. H. (2021). General diagnostic tests for cross-sectional dependence in panels. Empirical Economics, 60(1), 13-50. doi:10.1007/s00181-020-01875-7. [32] Engle, R. F., & Granger, C. W. J. (1987). Co-Integration and Error Correction: Representation, Estimation, and Testing. Econometrica, 55(2), 251. doi:10.2307/1913236. [33] Alimi, R. S. (2014). ARDL Bounds Testing Approach to Cointegration: A Re-Examination of Augmented Fisher Hypothesis in an Open Economy. Asian Journal of Economic Modelling, 2(2), 103-114. doi:10.18488/journal.8.2014.22.103.114. [34] Bogduk, N. (2022). On understanding reliability for diagnostic tests. Interventional Pain Medicine, 1, 100124. doi:10.1016/j.inpm.2022.100124. [35] Ibhagui, O. W. (2018). External debt and current account adjustments: The role of trade openness. Cogent Economics & Finance, 6(1), 1446247. doi:10.1080/23322039.2018.1446247. [36] Malefane, M. R., & Odhiambo, N. M. (2018). Impact of Trade Openness on Economic Growth: Empirical Evidence from South Africa. International Economics/Economia Internazionale, 71(4), 387-416. [37] Veiga, L. G., & Veiga, F. J. (2014). Determinants of Portuguese local governments' indebtedness. Working Paper, Braga, Portugal. [38] Santos, E. (2023). FDI and Firm Productivity: A Comprehensive Review of Macroeconomic and Microeconomic Models. Economies, 11(6), 164. doi:10.3390/economies11060164. [39] Chowdhury, T. S., Rahman, M. H., Majumder, S. C., & Esquivias, M. A. (2023). Significance of technological progress and capital formation to expand foreign direct investment in Bangladesh: Does money circulation matter? Cogent Economics & Finance, 11(2), 2279351. doi:10.1080/23322039.2023.2279351. [40] Erdoğan, S., Yıldırım, D. Ç., & Gedikli, A. (2019). The Relationship Between CO 2 Emissions and Health Indicators: The Case of Turkey. Econometrics Letters, 6(1), 28-39. [41] Majekodunmi, T. B., Shaari, M. S., Abidin, N. Z., & Esquivias, M. A. (2023). The environmental influence of national savings in D-8 countries: Empirical evidence using an ARDL model. Environmental Science and Pollution Research, 30(41), 94456- 94473. doi:10.1007/s11356-023-28865-3.
(1)
[1] M. Ayalew, B. Mengistie, and A. Semahegn, "Adolescent - parent communication on sexual and reproductive health issues among high school students in Dire Dawa, Eastern Ethiopia: a cross sectional study," Reproductive Health, vol. 11, no. 1, p. 77, 2014.https://doi.org/10.1186/1742-4755-11-77 [2] M. T. Mekonen, H. A. Dagnew, T. A. Yimam, H. N. Yimam, and M. A. Reta, "Adolescent-parent communication on sexual and reproductive health issues and associated factors among high school students in Woldia town, Northeastern Ethiopia," (in eng), Pan Afr Med J, vol. 31, p. 35, 2018.https://doi.org/10.11604/pamj.2018.31.35.13801 [3] M. Mekie, D. Addisu, A. Melkie, and W. Taklual, "Parent-adolescent communication on sexual and reproductive health issues and its associated factors in Ethiopia: a systematic review and meta-analysis," (in - English), Italian Journal of Pediatrics, vol. 46, no. 1, 2020. https://doi.org/10.1186/s13052-020-00921-5 [4] T. K. Aliyu and J. O. Aransiola, "Factors Associated With Parent-Adolescent Communication on Sexual and Reproductive Health Issues in Urban Slums of Ibadan, Southwest Nigeria," International Quarterly of Community Health Education, vol. 44, no. 1, p. 0272684X2110076, 2021. https://doi.org/10.1177/0272684X211007695 [5] B. R. Bhatta, J. Kiriya, A. Shibanuma, and M. Jimba, "Parent–adolescent communication on sexual and reproductive health and the utilization of adolescent-friendly health services in Kailali, Nepal," PLOS ONE, vol. 16, no. 2, p. e0246917, 2021. https://doi.org/10.1371/journal.pone.0246917 [6] J. Potter, D. Frost, K. Soren, and J. Santelli, "Parent-adolescent Sexual Health Communication: Is Parent Knowledge of Adolescent Sexual Behavior a Marker of Communication Quality?," Journal of Adolescent Health, vol. 54, no. 2, pp. S91-S92, 2014.https://doi.org/10.1016/j.jadohealth.2013.10.195 [7] B. Ombayo, B. Black, and K. M. Preble, "Adolescent–parent communication among youth who have and have not experienced dating violence," Child and Adolescent Social Work Journal vol. 36, pp. 381-390, 2019. https://doi.org/10.1007/s10560-018-0565-1 [8] N. Barik, "Global research on digital divide during the past two decades: a bibliometric study of Web of Science indexed literature," Global Knowledge, Memory and Communication, vol. ahead-of-print, 2023.https://doi.org/10.1108/GKMC-08-2022-0207 [9] D. Wood et al., "Emerging Adulthood as a Critical Stage in the Life Course," in Handbook of Life Course Health Development, N. Halfon, C. B. Forrest, R. M. Lerner, and E. M. Faustman Eds.: Springer 2018, pp. 123-143. https://doi.org/10.1007/978-3-319-47143-3_7 [10] D. Bekele, A. Deksisa, W. Abera, and G. Megersa, "Parental communication on sexual and reproductive health issues to their adolescents and affecting factors at Asella town, Ethiopia: a community-based, cross-sectional study," Reproductive Health, vol. 19, p. 114, 2022. https://doi.org/10.1186/s12978-022-01408-8. [11] G. Ahamer and K. A. Kumpfmüller, "Education and Literature for Development in Responsibility: Partnership Hedges Globalization," in Handbook of Research on Transnational Higher Education, vol. 2, S. Mukerji and P. Tripathi Eds., 2014, p. 59.https://doi.org/10.4018/978-1-4666-4458-8.ch027 [12] O. Öztürk, R. Kocaman, and D. K. Kanbach, "How to design bibliometric research: an overview and a framework proposal," Review of Managerial Science, 2024/03/06 2024. https://doi.org/10.1007/s11846-024-00738-0 [13] Sciencesphere, in Mastering Bibliometric Analysis: An In-Depth Overview And Guidelines, ed, 2023. [Online]. Available: https://www.semaforobares.com/ [14] A. Ninkov, J. R. Frank, and L. A. Maggio, "Bibliometrics: Methods for studying academic publishing," (in eng), Perspect Med Educ, vol. 11, no. 3, pp. 173-176, Jun 2022. https://doi.org/10.1007/s40037-021-00695-4 [15] C. Birkle, D. A. Pendlebury, J. Schnell, and J. Adams, "Web of Science as a data source for research on scientific and scholarly activity," Quantitative Science Studies, vol. 1, no. 1, pp. 363-376, 2020.https://doi.org/10.1162/qss_a_00018 [16] U. A. Bukar, M. S. Sayeed, S. F. A. Razak, S. Yogarayan, O. A. Amodu, and R. A. R. Mahmood, "A method for analyzing text using VOSviewer," MethodsX, vol. 11, p. 102339, 2023. https://doi.org/10.1016/j.mex.2023.102339 [17] C. M. Markham et al., "Connectedness as a Predictor of Sexual and Reproductive Health Outcomes for Youth," (in - English), Journal of Adolescent Health, vol. 46, no. 3, pp. S23-S41, 2010.https://doi.org/10.1016/j.jadohealth.2009.11.214 [18] V. Guilamo-Ramos et al., "A Comparative Study of Interventions for Delaying The Initiation of Sexual Intercourse Among Latino And Black Youth," (in - English), Perspectives of Sexual and Reproductive Health, vol. 43, no. 4, pp. 247-254, 2011.https://doi.org/10.1363/4324711 [19] A. Y. Akers, E. B. Schwarz, S. Borrero, and G. Corbie-Smith, "Family Discussions About Contraception and Family Planning: A Qualitative Exploration of Black Parent and Adolescent Perspectives," (in - English), Perspect Sex Reprod Health, vol. 42, no. 3, pp. 160-167, 2010. https://doi.org/10.1363/4216010 [20] C. O. Mbachu et al., "Exploring issues in caregivers and parent communication of sexual and reproductive health matters with adolescents in Ebonyi state, Nigeria," (in - English), BMC Public Health, vol. 20, no. 77, 2020. https://doi.org/10.1186/s12889-019-8058-5 [21] P. Ndugga, B. Kwagala, S. O. Wandera, P. Kisaakye, M. K. Mbonye, and F. Ngabirano, "If your mother does not teach you, the world will horizontal ellipsis: A qualitative study of parent-adolescent communication on sexual and reproductive health issues in Border districts of eastern Uganda," (in - English), BMC Public Health, vol. 23, p. 678, 2023. https://doi.org/10.1186/s12889-023-15562-6 [22] M. Silva et al., "Changing the Script: Intergenerational Communication about Sexual and Reproductive Health in Niamey, Niger," (in - English), J. Health Commun., vol. 27, no. 10, pp. 755-763, 2022.https://doi.org/10.1080/10810730.2022.2160527 [23] K. G. Wudineh, F. A. Chekole, and A. A. Tesfu, "Adolescent-parent communication on sexual and reproductive health issues and associated factors among secondary school students in Woreta town, Northwest Ethiopia: An institutional based cross sectional study," (in - English), Heliyon, vol. 7, no. 3, 2021. [24] J. Coetzee et al., "Predictors of parent-adolescent communication in post-apartheid South Africa: A protective factor in adolescent sexual and reproductive health," (in - English), - J. Adolesc., vol. 37, no. 3, pp. 313-324, 2014.https://doi.org/10.1016/j.adolescence.2014.01.006 [25] M. T. N. Noe et al., "Barriers between mothers and their adolescent daughters with regards to sexual and reproductive health communication in Taunggyi Township, Myanmar: What factors play important roles?," (in - English), PLoS One, vol. 13, no. 12, p. e0208849, 2018. https://doi.org/10.1371/journal.pone.0208849 [26] A. M. Munea, G. D. Alene, and G. T. Debelew, "Does Youth-Friendly Service Intervention Reduce Risky Sexual Behavior in Unmarried Adolescents? A Comparative Study in West Gojjam Zone, Northwest Ethiopia," (in eng), Risk Manag Healthc Policy, vol. 13, pp. 941-954, 2020. https://doi.org/10.2147/rmhp.S254685 [27] M. S. Yibrehu and B. Mbwele, "Parent-adolescent communication on sexual and reproductive health: the qualitative evidences from parents and students of Addis Ababa, Ethiopia," (in - English), Reproductive Health, vol. 17, no. 78, 2020.https://doi.org/10.1186/s12978-020-00927-6 [28] I. Usonwu, R. Ahmad, and K. Curtis-Tyler, "Parent-adolescent communication on adolescent sexual and reproductive health in sub-Saharan Africa: a qualitative review and thematic synthesis," (in - English), Reproductive Health, vol. 18, p. 202, 2021. https://doi.org/10.1186/s12978-021-01246-0 [29] W. W. Muhwezi et al., "Perceptions and experiences of adolescents, parents and school administrators regarding adolescent-parent communication on sexual and reproductive health issues in urban and rural Uganda," (in - English), Reproductive Health, vol. 12, no. 110, 2015. https://doi.org/10.1186/s12978-015-0099-3 [30] T. M. Coakley, S. D. Randolph, S. I. Coard, and T. D. Ritchwood, "Principal Sources of Information African American Fathers Draw Upon to Inform their Sons about Sex and Sexual Health Risks," (in English), - J. Natl. Med. Assoc., vol. 111, no. 5, pp. 500-508, Oct 2019. https://doi.org/10.1016/j.jnma.2019.04.001 [31] C. J. Mehus et al., "Parents' Sources of Adolescent Sexual Health Information and Their Interest in Resources From Primary Care," (in - English), - Acad. Pediatr., vol. 22, no. 3, pp. 396-401, 2022.https://doi.org/10.1016/j.acap.2021.09.007 [32] D. C. Chaparro Buitrago and J. Pimentel, "Barriers and facilitators influencing parent-adolescent communication on sexual and reproductive health in Indigenous communities in Latin American countries: protocol for a scoping review," (in eng), BMJ Open, vol. 13, no. 3, p. e066416, Mar 10 2023.https://doi.org/10.1136/bmjopen-2022-066416 [33] N. D. Adam, G. D. Demissie, and A. A. Gelagay, "Parent-Adolescent Communication on Sexual and Reproductive Health Issues and Associated Factors among Preparatory and Secondary School Students of Dabat Town, Northwest Ethiopia," (in - English), Journal of Environmental and Public Health, vol. 2020, 2020. https://doi.org/10.1155/2020/4708091 [34] O. Leyser-Whalen and V. Jenkins, "The Continuum of Sexual and Reproductive Health Talk Types Daughters have with Mothers and Siblings," (in - English), Sex. Res. Soc. Policy, vol. 19, pp. 401-415, 2022. https://doi.org/10.1007/s13178-021-00553-2 [35] V. Vongsavanh, V. T. H. Lan, and V. Sychareun, "Sexual and reproductive health communication between parents and high school adolescents in Vientiane Prefecture, Lao PDR," (in - English), Glob. Health Action, vol. 13, no. sup2, p. 1785145, 2020.https://doi.org/10.1080/16549716.2020.1785145 [36] E. Kemigisha, M. Rai, W. Mlahagwa, V. N. Nyakato, and O. Ivanova, "A Qualitative Study Exploring Menstruation Experiences and Practices among Adolescent Girls Living in the Nakivale Refugee Settlement, Uganda," (in eng), Int. J. Environ. Res. Public Health, vol. 17, no. 18, 2020. https://doi.org/10.3390/ijerph17186613 [37] O. Al Zaabi, M. E. Heffernan, E. Holroyd, and M. Jackson, "Parent-adolescent communication about sexual and reproductive health including HIV and STIs in Oman," (in - English), Sex Education, vol. 22, no. 5, pp. 611-627, 2022. https://doi.org/10.1080/14681811.2021.1980719 [38] C. Donoghue, C. Bonillas, J. Moreno, O. Cardoza, and M. Cheung, "Young people's perceptions of advice about sexual risk taking," (in - English), Sex Education, vol. 17, no. 1, p. 85, 2017.https://doi.org/10.1080/14681811.2016.1236016 [39] E. Nelson, A. Edmonds, M. Ballesteros, D. E. Soto, and O. Rodriguez, "The unintended consequences of sex education: an ethnography of a development intervention in Latin America," (in - English), - Anthropol. Med., vol. 21, no. 2, pp. 189-201, 2014.https://doi.org/10.1080/13648470.2014.918932 [40] S. A. Masresha and G. D. Alen, "Parent-adolescent communication on sexual and reproductive health among school adolescents of Woldia town, Ethiopia by the year 2019," (in - English), - Health Educ., vol. 121, no. 2, pp. 150-160, 2021. https://doi.org/10.1108/HE-07-2020-0053 [41] N. Jain and M. Singhal, "Sexual Communication and Attitudes toward Sexual and Reproductive Health of Parent-Adolescent Dyads," (in - English), Journal of Indian Association of Child Adolescent Mental Health, vol. 13, no. 4, p. 262, 2017.https://doi.org/10.1177/0973134220170402 [42] A. H. Mavhandu-Mudzusi and B. G. Mhongo, "Adolescents' Sexual Education: Parental Involvement in a Rural Area in Kwazulu-Natal, South Africa," (in - English)Afr. J. Nurs. Midwifery, vol. 23, no. 1, 2021. https://doi.org/10.25159/2520-5293/8031 [43] R. Tuerdi, H. Zhang, W. Wang, M. Shen, and X. Wei, "Bibliometric analysis of the research hotspots and trends of circular RNAs," Heliyon, vol. 10, no. 10, p. e31478, 2024. https://doi.org/10.1016/j.heliyon.2024.e31478 [44] D. Fernandes et al., "Process evaluation of a parent-child communication intervention for adolescent sexual and reproductive health in Uganda," (in - English), BMC Public Health, vol. 24, p. 319,2024.https://doi.org/10.1186/s12889-023-17513-7 [45] D. R. Singh et al., "Parental knowledge and communication with their adolescent on sexual and reproductive health issues in Nepal," (in - English), PloS One, vol. 18, no. 7, p. e0289116, 2023.https://doi.org/10.1371/journal.pone.0289116 [46] W. Lu, S. Huang, J. Yang, Y. Bu, Q. Cheng, and Y. Huang, "Detecting research topic trends by author-defined keyword frequency," Information Processing & Management, vol. 58, no. 4, p. 102594, 2021.https://doi.org/10.1016/j.ipm.2021.102594
(1)
[1] M. B. A.Majid, J. B.M. Zain and A. Hermawan, “Recognition ofMalaysian sign language using skeleton data with neural network,” in Proc. 2015 Int. Conf. on Science in Information Technology (ICSITech) IEEE,Yogyakarta, Indonesia, pp. 231–236, 2015. [2] S. B. Sajap, “Malaysian sign language translator,” Internasssstional Journal of Advanced Trends in Computer Science and Engineering, vol. 9, no. 1.1, pp. 385–394, 2020. [3] P. M. Brown and A. Cornes, “Mental health of deaf and hard-of-hearing adolescents: What the students say, ” Journal of Deaf Studies and Deaf Education, vol. 20, no. 1, pp. 75–81, 2015. [4] R. Saha, A. Sharma and M. Srivastava, “Psychiatric assessment of deaf and mute patients–a case series,” Asian Journal of Psychiatry, vol. 20, no. 1, pp. 31–35, 2017. [5] S. L. Khoo, L. T. Tiun and L. W. Lee, “Workplace discrimination against Malaysians with disabilities: Living with it or fighting against it?,” Disability Studies Quarterly, vol. 33, no. 3, pp. 75–81, 2013. [6] S.Woo, J. Park, J. Y. Lee and I. S. Kweon, “Cbam: Convolutional block attention module, ” in Proc. of the European Conf. on Computer Vision (ECCV), Munich, Germany, pp. 3–19, 2018. [7] H. Chao, W. Fenhua and Z. Ran, “Sign language recognition based on cbam-resnet,” in Proc. of the 2019 Int. Conf. on Artificial Intelligence and Advanced Manufacturing, Dublin, Ireland, pp. 1–6, 2019. [8] J. M. Zurada, “Introduction to Artificial Neural Systems, ” vol. 8, New York, USA, West Publishing Company, pp. 15–64, 1992. [9] W. Tangsuksant, S. Adhan and C. Pintavirooj, "American sign language recognition by using 3d geometric invariant feature and ann classification," in Proc.the 7th 2014 Biomedical Engineering Int. Conf., IEEE, Fukuoka, Japan, 2014. [10] S. Adhan and C. Pintavirooj, “Thai sign language recognition by using geometric invariant feature and ann classification,” in Proc. 2016 9th Biomedical Engineering Int. Conf. (BMEiCON), IEEE, Laung Prabang, Laos, 2016. [11] J. E. López-Noriega, M. I. Fernández-Valladares and V. Uc-Cetina, “Glove-based sign language recognition solution to assist communication for deaf users,” in Proc.2014 11th Int. Conf. on Electrical Engineering, Computing Science and Automatic Control (CCE), IEEE, Ciudad del Carmen, Mexico, 2014. [12] S. A. Mehdi and Y. N. Khan, “Sign language recognition using sensor gloves,” in Proc. of the 9th Int. Conf. on Neural Information Processing, ICONIP’02,IEEE, Singapore, 2002. [13] J. M. Allen, P. K. Asselin and R. Foulds, “American Sign Language Finger Spelling Recognition System,” in Proc.2003 IEEE 29th Annual Proc. of Bioengineering Conf ., IEEE, Newark, NJ, USA, 2003. [14] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech, and time series,” The Handbook of Brain Theory Neural Networks, vol. 3361, no. 10, pp. 255–258, 1995. [15] M. A. Jalal, R. Chen, R. K. Moore and L. Mihaylova, “American sign language posture understanding with deep neural networks,”in Proc. 21st Int. Conf. on Information Fusion (FUSION), IEEE, Cambridge, UK, 2018. [16] A. Krizhevsky, I. Sutskever and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in Neural Information Processing Systems, vol. 60, no. 6, pp. 84–90, 2012. [17] R. Patel, J. Dhakad, K. Desai, T. Gupta and S. Correia, “Hand gesture recognition system using convolutional neural networks,” in Proc. 4th Int. Conf. on Computing Communication and Automation (ICCCA), IEEE, Greater Noida, India, 2018. [18] A. F. Agarap, “Deep learning using rectified linear units (relu),” in arXiv preprint arXiv: 08375, 2018. [19] A. Graves, “Supervised sequence labelling,” Supervised Sequence Labelling with Recurrent Neural Networks, vol. 385, no. 1, pp. 5–13, 2012. [20] T. Liu, W. Zhou and H. Li, “Sign language recognition with long short-term memory,” in Proc. IEEE Int. Conf. on Image Processing (ICIP), IEEE, Phoenix, AZ, USA, 2016. [21] K. Halim and E. Rakun, “Sign language system for bahasa Indonesia (known as sibi) recogniser using tensorflow and long short-term memory,” in Proc. 2018 Int. Conf. on Advanced Computer Science and Information Systems (ICACSIS), IEEE, Yogyakarta, Indonesia, 2018. [22] R. Akmeliawati, M. P. L. Ooi andY.C.Kuang, “Real-time Malaysian sign language translation using colour segmentation and neural network,” in Proc. IEEE Instrumentation&Measurement Technology Conf. IMTC, IEEE, Warsaw, Poland, 2007. [23] T. T. Swee, S. H. Salleh, A. K. Ariff, C. M. Ting, S. K. Seng et al., “Malay sign language gesture recognition system,” in Proc. Int. Conf. on Intelligent and Advanced Systems, IEEE, Kuala Lumpur, Malaysia, 2007. [24] M. P. Paulraj, S. Yaacob, H. Desa andW. M. R.W. Ab Majid, “Gesture recognition system for kod tangan bahasa melayu (ktbm) using neural network,” in Proc. 2009 5th Int. Colloquium on Signal Processing & Its Applications, IEEE, Kuala Lumpur, Malaysia, 2009. [25] H. A. Q. Maarif, R. Akmeliawati and S. Bilal, “Malaysian sign language database for research,” in Proc. Int. Conf. on Computer and Communication Engineering (ICCCE),IEEE, Kuala Lumpur, Malaysia, 2012. [26] M. Karabasi, Z. Bhatti and A. Shah, “A model for real-time recognition and textual representation of Malaysian sign language through image processing,” in Proc. Int. Conf. on Advanced Computer Science Applications and Technologies, IEEE, 2013. [27] [28] M. Karbasi, A. Zabidi, I. M. Yassin, A. Waqas and Z. Bhatti, “Malaysian sign language dataset for automatic sign language recognition system,” Journal of Fundamental Applied Sciences, vol. 9, no. 4S, pp. 459–474, 2017. J. C. Y. Mak, C. Y. Vee, A. Hamidi, N.A.Venugopal, H. K. Wei et al., “The Malaysian sign language and deaf studies association Q1 (mybim),” in Mybim Official Website, vol. 1,pp. 0–1, 2014. [29] V. Athitsos, C. Neidle, S. Sclaroff, J. Nash, A. Stefan et al., “The American sign language lexicon video dataset,” in Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition Workshops, Anchorage, AK, USA, 2008. [30] [31] J. Huang, W. Zhou, Q. Zhang, H. Li and W. Li, “Video-based sign language recognition without temporal segmentation,” in Proc. 32nd AAAI Conf. on Artificial Intelligence (AAAI-18), New Orleans, Louisiana, USA, pp. 2257–2264, 2018. K. Soomro, A. R. Zamir and M. Shah, “A dataset of 101 human action classes from videos in the wild,” in Proc. Center for Research in Q2 Computer Vision, Central Florida, USA, pp. 7, 2012. [32] [33] Y. Zhou, X. Sun, Z. J. Zha and W. Zeng, “Mict: Mixed 3d/2d convolutional tube for human action recognition,” in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018. H. Kataoka, T. Wakamiya, K. Hara and Y. Satoh, “Would mega-scale datasets further enhance spatiotemQ3 poral 3d cnns?,”ArXiv Preprint ArXiv:2004.04968, vol. 1, pp. 04968, 2020.
(1)
[1] McGrath J 2020 Climate, pollution and California’s crops Nat. Food 1 153–153 [2] Udova L 2017 World Experience of Agricultural Start-up Development: Lessons for Ukraine Sci. J. Cahul State Univ. 1 11–7 [3] Wulandari E, Al Hakim R R, Saputri L D, Syahdiar I A, Pangestu A and Jaenul A 2021 Mr. Rytem, An IoT-Based Smart Irrigation System Application Design for Cultivation Engineering of Allium sativum Garlic in Lowland Conditions Prosiding Seminar Nasional Teknik Elektro, Sistem Informasi, dan Teknik Informatika (Surabaya) pp 105–12 [4] Bambio Y, Deb A and Kazianga H 2022 Exposure to agricultural technologies and adoption: The West Africa agricultural productivity program in Ghana, Senegal and Mali Food Policy in press 102288 [5] Abeysiriwardana P C, Jayasinghe-Mudalige U K and Kodituwakku S R 2022 “Connected researches” in “smart lab bubble”: A lifeline of techno-society space for commercial agriculture development in “new normal” New Techno Humanit. in press [6] Mungkasa O 2020 Bekerja dari Rumah (Working From Home/WFH): Menuju Tatanan Baru Era Pandemi COVID 19 J. Perenc. Pembang. Indones. J. Dev. Plan. 4 126–50 [7] Ehlers M H, Finger R, El Benni N, Gocht A, Sørensen C A G, Gusset M, Pfeifer C, Poppe K, Regan Á, Rose D C, Wolfert S and Huber R 2022 Scenarios for European agricultural policymaking in the era of digitalisation Agric. Syst. 196 103318 [8] Sgroi F 2022 The circular economy for resilience of the agricultural landscape and promotion of the sustainable agriculture and food systems J. Agric. Food Res. 8 100307 [9] Dey K and Shekhawat U 2021 Blockchain for sustainable e-agriculture: Literature review, architecture for data management, and implications J. Clean. Prod. 316 128254 [10] Yang H, Wang X and Bin P 2022 Agriculture carbon-emission reduction and changing factors behind agricultural eco-efficiency growth in China J. Clean. Prod. 334 130193[ [11] Al Hakim R R, Arief Y Z, Pangestu A and Jaenul A 2021 Framework Pangan45.id, Start-Up Android Bidang Pangan Untuk Mendukung Kemandirian dan Ketahanan Pangan Indonesia RINarxiv Prepr. [12] Rosa A and Shalahuddin M 2016 Rekayasa Perangkat Lunak: Terstruktur dan Berorientasi Objek (Bandung: Informatika) [13] Al Hakim R R, Rusdi E and Setiawan M A 2020 Android Based Expert System Application for Diagnose COVID-19 Disease: Cases Study of Banyumas Regency J. Intell. Comput. Heal. Informatics 1 1–13 [14] Beizer B 1995 Black-box testing: techniques for functional testing of software and systems (John Wiley & Sons, Inc.)
(1)
[1] M. Dhanalakshmi, N.J. Snowya, and A.A. Chandrashekar: Int. J. Eng. Res. Technol. (2015). [2] J. Karthick, R. Jeyanthi, and M. Petchiyammal: Int. J. Eng. Res. Technol. (2014). [3] H. Hamli, A.A. Rahim, M.H. Idris, A.H.M. Kamal and W.S. King: Songklanakarin J. Sci. Technol. Vol 37(1) (2015). [4] C.P.K. Paul. Management of Mangrove Forest of Sarawak. Information on http//www.sarawakforestry.com/pdf/hj7-wetland10.pdf. [August, 20 2011] [5] BS 1881: Part 116: 1983. Method for Determination of Compressive Strength of ConcreteCubes. British Standard Institution, London [6] Yong, P.C. Properties of Recycled Aggregate Concrete. Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia, Bachelor of Engineering thesis (unpublished) 2009 [7] Amarnath Y. Indian Concr. J. Vol 88(10) (2014) p. 94-105
(1)
[1] Mehta, P. K., & Monteiro, P. J. M. (2006). Concrete: Microstructure, Properties, and Materials (3rd ed.). New York: McGraw-Hill. [2] Somayanji, S. (2001). Civil Engineering Materials (2nd ed.). Upper Sadle River, New Jersey: Prentice Hall. [3] M. Neville ( 1996 ). Properties of Concrete. 4th and Final ed. Harlow, England: Longman [4] M. S. J. Gani ( 1997 ). Cement and Concrete. 1st ed. 2-6 Boundary Row, London SE1 8HN, UK:Chapman & Hall [5] Y.Ohama, ( 1994 ). Polymers in Concrete. 1st ed.CRC Press Inc. United States of America [6] Michael S. Mamlouk and John P. Zaniewski. ( 2006 ). Materials for Civil and Construction Engineers. 2nd ed. New Jersey : Prentice Hall
(1)
[1]. Meinshausen M, Meinshausen N, Hare W, Raper S C B, Frieler K, Knutti R, Frame D J and Allen M Y 2009 Greenhouse-gas emission targets for limiting global warming to 2°C. Nature, 458, 1162 [2]. Edwards P P, Kuznetsov V L, David W I F and Brandon N P 2008 Hydrogen and fuel cells: Towards a sustainable energy future. Energy Policy, 36, 4362 [3]. Vaidya P D and Rodrigues A E 2006 Insight into steam reforming of ethanol to produce hydrogen for fuel cells. Chem. Eng. J., 117, 49 4]. Barton H 2012 The reversed fortunes of sago and rice, Oryza sativa, in the rainforests of Sarawak, Borneo. Quaternary Int., 249, 104 [5]. Awg-Adeni D S, Abd-Aziz S, Bujang K and Hassan M A 2009 Bioconversion of sago residue into value added products. Afr. J. Biotechnol., 9, 2021 [6]. Jafary T, Daud W R W, Ghasemi M, Kim B H, Md Jahim J, Ismail M, and Lim S S 2015 Biocathode in microbial electrolysis cell; Present status and future prospects. Renewable and Sustainable Energy Rev., 47, 33 [7]. Wrana N, Sparling R, Cicek N and Levin D B 2010 Hydrogen gas production in a microbial electrolysis cell by electrohydrogenesis. J. Cleaner Prod., 18, S111 [8]. Logan B E, Call D, Cheng S, Hamelers H V M, Sleutels T H J, Jeremiasse A W and Rozendal R A 2008 Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ. Sci. Technol., 42, 8640 [9]. Zhou M, Wang H, Hassett D J and Gu T 2013 Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts. J. Chem. Technol. Biotechnol., 88, 518 [10]. Lu L and Ren Z J 2016 Microbial electrolysis cells for waste biorefinery: A state of the art review. Bioresour. Technol., 215, 264 [11]. Gadhamshetty V, Sukumaran A, Nirmalakhandan N and Thein Myint M 2008 Photofermentation of malate for biohydrogen production - A modeling approach Int. J. Hydrogen Energy, 33, 2146 [12]. Azwar Y, Abdul-Wahab A K and Hussain M A 2013 Optimal production of biohydrogen gas via microbial electrolysis cells (mec) in a controlled batch reactor system. Chem. Eng. Trans., 32, 732 [13]. Pinto R P, Srinivasan B, Guiot S R and Tartakovsky B 2011 The Effect of Real-Time External Resistance Optimization on Microbial Fuel Cell Performance. Water Res., 45, 1578
(1)
[1] M. Meinshausen, N. Meinshausen, W. Hare, S.C.B. Raper, K. Frieler, R. Knutti, D.J. Frame and M.Y. Allen, “Greenhouse-gas emission targets for limiting global warming to 2°C,” Nature, vol. 458, pp 1158–1162, April 2009. [2] P.P. Edwards, V.L. Kuznetsov, W.I.F. David and N.P. Brandon, “Hydrogen and fuel cells: Towards a sustainable energy future,” Energy Policy, vol. 36, pp. 4356–4362, December 2008. [3] P.D. Vaidya and A.E. Rodrigues, “Insight into steam reforming of ethanol to produce hydrogen for fuel cells,” Chem. Eng. J., vol. 117, pp. 39–49, March 2006. [4] H. Barton, “The reversed fortunes of sago and rice, Oryza sativa, in the rainforests of Sarawak, Borneo,” Quaternary Int., vol. 249, pp. 96–104, February 2012. [5] D.S. Awg-Adeni, S. Abd-Aziz, K. Bujang and M.A. Hassan, “Bioconversion of sago residue into value added products,” Afr. J. Biotechnol., vol. 9, pp. 2016–2021, November 2009. [6] T. Jafary, W.R.W. Daud, M. Ghasemi, B.H. Kim, J. Md Jahim, M. Ismail, and S.S. Lim, “Biocathode in microbial electrolysis cell; Present status and future prospects,” Renewable and Sustainable Energy Rev., vol. 47, pp. 23–33, July 2015. [7] N. Wrana, R. Sparling, N. Cicek and D.B. Levin, “Hydrogen gas production in a microbial electrolysis cell by electrohydrogenesis,” J. Cleaner Prod., vol. 18, pp. S105–S111, December 2010. [8] B.E. Logan, D. Call, S. Cheng, H.V.M. Hamelers, T.H.J. Sleutels, A.W. Jeremiasse and R.A. Rozendal, “Microbial electrolysis cells for high yield hydrogen gas production from organic matter,” Environ. Sci. Technol., vol. 42, pp. 8630–8640, October 2008. [9] M. Zhou, H. Wang, D.J. Hassett and T. Gu, (2013) “Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts,” J. Chem. Technol. Biotechnol., vol. 88, pp. 508–518, November 2012. [10] L. Lu and Z.J. Ren, “Microbial electrolysis cells for waste biorefinery: A state of the art review,” Bioresour. Technol., vol. 215, pp. 254–264, September 2016. [11] V. Gadhamshetty, A. Sukumaran, N. Nirmalakhandan and M. Thein Myint, “Photofermentation of malate for biohydrogen production - A modeling approach,” Int. J. Hydrogen Energy, vol. 33, pp. 2138–2146, May 2008. [12] Y. Azwar, A.K. Abdul-Wahab and M.A. Hussain, (2013). “Optimal production of biohydrogen gas via microbial electrolysis cells (mec) in a controlled batch reactor system,” Chem. Eng. Trans., vol. 32, pp. 727–732, January 2013. [13] R.P. Pinto, B. Srinivasan, S.R. Guiot and B. Tartakovsky B, 2011, “The Effect of Real-Time External Resistance Optimization on Microbial Fuel Cell Performance,” Water Res., vol. 45, pp. 1571-1578, February 2011.
(1)
[1] Moawad HMM, Jain H, El-Mallawany R, Ramadan T, El-Sharbiny M. Electrical conductivity of silver vanadium tellurite glasses. J Am Ceram Soc 2002;85:2655–9. [2] Sidkey MA, El Mallawany RA, Abousehly AA, Saddeek YB. Relaxation of longitudinal ultrasonic waves in some tellurite glasses. Mater Chem Phys 2002;74:222–9. [3] Abdel-Kader A, El-Mallawany R, Elkholy MM. Network structure of tellurite phosphate glasses: optical absorption and infrared spectra. J Appl Phys 1993;73:71–4. [4] Bala R, Agarwal A, Sanghi S, Singh N. Effect of Bi2O3 on nonlinear optical properties of ZnOBi2O3SiO2 glasses. Opt Mater 2013;36(2):352–6. [5] El-Deen L, Salhi M, Elkholy M. IR and UV spectral studies for rare earths-doped tellurite glasses. J Alloys Compd 2008;465(1–2):333–9. [6] Binnemans K, Görller-Walrand C, Adam J. Spectroscopic properties of Gd3+doped fluorozirconate glass. Chem Phys Lett 1997;280(3–4):333–8. [7] Jiménez J. Enhanced UV emission of Gd3+ in glass by Ag+ co-doping. Mater Lett 2015;159:193–6. [8] Yin M, Li H, Tang S, Ji W. Determination of nonlinear absorption and refraction by single Z-scan method. Appl Phys B 2000;70(4):587–91. [9] Elkhoshkhany N, Abbas R, El-Mallawany R, Fraih A. Optical Properties of quaternary TeO2–ZnO–Nb2O5–Gd2O3 glasses. Ceram Int 2014;40(9):14477–81. [10] Anand Pandarinath M, Upender G, Narasimha Rao K, Suresh Babu D. Thermal, optical and spectroscopic studies of boro-tellurite glass system containing ZnO. J Non-Cryst Solids 2016;433:60–7. [11] Suthanthirakumar P, Karthikeyan P, Manimozhi P, Marimuthu K. Structural and spectroscopic behavior of Er3+/Yb3+ co-doped boro-tellurite glasses. J NonCryst Solids 2015;410:26–34. [12] Gayathri Pavani P, Sadhana K, Chandra Mouli V. Optical, physical and structural studies of boro-zinc tellurite glasses. Phys B 2011;406(6–7):1242–7. [13] Abdel-Baki M, El-Diasty F, Wahab F. Optical characterization of xTiO2–(60 x) SiO2–40Na2O glasses: II. Absorption edge, Fermi level, electronic polarizability and optical basicity. Opt Commun 2006;261(1):65–70. [14] Rani S, Sanghi S, Ahlawat N, Agarwal A. Influence of Bi2O3 on physical, electrical and thermal properties of Li2OZnOBi2O3SiO2 glasses. J Alloys Compd 2015;619:659–66. [15] Ahlawat N, Sanghi S, Agarwal A, Bala R. Influence of SiO2 on the structure and optical properties of lithium bismuth silicate glasses. J Mol Struct 2010;963 (1):82–6. [16] Chen Y, Nie Q, Xu T, Dai S, Wang X, Shen X. A study of nonlinear optical properties in Bi2O3–WO3–TeO2 glasses. J Non-Cryst Solids 2008;354 (29):3468–72. [17] Abdel-Baki M, Abdel-Wahab F, El-Diasty F. One-photon band gap engineering of borate glass doped with ZnO for photonics applications. J Appl Phys 2012;111(7):073506. [18] Ahlawat N, Sanghi S, Agarwal A, Ahlawat N. Influence of SiO2 on dispersive conductivity and absorption edge of calcium bismuthate glasses. Solid State Ionics 2011;204–205:20–6. [19] Said Mahraz Z, Sahar M, Ghoshal S. Band gap and polarizability of borotellurite glass: influence of erbium ions. J Mol Struct 2014;1072:238–41. [20] Zhong J, Ma X, Lu H, Wang X, Zhang S, Xiang W. Preparation and optical properties of sodium borosilicate glasses containing Sb nanoparticles. J Alloys Compd 2014;607:177–82. [21] Guo H, Chen H, Hou C, Lin A, Zhu Y, Lu S, et al. The third-order optical nonlinearities of Ge–Ga–Sb(In)–S chalcogenide glasses. Mater Res Bull 2011;46(5):765–70. [22] Chen L, Chen F, Dai S, Tao G, Yan L, Shen X, et al. Third-order nonlinearity in Ge–Sb–Se glasses at mid-infrared wavelengths. Mater Res Bull 2015;70:204–8. [23] Wang T, Gai X, Wei W, Wang R, Yang Z, Shen X, et al. Systematic Z-scan measurements of the third order nonlinearity of chalcogenide glasses. Opt Mater Express 2014;4(5). [24] Jiménez JA. Enhanced UV emission of Gd3+ in glass by Ag+ co-doping. Mater Lett 2015;159:193–6.
(1)
1. Mohd Ibrahim H, Muda Z, Othman IS, Unni MNM, Teh KH, Thevarajah A, et al. Observational study on the current status of thalassaemia in Malaysia: a report from the Malaysian Thalassaemia Registry. BMJ Open. (2020) 10:e037974. doi: 10.1136/bmjopen-2020-037974 2. Maxwell MJ, Wilson MJA. Complications of blood transfusion. Contin Educ Anaesth Crit Care Pain. (2006) 6:225–9. doi: 10.1093/bjaceaccp/mk l053 3. Fung EB, Harmatz P, Milet M, Ballas SK, De Castro L, Hagar W, et al. Morbidity and mortality in chronically transfused subjects with thalassemia and sickle cell disease: a report from the multi-center study of iron overload. Am J Hematol. (2007) 82:255–65. doi: 10.1002/ajh.20809 4. Ozment CP, Turi JL. Iron overload following red blood cell transfusion and its impact on disease severity. Biochim Biophys Acta. (2009) 1790:694–701. doi: 10.1016/j.bbagen.2008.09.010 5. Abtahi F, Abdi A, Jamshidi S, Karimi M, Babaei-Beigi MA, Attar A. Global longitudinal strain as an Indicator of cardiac Iron overload in thalassemia patients. Cardiovasc Ultrasound. (2019) 17:24. doi: 10.1186/s12947-019-0174-y 6. Gamberini MR, De Sanctis V, Gilli G. Hypogonadism, diabetes mellitus, hypothyroidism, hypoparathyroidism: incidence and prevalence related to iron overload and chelation therapy in patients with thalassaemia major followed from 1980 to 2007 in the Ferrara Centre. Pediatr Endocrinol Rev. (2008) 6(Suppl. 1):158–69. 7. Kassab-Chekir A, Laradi S, Ferchichi S, Haj Khelil A, Feki M, Amri F, et al. Oxidant, antioxidant status and metabolic data in patients with beta-thalassemia. Clin Chim Acta. (2003) 338:79–86. doi: 10.1016/j.cccn.2003.07.010 8. Mohkam M, Shamsian BS, Gharib A, Nariman S, Arzanian MT. Early markers of renal dysfunction in patients with beta-thalassemia major. Pediatr Nephrol. (2008) 23:971–6. doi: 10.1007/s00467-008-0753-x 9. El Alfy MS, Elsherif NH, Ebeid FS, Ismail EA, Ahmed KA, Darwish YW, et al. Renal iron deposition by magnetic resonance imaging in pediatric β-thalassemia major patients: relation to renal biomarkers, total body iron and chelation therapy. Eur J Radiol. (2018) 103:65–70. doi: 10.1016/j.ejrad.2018.04.007 10. Ziyadeh FN, Musallam KM, Mallat NS, Mallat S, Jaber F, Mohamed AA, et al. Glomerular hyperfiltration and proteinuria in transfusion-independent patients with beta-thalassemia intermedia. Nephron Clin Pract. (2012) 121:c136–43. doi: 10.1159/000339787 11. Deveci B, Kurtoglu A, Kurtoglu E, Salim O, Toptas T. Documentation of renal glomerular and tubular impairment and glomerular hyperfiltration in multitransfused patients with beta thalassemia. Ann Hematol. (2016) 95:375– 81. doi: 10.1007/s00277-015-2561-2 12. Ali BA, Mahmoud AM. Frequency of glomerular dysfunction in children with beta thalassaemia major. Sultan Qaboos Univ Med J. (2014) 14:e88–94. doi: 10.12816/0003341
(1)
[1] Mozaffarian D, Benj amin E J, Go A S et al 2015 Heart disease and stroke statistics—2015 update: a report from the American Heart Association Circulation 131 e29-e322 Google Scholar [2]Jung Y and Bae J 2015 Kinematic analysis of a 5-DOF upper-limb exoskeleton with a tilted and vertically translating shoulder joint IEEE Trans. on IndustrialMechatronics 20 1643-1648 Google Scholar [3]Perry J C, Rosen J and Burns S 2007 Upper-limb powered exoskeleton design IEEE Trans. on Industrial Mechatronics 12 408-17 Crossref Google Scholar [4]Nishimura M, Hyodo K, Kawanishi M and Narikiyo T 2015 Proof of concept for robot-aided upper limb rehabilitation using disturbance observers IEEE Trans. on Human-Machine Systems 45 110-18 Crossref Google Scholar [5]Delp S L, Anderson F C, Arnold A S, Loan P, Habib A and John C T 2007 OpenSim: Open-source software to create and analyze dynamic simulations of movement IEEE Transactions on Biomedical Engineering ed E. Guendelman and D.G. Thelan 55 1940-50 Crossref Google Scholar [6]Wu G, van der Helm F C T, (DirkJan) H E J, Veeger M, Makhsous, Van Roy P, Anglin C, Nagels J, Karduna A R, McQuade K and Wang X 2005 ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion. Part II Shoulder, elbow, wrist and hand J. Biomech 38 981-92 Google Scholar [7]Saul K R, Hu X, Goehler C M, Daly M, Vidt M E, Velisar A and Murray W M 2015 Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model Computer Methods in Biomechanics and Biomedical Engineering 18 1445-58 10.1080/10255842.2014.916698 Crossref Google Scholar [8]Hanafusa A, Shiki F, Ishii H, Nagura M, Kubota Y, Ohnishi K and Shibata Y 2018 Development of an active upper limb orthosis controlled by EMG with upper arm rotation In Intelligent Human Systems Integration – Proc. 1st Int Conf on Intelligent Human Systems Integration IHSI 2018 Crossref Google Scholar [9]Shahrol M, Annisa J, Ana S, Zainal A, Mohd S J, Noor A M, Muhamad F A and Helmy H 2015 Development of Upper Limb Rehabilitation Robot Device for Home Setting Proc 2015 IEEE Int Symp on Robotics and Intelligent Sensors 376-80 Google Scholar [10]Pizzolato C., Lloyd D.G., Sartori M., Ceseracciu E., Besier T.F. and Fregly B.J. 2015 CEINMS: A toolbox to investigate the influence of different neural control solutions on the prediction of muscle excitation and joint moments during dynamic motor taks J. Biomech. 48 3929-3936 Crossref Google Scholar
(1)
[1] M. Potthast, J. Kiesel, K. Reinartz, J. Bevendorff and B. Stein, " A Stylometric inquiry into hyperpartisan and fake news," in 56th Annual Meeting of the Association for Computational Linguistics (ACL 2018), 2018. [2] J. Kiesel, M. Mestre, R. Shukla, E. Vincent, P. Adineh, D. Corney, B. Stein and M. Potthast, "SemEval2019 task 4: Hyperpartisan news detection," in The 13th International Workshop on Semantic Evaluation (SemEval 2019), 2019. [3] J. Devlin, M. W. Chang, K. Lee and K. Toutanova, "BERT: Pretraining of deep bidirectional transformers for Language Understanding," in arXiv e-prints, 2018. [4] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee and L. Zettlemoyer, "Deep contextualized word representations," in arXiv:1802.05365, 2018. [5] N. Lee, C. S. Wu and P. Fung, "Improving large-scale fact-checking using decomposable attention models and lexical tagging," in 2018 Conference on Empirical Methods in Natural Language Processing, 2018. [6] W. Y. Wang, " " liar, liar pants on fire”: A new benchmark dataset for fake news detection.," in arXiv preprint arXiv:1705.00648, 2017. [7] V. Kulkarni, J. Ye, S. Skiena and W. Y. Wang, "Multi-view models for political ideology detection of news articles," in 2018 Conference on Empirical Methods in Natural Language Processing, 2018. [8] Y. Kim, "Convolutional neural networks for sentence classification," in 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014. [9] A. Grover and J. Leskovec, "Node2vec: Scalable feature learning for networks," in 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, 2016. [10] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola and E. Hovy, "Hierarchical attention networks for document classification," in Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, California, 2016. [11] S. Kwon, M. Cha, K. Jung, W. Chen and Y. Wang, "Prominent features of rumor propagation in online social media," IEEE 13th International Conference on Data Mining (ICDM), pp. 1103-1108, 2013. [12] X. Zhou, J. Cao, Z. Jin, F. Xie, Y. Su, J. Zhang, D. Chu and X. Cao, "Real-time news certification system on Sina Weibo," in Rumors and Deception in Social Media: Detection, Tracking, and Visualization Workshop, Florence, 2015. [13] S. Sun, H. Liu, J. He and X. Du, "Detecting event rumors on Sina Weibo automatically," in Web Technologies and Applications. APWeb 2013. Lecture Notes in Computer Science, vol. 7808, Ishikawa Y., Li J., Wang W., Zhang R., and Zhang W., Eds. Berlin, Heidelberg: Springer, 2013, pp. 120-131. [14] Y. Long, Q. Lu, R. Xiang, M. Li and C. R. Huang, "Fake news detection through multiperspective speaker profiles," in Eighth International Joint Conference on Natural Language Processing, IJCNLP 2017, 2017. [15] B. D. Horne and S. Adali, "This just in: Fake news packs a lot in title, uses simpler, repetitive content in text body, more similar to satire than real news," in arXiv:1703.09398, 2017. [16] Y. Jiang, J. Petrak, X. Song, K. Bontcheva and D. Maynard, "Team Bertha von Suttner at SemEval-2019 Task 4: Hyperpartisan News Detection using ELMo Sentence Representation Convolutional Network," in The 13th International Workshop on Semantic Evaluation, 2019. [17] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So and J. Kang, "BioBERT: A pre-trained biomedical language representation model for biomedical text mining," in arXiv:1901.08746, 2019.
(1)
[1] M. Qomaruddin, M. T. Alawy, and S. Sugiono, “Perancangan Aplikasi Penentu Rute Terpendek Perjalanan Wisata di Kabupaten Jember Menggunakan Algoritma Dijkstra,” Sci. Electro, vol. 6, no. 2, pp. 31–39, 2018. [2] D. Wahyuningsih and E. Syahreza, “Shortest Path Search Futsal Field Location with Dijkstra Algorithm,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 12, no. 2, p. 161, 2018, doi: 10.22146/ijccs.34513. [3] Farid and Y. Yunus, “Analisa Algoritma Haversine Formula untuk Pencarian Lokasi Terdekat Rumah Sakit dan Puskesmas Provinsi Gorontalo,” Ilk. J. Ilm., vol. 9, no. 3, pp. 353–355, 2017. [4] S. R. Garzon, D. Arbuzin, and A. Kupper, “Geofence index: A performance estimator for the reliability of proactive location-based services,” Proc. - 18th IEEE Int. Conf. Mob. Data Manag. MDM 2017, pp. 1–10, 2017, doi: 10.1109/MDM.2017.12. [5] Y. D. Rosita, E. E. Rosyida, and M. A. Rudiyanto, “Implementation of Dijkstra Algorithm and Multi-Criteria Decision-Making for Optimal Route Distribution,” Procedia Comput. Sci., vol. 161, pp. 378–385, Jan. 2019, doi: 10.1016/j.procs.2019.11.136. [6] Y. Z. Chen, S. F. Shen, T. Chen, and R. Yang, “Path Optimization Study for Vehicles Evacuation-based on Dijkstra Algorithm,” in Procedia Engineering, Jan. 2014, vol. 71, pp. 159–165, doi: 10.1016/j.proeng.2014.04.023. [7] S. X. Wang, “The improved Dijkstra’s Shortest Path Algorithm and Its Application,” in Procedia Engineering, Jan. 2012, vol. 29, pp. 1186–1190, doi: 10.1016/j.proeng.2012.01.110. [8] A. Sedeño-noda and M. Colebrook, “A Biobjective Dijkstra Algorithm,” Eur. J. Oper. Res., vol. 276, no. 1, pp. 106–118, 2019, doi: 10.1016/j.ejor.2019.01.007. [9] H. Wang, W. Mao, and L. Eriksson, “A Three-Dimensional Dijkstra’s Algorithm for Multi-Objective Ship Voyage Optimization,” Ocean Eng., vol. 186, no. May, p. 106131, 2019, doi: 10.1016/j.oceaneng.2019.106131. [10] L. M. S. Bento, D. R. Boccardo, R. C. S. Machado, F. K. Miyazawa, V. G. Pereira de Sá, and J. L. Szwarcfiter, “Dijkstra graphs,” Discret. Appl. Math., vol. 261, pp. 52–62, 2019, doi: 10.1016/j.dam.2017.07.033. [11] F. Mirahadi and B. Y. McCabe, “EvacuSafe: A Real-Time Model for Building Evacuation-based on Dijkstra’s Algorithm,” J. Build. Eng., no. June, p. 101687, 2020, doi: 10.1016/j.jobe.2020.101687. [12] Y. Deng, Y. Chen, Y. Zhang, and S. Mahadevan, “Fuzzy Dijkstra Algorithm for Shortest Path Problem Under Uncertain Environment,” Appl. Soft Comput. J., vol. 12, no. 3, pp. 1231–1237, 2012, doi: 10.1016/j.asoc.2011.11.011. [13] S. Liu, H. Jiang, S. Chen, J. Ye, R. He, and Z. Sun, “Integrating Dijkstra’s Algorithm into Deep Inverse Reinforcement Learning for Food Delivery Route Planning,” Transp. Res. Part E Logist. Transp. Rev., vol. 142, no. May, p. 102070, 2020, doi: 10.1016/j.tre.2020.102070.
(1)
[1] M. R. Ramli et al., “Partial Discharge Characteristics of Palm Fatty Acid Ester (PFAE) as High Voltage Insulating Material,” pp. 262–266, 2014. [2] D. M. Mehta, “A Review on Critical Evaluation of Natural Ester vis-a-vis Mineral Oil Insulating Liquid for Use in Transformers: Part 1,” vol. 23, no. 2, pp. 873–880, 2016. [3] R. C. Estoque, “Analytic hierarchy process in geospatial analysis,” in Progress in Geospatial Analysis, Springer, Tokyo, 2012, pp. 157-181. [4] S. A. Azeez, O. R. Nandagopan, and V. M. Dhiwakar, “Application of Analytic Hierarchy Process for Optimal Design Decisions in Product Development,” no. 3, pp. 47–54, 2013. [5] T. L. Saaty and E. Rokou, “How to prioritize inventions,” World Pat. Inf., vol. 48, pp. 78–95, 2017. [6] P. S. Pakkianathan, “Regeneration Process,” 2017. [7] A. Raymon, P. S. Pakianathan, M. P. E. Rajamani, and R. Karthik, "Enhancing the critical characteristics of natural esters with antioxidants for power transformer applications," vol. 20, no. 3, pp.899-912, 2013. [8] V. Shah, Handbook of plastics testing and failure analysis, John Wiley & Sons, 2007. [9] A. A. Suleiman, N. A. Muhamad, N. Bashir, N. S. Murad, and Y. Z. Arief, “Effect of Moisture on Breakdown Voltage and Structure of Palm Based Insulation Oils,” vol. 21, no. 5, pp. 2119–2126, 2014. [10] A. Jahromi, R. Piercy, S. Cress, J. Service, AND W. Fan, "An approach to power transformer asset management using health index," vol. 25, no.2, pp. 20-34, 2009. [11] M. Bagheri, B. T. Phung, and T. Blackburn, “The influence of dielectric dissipation factor on transformer Frequency Response Analysis,” 2014 IEEE Conf. Electr. Insul. Dielectr. Phenomena, CEIDP 2014, pp. 634–637, 2014. [12] Y. Lu, P. Wu, and F. Tao, “Influence of Iron Particle on the Breakdown Strength of Insulating Oil at AC and DC Voltages,” no. June, pp. 19–22, 2016. [13] F. Sitinjak, I. Suhariadi, and L. Imsak, “Study on the characteristics of palm oil and it's derivatives as liquid insulating materials,” In Properties and Applications of Dielectric Materials, 2003. Proceedings of the 7th International Conference on, vol. 2, pp. 495- 498, 2003. [14] S. S. Ab Ghani, and N. A. Muhamad, “Hydrocarbon gases dissolved in palm-based insulation oil after experienced breakdown,” In Properties and Applications of Dielectric Materials (ICPADM), 2015 IEEE 11th International Conference on the pp. 460-463, 2015. [15] A. C. Franklin, and D. P. Franklin, The J & P transformer book: a practical technology of the power transformer. Elsevier, 2016. [16] Y. Z. Arief et al., “A comparative study on the effect of electrical ageing on electrical properties of palm fatty acid ester (PFAE) and FR3 as dielectric materials,” Conf. Proceeding - 2014 IEEE Int. Conf. Power Energy, PECon 2014, pp. 128–133, 2014. [17] T. Ahmed, in Equations of state and PVT analysis: applications for improved reservoir modeling, Houston, Tex. Gulf Publ. XI, 2007. [18] M. Heathcote, J & P transformer book, Newnes, 2011. [19] F. Husain, N. A. Sulaiman, K. A. Hashim, and A. M. Samad, “A study on TNB transmission line route sustainability and suitability using GIS-AHP,” Proc. - 2012 IEEE Control Syst. Grad. Res. Colloquium, ICSGRC 2012, no. Icsgrc, pp. 364–369, 2012. [20] S. Das, T. Pal, S. Kar, S. C. Satapathy, and J. K. Mandal, “Proceedings of the 4th International Conference on Frontiers in Intelligent Computing: Theory and Applications” (FICTA) Springer, 2015, vol. 404. [21] T. L. Saaty, and L. G. Vargas, “Models, methods, concepts & applications of the analytic hierarchy process” Springer Science & Business Media, 2012, vol. 175. [22] Thomas L. Saaty, “How to make a decision: The Analytic Hierarchy Process,” European Journal of Operational Research, vol. 48. pp. 9–26, 1990. [23] Mu, E., & Pereyra-Rojas, M. “Understanding the Analytic Hierarchy Process,” in Practical Decision Making using Super ecisions, Springer, Cham, 2018, vol. 3, pp. 7-22. [24] A. Ishizaka, and A. Labib, Analytic hierarchy process and expert choice: Benefits and limitations. Or Insight, vol. 4, Springer, 2009, pp. 201-220. [25] A. Melvin, A. Decision-Making using the Analytic Hierarchy Process (AHP) and SAS/IML, Social Security Administration, Baltimore, MD. SESUG, SD-04, 2012, pp. 1-12. [26] R. O. D. Peakall, and P. E. Smouse, “GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research,” Molecular Ecology Resources, vol. 6, no. 3, pp. 288-295, 2006. [27] N. Mohd Salleh, “An-ahp based load shedding algorithm to mitigate power system blackout,” Doctoral dissertation, Universiti Tun Hussein Onn Malaysia, 2015. [28] A. Susilo et al., “Comparative study of partial discharge characteristics and dissolved gas analysis on palm-based oil as insulating material,” 2nd IEEE Conf. Power Eng. Renew. Energy 2014, pp. 232–236, 2014. [29] E. Alptekin, and M. Canakci, “Determination of the density and the viscosities of biodiesel–diesel fuel blends,” Renewable energy, vol. 33, no. 12, pp. 2623-2630, 2008. [30] S. K. Hoekman, A. Broch, C. Robbins, E. Ceniceros, and M. Natarajan, “Review of biodiesel composition, properties, and specifications,” Renewable and Sustainable Energy Reviews, vol. 16, no. 1, pp. 143-169, 2012. [31] Y. Bertrand, and L. C. Hoang, “Vegetable oils as substitute for mineral insulating oils in medium-voltage equipments,” CIGRE, 2004. [32] B. Esteban, J. R. Riba, G. Baquero, A. Rius, and R. Puig, “Temperature dependence of density and viscosity of vegetable oils,” Biomass and bioenergy, vol. 42, pp. 164-171, 2012. [33] S. A. Azli, Y. Z. Arief, N. A. Muhamad, and N. Bashir, “The effect of electrical ageing on electrical properties of palm fatty acid ester (PFAE) and FR3 as dielectric materials,” in Research and Development (SCOReD), 2013 IEEE Student Conference, pp. 209- 214, 2013. [34] D. Gnanasekaran, and V. P. Chavidi, Vegetable Oil Based Bio-lubricants and Transformer Fluids: Applications in Power Plants, Springer, 2017.
(1)
[1] M. R. Razak, F. Johar, and R. A. Abd Khalil, “The impact of Iskandar Malaysia development on urban amenities,” Journal of the Malaysian Institute of Planners, Special Issue IV, pp. 121-134, 2016. [2] S. Phang, “Decentralization and local governance in Malaysia,” in Public Administration in Southeast Asia: Thailand, Philippines, Malaysia, Hong Kong and Macao, E. M. Berman, Ed. Boca Raton, FL: CRC Press, 2011, p. 162. [3] P. Healey, Collaborative Planning: Shaping Places in Fragmented Societies, Y. Rydin and A. Thornley, Eds. London: Macmillan Education, 1997, p. 222. [4] J. E. Innes and D. E. Booher, “Reframing public participation: Strategies for the 21st Century,” Planning Theory & Practice, vol. 5, no. 4, pp. 419-436, 2004. [5] D. Omar and O. Leh, “Malaysian development planning system: Kuala Lumpur structure plan and public participation,” Asian Social Science, vol. 5, no. 3, pp. 30-36, 2009. [6] A. A. Abdullah, Z. Harun, and H. Abdul Rahman, “Planning process of development project in the malaysian context: A crucial brief overview,” International Journal of Applied Science and Technology, vol. 1, no. 2, pp. 74-81, 2011. [7] R. S. Chua and A. Deguchi, “Implementation issues on planning control according to the provision of Town and Country Planning Act 1976 in Malaysia,” Journal of Architecture and Urban Design, no. 14, pp. 47-58, 2008. [8] Town and Country Planning Act 1976 (Act 172), Malaysia. [9] F. Ahmad, I. Mohd, S. L. Maidin, R. Zainol, and N. Mohd Noor, “Malaysia development plan system: Issues and problems, one decade after its reform (2001-2011),” Journal of the Malaysian Institute of Planners, vol. XI, pp. 1-20, 2013. [10] A. J. Maidin, “Access to public participation in the land planning and environmental decision-making process in Malaysia,” International Journal of Humanities and Social Science, vol. 1, no. 3, pp. 148-164, 2011. [11] A. Faludi, A Decision-centred View of Environmental Planning. Oxford: Pergamon Press, 1987, p. 118. [12] S. R. Arnstein, “A ladder of citizen participation,” Journal of the American Institute of Planners, vol. 35, no. 4, pp. 216-224, 1969. [13] J. Newman, M. Barnes, H. Sullivan, and A. Knops,“Public participation and collaborative governance,” Journal of Social Policy, vol. 33, no. 2, pp. 203-223, 2004. [14] A. Rizzo and J. Glasson, “Iskandar Malaysia,” Cities, vol. 29, no. 6, pp. 417-427, 2012. [15] F. Yunos and S. Sabri, “Planner perception on factors that affect plan implementation in Iskandar Malaysia,” International Journal of Built Environment and Sustainability, vol. 1, pp. 1-17, 2014. [16] R. Kumar, Research Methodology: A Step by Step Guide for Beginners, 3rd ed. London: Sage Publications Ltd.,2014. [17] R. Edwards and J. Holland, What is Qualitative Interviewing? London: Bloomsbury Academic, 2013, p. 31. [18] M. L. Patten and M. Newhart, Understanding Research Methods: An Overview of the Essentials, 10th ed. New York: Routledge, 2017, p. 23. [19] G. Guest, A. Bunce, and L. Johnson, “How many interviews are enough? An experiment with data saturation and variability,” Field Methods, vol. 18, no. 1, pp. 59-82, 2006. [20] C. Boyce and P. Neale, “Conducting in-depth interviews: A guide for designing and conducting in-depth interviews for evaluation input,” in Monitoring and Evaluation – 2. Watertown: Pathfinder International, 2006, pp. 1-12. [21] L. Guion, D. Diehl, and D. McDonald, “Conducting an in-depth interview,” Institute of Food and Agriculture Sciences, University of Florida, 2006. [22] S. Lester. (1999). An Introduction to Phenomenological Research. [Online]. Available:https://www.researchgate.net/publicatio n/255647619_An_introduction_to_phenomenological_research (accessed 31 October 2018). [23] J. W. Creswell, Qualitative Inquiry & Research Design: Choosing Among Five Approaches, 2nd ed. California: Sage Publications, 2007. [24] B. Marshall, P. Cardon, A. Poddar, and R. Fontenot, “Does sample size matter in qualitative research? A Review of Qualitative Interviews in Research,” Journal of Computer Information Systems, vol. 54, no. 1, pp. 11-22, 2013. [25] M. Mason, “Sample size and saturation in PhD studies using qualitative interviews,” Forum: Qualitative Social Research, vol. 11, no. 3, pp. 1-13, 2010. [26] J. M. Morse, “Determining sample size,” Qualitative Health Research, vol. 10, no. 1, pp. 3-5, 2000. [27] M. Coenen, T. A. Stamm, G. Stucki, and A. Cieza, “Individual interviews and focus groups in patients with rheumatoid arthritis: A comparison of two qualitative methods,” Quality of Life Research, vol. 21, no. 2, pp. 359-370, 2012. [28] G. Guest, E. Namey, and K. McKenna, “How many focus groups are enough? Building an evidence base for nonprobability sample sizes,” Field Methods, vol. 29, no. 1, pp. 3–22, 2017. [29] V. Braun and V. Clarke, “Using thematic analysis in psychology,” Qualitative Research in Psychology, vol. 3, no. 2, pp. 77-101, 2006. [30] K. Bazeley and K. Jackson, Qualitative Data Analysis with NVivo - Google Books. SAGE Publications, 2013. [31] H. Marshall, “What do we do when we code data?,” Qualitative Research Journal, vol. 2, no. 1, pp. 56–70, 2002. [32] C. Barry, “Choosing qualitative data analysis software: Atlas.ti and Nudist compared,” Sociological Research, vol. 3, no. 3, pp. 1-13, 1998. [33] S. Salonga. (2018). Types of Transcription: Verbatim vs. Intelligent vs. Edited Transcription. [Online]. Available: https://www.globalme.net/blog/verbatim-vs�intelligent-vs-edited-transcription (accessed 2 November 2018). [34] C. Tosun, “Limits to community participation in the tourism development process in developing countries,” Tourism Management, vol. 21, no. 6, pp. 613-633, 2000.
(1)
[1] M. U. Chapra, “Ibn Khaldun’s theory of development: Does it help explain the low performance of the present-day Muslim world?,” J. Socio. Econ., vol. 37, no. 2, pp. 836–863, 2008. [2] F. L. Pryor, “The economic impact of Islam on developing countries,” World Dev., vol. 35, no. 11, pp. 1815–1835, 2007. [3] V. K. Borooah and M. Paldam, “Why is the world short of democracy?: A cross-country analysis of barriers to representative government,” Eur. J. Polit. Econ., vol. 23, no. 3, pp. 582–604, 2007. [4] M. Kriger and Y. Seng, “Leadership with inner meaning: A contingency theory of leadership based on the worldviews of five religions,” Leadersh. Q., vol. 16, no. 5, pp. 771–806, 2005. [5] M. Noland, “Religion and economic performance,” World Dev., vol. 33, no. 8, pp. 1215–1232, 2005. [6] B. Maddox, “Secular and Koranic literacies in South Asia: From colonisation to contemporary practice,” Int. J. Educ. Dev., vol. 27, no. 6, pp. 661–668, 2007. [7] R. M. Amin, S. A. Yusof, and M. A. M. Haneef, “Values, social problems and balanced development in Malaysia,” J. Socio. Econ., vol. 35, no. 1, pp. 151–163, 2006. [8] N. Zainul, F. Osman, and S. H. Mazlan, “E-Commerce from an Islamic perspective,” Electron. Commer. Res. Appl., vol. 3, no. 3, pp. 280–293, 2004. [9] D. A. King, “The sacred geography of Islam,” Math. Des. A Hist. Study, T. Koetsier L. Bergmans, Eds. Elsevier, pp. 163–178, 2005. [10] R. Y. Afifi, “Biomedical research ethics: An Islamic view part II.” Elsevier, 2007. [11] R. R. Hanks, “Dynamics of Islam, identity, and institutional rule in Uzbekistan: Constructing a paradigm for conflict resolution,” Communist Post-Communist Stud., vol. 40, no. 2, pp. 209–221, 2007.
(1)
[1] Muhammad Talpur, M. A. Melaka Review: Tourism - Places of Interest - The Stadthuys. http://www.melakareview.com/Home/travel/places-of-interest/the-stadthuys [Retrieved on 01/01/17] (1990) [2] Ho, K. C., Hasan, A. S. & M Noordin, N. An Influence of Colonial Architecture to Building Styles and Motifs in Colonial Cities in Malaysia. 8th International Conference of the Asian Planning Schools Association. Penang, Malaysia (2005). [3] Lee, W. H. The History of Melaka's Urban Morphology. https://www.researchgate.net/publication/301543855 [Retrieved on 01/01/17]. (2016) [4] Kamal, K. S., Ab Wahab, L. & Ahmad, A. G. Pilot Survey on the Conservation of Historical Buildings in Malaysia. 2nd International Conference on Built Environment in Developing Countries. Penang, Malaysia (2008). [5] Federal Emergency Management Agency. Techniques for the Seismic Rehabilitation of Existing Buildings. FEMA 547, Federal Emergency Management Agency, Washington, D.C. (2006). [6] New Zealand National Society for Earthquake Engineering. Draft Guidelines for Assessing and Strengthening Earthquake Risk Buildings, New Zealand National Society for Earthquake Engineering, Wellington, New Zealand (1995). [7] Abdul Karim, A. R. Seismic Assessment of Wall-Diaphragm Connections in New Zealand Unreinforced Masonry Buildings. PhD thesis The University of Auckland, New Zealand, 2012. [8] Bruneau, M. State-of-the-art report on seismic performance of unreinforced masonry buildings. Journal of Structural Engineering 120(1) (1994a) 230-251. [9] Bruneau, M. Seismic evaluation of unreinforced masonry buildings – a state-of-the-art report. Canadian Journal of Civil Engineering 21(2) (1994b) 512-539. [10] Blaikie, E. L. & Spurr, D. D. Earthquake vulnerability of existing unreinforced masonry buildings. Works Consultancy Services, Wellington, New Zealand (1992). [11] Griffith, M. C. Performance of Unreinforced Masonry Buildings during the Newcastle Earthquake, Australia. Research Report No. R86, The University of Adelaide, Adelaide, Australia (1991). [12] Evans, N. The earthquake’s impacts on buildings and infrastructure. In Shaken Up, proceedings of a workshop on Recovery following the Gisborne Earthquake (Vol. 7) (2009). [13] Dizhur, D., Lumantarna, R., Ismail, N., Ingham, J. M. & Knox, C. Performance of unreinforced and retrofitted masonry buildings during the 2010 Darfield earthquake. Bulletin of the New Zealand Society for Earthquake Engineering 43(4): 321 (2010). [14] Dizhur, D., Ingham, J., Moon, L., Griffith, M., Schultz, A., Senaldi, I., Magenes, G., Dickie, J., Lissel, S., Centeno, J., Ventura, C., Leite, J. & Lourenco, P. Performance of masonry buildings and churches in the 22 February 2011 Christchurch earthquake. Bulletin of the New Zealand Society for Earthquake Engineering 44(4) (2011) 279-296. [15] Malaysian Standard. MS 544: Part 5: 2001 Code of Practice for Structural Use of Timber: Part 5: Timber Joints. Department of Standards Malaysia (2001). [16] Quenneville, J. H. P. & Mohammad, M. On the Failure Modes and Strength of Steel-Wood-Steel Bolted Timber Connections Loaded Parallel-To-Grain. Canadian Journal of Civil Engineering 27 (2000) 761-773. [17] Mohammad, M., and Quenneville, J. H. P. Bolted Wood-Steel and Wood-Steel-Wood Connections: Verification of a New Design Approach. Canadian Journal of Civil Engineering 28 (2001) 254-263. [18] Quenneville, J. H. P., Smith, I., Aziz, A., Snow, M. & Ing, H. C. Generalised Canadian Approach for Design of Connections with Dowel Fasteners. CIB-W18 meeting Proceedings, Florence, Italy, paper CIB-W18/39-7-6 (2006). [19] Quenneville, J. H. P. & Jensen, J. Validation of the Canadian Bolted Connection Design Proposal. CIB-W18 meeting Proceedings (2008). [20] Abdul Karim, A. R., Quenneville, P., M.Sa’don, N. & Ingham, J. Assessment Guidelines of Wall-Diaphragm Connections for Masonry Buildings. In: Yazdani, S. and Singh, A. (Ed.). New Developments in Structural Engineering & Construction. Research Publishing, Singapore (2013). [21] Cabrero, J. M. & Yurrita, M. Performance assessment of existing models to predict brittle failure modes of steel-to-timber connections loaded parallel-to-grain with dowel-type fasteners, Engineering Structures 171 (2018) 895-910. [22] Quenneville, P. Design of Bolted Connections: A Comparison of a Proposal and Various Existing Standards. Journal of the Structural Engineering Society (SESOC) New Zealand Inc. 22(2) (2009) 57-62. [23] Malaysian Standard 2001. MS 544: Part 5: Code of Practice for Structural Use of Timber: Part 5: Timber Joints. Department of Standards Malaysia (2001). [24] Abdul Karim, A. R., Quenneville, P., & Sa’don, N. M. (2021). Shear failure of the Meraka hardwood in bolted connections loaded parallel to the timber grain. In IOP Conference Series: Materials Science and Engineering (Vol. 1101, No. 1, p. 012005). IOP Publishing. [25] Blass, H. J. Joints with Dowel-type Fasteners. In: Thelandersson, S. and Larsen, H. J. (Ed.). Timber Engineering. John Wiley & Sons Ltd., England, 2003, Pp. 315-331 [26] Ballerini, M., Mares, F. & Sommavilla, D. Dowel Timber Connections with Two Shear Planes Loaded Parallel-to-the-Grain: Reliability of the New European Design Code by Means Experimental Tests. 9th World Conference on Timber Engineering 2006, Portland, Oregon, USA (2006). [27] Forest Products Laboratory. Wood Handbook: Wood as an Engineering Material." Forest Service U.S. Department of Agricultural, Washington, D.C (1987) [28] Malaysian Timber Industry Board. Wood Wise: Strength Groups of Timber and Their Applications. http://www.mtib.gov.my/index.php [Retrieved on 29/04/13] (2013) [29] Malaysia Timber Council. MTC Wood Wizard: Malaysian Timbers at Your Fingertips. http://www.mtc.com.my/resources-WoodWizard.php [Retrieved on 31/01/13] (2013) [30] Forest Department Sarawak. Handbook of Some Sarawak Timbers. Forest Department Sarawak, Kuching, Sarawak, Malaysia (1999). [31] International Organization for Standardization. Draft International Standard ISO/DIS 10984-2 Timber structures - Dowel-type fasteners - Part 2: Determination of embedding strength and foundation values. International Organization for Standardization, Geneva, Switzerland (2008). [32] Australian/New Zealand Standard. AS/NZS 1080.3: 2000 Timber - Methods of Test - Method 3: Density. Standards New Zealand (electronic copy) (2000). [33] Australian/New Zealand Standard. AS/NZS 1080.1: 1997 Timber - Methods of Test - Method 1: Moisture content. Standards New Zealand (electronic copy) (1997). [34] Abdul Karim, A. R., Quenneville, P., M.Sa’don, N. & Yusof, M. Investigating the Meraka Hardwood Failure in Bolted Connections Parallel to the Timber Grain. International Journal of Engineering & Technology 7(3.18) (2018) 62-65. [35] International Organization for Standardization (1983). International Standard ISO 6891 Timber structures – Joints made with mechanical fasteners – General principles for the determination of strength and deformation characteristics. International Organization for Standardization, Geneva, Switzerland.
(1)
1. Nanomaterials state of the market Q3 2008: Stealth Success, broad impact. Lux Research, 2008. Lux Research Inc New York. 2. Sargent, J. F., “Nanotechnology: A Policy Primer”, Congressional Research Service, 2016. http://eprints.internano.org/id/eprint/ 2357. 3. Federici, G., Shaw, B. J., and Handy, R. R., “Toxicity of Titanium Dioxide Nanoparticles to Rainbow Trout (Oncorhynchus mykiss): Gill Injury, Oxidative Stress, and Other Physiological Effects”, Aquatic Toxicology, 2007, 84, 415-430. 4. Liu, H., Ma, L., Zhao, J., Liu, J., Yan, J., and Ruan, J., Hong, F., “Biochemical Toxicity of Nano-anatase TiO2 Particles in Mice”, Biological Trace Element Research, 2009, 129 (1-3), 170-180. 5. Nel, A., Xia, T., Madler, L., and Li, N., “Toxic Potential of Materials at the Nanolevel”, Science, 2006, 311(5761), 622-627. 6. Mortensen, L. J., Oberdorster, G., Pentland, A. P., and Delouise, L. A., “In Vivo Skin Penetration of Quantum Dot Nanoparticles in the Murine Model: The effect of UVR”, Nano Letters, 2008, 8 (9), 2779-2787. 7. Piccinno, F., Gottschalk, F., Seeger, S., and Nowack, B., “Industrial production quantities and uses of ten engineered nanomaterials for Europe and the world”, J. Nanopart. Res. 2012, 14, 1109–1120. 8. Handy, R. D., Kammer, F. V. D., Lead, J. R., Hassello ¨v, M., Owen, R., and Crane, M., “The ecotoxicity and chemistry of manufactured nanoparticles”, Ecotoxicology, 2008, 17, 287–314. 9. Nowack, B., “The behavior and effects of nanoparticles in the environment”, Environmental Pollution, 2009, 157, 1063– 1064. 10. Kahru, A., Ivask, A., Kasemets, K., Pollumaa, L., Kurvet, I., Francois, M., and Dubourguier, H-C., “Biotests and biosensors in ecotoxicological risk assessment of field soils polluted with zinc, lead and cadmium”, Environmental Toxicology and Chemistry: An International Journal, 2005, 24(11), 2973-2982. 11. Lock, K., and Janssen, C. R., “Comparative toxicity of zinc salt, zinc powder and zinc oxide to Eisenia, fetida, Enchytraeus albidus and Folsomia candida”, Chemosphere, 2003, 53 (8), 851–856. 12. Piao, F., Yokoyama, K., Ma, N., and Yamauchi, T., “Subacute toxic effects of zinc on various tissues and organs of rats”, Toxicol. Lett. 2003, 145 (1), 28–35. 13. Gottschalk, F., Kost, E., and Nowack, B., “Engineered nanomaterials in water and soils: a risk quantification based on probalistic exposure and effect modelling”, Environ. Toxicol. 2013, Chem. 32(6), 1278-1287. 14. Wang, X. S., Li, Z. Z., and Tao, S. R., “Removal of chromium (VI) from aqueous solution using walnut hull”, Journal of Environmental Management, 2009, 90(2), 721-729. 15. Vijayalakshmi, K., Devi, B. M., Latha, S., Gomathi, T., Sudha, P. N., Venkatesan, J., and Anil, S., “Batch adsorption and desorption studies on the removal of lead (II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads”, International Journal of Biological Macromolecules, 2017, S0141-8130(16) 32016-5. 16. Aslam, M., Rais, S., Alam, M. and Pugazhendi, A. “Adsorption of Hg(II) from Aqueous Solution Using Adulsa (Justicia adhatoda) Leaves Powder: Kinetic and Equilibrium Studies”, Journal of Chemistry, 2013, ArticleID174807,1-11. 17. Wahi, R., Kanakaraju, D., and Yusuf, N. A., “Preliminary Study on Zinc Removal from Aqueous Solution by Sago Wastes”, Global Journal of Environmental Research, 2010, 4 (2), 127-134. 18. Hiroshi, E., Yukio, T., and Dennis, V. J., “Sago Palm: multiple contributions to food security and sustainable livelihoods”, Published by Springer Nature, 2018, 11-13. 19. Amin, N., Sabli, N., Izhar, S., and Yoshida, H., “Sago Wastes and Its Applications”, Pertanika J. Sci. & Technol., 2019, 27(4), 1841-1862. 20. Singhal, R. S., Kennedy, J. F., Gopalakrishnan, S. M., Kaczmarek, A., Knill, C. J., and Akmar, P. F., “Industrial Production, Processing and Utilization of Sago Palm-derived Products”, Carbohydrate Polymer, 2008, 72: 1-20. 21. Wahi, R., Luqman, C. A., Mohsen, N. M., Ngaini, Z., and Thomas, C. S. Y., “Utilization of esterified sago bark fibre waste for removal of oil from palm oil effluent”, Journal of environmental chemical engineering, 2017, 5, 170-177. 22. Droepenu, E. K., Asare, E. A., “Morphology of green synthesized ZnO nanoparticles using low temperature hydrothermal technique from aqueous Carica papaya extract”, Nanoscience and Nanotechnology, 2019, 9 (1), 29-36. 23. Droepenu, E. K., Boon, S. W., Chin, S. F., Kuan, Y. K., Zaini, B. A., and Asare, E. A., “Comparative evaluation of antibacterial efficacy of biological synthesis of ZnO nanoparticles using fresh leaf extract and fresh stem bark of Carica papaya”, Nano Biomed. Eng. 2019, 11 (3), 264-271. 24. Droepenu, E. K., Asare, E. A., Dampare, S. B., Adotey, D. K., Gyampoh, A. O., and Kumi-Arhin, E., “Laboratory and Commercial Synthesized Zinc Oxide Nanoparticles Adsorption onto Coconut Husk: Characterization, Isotherm, Kinetic, and Thermodynamic Studies”, Biointerface Research in Applied Chemistry, 2021, 11(1), 7871-7889. 25. Zhou, M., Wei, Z., Qiao, H., Zhu, L., Yang, H., and Xia, T., “Particle size and pore structure characterization of silver nanoparticles prepared by confined arc plasma”, J. Nanomater, 2009, 1-5. http://doi:10.1155/2009/968058. 26. Langmuir, I., “The constitution and fundamental properties of solids and liquids”, J. Am. Chem. Soc., 1916, 38(11), 2221-2295. 27. Webber, T. W., and Chakkravorti, R. K., “Pore and solid diffusion models for fixed bed adsorbers”, AIChE J. 1974, 20, 228-238. 28. Freundlich, H. M. F., “Over the adsorption in solution”, J. Phys. Chem., 1906, 57, 385-471. 29. Temkin, M. I., and Pyzhev, V., “Kinetics of ammonia synthesis on promoted iron catalyst”, Acta Phys. Chim., USSR, 1940, 12, 327-356. 30. Akkaya, G., and Ozer, A., “Adsorption of acid red 274 (AR 274) on Dicranella varia: Determination of equilibrium and kinetic model parameters”, Process Biochem, 2005, 40, 3559–3568. 31. Pearce, C. I., Lloyd, J. R., and Guthrie, J. T., “The removal of colour from textile wastewater using whole bacterial cells: A review”, Dyes Pigments, 2003, 58, 179–196. 32. Lakshmipathy, R., and Sarada, N. C., “Methylene blue adsorption onto native watermelon rind: batch and fixed bed column studies”, Desalin. Water. Treat. 2016, 57(23), 10632-45. 33. Zareie, C., Najafpoura, G., and Baei, M. S., “Preparation of nanochitosan as an effective sorbent for the removal of copper ions from aqueous solutions”, IJE Transac. B: Appl. 2013, 26, 829-836. 34. Rao, M. M., Ready, D. D. K. K., Venkateswarl, P., and Seshaiah, K., “Removal of mercury from aqueous solution using activated carbon prepared from agriculture by-product/waste”, J. Environmental Management, 2008, 90(1):634-643. 35. Lim, T. T., and Huang, X., “Evaluation of hydrophobicity/oleophilicity of kapok and its performance in oily water filtration: comparison of raw and solvent-treated fibers”, Ind. Crops Prod., 2007, 26, 125–134. 36. Tserki, V., Zafeiropoulos, N. E., Simon, F., and Panayiotou, C., “A study on the effect of acetylation and propionylation surface treatments on natural fibers”, Compos. A: Appl. Sci. Manuf. 2005, 36, 1110–1118. 37. Adebajo, M. O., and Frost, R. L., “Infra-red and 13-C MAS nuclear magnetic resonance spectroscopic study of acetylation of cotton”, Spectrochim. Acta A, 2004, 60, 449–453. 38. Banerjee, M., Basu, R.K., and Das, S.K., “Cr(VI) adsorption by a green adsorbent walnut shell: adsorption studies, regeneration studies, scale-up design and economic feasibility”, Process Safety and Environment Protection, 2018, 116, 693-702. 39. Kanthasamy, S., Hadibarata, T., Hidayat, T., Alamri, S. A., and Al-Ghamdi, A. A., “Adsorption of azo and anthraquinone dye by using watermelon peel powder and corn peel powder: equilibrium and kinetic studies”, Biointerface Research in Applied Chemistry, 2020, 10(1), 4706 – 4713. 40. Malik, R., Ramteke, D., and Wate, S.R., 2006 “Physico-chemical and surface characterization of adsorbent prepared from groundnut shell by ZnCl2 activation and its ability to absorb colour”. Indian Journal of Chemical Technology, 13(4), 319-328. 41. Zhang, X., and Wang, X., “Adsorption and Desorption of Nickel (II) Ions from Aqueous Solution by a Lignocellulose/ Montmorillonite Nanocomposite”, PLoS ONE, 2015, 10(2), 1-21. 42. Makeswari, M., Santhi, T., Aswini, P. K., “Adsorption of nickel ions by using binary metal oxides from aqueous solution”, Int. J. Adv. Res., 2016, 4, 542-553. 43. Putra, W. P., Kamari, A., Yusoff, S. N. M., Ishak, C. F., Mohamed, A., Hashim, N., and Isa, I.Md., “Biosorption of Cu(II), Pb(II) and Zn(II) ions from aqueous solutions using selected waste materials: Adsorption and characterisation studies”, J. Encapsul. Adsorp. Sci., 2014, 4, 25-35. 44. Bhatti, H. N., Mumtaz, B., Muhammad, A. H., and Nadeem, R., “Removal of Zn (II) ions from aqueous solution using Moringa oleifera Lam (Horseradish Tree) biomass”, Process Biochemistry, 2007, 42: 547-553. 45. Velintine, V. A., Wee, B. S., Chin, S. F., and Kok, K. Y., “Transformation of zinc oxide nanoparticles under environmentally relevant conditions: influence of pH and ionic strength”, Transactions on Science and Technology, 2017, 4(2), 123-136. 46. Piplai, T., Kumar, A., and Alappat, B. J., “Removal of mixture of ZnO and CuO nanoparticles (NPs) from water using activated carbon in batch kinetic studies”, Water Science & Technology, 2017, 75.4, 1-21. 47. Chandrasekaran, T., Arunkumar, A., and RiazAhamed, K., “Removal of Pb (II) ions from aqueous solutions using activated carbon prepared from plant Glycosmis mauritiana”, J. Chem. Pharm. Res. 2016, 8, 704-711. 48. Al-Jariri, J. S., and Khalili, F., “Adsorption of Zn(II), Pb(II), Cr(III) and Mn(II) from water by Jordanian Bentonite”, Desalin. Water. Treat., 2012, 21, 308-322. 49. Reddy, D., Seshaiah, K., Reddy, A. V. R., and Lee, S. M., “Optimization of Cd(II), Cu(II) and Ni(II) biosorption by chemically modified Moringa oleifera leaves powder”, Carbohydr. Polym., 2010, 88, 1077-1086. 50. Harikumar, P. S., and Anisha Aravind, B. P., “Heavy metal removal from waste water using Copper alumina Nanocomposite”, Int. J. Innov. Appl. Res., 2016, 4, 35- 44. 51. Abdel-Ghani, N. T., Hefny, M., and El- Chaghaby, G. A. F., “Removal of lead from aqueous solution using low cost abundantly available adsorbents”, Int. J. Environ. Sci. Tech., 2007, 4(1), 67–73. 52. Bishnoi, N. R., “Biosorption of Cu (II) from aqueous solution using algal biomass”, J. Sci. Ind. Res., 2004, 63, 813–816. 53. Gong, R., Ding, Y., Liu, H., Chen, Q., and Liu, Z., “Lead biosorption and desorption by intact and pretreated spirulina maxima biomass”, Chemosphere, 2005, 58 (1), 125–30. 54. Saifuddin, N., and Raziah, A. Z., “Removal of heavy metals from industrial effluent using Saccharomyces cerevisiae (Baker’s yeast) immobilized in chitosan / lignosulphonate matrix”, Journal of Applied Science Research, 2007, 3, 2091–2099. 55. Aydin, H., Bulut, Y., and Yerlikaya, C., “Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents”, J. Environmental Management, 2008, 87, 37-5. 56. Akar, S. T., Ozcan, A. S., Akar, T., Ozcan, A., and Kaynak, Z., “Biosorption of a reactive textile dye from aqueous solutions utilizing an agrowaste”, Desalination, 2009, 249(2), 757–761. 57. Srivastava, V. C., Mall, I. D., and Mishra, I. M., “Characterization of mesoporous rice husk ash (RHA) and adsorption kinetics of metal ions from aqueous solution onto RHA”, J. Hazard. Mater. B, 2006, 134, 257. 58. Deepa, C. N., and Suresha, S., “Biosorption of Ni(II) in aqueous solution and industrial wastewater by leaves of Araucaria cookie”, Int. J. Res. Chem. Environ., 2014, 4, 101- 108. 59. Lakherwal, D., Rattan, V. K., and Singh, H. P., “Studies on adsorption of nickel by activated carbon in a liquid fluidised bed reactor”, Canadian. Chem. Trans., 2016, 4, 121-132. 60. Zhang, P., Ding, W., Zhang, Y., Dai, K., and Liu, W., “Heavy metal ions removal from water using modified zeolite”, J. Chem. Pharm. Res., 2014, 6, 507-514. 61. Ozer, A., and Ozer, D., “Comparative study of the biosorption of Pb (II), Ni (II) and Cr (VI) ions onto S. cerevisiae: determination of biosorption heats”, J. Hazard Mater., 2003, 100, 219–229. 62. Rajakovic-Ognjanovic, V., Aleksic, G., and Rajakovic, Lj., “Governing factors for motor oil removal from water with different sorption materials”, J. Hazard. Mater., 2007, 154(1-3), 558-563. 63. Kumar, D., Pandey, K., and Gaur, P., “Evaluation of various isotherm models, and metal sorption potential of cyanobacterial mats in single and multi-metal systems”, Colloids and Surfaces B: Journal of Biointerfaces, 2010, 81(2), 476-485. 64. Quek, S. Y., Wase, D. A. J., and Forster, C. F., “The use of sago waste for the sorption of lead and copper”, Water Sa., 1998, 24(3), 251-256. 65. Wahi, R., Luqman, C. A., Mohsen, N. M., Ngaini, Z., and Thomas, C. S. Y., “Utilization of esterified sago bark fibre waste for removal of oil from palm oil mill effluent”, Journal of Environmental Chemical Engineering, 2016, 5, 170–177. 66. Maheswari, P., Venilamani, N., Madhavakrishnan, S., Shabudeen, P. S. S., Venckatesh, R., and Pattabhi, S., “Utilization of Sago Waste as an Adsorbent for the Removal of Cu(II) Ion from Aqueous Solution”, E-Journal of Chemistry, 2008, 5(2), 233-242. 67. Wahi, R., Kanakaraju, D., and Yusuf, N. A., “Preliminary Study on Zinc Removal from Aqueous Solution by Sago Wastes”. Global Journal of Environmental Research 4 (2): 127-134, 2010.
(1)
1. National Cancer Society Malaysia. Control of Tobacco Product (Amendment) Regulations 2018. Kuala Lumpur, Wilayah Persekutuan Malaysia: National Cancer Society Malaysia; 2018. 2. Wong P. Why wait to enforce ban in Sarawak? Kuala Lumpur, Kuala Lumpur, Malaysia: The Star Online; 2019, [updated Tuesday, 01 Jan 2019]. Available from: https://www.thestar.com.my/opinion/letters/ 2019/01/01/letters-why-is-sarawak-holding-off-on-the-smokingban. 3. Goodman P, Agnew M, McCaffrey M, Paul G, Clancy L. Effects of the Irish smoking ban on respiratory health of bar workers and air quality in Dublin pubs. Am J Respir Crit Care Med. 2007;175(8):840–5. doi: 10.1164/rccm.200608-1085OC. [PubMed: 17204724]. 4. Bauer JE, Hyland A, Li Q, Steger C, Cummings KM. A longitudinal assessment of the impact of smoke-free worksite policies on tobacco use. Am J Public Health. 2005;95(6):1024–9. doi: 10.2105/AJPH.2004.048678. [PubMed: 15914828]. [PubMed Central: PMC1449303]. 5. Wakefield M, Cameron M, Inglis G, Letcher T, Durkin S. Secondhand smoke exposure and respiratory symptoms among casino, club, and office workers in Victoria, Australia. J Occup Environ Med. 2005;47(7):698–703. doi: 10.1097/01.jom.0000167285.33870.f9. [PubMed: 16010196]. 6. Nebot M, Lopez MJ, Gorini G, Neuberger M, Axelsson S, Pilali M, et al. Environmental tobacco smoke exposure in public places of European cities. Tob Control. 2005;14(1):60–3. doi: 10.1136/tc.2004.008581. [PubMed: 15735302]. [PubMed Central: PMC1747970]. 7. World Health Organization. Tobacco Factsheet: Leading cause of death, illness and impoverishment. Geneva, Switzerland: World Health Organization; 2021, [updated 24 May 2022]. Available from: https://www. who.int/news-room/fact-sheets/detail/tobacco. 8. Oberg M, Jaakkola MS, Pru¨ss-U¨stu¨n A, Peruga A, Woodward A; World Health Organization. Global estimate of the burden of disease from second-hand smoke. Geneva, Switzerland: World Health Organization; 2010. 9. Navas-Acien A, Peruga A, Breysse P, Zavaleta A, Blanco-Marquizo A, Pitarque R, et al. Secondhand tobacco smoke in public places in Latin America, 2002-2003. JAMA. 2004;291(22):2741–5. doi: 10.1001/jama.291.22.2741. [PubMed: 15187056]. 10. Brooks DR, Mucci LA. Support for smoke-free restaurants among Massachusetts adults, 1992-1999. Am J Public Health. 2001;91(2):300– 3. doi: 10.2105/ajph.91.2.300. [PubMed: 11211644]. [PubMed Central: PMC1446536]. 11. Kuang Hock L, Hui Li L, Chien Huey T, Yuvaneswary V, Sayan P, Muhd Yusoff MF, et al. Support for smoke-free policy among Malaysian adults: findings from a population-based study. BMJ Open. 2019;9(2). e020304. doi: 10.1136/bmjopen-2017-020304. [PubMed: 30760510]. [PubMed Central: PMC6377523]. 12. Institute for Public Health. Report of the Global Adult Tobacco Survey (GATS) Malaysia, 2011. Kuala Lumpur, Malaysia: National Institute of Health; 2011. 13. Chang SH, Delgermaa V, Mungun-Ulzii K, Erdenekhuu N, Odkhuu E, Huang SL. Support for smoke-free policy among restaurant owners and managers in Ulaanbaatar, Mongolia. Tob Control. 2009;18(6):479– 84. doi: 10.1136/tc.2009.030486. [PubMed: 19797533]. [PubMed Central: PMC2778079]. 14. Hammar H. Restaurant owner perceptions of the effects of a smoking ban. Health Policy. 2004;70(2):243–54. doi: 10.1016/j.healthpol.2004.04.003. [PubMed: 15364153]. 15. Cremieux PY, Ouellette P. Actual and perceived impacts of tobacco regulation on restaurants and firms. Tob Control. 2001;10(1):33–7. doi: 10.1136/tc.10.1.33. [PubMed: 11226358]. [PubMed Central: PMC1763993]. 16. Mizanur MR, Felix B, Hayati DN, Zahri A, Yee En C. Practice of tobacco free environment among restaurant workers and owners in Kota Samarahan, Sarawak, Malaysia. Tob Induc Dis. 2018;16(1). doi: 10.18332/tid/84512. 17. Tommasetti A, Singer P, Troisi O, Maione G. Extended Theory of Planned Behavior (ETPB): Investigating Customers’ Perception of Restaurants’ Sustainability by Testing a Structural Equation Model. Sustainability. 2018;10(7):2580. doi: 10.3390/su10072580. 18. Record RA. Tobacco-Free Policy Compliance Behaviors among College Students: A Theory of Planned Behavior Perspective. J Health Commun. 2017;22(7):562–7. doi: 10.1080/10810730.2017.1318984. [PubMed: 28494210]. 19. IBM SPSS. IBM SPSS Statistics for Windows. Armonk, NY, USA: IBM SPSS; 2020. 20. Khosravizadeh O, Ahadinezhad B, Shahsavari S, Ghiasvand M, Mehri M. Role of Organizational Silence in the Professional Performance of Frontline Staff in the Hospital Structure: A Path Analysis. Journal of Health Reports and Technology. 2022;In Press(In Press). doi: 10.5812/ijhls.121301. 21. Gregory RJ. Psychological testing: History, principles, and applications. New York City, New York, United States: Pearson Education Limited; 2004. 22. Hair JF, Hult GTM, Ringle C, Sarstedt M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). 2nd ed. Newbury Park, California, USA: SAGE Publications; 2017. 23. van Griethuijsen RALF, van EijckMW,Haste H,denBrok PJ, Skinner NC, Mansour N, et al. Global Patterns in Students’ Views of Science and Interest in Science. Research in Science Education. 2014;45(4):581–603. doi: 10.1007/s11165-014-9438-6. 24. Fornell C, Larcker DF. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research. 1981;18(1). doi: 10.2307/3151312. 25. Henseler J, Ringle C, Sarstedt M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J Acad Mark Sci. 2014;43(1):115–35. doi: 10.1007/s11747-014-0403-8. 26. Kline RB. Principles and Practice of Structural Equation Modeling, Third Edition. 7th ed. New York City, New York, USA: Guilford Publications; 2019. 27. Gold AH, Malhotra A, Segars AH. Knowledge Management: An Organizational Capabilities Perspective. Journal of Management Information Systems. 2015;18(1):185–214. doi: 10.1080/07421222.2001.11045669. 28. NedK.WarpPLS usermanual. 7th ed. Laredo, Texas, USA: ScriptWarp Systems; 2020. 29. Hair JF, Howard MC, Nitzl C. Assessing measurement model quality in PLS-SEM using confirmatory composite analysis. Journal of Business Research. 2020;109:101–10. doi: 10.1016/j.jbusres.2019.11.069. 30. Levy DT, Tam J, Kuo C, Fong GT, Chaloupka F. The Impact of Implementing Tobacco Control Policies: The 2017 Tobacco Control Policy Scorecard. J Public Health Manag Pract. 2018;24(5):448–57. doi: 10.1097/PHH.0000000000000780. [PubMed: 29346189]. [PubMed Central: PMC6050159]. 31. Flor LS, Reitsma MB, Gupta V, Ng M, Gakidou E. The effects of tobacco control policies on global smoking prevalence. Nat Med. 2021;27(2):239–43. doi: 10.1038/s41591-020-01210-8. [PubMed: 33479500]. [PubMed Central: PMC7884287]. 32. Ekpu VU, Brown AK. The Economic Impact of Smoking and of Reducing Smoking Prevalence: Review of Evidence. Tob Use Insights. 2015;8:1– 35. doi: 10.4137/TUI.S15628. [PubMed: 26242225]. [PubMed Central: PMC4502793]. 33. Office on Smoking and Health (US). Control of Secondhand Smoke Exposure. The Health Consequences of Involuntary Exposure to Tobacco Smoke: A Report of the Surgeon General. Atlanta, GA, USA: Centers for Disease Control and Prevention (US); 2006. 34. Royal College of Physicians. Smoking and health 2021: a coming of age for tobacco control? Regent’s Park, London, England: Royal College of Physicians; 2021. 35. West R. Tobacco smoking: Health impact, prevalence, correlates and interventions. Psychol Health. 2017;32(8):1018–36. doi: 10.1080/08870446.2017.1325890. [PubMed: 28553727]. [PubMed Central: PMC5490618]. 36. Office on Smoking and Health (OSH). Smokefree Policies Reduce Smoking: Smokefree Policy Fact Sheets. Atlanta, GA, USA: Centers for Disease Control and Prevention; 2021. Available from: https://www.cdc.gov/tobacco/data_statistics/fact_sheets/ secondhand_smoke/protection/reduce_smoking/index.htm. 37. Baumeister RF. Addiction, cigarette smoking, and voluntary control of action: Do cigarette smokers lose their free will? Addict Behav Rep. 2017;5:67–84. doi: 10.1016/j.abrep.2017.01.003. [PubMed: 29450229]. [PubMed Central: PMC5800589]. 38. U.S. National Cancer Institute; World Health Organization. The Economics of Tobacco and Tobacco Control. National Cancer Institute Tobacco Control. Bethesda, USA: Department of Health and Human Services, National Institutes of Health, National Cancer Institute and World Health Organization; 2016. 39. Jones MR, Wipfli H, Shahrir S, Avila-Tang E, Samet JM, Breysse PN, et al. Secondhand tobacco smoke: an occupational hazard for smoking and non-smoking bar and nightclub employees. Tob Control. 2013;22(5):308–14. doi: 10.1136/tobaccocontrol-2011-050203. [PubMed: 22273689]. [PubMed Central: PMC3701027]. 40. Farrelly MC, Nonnemaker JM, Chou R, Hyland A, Peterson KK, Bauer UE. Changes in hospitality workers’ exposure to secondhand smoke following the implementation of New York’s smoke-free law. Tob Control. 2005;14(4):236–41. doi: 10.1136/tc.2004.008839. [PubMed: 16046685]. [PubMed Central: PMC1748080]. 41. Fong GT, Hyland A, Borland R, Hammond D, Hastings G, McNeill A, et al. Reductions in tobacco smoke pollution and increases in support for smoke-free public places following the implementation of comprehensive smoke-free workplace legislation in the Republic of Ireland: findings from the ITC Ireland/UK Survey. Tob Control. 2006;15 Suppl 3:iii51–8. doi: 10.1136/tc.2005.013649. [PubMed: 16754947]. [PubMed Central: PMC2593063]. 42. Alzahrani SH. Levels and factors of knowledge about the related health risks of exposure to secondhand smoke among medical students: A cross-sectional study in Jeddah, Saudi Arabia. Tob Induc Dis. 2020;18:88. doi: 10.18332/tid/128317. [PubMed: 33192222]. [PubMed Central: PMC7656739]. 43. Rohde K, Boles M, Bushore CJ, Pizacani BA, Maher JE, Peterson E. Smoking-related knowledge, attitudes, and behaviors among Alaska Native people: a population-based study. Int J Circumpolar Health. 2013;72. doi: 10.3402/ijch.v72i0.21141. [PubMed: 23984275]. [PubMed Central: PMC3753121]. 44. Ajzen I, Fishbein M. The Influence of Attitudes on Behavior. In: Albarracín D, Johnson BT, Zanna MP, editors. The handbook of attitudes. New Jersey, United States: Lawrence Erlbaum Associates Publishers; 2005. p. 173–221.
(1)
[1] National Energy Center (PTM), “National Energy Balance Report”, Malaysia 2001. [2] Tenaga National Berhad, TNB Annual Report 2008. [3] The Intermediate Technology Development Group (ITDG), MicroHydro Power, 1998. [4] Mohibullah, Mohd. Amran Mohd. Radzi, Mohd Iqbal Abdul Hakim, “Basic Design Aspects of Micro Hydro Power Plant and Its Potential Development in Malaysia”, IEEE, 2004. [5] N. Raman, I. Hussein, K. Palanisamy, “Micro Hydro Potential in West Malaysia”, IEEE, 2009. [6] Minister of National Resource Canada, “Small Hydro Project Analysis Chapter”, 2004. [7] Magnhagen, Carin, et al. "Oxygen consumption and swimming performance in Arctic charr with different pigmentation patterns." Applied Animal Behaviour Science 202 (2018): 119- 124.
(1)
1. Naumann JD, Jenkins AM. Prototyping:The new paradigm for systems development. MIS Quarterly. 1982;6(3):29-44. 2. Shao W, McCollough T. Advances in microwave near-field imaging: Prototypes, systems, and applications. IEEE microwave magazine. 2020 Mar 31;21(5):94-119. 3. Elahi MA, O’Loughlin D, Lavoie BR, Glavin M, Jones E, Fear EC, O’Halloran M. Evaluation of image reconstruction algorithms for confocal microwave imaging: Application to patient data. Sensors. 2018 Jun;18(6):1678. 4. Ghani MU, Karl WC. Data and image prior integration for image reconstruction using consensus equilibrium. IEEE Transactions on Computational Imaging. 2021 Mar 2;7:297-308. 5. Floyd C. A systematic look at prototyping, in a systematic look at prototyping. In Approaches to Prototyping: Springer-Verlag. 1984;1-18. 6. Hekmatpour S. Experience with evolutionary prototyping in a large software project ACM SIGSOFT software engineering notes. 1987;12(1):38-41. 7. Janson MA, Smith LD. Prototyping for systems development: A critical appraisal. MIS Quarterly. 1985;9(4):305-316. 8. Yazgan B, Paker S, Kartal M. Image reconstruction with diffraction tomography using different inverse Radon transform algorithms. Biomedical Engineering Days, 1992., Proceedings of the 1992 International. 1992;170-173. 9. Epstein CL. A basic model for tomography. in Society for Industrial and Applied Mathematics, 2007. 10. Zakaria Z, Jaafar NH, Yazid NAM, Mansor MSB, Rahiman MHF, Rahim RA. Sinogram concept approach in image reconstruction algorithm of a Computed Tomography System using MATLAB. Computer Applications and Industrial Electronics (ICCAIE), 2010 International Conference. 2010;500-505. 11. Shepp L. From convolution algorithms to maximum likelihood. Nuclear Science Symposium, 1990. Conference record : Including Sessions on Nuclear Power Systems and Medical Imaging Conference, 1990 IEEE. 1990;1441-1444. 12. Chidlowy K, Möller T. Rapid emission tomography reconstruction, Simon Fraser University, Burnaby, B.C., Canada. 2003;15-25. 13. Liu Y, Yanshan Q. University, X. Wang, Q. Yanshan University, M. Takei, and U. Nihon. SolidLiquid TwoPhase Flow Image Reconstruction Based on ERT Technique in Microchannel. TELKOMNIKA Indonesian Journal of Electrical Engineering. 2013;11(1):173-180. 14. Goldman LW. Principles of CT and CT Technology. Journal of Nuclear Medicine Technology. 2007;35(3):115-128. 15. Young H, Seung-Oh J, Jung-Byung P. Fast image reconstruction from fan beam projections using parallel digital signal processors and special purpose processors. TENCON 99. Proceedings of the IEEE Region 10 Conference. 1999;1558-1561. 16. Coric S., Leeser M., Miller E., Trepanier M. Parallel-beam backprojection: An FPGA implementation optimized for medical imaging. Monterey, CA. 2002;217-226. 17. Kak AC, Slaney M. Principles of computerized tomographic imaging. IEEE Press, New York, NY; 1988. 18. Zeng GL. Nonuniform noise propagation by using the ramp filter in fan-beam computed tomography. Medical Imaging, IEEE Transactions. 2004;23(6):690-695. 19. Chen GH. A new framework of image reconstruction from fan beam projections. Medical Physics. 2003;30(6):1151-1161. 20. Høilund C. The Radon Transform: Aalborg University, 2007. 21. Madych WR. Radon's inversion formulas. Transactions of the American Mathematical Society. 2004;356(11):4475-4491. 22. Azevedo SG, Schneberk DJ, Fitch JP, Martz HE. Calculation of the rotational centers in computed tomography sinograms. Nuclear Science, IEEE Transactions. 1990;37(4):1525-1540. 23. Pan C. Image Processing Using SPECT Analysis by The Five Fearless Thinkers. Rice University; 1996 [08/11/2012]; Available:http://www.clear.rice.edu/elec431/projects96/DSP/projections.html. 24. Xu X, China Three Gorges U. FFT analysis on coupling effect of axial and torsional vibrations in circular cross section beam of steam turbine generators. TELKOMNIKA Indonesian Journal of Electrical Engineering. 2014;12(2):1625-1633.
(1)
[1] N. H. Tamin and M. Mohamad, “Google Classroom for Teaching and Learning in Malaysia Primary School during Movement Control Order (MCO) due to Covid-19 Pandemic: A Literature Review,” International Journal of Multidisciplinary Research and Publications (IJMRAP), 3(5), pp. 34-37, 2020. [2] A. H. Rasit, H. Ujir, C.Jen, R. Sapawi, and I.Hipiny, “Wide Survey on Online Teaching and Learning during Movement Control Order in Malaysia due to Covid-19 Pandemic,” International Journal of Academic Research in Business and Social Sciences, 11(14), 285–300, 2021. [3] K. Betts, T. Galoyan, and B. Delaney, “Strategies to address graduate student success and non-cognitive risk factors through mind, brain & education and digital badging,” (in press). [4] A. Anderson, G. L. Sarlo, H. Pearlstein, and L. M. McGrath, “A Review of Online Dyslexia Learning Modules,” Frontiers in Education, 5, 118, 2020. [5] G. R. Lyon, S. E. Shaywitz, and B. A. Shaywitz, “A definition of dyslexia,” Ann. Dyslexia 53, 1–14, 2003. [6] G. Rupasinghe, R. Abeyweera, r. Pushpananda and R. Weerasinghe, “A Mobile-Based Alphabet Learning Game To Intervene Dyslexia Among Children,” In 20th International Conference on Advances in ICT for Emerging Regions (ICTer), 2020, pp. 290-291, doi: 10.1109/ICTer51097.2020.9325469. [7] E. M. Sari, W. Siswanto, M. Efendi, “Development of Interactive Multimedia for Early Readers with Dyslexia at an Inclusive Elementary School in Malang City,” Journal of ICSAR, [S.l.], v. 5, n. 1, p. 14-18, jan. 2021. ISSN 25488600 [8] M.Di Gregorio, M.Sebillo, G.Vitiello, “Geo-education as a Valuable Support to Children with Learning Difficulties,”. In: Antona M., Stephanidis C. (eds) Universal Access in Human-Computer Interaction. Access to Media, Learning and Assistive Environments. HCII 2021. Lecture Notes in Computer Science, vol 12769. Springer, Cham., 2021, https://doi.org/10.1007/978-3-030-78095-1_6 [9] B. A.O’Brien, J. S. Mansfield, G. E. Legge, “The effect of print size on reading speed in dyslexia,” J. Res. Reading, 28(3), 332–349, 2005. [10] L. Rello, and R.Baeza-Yates, “Good fonts for dyslexia,” In Proceedings of the 15th international ACM SIGACCESS conference on computers and accessibility (pp. 1-8), 2013. [11] J.Galliussi,L.Perondi,G.Chia,W.Gerbino,andP.Bernardis,“Inter- letter spacing, inter-word spacing, and font with dyslexia-friendly features: testing text readability in people with and without dyslexia,” Annals of dyslexia, 70(1), 141, 2020. [12] M.Łuniewska,M.Wójcik,andK.Jednoróg,“Theeffectofinter-letter spacing on reading performance and eye movements in typically reading and dyslexic children,” Learning and Instruction, 101576, 2021. [13] A. J. Krafnick, and T. M. Evans, “Neurobiological Sex Differences in Developmental Dyslexia,” Frontiers in Psychology, 9, 2669, 2019. doi:10.3389/fpsyg.2018.02669 [14] E. R. Brumberger, “The rhetoric of typography: The persona of typeface and text,” Technical Communication, 50(2), 206–223, 2003. [15] K. Haenschen, D. J. Tamul, and, J. R. Collier, “Font Matters: Understanding Typeface Selection by Political Campaigns,” International Journal of Communication, 15, 21, 2021. [16] H. Kim, “Statistical notes for clinical researchers: Chi-squared test and Fisher’s exact test,” Restorative Dentistry & Endodontics, 42(2), 2017. https://doi.org/10.5395/rde.2017.42.2.152. [17] T. Gotoh, A. Uno, N. Tani, T. Uchiyama, and T. Yamanaka, “The Effects of Font Type on Reading Accuracy and Fluency in Japanese Children with Developmental Dyslexia,” Journal of Asian Research, 3(3), 221–232, 2019. [18] C. Boer, “Dyslexie font”, 2008. retrieved from http://www.dyslexiefont.com/. [19] A. Gonzalez, “OpenDyslexic: a font,” 2014 Retrieved from http://opendyslexic.org/. [20] J. J. Wery, and J. A. Diliberto, “The effect of a specialized dyslexia font, OpenDyslexic, on reading rate and accuracy,” Annals of dyslexia, 67(2), 114-127, 2017. [21] S.M.Kuster,M.vanWeerdenburg,M.Gompeletal.,“Dyslexiefont does not benefit reading in children with or without dyslexia,” Ann. of Dyslexia 68, 25–42, 2018. https://doi.org/10.1007/s11881-017-0154-6. [22] British Dyslexia Association (2018). Dyslexia friendly style guide. Retrieved December 23, 2021, from https://www.bdadyslexia.org.uk/advice/employers/creating-a- dyslexia-friendly-workplace/dyslexia-friendly-style-guide [23] O. L. Ying, I. Hipiny, H. Ujir, and S. F. Samson Juan, “Game-based Learning using Augmented Reality,” The 8th International Conference on Computer and Communication Engineering (ICCCE), 2021, pp. 344-348, doi: 10.1109/ICCCE50029.2021.9467187. [24] H. S. Qorbani, A. Arya, N. Nowlan, and M. Abdinejad, “ScienceVR: A Virtual Reality Framework for STEM Education, Simulation and Assessment,” 2021 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), 2021, pp. 267-275, 2021. doi: 10.1109/AIVR52153.2021.00060.
(1)
[1] N. Karami, L. El Khoury, G. Khoury, and N. Moubayed, “Comparative study between P&O and incremental conductance for fuel cell MPPT,” 2014 Int. Conf. Renew. Energies Dev. Countries, REDEC 2014, no. 2, pp. 17–22, 2014, doi: 10.1109/REDEC.2014.7038524. [2] V. Boscaino, R. Miceli, and G. Capponi, “MATLAB-based simulator of a 5 kW fuel cell for power electronics design,” Int. J. Hydrogen Energy, vol. 38, no. 19, pp. 7924–7934, 2013, doi: 10.1016/j.ijhydene.2013.04.123. [3] B. Gou, W. Ki Na, and B. Diong, Fuel Cell Modeling, Control, and Applications. Boca Raton, USA: Taylor and Francis, 2010. [4] Z. dan Zhong, H. bo Huo, X. jian Zhu, G. yi Cao, and Y. Ren, “Adaptive maximum power point tracking control of fuel cell power plants,” J. Power Sources, vol. 176, no. 1, pp. 259–269, 2008, doi: 10.1016/j.jpowsour.2007.10.080. [5] J. Jiao and X. Cui, “Adaptive control of MPPT for fuel cell power system,” J. Converg. Inf. Technol., vol. 8, no. 4, pp. 362–371, 2013, doi: 10.4156/jcit.vol8.issue4.43. [6] S. Abdi, K. Afshar, N. Bigdeli, and S. Ahmadi, “A novel approach for robust maximum power point tracking of PEM fuel cell generator using sliding mode control approach,” Int. J. Electrochem. Sci., vol. 7, no. 5, pp. 4192–4209, 2012. [7] N. Naseri, S. El Hani, A. Aghmadi, K. El Harouri, M. S. Heyine, and H. Mediouni, “Proton exchange membrane fuel cell modelling and power control by P&O algorithm,” Proc. 2018 6th Int. Renew. Sustain. Energy Conf. IRSEC 2018, pp. 1–5, 2018, doi: 10.1109/IRSEC.2018.8703002. [8] S. Dharani and R. Seyezhai, “Development of simulator and MPPT algorithm for PEM fuel cell,” Commun. Appl. Electron., vol. 2, no. 7, pp. 36–41, 2015, doi: 10.5120/cae2015651774. [9] M. Dargahi, M. Rezanejad, J. Rouhi, and M. Shakeri, “Maximum power point tracking for fuel cell in fuel cell/battery hybrid systems,” IEEE INMIC 2008 12th IEEE Int. Multitopic Conf. - Conf. Proc., no. 2, pp. 33–37, 2008, doi: 10.1109/INMIC.2008.4777703. [10] M. Derbeli, O. Barambones, M. Farhat, and L. Sbita, “Efficiency boosting for proton exchange membrane fuel cell power system using new MPPT method,” 2019 10th Int. Renew. Energy Congr. IREC 2019, no. Irec, pp. 1–4, 2019, doi: 10.1109/IREC.2019.8754587. [11] M. Derbeli, O. Barambones, and L. Sbita, “A robust maximum power point tracking control method for a PEM fuel cell power system,” Appl. Sci., vol. 8, no. 12, 2018, doi: 10.3390/app8122449. [12] D. N. Luta and A. K. Raji, “Fuzzy rule-based and particle swarm optimisation MPPT techniques for a fuel cell stack,” Energies, vol. 12, no. 5, 2019, doi: 10.3390/en12050936. [13] S. Srinivasan, R. Tiwari, M. Krishnamoorthy, M. P. Lalitha, and K. K. Raj, “Neural network based MPPT control with reconfigured quadratic boost converter for fuel cell application,” Int. J. Hydrogen Energy, vol. 46, no. 9, pp. 6709–6719, 2021, doi: 10.1016/j.ijhydene.2020.11.121. [14] S. Ahmadi, S. Abdi, and M. Kakavand, “Maximum power point tracking of a proton exchange membrane fuel cell system using PSO-PID controller,” Int. J. Hydrogen Energy, vol. 42, no. 32, pp. 20430–20443, 2017, doi: 10.1016/j.ijhydene.2017.06.208. [15] M. Derbeli, A. Charaabi, O. Barambones, and C. Napole, “High-performance tracking for proton exchange membrane fuel cell system pemfc using model predictive control,” Mathematics, vol. 9, no. 11, pp. 1–17, 2021, doi: 10.3390/math9111158. [16] J. Rodriguez and P. Cortes, Predictive Control of Power Converters and Electrical Drives. Chichester, UK: John Wiley & Sons, Ltd, 2012. [17] V. D. Tigadi, “Power losses in switch mode power converters,” vol. 14, no. 3, pp. 43–48, 2019, doi: 10.9790/1676-1403014348. [18] O. Onederra, I. Kortabarria, I. M. De Alegria, J. Andreu, and J. I. Garate, “Three-phase VSI optimal switching loss reduction using variable switching frequency,” IEEE Trans. Power Electron., vol. 32, no. 8, pp. 6570–6576, 2017, doi: 10.1109/TPEL.2016.2616583. [19] Q. Cui, M. Liao, Z. Liao, and Z. Chen, “Frequency reduction-based model predictive direct power control with multi-cost function,” vol. 143, no. Ammsa, pp. 241–245, 2018, doi: 10.2991/ammsa-18.2018.49. [20] T. J. L. Oliveira, L. M. A. Caseiro, A. M. S. Mendes, S. M. A. Cruz, and M. S. Perdigao, “Switching frequency reduction for efficiency optimization in two paralleled UPS systems,” Proc. - 2020 IEEE 14th Int. Conf. Compat. Power Electron. Power Eng. CPE-POWERENG 2020, pp. 161–166, 2020, doi: 10.1109/CPE-POWERENG48600.2020.9161560. [21] V.-T. Dang, M.-G. Yang, C.-H. Jang, S. Lee, Y. Shim, and K.-H. Baek, “A highly efficient time-based MPPT circuit with extended power range and minimized tuning switching frequency,” IEEE Access, vol. 10, no. May, pp. 64004–64017, 2022, doi: 10.1109/access.2022.3183280. [22] H. J. Lee, J. J. Jung, and S. K. Sul, “A switching frequency reduction and a mitigation of voltage fluctuation of modular multilevel converter for HVDC,” 2014 IEEE Energy Convers. Congr. Expo. ECCE 2014, pp. 483–490, 2014, doi: 10.1109/ECCE.2014.6953433. [23] G.-H. Tzeng and J.-J. Huang, Multiple Attribute Decision Making Methods and Applications. Taylor and Francis Group, LLC, 2011. [24] A. Jozaghi et al., “A comparative study of the AHP and TOPSIS techniques for dam site selection using GIS: A case study of Sistan and Baluchestan Province, Iran,” Geosci., vol. 8, no. 12, 2018, doi: 10.3390/geosciences8120494. [25] S. Chugh, C. Chaudhari, K. Sonkar, A. Sharma, G. S. Kapur, and S. S. V. Ramakumar, “Experimental and modelling studies of low temperature PEMFC performance,” Int. J. Hydrogen Energy, vol. 45, no. 15, pp. 8866–8874, 2020, doi: 10.1016/j.ijhydene.2020.01.019. [26] E. W. Saeed and E. G. Warkozek, “Modeling and analysis of renewable PEM fuel cell system,” Energy Procedia, vol. 74, pp. 87–101, 2015, doi: 10.1016/j.egypro.2015.07.527. [27] I. Soltani, “An intelligent, fast and robust maximum power point tracking for proton exchange membrane fuel cell,” World Appl. Program., vol. 3, no. July, pp. 264–281, 2013. [28] H. Rezk, “Performance of incremental resistance MPPT based proton exchange membrane fuel cell power system,” 2016 18th Int. Middle-East Power Syst. Conf. MEPCON 2016 - Proc., pp. 199–205, 2017, doi: 10.1109/MEPCON.2016.7836891.
(1)
[1] N. Karami, L. El Khoury, G. Khoury, and N. Moubayed, “Comparative study between P&O and incremental conductance for fuel cell MPPT,” 2014 Int. Conf. Renew. Energies Dev. Countries, REDEC 2014, no. 2, pp. 17–22, 2014, doi: 10.1109/REDEC.2014.7038524. [2] V. Boscaino, R. Miceli, and G. Capponi, “MATLAB-based simulator of a 5 kW fuel cell for power electronics design,” Int. J. Hydrogen Energy, vol. 38, no. 19, pp. 7924–7934, 2013, doi: 10.1016/j.ijhydene.2013.04.123. [3] B. Gou, W. Ki Na, and B. Diong, Fuel cell modeling, control, and applications. Taylor and Francis Group, LLC, 2010. [4] Z. dan Zhong, H. bo Huo, X. jian Zhu, G. yi Cao, and Y. Ren, “Adaptive maximum power point tracking control of fuel cell power plants,” J. Power Sources, vol. 176, no. 1, pp. 259–269, 2008, doi: 10.1016/j.jpowsour.2007.10.080. [5] V. Karthikeyan, V. Das P, and F. Blaabjerg, “Implementation of MPPT control in fuel cell fed high step up ratio DC-DC converter,” 2018 2nd IEEE Int. Conf. Power Electron. Intell. Control Energy Syst. ICPEICES 2018, pp. 689–693, 2018, doi: 10.1109/ICPEICES.2018.8897443. [6] N. Naseri, S. El Hani, A. Aghmadi, K. El Harouri, M. S. Heyine, and H. Mediouni, “Proton exchange membrane fuel cell modelling and power control by P&O algorithm,” Proc. 2018 6th Int. Renew. Sustain. Energy Conf. IRSEC 2018, pp. 1–5, 2018, doi: 10.1109/IRSEC.2018.8703002. [7] S. Dharani and R. Seyezhai, “Development of Simulator and MPPT Algorithm for PEM Fuel Cell,” Commun. Appl. Electron., vol. 2, no. 7, pp. 36–41, 2015, doi: 10.5120/cae2015651774. [8] M. Dargahi, M. Rezanejad, J. Rouhi, and M. Shakeri, “Maximum Power Point Tracking for Fuel Cell in Fuel Cell/Battery Hybrid Systems,” IEEE INMIC 2008 12th IEEE Int. Multitopic Conf. - Conf. Proc., no. 2, pp. 33–37, 2008, doi: 10.1109/INMIC.2008.4777703. [9] D. N. Luta and A. K. Raji, “Fuzzy rule-based and particle swarm optimisation MPPT techniques for a fuel cell stack,” Energies, vol. 12, no. 5, 2019, doi: 10.3390/en12050936. [10] J. Jiao and X. Cui, “Adaptive Control of MPPT for Fuel Cell Power System,” J. Converg. Inf. Technol., vol. 8, no. 4, pp. 362–371, 2013, doi: 10.4156/jcit.vol8.issue4.43. [11] S. Abdi, K. Afshar, N. Bigdeli, and S. Ahmadi, “A novel approach for robust maximum power point tracking of PEM fuel cell generator using sliding mode control approach,” Int. J. Electrochem. Sci., vol. 7, no. 5, pp. 4192–4209, 2012. [12] S. Ahmadi, S. Abdi, and M. Kakavand, “Maximum power point tracking of a proton exchange membrane fuel cell system using PSOPID controller,” Int. J. Hydrogen Energy, vol. 42, no. 32, pp. 20430– 20443, 2017, doi: 10.1016/j.ijhydene.2017.06.208. [13] M. Derbeli, O. Barambones, M. Farhat, and L. Sbita, “Efficiency Boosting for Proton Exchange Membrane Fuel Cell Power System Using New MPPT Method,” 2019 10th Int. Renew. Energy Congr. IREC 2019, no. Irec, pp. 1–4, 2019, doi: 10.1109/IREC.2019.8754587. [14] M. Derbeli, O. Barambones, and L. Sbita, “A robust maximum power point tracking control method for a PEM fuel cell power system,” Appl. Sci., vol. 8, no. 12, 2018, doi: 10.3390/app8122449. [15] M. Derbeli, O. Barambones, M. Farhat, J. A. Ramos-Hernanz, and L. Sbita, “Robust high order sliding mode control for performance improvement of PEM fuel cell power systems,” Int. J. Hydrogen Energy, vol. 45, no. 53, pp. 29222–29234, 2020, doi: 10.1016/j.ijhydene.2020.07.172. [16] M. Z. Romdlony, B. R. Trilaksono, and R. Ortega, “Experimental study of extremum seeking control for maximum power point tracking of PEM fuel cell,” Proc. 2012 Int. Conf. Syst. Eng. Technol. ICSET 2012, 2012, doi: 10.1109/ICSEngT.2012.6339313. [17] K. J. Reddy and N. Sudhakar, “High voltage gain interleaved boost converter with neural network based mppt controller for fuel cell based electric vehicle applications,” IEEE Access, vol. 6, pp. 3899– 3908, 2017, doi: 10.1109/ACCESS.2017.2785832. [18] S. Srinivasan, R. Tiwari, M. Krishnamoorthy, M. P. Lalitha, and K. K. Raj, “Neural network based MPPT control with reconfigured quadratic boost converter for fuel cell application,” Int. J. Hydrogen Energy, vol. 46, no. 9, pp. 6709–6719, 2021, doi: Load Power (W) Time (s) This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3129849, IEEE Access Author Name: Preparation of Papers for IEEE Access (February 2017) VOLUME XX, 2017 9 10.1016/j.ijhydene.2020.11.121. [19] A. Fathy, M. A. Abdelkareem, A. G. Olabi, and H. Rezk, “A novel strategy based on salp swarm algorithm for extracting the maximum power of proton exchange membrane fuel cell,” Int. J. Hydrogen Energy, vol. 46, no. 8, pp. 6087–6099, 2021, doi: 10.1016/j.ijhydene.2020.02.165. [20] H. Rezk, A. Fathy, and A. Y. Abdelaziz, “A comparison of different global MPPT techniques based on meta-heuristic algorithms for photovoltaic system subjected to partial shading conditions,” Renew. Sustain. Energy Rev., vol. 74, no. February, pp. 377–386, 2017, doi: 10.1016/j.rser.2017.02.051. [21] A. Fathy and H. Rezk, “Multi-verse optimizer for identifying the optimal parameters of PEMFC model,” Energy, vol. 143, pp. 634– 644, 2018, doi: 10.1016/j.energy.2017.11.014. [22] J. Rodriguez and P. Cortes, Predictive Control of Power Converters and Electrical Drives. John Wiley & Sons, Ltd, 2012. [23] D. F. Pereira, F. Da Costa Lopes, and E. H. Watanabe, “Neural generalized predictive control for tracking maximum efficiency and maximum power points of PEM fuel cell stacks,” Proc. IECON 2018 - 44th Annu. Conf. IEEE Ind. Electron. Soc., vol. 1, pp. 1878–1883, 2018, doi: 10.1109/IECON.2018.8591290. [24] M. Derbeli, A. Charaabi, O. Barambones, and C. Napole, “Highperformance tracking for proton exchange membrane fuel cell system pemfc using model predictive control,” Mathematics, vol. 9, no. 11, pp. 1–17, 2021, doi: 10.3390/math9111158. [25] F. Musio et al., “PEMFC system simulation in MATLAB-Simulink® environment,” Int. J. Hydrogen Energy, vol. 36, no. 13, pp. 8045– 8052, 2011, doi: 10.1016/j.ijhydene.2011.01.093. [26] S. Chugh, C. Chaudhari, K. Sonkar, A. Sharma, G. S. Kapur, and S. S. V. Ramakumar, “Experimental and modelling studies of low temperature PEMFC performance,” Int. J. Hydrogen Energy, vol. 45, no. 15, pp. 8866–8874, 2020, doi: 10.1016/j.ijhydene.2020.01.019. [27] E. W. Saeed and E. G. Warkozek, “Modeling and Analysis of Renewable PEM Fuel Cell System,” Energy Procedia, vol. 74, pp. 87–101, 2015, doi: 10.1016/j.egypro.2015.07.527. [28] I. Soltani, “An Intelligent , Fast and Robust Maximum Power Point Tracking for Proton Exchange Membrane Fuel Cell,” World Appl. Program., vol. 3, no. July, pp. 264–281, 2013. [29] L. Cheng, P. Acuna, R. P. Aguilera, M. Ciobotaru, and J. Jiang, “Model predictive control for DC-DC boost converters with constant switching frequency,” 2016 IEEE 2nd Annu. South. Power Electron. Conf. SPEC 2016, no. December, 2016, doi: 10.1109/SPEC.2016.7846189. [30] S. Palanidoss and T. V. S. Vishnu, “Experimental analysis of conventional buck and boost converter with integrated dual output converter,” Int. Conf. Electr. Electron. Commun. Comput. Technol. Optim. Tech. ICEECCOT 2017, vol. 2018-Janua, pp. 323–329, 2018, doi: 10.1109/ICEECCOT.2017.8284521
(1)
[1] N. M. Sa'don, A. R. Abdul Karim, W. Jaol, W, & W. H. Wan Lili, Sarawak Peat Characteristics and Heat Treatment, UNIMAS e-Journal of Civil Engineering (2014). [2] S. S. Fong, & M. Mohamed, Chemical characterization of humic substances occurring in the peats of Sarawak, Malaysia, Organic Geochemistry, 38(6) (2007) 967-976. [3] H. A. Moreno Casillas, D. L. Cocke, J. A. Gomes, P. Morkovsky, J. R. Parga, E. Peterson & C. Garcia, Electrochemistry behind Electrocoagulation using Iron Electrodes, 6(9) (2007) 1-15. [4] Y. Tian, W. He, X. Zhu, W. Yang, N. Ren & B. E. Logan, Energy Efficient Electrocoagulation Using An Air-Breathing Cathode to Remove Nutrients from Wastewater, Chemical Engineering, 292 (2016) 308-314. [5] U. Tezcan Un, A. S. Koparal & U. Bakir Ogutveren, Electrocoagulation of vegetable oil refinery wastewater using aluminum electrodes, Journal of Environmental Management, 90(1) (2009) 428-433. [6] J. N. Hakizimana, B. Gourich, M. Chafi, Y. Stiriba, C. Vial, P. Drogui & J. Naja, Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches, Desalination, 404(Supplement C) (2017) 1-21. [7] K. R. Apshankar, & S. Goel, Electrocoagulation of Drinking Water in Continuous Flow Mode for Fluoride Removal, Environmental, Biotechnology, and Chemistry Engineering, 64(9) (2014). [8] V. Kuokkanen, T. Kuokkanen, J. Rämö, U. Lassi, & J. Roininen, Recent Applications of Electrocoagulation in Treatment of Water and Wastewater- A Review. Green and Sustainable Chemistry, 3 (2013) 89-121. [9] E. Bazrafshan, H. Moein, F. K. Mostafapour & S. Nakhaie, Application of Electrocoagulation Process for Dairy Wastewater Treatment, Chemistry, 2013 (2012). [10] D. T. Moussa, M. H. El-Naas, M. Nasser & M. J. Al-Marri, A comprehensive review of electrocoagulation for water treatment: Potentials and challenges, Journal of Environmental Management, 186(Part 1) (2017) 24-41. [11] Sarawak Energy, Residential Pricing Tariff, Information on http://www.sarawakenergy.com.my/index.php/customers/residential-pricing-tariff (2017). [12] J. O. Petinrin, M. Shaaban, Renewable Energy for Continuous Energy Sustainability in Malaysia, Renewable and sustainable energy reviews (2015). [13] Li-Cheng S, Electro-chemical method to remove fluoride from drinking water, Water supply, 3 (1985) 177-186. [14] L. Ming, S. R. Yi, Z. J. Hua, B. Y. W. Lei, L. Ping & K. C. Fuwa, Elimination of excess fluoride in potable water with coacervation by electrolysis using aluminium anode, Fluoride, 20 (1987) 54-63. [15] K. L. Dubrawski, Reactor design parameters, in-situ speciation identification, and potential balance modeling for natural organic matter removal by electrocoagulation (Doctor of Philosophy), University of British Columbia, Columbia (2013). [16] M. Alimohammadi, M. M. Askari, M. H. Dehghani, M. M. Emamjomeh & S. Nazmara, Natural organic matter removal from aqueous solutions by electrocoagulation process using iron and aluminum electrodes, Journal of Advances in Environmental Health Research, 2 (2014). [17] J. Rodriguez, S. Stopić, G. Krause & B. Friedrich, Feasibility assessment of electrocoagulation towards a new sustainable wastewater treatment, Environmental Science and Pollution Research – International, 14 (2007). [18] H. Mansoorian, A. Rajabizadeh, E. Bazrafshan & A. Mahvi, Practical assessment of electrocoagulation process in removing nickel metal from aqueous solutions using iron-rod electrodes, Desalination and Water Treatment, 44 (2012). [19] M. Malakootian, H. J. Mansoorian & M. Moosazadeh, Performance evaluation of electrocoagulation process using iron-rod electrodes for removing hardness from drinking water, Desalination, 255(1) (2010) 67-71.
(1)
1. Obstetrics by Ten-Teachers Baker (19th edition) 2. Gynecology by Ten-Teachers Baker (19th edition) 3. Bonney's Gynecological surgery (11th edition) 4. Flashcards for differentiating surgical instruments 5. Dewhurt's Textbook of Obstetrics & Gynecology (8th edition) 6. Jeffcoate's Principles of Gynecology International Edition (7th edition) 7. Learning Surgical Instrument by Helmut Kapczynski(1997)
(1)
[1] Oyetola, E. B., and Abdullahi, M., 2006.The use of rice husk ash in low-cost sandcrete block production. Leonardo Electronic Journal of Practices and Technologies, Vol 8, No 1, pp. 58-70 [2] Elinwa, A. U. and Awari, A., 2001. Groundnut husk ash concrete, Nigerian Journal of Engineering Management,Vol.2, No. 1, pp. 8-15 [3] Apata, A. O., and Alhassan, A. Y., 2012.Evaluating locally available materials as partial replacement for cement,Journal of Emerging Trends in Engineering and Applied Sciences, Vol 3, No. 4, pp.725-728 [4] Pierce, C. E, & Blackwell, M. C., 2003. Potential of scrap tire rubber as lightweight aggregate in flowable fill, Waste Management, Vol. 23, No.3, pp.197-208 [5] Ketkukah, T. S., Wambutda, W., and Egwurube, J., 2004.The use of mining tailing waste as a concrete material,” [6] Research and Publication Association of Nigeria Review Journal, Vol. 2, No. 2, pp. 38-40 [7] Thiruvangodan, S. K., 2006. Waste tyre management in Malaysia, Thesis (Master’s), Universiti Putra Malaysia,Malaysia [8] Siddique, R., and Naik, T. R. 2004. Properties of concrete containing scrap-tire rubber–an overview. Waste management, Vol. 24, No.6, pp. 563-569 [9] Mohammed, B., S, Hossain, K. M. A., Swee, J. T. E., Wong, G., and Abdullahi, M., 2012. Properties of crumb rubber hollow concrete block, Journal of Cleaner Production, Vol. 23, No. 1, pp. 57-67 [10] Shtayeh, S. M. S., 2007.Utilization of waste tires in the production of non-structural Portland cement concrete, Thesis (Master’s), An-Najah National University, Nablus, Palestine [11] Batayneh, M. K., Marie, I., & Asi, I., 2008. Promoting the use of crumb rubber concrete in developing countries,Waste Management, Vol. 28, No.11, pp. 2171-2176, [12] Ganjian, E., Khorami, M., and Maghsoudi, A. A., 2009. Scrap-tyre-rubber replacement for aggregate and filler in concrete, Construction and Building Materials, Vol. 23, No. 5, pp. 1828-1836 [13] Ali, N.A., Amos, A.D., Roberts, M., 1993. Use of ground rubber tires in Portland cement concrete. In: Dhir, R.K. (Ed.), Proceedings of the International Conference on Concrete 2000, University of Dundee, Scotland, UK, pp. 379– 390 [14] Balaguru, P. N., and Shah, S. P, 1992. Fiber-Reinforced Cement Composites, McGraw Hill Inc. New York, USA [15] Ismail, M. A., and Hashim, H., 2008. Palm oil fiber concrete. In: Proceedings of the 3th ACF International Conference Sustainable Concrete Technology and Structures in Local Climate and Environmental Conditions, Ho Chi Minh City,Vietnam [16] Farah N. A. Abd. Aziz, Sani M. B., Noor Azline, M.N, Jaafar M. S., 2016. A Comparative Study of the Behaviour of Treated and Untreated Tyre Crumb Mortar with Oil Palm Fruit Fibre Addition, Journal of Science and Technology, PERTANIKA [17] Aziz, F. N. A. A., Bida, S. M., Nasir, N. A. M., and Jaafar, M. S., 2014. Mechanical properties of lightweight mortar modified with oil palm fruit fibre and tire crumb, Construction and Building Materials, Vol. 73, pp. 544-550 [18] Benazzouk, A., Douzane, O., Langlet, T., Mezreb, K., Roucoult, J. M., & Quéneudec, M., 2007. Physico-mechanical properties and water absorption of cement composite containing shredded rubber wastes, Cement and Concrete Composites, Vol.29, No. 10, pp. 732-740 [19] Segre, N., Monteiro, P. J. M., and Sposito, G., 2002. Surface characterization of recycled tire rubber to be used in cement paste matrix,” Journal of Colloid and Interface Science, Vol.248, No.2, pp. 521-523. [20] M. Ahmad Musa et al., 2015. Effect of Curing Methods on Carbonation Depth of Rubberised Fibre Mortar, Applied Mechanics and Materials, Vol. 802, pp. 124-129. [21] American Society for Testing and Material, 2001. Standard specification for Portland cement (ASTM C150), Philadelphia, PA, USA. [22] American Society for Testing and Material, 2004. Standard Specification for Concrete Aggregates (ASTM C33), West Conshohocken, PA, USA. [23] American Society for Testing and Material, 2007. Standard test method for density, relative density (specific gravity) and absorption of fine aggregate (ASTM C128), Philadelphia, PA. USA. [24] American Society for Testing and Material, 2007. Standard test method for flow of hydraulic cement mortar (ASTM C1437), West Conshoshocken, PA, USA. [25] BS1881-114 (1983). Testing concrete: methods for determination of density of hardened concrete. British Standards Institution (BSI), London. [26] British Standard Institution (BSI), 2000. Depth of penetration of water under pressure (BS EN12390-8), London. [27] American Society for Testing and Material, 2005. Standard test method for electrical indication of concrete's ability to resist chloride ion penetration (ASTM C1202), West Conshohocken, PA. USA. [28] James, G. W., 1994. Sulphate attack on hardened cement paste, Cement and Concrete Research, Vol. 24, No. 4, pp. 735-742. [29] Bala, M., and Mohammad, I., 2012. Performance of natural rubber latex modified concrete in acidic and sulphated environments, Construction and Building Materials, Vol 31, pp.129-134. [30] Jinhua Xu1, Sili Chen, He Yu, and Ying Wang, 2015. Crumb Rubber Concrete Deterioration Caused by Sulphate, 3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME 2015), pp. 539-542, Published by Atlantis Press. [31] Gupta, T., Chaudhary, S., and Sharma, R. K., 2014. Assessment of mechanical and durability properties of concrete containing waste rubber tire as fine aggregate, Construction and Building Materials, Vol. 73, pp. 562-574. [32] Khatib, Z. K., and Bayomy, F. M., 1999. Rubberized Portland cement concrete. Journal of Materials in Civil Engineering, Vol.11, No. 3, pp. 206-213. [33] Neville, A. M., 1996. Properties of concrete (4th Ed.), Longman, London [34] Deutscher Institute Fur Normung, 2000. Part 2: German Standard Test methods of concrete impermeability to water (DIN 1048), Germany. [35] N. Oikonomou, S. Mavridou, 2009. Improvement of chloride ion penetration resistance in cement mortars modified with rubber from worn automobile tires, Cement & Concrete Composites, Vol 31, pp. 403–407.
(1)
1. Ozturk ZA, Kadayifci A. Insulin sensitizers for the treatment of non-alcoholic fatty liver disease. World J Hepatol. 2014;6(4):199–206. doi:10.4254/wjh.v6.i4.199 2. National Guideline Centre (UK). Risk Factors for NAFLD. National Institute for Health and Care Excellence; 2016. 3. Khammas ASA, Hassan HA, Salih SQM, et al. Prevalence and risk factors of sonographically detected non alcoholic fatty liver disease in a screening centre in Klang Valley, Malaysia: an observational cross-sectional study. Porto Biomed J. 2018 Sep 19;4(2):e31. doi:10.1016/j. pbj.0000000000000031 4. Cheah WL, Lee PY, Chang CT, Mohamed HJ, Wong SL. Prevalence of ultrasound diagnosed nonalcoholic fatty liver disease among rural indigenous community of Sarawak and its association with biochemical and anthropometric measures. Southeast Asian J Trop Med Public Health. 2013;44(2):309–317. 5. Suppiah S, Lee RC, Sazali NS, Hassan H. Non-alcoholic fatty liver disease in metabolic syndrome patients in Serdang Hospital: quantification by contrast-enhanced computed tomography. Faculty of Medicine and Health Sciences. 2016. 6. Magosso E, Ansari MA, Gopalan Y, et al. Prevalence of non-alcoholic fatty liver in a hypercholesterolemic population of northwestern peninsular Malaysia. Southeast Asian J Trop Med Public Health. 2010;41(4):936–942. 7. Chan WK, Tan AT, Vethakkan SR, Tah PC, Vijayananthan A, Goh KL. Non-alcoholic fatty liver disease in diabetics--prevalence and predictive factors in a multiracial hospital clinic population in Malaysia. J Gastroenterol Hepatol. 2013;28(8):1375–1383. doi:10.1111/jgh.12204 8. Ting H, Tan SR, John AN. Consumption intention toward ethnic food: determinants of Dayak food choice by Malaysians. J Ethn Foods. 2017;4(1):21–27. doi:10.1016/j.jef.2017.02.005 9. Ruhl CE, Everhart JE. Relationship of non- alcoholic fatty liver disease with cholecystectomy in the US population. Am J Gastroenterol. 2013;108(6):952–958. doi:10.1038/ajg.2013.70 10. Liu J, Lin H, Zhang C, et al. Non-alcoholic fatty liver disease associated with gallstones in females rather than males: a longitudinal cohort study in Chinese urban population. BMC Gastroenterol. 2014 Dec 13;14:213. doi:10.1186/s12876-014- 0213-y 11. Lee YC, Wu JS, Yang YC, Chang CS, Lu FH, Chang CJ. Moderate to severe, but not mild, nonalcoholic fatty liver disease associated with increased risk of gallstone disease. Scand J 4 Gastroenterol. 2014;49(8):1001–1006. doi:10.31 09/00365521.2014.920912 12. Kwak MS, Kim D, Chung GE, Kim W, Kim YJ, Yoon JH. Cholecystectomy is independently associated with nonalcoholic fatty liver disease in an Asian population. World J Gastroenterol. 2015;21(20):6287–6295. doi:10.3748/wjg.v21. i20.6287 13. International Association for the Study of Obesity, International Obesity Task Force (IOTF). The Asia-Pacific Perspective: Redefining Obesity and Its Treatment. 2000. 14. Task Force on Epidemiology and Prevention. The IDF Consensus Worldwide Definition of the Metabolic Syndrome. International Diabetes Federation (IDF); 2006. 15. Clinical Practice Guidelines Management of Hypertension. 5th ed. Ministry of Health (MOH) Malaysia; 2018. 16. Clinical Practice Guidelines Management of Type 2 Diabetes Mellitus. 6th ed. Ministry of Health (MOH) Malaysia; 2020. 17. Clinical Practice Guidelines Management of Dyslipidemia. 5th ed. Ministry of Health (MOH) Malaysia; 2017. 18. Hamer OW, Aguirre DA, Casola G, Lavine JE, Woenckhaus M, Sirlin CB. Fatty liver: imaging patterns and pitfalls. Radiographics. 2006;26(6):1637–1653. doi:10.1148/ rg.266065004 19. Murphy MC, Gibney B, Gillespie C, Hynes J, Bolster F. Gallstones top to toe: what the radiologist needs to know. Insights Imaging. 2020 Feb 5;11(1):13. doi:10.1186/s13244-019-0825-4 20. Kirovski G, Schacherer D, Wobser H, et al. Prevalence of ultrasound-diagnosed non- alcoholic fatty liver disease in a hospital cohort and its association with anthropometric, biochemical and sonographic characteristics. Int J Clin Exp Med. 2010 Jul 15;3(3):202–210. 21. Cholongitas E, Pavlopoulou I, Papatheodoridi M, et al. Epidemiology of nonalcoholic fatty liver disease in Europe: a systematic review and meta- analysis. Ann Gastroenterol. 2021;34(3):404–414. doi:10.20524/aog.2021.0604 22. Li J, Zou B, Yeo YH, et al. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999-2019: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2019;4(5):389–398. doi:10.1016/S2468- 1253(19)30039-1 23. Malik A, Cheah PL, Hilmi IN, Chan SP, Goh KL. Non-alcoholic fatty liver disease in Malaysia: a demographic, anthropometric, metabolic and histological study. J Dig Dis. 2007;8(1):58–64. doi:10.1111/j.1443-9573.2007.00286.x 24. Fan JG, Kim SU, Wong VW. New trends on obesity and NAFLD in Asia. J Hepatol. 2017;67(4):862–873. doi:10.1016/j. jhep.2017.06.003 25. Ahn J, Jun DW, Lee HY, Moon JH. Critical appraisal for low-carbohydrate diet in nonalcoholic fatty liver disease: review and meta- analyses. Clin Nutr. 2019;38(5):2023–2030. doi:10.1016/j.clnu.2018.09.022 26. Chang Y, Jung HS, Cho J, et al. Metabolically healthy obesity and the development of nonalcoholic fatty liver disease. Am J Gastroenterol. 2016;111(8):1133–1140. doi:10.1038/ajg.2016.178 27. Li L, Liu DW, Yan HY, Wang ZY, Zhao SH, Wang B. Obesity is an independent risk factor for non-alcoholic fatty liver disease: evidence from a meta-analysis of 21 cohort studies. Obes Rev. 2016;17(6):510–519. doi:10.1111/ obr.12407 28. Polyzos SA, Kountouras J, Mantzoros CS. Obesity and nonalcoholic fatty liver disease: from pathophysiology to therapeutics. Metabolism. 2019;92:82–97. doi:10.1016/j. metabol.2018.11.014 29. Vilar-Gomez E, Martinez-Perez Y, Calzadilla- Bertot L, et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology. 2015;149(2):367-e15. doi:10.1053/j. gastro.2015.04.005 30. Goh SC, Ho EL, Goh KL. Prevalence and risk factors of non-alcoholic fatty liver disease in a multiracial suburban Asian population in Malaysia. Hepatol Int. 2013;7(2):548–554. doi:10.1007/s12072-012-9359-2 31. Almobarak AO, Barakat S, Khalifa MH, Elhoweris MH, Elhassan TM, Ahmed MH. Non alcoholic fatty liver disease (NAFLD) in a Sudanese population: what is the prevalence and risk factors?. Arab J Gastroenterol. 2014;15(1):12–15. doi:10.1016/j. ajg.2014.01.008
(1)
1. Paras Kothari, Prashant S. Patil, Geeta Kekre, Ravi Kamble, Kiran Vishesh Dikshit. Complete Sternal Cleft – A Rare Congenital Malformation and its Repair in a 3-month-old boy: A Case Report. Journal of Indian Association Pediatric Surgeons. 2016 Apr Jun; 21(2):78-80. doi: 10.4103/0971- 9261.126961. 2. Davna Griffiths, Jonathan Stum. Epidemiology and Etiology of Young Stroke. Stroke Res Treat. 2011; 2011:209370. doi: 10.4061/2011/209370. 3. Ryan J Felling, Richard E Ringel. Mind the Brain: Stroke Risk in Young Adults with Coarctation of the Aorta. Journal of American Heart Association. Volume 7(11); 2018 Jun 5. doi:10.1161/JAHA.118.009461. 4. Anita Rotter, Luciana Paula Samorano, Maria Cecilia Rivitti-Machado, Zilda Najjar Prado Oliveira, Bernardo Gontijo. PHACE Syndrome: clinical manifestations, diagnostic criteria, and management. Brazillian Society of Dermatology. 2018 May-Jun; 93(3): 405-411. doi: 10.1590/ abd1806-4841.20187693. 5. F P Zhu, S Luo, Z J Wang, Z Y Jin, L J Zhang and G M Lu. Takayasu arteritis: Imaging Spectrum at multidetector CT Angiography. Br J Radiol. 2012 Dec; 85(1020): e1282-e1292. doi: 10.1258/ bjr/25536451
(1)
1. Patel AR, Barlow B, Ranawat AS. Stem length in revision total knee arthroplasty. Curr Rev Musculoskelet Med. 2015;8(4):407-412. doi:10.1007/s12178-015-9297-4 2. Jae DY, Nam KK, Periprosthetic Fractures Following Total Knee Arthroplasty. Knee Surg Relat Res 2015;27(1):1-9 3. NA Felix, Periprosthetic fractures of the tibia associated with total knee arthroplasty. Clin Orthop Relat Res. 1997 Dec;(345):113-24
(1)
[1] Patel D., Yadav R.K., Chandak R., “Strength characteristics of pre cast concrete blocks incorporating waste glass powder,”ISCA J. Engineering Sci.,Vol.1(1),68-70,July(2012). [2] Sobolev K., Turker P., Soboleva S., Iscioglu G., 2006, “Utilization of waste glass in ECO-cement: strength properties and microstructural observations,” Waste Management 27 (7), 971–976. [3] Kiang H.T., Hongjian D., “Use of waste glass as sand in mortar: part I-fresh, mechanical and durability properties,” Cement & concrete composites 35(2013)109-117. [4] Schmidt A., Saia W.H.F., (1963), “Alkali-aggregate reaction tests on glass used for exposed aggregate wall panal work,” ACI Mat. J., 60, 1235-1236. [5] Johnson C.D., “Waste glass as coarse aggregate for concrete, J. Test. Eval, 2(5), 1974,pp. 344-350. [6] Figg J.W., (1981), “Reaction between cement and artificial glass in concrete,” Proc., Conf. on Alkali-aggregate reaction in concrete, Capetown, South Africa. [7] Pollery C, Cramer SM, De La Cruz RV. “Potential for using waste glass in portland cement concrete”. J Mater Civ Eng 1998;10(4): 210–9. [8] Topcu IB, Canbaz M. Properties of concrete containing waste glass. Cem Concr Res 2004;34: 267–74. Van Roode M, Douglas E, Hemmings RT. X-ray diffraction measurement of glass content in fly ashes and slags. Cem Concr Res 1987;17(2):183–97. [9] Meyer C, Baxter S. Use of Recycled Glass for Concrete Masonry Blocks Final Report 97-15. Albany, New York: New York State Energy Research and Development Authority; 1997. [10] Meyer, C., and Baxter, S., 1998. “Use of recycled glass and fly ash for precast concrete”. Rep. NYSERDA 98-18 (4292-IABR- IA-96) to New York State Energy Research and Development Authority, Dept. of Civil Engrg. and Engrg. Mech.,Columbia University, New York. [11] Chen CH, Huang R, Wu JK, Yang CC. “Waste E-glass Particles used in cementitious mixtures”.Cem Concr Res2006; 36:449–56 [12] Byars EA, Morales-Hernandez B, Zhu HY. “Waste glass as concrete aggregate and pozzolan”. Concrete 2004; 38(1):41–4. [13] Bazant ZP, Zi G, Meyer C. “Fracture mechanics of ASR in concretes with waste glass particles of different sizes”. J Eng Mech 2000; 126:226–32. [14] Reindl J. Report by recycling manager, dane County, Department of Public Works, Madison, USA, August 1998. [15] Dhir R.K.,Dyer T.D., Tang A.,and Cui Y., (2004), “Towards maximizing the value and sustainable use of glass,” Concrete for the Construction Industry, 38(1), 38-40. [16] Pattengill M., and Shutt T.C., (1973), “ Use of ground glass as a pozzolan,” Proc., Int. Symp. on Utilization of Waste Glass in Secondary Products, ASCE, Albuquerque, N.M. [17] Meyer C., Baxter S., Jin W. 1996. Alkali-silica reaction in concrete with waste glass as aggregate. in: K.P. [18] Chong (Ed.), Materials for a New Millennium, Proceedings of ASCE Materials Engineering Conference, Washington, D.C., pp. 1388–1394 [19] Shao Y, Lefort T, Moras S. Damian Rodriguez. “ Studies on concrete containing ground waste glass”. Cement and Concrete Research 2000;30(1):91–100. [20] Shayan A, Xu A. “Value-added utilisation of waste glass in concrete”. Cement and Concrete Research 2004; 34(1):81–9. [21] Shi C, Wu Y, Riefler C, Wang H. “Characteristics and pozzolanic reactivity of glass powders”. Cement and Concrete Research 2005;35(5):987–93. [22] Shayan A, Xu A. “Performance of glass powder as a pozzolanic material in concrete: a field trial on concrete slabs”. Cement and Concrete Research 2006;36(3):457–68. [23] Ozkan O, Yuksel I. “Studies on mortars containing waste bottle glass and industrial by-products”. Construction and Building Materials 2008;22(6):1288–98. [24] Taha B, Nounu G. “Properties of concrete contains mixed colour waste recycledglass as sand and cement Replacement”. Construction and Building Materials 2008;22(5):713–20. [25] Khatib J.M., E.M. Negim, H.S. Sohl And N. Chileshe, “Glass powder utilization in concrete production,” European Journal of Applied Sciences 4(4): 173-176,2012.
(1)
[1] P. Boss and T. V. Oommen, “New insulating fluids for transformers based on biodegradable high oleic vegetable oil and ester fluid,” Proc. IEE Colloq. Insul. Liq., no. 119, pp. 39–48, 1999. [2] H. E. McShane CP, Corkran JL, Harthun RA, Gauger GA, Rapp KJ, “Vegetable oil based dielectric coolant,” 2000. [3] U. U. Abdullahi et al., “The potentials of palm oil as a dielectric fluid,” Natl. Power Energy Conf. PECon 2004 - Proc., pp. 224–228, 2004. [4] K. N. Koutras et al., “Breakdown Performance and Partial Discharge Development in Transformer Oil-Based Metal Carbide Nanofluids,” Nanomaterials, no. January, 2022. [5] S. M. W. Masra et al., “A Systematic Review on Promising Development of Palm Oil and its Nanofluid as a Biodegradable Oil Insulation Alternative,” IEEE Trans. Dielectr. Electr. Insul., vol. 29, no. 1, pp. 302–318, 2022. [6] N. S. Suhaimi et al., “A Review on Palm Oil-based Nanofluids as a Future Resource for Green Transformer Insulation System,” IEEE Access, vol. PP, p. 1, 2022. [7] S. F. M. Nor et al., “Investigation on the electrical properties of palm oil and coconut oil based TiO2 nanofluids,” IEEE Trans. Dielectr. Electr. Insul., vol. 24, no. 6, pp. 3432–3442, 2017. [8] M. Z. H. Makmud et al., “Influence of conductive and semi- conductive nanoparticles on the dielectric response of natural ester- based nanofluid insulation,” Energies, vol. 11, no. 2, Feb. 2018. [9] W. Saenkhumwong and A. Suksri, “The improved dielectric properties of natural ester oil by using ZnO and TiO2 nanoparticles,” Eng. Appl. Sci. Res., vol. 44, no. 3, pp. 148–153, 2017. [10] N. A. Mohamad, N. Azis, and J. Jasni, “Impact of Fe3O4, CuO and Al2O3 on the AC Breakdown Voltage of Palm Oil and Coconut Oil in the Presence of CTAB,” Energies, vol. 12, 2019. [11] S. M. W. Masra et al., “Assessing Electrical and Physicochemical Performance of Chemically Modified Palm Oil As an Alternative Transformer Liquid,” J. Oil Palm Res., 2022. [12] H. B. H. Sitorus et al., “Jatropha curcas methyl ester oil obtaining as vegetable insulating oil,” IEEE Trans. Dielectr. Electr. Insul., vol. 23, no. 4, pp. 2021–2028, 2016. [13] M. C. Menkiti et al., “Chemically improved Terminalia catappa L. oil: A possible renewable substitute for conventional mineral transformer oil,” J. Environ. Chem. Eng., vol. 5, no. 1, pp. 1107– 1118, 2017. [14] C. M. Agu et al., “Comparative assessment of chemically modified Terminalia catappa L. kernel oil samples – A promising ecofriendly transformer fluid,” Ind. Crops Prod., vol. 140, no. 111727, 2019. [15] E. T. Nkouetcha, G. M. Mengounou, and A. M. Imano, “Elaboration and Performance Analysis of a Bio-Based Insulating Liquid from Castor Oil for Power Transformers,” OALib, vol. 06, no. 05, pp. 1– 16, 2019. [16] M. Maharana, S. K. Nayak, and N. Sahoo, “Karanji oil as a potential dielectrics liquid for transformer,” IEEE Trans. Dielectr. Electr. Insul., vol. 25, no. 5, pp. 1871–1879, 2018. [17] R. A. Raj and S. Murugesan, “Optimization of dielectric properties of Pongamia,” pp. 1–9, 2022. [18] S. Ravulapalli, K. Ravindhranath, and M. Ramamoorty, “Preparation, characterization and feasibility analysis of methyl ester of Sesbania seeds oil (MESSO) as alternate liquid dielectrics in distribution transformers,” RSC Adv., vol. 9, no. 6, pp. 3311–3319, 2019. [19] G. O. Boyekong, G. M. Mengounou, and A. M. Imano, “Comparative Evaluation of the Thermal Aging of Solid Insulation in Mineral Oil and Methyl Ester of Palm Kernel Oil,” J. Power Energy Eng., vol. 09, no. 05, pp. 166–183, 2021. [20] S. O. Oparanti et al., “Synthesis and characterization of cooling biodegradable nanofluids from non-edible oil for high voltage application,” Mater. Chem. Phys., vol. 277, no. 125485, 2022. [21] J. B. Asse, G. M. Mengounou, and A. M. Imano, “Impact of FeO3 on the AC breakdown voltage and acidity index of a palm kernel oil methyl ester based nanofluid,” Energy Reports, vol. 8, pp. 275–280, 2022. [22] B. Bakthavatchalam et al., “Comparative evaluation on the thermal properties and stability of MWCNT nanofluid with conventional surfactants and ionic liquid,” J. Therm. Anal. Calorim., vol. 147, pp. 393–408, 2022. [23] T. Münster et al., “Thermally accelerated aging of insulation paper for transformers with different insulating liquids,” Energies, vol. 14, no. 11, 2021. [24] J. Carcedo et al., “Aging assessment of dielectric vegetable oils,” IEEE Electr. Insul. Mag., vol. 31, no. 6, pp. 13–21, 2015. [25] H. Cong et al., “Influence of Nanoparticles on Long-Term Thermal Stability of Vegetable Insulating Oil,” IEEE Trans. Dielectr. Electr. Insul., vol. 29, no. 5, pp. 1642–1650, 2022. [26] L. Calcara, S. Sangiovanni, and M. Pompili, “Standardized methods for the determination of breakdown voltages of liquid dielectrics,” IEEE Trans. Dielectr. Electr. Insul., vol. 26, no. 1, pp. 101–106, 2019. [27] M. Baur et al., “Stirring effect in dielectric liquids breakdown voltage determination,” Proc. - IEEE Int. Conf. Dielectr. Liq., vol. 2019-June, pp. 1–4. [28] IEC 60247, “Insulating liquids - Measurement of relative permittivity , dielectric dissipation factor and d . c . resistivity,” 2004. [29] ASTM D7042, “Test Method for Dynamic Viscosity and Density of Liquids by Stabinger Viscometer (and the Calculation of Kinematic Viscosity),” 2004. [30] S. N. Rabelo et al., “FTIR Analysis for Quantification of Fatty Acid Methyl Esters in Biodiesel Produced by Microwave-Assisted Transesterification,” Int. J. Environ. Sci. Dev., vol. 6, no. 12, pp. 964–969, 2015. [31] A. Torres et al., “Analysis of the Content of Fatty Acid Methyl Esters in Biodiesel by Fourier-Transform Infrared Spectroscopy: Method and Comparison with Gas Chromatography,” JAOCS, J. Am. Oil Chem. Soc., vol. 97, no. 6, pp. 651–661, 2020. [32] M. Maharana et al., “Condition Assessment of Aged Ester-Based Nanofluid through Physicochemical and Spectroscopic Measurement,” IEEE Trans. Instrum. Meas., vol. 68, no. 12, pp. 4853–4863, 2019. [33] A. Reffas et al., “Influence of thermal ageing and electrical discharges on uninhibited olive oil properties,” IET Sci. Meas. Technol., vol. 10, no. 7, pp. 711–718, 2016. [34] Y. Zhou et al., “Statistical analysis of moisture’s effect on AC breakdown strength of TiO2 nanofluids,” J. Mol. Liq., vol. 249, pp. 420–428, 2018. [35] S. Okikiola et al., “An experimental investigation on composite methyl ester as a solution to environmental threat caused by mineral oil in transformer insulation,” Biomass Convers. Biorefinery, pp. 1– 11, 2022.
(1)
[1] P. Doucek, J. Holoˇska, and L. Nedomov´a, “Management and digitalization,” in IDIMT 2022 - Digitalization of Society, Business and Management in a Pandemic: 30th Interdisciplinary Information Management Talks, 2022, pp. 35–42. doi: 10.35011/IDIMT-2022-35. [2] A. A. Slozenkina, S. A. Matovnikov, I. K. Ochir-Garyaeva, N. V Tsuglaeva, and S. S. Ashtaeva, “Economic and Legal Aspects of the Formation of Innovative Digital Architecture,” Adv. Sci. Technol. Innov., pp. 925–928, 2022, doi: 10.1007/978-3-030-90324-4 151. [3] Z. He, H. Huang, H. Choi, and A. Bilgihan, “Building organizational resilience with digital transformation,” J. Serv. Manag., vol. 34, no. 1, pp. 147–171, Jan. 2023, doi: 10.1108/JOSM-06-2021-0216. [4] B. Trenerry et al., “Preparing Workplaces for Digital Transformation: An Integrative Review and Framework of Multi-Level Factors,” Front. Psychol., vol. 12, 2021, doi: 10.3389/fpsyg.2021.620766. [5] S. Kraus, P. Jones, N. Kailer, A. Weinmann, N. Chaparro-Banegas, and N. Roig-Tierno, “Digital Transformation: An Overview of the Current State of the Art of Research,” SAGE Open, vol. 11, no. 3, p. 21582440211047576, 2021, doi: 10.1177/21582440211047576. [6] H. Kong, Y. Yuan, Y. Baruch, N. Bu, X. Jiang, and K. Wang, “Influences of artificial intelligence (AI) awareness on career competency and job burnout,” Int. J. Contemp. Hosp. Manag., vol. 33, no. 2, pp. 717–734, Mar. 2021, doi: 10.1108/IJCHM-07-2020-0789. [7] S. A. Mohamed, M. A. Mahmoud, M. N. Mahdi, and S. A. Mostafa, “Improving Efficiency and Effectiveness of Robotic Process Automation in Human Resource Management,” SUSTAINABILITY, vol. 14, no. 7, Apr. 2022, doi: 10.3390/su14073920. [8] S. Vahdat, “The role of IT-based technologies on the management of human resources in the COVID-19 era,” KYBERNETES, vol. 51, no. 6, SI, pp. 2065–2088, May 2022, doi: 10.1108/K-04-2021-0333. [9] Y. Nugraha and A. Martin, “Cybersecurity service level agreements: understanding government data confidentiality requirements,” J. CYBERSECURITY, vol. 8, no. 1, May 2022, doi: 10.1093/cybsec/tyac004. [10] H. Abbu, P. Mugge, G. Gudergan, G. Hoeborn, and A. Kwiatkowski, “Measuring the Human Dimensions of Digital Leadership for Successful Digital Transformation,” Res. Manag., vol. 65, no. 3, pp. 39–49, 2022, doi: 10.1080/08956308.2022.2048588. [11] B. A. Baheer, D. Lamas, and S. Sousa, “A Systematic Literature Review on Existing Digital Government Architectures: State-of-the-Art, Challenges, and Prospects,” Adm. Sci., vol. 10, no. 2, Jun. 2020, doi: 10.3390/admsci10020025. [12] F. Miao, W. Yang, Y. Xie, and W. Fan, “Research on the Realization Path and Application of a Data Governance System Based on Data Architecture,” in DATA SCIENCE (ICPCSEE 2022), PT II, 2022, vol. 1629, pp. 3–19. doi: 10.1007/978-981-19-5209-8 1. [13] A. Luthfi and M. Janssen, “Toward a Reference Architecture for User- Oriented Open Government Data Portals,” in BUSINESS MODELING AND SOFTWARE DESIGN, BMSD 2022, 2022, vol. 453, pp. 259–267. doi: 10.1007/978-3-031-11510-3 17. [14] H. Li et al., “The framework of data-driven and multi-criteria decisionmaking for detecting unbalanced bidding,” Eng. Constr. Archit. Manag., vol. 30, no. 2, pp. 598–622, Mar. 2023, doi: 10.1108/ECAM-08-2020- 0603. [15] Z. Bojovic, D. Klipa, P. D. Bojovic, I. M. Jovanovic, J. Suh, and V. Senk, “Interconnected Government Services: An Approach toward Smart Government,” Appl. Sci., vol. 13, no. 2, Jan. 2023, doi: 10.3390/app13021062. [16] M. A. Hossain, S. Rahman, M. Quaddus, E. Hooi, and A.-S. Olanrewaju, “Factors Affecting Performance of Open Government Data Initiatives: A Multi-Method Approach Using Sem and FSQCA,” J. Organ. Comput. Electron. Commer., vol. 31, no. 4, pp. 300–319, Oct. 2021, doi: 10.1080/10919392.2021.2018258. [17] Z. Pei and Y. Wang, “Problems and Countermeasures in the Construction of Intelligent Government Under the Background of Big Data,” in INTELLIGENT COMPUTING METHODOLOGIES, PT III, 2022, vol. 13395, pp. 684–697. doi: 10.1007/978-3-031-13832-4 56. [18] S. Ma, Y. He, R. Gu, and S. Li, “Sustainable supply chain management considering technology investments and government intervention,” Transp. Res. PART E-LOGISTICS Transp. Rev., vol. 149, May 2021, doi: 10.1016/j.tre.2021.102290. [19] A. Campmas, N. Iacob, and F. Simonelli, “How can interoperability stimulate the use of digital public services? An analysis of national interoperability frameworks and e-Government in the European Union,” DATA POLICY, vol. 4, 2022, doi: 10.1017/dap.2022.11. [20] B. Oumkaltoum, E. B. Omar, C. Loqman, and O. Aris, “Hybrid e- Government Framework based on Datawarehousing and MAS for Data Interoperability,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 10, pp. 57–64, Oct. 2021. [21] N. Veljkovic, P. Milic, L. Stoimenov, and K. Kuk, “Production of linked government datasets using enhanced LIRE architecture,” Comput. Sci. Inf. Syst., vol. 17, no. 2, pp. 599–617, Jun. 2020, doi: 10.2298/CSIS190420001M. [22] C. K. Leung, “Data Science for Big Data Applications and Services: Data Lake Management, Data Analytics and Visualization,” Adv. Intell. Syst. Comput., vol. 899 AISC, pp. 28–44, 2021, doi: 10.1007/978-981- 15-8731-3 3. [23] M. W¨unnenberg et al., “Data Science and Consistency Management in the Product Life Cycle of Material Flow Systems [Konsistenzmanagement zum optimierten Data Management als Basis zur Anwendung von Data Science im Produktlebenszyklus von Materialflusssystemen],” Logist. J., vol. 2022, no. 11, 2022, doi: 10.2195/lj proc wuennenberg de 202211 01. [24] O. Romero and R. Wrembel, “Data engineering for data science: Two sides of the same coin,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12393 LNCS, pp. 157–166, 2020, doi: 10.1007/978-3-030-59065-9 13. [25] M. J. Sousa, P. M. Mele´, A. M. Pesqueira, A´ . Rocha, M. Sousa, and S. Noor, “Data science strategies leading to the development of data scientists’ skills in organizations,” Neural Comput. Appl., vol. 33, no. 21, pp. 14523–14531, 2021, doi: 10.1007/s00521-021-06095-3. [26] R. Raab, W. Granigg, and M. Melcher, “Need for skilled workers in the area of Data Science and Cloud Computing in Styria,” in ACM International Conference Proceeding Series, 2022, pp. 28–34. doi: 10.1145/3543712.3543749. [27] F. Martinez-Plumed et al., “CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories,” IEEE Trans. Knowl. Data Eng., vol. 33, no. 8, pp. 3048–3061, 2021, doi: 10.1109/TKDE.2019.2962680. [28] Y. R. Al-Saraireh, M. Akkaya, and A. Sari, “Government data analytics, innovative, absorptive and citizens-demand sensing capability: A fuzzy set analysis,” Int. J. Serv. Oper. Informatics, vol. 10, no. 4, pp. 288–304, 2020, doi: 10.1504/IJSOI.2020.111295. [29] P. Patnaik and S. Pattnaik, “Impact of decision science on e-governance: A study on odisha land records system,” Adv. Intell. Syst. Comput., vol. 1030, pp. 151–164, 2020, doi: 10.1007/978-981-13-9330-3 14. [30] M. E. Khatib, M. A. Al Shamsi, K. Al Buraimi, F. Al Mansouri, H. M. Alzoubi, and M. Alshurideh, “Predictive and Prescriptive Analytics Tools, How to Add Value to Knowledge-Based Economy: Dubai Case Study,” Stud. Comput. Intell., vol. 1056, pp. 1807–1829, 2023, doi: 10.1007/978-3-031-12382-5 99. [31] F. A. Cronemberger and J. R. Gil-Garcia, “Characterizing stewardship and stakeholder inclusion in data analytics efforts: the collaborative approach of Kansas City, Missouri,” Transform. Gov. People, Process Policy, vol. 16, no. 4, pp. 405–417, 2022, doi: 10.1108/TG-05-2022- 0065. [32] B. Rukanova et al., “Identifying the value of data analytics in the context of government supervision: Insights from the customs domain,” Gov. Inf. Q., vol. 38, no. 1, 2021, doi: 10.1016/j.giq.2020.101496. [33] U. M. A. U. M. Zam, A. Z. Saidin, M. Kartiwi, and M. Mahmud, “BIG DATA ANALYTICS IN THE GOVERNMENT: ISSUES CONCERNING PUBLIC SECTOR AUDITING,” J. Eng. Sci. Technol., vol. 16, pp. 58–68, 2021. [34] P. Mavriki and M. Karyda, “Big data analytics in e-government and e-democracy applications: privacy threats, implications and mitigation,” Int. J. Electron. Gov., vol. 14, no. 1–2, pp. 58–82, 2022, doi: 10.1504/IJEG.2022.123251. [35] E. G. Carmines and R. A. Zeller, Reliability and validity assessment. Sage publications, 1979. [36] B. E. Whitley, M. E. Kite, and H. L. Adams, “Principles of research in behavioral science,” 2013. [37] J. Robinson, “Triandis’ theory of interpersonal behaviour in understanding software piracy behaviour in the South African context,” 2010. [38] L. Greco, P. Maresca, and J. Caja, “Big Data and Advanced Analytics in Industry 4.0: A comparative analysis across the European Union,” in Procedia Manufacturing, 2019, vol. 41, pp. 383–390.
(1)
1. Perumal, V. and Woods, P., (2007). The Need for Knowledge Management in the Malaysian Film Industry: A Case Study. Journal of Information & Knowledge Management, 06(03), pp.173-180. 2. Muthalib, H.A. (2013). Malaysian Cinema in a Bottle: A century (and a bit more) of wayang (pp. 37). Selangor, Malaysia: Merpati Jingga 3. Rosnan, H., Ismail, M.N., Daud, N.M., (2010). The globalization of film business and its effect on the Malaysian film industry, Business Strategy Series, Vol. 11 Issue: 5, pp.325-332, https://doi.org/10.1108/17515631011080731 4. Wengstrom, J. (2013). Access to film heritage in the digital era – Challenges and opportunities. Journal of Film Preservation. Retrieved 15 February 2018 http://www.filminstitutet.se/globalassets/2.-fa-kunskap-om-film/digitalafilmarvet/ diverse-bilder/access -to-film-heritage-in-the-digital-era.pdf 5. Bastron, B. (2014). Preserving Film Preservation in the Digital Era. SLIS Student Research Journal, Retrieved 2 February 2018. http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=1050&context=slissrj 6. Aziz, J., Hashim, H. and Ibrahim, F., (2014). Malaysian Film Industry in Transformation: Challenges and Potential. Jurnal Komunikasi, Malaysian Journal of Communication, 30(1), pp.35-49. 7. Voges, C., (2016). On the Potential of Film as a Digital Storage Medium. Archiving Conference, 13(1), pp.91-94. 8. White, Y. (2017). Historical Poetics, Malaysian Cinema, and the Japanese Occupation. Kinema. Retrieved 2 February 2018 http://www.kinema.uwaterloo.ca/article.php?id=292&feature 9. Fliegel, K., Vítek, S., Páta, P., Novák, M., Myslík, J., Pecák, J. and Jícha, M., (2017). Set of Methodologies for Archive Film Digitization and Restoration with Examples of Their Application in ORWO Region. Archiving Conference, 14(1), pp.62-67. 10. Iordanova, D., (2020). Archiving and Film Restoration: The View from Asia. Frames Cinema Journal, (17).
(1)
[1] P. K . Mehta, “ Natural Pozzolans: Supplementary Cementing Materials in Concrete,” CANMET Special Publication 86, pp.1-33 ,1987 [2] M.J. Shannag, “High strength concrete containing natural pozzolan and silica fume,” Cement and Concrete Research, vol 22,no. 6, pp. 399–406,Dec.2000 doi:10.1016/S0958-9465(00)00037-8 [3] Houssam A. Toutanji, “The influence of silica fume on the compressive strength of cement paste and mortar,” Cement and Concrete Research, vol 25,no. 7, pp. 1591–1602, Oct.1995 doi:10.1016/0008-8846(95)00152-3 [4] G.Appa Rao, “Investigations on the performance of silica fume-incorporated cement pastes and mortars,” Cement and Concrete Research, vol 33,no. 11, pp. 1765–1770, Nov.2003 doi:10.1016/S0008-8846(03)00171-6 [5] S. Bhanja, B. Sengupta, “Influence of silica fume on the tensile strength of concrete,” Cement and Concrete Research, vol 35,no. 4, pp. 743–747,Apr.2005 doi:10.1016/j.cemconres.2004.05.024 [6] J. Zelić, D. Rušić, D. Ve za & R. Krstulović, “The role of silica fume in the kinetics and mechanisms during the early stage of cement hydration,”Cement and Concrete Research, vol 30,no. 9, pp. 1655–1662, Oct.2000 doi:10.1016/S0008-8846(00)00374-4 [7] B.B. Sabir, S. Wild & J. Bai, “Metakaolin and calcined clays as pozzolans for concrete : a review,” Cement and Concrete Research, vol 23,no. 6, pp. 441–454, Dec.2001 doi:10.1016/S0958-9465(00)00092-5 [8] K. Scrivener, J. F. Martirena & M. Antoni, “Tackling social housing through the commercial use low clinker cementitious systems: Innovation on the use of calcined clay as Supplementary Cementitious material,” in Conference Proceedings 2012 nternational Conference of Tackling Technologies for sustainable development: A way to reduce poverty? pp.1-15 [9] R. D. Toledo Filho, J.P. Gonçalves, B.B. Americano, E.M.R. Fairbairna, “Potential for use of crushed waste calcined-clay brick as a supplementary cementitious material in Brazil,” Cement and Concrete Research, vol 37,no. 9, pp.1357–1365, Sept.2007. doi:10.1016/j.cemconres.2007.06.005 [10] BS 1881-116(1983) Testing concrete Method for determination of compressive strength of concrete cubes [11] BS 1881 Part-5 (1983) Part 122. Method for determination of water absorption. [12] A.M. Neville, Properties of Concrete England: Pearson Education Limited (2002)
(1)
1. P. Kotler, D.H. Haider, and I. Rein, Marketing places: Attracting investment, industry, and tourism to cities, states, and nations, The Free Press, New York (1993). 2. R. Sharpley, Tourism Management, 23, 233–244 (2002). 3. A. Liu, Tourism Management, 27, 5, 878-89 (2006). 4. Y. Ekinci, and S. Hosany, Journal of Travel Research, 45, 127-139 (2006). 5. L. Murphy, G. Moscardo,and P. Benckendorff, Journal of Travel Research, 46, 5-14 (2007). 6. K.M. Garren, Rethinking the marketing of rural destinations: a comprehensive model and case study of Gunnison County, Colorado, Bachelor thesis, Regis University, Colorado, US (2012). 7. S. Choi, X.Y. Lehto, and A.M. Morrison, Tourism Management, 28, 1, 118-129 (2007). 8. N. Greaves, and H. Skinner, Marketing Intelligence & Planning, 28, 4, 486-507 (2010). 9. S. Aubrey, Digital transformation of state economy crucial for its people – Abang Johari. Borneo Post Online (2017, May 1). 10. S.T. Siew, A.W. Yeo, J.C.L. Phoa, M.C. Lo, N. Kulathuramaiyer, and V.Nair, in Proceedings of International Conference on Tourism Development: Building the Future of Tourism, Edited M. Badaruddin and A. Bahauddin, Sustainable Tourism Research Cluster, Universiti Sains Malaysia, Penang, Malaysia (2013), (pp. 323-331). 11. S. Falak, M.C.Lo, and A.W. Yeo, Tourism, 64, 3, 311-327 (2016). 12. C. Richards, and A. Yeo, The Journal of Governance and Development, 10, 121-139 (2014). 13. T. Zaman, Smart Villages: New thinking for off-grid villages worldwide (2016, September 15). 14. M.A. Bonn, H.L. Furr, and A.M. Susskind, Journal of Hospitality & Tourism Research, 22, 3, 303-317 (1998). 15. B. Bai, C. Hu, J. Elsworth, and C. Countryman, Journal of Travel & Tourism Marketing, 17, 2/3, 79-91 (2004). 16. M. Luo, R. Feng, and L.A. Cai, Journal of Travel & Tourism Marketing, 17, 2/3, 15-25 (2004). 17. H. El-Gohary, Tourism Management, 33, 5, 1256-1269 (2012). 18. H. El-Gohary and R. Eid, Tourism Analysis, 17, 523-532 (2012). 19. M.A. Abou-Shouk, W.M. Lim, and P. Megicks, Tourism Management, 52, 327-339 (2016). 20. S. Yiamjanya, Journal of Economics, Business and Management, 4, 1, 40-46 (2016). 21. Z. Andreopoulou, G. Tsekouropoulos, C. Koliouska, and T. Koutroumanidis, International Journal of Business Information Systems, 16, 4, 446-461 (2014). 22. S. Duffy, Paper presented at Tourism and Hospitality Research in Ireland Conference, Shannon College of Hotel Management Ireland (2010, June). 23. S. Reino, A.J. Frew, and C. Albacete‐Sáez, Journal of Hospitality and Tourism Technology, 2, 1, 66-80 (2011). 24. T. Nkosana, J. Skinner, and C. Goodier, African Journal of Hospitality, Tourism and Leisure, 5, 4, 1-11 (2016). 25. W. Cheah, A.B. Masli, and E. Mit, in Proceedings of 2013 International Conference on Informatics and Creative Multimedia, Kuala Lumpur, Malaysia (2013), (pp. 282-287). 26. W.S. Cheah, A. Abdul Halin, A., M. Lu, and G.W. Chee, The Electronic Journal of Information Systems in Developing Countries, 75, 5, 1-22 (2016). 27. Z. Guo, and L. Sun, Tourism Management, 56, 52-62 (2016). 28. J. Gao, and B. Wu, Tourism Management, 63, 223-233 (2017). 29. L. Zhou, E. Chan, and H. Song, Tourism Management, 63, 338-350 (2017). 30. M. Patton, Qualitative Research and Evaluation Methods (3rd ed.), Sage Publications, Thousand Oaks (2002). 31. G. Jengan, Personal interview (2017, February 7).
(1)
1] P.M. DeMarco, Rachel Carson’s environmental ethic–a guide for global systems decision making, J. Clean. Prod. 140 (2017) 127–133. [2] A. Holden, Achieving a sustainable relationship between common pool resources and tourism: the role of environmental ethics, J. Sustain. Tourism 13 (4) (2005) 339–352. [3] R.J. King, Environmental ethics and the built environment, Environ. Ethics 22 (2) (2000) 115–131. [4] D.J. Martinez, B.R. Middleton, J.J. Battles, Environmental justice in forest management decision-making: challenges and opportunities in California, Soc. Nat. Resour. (2023), https://doi.org/10.1080/08941920.2023.2203103. [5] N. Habib, M. Alauddin, R. Cramb, What defines livelihood vulnerability to climate change in rain-fed, rural regions? A qualitative study of men’s and women’s vulnerability to climate change in Pakistan’s Punjab, Cogent Soc. Sci. 8 (1) (2022), 2054152. [6] M. Suendarti, Protecting our planet: the vital role of carbon sequestration in combating threats to environmental sustainability, Paki. J. Life Soc. Sci. 21 (1) (2023) 23–36. [7] M.M. Ahmad, M. Yaseen, S.E. Saqib, Climate change impacts of drought on the livelihood of dryland smallholders: implications of adaptation challenges, Int. J. Dis. Risk Reduct. 80 (2022), 103210. [8] M. Khan, Shifting gender roles in society and the workplace: implications for environmental sustainability, Politica 1 (1) (2023) 9–25. [9] S. Hormio, Collective responsibility for climate change, Wiley Interdiscip. Rev. Clim. Change (2023) e830, https://doi.org/10.1002/wcc.830. [10] Kissinger, Analysis of biodiversity conservation in South Kalimantan, Indonesia: investigating the ecological features of a damaged peat ecosystem, Paki. J. Life Soc. Sci. 21 (1) (2023) 132–141. [11] X. Li, X. Jiang, Y. Xia, Exploring fair and ambitious mitigation contributions of Asian economies for the global warming limit under the Paris Agreement, Clim. Change Econ. 13 (01) (2022), 2240002
(1)
1. Popovski, P.; Chiariotti, F.; Huang, K.; Kalør, A.; Kountouris, M.; Pappas, N.; Soret, B. A perspective on time toward wireless 6G. Proc. IEEE 2022, 110, 1116–1146. [CrossRef] 2. Khan, A.; Javed, Y.; Abdullah, J.; Nazim, J.; Khan, N. Security issues in 5G device to device communication. Int. J. Comput. Sci. Netw. Secur. 2017, 17, 366. 3. Premkumar, R.; Priya, S.S. Blockchain and Internet of Things: Applications and practices. In Proceedings of the 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), Pichanur, India, 25–27 March 2021; pp. 1376–1380. 4. Gupta, R.; Nair, A.; Tanwar, S.; Kumar, N. Blockchain-assisted secure UAV communication in 6G environment: Architecture, opportunities, and challenges. IET Commun. 2021, 15, 1352–1367. [CrossRef] 5. Mo¸steanu, N.; Faccia, A. Digital Systems and New Challenges of Financial Management–FinTech, XBRL, Blockchain and Cryptocurrencies. Qual.-Access Success J. 2020, 21, 159–166. 6. Khan, A.S.; Balan, K.; Javed, Y.; Tarmizi, S.; Abdullah, J. Secure trust-based blockchain architecture to prevent attacks in VANET. Sensors 2019, 19, 4954. [CrossRef] 7. Safdar, H.; Fisal, N.; Ullah, R.; Maqbool, W.; Asraf, F.; Khalid, Z.; Khan, A. Resource allocation for uplink M2M communication: A game theory approach. In Proceedings of the 2013 IEEE Symposium on Wireless Technology & Applications (ISWTA), Kuching, Malaysia, 22–25 September 2013; pp. 48–52. 8. Gürpinar, T.; Austerjost, M.; Kamphues, J.; Maaßen, J. Blockchain technology as the backbone of the internet of things—An introduction to blockchain devices. In Proceedings of the Conference on Production Systems and Logistics: CPSL 2022, Vancouver, BC, Canada, 17–20 May 2022. 9. Jalan, A.; Matkovskyy, R.; Urquhart, A. What effect did the introduction of Bitcoin futures have on the Bitcoin spot market? Eur. J. Financ. 2021, 27, 1251–1281. [CrossRef] 10. Oliva, G.A.; Hassan, A.E.; Jiang, Z.M.J. An exploratory study of smart contracts in the Ethereum blockchain platform. Empir. Softw. Eng. 2020, 25, 1864–1904. [CrossRef] 11. Hakak, S.; Khan, W.Z.; Gilkar, G.A.; Imran, M.; Guizani, N. Securing smart cities through blockchain technology: Architecture, requirements, and challenges. IEEE Netw. 2020, 34, 8–14. [CrossRef] 12. Rana, A.; Sharma, S.; Nisar, K.; Ibrahim, A.A.A.; Dhawan, S.; Chowdhry, B.; Hussain, S.; Goyal, N. The Rise of Blockchain Internet of Things (BIoT): Secured, Device-to-Device Architecture and Simulation Scenarios. Appl. Sci. 2022, 12, 7694. [CrossRef] 13. Kathole, A.B.; Katti, J.; Dhabliya, D.; Deshpande, V.; Rajawat, A.S.; Goyal, S.B.; Raboaca, M.S.; Mihaltan, T.C.; Verma, C.; Suciu, G. Energy-Aware UAV Based on Blockchain Model Using IoE Application in 6G Network-Driven Cybertwin. Energies 2022, 15, 8304. [CrossRef] 14. Silvano, W.F.; Marcelino, R. Iota Tangle: A cryptocurrency to communicate Internet-of-Things data. Future Gener. Comput. Syst. 2020, 112, 307–319. [CrossRef] 15. Khan, A.S.; Javed, Y.; Abdullah, J.; Zen, K. Trust-based lightweight security protocol for device to device multihop cellular communication (TLwS). J. Ambient Intell. Humaniz. Comput. 2021, 1–18. [CrossRef] 16. Strobel, V.; Castelló Ferrer, E.; Dorigo, M. Blockchain technology secures robot swarms: A comparison of consensus protocols and their resilience to Byzantine robots. Front. Robot. AI 2020, 7, 54. [CrossRef] [PubMed] 17. Afanasyev, I.; Kolotov, A.; Rezin, R.; Danilov, K.; Mazzara, M.; Chakraborty, S.; Kashevnik, A.; Chechulin, A.; Kapitonov, A.; Jotsov, V. Towards blockchain-based multi-agent robotic systems: Analysis, classification and applications. arXiv 2019, arXiv:1907.07433. 18. De Campos, M.G.S.; Chanel, C.P.; Chauffaut, C.; Lacan, J. Towards a Blockchain-Based Multi-UAV Surveillance System. Front. Robot. AI 2021, 8, 557692. [CrossRef] 19. Söderlund, M. The robot-to-robot service encounter: An examination of the impact of inter-robot warmth. J. Serv. Mark. 2021, 35, 15–27. [CrossRef] 20. Tran, J.A.; Ramachandran, G.S.; Shah, P.M.; Danilov, C.B.; Santiago, R.A.; Krishnamachari, B. Swarmdag: A partition tolerant distributed ledger protocol for swarm robotics. Ledger 2019, 4, 25–31. [CrossRef] 21. Li, M.; Pei, P.; Yu, F.R.; Si, P.; Li, Y.; Sun, E.; Zhang, Y. Cloud–Edge Collaborative Resource Allocation for Blockchain-Enabled Internet of Things: A Collective Reinforcement Learning Approach. IEEE Internet Things J. 2022, 9, 23115–23129. [CrossRef] 22. Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Niyato, D.; Dobre, O.; Poor, H.V. 6G Internet of Things: A comprehensive survey. IEEE Internet Things J. 2021, 9, 359–383. [CrossRef] 23. Sekaran, R.; Patan, R.; Raveendran, A.; Al-Turjman, F.; Ramachandran, M.; Mostarda, L. Survival study on blockchain based 6G-enabled mobile edge computation for IoT automation. IEEE Access 2020, 8, 143453–143463. [CrossRef] 24. Kumari, A.; Gupta, R.; Tanwar, S. Amalgamation of blockchain and IoT for smart cities underlying 6G communication: A comprehensive review. Comput. Commun. 2021, 172, 102–118. [CrossRef] Appl. Sci. 2023, 13, 277 29 of 33 25. Kazmi, S.H.A.; Masood, A.; Nisar, K. Design and Analysis of Multi Efficiency Motors Based High Endurance Multi Rotor with Central Thrust. In Proceedings of the 2021 IEEE 15th International Conference on Application of Information and Communication Technologies (AICT), Baku, Azerbaijan, 13–15 October 2021; pp. 1–4. 26. Kazmi, S.H.A.; Qamar, F.; Hassan, R.; Nisar, K.; Chowdhry, B.S. Survey on Joint Paradigm of 5G and SDN Emerging Mobile Technologies: Architecture, Security, Challenges and Research Directions. Res. Sq. 2022. [CrossRef] 27. Barakabitze, A.A.; Ahmad, A.; Mijumbi, R. 5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges. Comput. Netw. 2020, 167, 106984. [CrossRef] 28. Waseem, Q.; Alshamrani, S.S.; Nisar, K.; Wan Din, W.I.S.; Alghamdi, A.S. Future Technology: Software-Defined Network (SDN) Forensic. Symmetry 2021, 13, 767. [CrossRef] 29. Shaikh, M.R.; Khuhawar, F.Y.; Nisar, K.; Memon, A.A.; Khan, A.S. Vulnerability Assessment & Analysis of Software-Defined Networking using a Virtual Testbed. In Proceedings of the 2022 Global Conference on Wireless and Optical Technologies (GCWOT), Malaga, Spain, 14–17 February 2022. 30. Khan, A.; Abdullah, J.; Zen, K.; Tarmizi, S. Secure and Scalable Group Rekeying for Mobile Multihop Relay Network. Adv. Sci. Lett. 2017, 23, 5242–5245. [CrossRef] 31. Schwartz, S.C. The Promise and Challenge of Drones in Homeland Security. In The Role of Law Enforcement in Emergency Management and Homeland Security; Emerald Publishing Limited: Bingley, UK, 2021. 32. Alsamhi, S.H.; Afghah, F.; Sahal, R.; Hawbani, A.; Al-qaness, M.A.; Lee, B.; Guizani, M. Green internet of things using UAVs in B5G networks: A review of applications and strategies. Ad Hoc Netw. 2021, 117, 102505. [CrossRef] 33. Byun, S.; Shin, I.-K.; Moon, J.; Kang, J.; Choi, S.-I. Road traffic monitoring from UAV images using deep learning networks. Remote Sens. 2021, 13, 4027. [CrossRef] 34. Chan, K.Y.; Abdullah, J.; Khan, A.S. A framework for traceable and transparent supply chain management for agri-food sector in malaysia using blockchain technology. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 149–156. [CrossRef] 35. Kumar, A.; Ridha, S.; Narahari, M.; Ilyas, S.U. Physics-guided deep neural network to characterize non-Newtonian fluid flow for optimal use of energy resources. Expert Syst. Appl. 2021, 183, 115409. [CrossRef] 36. Raja, G.; Anbalagan, S.; Ganapathisubramaniyan, A.; Selvakumar, M.S.; Bashir, A.K.; Mumtaz, S. Efficient and secured swarm pattern multi-UAV communication. IEEE Trans. Veh. Technol. 2021, 70, 7050–7058. [CrossRef] 37. Li, T.; Hu, H. Development of the Use of Unmanned Aerial Vehicles (UAVs) in Emergency Rescue in China. Risk Manag. Healthc. Policy 2021, 14, 4293. [CrossRef] [PubMed] 38. Zhu, K.; Han, B.; Zhang, T. Multi-UAV Distributed Collaborative Coverage for Target Search Using Heuristic Strategy. Guid. Navig. Control 2021, 1, 2150002. [CrossRef] 39. Dalal, S.; Seth, B.; Jaglan, V.; Malik, M.; Surbhi; Dahiya, N.; Rani, U.; Le, D.; Hu, Y. An adaptive traffic routing approach toward load balancing and congestion control in Cloud–MANET ad hoc networks. Soft Comput. 2022, 26, 5377–5388. [CrossRef] 40. Akhloufi, M.A.; Couturier, A.; Castro, N.A. Unmanned aerial vehicles for wildland fires: Sensing, perception, cooperation and assistance. Drones 2021, 5, 15. [CrossRef] 41. Du, Z.; Wu, C.; Yoshinaga, T.; Chen, X.; Wang, X. A routing protocol for UAV-assisted vehicular delay tolerant networks. IEEE Open J. Comput. Soc. 2021, 2, 85–98. [CrossRef] 42. Yao, P.; Wei, X. Multi-UAV Information Fusion and Cooperative Trajectory Optimization in Target Search. IEEE Syst. J. 2021, 16, 4325–4333. [CrossRef] 43. Yavariabdi, A.; Kusetogullari, H.; Celik, T.; Cicek, H. FastUAV-net: A multi-UAV detection algorithm for embedded platforms. Electronics 2021, 10, 724. [CrossRef] 44. Khan, I.U.; Shah, S.B.H.; Wang, L.; Aziz, M.A.; Stephan, T.; Kumar, N. Routing protocols & unmanned aerial vehicles autonomous localization in flying networks. Int. J. Commun. Syst. 2021, e4885. [CrossRef] 45. Ji, J.; Zhu, K.; Niyato, D. Joint Communication and Computation Design for UAV-Enabled Aerial Computing. IEEE Commun. Mag. 2021, 59, 73–79. [CrossRef] 46. Agrawal, J.; Kapoor, M. A comparative study on geographic-based routing algorithms for flying ad-hoc networks. Concurr. Comput. Pract. Exp. 2021, 33, e6253. [CrossRef] 47. Kemp, S.; Rogers, J. UAV-UGV Teaming for Rapid Radiological Mapping. In Proceedings of the 2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), New York, NY, USA, 25–27 October 2021; pp. 92–97. 48. Ruby, R.; Yang, H.; Pham, Q.-V.; Wu, K. Delay Performance of UAV-Based Buffer-Aided Relay Networks under Bursty Traffic: Mobile or Static? In Proceedings of the 2021 IEEE 22nd International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), Pisa, Italy, 7–11 June 2021; pp. 51–60. 49. Nagpal, S.; Aggarwal, A.; Gaba, S. Privacy and Security Issues in Vehicular Ad Hoc Networks with Preventive Mechanisms. In Proceedings of the International Conference on Intelligent Cyber-Physical Systems; Springer: Singapore, 2022; pp. 317–329. 50. El Haber, E.; Alameddine, H.A.; Assi, C.; Sharafeddine, S. UAV-aided ultra-reliable low-latency computation offloading in future IoT networks. IEEE Trans. Commun. 2021, 69, 6838–6851. [CrossRef] 51. Çabuk, U.C.; Tosun, M.; Dagdeviren, O. MAX-Tree: A Novel Topology Formation for Maximal Area Coverage in Wireless Ad-Hoc Networks. IEEE/ACM Trans. Netw. 2021, 30, 162–175. [CrossRef] 52. Yahuza, M.; Idris, M.Y.I.; Ahmedy, I.B.; Wahab, A.W.A.; Nandy, T.; Noor, N.M.; Bala, A. Internet of drones security and privacy issues: Taxonomy and open challenges. IEEE Access 2021, 9, 57243–57270. [CrossRef] Appl. Sci. 2023, 13, 277 30 of 33 53. Jan, S.U.; Abbasi, I.A.; Algarni, F.; Khan, A.S. Corrections to “A Verifiably Secure ECC Based Authentication Scheme for Securing IoD Using FANET”. IEEE Access 2022, 10, 105496. [CrossRef] 54. Lei, Y.; Zeng, L.; Li, Y.-X.; Wang, M.-X.; Qin, H. A lightweight authentication protocol for UAV networks based on security and computational resource optimization. IEEE Access 2021, 9, 53769–53785. [CrossRef] 55. Ko, Y.D.; Song, B.D. Application of UAVs for tourism security and safety. Asia Pac. J. Mark. Logist. 2021, 33, 1829–1843. [CrossRef] 56. Oteafy, S.M. Resource augmentation in Heterogeneous Internet of Things via UAVs. In Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December 2021. 57. Khan, A.S.; Ahmad, Z.; Abdullah, J.; Ahmad, F. A spectrogram image-based network anomaly detection system using deep convolutional neural network. IEEE Access 2021, 9, 87079–87093. [CrossRef] 58. Mitkas, D.Z.; Lovell, D.J.; Venkatesh, S.; Young, S. Activity Identification using ADS-B data at General Aviation Airports. In Proceedings of the AIAA AVIATION 2021 FORUM, Virtual Event, 2–6 August 2021. 59. Azari, M.M.; Solanki, S.; Chatzinotas, S.; Bennis, M. THz-Empowered UAVs in 6G: Opportunities, Challenges, and Trade-offs. IEEE Commun. Mag. 2022, 60, 24–30. [CrossRef] 60. Hong, H.; Zhao, J.; Hong, T.; Tang, T. Radar-communication integration for 6G massive IoT services. IEEE Internet Things J. 2021, 9, 14511–14520. [CrossRef] 61. Karim, F.A.; Aman, A.H.M.; Hassan, R.; Nisar, K.; Uddin, M. Named Data Networking: A Survey on Routing Strategies. IEEE Access 2022, 10, 90254–90270. [CrossRef] 62. Nozari, H.; Szmelter-Jarosz, A.; Ghahremani-Nahr, J. The Ideas of Sustainable and Green Marketing Based on the Internet of Everything—The Case of the Dairy Industry. Future Internet 2021, 13, 266. [CrossRef] 63. Maikol, S.O.; Khan, A.S.; Javed, Y.; Bunsu, A.L.A.; Petrus, C.; George, H.; Jau, S. A novel authentication and key agreement scheme for countering MITM and impersonation attack in medical facilities. Int. J. Integr. Eng. 2021, 13, 127–135. 64. Rukhsar, L.; Bangyal, W.H.; Nisar, K.; Nisar, S. Prediction of insurance fraud detection using machine learning algorithms. Mehran Univ. Res. J. Eng. Technol. 2022, 41, 33–40. [CrossRef] 65. Sher, A.; Sohail, M.; Shah, S.B.H.; Koundal, D.; Hassan, M.A.; Abdollahi, A.; Khan, I.U. New Trends and Advancement in Next Generation Mobile Wireless Communication (6G): A Survey. Wirel. Commun. Mob. Comput. 2021, 2021, 9614520. 66. Wang, Y.; Su, Z.; Xu, Q.; Li, R.; Luan, T.H. Lifesaving with RescueChain: Energy-efficient and partition-tolerant blockchain based secure information sharing for UAV-aided disaster rescue. In Proceedings of the IEEE INFOCOM 2021-IEEE Conference on Computer Communications, Vancouver, BC, Canada, 10–13 May 2021. 67. Ahmad, Z.; Shahid Khan, A.; Nisar, K.; Haider, I.; Hassan, R.; Haque, M.R.; Tarmizi, S.; Rodrigues, J.J. Anomaly detection using deep neural network for IoT architecture. Appl. Sci. 2021, 11, 7050. [CrossRef] 68. Gandra, C.; Hansson, J. Application of Value Proposition Design to a High-Tech Business Market Product; Lund University: Lund, Sweden, 2021. 69. Baltaci, A.; Dinc, E.; Ozger, M.; Alabbasi, A.; Cavdar, C.; Schupke, D. A Survey of Wireless Networks for Future Aerial Communications (FACOM). IEEE Commun. Surv. Tutor. 2021, 23, 2833–2884. [CrossRef] 70. Höyhtyä, M.; Boumard, S.; Yastrebova, A.; Järvensivu, P.; Kiviranta, M.; Anttonen, A. Sustainable Satellite Communications in the 6G Era: A European View for Multi-Layer Systems and Space Safety. arXiv 2022, arXiv:2201.02408. 71. Ray, P.P. A review on 6G for space-air-ground integrated network: Key enablers, open challenges, and future direction. J. King Saud Univ.-Comput. Inf. Sci. 2021, 34, 6949–6976. [CrossRef] 72. Zhu, X.; Jiang, C. Integrated satellite-terrestrial networks toward 6g: Architectures, applications, and challenges. IEEE Internet Things J. 2021, 9, 437–461. [CrossRef] 73. Zhang, T.; Wang, Z.; Liu, Y.; Xu, W.; Nallanathan, A. Joint Resource, Deployment, and Caching Optimization for AR Applications in Dynamic UAV NOMA Networks. IEEE Trans. Wirel. Commun. 2021, 21, 3409–3422. [CrossRef] 74. Kaiser, M.S.; Zenia, N.; Tabassum, F.; Mamun, S.A.; Rahman, M.A.; Islam, M.; Mahmud, M. 6G access network for intelligent internet of healthcare things: Opportunity, challenges, and research directions. In Proceedings of the International Conference on Trends in Computational and Cognitive Engineering; Springer: Singapore, 2021; pp. 317–328. 75. Hamza, B.J.; Saad, W.K.; Shayea, I.; Ahmad, N.; Mohamed, N.; Nandi, D.; Gholampour, G. Performance enhancement of SCM/WDM-RoF-XGPON system for bidirectional transmission with square root module. IEEE Access 2021, 9, 49487–49503. [CrossRef] 76. Ahmad, Z.; Shahid Khan, A.; Wai Shiang, C.; Abdullah, J.; Ahmad, F. Network intrusion detection system: A systematic study of machine learning and deep learning approaches. Trans. Emerg. Telecommun. Technol. 2021, 32, e4150. [CrossRef] 77. Gope, P.; Millwood, O.; Saxena, N. A provably secure authentication scheme for RFID-enabled UAV applications. Comput. Commun. 2021, 166, 19–25. [CrossRef] 78. Munusamy, R.; Kumre, J.; Chaturvedi, S.; Bandhu, D. Design and Development of Portable UAV Ground Control and Communication Station Integrated with Antenna Tracking Mechanism. In Intelligent Infrastructure in Transportation and Management; Springer: Singapore, 2022; pp. 193–212. 79. Adnan, W.H.; Khamis, M.F. Drone use in military and civilian application: Risk to national security. J. Media Inf. Warf. 2022, 15, 60–70. Appl. Sci. 2023, 13, 277 31 of 33 80. Mohammed, I.; Collings, I.B.; Hanly, S.V. Line of sight probability prediction for UAV communication. In Proceedings of the 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. 81. Tang, S.; Zhou, W.; Chen, L.; Lai, L.; Xia, J.; Fan, L. Battery-constrained federated edge learning in UAV-enabled IoT for B5G/6G networks. Phys. Commun. 2021, 47, 101381. [CrossRef] 82. Sehrawat, H.; Siwach, V. Security vulnerabilities in Wireless Sensor Networks. J. Inf. Assur. Secur. 2010, 5, 31–44. 83. Javed, Y.; Khan, A.S.; Qahar, A.; Abdullah, J. Preventing DoS attacks in IoT using AES. J. Telecommun. Electron. Comput. Eng. (JTEC) 2017, 9, 55–60. 84. Nazir, M.; Sabah, A.; Sarwar, S.; Yaseen, A.; Jurcut, A. Power and resource allocation in wireless communication network. Wirel. Pers. Commun. 2021, 119, 3529–3552. [CrossRef] 85. Ly, B.; Ly, R. Cybersecurity in unmanned aerial vehicles (UAVs). J. Cyber Secur. Technol. 2021, 5, 120–137. [CrossRef] 86. Bakare, B.; Ekolama, S. Preventing Man-in-The-Middle (MiTM) Attack of GSM Calls. Eur. J. Electr. Eng. Comput. Sci. 2021, 5, 63–68. [CrossRef] 87. de Melo, C.F.E.; e Silva, T.D.; Boeira, F.; Stocchero, J.M.; Vinel, A.; Asplund, M.; de Freitas, E.P. Uavouch: A secure identity and location validation scheme for uav-networks. IEEE Access 2021, 9, 82930–82946. [CrossRef] 88. Satyanarayana, P. Detection and Blocking of Replay, False Command, and False Access Injection Commands in SCADA Systems with Modbus Protocol. Secur. Commun. Netw. 2021, 2021, 8887666. 89. Tesfay, D.; Tiwari, B.; Teka, M.e.J.; Tiwari, V. An Intrusion Prevention System embedded AODV to protect Mobile Adhoc Network against Sybil Attack. In Proceedings of the International Conference on Data Science, Machine Learning and Artificial Intelligence, Windhoek, Namibia, 9–12 August 2021; pp. 57–64. 90. Chaubey, N.K.; Yadav, D. Detection of Sybil attack in vehicular ad hoc networks by analyzing network performance. Int. J. Electr. Comput. Eng. 2022, 12, 1703–1710. [CrossRef] 91. Chierici, A.; Malizia, A.; Di Giovanni, D.; Ciolini, R.; d’Errico, F. A High-Performance Gamma Spectrometer for Unmanned Systems Based on Off-the-Shelf Components. Sensors 2022, 22, 1078. [CrossRef] [PubMed] 92. Balan, K.; Abdulrazak, L.; Khan, A.; Julaihi, A.; Tarmizi, S.; Pillay, K.; Sallehudin, H. RSSI and public key infrastructure based secure communication in autonomous vehicular networks. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 298–304. [CrossRef] 93. Mahmood Saqib, R.; Shahid Khan, A.; Javed, Y.; Ahmad, S.; Nisar, K.; Abbasi, I.A.; Haque, M.R.; Ahmadi Julaihi, A. Analysis and intellectual structure of the multi-factor authentication in information security. Intell. Autom. Soft Comput. 2022, 32, 1633–1647. [CrossRef] 94. Riyadi, E.H.; Putra, A.E.; Priyambodo, T.K. Improvement of nuclear facilities DNP3 protocol data transmission security using super encryption BRC4 in SCADA systems. PeerJ Comput. Sci. 2021, 7, e727. [CrossRef] 95. Memon, S.K.; Nisar, K.; Hijazi, M.H.A.; Chowdhry, B.; Sodhro, A.H.; Pirbhulal, S.; Rodrigues, J.J. A survey on 802.11 MAC industrial standards, architecture, security & supporting emergency traffic: Future directions. J. Ind. Inf. Integr. 2021, 24, 100225. 96. Uribe-Leitz, T.; Matsas, B.; Dalton, M.K.; Lutgendorf, M.A.; Moberg, E.; Schoenfeld, A.J.; Goralnick, E.; Weissman, J.S.; Hamlin, L.; Cooper, Z. Geospatial analysis of access to emergency cesarean delivery for military and civilian populations in the US. JAMA Netw. Open 2022, 5, e2142835. [CrossRef] 97. Talpur, M.R.H.; Talpur, M.S.H.; Talpur, F.; Haseeb, A.; Kehar, A.; Fatima, S. A Model for Secure Inter-Institutional Communication Based on Artificial Intelligence (AI) and Blockchain. Int. J. Comput. Intell. Control 2021, 13, 145–154. 98. Javed, Y.; Khan, A.S.; Qahar, A.; Abdullah, J. EEoP: A lightweight security scheme over PKI in D2D cellular networks. J. Telecommun. Electron. Comput. Eng. (JTEC) 2017, 9, 99–105. 99. Deebak, B.D.; Fadi, A.-T. Lightweight authentication for IoT/Cloud-based forensics in intelligent data computing. Future Gener. Comput. Syst. 2021, 116, 406–425. [CrossRef] 100. Lafta, S.A.; Abdulkareem, M.M.; Ibrahim, R.K.; Kareem, M.M.; Ali, A.H. Quality of service performances of video and voice transmission in universal mobile telecommunications system network based on OPNET. Bull. Electr. Eng. Inform. 2021, 10, 3202–3210. [CrossRef] 101. Chaudhry, S.A.; Irshad, A.; Khan, M.A.; Khan, S.A.; Nosheen, S.; AlZubi, A.A.; Zikria, Y.B. A Lightweight Authentication Scheme for 6G-IoT Enabled Maritime Transport System. IEEE Trans. Intell. Transp. Syst. 2021. [CrossRef] 102. Zuo, Y.; Jin, S.; Zhang, S.; Zhang, Y. Blockchain storage and computation offloading for cooperative mobile-edge computing. IEEE Internet Things J. 2021, 8, 9084–9098. [CrossRef] 103. Shahidinejad, A.; Ghobaei-Arani, M.; Souri, A.; Shojafar, M.; Kumari, S. Light-edge: A lightweight authentication protocol for IoT devices in an edge-cloud environment. IEEE Consum. Electron. Mag. 2021, 11, 57–63. [CrossRef] 104. Beebe, N.H. A Complete Bibliography of Publications in ACM Computing Surveys; University of Utah: Salt Lake City, UT, USA, 2022. 105. Rana, S.K.; Rana, S.K.; Nisar, K.; Ag Ibrahim, A.A.; Rana, A.K.; Goyal, N.; Chawla, P. Blockchain Technology and Artificial Intelligence Based Decentralized Access Control Model to Enable Secure Interoperability for Healthcare. Sustainability 2022, 14, 9471. [CrossRef] 106. Mao, B.; Kawamoto, Y.; Kato, N. AI-based joint optimization of QoS and security for 6G energy harvesting Internet of Things. IEEE Internet Things J. 2020, 7, 7032–7042. [CrossRef] 107. Soleymani, S.A.; Goudarzi, S.; Anisi, M.H.; Movahedi, Z.; Jindal, A.; Kama, N. PACMAN: Privacy-Preserving Authentication Scheme for Managing Cybertwin-based 6G Networking. IEEE Trans. Ind. Inform. 2021, 18, 4902–4911. [CrossRef] Appl. Sci. 2023, 13, 277 32 of 33 108. Xu, H.; Klaine, P.V.; Onireti, O.; Cao, B.; Imran, M.; Zhang, L. Blockchain-enabled resource management and sharing for 6G communications. Digit. Commun. Netw. 2020, 6, 261–269. [CrossRef] 109. Pothumarti, R.; Jain, K.; Krishnan, P. A lightweight authentication scheme for 5G mobile communications: A dynamic key approach. J. Ambient Intell. Humaniz. Comput. 2021, 1–19. [CrossRef] 110. Jahid, A.; Alsharif, M.H.; Hall, T.J. The Convergence of Blockchain, IoT and 6G: Potential, Opportunities, Challenges and Research Roadmap. arXiv 2021, arXiv:2109.03184. 111. Wang, M.; Zhu, T.; Zhang, T.; Zhang, J.; Yu, S.; Zhou, W. Security and privacy in 6G networks: New areas and new challenges. Digit. Commun. Netw. 2020, 6, 281–291. [CrossRef] 112. Shen, X.S.; Liu, D.; Huang, C.; Xue, L.; Yin, H.; Zhuang, W.; Sun, R.; Ying, B. Blockchain for Transparent Data Management Toward 6G. Engineering 2021, 8, 74–85. [CrossRef] 113. Haque, M.R.; Tan, S.C.; Yusoff, Z.; Nisar, K.; Lee, C.K.; Chowdhry, B.; Ali, S.; Memona, S.K.; Kaspin, R. SDN architecture for UAVs and EVs using satellite: A hypothetical model and new challenges for future. In Proceedings of the 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2021; pp. 1–6. 114. Chai, H.; Leng, S.; He, J.; Zhang, K.; Cheng, B. CyberChain: Cybertwin Empowered Blockchain for Lightweight and Privacypreserving Authentication in Internet of Vehicles. IEEE Trans. Veh. Technol. 2021, 71, 4620–4631. [CrossRef] 115. Chaudhry, S.A.; Irshad, A.; Yahya, K.; Kumar, N.; Alazab, M.; Zikria, Y.B. Rotating behind privacy: An improved lightweight authentication scheme for cloud-based IoT environment. ACM Trans. Internet Technol. (TOIT) 2021, 21, 1–19. [CrossRef] 116. Wang, J.; Ling, X.; Le, Y.; Huang, Y.; You, X. Blockchain-enabled wireless communications: A new paradigm towards 6G. Natl. Sci. Rev. 2021, 8, nwab069. [CrossRef] 117. Dhar Dwivedi, A.; Singh, R.; Kaushik, K.; Rao Mukkamala, R.; Alnumay, W.S. Blockchain and artificial intelligence for 5G-enabled Internet of Things: Challenges, opportunities, and solutions. Trans. Emerg. Telecommun. Technol. 2021, e4329. [CrossRef] 118. Aqeel, S.; Shahid Khan, A.; Ahmad, Z.; Abdullah, J. A comprehensive study on DNA based Security scheme Using Deep Learning in Healthcare. EDPACS 2022, 66, 1–17. [CrossRef] 119. Tang, F.; Kawamoto, Y.; Kato, N.; Liu, J. Future intelligent and secure vehicular network toward 6G: Machine-learning approaches. Proc. IEEE 2019, 108, 292–307. [CrossRef] 120. Chen, M.; Tan, C.; Zhu, X.; Zhang, X. A Blockchain-Based Authentication and Service Provision Scheme for Intemet of Things. In Proceedings of the 2020 IEEE Globecom Workshops (GC Wkshps), Taipei, Taiwan, 7–11 December 2020; pp. 1–6. 121. Li, W.; Su, Z.; Li, R.; Zhang, K.; Wang, Y. Blockchain-based data security for artificial intelligence applications in 6G networks. IEEE Netw. 2020, 34, 31–37. [CrossRef] 122. Mollah, M.B.; Zhao, J.; Niyato, D.; Guan, Y.L.; Yuen, C.; Sun, S.; Lam, K.-Y.; Koh, L.H. Blockchain for the internet of vehicles towards intelligent transportation systems: A survey. IEEE Internet Things J. 2020, 8, 4157–4185. [CrossRef] 123. Chen, C.-M.; Chen, Z.; Kumari, S.; Lin, M.-C. LAP-IoHT: A Lightweight Authentication Protocol for the Internet of Health Things. Sensors 2022, 22, 5401. [CrossRef] [PubMed] 124. Kamruzzaman, M. 6G-Enabled Smart City Networking Model Using Lightweight Security Module; Jouf University: Sakaka, Saudi Arabia, 2021. 125. Ji, B.; Han, Y.; Liu, S.; Tao, F.; Zhang, G.; Fu, Z.; Li, C. Several key technologies for 6G: Challenges and opportunities. IEEE Commun. Stand. Mag. 2021, 5, 44–51. [CrossRef] 126. Giordani, M.; Zorzi, M. Non-terrestrial networks in the 6G era: Challenges and opportunities. IEEE Netw. 2020, 35, 244–251. [CrossRef] 127. Sapirshtein, A.; Sompolinsky, Y.; Zohar, A. Optimal selfish mining strategies in bitcoin. In Proceedings of the International Conference on Financial Cryptography and Data Security, Christ Church, Barbados, 22–26 February 2016; pp. 515–532. 128. Zhang, K.; Liang, X.; Lu, R.; Shen, X. Sybil attacks and their defenses in the internet of things. IEEE Internet Things J. 2014, 1, 372–383. [CrossRef] 129. Ma, X.; Liao, L.; Li, Z.; Lai, R.X.; Zhang, M. Applying Federated Learning in Software-Defined Networks: A Survey. Symmetry 2022, 14, 195. [CrossRef] 130. Duan, L.; Sun, Y.; Zhang, K.; Ding, Y. Multiple-Layer Security Threats on the Ethereum Blockchain and Their Countermeasures. Secur. Commun. Netw. 2022, 2022, 5307697. [CrossRef] 131. Khan, A.S.; Javed, Y.; Saqib, R.M.; Ahmad, Z.; Abdullah, J.; Zen, K.; Abbasi, I.A.; Khan, N.A. Lightweight Multifactor Authentication Scheme for NextGen Cellular Networks. IEEE Access 2022, 10, 31273–31288. [CrossRef] 132. Feng, G.; Hou, S.-Y.; Zou, H.; Shi, W.; Yu, S.; Sheng, Z.; Rao, X.; Ma, K.; Chen, C.; Ren, B. SpinQ Triangulum: A commercial three-qubit desktop quantum computer. arXiv 2022, arXiv:2202.02983. [CrossRef] 133. Asim, J.; Khan, A.S.; Saqib, R.M.; Abdullah, J.; Ahmad, Z.; Honey, S.; Afzal, S.; Alqahtani, M.S.; Abbas, M. Blockchain-based Multifactor Authentication for Future 6G Cellular Networks: A Systematic Review. Appl. Sci. 2022, 12, 3551. [CrossRef] 134. Yahui, W.; ZHANG, H. Quantum Algorithm for Attacking RSA Based on Fourier Transform and Fixed-Point. Wuhan Univ. J. Nat. Sci. 2021, 26, 489–494. 135. Khan, S.; Abdullah, J.; Khan, N.; Julahi, A.; Tarmizi, S. Quantum-elliptic curve cryptography for multihop communication in 5G networks. Int. J. Comput. Sci. Netw. Secur. 2017, 17, 357–365. 136. Yang, Z.; Chen, M.; Wong, K.-K.; Poor, H.V.; Cui, S. Federated learning for 6G: Applications, challenges, and opportunities. Engineering 2021, 8, 33–41. [CrossRef] Appl. Sci. 2023, 13, 277 33 of 33 137. Averbeck, D. Does scientific evidence support a change from the LNT model for low-dose radiation risk extrapolation? Health Phys. 2009, 97, 493–504. [CrossRef] 138. Bell, M.L.; Fong, K.C. Gender differences in first and corresponding authorship in public health research submissions during the COVID-19 pandemic. Am. J. Public Health 2021, 111, 159–163. [CrossRef]
(1)
1. Population Estimates and Projections. https://databank.worldbank.org/source/population-est imates-and-projections. Accessed January 2020 2. Kaza S, Yao L, Bhada-Tata P, Van Woerden F (2018) What a waste 2.0: a global snapshot of solid waste management to 2050. World Bank Publications, December 2018 3. Trends in Solid Waste Management. https://datatopics.worldbank.org/what-a-waste/trends_in_ solid_waste_management.html. Accessed July 2021 4. Maria C, Góis J, Leitão A (2020) Challenges and perspectives of greenhouse gases emissions from municipal solid waste management in Angola. Energy Rep 6:364–369 5. Elwan A, Arief YZ, Adzis Z, Saad MHI (2014) The viability of generating electricity by harnessing household garbage solid waste using life cycle assessment. Proc Technol 11:134– 140 6. Malav LC, Yadav KK, Gupta N et al (2020) A review on municipal solid waste as a renewable source for waste-to-energy project in India: current practices, challenges, and future opportunities. J Clean Prod 277:123–227 7. Fernández-Gonzalez JM, Grindlay AL, Serrano-Bernardo F, Rodríguez-Rojas MI, Zamorano M (2017) Economic and environmental review of waste-to-energy systems for municipal solid waste management in medium and small municipalities. Waste Manage 1(67):360–374 8. Viau S, Majeau-Bettez G, Spreutels L, Legros R, Margni M, Samson R (2020) Substitution modelling in life cycle assessment of municipal solid waste management. Waste Manage 1; 102:795–803 9. Islam MR, Al Rafi J, Hossain MS (2019) Operation planning of renewable energy-based hybrid system incorporating waste-to-energy (WtE) technologies. In: 2019 international conference on sustainable technologies for industry 4.0 (STI), IEEE, December 2019, pp 1–5 10. Alayi R, Jahangeri M, Monfared H (2020) Optimal location of electrical generation from urban solid waste for biomass power plants. Anthropogenic Pollution J 4(2):44–51 11. Anssari OM, Alkaldy EA, Almudhaffar N, AlTaee AN, Ali NS (2020) A feasibility study of electrical energy generation from municipal solid waste in Iraq: Najaf case study. Int J Electr Comput Eng 10(4):2088-8708 12. Liu G, Rasul MG, Amanullah MTO, Khan MMK (2011) Feasibility study of stand-alone PV-wind-biomass hybrid energy system in Australia. In: 2011 Asia-Pacific power and energy engineering conference, pp 1–6. March 2011 13. Zoulias EI, Lymberopoulos N (2007) Techno-economic analysis of the integration of hydrogen energy technologies in renewable energy-based stand-alone power systems. Renew Energy 32(4):680–696 14. Heilig GK (2012) World urbanization prospects: the 2011 revision. United Nations, Department of Economic and Social Affairs (DESA), Population Division, Population Estimates and Projections Section, New York, vol 14, p 555 15. Abdullahi UY, Abbas AM, Abdullahi A (2018) Demographic and socio-economic determinants of house ownership in Gombe Local Government Area, Gombe State. J Soc Sci Public Policy 10(3) 16. Gombe State Environmental Protection Agency (2018) https://moenv.gm.gov.ng/gosepa 17. Imam A, Mohammed B, Wilson DC, Cheeseman CR (2008) Solid waste management in Abuja, Nigeria. Waste Manage 28(2):468–472 18. Mosiori GO, Onindo CO, Mugabi P, Tumwebaze SB, Bagabo S, Johnson RB (2015) Characteristics of potential gasifier fuels in selected regions of the Lake Victoria Basin. S Afr J Sci 111(5–6):1–6 19. Tchobanoglous G (2000) Integrated solid waste management engineering principles and management issues (No. 628 T3) 20. Barakat S, Samy MM, Eteiba MB, Wahba WI (2016) Feasibility study of grid connected PV-biomass integrated energy system in Egypt. Int J Emerg Electr Power Syst 17(5):519–528 21. Tomar A et al (eds) (2022) Proceedings of 3rd international conference on machine learning, advances in computing, renewable energy and communication: MARC 2021, vol 915), Pages XV, 781. ISBN: 978-981-19-2830-7. Springer Nature. https://doi.org/10.1007/978-981-19- 2828-4
(1)
[1] “PP Nomor 21 Tahun 2020”. (2020). (PDF) (in Indonesian). Government of Indonesia. Retrieved 15 April 2020. [Google Scholar] [2] Asteriou, D., & Hall, S. G. (2011). ARIMA Models and the Box–Jenkins methodology. In Applied econometrics (pp. 265–286, 2nd ed.). Palgrave MacMillan. ISBN 978-0-230 27182-1 [Google Scholar] [3] Cortes, C., & Vapnik, V. N. (1995). Support-vector networks" (PDF). Machine Learning, 20 (3), 273–297. CiteSeerX 10.1.1.15.9362. doi:10.1007/BF0099401 [Crossref], [Web of Science ®], [Google Scholar] [4] Dehe, X., Qi, Z., & Yan, D. (2020). Application of a Hybrid ARIMA-SVR model based on the SPI for the forecast of drought – A case study in Henan Province, China. Journal of Applied Meteorology and Climatology. 59, 1239 1259. doi:10.1175/jamc-d-19-0270.1 [Crossref], [Web of Science ®], [Google Scholar] [5] Dickens, B. L., Koo, J. R., Lim, J. T., Park, M., Quaye, S., Sun, H., … Cook, A. R. (2020). Modelling lockdown and exit strategies for COVID-19 in Singapore. The Lancet Regional Health - Western Pacific, 1, 100004. doi:10.1016/j.lanwpc.2020.100004 [Crossref], [Google Scholar] [6] Géron, A. (2019). Hands-on machine learning with Scikit-learn, keras, and tensorflow. Canada: O’Reilly Media Inc. [Google Scholar] [7] Hashim, M. J., Alsuwaidi, A. R., & Khan, G. (2020). Population risk factors for COVID-19 mortality in 93 countries. Journal of Epidemiology and Global Health, 10(3), 204–208. doi:10.2991/jegh.k.200721.001 [Crossref], [Web of Science ®], [Google Scholar] [8] Limos, M. A. (2020). "What is ECQ, EECQ, Lockdown, and Partial Lockdown?" esquiremag.ph/life/health-and fitness/what-is-ecq-lockdown-and-partial-lockdown-a00293 20200420-lfrm. Retrieved May 4, 2020. [Google Scholar] [9] Mahmud, A., & Lim, P. Y. (2020). “Applying the SEIR model in forecasting the COVID-19 trend in Malaysia: A preliminary study”. Archived from the original on 17 August 2020. Retrieved 25 September 2020. [Google Scholar] [10] Ministry of Health. (2020). Singapore, continued stringent implementation and enforcement of circuit breaker measures [Internet]. Retrieved from https://www.moh.gov.sg/news-highlights/details/continued stringent-implementation-enforcement-of-circuit-measures. [cited April, 14 2020]. [Google Scholar] [11] Nasruddin, R., & Haq, I. (2020). Pembatasan Sosial Berskala Besar (PSBB) dan Masyarakat Berpenghasilan Rendah. Jurnal Sosial dan Budaya Syar’i, 7, 639–648. Retrieved from http://journal.uinjkt.ac.id/index.php/salam/article/view 15569. [Google Scholar] [12] Ong, L. C. (2020). “The Recovery MCO – Prevention and Control of Infectious Desease (Measure Within Infected Local Areas) (No. 7) Regulations 2020”. Lawyers Who Know Asia. Retrieved from https://www.christopherleeong.com/media/3959/200611_clie t_update_-_rmco_-final-clo.pdf. [Google Scholar] [13] Pengpeng, S., Shengli, C., & Peihua, F. (2020). “SEIR Transmission dynamics model of 2019 nCoV coronavirus with considering the weak infectious ability and changes in latency duration”. Archived from the original on 17 June 2020. Retrieved 25 September 2020.[Google Scholar] [14] Purnama, B. (2019). Pengantar machine learning”. Bandung: Informatika. [Google Scholar] [15] Rustan, H. L. (2020). “The Outbreak’s Modelling of Coronavirus (Covid-19) using The Modified SEIR Model in Indonesia”. Archived from the original on 7 August 2020. Retrieved 26 September 2020. [Google Scholar] [16] Singh, S., Parmar, K. S., Sidhu, J. S. M., Kaur, J., Peshoria, S., & Kumar, J. (2020). Study of ARIMA and Least Square Support Vector Machine (LS-SVM) models for the prediction of SARS-COV-2 confirmed cases in the most affected countries. Journal of Chaos, Solitons, and Fractals, 139, 110086. [Web of Science ®], [Google Scholar] [17] Solis, J. F., Jose Enrique, O. V., Juan, J. G., Joaquin, P. O., Guadalupe, C.-V., & Sanchez, J. P. (2020). “The Hybrid Forecasting Methods SVR-ESAR for COVID-19”, Preprint. doi:10.1101/2020.05.20.20103200 [Crossref], [Google Scholar] [18] Teks Perutusan Khas. (2020). Speech By YAB Tan Sri Dato’ Haji Muhyuddin Bin Haji Mohd Yasin, Malaysia Prime Minister [Internet]. Retreived from https://www.moe.gov.my/en/muat-turun/teks-ucapan-dan slide/tu2020/3352-teks-ucapan-yab-pm-mengenai-covid-19 18032020/file. [cited March 18, 2020] [Google Scholar] [19] Teks Ucapan Pelaksanaan Perintah Kawalan Pergerakan Pemulihan. (2020). Speech By YAB Tan Sri Dato’ Haji Muhyuddin Bin Haji Mohd Yasin, Malaysia Prime Minister [Internet]. Retreived from https://www.pmo.gov.my/2020/06/teks-ucapan-pelaksanaan perintah-kawalan-pergerakan-pemulihan-pkpp/. [cited June 7, 2020]. [Google Scholar] [20] Wang, L. (2005). Support vector machines: Theory and applications. Netherland: Springer. [Crossref], [Google Scholar] [21] Wei, W. W. S. (2006). Time series analysis, univariate and multivariate methods (2nd ed.). New York: Pearson, Addison Wesley. [Google Scholar] [22] Willmott, C. J., Matsuura, K., & December, 1. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30, 79–82. doi:10.3354/cr030079 [Crossref], [Web of Science ®], [Google Scholar] [23] World Health Organization (WHO). (2020). Coronavirus Disease 2019 (COVID-19) Situation Overview International [Internet], WHO International, Retrieved from https://covid19.who.int. [cited August 6, 2020]. [Google Scholar] [24] World Health Organization (WHO). (2020). Novel Coronavirus (2019-nCOV) Situation Report - 1 January 2020. WHO. [Google Scholar] [25] World Health Organization (WHO). (2020). Coronavirus Disease 2019 (COVID-19) Situation Overview In Malaysia [Internet]. WHO Malaysia. Retrieved from https://www.who.int/docs/default-source/wpro– documents/countries/malaysia/coronavirus-disease-(covid 19)-situation-reports-in-malaysia/situation-report malaysia-23-april-2020-final.pdfA. [cited August 6, 2020] [Google Scholar] [26] World Health Organization (WHO). (2020). Novel Coronavirus (2019-nCOV) Situation Report-46, WHO, January 2020. [Google Scholar] [27] World Health Organization (WHO). (2020). Coronavirus Disease (COVID-19) Situation Report 1 Philippines, WHO Philippines, 9 March. [Google Scholar] [28] Zhang, Y., Luo, L., Yang, J., Liu, D., Kong, R., & Feng, Y. (2019). A Hybrid ARIMA-SVR approach for forecasting emergency patient flow. Journal of Ambient Intelligence and Humanized Computing, 10(8), 3315–3323. Springer-Verlag Germany. Retrieved from. doi:10.1007/s12652-018-1059-x [Crossref], [Web of Science ®], [Google Scholar]
(1)
[1] Pradhan, S. K., and Subudhi, B., “Nonlinear Adaptive Model Predictive Controller for a Flexible Manipulator: An Experimental Study,” IEEE Transaction on Control System Technology, 22(5), pp,1754–1768, 2014. [2] Sasaki, M., Asai, A., Shimizu, T., and Ito, S., “Self-Tuning Control of a Two-Link Flexible Manipulator using Neural Networks,” In ICROSSICE International Joint Conference, pp.2468–2473, 2009. [3] Pereira, E., Trapero, J. R., Díaz, I. M. and Feliu, V., “Adaptive input shaping for manoeuvring flexible structures using an algebraic identification technique,” Control Engineering Practice, 20, pp.138–147. 2009. [4] Becedas, J., Trapero, J. R., Feliu, V., and Sira-Ramirez, H., “Adaptive controller for single-link flexible manipulators based on algebraic identification and generalized proportional integral control,” IEEE Transactions on Systems, Man, and Cybernetics Society, 39(3), pp.735– 51, 2009. [5] Mute, D., Ghosh, S., and Subudhi, B., “Iterative Learning Control of a SingleLink Flexible Manipulator Based on an Identified Adaptive NARX Model,” InAnnual IEEE Indian Conference, 2013. [6] Zain, B.A., Tokhi, M.O. and Toha, S.F., “PID-based control of a singlelink flexible manipulator in vertical motion with genetic optimisation,” In 2009 3rd European Symposium on Computer Modelling and Simulation, pp.355–360, 2009. [7] Zhang, L., and Liu, S., “Basis Function Based Adaptive Iterative Learning Control for Non-Minimum Phase Systems,” In World Congress on Intelligent Control and Automation, pp.828–833, 2014. [8] Jain, S., and Garg, M., “Identification and Iterative Learning Control of Piezoelectric Actuator Based Nano-positioning System,” International Journal of Advance in Engineering Sciences, 3(3), pp.88–93, 2013. [9] Wang, Y., Chien, C., and Chuang, C., “Adaptive iterative learning control of robotic systems using back-stepping design,” Transaction of Canadian Society for Mechanical Engineering, 37(3), pp.591–601, 2012. [10] Al-Mola, M., Mailah, M., Muhaimin, A. H., Abdullah, M. Y. and Samin, P. M., “Fuzzy-based PID with iterative learning active force controller for an anti-lock brake system,” International Journal of Simulation: Systems, Science and Technology, 13(3 A), pp. 35–41, 2012. [11] Shaharuddin, N. M. R., and Mat Darus, I. Z., “Active Vibration Control of Marine Riser. In Conference on Control,” Systems and Industrial Informatics, pp. 114–119, 2012. [12] Pitowarno, E., and Mailah, M. “Robust Motion Control for Mobile Manipulator Using Resolved Acceleration and Proportional-Integral Active Force Control,” International Review of Mechanical Engineering, 1(5), pp. 549–558, 2007. [13] Jamali, A., Darus, I. Z., Mat Samin, P. P., Mohd; Tokhi, M. O., “Intelligent modeling of double link flexible robotic manipulator using artificial neural network.,” Journal of Vibroengineering, Vol. 20 Issue 2, pp.1021-1034, Mar 2018. [14] Saad, M. S., “Evolutionary optimization and real-time self-tuning active vibration control of a flexible beam system,” Ph.D. thesis, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 2014.
(1)
[1] Pramanik, S. "Casson fluid flow and heat transfer past an exponentially porous stretching surface in presence of thermal radiation." Ain Shams Engineering Journal 5, no. 1 (2014): 205-212. https://doi.org/10.1016/j.asej.2013.05.003 [2] Satya Narayana, P. V., and B. Venkateswarlu. "Influence Of Variable Thermal Conductivity on Mhd Casson Fluid Flow Over a Stretching Sheet with Viscous Dissipation, Soret and Dufour Effects." Frontiers in Heat and Mass Transfer (FHMT) 7, no. 1 (2016). https://doi.org/10.5098/hmt.7.16 [3] Hayat, T., S. A. Shehzad, and A. Alsaedi. "Soret and Dufour effects on magnetohydrodynamic (MHD) flow of Casson fluid." Applied Mathematics and Mechanics 33 (2012): 1301-1312. https://doi.org/10.1007/s10483-012-1623-6 [4] Nadeem, Sohail, Rizwan Ul Haq, Noreen Sher Akbar, and Zafar Hayat Khan. "MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet." Alexandria Engineering Journal 52, no. 4 (2013): 577-582. https://doi.org/10.1016/j.aej.2013.08.005 [5] Animasaun, I. L., E. A. Adebile, and A. I. Fagbade. "Casson fluid flow with variable thermo-physical property along exponentially stretching sheet with suction and exponentially decaying internal heat generation using the homotopy analysis method." Journal of the Nigerian Mathematical Society 35, no. 1 (2016): 1-17. https://doi.org/10.1016/j.jnnms.2015.02.001 [6] Bhattacharyya, Krishnendu. "MHD stagnation-point flow of Casson fluid and heat transfer over a stretching sheet with thermal radiation." Journal of thermodynamics 2013 (2013): 1-9. https://doi.org/10.1155/2013/169674 [7] Farooq, Umer, M. Ahsan Ijaz, M. Ijaz Khan, Siti Suzillianaa Putri Mohamed Isa, and Dian Chen Lu. "Modeling and non-similar analysis for Darcy-Forchheimer-Brinkman model of Casson fluid in a porous media." International Communications in Heat and Mass Transfer 119 (2020): 104955. https://doi.org/10.1016/j.icheatmasstransfer.2020.104955 [8] Parvin, Shahanaz, Siti Suzilliana Putri Mohamed Isa, Norihan Md Arifin, and Fadzilah Md Ali. "The magnetohydrodynamics Casson fluid flow, heat and mass transfer due to the presence of assisting flow and buoyancy ratio parameters." CFD Letters 12, no. 8 (2020): 64-75. [9] Parvin, S., N. Balakrishnan, and S. S. P. M. Isa. "MHD Casson Fluid Flow Under the Temperature and Concentration Gradients." Magnetohydrodynamics (0024-998X) 57, no. 3 (2021). https://doi.org/10.22364/mhd.57.3.5 [10] Ahmad, K., S. S. P. M. Isa, Z. Wahid, and Z. Hanouf. "The Impact of Newtonian Heating on Magnetic Casson Nanofluid Flow with Variable Consistency Over a Variable Surface Thickness." Magnetohydrodynamics (0024-998X) 57, no. 3 (2021). https://doi.org/10.22364/mhd.57.3.1 [11] Al Oweidi, Khalid Fanoukh, Wasim Jamshed, B. Shankar Goud, Imran Ullah, Usman, Siti Suzilliana Putri Mohamed Isa, Sayed M. El Din, Kamel Guedri, and Refed Adnan Jaleel. "Partial differential equations modeling of thermal transportation in Casson nanofluid flow with arrhenius activation energy and irreversibility processes." Scientific Reports 12, no. 1 (2022): 20597. https://doi.org/10.1038/s41598-022-25010-x [12] Yusof, Nur Syamila, Siti Khuzaimah Soid, Mohd Rijal Illias, Ahmad Sukri Abd Aziz, and Nor Ain Azeany Mohd Nasir. "Radiative Boundary Layer Flow of Casson Fluid Over an Exponentially Permeable Slippery Riga Plate with Viscous Dissipation." Journal of Advanced Research in Applied Sciences and Engineering Technology 21, no. 1 (2020): 41-51. https://doi.org/10.37934/araset.21.1.4151 [13] Kamis, Nur Ilyana, Noraihan Afiqah Rawi, Lim Yeou Jiann, Sharidan Shafie, and Mohd Rijal Ilias. "Thermal Characteristics of an Unsteady Hybrid Nano-Casson Fluid Passing Through a Stretching Thin-Film with Mass Transition." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 104, no. 2 (2023): 36-50. https://doi.org/10.37934/arfmts.104.2.3650 [14] Thirupathi, Gurrala, Kamatam Govardhan, and Ganji Narender. "Radiative magnetohydrodynamics Casson nanofluid flow and heat and mass transfer past on nonlinear stretching surface." Journal of Advanced Research in Numerical Heat Transfer 6, no. 1 (2021): 1-21. [15] Roşca, Natalia C., Alin V. Roşca, and Ioan Pop. "Lie group symmetry method for MHD double-diffusive convection from a permeable vertical stretching/shrinking sheet." Computers & mathematics with applications 71, no. 8 (2016): 1679-1693. https://doi.org/10.1016/j.camwa.2016.03.006 [16] Patil, P. M., S. Roy, R. J. Moitsheki, and E. Momoniat. "Double diffusive flows over a stretching sheet of variable thickness with or without surface mass transfer." Heat Transfer—Asian Research 46, no. 8 (2017): 1087-1103. https://doi.org/10.1002/htj.21261 [17] Parvin, Shahanaz, Siti Suzilliana Putri Mohamed Isa, Norihan Md Arifin, and Fadzilah Md Ali. "Soret and Dufour effects on magneto-hydrodynamics Newtonian fluid flow beyond a stretching/shrinking sheet." CFD Letters 12, no. 8 (2020): 85-97. https://doi.org/10.37934/cfdl.12.8.8597 [18] Azmi, Hazirah Mohd, Siti Suzilliana Putri Mohamed Isa, and Norihan Md Arifin. "The boundary layer flow, heat and mass transfer beyond an exponentially stretching/shrinking inclined sheet." CFD Letters 12, no. 8 (2020): 98-107. https://doi.org/10.37934/cfdl.12.8.98107 [19] Parvin, S., S. S. P. M. Isa, and S. K. Soid. "Three-Dimensional Model of Double Diffusive Magnetohydrodynamic Newtonian Fluid Flow." Magnetohydrodynamics (0024-998X) 57, no. 3 (2021). https://doi.org/10.22364/mhd.57.3.6 [20] Parvin, Shahanaz, Siti Suzilliana Putri Mohamed Isa, Wasim Jamshed, Rabha W. Ibrahim, and Kottakkaran Sooppy Nisar. "Numerical treatment of 2D-Magneto double-diffusive convection flow of a Maxwell nanofluid: Heat transport case study." Case Studies in Thermal Engineering 28 (2021): 101383. https://doi.org/10.1016/j.csite.2021.101383 [21] Parvin, Shahanaz, Siti Suzilliana Putri Mohamed Isa, Fuad S. Al-Duais, Syed M. Hussain, Wasim Jamshed, Rabia Safdar, and Mohamed R. Eid. "The flow, thermal and mass properties of Soret-Dufour model of magnetized Maxwell nanofluid flow over a shrinkage inclined surface." PLoS One 17, no. 4 (2022): e0267148. https://doi.org/10.1371/journal.pone.0267148 [22] Patil, Prabhugouda Mallanagouda, and P. S. Hiremath. "Analysis of unsteady mixed convection triple diffusive transport phenomena." International Journal of Numerical Methods for Heat & Fluid Flow 29, no. 2 (2019): 773- 789. https://doi.org/10.1108/HFF-04-2018-0134 [23] Rionero, Salvatore. "Triple diffusive convection in porous media." Acta Mechanica 224, no. 2 (2013): 447-458. https://doi.org/10.1007/s00707-012-0749-2 [24] Goyal, Mania, and Rama Bhargava. "Numerical study of thermodiffusion effects on boundary layer flow of nanofluids over a power law stretching sheet." Microfluidics and nanofluidics 17 (2014): 591-604. https://doi.org/10.1007/s10404-013-1326-2 [25] Archana, Manjappa, Bijjanal Jayanna Gireesha, and Ballajja Chandrappa Prasannakumara. "Triple diffusive flow of Casson nanofluid with buoyancy forces and nonlinear thermal radiation over a horizontal plate." Archives of Thermodynamics 40, no. 1 (2019): 49-69. [26] Khan, Shahid, Mahmoud M. Selim, Aziz Khan, Asad Ullah, Thabet Abdeljawad, Ikramullah, Muhammad Ayaz, and Wali Khan Mashwani. "On the analysis of the non-Newtonian fluid flow past a stretching/shrinking permeable surface with heat and mass transfer." Coatings 11, no. 5 (2021): 566. https://doi.org/10.3390/coatings11050566 [27] Pop, Ioan, Siti Suzilliana Putri Mohamed Isa, Norihan M. Arifin, Roslinda Nazar, Norfifah Bachok, and Fadzilah M. Ali. "Unsteady viscous MHD flow over a permeable curved stretching/shrinking sheet." International Journal of Numerical Methods for Heat & Fluid Flow 26, no. 8 (2016): 2370-2392. https://doi.org/10.1108/HFF-07-2015-0301 [28] Isa, S. S. P. M., N. M. Arifin, R. Nazar, N. Bachok, F. M. Ali, and I. Pop. "MHD mixed convection boundary layer flow of a Casson fluid bounded by permeable shrinking sheet with exponential variation." Scientia Iranica 24, no. 2 (2017): 637-647. https://doi.org/10.24200/sci.2017.4048
(1)
1. Priddy, K.L. and P.E. Keller, Artificial neural networks: an introduction. Vol. 68. 2005: SPIE press. 2. Brocca, L., F. Melone, T. Moramarco, and R. Morbidelli, Spatial‐temporal variability of soil moisture and its estimation across scales. Water Resources Research, 2010. 46(2). 3. Song, Q. and N. Kasabov, WDN-RBF: weighted data normalization for radial basic function type neural networks. 2004. 4. Njoku, E.G. and D. Entekhabi, Passive microwave remote sensing of soil moisture. Journal of hydrology, 1996. 184(1-2): p. 101-129. 5. Wagner, W., V. Naeimi, K. Scipal, R. de Jeu, and J. Martínez-Fernández, Soil moisture from operational meteorological satellites. Hydrogeology Journal, 2007. 15(1): p. 121-131. 6. Zhang, Q. and S. Sun, Weighted Data Normalization Based on Eigenvalues for Artificial Neural Network Classification. arXiv preprint arXiv:1712.08885, 2017. 7. Jin, J., M. Li, and L. Jin, Data normalization to accelerate training for linear neural net to predict tropical cyclone tracks. Mathematical Problems in Engineering, 2015. 2015. 8. Singh, G., H.S. Srivastava, S. Mesapam, and P. Patel, Passive Microwave Remote Sensing of Soil Moisture: A Step-By-Step Detailed Methodology using AMSR-E Data over Indian Sub-Continent. International Journal of Advanced Remote Sensing and GIS, 2015. 4(1): p. pp. 1045-1063. 9. Chai, S.-S., J. Walker, O. Makarynskyy, M. Kuhn, B. Veenendaal, and G. West, Use of Soil Moisture Variability in Artificial Neural Network Retrieval of Soil Moisture. Remote Sensing, 2010. 2(1): p. 166. 10. Kim, D., Normalization methods for input and output vectors in backpropagation neural networks. International journal of computer mathematics, 1999. 71(2): p. 161-171. 11. Tai, Q.-y. and K.-s. Shin, GA-based Normalization Approach in Back-propagation Neural Network for Bankruptcy Prediction Modeling. Journal of Intelligence and Information Systems, 2010. 16(3): p. 1-14. 12. Jayalakshmi, T. and A. Santhakumaran, Statistical normalization and back propagation for classification. International Journal of Computer Theory and Engineering, 2011. 3(1): p. 1793-8201. 13. Chai, S.-S., B. Veenendaal, G. West, and J.P. Walker, Backpropagation neural network for soil moisture retrieval using NAFE’05 data: a comparison of different training algorithms. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008. 37(B4): p. 1345-1349. 14. Elshorbagy, A. and K. Parasuraman, On the relevance of using artificial neural networks for estimating soil moisture content. Journal of hydrology, 2008. 362(1): p. 1-18. 15. Notarnicola, C., M. Angiulli, and F. Posa, Soil moisture retrieval from remotely sensed data: Neural network approach versus Bayesian method. IEEE Transactions on Geoscience and Remote Sensing, 2008. 46(2): p. 547-557. 16. Kornelsen, K.C. and P. Coulibaly, Root‐zone soil moisture estimation using data‐driven methods. Water Resources Research, 2014. 50(4): p. 2946-2962. 17. Hassan-Esfahani, L., A. Torres-Rua, A. Jensen, and M. McKee, Assessment of surface soil moisture using high-resolution multi-spectral imagery and artificial neural networks. Remote Sensing, 2015. 7(3): p. 2627-2646. 18. Rodríguez-Fernández, N.J., F. Aires, P. Richaume, Y.H. Kerr, C. Prigent, J. Kolassa, et al., Soil moisture retrieval using neural networks: Application to SMOS. IEEE Transactions on Geoscience and Remote Sensing, 2015. 53(11): p. 5991-6007. 19. Jia, Y. and J. Ma, What can machine learning do for seismic data processing? An interpolation application. Geophysics, 2017. 82(3): p. V163-V177. 20. Zhang, N., R. Li, and N. Huang. Resource Demand Predicting Based on Cluster Analysis in Cloud Computing Networks. in Software Engineering and Information Technology: Proceedings of the 2015 International Conference on Software Engineering and Information Technology (SEIT2015). 2015. World Scientific. 21. Ogasawara, E., L.C. Martinez, D. De Oliveira, G. Zimbrão, G.L. Pappa, and M. Mattoso. Adaptive normalization: A novel data normalization approach for non-stationary time series. in Neural Networks (IJCNN), The 2010 International Joint Conference on. 2010. IEEE. 22. Gökhan, A., C.O. Güzeller, and M.T. Eser, The effect of the normalization method used in different sample sizes on the success of artificial neural network model. International Journal of Assessment Tools in Education, 2019. 6(2): p. 170-192. 23. Puheim, M. and L. Madarász. Normalization of inputs and outputs of neural network based robotic arm controller in role of inverse kinematic model. in 2014 IEEE 12th International Symposium on Applied Machine Intelligence and Informatics (SAMI). 2014. IEEE. 24. Kwon, B.-S., R.-J. Park, S.-W. Jo, and K.-B. Song. Analysis of short-term load forecasting using artificial neural network algorithm according to normalization and selection of input data on weekdays. in 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). 2018. IEEE. 25. Khond, S.V., Effect of Data Normalization on Accuracy and Error of Fault Classification for an Electrical Distribution System. Smart Science, 2020. 8(3): p. 117-124. 26. Sarle, W.S. Neural network FAQ, part 2 of 7: Learning, May 2002. Available from: ftp://ftp.sas.com/pub/neural/FAQ2.html. 27. Sadeghi, M., A.A. Asanjan, M. Faridzad, P. Nguyen, K. Hsu, S. Sorooshian, et al., PERSIANN-CNN: Precipitation estimation from remotely sensed information using artificial neural networks–convolutional neural networks. Journal of Hydrometeorology, 2019. 20(12): p. 2273-2289. 28. Wang, W., S. Zhao, L. Jiao, M. Taylor, B. Zhang, G. Xu, et al., Estimation of PM2. 5 concentrations in China using a spatial back propagation neural network. Scientific reports, 2019. 9(1): p. 1-10. 29. Wang, L., P. Wang, S. Liang, Y. Zhu, J. Khan, and S. Fang, Monitoring maize growth on the North China Plain using a hybrid genetic algorithm-based back-propagation neural network model. Computers and Electronics in Agriculture, 2020. 170: p. 105238. 30. Sharifi, A., Yield prediction with machine learning algorithms and satellite images. Journal of the Science of Food and Agriculture, 2021. 101(3): p. 891-896. 31. Yang, X., S. Jia, and C. Zhang. A Prediction Method for Soil Moisture Time Series. in International Conference on Machine Learning for Cyber Security. 2020. Springer. 32. Ye, N., J.P. Walker, X. Wu, R. de Jeu, Y. Gao, T.J. Jackson, et al., The Soil Moisture Active Passive Experiments: Validation of the SMAP Products in Australia. IEEE Transactions on Geoscience and Remote Sensing, 2020. 33. Yang, T., W. Wan, Z. Sun, B. Liu, S. Li, and X. Chen, Comprehensive evaluation of using TechDemoSat-1 and CYGNSS data to estimate soil moisture over mainland China. Remote Sensing, 2020. 12(11): p. 1699. 34. Li, Y., S. Yan, N. Chen, and J. Gong, Performance Evaluation of a Neural Network Model and Two Empirical Models for Estimating Soil Moisture Based on Sentinel-1 SAR Data. Progress In Electromagnetics Research, 2020. 105: p. 85-99. 35. Yao, P., H. Lu, S. Yue, F. Yang, H. Lyu, K. Yang, et al. Estimating Surface Soil Moisture from AMSR2 Tb with Artificial Neural Network Method and SMAP Products. in IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. 2019. IEEE. 36. Ge, L., R. Hang, Y. Liu, and Q. Liu, Comparing the performance of neural network and deep convolutional neural network in estimating soil moisture from satellite observations. Remote Sensing, 2018. 10(9): p. 1327. 37. Yao, P., J. Shi, T. Zhao, H. Lu, and A. Al-Yaari, Rebuilding long time series global soil moisture products using the neural network adopting the microwave vegetation index. Remote Sensing, 2017. 9(1): p. 35. 38. Zhang, Q. and S. Sun. Weighted data normalization based on eigenvalues for artificial neural network classification. in International Conference on Neural Information Processing. 2009. Springer. 39. Neaupane, K.M. and S.H. Achet, Use of backpropagation neural network for landslide monitoring: a case study in the higher Himalaya. Engineering Geology, 2004. 74(3-4): p. 213-226. 40. Sola, J. and J. Sevilla, Importance of input data normalization for the application of neural networks to complex industrial problems. IEEE Transactions on Nuclear Science, 1997. 44(3): p. 1464-1468. 41. Eesa, A.S. and W.K. Arabo, A normalization methods for backpropagation: a comparative study. Science Journal of University of Zakho, 2017. 5(4): p. 319-323. 42. Alickovic, E. and A. Subasi. Normalized neural networks for breast cancer classification. in International Conference on Medical and Biological Engineering. 2019. Springer. 43. Aksu, G., C.O. Güzeller, and M.T. Eser, The Effect of the Normalization Method Used in Different Sample Sizes on the Success of Artificial Neural Network Model. International Journal of Assessment Tools in Education, 2019. 6(2): p. 170-192. 44. Rüdiger, C., G. Hancock, H.M. Hemakumara, B. Jacobs, J.D. Kalma, C. Martinez, et al., Goulburn River experimental catchment data set. Water Resources Research, 2007. 43(10).
(1)
[1] Proakis, J. G. (2001). Digital Communications, 4th ed. New York: McGraw-Hill. [2] Chen, D., & Laneman, J. N. (2004). Noncoherent demodulation for cooperative diversity in wireless systems. In Global Telecommunications Conference, 2004. IEEE on (pp. 31–35). IEEE. [3] Pabst, R., Walke, B. H., Schultz, D. C., Herhold, P., Yanikomeroglu, H., Mukherjee, S., Viswanathan, H., Lott, M., Zirwas, W., Dohler, M., Aghvami, H., Falconer, D. D., & Fettweis, G. P. (2004). Relay-based deployment concepts for wireless and mobile broadband radio. IEEE Communication Magazine, 42(9), 80–89. [4] Xu, C., Ternon, E., Suguira, S., Ng, S. X., & Hanzo, L. (2011). Multiple-symbol differential sphere decoding aided cooperative differential space-time spreading for the asynchronous CDMA uplink. In Global Telecommunications Conference, 2011 on (pp. 1–5). IEEE. [5] Nosratinia, A., Hunter, T. E., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communication Magazine, 42(10), 74–80. [6] Laneman, J. N., Wornell, G. W., & Tse, D. N. C. (2001). An efficient protocol for realizing cooperative diversity in wireless networks. In Information Theory, 2001. Proceedings. 2001 IEEE International Symposium on (pp. 294). IEEE. [7] Yang, Y., Hu, H., Xu, J., & Mao, G. (2009). Relay technologies for WiMAX and LTE-advanced mobile systems. IEEE Commnications Magazine, 47(10), 100–105. [8] Laneman, J. N., & Wornell, G. W. (2003). Distributed space – time-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transaction Information Theory, 49(10), 2415–2425. [9] Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transaction Information Theory, 50(12), 3062–3080. [10] Farhadi, G., & Beaulieu, N. C. (2010). A low complexity receiver for noncoherent amplify-and-forward cooperative systems. IEEE Transaction Communication, 58(9), 2499–2504. [11] Chen, D., & Laneman, J. N. (2006). Modulation and demodulation for cooperative diversity in wireless systems. IEEE Transaction Wireless Communication, 5(7), 1785–1794. [12] Himsoon, T., Su, W., & Liu, K. R. (2005). Differential transmission for amplify-and-forward cooperative communications. IEEE signal processing letters, 12(9), 597–600. [13] Wu, Y., & Patzold, M. (2009). Performance analysis of cooperative communication systems with imperfect channel estimation. In Communications, 2009 IEEE International Conference on (pp. 1–6). IEEE. [14] Han, S., Ahn, S., Oh, E., & Hong, D. (2009). Effect of channel-estimation error on BER performance in cooperative transmission. IEEE Transactions on Vehicular Technology, 58(4), 2083–2088. [15] Tarokh V., & Jafarkhani, H. (2000). A differential detection scheme for transmit diversity. IEEE Journal on Selected Areas in Communications, 18(7), 1169–1174. [16] Zhao, Q., & Li, H. (2005). Performance of differential modulation with wireless relays in Rayleigh fading channels. IEEE Communications Letters, 9(4), 343–345. [17] Fang, Z., Li, L., Bao, X., & Wang, Z. (2009). Generalized differential modulation for amplify-and-forward wireless relay networks. IEEE Transactions on Vehicular Technology, 58(6), 3058–3062. [18] Liu, P., Gazor, S., Kim, I.-M., & Kim, D. I. (2013). Noncoherent amplify-and-forward cooperative networks: robust detection and performance analysis. IEEE Transactions on Communications, 61(9), 3644–3659. [19] Liu, P., Kim, I. M., & Gazor, S. (2013). Maximum-likelihood detector for differential amplify-and-forward cooperative networks. IEEE Transactions on Vehicular Technology, 62(8), 4097–4104. [20] Liu, Z., Giannakis, G. B., & Hughes, B. L. (2001). Double differential space – time block coding for time-selective fading channels. IEEE Transactions on Communications, 49(9), 1529–1539. [21] Liu, J., Stoica, P., Simon, M., & Li, J. (2006). Single differential modulation and detection for MPSK in the presence of unknown frequency offset. In Signals, Systems and Computers, 2006 Fortieth Asilomar Conference on (pp. 1440–1444). IEEE. [22] Stoica, P., Liu, J. L. J., & Li, J. L. J. (2003). Maximum likelihood double differential detection clarified. IEEE Transactions on Information Theory, 50(3), 572–576. [23] Rabiei, A. M., & Beaulieu, N. C. (2011). Frequency offset invariant multiple symbol differential detection of MPSK. IEEE Transactions on Communications, 59(3), 652–657. [24] Cano, A., Morgado, E., Caama, A., & Ramos, F. J. (2007). Distributed double-differential modulation for cooperative communications under CFO. In Global Telecommunications Conference, 2007 IEEE Conference on (pp. 3437–3441). IEEE. [25] Simon, M. K., & Divsalar, D. (1992). On the implementation and performance of single and double differential detection schemes. IEEE Transactions on Communications, 40(2), 278–291. [26] Bhatnagar, M. R., & Hjørungnes, A. (2007). SER expressions for double differential modulation. In Information Theory for Wireless Networks, 2007 IEEE Information Theory Workshop on (pp. 1–5). IEEE. [27] Gao, Z., Sun, L., Wang, Y., & Liao, X. (2014). Double differential transmission for amplify-and-forward two-way relay systems. IEEE Communications Letters, 18(10), 1839–1842. [28] Gomadam, K. S. and Jafar, S. A. (2006). Impact of mobility on cooperative communication. In Wireless Communications and Networking Conference, 2006 (pp. 908–913). IEEE. [29] Tian, J., Zhang, Q., & Yu, F. (2011). Non-coherent detection for two-way AF cooperative communications in fast rayleigh fading channels. IEEE Transactions on Communications, 59(10), 2753–2762. [30] Lampe. L., Schober R., Pauli, V., & Windpassinger, C. (2005). Multiple-symbol differential sphere decoding. IEEE Transactions on Communications, 53(12), 1981–1985. [31] Ong, S., Zen, H., Othman, A.K., Hamid, K. (2017). Multiple symbol double differential transmission for amplify-and-forward cooperative diversity networks in time-varying channel. Journal of Telecommunication Electronic and Computer Engineering, 9(4), 27–35. [32] Ong, S., Zen, H., Othman, A.K., Hamid, K. (2018). Distributed double differential space-time coding with amplify-and-forward relaying in cooperative communication system. Journal of Telecommunication Electronic and Computer Engineering, 10(1–12), 45–50. [33] Tse, D. & Viswanath, P. (2005). Fundamentals of Wireless Communication. Cambridge University Press. [34] Hadzi-Velkov, Z., Zlatanov, N., & Karagiannidis, G. (2009). On the second order statistics of the multihop rayleigh fading channel. IEEE Transactions on Communications, 57(6), 1815–1823. [35] Wu, Z., Li, G., & Wang, T. (2014). Differential modulation for amplify-and-forward two-way relaying with carrier offsets. In Communications, 2014 IEEE International Conference on (pp. 4501–4506). IEEE. [36] Liao, J., Wang, F., Yao, D., & Wang, M. (2014). Which is better : one-way or two-way relaying with an amplify-and-forward relay? In Wireless Communications and Networking Conference 2014 on (pp. 1087–1092). IEEE. [37] Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space-time codes for high data rate wireless communication: performance analysis and code construction. IEEE Transaction on Information Theory, 44(2), 765–774. [38] Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas Communications, 16(8), 1451–1458. [39] Yiu, S., Schober, R., & Lampe, L. (2005). Distributed space-time block coding for cooperative networks with multiple-antenna nodes. In Computational Advances in Multi-Sensor Adaptive Processing, 2005 1st IEEE International Workshop on (pp. 52–55). IEEE. [40] Brennan, D. G. (2003). Linear diversity combining techniques. Proceedings of the IRE, 47(6), 1075–1102. [41] Van Der Meulen, R. C. (1971). Three-terminal communication channels. Advances in Applied Probability, 3(1), 120–154. [42] Cover, T. & Gamal, A. E. (1979). Capacity theorems for the relay channel. IEEE Transactions on Information Theory, 25(5), 572–584. [43] Schein, B. (2000). The Gaussian parallel relay network. In Information Theory, 2000 Proceedings. IEEE International Symposium on (pp. 22). IEEE. [44] Gupta P., & Kumar, P. (2003). Towards an information theory of large networks: An achievable rate region. IEEE Transactions on Information Theory, 49(8), 1877–1894. [45] Khojastepour, M. A., Sabharwal, A., & Aazhang, B. (2004). Improved achievable rates for user cooperation and relay channels. In Information Theory, 2004 Proceedings. International Symposium on (pp. 4). IEEE. [46] Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity. Part I: System description. IEEE Transactions on communications, 51(11), 1927–1938. [47] Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity – Part II: Implementation aspects and performance analysis. IEEE Transaction of Communications, 51(11), 1939–1948. [48] Nabar, R. U., Bolcskei, H., & Kneubuhler, F. W. (2004). Fading relay channels: Performance limits and space-time signal design. IEEE Journal on Selected Areas in Communications, 22(6), 1099–1109. [49] Annavajjala, R., Cosman, P. C., & Milstein, L. B. (2005). On the performance of optimum noncoherent amplify-and-forward reception for cooperative diversity. In Military Communications Conference, 2005 on (pp. 3280–3288). IEEE. [50] El-Hajjar, M., & Hanzo, L. (2010). Dispensing with channel estimation... IEEE Vehicular Technology Magazine, 5(2), 42–48. [51] Tarasak, P., Minn, H., & Bhargava, V. K. (2005). Differential modulation for two-user cooperative diversity systems. IEEE journal on Selected Areas in Communications, 23(9), 1891–1900. [52] Zhao, Q., & Li, H. (2007). Differential modulation for cooperative wireless systems. IEEE Transactions on Signal Processing, 55(5), 2273–2283. [53] Himsoon, T., Siriwongpairat, W. P., Su, W., & Liu, K. J. R. (2008). Differential modulations for multinode cooperative communications. IEEE Transactions on Signal Processing, 56(7), 2941–2956. [54] Hasna, M. O., & Alouini, M. S. (2002). Performance analysis of two-hop relayed transmissions over Rayleigh fading channels. In Vehicular Technology Conference, 2002 IEEE 56th on (pp. 1992–1996). IEEE. [55] Divsalar, D., & Simon, M. K. (1990). Multiple-symbol differential detection of MPSK. IEEE Transactions of Communications, 38(3), 300–308. [56] Ho, P., & Fung, D. (1991). Error performance of multiple symbol differential detection of PSK signals transmitted over correlated rayleigh fading channels. In Communications, 1991. IEEE International Conference on (pp. 568–574). IEEE. [57] Pauli, V., & Lampe, L. (2007). Tree-search multiple-symbol differential decoding for initary space-time modulation. IEEE transactioncs on communications, 55(8), 1567–1576. [58] Zhao, K., Pan, K., & Zhang, B. (2014). Cooperative transmission in mobile wireless sensor networks with multiple carrier frequency offsets : A double-differential approach. Mathematical Problems in Engineering, 2014, 1–13. [59] Yi, N., Ma, Y., & Tafazolli, R. (2008). Doubly differential communication assisted with cooperative relay. In Vehicular Technology Conference, 2008 on (pp. 644–647). IEEE. [60] Mehrpouyan, H., & Blostein, S. D., (2011). Bounds and algorithms for multiple frequency offset estimation in cooperative networks. IEEE Transactions on Wireless Communications, 10(4), 1300–1311. [61] Liu, T., & Zhu, S. (2012). Joint CFO and channel estimation for asynchronous cooperative communication systems. IEEE Signal Processing Letters, 19(10), 643–646. [62] Liu, M., Zhang, J., Shen, C., & Zhang, P. (2013). Estimation of synchronization impairments in multi-relay DF cooperative networks. The Journal of China Universities of Posts and Telecommunication, 20(6), 18–23. [63] Bhatnagar, M. R., & Tirkkonen, O. (2013). PL decoding in double differential modulation based decode-and-forward cooperative system. IEEE Communications Letters, 17(5), 860–863. [64] Nasir, A. A., Mehrpouyan, H., Durrani, S., Blostein, S. D., Kennedy, R. A., & Ottersten, B. (2013). Transceiver design for distributed STBC based AF cooperative networks in the presence of timing and frequency offsets. IEEE Transactions on Signal Processing, 61(12), 3143–3158. [65] Cano, A., Morgado, E., Ramos, J., & Caamaño, A. J. (2014). Robust differential modulations for asynchronous cooperative systems. Signal Processing, 105, 30–42. [66] Bhatnagar, M. R., Hjrongnes, A., & Song, L. (2008). Cooperative communications over flat fading channels with carrier offsets: A double-differential modulation approach. European Association for Signal Processing Journal on Advances in Signal Processing, 2008(1), 1–11. [67] Bhatnagar, M. R., Hjørungnes, A., Song, L., & Bose, R. (2008). Double-differential decode-and-forward cooperative communications over Nakagami-m channels with carrier offsets. In Sarnoff Symposium, 2008 IEEE on (pp. 1–5). IEEE. [68] Wilson, S. G., Freebersyen, J., & Marchsall, C. (1989). Multi-symbol detection of M-DPSK. In Global Telecommunications Conference and Exhibition 'Communications Technology for the 1990s and Beyond’, 1989. IEEE on (pp. 1692–1697). IEEE. [69] Makrakis, D., & Feher, K. (1990). Optimal noncoherent detection of PSK signals. Electronics Letters, 26(6), 398–400. [70] Divsalar, D., & Simon, M. K. (1994). Maximum-likelihood differential detection of uncoded and trellis coded amplitude phase modulation over AWGN and fading channels: Metrics and performance. IEEE Transactions on Communications, 42(1), 76–89. [71] Machkenthun, K. M. (1994). A fast algorithm for multiple-symbol differential detection of MPSK. IEEE Transactions on Communications, 42(234), 1471–1474. [72] Peleg, M., & Shamai, S. (1997). Iterative decoding of coded and interleaved noncoherent multiple symbol detected DPSK. Electronics Letters, 33(12), 1018–1020. [73] Pauli, V., Lampe, L., & Schober, R. (2006). "Turbo DPSK" using soft multiple-symbol differential sphere decoding,” IEEE Transactions on Information Theory, 52(4), 1385–1398. [74] Xiaofu, W., & Songgeng, S. (1998). Low complexity multi symbol differential detection of MDPSK over flat correlated rayleigh fading channels. Electronics Letters, 34(21), 2008–2009. [75] Tarasak, P., & Bhargava, V. K. (2002). Reduced complexity multiple symbol differential detection of space-time block code. In Wireless Communications and Networking Conference, 2002 on (pp. 505–509). IEEE. [76] Nie, Y., Shen, Y., & Guo, M. (2012). A new reduced-complexity algorithm for multiple-symbol differential detection of m-ary DDPSK. In Communication Technology, 2012 IEEE 14th International Conference on (pp. 756–760). IEEE. [77] Wang, L., & Hanzo, L. (2009). The amplify-and-forward cooperative uplink using multiple-symbol differential sphere-detection. IEEE Signal Processing Letters, 16(10), 913–916. [78] Simon, M., Liu, J., Stoica, P., & and Li, J. (2004). Multiple-symbol double-differential detection based on least-squares and generalized-likelihood ratio criteria. IEEE Transactions on Communications, 52(1), 46–49. [79] Dimitrijevi, B. R., Stošovi, S. N., Member, S., Miloševi, N. D. & Nikoli, Z. B. (2012). MDPSK signal reception using a modified multiple symbol differential detection in the presence of carrier frequency offset. In Telecommunications Forum, 2012 on (pp. 456–459). IEEE. [80] Hughes, B. L. (2000). Differential space-time modulation. IEEE Transactions on Information Theory, 46(7), 2567–2578. [81] Shao, X., & Yuan, J. (2002). A new differential space time block coding scheme, In Communication Systems, 2002. The 8th International Conference on (pp. 183–187). IEEE. [82] Gao, C., Haimovich, A. M., & Lao, D. (2006). Multiple-symbol differential detection for MPSK space-time block codes: decision metric and performance analysis. IEEE Transactions on Communications, 54(8), 1502–1510. [83] Jing, Y., & Hassibi, B. (2006). Distributed space-time coding in wireless relay networks. IEEE Transactions on Wireless Communications, 5(12), 3524–3526. [84] Kiran, T., & Rajan, B. S. (2006). Distributed space-time codes with reduced decoding complexity. In Information Theory, 2006 IEEE International Symposium on (pp. 542–546). IEEE. [85] Azarian, K., El Gamal, H., & Schniter, P. (2005). On the achievable diversity-multiplexing tradeoff in half-duplex cooperative channels. IEEE Transaction on Information Theory, 51(12), 4152–4172. [86] Rajan G. S., & Rajan, B. S. (2007). Distributed space-time codes for cooperative networks with partial CSI. Wireless Communications and Networking Conference, 2007 IEEE on (pp. 902–906). IEEE. [87] Kiran, T., & Rajan, B. S. (2007). Partially-coherent distributed space-time codes with differential encoder and decoder. IEEE Journal on Selected Areas in Communications, 25(2), 426–433. [88] Jing, Y., & Jafarkhani, H. (2008). Distributed differential space-time coding for wireless relay networks. IEEE Transactions on Communications, 56(7), 1092–1100. [89] Rajan, G. S., & Rajan, B. S. (2010). Multigroup ML decodable collocated and distributed space time block codes. IEEE Transactions on Information Theory, 56(7), 3221–3247. [90] Hua, Y., Mei, Y., & Chang, Y. (2003). Wireless antennas-making wireless communications perform like wireline communications. In Wireless Communication Technology, 2003. IEEE Topical Conference on (pp. 47–73). IEEE. [91] Bhatnagar, M. R., & Hjorungnes, A. (2008). Distributed double-differential orthogonal space-time coding for cooperative networks. In Global Telecommunications Conference, 2008 IEEE on (pp. 1–5). IEEE. [92] Anghel, P. A., Leus, G., & Kaveh, M. (2003). Multi-user space-time coding in cooperative networks. In Acoustics, Speech, and Signal Processing, 2003. Proceedings, 2003 IEEE International Conference on (pp. 70–73). IEEE. [93] Bhatnagar, M. R., Hjørungnes, A., & Member, S. (2010). Double-differential orthogonal space-time block codes for arbitrarily correlated rayleigh channels with carrier offsets. IEEE Transactions on Wireless Communications, 9(1), 145–155. [94] Patel, C. S., Stuber, G. L., & Pratt, T. G. (2005). Simulation of rayleigh-faded mobile-to-mobile communication channels. IEEE Transactions on Communications, 53(11), 1876–1884. [95] Pätzold, M., Hogstad, B., & Youssef, N. (2008). Modeling, analysis, and simulation of MIMO mobile-to-mobile fading channels. IEEE Transactions on Wireless Communications, 7(2), 510–520. [96] Jakes, W. C. (1994). Microwave Mobile Communications. Piscataway, NJ, USA: Wiley-IEEE Press. [97] Emamian, V., Anghel P., and Kaveh, M. (2002). Multi-user spatial diversity in a shadow-fading environment. In Vehicular Technology Conference, 2002 Proceedings. IEEE 56th on (pp. 573–576). IEEE. [98] Hasna, M. O., & Alouini, M. S. (2003). End-to-end performance of transmission systems with relays over Rayleigh-fading channels. IEEE Transactions on Wireless Communications, 2(6), 1126–1131. [99] Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of Integrals, Series, and Products, 6th ed. San Diego: Academic Press. [100] Brychkov, Y. A., & Prudnikov, A. P. (2001). Whittaker function. Hazewnkel, Michiel, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4. [101] Ding, Y., Zhang, J. K., & Wong, K. M. (2007). The amplify-and-forward half-duplex cooperative system: Pairwise error probability and precoder design. IEEE Transactions on Signal Processing, 55(2), 605–617. [102] Craig, J. W. (1991). A new, simple and exact result for calculating the probability of error for two-dimensional signal constellations. In Military Communications Conference, 1991. Conference Record, Military Communications in a Changing World, IEEE (pp. 571–575) IEEE. [103] Zhao, Y., Adve, R., & Lim, T. J. (2006). Improving amplify-and-forward relay networks: Optimal power allocation versus selection. In Information Theory, 2006 IEEE International Symposium on (pp. 1234–1238). IEEE. [104] Wang, L., & Hanzo, L. (2009). The resource-optimized differentially modulated hybrid AF/DF cooperative cellular uplink using multiple-symbol differential sphere detection. IEEE Signal Processing Letters, 16(11), 965–968. [105] Gomadam, K. S., & Jafar, S. A. (2006). Partially coherent detection in rapidly time varying channels. In Wireless Communications and Networking Conference, 2006. (pp. 2127–2132). IEEE. [106] Hasna, M. O., & Alouini, M. S. (2004). Optimal power allocation for relayed transmissions over rayleigh fading channels. IEEE Transactions on Wireless Communications, 3(6), 1999–2004. [107] Zhang, K. Q. T., (2015). Wireless Communications: Principles, Theory and Methodology. USA: John Wiley & Sons, Ltd. [108] Simon, M. K., & Aluini, M. S. (2005). Digital Communications Over Fading Channels, 2nd edition. Hoboken, NJ, USA: John Wiley & Sons. [109] Ikki, S. S., & Ahmed, M. H. (2008). Performance of multiple-relay cooperative diversity systems with best relay selection over rayleigh fading channels. European Association for Signal Processing Journal on Advances in Signal Process, 2008(1), 1–7. [110] Fu, H., & Kam, P. Y. (2005). Performance comparison of selection combining schemes for binary DPSK on nonselective rayleigh-fading channels with interference. IEEE Transactions on Wireless Communications, 4(1), 192–201. [111] Draper, S. C., Liu, L., Molisch, A. F., & Yedidia, J. S. (2011). Cooperative transmission for wireless networks using mutual-information accumulation. IEEE Transactions on Information Theory, 57(8), 5151–5162. [112] Souryal, M. R. (2010). Non-coherent amplify-and-forward generalized likelihood ratio test receiver. IEEE Transactions on Wireless Communications, 9(7), 2320–2327.
(1)
[1] P. Sharma and A. L. Sangal, “Soft computing approaches to investigate software fault proneness in agile software development environment,” in Applications of Machine Learning, pp. 217–233, Springer, Berlin, Germany, 2020. [2] A. B. Patki, G. V. Raghunathan, S. Ghosh, S. Sivasubramanian, and A. Khurshid, “Soft computing for evolutionary information systems—potentials of rough sets,” in Soft Computing in Industrial Applications, pp. 481–494, Springer, Berlin, Germany, 2000. [3] S. Sharma and S. Vijayvargiya, “Applying soft computing techniques for software project effort estimation modelling,” in Nanoelectronics, Circuits and Communication Systems, pp. 211–227, Springer, Singapore, 2021. [4] G. Kumar and P. K. Bhatia, “Empirical assessment and optimization of software cost estimation using soft computing techniques,” in Advanced Computing and Communication Technologies, pp. 117–130, Springer, Singapore, 2016. 0 20 40 60 80 100 120 140 160 Papers Subdisciplines Artificial intelligence Oncology Imaging / radiology IT in business Surgery Management Innovation/technology management Internal medicine Information systems and communication service Surgical oncology Database management Health informatics Management of computing and information... Soware engineering Soware engineering/programming and... Computer communication networks Computational intelligence Information systems applications (incl. internet) Business and management, general Operations research/decision theory Figure 18: Subdisciplines and papers. 12 Scientific Programming [5] D. Ibrahim, “An overview of soft computing,” Procedia Computer Science, vol. 102, pp. 34–38, 2016. [6] Y. Duan, V. K. Ong, M. Xu, and B. Mathews, “Supporting decision making process with “ideal” software agents—what do business executives want?” Expert Systems with Applications, vol. 39, no. 5, pp. 5534–5547, 2012. [7] S. Mirseidova and L. Atymtayeva, “Definition of software metrics for software project development by using fuzzy sets and logic,” in Proceedings of the 6th International Conference on Soft Computing and Intelligent Systems, and the 13th International Symposium on Advanced Intelligence Systems, pp. 272–276, Kobe, Japan, November 2012. [8] A. Harchenko, I. Bodnarchuk, and I. Halay, “Decision support system of software architect,” in Proceedings of the 2013 IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), pp. 265–269, Berlin, Germany, September 2013. [9] R. Pasley and B. MacCarthy, “Group decision support and social software techniques for PLM decision making,” IFAC Proceedings Volumes, vol. 46, no. 9, pp. 1756–1761, 2013. [10] Q.-L. Yang, J. Lv, X.-P. Tao, X.-X. Ma, J.-C. Xing, and W. Song, “Fuzzy self-adaptation of mission-critical software under uncertainty,” Journal of Computer Science and Technology, vol. 28, no. 1, pp. 165–187, 2013. [11] A. T. Sadabadi and N. Kama, “Generating policy for software project management decision support paradigm,” in Proceedings of the 2014 IEEE 5th International Conference on Software Engineering and Service Science, pp. 58–63, Beijing, China, June 2014. [12] Z. Sahaf, V. Garousi, D. Pfahl, R. Irving, and Y. Amannejad, “When to automate software testing? decision support based on system dynamics: an industrial case study,” in Proceedings of the 2014 International Conference on Software and System Process, Nanjing, China, May 2014. [13] P. Chawla, I. Chana, and A. Rana, “A novel strategy for automatic test data generation using soft computing technique,” Frontiers of Computer Science, vol. 9, no. 3, pp. 346–363, 2015. [14] E. Erturk and E. A. Sezer, “A comparison of some soft computing methods for software fault prediction,” Expert Systems with Applications, vol. 42, no. 4, pp. 1872–1879, 2015. [15] E. Papatheocharous, K. Petersen, A. Cicchetti, S. Sentilles, S. M. A. Shah, and T. Gorschek, “Decision support for choosing architectural assets in the development of softwareintensive systems: the GRADE taxonomy,” in, in Proceedings of the 2015 European Conference on Software Architecture Workshops, Dubrovnik, Cavtat, Croatia, 2015. [16] M. J. Pasha, S. Ranjitha, and H. N. Suresh, “Testing-effort function for debugging in software systems and soft computing model,” in Proceedings of the 2015 International Conference on Green Computing and Internet of ?ings (ICGCIoT), pp. 913–919, Greater Noida, India, October 2015. [17] C. Catal, C. Bayrak, A. B. Nassif, K. Polat, and A. Akbulut, “Special issue: soft computing in software engineering,” Applied Soft Computing, vol. 49, pp. 953–955, 2016. [18] S. Lohmor and B. B. Sagar, “A comprehensive review on software reliability growth models utilizing soft computing approaches,” in Proceedings of the International Symposium on Intelligent Systems Technologies and Applications, pp. 509–523, Springer, Berlin, Germany, September 2016. [19] D. Sharma and P. Chandra, “Applicability of soft computing and optimization algorithms in software testing and metrics–a brief review,” in Proceedings of the International Conference on Soft Computing and Pattern Recognition, pp. 535–546, Springer, Berlin, Germany, 2016. [20] O. Bhardwaj and S. Kumar Jha, “Quality assurance through soft computing techniques in component based software,” in Proceedings of the 2017 International Conference On Smart Technologies For Smart Nation (SmartTechCon), pp. 277–282, Bengaluru, India, August 2017. [21] L. F. Capretz, F. Ahmed, and F. Q. B. da Silva, “Soft sides of software,” Information and Software Technology, vol. 92, pp. 92–94, 2017. [22] M. A. A. F´eris, O. Zwikael, and S. Gregor, “QPLAN: decision support for evaluating planning quality in software development projects,” Decision Support Systems, vol. 96, pp. 92– 102, 2017. [23] D. Sharma and P. Chandra, “Soft computing based software testing—a concise travelogue,” in Proceedings of the Sixth International Conference on Soft Computing for Problem Solving, pp. 220–228, Springer, Singapore, April 2017. [24] P. K. Singh, S. Garg, M. Kaur, M. S. Bajwa, and Y. Kumar, “Fault localization in software testing using soft computing approaches,” in Proceedings of the 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC), pp. 627–631, Solan, India, September 2017. [25] K. Sneha and G. M. Malle, “Research on software testing techniques and software automation testing tools,” in Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), pp. 77–81, Chennai, India, August 2017. [26] L. Duricova, M. Hromada, and J. Mrazek, “.e proposal of the software for the soft targets assessment,” in Proceedings of the 2017 International Conference on Soft Computing, Intelligent System and Information Technology (ICSIIT), pp. 90–95, Denpasar, Indonesia, September 2017. [27] J. Mrazek, L. Duricova, and M. Hromada, “.e software proposes for management and decision making at process transportation,” in Proceedings of the 2017 International Conference on Soft Computing, Intelligent System and Information Technology (ICSIIT), pp. 120–123, Denpasar, Indonesia, September 2017. [28] C. Diwaker, P. Tomar, R. C. Poonia, and V. Singh, “Prediction of software reliability using bio inspired soft computing techniques,” Journal of Medical Systems, vol. 42, no. 5, p. 93, 2018. [29] A. Iftikhar, S. Musa, M. Alam, M. M. Su’ud, and S. M. Ali, “A survey of soft computing applications in global software development,” in Proceedings of the 2018 IEEE International Conference on Innovative Research and Development (ICIRD), pp. 1–4, Bangkok, .ailand, May 2018. [30] E. Papatheocharous, K. Wnuk, K. Petersen et al., “.e GRADE taxonomy for supporting decision-making of asset selection in software-intensive system development,” Information and Software Technology, vol. 100, pp. 1–17, 2018. [31] Y. F. Perez, C. Cruz Corona, and J. L. Verdegay Galdeano, “A new model based on soft computing for evaluation and selection of software products,” IEEE Latin America Transactions, vol. 16, no. 4, pp. 1186–1192, 2018. [32] C. Diwaker, P. Tomar, A. Solanki et al., “A new model for predicting component-based software reliability using soft computing,” IEEE Access, vol. 7, pp. 147191–147203, 2019. [33] J. Kirby, “Decision-based behavior modeling of softwareintensive systems,” Procedia Computer Science, vol. 153, pp. 193–201, 2019. [34] A. G. Shmeleva and A. I. Ladynin, “Industrial management decision support system: from design to software,” in Scientific Programming 13 Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pp. 1474–1477, Saint Petersburg and Moscow, Russia, January 2019. [35] Y. Kondratenko, G. Kondratenko, and I. Sidenko, “Multicriteria decision making and soft computing for the selection of specialized IoT platform,” in Recent Developments in Data Science and Intelligent Analysis of Information, O. Chertov, T. Mylovanov, Y. Kondratenko, J. Kacprzyk, V. Kreinovich, and V. Stefanuk, Eds., Springer, Cham, Berlin, Germany, pp. 71–80, 2019. [36] L. Fink and B. Pinchovski, “It is about time: bias and its mitigation in time-saving decisions in software development projects,” International Journal of Project Management, vol. 38, no. 2, pp. 99–111, 2020. [37] P. S. Kumar and H. S. Behera, “Role of soft computing techniques in software effort estimation: an analytical study,” in Computational Intelligence in Pattern Recognition, pp. 807–831, Springer, Berlin, Germany, 2020. [38] M. Naseer, W. Zhang, and W. Zhu, “Early prediction of a team performance in the initial assessment phases of a software project for sustainable software engineering education,” Sustainability, vol. 12, no. 11, p. 4663, 2020. [39] S. R. Sree and C. P. Rao, “A study on application of soft computing techniques for software effort estimation,” in A Journey Towards Bio-Inspired Techniques in Software Engineering, pp. 141–165, Springer, Berlin, Germany, 2020. [40] M. Hamid, F. Zeshan, A. Ahmad et al., “An intelligent recommender and decision support system (IRDSS) for effective management of software projects,” IEEE Access, vol. 8, pp. 140752–140766, 2020. [41] T. Dawood, E. Elwakil, H. M. Novoa, and J. F. G. Delgado, “Soft computing for modeling pipeline risk index under uncertainty,” Engineering Failure Analysis, vol. 117, Article ID 104949, 2020. [42] B. Paradowski and Z. Dra˛zek, “Identification of the decision- ˙ making model for selecting an information system,” Procedia Computer Science, vol. 176, pp. 3802–3809, 2020. [43] S. Akbarinasaji, C. Kavaklioglu, A. Bas¸ar, and A. Neal, “Partially observable Markov decision process to generate policies in software defect management,” Journal of Systems and Software, vol. 163, Article ID 110518, 2020. [44] K. K. H. Ng, C.-H. Chen, C. K. M. Lee, J. Jiao, and Z.-X. Yang, “A systematic literature review on intelligent automation: aligning concepts from theory, practice, and future perspectives,” Advanced Engineering Informatics, vol. 47, Article ID 101246, 2021. [45] P. Kumar, S. K. Singh, and S. Deo Choudhary, “Reliability prediction analysis of aspect-oriented application using soft computing techniques,” Materials Today: Proceedings, 2021. [46] L. L´opez, M. Manzano, C. G´omez et al., “QaSD: a qualityaware strategic dashboard for supporting decision makers in agile software development,” Science of Computer Programming, vol. 202, Article ID 102568, 2021. [47] D. Sharma and P. Chandra, “A comparative analysis of soft computing techniques in software fault prediction model development,” International Journal of Information Technology, vol. 11, no. 1, pp. 37–46, 2019. [48] X. Huang, D. Ho, J. Ren, and L. F. Capretz, “A soft computing framework for software effort estimation,” Soft Computing, vol. 10, no. 2, pp. 170–177, 2006. [49] A. Mamdani, A. G. Sichanie, and J. Pitt, “Soft agent computing: towards enhancing agent technology with soft computing,” in Intelligent Systems and Soft Computing, pp. 110–135, Springer, Berlin, Germany, 2000. [50] M. Nikravesh and S. Bensafi, “Soft computing for perceptionbased decision processing and analysis: web-based BISCDSS,” in Soft Computing for Information Processing and Analysis, pp. 93–188, Springer, Berlin, Germany, 2005. [51] W. Cheetham, K. Goebel, and P. Bonissone, “Benefits of decision support using soft computing,” in Applied Decision Support with Soft Computing, pp. 61–85, Springer, Berlin, Germany, 2003. [52] G. Xie, J.-l. Zhang, and K. K. Lai, “Web-based risk avoidance group decision support system in software project bidding,” in Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Hong Kong, China, December 2006.
(1)
1. Pusat Kebudayaan Universiti Malaya. 2. Institut Seni Indonesia Padangpanjang, Sumatra Barat, Indonesia. 3. Universitas Negeri Padang, Sumatra Barat, Indonesia.
(1)
1. Ranna Parekh. What is mental illness? American Psychiatric Association. 2018. Available at: https:// www.psychiatry.org/patients-families/what-ismental-illness. Accessed 7 October 2020. 2. Chan SK, Tam WW, Lee KW, Hui CL, Chang WC, Lee EH, et al. A population study of public stigma about psychosis and its contributing factors among Chinese population in Hong Kong. Int J Soc Psychiatry. 2016;62(3):205-13. 3. Khan N, Kausar R, Khalid A, Farooq A. Gender differences among discrimination & stigma experienced by depressive patients in Pakistan. Pak J Med Sci. 2015;31(6):1432-6. 4. Toner S, Fabisch K, Priebe S, Klug G. Attitudes towards severe mental illness and social distance: A survey of volunteer befrienders in Austria. Int J Soc Psychiatry. 2018;64(5):470-5. 5. Barke A, Nyarko S, Klecha D. The stigma of mental illness in Southern Ghana: attitudes of the urban population and patients’ views. Soc Psychiatry Psychiatr Epidemiol. 2011;46(11):1191-202. 6. Reavley NJ, Jorm AF. Stigmatizing attitudes towards people with mental disorders: findings from an Australian National Survey of Mental Health Literacyand Stigma. Aust N Z J Psychiatry. 2011;45(12):108693. 7. Bifftu BB, Dachew BA. Perceived stigma and associated factors among people with schizophrenia at Amanuel Mental Specialized Hospital, Addis Ababa, Ethiopia: A cross-sectional institution based study. Psychiatry J. 2014;2014:694565. 8. Li J, Zhang M, Zhao L, Li W, Mu J, Zhang Z. Evaluation of attitudes and knowledge toward mental disorders in a sample of the Chinese population using a webbased approach. BMC Psychiatry. 2018;18(1):367. 9. Yuan Q, Abdin E, Picco L, Vaingankar JA, Shahwan S, Jeyagurunathan A, et al. Attitudes to mental illness and its demographic correlates among general population in Singapore. PLoS One. 2016. 28;11(11):e0167297 10. Abi Doumit C, Haddad C, Sacre H, Salameh P, Akel M, Obeid S, et al. Knowledge, attitude and behaviors towards patients with mental illness: Results from a national Lebanese study. PLoS One. 2019;14(9):e0222172. 11. Ministry of Health Malaysia. Malaysian Mental Healthcare Performance: Technical Report 2016. 2017. Available at: https://www.moh.gov.my/moh/ resources/Penerbitan/Laporan/Umum/Mental%20 Healthcare%20Performance%20Report%202016.pdf. Accessed 12 October 2021. 12. Brown NB, Bruce SE. Stigma, career worry, and mental illness symptomatology: Factors influencing treatment-seeking for Operation Enduring Freedom and Operation Iraqi Freedom soldiers and veterans. Psychol Trauma Theory Res Pract Policy. 2016;8(3):276-83. 13. Evans-Lacko S, Henderson C, Thornicroft G. Public knowledge, attitudes and behaviour regarding people with mental illness in England 2009-2012. Br J Psychiatry. 2013;202(s55):s51-7. 14. Siti Zubaidah S, Norfazilah A. Attitudes towards the mentally ill patients among a community in Tampoi, Johor, Malaysia, 2012 to 2013. Malays J Public Health Med. 2014;14(3):1-7. 15. IBM SPSS. IBM SPSS Statistics Software Version 22. 2014. 16. Chan SKW, Li OWT, Hui CLM, Chang WC, Lee EHM, Chen EYH. The effect of media reporting of a homicide committed by a patient with schizophrenia on the public stigma and knowledge of psychosis among the general population of Hong Kong. Soc Psychiatry Psychiatr Epidemiol. 2019;54(1):43-50. 17. Kong L, Fan W, Xu N, Meng X, Qu H, Yu G. Stigma among chinese medical students toward individuals with mental illness. J Psychosoc Nurs Ment Health Serv. 2019;58(2):27-31. 18. Wang XQ, Petrini MA, Morisky DE. Predictors of quality of life among Chinese people with schizophrenia. Nurs Health Sci. 2017;19(2):142-8. 19. Hsiao CY, Lu HL, Tsai YF. Factors influencing mental health nurses’ attitudes towards people with mental illness. Int J Ment Health Nurs. 2015;24(3):272-80.20. Yang LH, Lo G, WonPat-Borja AJ, Singla DR, Link BG, Phillips MR. Effects of labeling and interpersonal contact upon attitudes towards schizophrenia: implications for reducing mental illness stigma in urban China. Soc Psychiatry Psychiatr Epidemiol. 2012;47(9):1459-73.
(1)
[1] Ray, B., (2016). Quality of Life in Selected Slums of Kolkata: A Step Forward in the Era of Pseudo-Urbanization. Local Environment: The International Journal of Justice and Sustainability, Vol. 22(3), 365-387. https://doi. org/10.1080/13549839.2016.1205571. [2] Tacoli, C., Mcgranahan, G. and Satterthwaite, D., (2014). Urbanization, Rural-urban Migration and Urban Poverty. World Migration Report 2015 (Background Paper). https://www.iom.int/sites/default/files/our_work/ICP/MPR/WMR-2015-Background-Paper-CTacoli-GMcGranahan-DSatterthwaite.pdf. [3] Van Noorloos, F. and Kloosterboer, M., (2018). Africa’s New Cities: The Contested Future of Urbanisation. Urban Studies, Vol. 55(6), 1223-1241. https://doi.org/10.1177/004209801770 0574. [4] United Nations, (2014). World Urbanization Prospects: The 2014 Revision. [Online]. Available: https://esa.un.org/unpd/wup/Publica tions/Files/WUP2014-Report.pdf. [Accessed Sep. 2, 2024]. [5] Hew, W. W. L., Lau, S. H., Goh, G. G. G. and Low, B. Y., (2019). Managing Crime for Urban Wellbeing and Sustainable Housing Delivery: Through the Lens of Housing Residents and Developers in Malaysia. Geografia: Malaysian Journal of Society and Space, Vol. 15(4), 106-121. https://doi.org/10.17576/geo-2019-1504-08. [6] Sue-Chern, L., (2017). Penang goes ahead with Foreign Worker Dorms. Free Malaysia Today. [Online]. Available: https://www.freemalaysiat oday.com/category/nation/2017/01/07/penang-goes-ahead-with-foreign-worker-dorms/. [Accessed Sep. 2, 2024]. [7] Marzuki, F. N., (2016). Public Housing Projects Becoming Crime Haunts. The Star Online. [Online]. Available: https://www.thestar.com. my/news/nation/2016/06/10/public-housing-projects-becoming-crime-haunts. [Accessed Sep. 2, 2024]. [8] Tan, T. H., (2016). Residential Satisfaction in Gated Communities: Case Study of Desa Park City, Kuala Lumpur, Malaysia. Property Management, Vol. 34(2), 84-99. https://doi. org/10.1108/PM-02-2015-0009. [9] Zainon, N., Mohd-Rahim, F. A., Sulaiman, S., Abd-Karim, S. B. and Hamzah, A., (2017). Factors Affecting the Demand of Affordable Housing among the Middle-Income Groups in Klang Valley Malaysia. Journal of Design and Built Environment (2017: Special Issue: Liveable Built Environment). https://doi.org /10.22452/jdbe.sp2017no1.1. [10] Ibrahim, G. R. F., (2016). Spatial Pattern of Burglary in South Yorkshire Using Geographic Information System (GIS). International Journal of Astrophysics and Space Science, Vol. 4(1), 1–11. https://doi.org/10.11648/j.ija ss.20160401.11. [11] Estévez-Soto, P. R., (2021). Crime and COVID-19: Effect of Changes in Routine Activities in Mexico City. Crime Science, Vol. 10(15). https://doi.org/10.1186/s40163-021-00151-y. [12] Zhang, J., Huang, X. and Tao, Z., (2022). Correlation of Clinical Characteristics between Patients with Seasonal Influenza and Patients Infected by the Wild Type or Delta Variant of SARS-CoV-2. Frontiers in Public Health. https://doi.org/10.3389/fpubh.2022.981233. [13] Nnaji, C. A., Wiysonge, C. S., Lesosky, M., Mahomed, H. and Ndwandwe, D., (2021). COVID-19 and the Gaping Wounds of South Africa’s Suboptimal Immunisation Coverage: An Implementation Research Imperative for Assessing and Addressing Missed Opportunities for Vaccination. Vaccines (Basel), Vol. 9(7). https://doi.org/10.3390/vacc ines9070691. [14] Felson, M., Jiang, S. and Xu, Y., (2020). Routine Activity Effects of the Covid-19 Pandemic on Burglary in Detroit, March, 2020. Crime Science, Vol. 9(10). https://doi.org/10. 1186/s40163-020-00120-x. [15] Johnson, N. J. and Roman, C. G., (2022). Community Correlates of Change: A Mixed-Effects Assessment of Shooting Dynamics During COVID-19. PLoS ONE, Vol. 17(2). https://doi.org/10.1371/journal.pone.0263777. [16] Campedelli, G. M., Favarin, S., Aziani, A. and Piquero, A. R., (2020). Disentangling Community-Level Changes in Crime Trends During the COVID-19 Pandemic in Chicago. Crime Science, Vol. 9(21). https://doi.org/10.1 186/s40163-020-00131-8. [17] Sun, Y., Huang, Y., Yuan, K., Chan, T. O. and Wang, Y., (2021). Spatial Patterns of COVID-19 Incidence in Relation to Crime Rate Across London. ISPRS-International Journal of Geo-Information, Vol. 10(2). https://doi.org/10.33 90/ijgi10020053. [18] Liu, L., Chang, J., Long, D. and Liu, H., (2022). Analyzing the Impact of COVID-19 Lockdowns on Violent Crime. International Journal of Environmental Research and Public Health, Vol. 19(23). https://doi.org/10.33 90/ijerph192315525. [19] Nivette, A. E., Zahnow, R., Aguilar, R., Ahven, A., Amram, S., Ariel, B., Burbano, M. J. A., Astolfi, R., Baier, D., Bark, H. M., Beijers, J. E. H., Bergman, M., Breetzke, G., Concha-Eastman, I. A., Curtis-Ham, S., Davenport, R., Díaz, C., Fleitas, D., Gerell, M. and Eisner, M. P., (2021). A Global Analysis of the Impact of COVID-19 Stay-at-Home Restrictions on Crime. Nature Human Behaviour, Vol. 5, 868–877. https://doi.org/10.1038/s41562-021-011 39-z. [20] Wang, J. J. J., Fung, T. and Weatherburn, D., (2021). The Impact of the COVID-19, Social Distancing, and Movement Restrictions on Crime in NSW, Australia. Crime Science, Vol. 10(24). https://doi.org/https://doi.org/10.1186/ s40163-021-00160-x. [21] UNODC, (2023). United Nations on Drugs and Crime Research. [Online]. Available: https://dataunodc.un.org/. [Accessed Sep. 2, 2024]. [22] Buchholz, K., (2023). Violent Crime Stable, Property Crime Rebounds. [Online]. Available: https://www.statista.com/chart/31280/nnual-offenses-per-100000-people-in-the-violent-crime-and-property-crime-categories-us/. [Accessed Sep. 2, 2024]. [23] Statista, (2023). Reported Property Crime Rate in the United States From 1990 to 2022 (Per 100,000 of the Population). [Online]. Available: https://www.statista.com/statistics/ 191237/reported-property-crime-rate-in-the-us-since-1990/. [Accessed Sep. 2, 2024]. [24] Jabatan Perangkaan Malaysia, (2022). Kenyataan Media Statistik Jenayah, Malaysia, 2022. [Online]. Available: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://dev.dosm.gov.my/uploads/content-downloads/file_20221216110608.pdf. [Accessed June. 12, 2023]. [25] Utusan Malaysia Online, (2021). 16,452 Kes Pecah Rumah Sepanjang PKP. [Online]. Available: https://www.utusan.com.my/terkini/ 2021/06/16452-kes-pecah-rumah-sepanjang-pkp/. [Accessed July. 30, 2023]. [26] Jubit, N., Redzuan, M. S., Ahmad, A., Salleh, M. S. and Masron, T., (2022). Tren Jenayah Harta Benda di Malaysia: Kajian di Selangor dan Kuala Lumpur (Property Crime Trends in Malaysia: A Study in Selangor and Kuala Lumpur). Geografi, Vol. 10(2), 35-53. https:// doi.org/10.37134/geografi.vol10.2.3.2022. [27] Jabatan Perangkaan Malaysia, (2021). Kenyataan Media-Statistik Jenayah, Malaysia 2021. [Online]. Available: www.mycensus.gov. my. [Accessed Feb. 19, 2024]. [28] Masron, T., Marzuki, A., Yaakub, N. F., Nordin, M. N. and Jubit, N., (2021). Spatial Analysis of Crime Hot-Spot in the Northeast Penang Island District and Kuching District, Malaysia. Planning Malaysia: Journal of the Malaysian Institute of Planners, Vol. 19(5), 26-39. https://doi.org/10.21837/pm.v19i19.1057. [29] Jubit, N., Masron, T. and Marzuki, A., (2020). Spatial Pattern of Residential Burglary. The Case Study: Kuching, Sarawak. Planning Malaysia: Journal of the Malaysian Institute of Planners, Vol. 18(3), 190-201. https://doi.org /10.21837/pm.v18i13.785. [30] Jubit, N., Masron, T. and Marzuki, A., (2021). Application of Kernel Density Estimation to Identify Motorcycle Theft Hot Spots in Kuching, Sarawak. Planning Malaysia: Journal of the Malaysian Institute of Planners, Vol. 19(5), 148-159. https://doi.org/10.21837/pm. v19i19.1067. [31] Jubit, N., Masron, T. and Marzuki, A., (2020). Analyzing the Spatial Temporal of Property Crime Hot Spots. A Case Study of Kuching, Sarawak. Planning Malaysia: Journal of the Malaysian Institute of Planners, Vol. 18(4), 1-11. https://doi.org/10.21837/pm.v18i14.813. [32] Jubit, N., Masron, T., Ahmad, A. and Soda, R., (2024). Investigating the Spatial Relation between Landuse and Property Crime in Kuching, Sarawak through Location Quotient Analysis. Forum Geografi: Indonesian Journal of Spatial and Regional Analysis, Vol. 38(2). 153–166. https://doi.org/10.23917/forgeo.v38i 2.4575. [33] Jubit, N., Masron, T., Redzuan, M. S., Ahmad, A. and Kimura, Y., (2024). Revealing Adolescent Drug Trafficking and Addiction: Exploring School Disciplinary and Drug Issues in The Federal Territory of Kuala Lumpur and Selangor, Malaysia. International Journal of Geoinformatics, Vol. 20(6), 1–12. https://doi.org/10.52939/ijg.v20i6.3327. [34] Ahmad, A., Masron, T., Mohd Ali, A. S., Kimura, Y. and Junaini, S. N., (2024). Demographic Dynamics and Urban Property Crime: A Linear Regression Analysis in Kuala Lumpur and Putrajaya (2015-2020). Planning Malaysia: Journal of the Malaysian Institute of Planners, Vol. 22(4), 302–319. https://doi. org/10.21837/pm.v22i33.1550. [35] Chen, T., Bowers, K., Zhu, D., Gao, X. and Cheng, T., (2022). Spatio-Temporal Stratified Associations Between Urban Human Activities and Crime Patterns: A Case Study In San Francisco Around the COVID-19 Stay-At-Home Mandate. Computational Urban Science, Vol. 2(1). https://doi.org/10.1007/s43762-022-00041-2. [36] Jabatan Perangkaan Malaysia (DOSM). (2020). Penemuan Utama Banci Penduduk Dan Perumahan Malaysia, 2020 Negeri Selangor. [Online]. Available: https://bit.ly/PocketStat sQ1_2022. [Accessed Feb. 8, 2025]. [37] Masron, T., Ahmad, A., Jubit, N., Sulaiman, M. H., Rainis, R., Redzuan, M. S., Junaini, S. N., Jamian, M. A. H., Mohd Ali, A. S., Salleh, M. S., Zaini, F., Soda, R. and Kimura, Y., (2024). Crime Map Book. Centre for Spatially Integrated Digital Humanities (CSIDH), Faculty of Social Sciences and Humanities, Universiti Malaysia Sarawak. https://www. researchgate.net/publication/384572873_Crime_Map_Book. [38] Jabatan Perangkaan Malaysia. (2022). Penemuan Utama Banci Penduduk Dan Perumahan Malaysia, 2020 Negeri Wilayah Persekutuan Putrajaya. [Online]. Available: https://bit.ly/PocketStatsQ1_2022. [Accessed May. 20, 2023]. [39] Jabatan Perangkaan Malaysia, (2022). Penemuan Utama Banci Penduduk Dan Perumahan Malaysia, 2020 Negeri Wilayah Persekutuan Kuala Lumpur. [Online]. Available: https://bit.ly/PocketStatsQ1_2022. [Accessed May. 20, 2023]. [40] Jabatan Perangkaan Malaysia (DOSM), (2020). Penemuan Utama Banci Penduduk dan Perumahan Malaysia 2020 Negeri Wilayah Persekutuan Putrajaya. Jabatan Perdana Menteri. [Online]. Available: https://bit.ly/Po cketStatsQ1_2022. [Accessed May. 20, 2023]. [41] Data Collection/Analysis Division (Crime Prevention and Community Safety Department-CPCSD [Royal Malaysia Police Headquarters (RMP) Bukit Aman]), (2021). Police Stations Boundary for Selangor and Kuala Lumpur Contingent Police Headquarters. [Online]. Available: https://www.rmp.gov.my/infor-korp orate/jabatan---jabatan/jabatan-pencegahan-jenayah-dan-keselamatan-komuniti-(jpjkk). [Accessed Dec. 12, 2024]. [42] Ahmad, A., Masron, T., Junaini, S. N., Barawi, M. H., Redzuan, M. S., Kimura, Y., Jubit, N., Bismelah, L. H. and Mohd Ali, A. S., (2024). Criminological Insights: A Comprehensive Spatial Analysis of Crime Hot Spots of Property Offenses in Malaysia’s Urban Centers. Forum Geografi: Indonesian Journal of Spatial and Regional Analysis, Vol. 38(1), 94–109. https://doi.org/10.23917/forgeo.v38i1.4306. [43] Ahmad, A., Masron, T., Jubit, N., Redzuan, M. S., Soda, R., Bismelah, L. H. and Mohd Ali, A. S., (2024). Analysis of the Movement Distribution Pattern of Violence Crime in Malaysia’s Capital Region-Selangor, Kuala Lumpur, and Putrajaya. International Journal of Geoinformatics, Vol. 20(2), 11–26. https://doi.org/10.52939/ijg.v20i2.3061. [44] Ahmad, A., Masron, T., Mohd Ali, A. S., Barawi, M. H., Nordin, Z. S., Abg Ahmad, A. I., Redzuan, M. S. and Bismelah, L. H., (2024). Exploring the Potential of Geographic Information System (GIS) Application for Understanding Spatial Distribution of Violent Crime Related to United Nations Sustainable Development Goals-16 (SDGS-16). Journal of Sustainability Science and Management, Vol. 19(9). 35–63. https://doi.org/10.46754/jssm.20 24.09.003. [45] Ahmad, A., Kelana, M. H., Soda, R., Jubit, N., Mohd Ali, A. S., Bismelah, L. H. and Masron, T., (2024). Mapping the Impact: Property Crime Trends in Kuching, Sarawak, During and After the COVID-19 Period (2020-2022). Indonesian Journal of Geography, Vol. 56(1), 127–137. https://doi.org/10.22146/ijg.90057. [46] Zakaria, Y. S., Ahmad, A., Said, M. Z., Epa, A. E., Ariffin, N. A., M Muslim, A., Akhir, M. F. and Hussin, R. (2023). GIS and Oil Spill Tracking Model in Forecasting Potential Oil Spill-Affected Areas Along Terengganu and Pahang Coastal Area. Planning Malaysia: Journal of the Malaysian Institute of Planners, Vol. 21(4), 250–264. https://doi.org/10.21837/ pm.v21i28.1330. [47] Marzuki, A., Bagheri, M., Ahmad, A., Masron, T. and Akhir, M. F., (2024). Examining Transformations in Coastal City Landscapes: Spatial Patch Analysis of Sustainable Tourism-A Case Study in Pahang, Malaysia. Landscape and Ecological Engineering. https://doi.org/ 10.1007/s11355-024-00613-w. [48] Chabo, D., Masron, T., Jubit, N. and Ahmad, A., (2024). Analisis Corak Ruangan Keciciran Murid Sekolah Menengah di Sarawak (Spatial Analysis of Middle School Student Dropout Patterns in Sarawak). Malaysian Journal of Social Sciences and Humanities (MJSSH), Vol. 9(9), 1–16. https://doi.org/10.47405/mjssh.v9i9 .2906. [49] Jamru, L. R., Hashim, M., Phua, M. H., Jafar, A., Sakke, N., Eboy, O. V., Imang, U., Natar, M., Ahmad, A. and Mohd Najid, S. A., (2024). Exploring Intensity Metrics in Raw LiDAR Data Processing for Tropical Forest. IOP Conference Series: Earth and Environmental Science, 12th IGRSM International Conference and Exhibition on Geospatial & Remote Sensing 29/04/2024 - 30/04/2024 Kuala Lumpur, Malaysia, Vol. 1412, 1–13. https://doi.org/10.1088/1755-1315/1412/1/012 005. [50] Ahmad, A., Ariffin, N. A., Zakaria, Y. S., Ardiansyah, Mohd Ayob, N., Jamru, L. R., Idris, N. R. A. and Masron, T., (2024). Movement of Domestic Tourist in Malaysia in 2010 (Pergerakan Pelancong Domestik di Malaysia Tahun 2010). Geografi, Vol. 12(2), 31–55. https://doi.org/10.37134/geografi.vol12 .2.3.2024. [51] ArcGIS Pro 3.1., (2022). Hot Spot Analysis (Getis-Ord Gi*) (Spatial Statistics). Environmental Systems Research Institute, Inc. (ESRI). Available: https://pro.arcgis.com/en/ pro-app/latest/tool-reference/spatial-statistics/ hot-spot-analysis.htm. [Accessed Dec. 8, 2023]. [52] ESRI. (2022). How Emerging Hot Spot Analysis Works. Environmental Systems Research Institute, Inc. Available: https://pro.arcgis.com/ en/pro-app/latest/tool-reference/space-time-pattern-mining/learnmoreemerging.htm. [Accessed Feb. 22, 2023]. [53] Carter, J., Louderback, E. R., Vildosola, D. and Sen Roy, S., (2020). Crime in an Affluent City: Spatial Patterns of Property Crime in Coral Gables, Florida. European Journal on Criminal Policy and Research, Vol. 26(4), 547–570. https://doi.org/10.1007/s10610-019-09415-5 [54] Barton, H. and Valero-Silva, N., (2013). Policing in Partnership: A Case Study in Crime Prevention. International Journal of Public Sector Management, Vol. 26(7), 543–553. https://doi.org/10.1108/IJPSM-12-2011-0131 [55] Zhang, C., Gholami, S., Kar, D., Sinha, A., Jain, M., Goyal, R. and Tambe, M., (2016). Keeping Pace with Criminals: An Extended Study of Designing Patrol Allocation against Adaptive Opportunistic Criminals. Games, Vol. 7(3), 1-27. https://doi.org/10.3390/g7030015 [56] Mohler, G., Bertozzi, A. L., Carter, J., Short, M. B., Sledge, D., Tita, G. E., Uchida, C. D. and Brantingham, P. J., (2020). Impact of Social Distancing during COVID-19 Pandemic on Crime in Los Angeles and Indianapolis. Journal of Criminal Justice, Vol. 68, 101692. https:// doi.org/10.1016/j.jcrimjus.2020.101692. [57] Sherman, L. W., Gottfredson, D. C., Mackenzie, D. L., Eck, J., Reuter, P. and Bushway, S. D., (1998). Preventing Crime: What Works, What Doesn’t, What’s Promising. [Online serial]. Available: https://www.ojp. gov/pdffiles/171676.pdf. [Accessed Oct. 19, 2024]. [58] Groff, E. and Taniguchi, T., (2019). Quantifying Crime Prevention Potential of Near-Repeat Burglary. Police Quarterly, Vol. 22(3), 330–359. https://doi.org/10.1177/109 8611119828052. [59] Abrams, D. S., (2021). COVID and Crime: An Early Empirical Look. Journal of Public Economics, Vol. 194, 104344. https://doi.org/ 10.1016/j.jpubeco.2020.104344. [60] Yim, H. N. and Riddell, J. R., (2024). The Spatial Dynamics of Commercial Burglary during the COVID-19 Lockdown in San Francisco. Journal of Experimental Criminology, Vol. 20, 187–205. https://doi.org/ 10.1007/s11292-022-09530-0. [61] Yang, M., Chen, Z., Zhou, M., Liang, X. and Bai, Z., (2021). The Impact of Covid-19 on Crime: A Spatial Temporal Analysis in Chicago. ISPRS International Journal of Geo-Information, Vol. 10(3), 1–20. https://doi.org /10.3390/ijgi10030152. [62] Melo, S. N. de, Pereira, D. V. S., Andresen, M. A. and Matias, L. F., (2018). Spatial/Temporal Variations of Crime: A Routine Activity Theory Perspective. International Journal of Offender Therapy and Comparative Criminology, Vol. 62(7), 1967–1991. https://doi.org/10.1177/03 06624X17703654. [63] Andresen, M. A. and Malleson, N., (2013). Crime Seasonality and Its Variations Across Space. Applied Geography, Vol. 43, 25–35. https://doi.org/10.1016/j.apgeog.2013.06.007. [64] Koppen, P. J. van. and Jansen, R. W. J., (1999). The Time to Rob-Variations in Time of Number of Commercial Robberies. Journal of Research in Crime and Delinquency, Vol. 36(1), 7–29. https://doi.org/10.1177/0022427899036001003 [65] Welsh, B. C. and Farrington, D. P., (2008). Effects of Improved Street Lighting on Crime. Campbell Systematic Reviews, Vol. 4(1), 1–51. https://doi.org/10.4073/csr.2008.13. [66] Intelligence / Operations / Criminal Records (D4) (Criminal Investigation Department [Royal Malaysia Police Headquarters (RMP) Bukit Aman]). (2021). Crime Record for Kuala Lumpur and Selangor Contingent Police Headquarters 2015-2020. Available: https://www.rmp.gov.my/infor-korporate/jaba tan---jabatan/jabatan-siasatan-jenayah. [Accessed Dec. 24, 2024]. [67] Altman, G., Ahuja, J., Monrad, J. T., Dhaliwal, G., Rogers-Smith, C., Leech, G., Snodin, B., Sandbrink, J. B., Finnveden, L., Norman, A. J., Oehm, S. B., Sandkühler, J. F., Kulveit, J., Flaxman, S., Gal, Y., Mishra, S., Bhatt, S., Sharma, M., Mindermann, S. and Brauner, J. M., (2022). A Dataset of Non-Pharmaceutical Interventions on SARS-CoV-2 in Europe. Scientific Data, Vol. 9(145). https://doi.org/ 10.1038/s41597-022-01175-y. [68] Bowers, K. J. and Johnson, S. D. (2005). Domestic Burglary Repeats and Space-Time Clusters: The Dimensions of Risk. European Journal of Criminology, Vol. 2(1), 67–92. https://doi.org/10.1177/1477370805048631. [69] Chainey, S. P., Estévez-Soto, P. R., Pezzuchi, G. and Serrano–Berthet, R. (2023). An Evaluation of a Hot Spot Policing Programme IN Four Argentinian Cities. The Police Journal: Theory, Practice and Principles, Vol. 96(2). 267–288. https://doi.org/10.1177/0032258X22 1079019. [70] Masron, T., Ahmad, A., Abdillah, K. K., Mohd Ali, A. S., Junaini, S. N. and Kimura, Y., (2025). Deciphering Property Crime through OLS Regression: A Demographic Study. International Social Science Journal. https://doi.org/10.1111/issj.12558 [71] Zakaria, Y. S., Ariffin, N. A., Ahmad, A., Rainis, R., M. Muslim, A. and Wan Ibrahim, W. M. M., (2025). Optimizing Tuberculosis Treatment Predictions: A Comparative Study of XGBoost with Hyperparameter in Penang, Malaysia (Mengoptimumkan Peramalan Rawatan Tuberkulosis: Suatu Kajian Perbandingan XGBoost dengan Hiperparameter di Penang, Malaysia). Sains Malaysiana, Vol. 54(1), 3743–3754. https://doi.org/10.17576/jsm-2025-5401-22. [72] Mohd Ali, A. S., Masron, T., Junaini, S. N., Ahmad, A., & Soda, R. (2025). Ethnic Disparities and Demographic Shifts in Sarawak’s Aging Population: A Comprehensive Longitudinal Analysis (1980-2020). International Journal of Geoinformatics, 21(2), 106–122. https://doi.org/https://doi.org/10.52939/ijg.v21i2.3943
(1)
[1] R. Bahrini and A.A. Qaffas, Impact of information and communication technology on economic growth: Evidence from developing countries, Economies 7 (2019), no. 1, 21. [2] M. Baxter and R.G. King, Measuring business cycles: approximate band-pass filters for economic time series, Rev. Econ. Statist. 81 (1999), no. 4, 575–593. [3] Conference Board, Business cycle indicators handbook, Conference board, NY, 2001. [4] L.J. Christiano and T.J. Fitzgerald, The band pass filter, Int. Econ. Rev. 44 (2003), no. 2, 435–465. [5] S. Dewan and K.L. Kraemer, Information technology and productivity: Evidence from country-level data, Manag. Sci. 46 (2000), no. 4, 548–562. [6] M. Farhadi and R. Ismail, The impact of information and communication technology investment on economic growth in newly industrialized countries in asia, Aust. J. . Basic Appl. Sci. 5 (2011), no. 9, 508–516. [7] Organisation for Economic Co-operation and Development, Oecd guide to measuring the information society 2011, OECD, 2011. [8] Oecd internet economy outlook 2012, OECD, 2012. [9] G. Gandolfo, Qualitative analysis and econometric estimation of continuous time dynamic-models, North-Holland, Amsterdam, 1981. [10] M. Greer, Directional accuracy tests of long-term interest rate forecasts, Int. J. Forecast. 19 (2003), no. 2, 291–298. [11] D. Harding and A. Pagan, Dissecting the cycle: A methodological investigation, J. Monetary Econ. 49 (2002), no. 2, 365–381. [12] E. Hosseini Nasab and M. Aghaei, The effect of ict on economic growth: Further evidence, Int. Bull. Bus. Admin. 5 (2009), no. 2, 46–56. [13] L. Khaouani, The impact of fixed and mobile telephones on economic growth in algeria during the period from 1963 to 2015, Adv. Econ. Bus. (2019), 124. [14] M. Moroz, The level of development of the digital economy in poland and selected european countries: A comparative analysis, Found. Manag. 9 (2017), no. 1, 175–190. [15] R.P. Pradhan, M.B. Arvin, J. Mittal, and S. Bahmani, Relationships between telecommunications infrastructure, capital formation, and economic growth, Int. J. Technol. Manag. 70 (2016), no. 2-3, 157–176. [16] R.P. Pradhan, G. Mallik, and T.P. Bagchi, Information communication technology (ict) infrastructure and economic growth: A causality evinced by cross-country panel data, IIMB Manag. Rev. 30 (2018), no. 1, 91–103. [17] V. Spiezia, Ict investments and productivity: Measuring the contribution of icts to growth, OECD J. Econ. Stud. 2012 (2013), no. 1, 199–211. [18] E. Toader, B.N. Firtescu, A. Roman, and S.G. Anton, Impact of information and communication technology infrastructure on economic growth: An empirical assessment for the eu countries, Sustainability 10 (2018), no. 10, 3750. [19] A. Tong and R. Jong, Digitalisation of firms: Challenges in the digital economy, Khazanah research institute, Kuala Lumpur, 2020. [20] M. Torero, S. Chowdhury, and A.S. Bedi, Telecommunications infrastructure and economic growth: A crosscountry analysis, Information and Communication Technologies for Development and Poverty Reduction (2006), 21–63. [21] V. Zarnowitz and G.H. Moore, 9. major changes in cyclical behavior, University of Chicago Press, 2007. [22] W. Zhang and J. Zhuang, Leading indicators of business cycles in malaysia and the philippines, Tech. report, ERD Working paper series, 2002. [23] U. Zuhdi, S. Mori, and K. Kamegai, Analyzing the role of ict sector to the national economic structural changes by decomposition analysis: The case of indonesia and japan, Procedia-Soc. Behav. Sci. 65 (2012), 749–754.
(1)
[1] R. D. P. Wong, J. D. Posner, and V. J. Santos, "Flexible microfluidic normal force sensor skin for tactile feedback," Sensors and Actuators A: Physical, vol. 179, pp. 62-69, 2012. [2] C. Pang et al., "A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres," Nature Materials, vol. 11, no. 9, p. 795, 2012. [3] F. C. Cabrera et al., "Natural-rubber-based flexible microfluidic device," Rsc Advances, vol. 4, no. 67, p. 35467-35475, 2014. [4] K. Tamrin et al., "Experiment and prediction of ablation depth in excimer laser micromachining of optical polymer waveguides," Advances in Materials Science and Engineering, 2018. [5] M. Harizam et al., "Effect of process parameters on the laser joining of stainless steel with three-dimensional (3-D) printed polymer sheet," Lasers in Engineering, vol. 41, 2018. [6] K. F. Tamrin, S. Zakariyah, and N. Sheikh, "Multi-criteria optimization in CO2 laser ablation of multimode polymer waveguides," Optics and Lasers in Engineering, vol. 75, pp. 48-56, 2015. [7] R. Suriano et al., "Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels," Applied Surface Science, vol. 257, no. 14, pp. 6243-6250, 2011. [8] D. Teixidor et al., "Effect of process parameters in nanosecond pulsed laser micromachining of PMMA-based microchannels at near-infrared and ultraviolet wavelengths," The International Journal of Advanced Manufacturing Technology, vol. 67, no. 5-8, pp. 1651-1664, 2013. [9] R. Rahimi et al., "Highly stretchable potentiometric pH sensor fabricated via laser carbonization and machining of carbon−polyaniline composite," ACS applied Materials & Interfaces, vol. 9, no. 10, pp. 9015-9023, 2017. [10] Y. Liao et al., "Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing," Lab on a Chip, vol. 12, no. 4, pp. 746-749, 2012. [11] A. A. Ibrahim and M. F. Hassan, "Study the mechanical properties of epoxy resin reinforced with silica (quartz) and alumina particles," Iraqi Journal of Mechanical and Material Engineering, vol. 11, no. 3, pp. 486-506, 2011. [12] K. F. Tamrin et al., "Multiple-objective optimization in precision laser cutting of different thermoplastics," Optics and Lasers in Engineering, vol. 67, pp. 57-65, 2015. [13] K. Tamrin and A. Zahrim, "Determination of optimum polymeric coagulant in palm oil mill effluent coagulation using multiple-objective optimisation on the basis of ratio analysis (MOORA)," Environmental Science and Pollution Research, vol. 24, no. 19, pp. 15863-15869, 2017. [14] N. W. Galwey, Introduction to Mixed Modelling: Beyond Regression and Analysis of Variance, John Wiley & Sons, 2014.
(1)
1. Richardson R. The multiple choice true/false question: what does it measure and what could it measure? Med Teach 1992; 14(2-3): 201-4. 2. Anderson J. For multiple choice questions. Med Teach 1979; 1(1): 37-42. 3. Biran LA. Hints for students (and examiners) on answering MCQ questions of the multiple true/false type. Med Teach 1986; 8(1): 41-8. 4. Mitchell G, Ford D, Prinz W. Optimising marks obtained in multiple choice question examinations. Med Teach 1986; 8(1): 49-53. 5. Lahner FM, Lörwald AC, Bauer D, Nouns ZM, Krebs R, Guttormsen S. Multiple true–false items: a comparison of scoring algorithms. Adv Health Sci Educ 2018; 23(3): 455-63. 6. Kanzow P, Schuelper N, Witt D, Wassmann T, Sennhenn- Kirchner S, Wiegand A. Effect of different scoring approaches upon credit assignment when using Multiple True‐False items in dental undergraduate examinations. Eur J Dental Educ 2018; 22(4): e669-e678. 7. Anderson J. The MCQ controversy—a review. Med Teach. 1981; 3(4): 150-56. 8. Brassil CE, Couch BA. Multiple-true-false questions reveal more thoroughly the complexity of student thinking than multiplechoice questions: a Bayesian item response model comparison. Int J STEM Educ 2019; 6(1): 1-17. 9. Couch BA, Hubbard JK, Brassil CE. Multiple–true–false questions reveal the limits of the multiple–choice format for detecting students with incomplete understandings. BioScience 2018; 68(6): 455-63. 10. Simbak NB, Aung MMT, Ismail SB, et al. Comparative study of different formats of MCQs: multiple true-false and single best answer test formats, in a New Medical School of Malaysia. International Med J 2014; 21(6): 562-66. 11. McCoubrie P. Improving the fairness of multiple-choice questions: a literature review. Med Teach 2004; 26(8): 709-12. 12. Anderson J. Medical teacher 25th anniversary series multiplechoice questions revisited. Med Teach 2004; 26(2): 110-3. 13. Gross LJ. Scoring multiple true/false tests: some considerations. Eval Health Profess 1982; 5(4): 459-68. 14. Schmidt D, Raupach T, Wiegand A, Herrmann M, Kanzow P. Relation between examinees’ true knowledge and examination scores: systematic review and exemplary calculations on Multiple-True-False items. Educ Res Rev 2021; 34: 100409. 15. Sim S-M, Rasiah RI. Relationship between item difficulty and discrimination indices in true/false-type multiple choice questions of a para-clinical multidisciplinary paper. Ann Acad Med Singapore2006; 35(2) :67 16. Puthiaparampil T, Rahman MM, Gudum HR, Brohi IB, Lim IF, Saimon R. How to grade items for a question bank and rank tests based on student performance. Med Ed Publish 2020; 9(1). 17. Thomas Puthiaparampil HRG, M. Mizanur Rahman RS, Lim IF. True-false analysis reveals inherent flaws in multiple true-false tests. Int J Commun Med Public Health 2019; 6(10): 4204-8. 18. Puthiaparampil T, Singmame N, Razali SBA, Lukas SB, Shee CC, Rahman MM. Dropping the non-core subjects from undergraduate final professional examination: How it would impact the results. Med J Malaysia 2022; 77(2): 169-73. 19. Burton RF. Quantifying the Effects of Chance in Multiple Choice and True/False Tests: Question selection and guessing of answers. Assess Eval Higher Educ. 2001; 26(1): 41-50. 20. Burton RF. Multiple choice and true/false tests: reliability measures and some implications of negative marking. Assess Eval Higher Educ 2004; 29(5): 585-95.
(1)
[1] R. Medjoudj, H. Bediaf, and D. Aissani, “Power System Reliability: Mathematical Models and Applications,” in System Reliability, London: IntechOpen, 2017. DOI: 10.5772/intechopen.71926 [2] J. Collins and N. Ali, “10 Ways to Increase Power System Availability in Data Centers Strategies for ensuring clean, continuous power to essential IT systems,” EATON Powering Business Worldwide, 2013. [3] A. M. Al-Shaalan, “Reliability Evaluation of Power Systems,” in System Reliability, London: IntechOpen, 2019. [4] M. Ram, Modeling and Simulation Based Analysis in Reliability Engineering. Boca Raton: CRC Press, 2019. [5] H. Eteruddin, A. A. Mohd Zin, and B. Belyamin, “Line Differential Protection Modeling with Composite Current and Voltage Signal Comparison Method,” TELKOMNIKA, vol. 12, no. 1, March 2014. DOI: 10.12928/TELKOMNIKA.v12i1.1966 [6] M. Kezunovic, “Fundamentals of power system protection,” in The Electrical Engineering Handbook, London: Elsevier, 2005, pp. 787–803. [7] P. Dehghanian, B. Wang, and M. Tasdighi, “New Protection Schemes in Smarter Power Grids with Higher Penetration of Renewable Energy Systems,” Pathways to a Smarter Power System, Elsevier, pp. 317–342, 2019. DOI: 10.1016/B978-0-08-102592-5.00011-9 [8] C. Lins, L. E. Williamson, S. Leitner, and S. Teske, “The First Decade: 2004-2014: 10 years of Renewable Energy Progress,” Renewable Energy Policy Network for 21st Century, vol. 20, pp. 1-48, 2014. [9] S. C. Capareda, Introduction to Renewable Energy Conversions. CRC Press, 2019. [10] A. Zervos and R. Adib, Renewables 2019 Global Status Report, Paris, 2019. [11] P. Simamora, E. Mursanti, J. Giwangkara, D. Arinaldo, A. P. Tampubolon, and J. C. Adiatma, Igniting a Rapid Deployment of Renewable Energy in Indonesia: Lessons Learned from Three Countries, Jakarta, May 2019. [12] D. Arisaktiwardhana and I. Akbar, “Reducing Economic Disparity in the Outermost and Border Regions: Assessing Barriers and Opportunities in the Electricity Sector,” in The 3rd International Conference on Energy, Environmental and Information System (ICENIS 2018), 2018, vol. 73, p. 1001. DOI: 10.1051/e3sconf/20187301001 [13] I. Akbar, “Understanding the Partnership Landscape for Renewable Energy Development in Indonesia,” Jurnal Universitas Paramadina, vol. 14, pp. 1549–1562, 2017. [14] M. Vaqueiro-Contreras et al., “Identification of the mechanism responsible for the boron oxygen light induced degradation in silicon photovoltaic cells,” Journal of Applied Physic, vol. 125, no. 18, p. 185704, May 2019. DOI: 10.1063/1.5091759 [15] X. Li, S. Zhang, Y. Guo, F. Wang, and Q. Wang, “Physical Properties and Photovoltaic Application of Semiconducting Pd2Se3 Monolayer,” Nanomaterials, vol. 8, no. 10, p. 832, October 2018. DOI: 10.3390/nano8100832 [16] A. M. Bagher, M. M. A. Vahid, and M. Mohsen, “Types of Solar Cells and Application,” American Journal of Optics and Photonics, vol. 3, no. 5, pp. 94-113, August 2015. DOI: 10.11648/j.ajop.20150305.17 [17] B. W. Huang, J. G. Tseng, and D. R. Hsiao, “Sun Intensity and Angle on Efficiency of Solar Cell System,” Applied Mechanics and Material, vol. 627, pp. 182–186, September 2014. DOI: 10.4028/www.scientific.net/AMM.627.182 [18] K. Soga and H. Akasaka, “Influences of Solar Incident Angle on Power Generation Efficiency of PV Modules under Field Conditions,” Journal of Asian Architecture and Building Engineering, vol. 2, no. 2, pp. 43–48, 2003. DOI: 10.3130/jaabe/2/b43 [19] V. J. Fesharaki, M. Dehghani, J. J. Fesharaki, and H. Tavasoli, “The Effect of Temperature on Photovoltaic Cell Efficiency,” in the 1st International Conference on Emerging Trends in Energy Conservation - ETEC, November 2011, pp. 1–6. [20] S. Dubey, J. N. Sarvaiya, and B. Seshadri, “Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World – A Review,” Energy Procedia, vol. 33, pp. 311–321, 2013. DOI: 10.1016/j.egypro.2013.05.072 [21] Z. Hua, C. Ma, J. Lian, X. Pang, and W. Yang, “Optimal Capacity Allocation of Multiple Solar Trackers and Storage Capacity for Utility-scale Photovoltaic Plants Considering Output Characteristics and Complementary Demand,” Applied Energy, vol. 238, pp. 721–733, March 2019. DOI: 10.1016/j.apenergy.2019.01.099 [22] I. H. Rosma, I. M. Putra, D. Y. Sukma, E. Safrianti, A. A. Zakri, and A. Abdulkarim, “Analysis of Single Axis Sun Tracker System to Increase Solar Photovoltaic Energy Production in the Tropics,” in 2nd International Conference on Electrical Engineering and Informatics (ICon EEI): Toward the Most Efficient Way of Making and Dealing with Future Electrical Power System and Big Data Analysis, Batam, Indonesia, October 2018, pp. 183–186. DOI: 10.1109/Icon-EEI.2018.8784311 [23] T. Zheng, F. Zheng, X. Rui, X. Ji, and K. Niu, “A Novel Ultralight Dish System Based on a Three-Extensible-Rod Solar Tracker,” Solar Energy, vol. 193, pp. 335–359, November 2019. DOI: 10.1016/j.solener.2019.09.026 [24] Z. Hua, C. Ma, M. Ma, L. Bin, and X. Pang, “Operation Characteristics of Multiple Solar Trackers Under Typical Weather Conditions in a Large-Scale Photovoltaic Base,” Energy Procedia, vol. 158, pp. 6242–6247, February 2019. DOI: 10.1016/j.egypro.2019.01.463 [25] P. Singh and N. M. Ravindra, “Temperature Dependence of Solar Cell Performance - An analysis Solar Energy Materials & Solar Cells Temperature Dependence of Solar Cell Performance — an Analysis,” Solar Energy Material and Solar Cells, vol. 101, pp. 36–45, June 2012. DOI: 10.1016/j.solmat.2012.02.019 [26] S. Chander, A. Purohit, A. Sharma, S. P. Nehra, and M. S. Dhaka, “Impact of Temperature on Performance of Series and Parallel Connected Mono-Crystalline Silicon Solar Cells,” Energy Reports, vol. 1, pp. 175–180, November 2015. DOI: 10.1016/j.egyr.2015.09.001 [27] Krismadinata, N. A. Rahim, H. W. Ping, and J. Selvaraj, “Photovoltaic Module Modeling using Simulink/Matlab,” Procedia Environmental Sciences, vol. 17, pp. 537–546, 2013. DOI: 10.1016/j.proenv.2013.02.069 [28] M. S. Hossain, N. K. Roy, and M. O. Ali, “Modeling of Solar Photovoltaic System using Matlab/Simulink,” in 19th International Conference on Computer and Information Technology (ICCIT), Dhaka, India, 2016, pp. 128–133. DOI: 10.1109/ICCTECHN.2016.7860182 [29] A. A. Zakri, N. Nurhalim, D. P. H. Simanulang, and I. Tribowo, “Photovoltaic Modeling Methods Based on Matlab Simulink Implementation,” SINERGI, vol. 22, no. 1, p. 1-6, February 2018. DOI: 10.22441/sinergi.2018.1.001 [30] SNI 04-6392-2000, Cell and Secondary Battery for Individual Photovoltaic Electrical Power Generation – General Requirement and Testing Method. 2000. [31] A. Sudradjat, “Indonesian Effort to Better Quality of Solar Home System,” in Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, New Orleans, LA, US, 2002, pp. 1489–1492. DOI: 10.1109/PVSC.2002.1190892 [32] A. S. Dasuki and M. Djamin, “Fifty Mega Watt Peak (50 MWp) Photovoltaic Rural Electrification in Indonesia,” in IEEE Photovoltaic Specialists Conference Photovoltaic Energy Conversion, Waikoloa, HI, 1994, pp. 2379–2382, vol. 2. DOI: 10.1109/WCPEC.1994.521704
(1)
1. Roberts ISD, Benamore RE, Benbow EW, Lee SH, Harris JN, Jackson A, et al. Post-mortem imaging as an alternative to autopsy in the diagnosis of adult deaths: a validation study. Lancet [Internet]. 2012;379(9811):136–42. Available from: http:// dx.doi.org/10.1016/s0140-6736(11)61483-9 2. Noda Y, Yoshimura K, Tsuji S, Ohashi A, Kawasaki H, Kaneko K, et al. Postmortem computed tomography imaging in the investigation of nontraumatic death in infants and children. Biomed Res Int [Internet]. 2013;2013:1–5. Available from: http://dx.doi.org/10.1155/2013/327903 3. Mayor S. One in four autopsy reports in UK is substandard, report finds. BMJ [Internet]. 2006;333(7573):824.3. Available from: http:// dx.doi.org/10.1136/bmj.333.7573.824-b 4. Schnider J, Thali MJ, Ross S, Oesterhelweg L, Spendlove D, Bolliger SA. Injuries due to sharp trauma detected by post-mortem multislice computed tomography (MSCT): A feasibility study. Leg Med (Tokyo) [Internet]. 2009;11(1):4– 9. Available from: http://dx.doi.org/10.1016/j. legalmed.2008.07.001 5. Persson A, Jackowski C, Engström E, Zachrisson H. Advances of dual source, dual-energy imaging in postmortem CT. Eur J Radiol [Internet].2008;68(3):446–55. Available from: http://dx.doi. org/10.1016/j.ejrad.2008.05.008 6. Kasahara S, Makino Y, Hayakawa M, Yajima D, Ito H, Iwase H. Diagnosable and non-diagnosable causes of death by postmortem computed tomography: A review of 339 forensic cases. Leg Med (Tokyo) [Internet]. 2012;14(5):239– 45. Available from: http://dx.doi.org/10.1016/j. legalmed.2012.03.007 7. Yen K, Vock P, Tiefenthaler B, Ranner G, Scheurer E, Thali MJ, et al. Virtopsy: forensic traumatology of the subcutaneous fatty tissue; multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) as diagnostic tools. J Forensic Sci. 2004;49:799–806. Available from: https://doi. org/10.1520/JFS2003299 8. Puranik R, Gray B, Lackey H, Yeates L, Parker G, Duflou J, et al. Comparison of conventional autopsy and magnetic resonance imaging in determining the cause of sudden death in the young. J Cardiovasc Magn Reson [Internet]. 2014;16(1):44. Available from: http://dx.doi.org/10.1186/1532-429X-16-44 9. Baumeister R, Thali MJ, Ampanozi G. Postmortem radiological imaging of natural causes of death in adults – a review. Forensic Imaging [Internet]. 2021;26(200473):200473. Available from: http:// dx.doi.org/10.1016/j.fri.2021.200473 10. Jackowski C, Warntjes MJB, Berge J, Bär W, Persson A. Magnetic resonance imaging goes postmortem: noninvasive detection and assessment of myocardial infarction by postmortem MRI. Eur Radiol [Internet]. 2011;21(1):70–8. Available from: http://dx.doi.org/10.1007/s00330-010-1884-6 11. Kempter M, Ross S, Spendlove D, Flach PM, Preiss U, Thali MJ, et al. Post-mortem imaging of laryngohyoid fractures in strangulation incidents: First results. Leg Med (Tokyo) [Internet]. 2009;11(6):267–71. Available from: http://dx.doi. org/10.1016/j.legalmed.2009.07.005 12. Yen K, Thali MJ, Aghayev E, Jackowski C, Schweitzer W, Boesch C, et al. Strangulation signs: Initial correlation of MRI, MSCT, and forensic neck findings. J Magn Reson Imaging [Internet]. 2005;22(4):501–10. Available from: http://dx.doi. org/10.1002/jmri.20396 13. Passaro G, dell’Aquila M, De Filippis A, Baronti A, Costantino A, Iannaccone F, et al. Post-mortem diagnosis of sepsis: when it’s too late. Clin Ter [Internet]. 2021;171(1):e60–2. Available from: http://dx.doi.org/10.7417/CT.2021.2284 14. Levy AD, Harcke HT, Mallak CT. Postmortem imaging: MDCT features of postmortem change and decomposition. Am J Forensic Med Pathol [Internet]. 2010;31(1):12–7. Available from: http:// dx.doi.org/10.1097/paf.0b013e3181c65e1a 15. Shedge R, Krishan K, Warrier V, Kanchan T. Postmortem Changes. StatPearls Publishing; 2023. Available from: https://www.ncbi.nlm.nih.gov/ books/NBK539741
(1)
[1] R. O. Kellems, G. Cacciatore, and K. Osborne, “Using an Augmented Reality–Based Teaching Strategy to Teach Mathematics to Secondary Students With Disabilities,” Career Dev. Transit. Except. Individ., vol. 42, no. 4, pp. 253–258, 2019. [2] W. Chao, C. Yang and R. Chang, "A Study of the Interactive Mathematics Mobile Application Development," 2018 1st IEEE International Conference on Knowledge Innovation and Invention (ICKII), 2018, pp. 248-249. doi: 10.1109/IC KII.2018.8569126. [3] R. H. A. Rahim, A. Baharum, and H. Hijazi, “Evaluation on effectiveness of learning linear algebra using gamification,” Indones. J. Electr. Eng. Comput. Sci., vol. 17, no. 2, pp. 997–1004, 2019. [4] A. Baharum et al., “Mobile learning application: Flipped classroom,” Indones. J. Electr. Eng. Comput. Sci., vol. 17, no. 2, pp. 1084–1090, 2020. [5] J. M. Namkung, L. S. Fuchs, and N. Koziol, “Does initial learning about the meaning of fractions present similar challenges for students with and without adequate whole-number skill?,” Learn. Individ. Differ., vol. 61, pp. 151–157, 2018. [6] P. J. McFeetors and K. Palfy, “Educative experiences in a games context: Supporting emerging reasoning in elementary school mathematics,” J. Math. Behav., vol. 50, pp. 103–125, 2018. [7] E. L. Zippert, E. N. Daubert, N. R. Scalise, G. D. Noreen, and G. B. Ramani, “Tap space number three’: Promoting math talk during parent-child tablet play,” Dev. Psychol., vol. 55, no. 8, pp. 1605–1614, 2019. [8] B. Taspinar, W. Schmidt, and H. Schuhbauer, “Gamification in education: A board game approach to knowledge acquisition,” Procedia Comput. Sci., vol. 99, pp. 101–116, 2016. [9] P. S. Moyer-Packenham et al., “How design features in digital math games support learning and mathematics connections,” Comput. Human Behav., vol. 91, pp. 316–332, 2019. [10] G. B. Ramani and N. R. Scalise, “It’s more than just fun and games: Play-based mathematics activities for Head Start families,” Early Child. Res. Q., vol. 50, pp. 78–89, 2020. [11] D. Vlachopoulos and A. Makri, “The effect of games and simulations on higher education: a systematic literature review,” Int. J. Educ. Technol. High. Educ., vol. 14, pp. 1-23, 2017. [12] F. A. Pritami and I. Muhimmah, “Digital game based learning using augmented reality for math ematics learning,” ACM Int. Conf. Proceeding Ser., pp. 254–258, 2018. [13] S. M. M. de Mooij, et al., “Should online math learning environments be tailored to individuals’ cognitive profiles?,” J. Exp. Child Psychol., vol. 191, p. 1-15, 2020. [14] M. R. Novriani and E. Surya, “Analysis of student difficulties in mathematics problem solving ability at MTs SWASTA IRA Medan,” Int. J. Sci. Basic Appl. Res., vol. 33, no. 3, pp. 63-75, 2017. [15] Ann Dowker, “Chapter Seven-Interventions for Primary School Children With Difficulties in Mathematics,” in Advances in Child Development and Behavior, vol. 53, pp. 255–287, 2017. [16] K. Awang, et al., “The usability analysis of using augmented reality for linus students,” Indones. J. Electr. Eng. Comput. Sci., vol. 13, no. 1, pp. 58–64, 2019. [17] F. Fisher, J. Warner, and N. Mickelson, “Cardboard Cities, Real Mathematics: Employing Quantitative Literacy to Study Gentrification in NYC,” Primus, vol. 29, no. 9, pp. 908–927, 2019. [18] R. A. Majid and J. C. Hasim, “The effectiveness of frog VLE implementation: Students’ perspective,” Indones. J. Electr. Eng. Comput. Sci., vol. 14, no. 1, pp. 381–387, 2019. [19] K. Tabassum, “Using wireless and mobile technologies to enhance teaching and learning strategies,” Indones. J. Electr. Eng. Comput. Sci., vol. 17, no. 3, pp. 1555–1561, 2020. [20] M. Gasah, A. Baharum, and N. H. M. Zain, “Measure learning effectiveness among children using EEG device and mobile application,” Indones. J. Electr. Eng. Comput. Sci., vol. 17, no. 1, pp. 191–196, 2019. [21] L. P. Madrid and F. Lorenzi, “Mathboard: An intelligent object for use in educational activities,” Acta Sci., vol. 21, no. 3, pp. 59–74, 2019. [22] S. H. Lee and D. H. Song, “Functional usability analysis of top korean mobile role playing games based on user interface design,” Indones. J. Electr. Eng. Comput. Sci., vol. 13, no. 1, pp. 123–128, 2019. [23] M. R. Bin Husin, H. Bin Ahmad, and M. Bin Hamzah, “Video application to accommodate students’ learning style for moral education in teacher education institutes,” Indones. J. Electr. Eng. Comput. Sci., vol. 16, no. 1, pp. 349–354, 2019. [24] D. Połap, K. Kęsik, A. Winnicka, and M. Woźniak, “Strengthening the perception of the virtual worlds in a virtual reality environment,” ISA Trans., vol. 102, pp. 397-406, 2020. [25] K. Schenke, et al., “Does ‘Measure Up!’ measure up? Evaluation of an iPad app to teach preschoolers measurement concepts,” Comput. Educ., vol. 146, 2020.
(1)
[1] R. R. Al Hakim, B. Harto, and A. L. Setyabudhi, “Dashboard Sistem Pendukung Keputusan Untuk Mengukur Penilaian Kinerja Karyawan Pada PT Cakrawala Asia,” Eng. Technol. Int. J., vol. 3, no. 3, pp. 46–59, 2021, [Online]. Available: https://mand-ycmm.org/index.php/eatij/article/view/108 [2] R. R. Al Hakim, E. Rusdi, and M. A. Setiawan, "Android Based Expert System Application for Diagnose COVID-19 Disease: Cases Study of Banyumas Regency," J. Intell. Comput. Heal. Informatics, vol. 1, no. 2, pp. 1–13, 2020, doi: 10.26714/jichi.v1i2.5958. [3] E. Rich and K. Knight, Artificial Intelligence, 2nd ed. New York: McGraw-Hill Education, 1991. [4] Suyanto, Artificial Intelligence: Searching, Reasoning, Planning, dan Learning. Bandung: Informatika, 2014. [5] A. P. Hamid, R. R. Al Hakim, A. Sungkowo, T. Trikolas, H. Purnawan, and A. Jaenul, “Talent Management Employee Development by Using Certainty Factor Method of Expert System,” ARRUS J. Eng. Technol., vol. 1, no. 1, pp. 33–39, 2021, doi: 10.35877/jetech568. [6] S. Liu, G. Li, and H. Xia, "Analysis of Talent Management in the Artificial Intelligence Era," in Proceedings of the 5th Asia-Pacific Conference on Economic Research and Management Innovation (ERMI 2021), Feb. 2021, vol. 167, pp. 38–42. doi: 10.2991/AEBMR.K.210218.007. [7] N. F. Soelaiman, S. S. S. Ahmad, O. Mohd, R. R. Al Hakim, and H. A. Hidayah, "Modeling the civil servant discipline in Indonesia: partial least square-structural equation modeling approach," Asean Int. J. Bus., vol. 1, no. 1, pp. 43–58, 2022, doi: 10.54099/aijb.v1i1.72. [8] N. F. Soelaiman and R. R. Al-Hakim, “Pelanggaran Kedisiplinan yang Kerap Dilakukan Pegawai Negeri Sipil di Lingkungan Politeknik Negeri: Analisis Regresi Linear Terhadap Faktor-faktornya,” in Prosiding Seminar Nasional Humaniora, 2022, vol. 2, pp. 20–24. [Online]. Available: https://www.conference.unja.ac.id/SNH/article/view/192 [9] Y. Barkun, E. Rollnik-Sadowska, and E. Glińska, "The concept of 'talent' in the labor management perspective - the bibliometric analysis of literature," Int. J. Ind. Eng. Manag., vol. 11, no. 2, pp. 104–116, Jun. 2020, doi: 10.24867/IJIEM-2020-2-257. [10] M. Younas and M. W. Bari, "The relationship between talent management practices and retention of generation 'Y' employees: mediating role of competency development," Econ. Res. Istraz. , vol. 33, no. 1, pp. 1330–1353, Jan. 2020, doi: 10.1080/1331677X.2020.1748510. [11] I. Rustiawan, Rubadi, R. T. H. Safariningsih, and A. Zen, "Talent Management Concepts: Analysis Recruitment, Program Training, Mentoring, and Leadership," Int. J. Bus. Appl. Econ., vol. 2, no. 2, pp. 233–244, Mar. 2023, doi: 10.55927/IJBAE.V2I2.2772. [12] K. Stadler, "Talent reviews: The key to effective succession management," Bus. Strateg. Ser., vol. 12, no. 5, pp. 264–271, 2011, doi: 10.1108/17515631111166906/FULL/XML. [13] M. Firdaus, “Analisis Kesiapan Industri Televisi Menuju Penyiaran Televisi Digital di Masa Pandemi Covid 19 (Studi Kasus TV Lokal Provinsi Bengkulu),” in SENABISMA: Prosiding Seminar Nasional Bisnis dan Manajemen, Oct. 2020, vol. 6, pp. 58–65. Accessed: Mar. 11, 2021. [Online]. Available: https://prosiding.polinema.ac.id/senabisma/index.php/senabisma/article/view/39 [14] T. Z. Ahram, Advances in Artificial Intelligence, Software and Systems Engineering, vol. 787. Switzerland AG (CH): Springer International Publishing AG, 2019. doi: 10.1007/978-3-319-94229-2_44. [15] J. A. Wagner and J. R. Hollenbeck, Organizational Behavior: Securing Competitive Advantage, 3rd ed. New York (US): Routledge, 2020. doi: 10.4324/9781003009580. [16] K. Bashori, “Manajemen Talenta Untuk Mengoptimalkan Produktivitas PNS,” J. Kebijak. dan Manaj. PNS, vol. 6, no. 2, pp. 61–73, 2012, Accessed: Jun. 28, 2021. [Online]. Available: https://jurnal.bkn.go.id/index.php/asn/article/view/95 [17] E. Pagan-Castaño, J. C. Ballester-Miquel, J. Sánchez-García, and M. Guijarro-García, "What's next in talent management?," J. Bus. Res., vol. 141, pp. 528–535, Mar. 2022, doi: 10.1016/J.JBUSRES.2021.11.052. [18] K. C. Saling and M. D. Do, "Leveraging People Analytics for an Adaptive Complex Talent Management System," Procedia Comput. Sci., vol. 168, pp. 105–111, Jan. 2020, doi: 10.1016/J.PROCS.2020.02.269. [19] R. R. Al Hakim et al., “Aplikasi Algoritma Dijkstra dalam Penyelesaian Berbagai Masalah,” Expert J. Manaj. Sist. Inf. dan Teknol., vol. 11, no. 1, pp. 42–47, 2021, doi: 10.36448/expert.v11i1.1939. [20] G. A. Siregar and L. Kartika, "Talent Management Design Strategy for Non-Management Staff Positions at PT XYZ," J. Manaj. Indones., vol. 20, no. 1, pp. 1–12, 2020. [21] W. Santoso, P. M. Sitorus, S. Batunanggar, F. T. Krisanti, G. Anggadwita, and A. Alamsyah, "Talent mapping: a strategic approach toward digitalization initiatives in the banking and financial technology (FinTech) industry in Indonesia," J. Sci. Technol. Policy Manag., vol. 12, no. 3, pp. 399–420, 2021, doi: 10.1108/JSTPM-04-2020-0075. [22] Y. Suhanda, H. Winarno, and A. Alfiandi, “Penerapan Metode Fuzzy pada Sistem Penilaian Kinerja Karyawan Toko Mas Citra,” JRIS J. Rekayasa Inf. Swadharma, vol. 3, no. 1, pp. 69–75, Jan. 2023, doi: 10.56486/JRIS.VOL3NO1.297. [23] B. Karatop, C. Kubat, and Ö. Uygun, "Talent management in manufacturing system using fuzzy logic approach," Comput. Ind. Eng., vol. 86, pp. 127–136, Aug. 2015, doi: 10.1016/J.CIE.2014.09.015. [24] E. Sjachriatin, “Dampak Manajemen Talenta pada Kinerja Organisasi: Peran Moderasi dari Sistem Manajemen Kinerja yang Efektif,” Media Mahard., vol. 17, no. 2, pp. 396–411, Jan. 2019, doi: 10.29062/MAHARDIKA.V17I2.216. [25] K. A. King and V. Vaiman, "Enabling effective talent management through a macro-contingent approach: A framework for research and practice," BRQ Bus. Res. Q., vol. 22, no. 3, pp. 194–206, Jul. 2019, doi: 10.1016/j.brq.2019.04.005. [26] F. Louzada, A. C. Maiorano, and A. Ara, "iSports: A web-oriented expert system for talent identification in soccer," Expert Syst. Appl., vol. 44, pp. 400–412, Feb. 2016, doi: 10.1016/J.ESWA.2015.09.007. [27] O. Allal-Chérif, A. Yela Aránega, and R. Castaño Sánchez, "Intelligent recruitment: How to identify, select, and retain talents from around the world using artificial intelligence," Technol. Forecast. Soc. Change, vol. 169, p. 120822, Aug. 2021, doi: 10.1016/J.TECHFORE.2021.120822. [28] V. Papić, N. Rogulj, and V. Pleština, "Identification of sport talents using a web-oriented expert system with a fuzzy module," Expert Syst. Appl., vol. 36, no. 5, pp. 8830–8838, Jul. 2009, doi: 10.1016/J.ESWA.2008.11.031. [29] C. Stephanie and R. Sarno, "Classification talent of employee using C4.5, KNN, SVM," in 2019 International Conference on Information and Communications Technology (ICOIACT), Jul. 2019, pp. 388–393. doi: 10.1109/ICOIACT46704.2019.8938508. [30] J. Siswanto, E. Cahyono, J. Monang, A. N. Aisha, and D. Mulyadi, "Identifying talent: public organisation with skewed performance scores," J. Manag. Dev., vol. 40, no. 4, pp. 293–312, 2021, doi: 10.1108/JMD-05-2020-0137/FULL/XML. [31] M. H. Novianto and A. Artiawati, “Strategi Identifikasi dan Pemetaan Talenta pada Branch Manager Sebagai Bagian dari Sistem Manajemen Talenta,” J. Psychol. Sci. Prof., vol. 3, no. 1, pp. 21–30, Apr. 2019, doi: 10.24198/JPSP.V3I1.20636. [32] S. N. Azmi, B. Sulistyo, L. Widyastuti, S. N. A. F., B. Sulistyo, and L. Widyastuti, "Identifikasi Kriteria Talenta Dari Key Positions Level Kepala Bagian Menggunakan Metode Human Asset Value Matrix Di Pt X," eProceedings Eng., vol. 3, no. 2, pp. 2331–2338, Aug. 2016, Accessed: Apr. 20, 2023. [Online]. Available: http://libraryeproceeding.telkomuniversity.ac.id/index.php/engineering/article/view/885 [33] R. N. Musakuro, "A framework development for talent management in the higher education sector," SA J. Hum. Resour. Manag., vol. 20, no. 0, p. a1671, 2022, doi: 10.4102/SAJHRM.V20I0.1671. [34] S. A. Lopes, J. M. G. Sarraguça, J. A. Lopes, and M. E. Duarte, "A new approach to talent management in law firms: Integrating performance appraisal and assessment center data," Int. J. Product. Perform. Manag., vol. 64, no. 4, pp. 523–543, Apr. 2015, doi: 10.1108/IJPPM-08-2013-0147/FULL/XML. [35] Y. L. Lai and A. Ishizaka, "The application of multi-criteria decision analysis methods into talent identification process: A social psychological perspective," J. Bus. Res., vol. 109, pp. 637–647, Mar. 2020, doi: 10.1016/j.jbusres.2019.08.027. [36] S. Shikweni, W. Schurink, and R. van Wyk, "Talent management in the south african construction industry," SA J. Hum. Resour. Manag., vol. 17, no. 1, 2019, doi: 10.4102/SAJHRM.V17I0.1094. [37] Z. T. Rony, M. Yasin, T. B. Silitonga, F. Syarief, and R. A. Harianto, "Employee Mapping Process as a Solution for Empowering Human Resources in Companies," GATR Glob. J. Bus. Soc. Sci. Rev., vol. 9, no. 3, pp. 216–223, 2021, doi: 10.35609/gjbssr.2021.9.3(3). [38] M. Berliandaldo and A. Hidayat, "Implementing Talent Management Approach, to Improve Non-Tax Revenue in Center for Innovation," Int. J. Bus. Gen. Manag., vol. 6, no. 6, pp. 47–56, Oct. 2017. [39] J. Gelens, J. Hofmans, N. Dries, and R. Pepermans, "Talent management and organisational justice: Employee reactions to high potential identification," Hum. Resour. Manag. J., vol. 24, no. 2, pp. 159–175, 2014, doi: 10.1111/1748-8583.12029. [40] T. Ingram and W. Glod, "Talent Management in Healthcare Organizations - Qualitative Research Results," Procedia Econ. Financ., vol. 39, pp. 339–346, 2016, doi: 10.1016/S2212-5671(16)30333-1. [41] M. Festing, L. Schäfer, and H. Scullion, "Talent management in medium-sized German companies: An explorative study and agenda for future research," Int. J. Hum. Resour. Manag., vol. 24, no. 9, pp. 1872–1893, May 2013, doi: 10.1080/09585192.2013.777538. [42] E. Koekemoer, "An explorative study on factors influencing the career success of management employees," SA J. Ind. Psychol., vol. 40, no. 2, Jun. 2014, doi: 10.4102/sajip.v40i2.1204. [43] M. Yasin, "Talent Mapping/Assessment: Picturizing Talent in Organization," Int. J. Bus. Appl. Soc. Sci., vol. 3, no. 11, Nov. 2017, doi: 10.1177/105960117700200123. [44] R. N. Andari and S. Ella, "Digital Talent Management Model for Smart Village in Indonesia," in 2021 2nd International Conference on ICT for Rural Development (IC-ICTRuDev), 2021. doi: 10.1109/IC-ICTRUDEV50538.2021.9656515. [45] T. Reilly, A. M. Williams, A. Nevill, and A. Franks, "A multidisciplinary approach to talent identification in soccer," J. Sports Sci., vol. 18, no. 9, pp. 695–702, 2000, doi: 10.1080/02640410050120078. [46] S. Nijs, E. Gallardo-Gallardo, N. Dries, and L. Sels, "A multidisciplinary review into the definition, operationalization, and measurement of talent," J. World Bus., vol. 49, no. 2, pp. 180–191, Apr. 2014, doi: 10.1016/J.JWB.2013.11.002. [47] C. Xiang, T. F. Tengku Kamalden, H. Liu, and N. Ismail, "Exploring the Multidisciplinary Factors Affecting Sports Talent Identification," Front. Psychol., vol. 13, Jul. 2022, doi: 10.3389/FPSYG.2022.948121. [48] M. Kaliannan, D. Darmalinggam, M. Dorasamy, and M. Abraham, "Inclusive talent development as a key talent management approach: A systematic literature review," Hum. Resour. Manag. Rev., p. 100926, Jul. 2022, doi: 10.1016/J.HRMR.2022.100926. [49] E. Mack, M. Breit, M. Krischler, J. Gnas, and F. Preckel, "Talent development in natural science in elementary school: A juxtaposition of research and practice," Teach. Teach. Educ., vol. 104, p. 103366, Aug. 2021, doi: 10.1016/J.TATE.2021.103366. [50] A. Bouteraa and F. Bouaziz, "Do talent management practices improve organizational resilience? An empirical study within Tunisian companies," African J. Econ. Manag. Stud., 2023, doi: 10.1108/AJEMS-07-2022-0301. [51] D. S. Weerasinghe, "An Attempt To Build An Evidence-Based Player Ranking System For Talent Identification In Sri Lankan Football," in Proceedings of the 10th YSF Symposium, 2022, pp. 229–237.
(1)
[1] R. R. Al Hakim, E. Rusdi, and M. A. Setiawan, “Android Based Expert System Application for Diagnose COVID-19 Disease : Cases Study of Banyumas Regency,” J. Intell. Comput. Heal. Informatics, vol. 1, no. 2, pp. 1–13, 2020, doi: 10.26714/jichi.v1i2.5958. [2] R. R. Al Hakim, “Pencegahan Penularan Covid-19 Berbasis Aplikasi Android Sebagai Implementasi Kegiatan KKN Tematik Covid-19 di Sokanegara Purwokerto Banyumas,” Community Engagem. Emerg. J., vol. 2, no. 1, pp. 7–13, Aug. 2021, doi: 10.37385/ceej.v2i1.125. [3] R. Vaishya, M. Javaid, I. H. Khan, and A. Haleem, “Artificial Intelligence (AI) applications for COVID-19 pandemic,” Diabetes Metab. Syndr. Clin. Res. Rev., vol. 14, no. 4, pp. 337–339, Jul. 2020, doi: 10.1016/j.dsx.2020.04.012. [4] J. A. Firth et al., “Using a real-world network to model localized COVID-19 control strategies,” Nat. Med., vol. 26, no. 10, pp. 1616–1622, Oct. 2020, doi: 10.1038/s41591-020-1036-8. [5] A. M. Ahmed, “Designing a Framework to Control the Spread of Covid-19 by Utilizing Cellular System,” Kurdistan J. Appl. Res., vol. 5, no. 3, pp. 146–153, Jun. 2020, doi: 10.24017/covid.16. [6] M. Qomaruddin, M. T. Alawy, and S. Sugiono, “Perancangan Aplikasi Penentu Rute Terpendek Perjalanan Wisata di Kabupaten Jember Menggunakan Algoritma Dijkstra,” Sci. Electro, vol. 6, no. 2, pp. 31–39, 2018. [7] D. Wahyuningsih and E. Syahreza, “Shortest Path Search Futsal Field Location With Dijkstra Algorithm,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 12, no. 2, p. 161, 2018, doi: 10.22146/ijccs.34513. [8] Farid and Y. Yunus, “Analisa Algoritma Haversine Formula untuk Pencarian Lokasi Terdekat Rumah Sakit dan Puskesmas Provinsi Gorontalo,” Ilk. J. Ilm., vol. 9, no. 3, pp. 353–355, 2017. [9] M. Alsaqer, B. Hilton, T. Horan, and O. Aboulola, “Performance Assessment of Geo-triggering in Small Geo-fences: Accuracy, Reliability, and Battery Drain in Different Tracking Profiles and Trigger Directions,” Procedia Eng., vol. 107, pp. 337–348, 2015, doi: 10.1016/j.proeng.2015.06.090. [10] H. Brito, A. Gomes, A. Santos, and J. Bernardino, “JavaScript in mobile applications: React native vs ionic vs NativeScript vs native development,” in Iberian Conference on Information Systems and Technologies, CISTI, Jun. 2018, vol. 2018-June, pp. 1–6, doi: 10.23919/CISTI.2018.8399283. [11] S. R. Garzon, D. Arbuzin, and A. Kupper, “Geofence index: A performance estimator for the reliability of proactive location-based services,” Proc. - 18th IEEE Int. Conf. Mob. Data Manag. MDM 2017, pp. 1–10, 2017, doi: 10.1109/MDM.2017.12. [12] R. Sayeed, D. Gottlieb, and K. D. Mandl, “SMART Markers: collecting patient-generated health data as a standardized property of health information technology,” npj Digit. Med., vol. 3, no. 1, pp. 1–8, 2020, doi: 10.1038/s41746-020-0218-6. [13] A. H. Abbas, M. I. Habelalmateen, S. Jurdi, L. Audah, and N. A. M. Alduais, “GPS based location monitoring system with geo-fencing capabilities,” in AIP Conference Proceedings, 2019, vol. 2173, p. 20004, doi: 10.1063/1.5133929. [14] O. M. Zambrano, A. M. Zambrano, M. Esteve, and C. Palau, “An Innovative and Economic Management of Earthquakes: Early Warnings and Situational Awareness in Real Time,” Wirel. Public Saf. Networks 3 Appl. Uses, pp. 19–38, 2017, doi: 10.1016/B978-1-78548-053-9.50002-0. [15] A. Sedeño-noda and M. Colebrook, “A biobjective Dijkstra algorithm,” Eur. J. Oper. Res., vol. 276, no. 1, pp. 106–118, 2019, doi: 10.1016/j.ejor.2019.01.007. [16] S. X. Wang, “The improved Dijkstra’s shortest path algorithm and its application,” in Procedia Engineering, Jan. 2012, vol. 29, pp. 1186–1190, doi: 10.1016/j.proeng.2012.01.110. [17] R. R. Al Hakim et al., “Aplikasi Algoritma Dijkstra dalam Penyelesaian Berbagai Masalah,” Expert J. Manaj. Sist. Inf. dan Teknol., vol. 11, no. 1, pp. 42–47, 2021, doi: 10.36448/expert.v11i1.1939. [18] Y. Z. Chen, S. F. Shen, T. Chen, and R. Yang, “Path optimization study for vehicles evacuation based on Dijkstra algorithm,” in Procedia Engineering, Jan. 2014, vol. 71, pp. 159–165, doi: 10.1016/j.proeng.2014.04.023.
(1)
[1] R. R. Al Hakim, “Model Energi Indonesia, Tinjauan Potensi Energi Terbarukan untuk Ketahanan Energi di Indonesia: Sebuah Ulasan,” ANDASIH J. Pengabdi. Kpd. Masy., vol. 1, no. 1, pp. 11–21, 2020, [Online]. Available: http://www.jurnal.umitra.ac.id/index.php/ANDASIH/article/view/374 [2] R. R. Al Hakim, E. Ariyanto, Y. Z. Arief, A. Sungkowo, and T. Trikolas, “Preliminary Study of Juridical Aspects of Renewable Energy Draft Law In Indonesia: An Academic Perspectives,” ADLIYA J. Huk. dan Kemanus., vol. 16, no. 1, pp. 59–72, 2022, doi: 10.15575/adliya.v16i1.14063. [3] R. R. Al Hakim, Y. Z. Arief, A. Pangestu, and A. Jaenul, “Perancangan Media Interaktif Energi Baru Terbarukan Berbasis Android,” in Seminar Nasional Hasil Riset dan Pengabdian Ke-III (SNHRP-III 2021), 2021, pp. 144–150. [Online]. Available: https://snhrp.unipasby.ac.id/prosiding/index.php/snhrp/article/view/182 [4] Kementerian ESDM, “Handbook of Energy & Economic Statistics of Indonesia 2018 Final Edition,” Jakarta, 2018. [5] R. R. Al Hakim, A. Pangestu, A. Jaenul, D. W. Sinaga, E. Y. Saputra, and Y. Z. Arief, “Implementasi PLTS di Desa Pulisan, Sulawesi Utara, Indonesia sebagai Perwujudan Program Desa Energi,” in Prosiding Seminar Nasional Penelitian dan Pengabdian 2021, “Penelitian dan Pengabdian Inovatif pada Masa Pandemi Covid-19,” 2021, pp. 762–767. [Online]. Available: http://prosiding.rcipublisher.org/index.php/prosiding/article/view/220 [6] K. Hirota and S. Kashima, “How are automobile fuel quality standards guaranteed? Evidence from Indonesia, Malaysia and Vietnam,” Transp. Res. Interdiscip. Perspect., vol. 4, p. 100089, Mar. 2020, doi: 10.1016/J.TRIP.2019.100089. [7] G. Giacosa and T. R. Walker, “A policy perspective on Nova Scotia’s plans to reduce dependency on fossil fuels for electricity generation and improve air quality,” Clean. Prod. Lett., vol. 3, p. 100017, Dec. 2022, doi: 10.1016/J.CLPL.2022.100017. [8] E. Suryani, R. A. Hendrawan, P. F. E. Adipraja, B. Widodo, U. E. Rahmawati, and S. Y. Chou, “Dynamic scenario to mitigate carbon emissions of transportation system: A system thinking approach,” Procedia Comput. Sci., vol. 197, pp. 635–641, Jan. 2022, doi: 10.1016/J.PROCS.2021.12.184. [9] M. Roca-Puigròs, C. Marmy, P. Wäger, and D. B. Müller, “Modeling the transition toward a zero emission car fleet: Integrating electrification, shared mobility, and automation,” Transp. Res. Part D Transp. Environ., vol. 115, p. 103576, Feb. 2023, doi: 10.1016/J.TRD.2022.103576. [10] J. W. Hu, A. Javaid, and F. Creutzig, “Leverage points for accelerating adoption of shared electric cars: Perceived benefits and environmental impact of NEVs,” Energy Policy, vol. 155, p. 112349, Aug. 2021, doi: 10.1016/J.ENPOL.2021.112349. [11] A. D. Setiawan, T. N. Zahari, F. J. Purba, A. O. Moeis, and A. Hidayatno, “Investigating policies on increasing the adoption of electric vehicles in Indonesia,” J. Clean. Prod., vol. 380, no. Part 2, p. 135097, Dec. 2022, doi: 10.1016/J.JCLEPRO.2022.135097. [12] P. Jochem, T. Gnann, J. E. Anderson, M. Bergfeld, and P. Plötz, “Where should electric vehicle users without home charging charge their vehicle?,” Transp. Res. Part D Transp. Environ., vol. 113, p. 103526, Dec. 2022, doi: 10.1016/J.TRD.2022.103526. [13] Ö. Gönül, A. C. Duman, and Ö. Güler, “Electric vehicles and charging infrastructure in Turkey: An overview,” Renew. Sustain. Energy Rev., vol. 143, p. 110913, Jun. 2021, doi: 10.1016/J.RSER.2021.110913. [14] B. Borlaug, F. Yang, E. Pritchard, E. Wood, and J. Gonder, “Public electric vehicle charging station utilization in the United States,” Transp. Res. Part D Transp. Environ., vol. 114, p. 103564, Jan. 2023, doi: 10.1016/J.TRD.2022.103564. [15] Z. Ullah et al., “Optimal scheduling and techno-economic analysis of electric vehicles by implementing solar-based grid-tied charging station,” Energy, vol. 267, p. 126560, Mar. 2023, doi: 10.1016/J.ENERGY.2022.126560. [16] P. Anugrah and R. W. Pratama, “Techno-Economic Simulation of On-grid PV System at a New Grand Mosque in Bukittinggi using HOMER,” J. Nas. Tek. Elektro, vol. 11, no. 1, pp. 8–13, Mar. 2022, doi: 10.25077/JNTE.V11N1.985.2022. [17] N. Goetzel and M. Hasanuzzaman, “An empirical analysis of electric vehicle cost trends: A case study in Germany,” Res. Transp. Bus. Manag., vol. 43, p. 100825, Jun. 2022, doi: 10.1016/J.RTBM.2022.100825.
(1)
[1] R. Schell, S. Hausknecht, and D. Kaufman, “Barriers and Adaptations of a Digital Game for Older Adults,” in Proceedings of the 1st International Conference on Information and Communication Technologies for Ageing Well and e-Health, 2015, pp. 269–275. [2] M. K. P. Tran, F. Bremond, and P. Robert, Assistance for Older Adults in Serious Game Using an Interactive System, vol. 9599. Cham: Springer International Publishing, 2016. [3] Y. H. Lin, H. F. Mao, Y. C. Tsai, and J. J. Chou, “Developing a serious game for the elderly to do physical and cognitive hybrid activities,” 2018 IEEE 6th Int. Conf. Serious Games Appl. Heal. SeGAH 2018, pp. 1–8, 2018. [4] D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, “Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement,” PLoS Med., vol. 6, no. 7, p. e1000097, Jul. 2009. [5] J. N. Filho and A. I. Veloso, “Location-Based Games on Active Aging: A Systematic Review,” in 2019 14th Iberian Conference on Information Systems and Technologies (CISTI), 2019, vol. 2019-June, no. June, pp. 1–6. [6] A. M. Kueider, J. M. Parisi, A. L. Gross, and G. W. Rebok, “Computerized Cognitive Training with Older Adults: A Systematic Review,” PLoS One, vol. 7, no. 7, p. e40588, Jul. 2012. [7] T. T. H. Nguyen et al., “Impact of Serious Games on Health and Well-being of Elderly: A Systematic Review,” in Proceedings of the 50th Hawaii International Conference on System Sciences (2017), 2017, pp. 3695–3704. [8] K. Radhakrishnan et al., “Interactive Digital e-Health Game for Heart Failure Self-Management: A Feasibility Study,” Games Health J., vol. 5, no. 6, pp. 366–374, Dec. 2016. [9] H. C. S. Neto, J. Cerejeira, and L. Roque, Entertainment Computing – ICEC 2017, vol. 10507. Cham: Springer International Publishing, 2017. [10] C. Boletsis and S. McCallum, “Smartkuber: A Serious Game for Cognitive Health Screening of Elderly Players,” Games Health J., vol. 5, no. 4, pp. 241–251, Aug. 2016. [11] M. Mihajlov, E. L.-C. Law, and M. Springett, “The Effect of Dyadic Interactions on Learning Rotate Gesture for Technology-Naïve Older Adults,” in Proceedings of the International Symposium on Interactive Technology and Ageing Populations - ITAP ’16, 2016, pp. 99–108. [12] H. C. S. Neto, J. Cerejeira, J. B. Leite, L. Roque, and D. P. C. Neto, “Cow milking game: Evaluating a serious game for cognitive stimulation with an elderly population,” ACM Int. Conf. Proceeding Ser., pp. 44–53, 2016. [13] M. Awad and C. Craig, “Players’ performance in cross generational game playing,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10622 LNCS, pp. 170–182, 2017. [14] I. A. Codreanu and A. M. Florea, “A Proposed Serious Game Architecture to Self-Management HealthCare for Older Adults,” in 2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2015, pp. 437–440. [15] J. A. Garcia, “Assessing the validity of in-game stepping performance data from a kinect-based fall prevention exergame,” 2018 IEEE 6th Int. Conf. Serious Games Appl. Heal. SeGAH 2018, pp. 1–7, 2018. [16] E. Loos and A. Zonneveld, Human Aspects of IT for the Aged Population. Healthy and Active Aging, vol. 9755, no. 1. Cham: Springer International Publishing, 2016. [17] H. G. Zadeh, A. I. Veloso, and A. Pereira, “Mr Dustman: A multitasking digital game for older adults who suffer from Mild Cognitive Impairment and Urinary Incontinence,” no. June, pp. 19–22, 2019. [18] R. Schell and D. Kaufman, “Community Building among Older Adults in a Digital Game Environment,” in Proceedings of the 9th International Conference on Computer Supported Education, 2017, vol. 2, no. Csedu, pp. 233–239. [19] F. Zhang, S. Hausknecht, R. Schell, and D. Kaufman, “Factors Affecting the Gaming Experience of Older Adults in Community and Senior Centres,” in Communications in Computer and Information Science, vol. 739, 2017, pp. 464–475. [20] F. Zhang, D. Kaufman, R. Schell, G. Salgado, E. T. W. Seah, and J. Jeremic, “Situated learning through intergenerational play between older adults and undergraduates,” Int. J. Educ. Technol. High. Educ., vol. 14, no. 1, p. 16, Dec. 2017. [21] J. A. Brown, Human Aspects of IT for the Aged Population. Applications, Services and Contexts, vol. 10298. Cham: Springer International Publishing, 2017. [22] S. K. Jali and S. Arnab, “The andragogical perspectives of older people’s interaction with digital game technologies: Gameplay on gesture and touch-based platforms,” Proc. Eur. Conf. Games-based Learn., vol. 2016-Janua, pp. 319–326, 2016. [23] Hongmei Chi, E. Agama, and Z. G. Prodanoff, “Developing serious games to promote cognitive abilities for the elderly,” in 2017 IEEE 5th International Conference on Serious Games and Applications for Health (SeGAH), 2017, pp. 1–8. [24] D. Kaufman, L. Sauvé, L. Renaud, A. Sixsmith, and B. Mortenson, “Older Adults’ Digital Gameplay: Patterns, Benefits, and Challenges,” Simul. Gaming, vol. 47, no. 4, pp. 465–489, 2016. [25] S. Merilampi et al., “The cognitive mobile games for older adults - a Chinese user experience study,” in 2017 IEEE 5th International Conference on Serious Games and Applications for Health (SeGAH), 2017, pp. 1–6. [26] S. K. Jali and S. Arnab, “The Perspectives of Older People on Digital Gaming: Interactions with Console and Tablet-Based Games,” in Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, vol. 176 LNICST, 2017, pp. 82–90. [27] J. Dias, A. I. Veloso, and T. Ribeiro, “‘A Priest in the Air,’” in 2019 14th Iberian Conference on Information Systems and Technologies (CISTI), 2019, vol. 2019-June, no. June, pp. 1–7. [28] S. Hausknecht, R. Schell, F. Zhang, and D. Kaufman, “Building Seniors’ Social Connections and Reducing Loneliness Through a Digital Game,” in Proceedings of the 1st International Conference on Information and Communication Technologies for Ageing Well and e-Health, 2015, pp. 276–284. [29] D. Kaufman and L. Sauve, “Digital Gaming by Older Adults: Can It Enhance Social Connectedness?,” in Zhou J., Salvendy G. (eds) Human Aspects of IT for the Aged Population. Social Media, Games and Assistive Environments. HCII 2019. Lecture Notes in Computer Science, vol. 11593, Springer International Publishing, 2019, pp. 167–176. [30] D. Kaufman and F. Zhang, “Can Playing Massive Multiplayer Online Role Playing Games (MMORPGs) Help Older Adults?,” in Proceedings of the 1st International Conference on Information and Communication Technologies for Ageing Well and e-Health, 2015, vol. 1, pp. 527–535. [31] C.-H. Ku, S.-L. Huang, and T.-Y. Li, Serious Games, Interaction, and Simulation, vol. 161. Cham: Springer International Publishing, 2016. [32] H. Lin, J. Hou, H. Yu, Z. Shen, and C. Miao, “An agent-based game platform for exercising people’s prospective memory,” Proc. - 2015 IEEE/WIC/ACM Int. Jt. Conf. Web Intell. Intell. Agent Technol. WI-IAT 2015, vol. 3, pp. 235–236, 2016.
(1)
1. Ruiz JG, Mintzer MJ, Leipzig RM. The impact of E-learning in medical education. Acad Med. 2006;81(3):207–212.https://doi.org/10.1097/00001 888-200603000-00002 2. Zafar S, Safdar S, Zafar AN. Evaluation of use of e-Learning in under- graduate radiology education: a review. Eur J Radiol. 2014;83(12):2277–2287. https://doi.org/10.1016/j.ejrad.2014.08.017 3. Ward JP, Gordon J, Field MJ, Lehmann HP. Communication and information technology in medical education. Lancet. 2001; 357(9258):792–796. https://doi.org/10.1016/S0140-6736(00)04173-8 4. Vavasseur A, Muscari F, Meyrignac O, Nodot M, Dedouit F, Revel-Mouroz P, Dercle L, Rozenblum L, Wang L, Maulat C, Rousseau H, Otal P, Dercle L, Mokrane FZ. Blended learning of radiology improves medical students’ performance, satisfaction, and engagement. Insights Imaging. 2020;11(1):61. https://doi.org/ 10.1186/s13244-020-00865-8. 5. Liu Q, et al: The effectiveness of blended learning in health professions: systematic review and meta-analysis. J Med Internet Res. 2016; 18(1): e2. 6. Alamer A, Alharbi F. Synchronous distance teaching of radiology clerkship promotes medical students’ learning and engagement. Insights Imaging. 2021 Dec 1;12(1). 7. Chung E, Subramaniam G, Dass LC. Online learning readiness among university students in Malaysia amidst COVID-19. Asian J Univ Educ. 2020;16(2):45–58. doi:10.24191/AJUE.V16I2.10294. 8. Prezzia C, Vorona G, Greenspan R. Fourth-year medical student opinions and basic knowledge regarding the field of radiology. Acad Radiol 2013;20:272-83. 9. Nyhsen CM, Steinberg LJ, O’Connell JE. Undergraduate radiology teaching from the student’s perspective. Insights Imaging 2013;4:103-9. 10. Dost, S., Hossain, A., Shehab, M., Abdelwahed, A., & Al-Nusair, L. (2020). Perceptions of medical students towards online teaching during the COVID-19 pandemic: a national cross-sectional survey of 2721 UK medical students. BMJ Open, 10(11), e042378. https://doi.org/10.1136/bmjopen-2020-042378 11. Nguyen, T. (2015). The Effectiveness of Online Learning: Beyond No Significant Difference and Future Horizons. MERLOT Journal of Online Learning and Teaching, 11(2), 309-319. 12. O’Doherty, D., Dromey, M., Lougheed, J., Hannigan, A., Last, J., & McGrath, D. (2018). "Barriers and solutions to online learning in medical education – An integrative review." BMC Medical Education, 18(1), 130. DOI: 10.1186/s12909-018-1240-0. 13. Bernard, R. M., Borokhovski, E., Schmid, R. F., Tamim, R. M., & Abrami, P. C. (2014). A Meta-Analysis of Blended Learning and Technology Use in Higher Education: From the General to the Applied. Journal of Computing in Higher Education, 26(1), 87-122. DOI:10.1007/s12528-013-9077-3 14. McRoy C, Patel L, Gaddam DS, et al. Radiology education in the time of COVID-19: a novel distance learning workstation experience for resi- dents. Acad Radiol 2020; 27:1467–1474. 15. Li CH, Rajamohan AG, Acharya PT, et al. Virtual read-out: radiology edu- cation for the 21st century during the COVID-19 pandemic. Acad Radiol 2020; 27:872–881.
(1)
[1] R. Zhi, X. Hu, C. Wang, and S. Liu, “Development of a direct mapping model between hedonic rating and facial responses by dynamic facial expression representation,” Food Research International, vol. 137, Nov. 2020, doi: 10.1016/j.foodres.2020.109411. [2] S. S. Samant, M. J. Chapko and H. Seo, “Predicting consumer liking and preference based on emotional responses and sensory perception: A study with basic taste solutions,” Food Research International, vol. 100, pp. 325-334, Jul. 2017, doi: 10.1016/j.foodres.2017.07.021. [3] S. G. Moore, “Attitude predictability and helpfulness in online reviews: The role of explained actions and reactions,” Journal of Consumer Research, vol. 42, no. 1, pp. 30-44, 2015, doi: https://doi.org/10.1093/jcr/ucv003. [4] M. D. Rocklage., and R. H. Fazio, “The enhancing versus backfiring effects of positive emotion in consumer reviews,” Journal of Marketing Research, vol. 57, no. 2, pp. 332-352, Feb. 2020, doi: 10.1177/0022243719892594. [5] N. Hussain, H. Ujir, I. Hipiny and J. L. Minoi., “3D facial action units recognition for emotional expression,” International Journal of Recent Technology and Engineering, vol. 8, no. 28, pp. 1317-1323, 2019. [6] L. J. Harrison-Walker, “The effect of consumer emotions on outcome behaviors following service failure,” Journal of Services Marketing, vol. 33, no. 3, pp. 285–302, 2019, doi: 10.1108/JSM-04-2018-0124. [7] H. Ujir and M. Spann, “Surface normals with modular approach and weighted voting scheme in 3D facial expression classification,” International Journal of Computer and Information Technology, vol. 3, no. 5, pp. 909-918, Sep. 2014. [8] P. Tarnowski., M. Kolodziej, A. Majkowski and R. J. Rak., “Emotion recognition using facial expressions,” in ICCS, pp. 1175-1184, Jun. 2017, doi: 10.1016/j.procs.2017.05.025. [9] J. Yuan., S. Mcdonough., Q. You., and J. Luo, “Sentribute: image sentiment analysis from a mid-level perspective,” in Proceedings of the Second International Workshop on Issues of Sentiment Discovery and Opinion Mining, 2013, pp. 1-8, doi: 10.1145/2502069.2502079. [10] G. Yolcu., I. Oztel, S. Kazan, C. Oz and F. Bunyak, “Deep learning-based face analysis system for monitoring customer interest,” Journal of Ambient Intelligence and Humanized Computing, vol. 11, no. 1, pp. 237-248, 2020, doi: 10.1007/s12652-019-01310-5. [11] H. Zhang., A. Jolfaei, and M. Alazab, “A face emotion recognition method using convolutional neural network and image edge computing,” IEEE Access, vol. 7, pp. 159081-159089, Oct. 2019, doi: 10.1109/ACCESS.2019.2949741. [12] P. M. A. Desmet, “Faces of product pleasure: 25 positive emotions in human-product interactions,” International Journal of Design, vol. 6, no. 2, Dec. 2012. [13] M. S. Balaji and A. Quazi, “Customers’ emotion regulation strategies in service failure encounters,” European Journal of Marketing, vol. 51, no. 5/6, pp. 960-982, 2017, doi: 10.1108/EJM-03-2015-0169. [14] A. D. Gavrilov, A. Jordache, M. Vasdani and J. Deng, “Preventing model overfitting and underfitting in convolutional neural networks,” International Journal of Software Science and Computational Intelligence (IJSSCI), vol. 10, no. 4, pp. 19-28, Dec. 2018, doi: 10.4018/IJSSCI.2018100102. [15] K. Mohan, A. Seal, O. Krejcar and Yazidi, “A. FER-net: Facial expression recognition using deep neural net,” Neural Computing and Applications, pp. 1-12, 2021, doi: 10.1007/s00521-020-05676-y. [16] T. Vijayakumar., “Comparative study of capsule neural network in various applications,” Journal of Artificial Intelligence, vol. 1, no. 1, pp. 19-27, 2019, doi: 10.36548/jaicn.2019.1.003. [17] C. H. Sampaio, W. J. Ladeira, and F. D. O. Santini, “Apps for mobile banking and customer satisfaction: A cross-cultural study,” International Journal of Bank Marketing, vol. 35, no. 7, pp. 1133–1153, 2017, doi: 10.1108/IJBM-09-2015-0146 [18] K. An, M. K. Hui and K. Leung, “Who should be responsible? Effects of voice and compensation on responsibility attribution, perceived justice, and post‐complaint behaviors across cultures,” International Journal of Conflict Management, vol. 12, no. 4, pp. 350–364, 2001, doi: 10.1108/eb022863. [19] S. Lu, L. Xiao and M. Ding, “A video-based automated recommender (VAR) system for garments,” Marketing Science, vol. 35, no. 3, pp. 484-510, 2016, doi: 10.1287/mksc.2016.0984. [20] N. T. Deshpande and S. Ravishankar, “Face detection and recognition using Viola-Jones algorithm and fusion of PCA and ANN,” Advances in Computational Sciences and Technology, vol.10, no. 5, pp. 1173-1189, 2017. [21] S. Kumar, S. Singh and J. Kumar, “Multiple face detection using hybrid features with SVM classifier,” in Data and Communication Networks, pp. 253-265, 2019, doi: 10.1007/978-981-13-2254-9_23. [22] H. T. Le and L. A. Vea, “A customer emotion recognition through facial expression using kinect sensor v1 and v2: A comperative analysis,” in Proceedings of the 10th International Conference on Ubiquitous Information Management and Communication, 2019, pp. 1-7, doi: 10.1145/2857546.2857628. [23] T. Nakano and S. Kato, “Potentiality of 3D convolutional neural networks to estimate customer expectation and satisfaction,” 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE), 2017, pp. 1-4, doi: 10.1109/GCCE.2017.8229391. [24] M. S. Bouzakraoui, A. Sadiq, and N. Enneya, “A customer emotion recognition through facial expression using POEM descriptor and SVM classifier,” in Proceedings of the 2nd international Conference on Big Data, Cloud and Applications, 2017, pp. 1-6, doi: 10.1145/3090354.3090436. [25] M. J. Lyons, M. Kamachi, and J. Gyoba, “Japanese female facial expressions (JAFFE),” Database of digital images, vol. 3, 1997. [26] S. K. Ramani, “Facial expression detection using neural network for customer based service,” In 2018 International Conference on Computer, Communication, and Signal Processing (ICCCSP), pp. 1-4, Feb. 2018, doi: 10.1109/ICCCSP.2018.8452864. [27] A. Caroppo, A. Leone, and P. Siciliano, “Comparison between deep learning models and traditional machine learning approaches for facial expression recognition in ageing adults,” Journal of Computer Science and Technology, vol. 35, no. 5, pp. 1127-1146, 2020, doi: 10.1007/s11390-020-9665-4. [28] M. F. Valstar and M. Pantic., “Induced disgust, happiness and surprise: an addition to the MMI facial expression database,” in Proceedings of International Conference Language Resources and Evaluation, Workshop on EMOTION, 2010, pp. 65-70. [29] X. Qi, T. Wang and J. Liu, “Comparison of support vector machine and Softmax classifiers in computer vision,” in 2017 Second International Conference on Mechanical, Control and Computer Engineering (ICMCCE), 2017, pp. 151-155, doi: 10.1109/ICMCCE.2017.49. [30] J. Shao and Y. Qian, “Three convolutional neural network models for facial expression recognition in the wild,” Neurocomputing, vol. 355, pp. 82-92, Aug. 2019, doi: 10.1016/j.neucom.2019.05.005. [31] Giannopoulos, Panagiotis, I. Perikos and I. Hatzilygeroudis, “Deep learning approaches for facial emotion recognition: A case study on FER-2013,” Advances in Hybridization of Intelligent Methods, pp. 1-16, 2018, doi: 10.1007/978-3-319-66790-4_1. [32] J. Van Kleef, “Towards human-like performance face detection: A convolutional neural network approach,” University of Twente, 2016. [33] G. Lin and W. Shen, “Research on convolutional neural network based on improved ReLu piecewise activation function,” Procedia computer science, vol. 131, pp. 977-984, 2018, doi: 10.1016/j.procs.2018.04.239. [34] N. Ma, X. Zhang, H. T. Zheng and J. Sun, “Shufflenet v2: Practical guidelines for efficient CNN architecture design,” in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 116-131, doi: 10.1007/978-3-030-01264-9_8. [35] S. Ren, K. He, R. Girshick, X. Zhang and J. Sun, “Object detection networks on convolutional feature maps,” IEEE Transactions on Pattern Analysis and Machine Intelligence,” vol. 39, no. 7, 1476-1481, 2016, doi: 10.1109/TPAMI.2016.2601099. [36] A. F. Agarap, “Deep learning using rectified linear units (ReLu),” arXiv preprint arXiv: 1803.08375, 2018. [37] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3, pp. 273–297, 1995, doi: 10.1007/BF00994018. [38] T. Zhang, W. Zheng, Z. Cui, Y. Zong, J. Yan and K. Yan, “A deep neural network-driven feature learning method for multi-view facial expression recognition,” IEEE Transactions on Multimedia, vol. 18, no. 12, pp. 2528-2536, 2016, doi: 10.1109/TMM.2016.2598092. [39] L. Chen, M. Zhou, W. Su, M. Wu, J. She and K. Hirota, “Softmax regression based deep sparse autoencoder network for facial emotion recognition in human-robot interaction,” Information Sciences, vol. 428, pp. 49-61, 2018, doi: 10.1016/j.ins.2017.10.044.
(1)
1. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N,et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract. 2019;157:107843. 2. World Health Organization. Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: report of a World Health Organization/International Diabetes Federation consultation. Geneva: World Health Organization; 2006. 3. Aronoff SL, Berkowitz K, Shreiner B, Want L. Glucose metabolism and regulation: beyond insulin and glucagon. Diabetes Spectrum. 2004;17(3):183–90. 4. Thomas D, Elliott EJ. Low glycaemic index, or low glycaemic load, diets for diabetes mellitus. Cochrane Database Syst Rev. 2009;1:CD006296. 5. Marsh K, Barclay A, Colagiuri S, Brand-Miller J. Glycemic index and glycemic load of carbohydrates in the diabetes diet. Curr Diab Rep. 2011;11(2):120–7. 6. Jenkins DJ, Kendall CW, Augustin LS, Franceschi S, Hamidi M, Marchie A, et al. Glycemic index: overview of implications in health and disease. Am J Clin Nutr. 2002;76(1):266S–73S. 7. Bin Y, Danping Z, Jingting S, Mun WC, Philip C, Shao QL, et al. Characteristics of calamansi (Citrus microcarpa). Part 2: volatiles, physicochemical properties and non-volatiles in the juice. Food Chem. 2012;134(2):696–703. 8. Morte MYT, Acero LH. Potential of calamansi (Citrofortunella microcarpa) fruit peels extract in lowering the glucose level of streptozotocin induced albino rats (Rattus albus). Int J Food Eng. 2017;1(3):29–34. 9. Abu-gabal NS, Abd-alla HI, Mohamed NZ, Aly HF, Shalaby NMM. Phytophenolics composition, hypolipidemic, hypoglycemic, and antioxidant effects of the leaves of Fortunella japonica (Thunb.) Swingle. Int J Pharm Pharm Sci. 2015;7(12):55–63. 10. Tee ES, Yap RWK. Type 2 diabetes mellitus in Malaysia: current trends and risk factors. Eur J Clin Nutr. 2017;71(7):844–9. 11. Carbohydrates in human nutrition. Report of a Joint Food and Agriculture Organization/World Health Organisation Expert Consultation. Rome; 1998. Report No.: 0254-4725 (Print) 0254-4725 (Linking). 12. Azmi MY Jr, Junidah R, Siti Mariam A, Safiah MY, Fatimah S, Norimah AK, et al. Body mass index (BMI) of adults: findings of the Malaysian Adult Nutrition Survey (MANS). Malays J Nutr. 2009;15(2):97–119. 13. World Health Organisation. Waist circumference and waist–hip ratio: report of a WHO expert consultation. Geneva: World Health Organisation;2008. 14. MoH Malaysia. Section 2: screening and diagnosis. 5th ed. Malaysia: Ministry of Health Malaysia; 2015. p. 3–7. 15. Passos TU, Alves H, Sampaio DC, Olganê M, Sabry D, Luisa M, et al. Glycemic index and glycemic load of tropical fruits and the potential risk for chronic diseases. Food Sci Technol Int. 2015;35(1):66–73. 16. Robert SD, Ismail AA, Winn T, Wolever TM. Glycemic index of common Malaysian fruits. Asia Pac J Clin Nutr. 2008;17(1):35–9. 17. Ludwig DS. The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA. 2002;287(18):2414–23. 18. Jenkins DJ, Wolever TM, Taylor RH, Ghafari H, Jenkins AL, Barker H, et al. Rate of digestion of foods and postprandial glycaemia in normal and diabetic subjects. Br Med J. 1980;281(6232):14–7. 19. Zafar MI, Mills KE, Zheng J, Regmi A, Hu SQ, Gou L, et al. Low-glycemic index diets as an intervention for diabetes: a systematic review and metaanalysis. Am J Clin Nutr. 2019;110(4):891–902. 20. Delport E. A comparison of the glycemic index (GI) results obtained from two techniques on a group of healthy and a group of mixed subjects. Pretoria: University Van Pretoria; 2006. 21. Muller M, Canfora EE, Blaak EE. Gastrointestinal transit time, glucose homeostasis and metabolic health: modulation by dietary fibers. Nutrients. 2018;10(3):275. 22. Foster-Powell K, Holt SH, Brand-Miller JC. International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr. 2002;76(1):5–56. 23. Lou S-N, Hsu Y-S, Ho C-T. Flavonoid compositions and antioxidant activity of calamondin extracts prepared using different solvents. J Food Drug Anal. 2014;22(3):290–5. 24. Lim SM, Loh SP. In vitro antioxidant capacities and antidiabetic properties of phenolic extracts from selected citrus peels. Int Food Res J. 2016;23(1):211–9. 25. Cherbut C. Role of gastrointestinal motility in the delay of absorption by dietary fibre. Eur J Clin Nutr. 1995;49(Suppl 3):S74–80.
(1)
1. Salimi M, Peyman H, Sadeghifar J, Toloui Rakhshan S, Alizadeh M, Yamani N. Assessment of interpersonal communication skills and associated factors among students of allied medicine school in tehran university of medical sciences. Iran J Med Educ. 2013;12:895-902. 2. Post SG, Puchalski CM, Larson DB. Physicians and patient spirituality: professional boundaries, competency, and ethics. Ann Intern Med. 2000;132:578-83. 3. Birden H, Glass N, Wilson I, Harrison M, Usherwood T. Teaching professionalism in medical education: A best evidence medical education (BEME) systematic review (BEME). Med Teach 2013;35:e1252-66. 4. Keren D, Lockyer J, Ellaway RH. Social studying and learning among medical students: A scoping review. Perspect Med Educ. 2017;6:311-8. 5. Okita SY. Social interactions and learning. In: Seel NM, ed. Encyclopedia of the sciences of learning. Boston, MA: Springer US; 2012:3104-3107. 6. Klemenc-Ketis Z, Vrecko H. Development and validation of a professionalism assessment scale for medical students. Int J Med Educ 2014;5:205. 7. Hulley SB, Cummings SR, Browner WS, Grady DG, Newman TB, eds. Designing clinical research: An epidemiologic approach. 4th edn. City: Philadelphia: PA: Lippincott Williams and Wilkins; 2013:75. 8. Lane SD. Interpersonal communication: Competence and contexts. London: Routledge; 2016. 9. Baharudin N, Mohamed Yassin MS, Sham S, Yusof Z, Ramli A. Validation of the communication skills attitude scale (CSAS) questionnaire in a cohort of Malaysian medical students. J Clin Health Sci. 2017;2:46. 10. Hojat M, Gonnella JS, Mangione S, Nasca TJ, Magee M. Physician empathy in medical education and practice: Experience with the Jefferson scale of physician empathy. Semin Integr Med. 2003;25-41. 11. Puggina AC, Silva MJP. Interpersonal communication competence scale: Brazilian translation, validation and cultural adaptation. Acta Paulista de Enfermagem 2014;27:108-14. 12. Hair JF, Black WC, Babin BJ, Anderson RE. Multivariate data analysis. 8th edn. United Kingdom: Pearson Education Ltd; 2019. 13. Tabachnick BG, Fidell LS. Using multivariate statistics. 7th edn. United States: Pearson Education, Inc; 2019. 14. IBM SPSS. IBM SPSS statistics for windows. 27 edn. Armonk, NY, USA: IBM SPSS; 2020. 15. Sharma A. Understanding Mahalanobis distance and its use cases. Analytics India magazine. India, 2018. 16. Dı́az-Garcı́a JA, González-Farı́as G. A note on the cook's distance. J Stat Plan Infer. 2004;120:119-36. 17. Gray JB, Woodall WH. The maximum size of standardized and internally studentized residuals in regression analysis. Am Stat 1994;48:111-3. 18. Regorz A. How to interpret a collinearity diagnostics table in SPSS. 2020. Available from: http://www.regorz-statistik.de/en/collinearity_diagnostics_table_SPSS.html. Accessed on 28 September 2021. 19. Hegazi I, Wilson I. Maintaining empathy in medical school: It is possible. Med Teac. 2013;35:1002-8. 20. Hull SK, DiLalla LF, Dorsey JK. Student attitudes toward wellness, empathy, and spirituality in the curriculum. Acad Med. 2001;76(5):520. 21. Rieffestahl AM, Risør T, Mogensen HO, Reventlow S, Morcke AM. Ignitions of empathy. Medical students feel touched and shaken by interacting with patients with chronic conditions in communication skills training. Patient Educ Counsel. 2021;104:1668-73. 22. Forbes R, Clasper B, Ilango A, Kan H, Peng J, Mandrusiak A. Effectiveness of patient education training on health professional student performance: A systematic review. Patient Educ Counsel. 2021;104(10):2453-66. 23. Copanitsanou P, Fotos N, Brokalaki H. Effects of work environment on patient and nurse outcomes. Br J Nurs. 2017;26:172-6. 24. Severinsson E, Sand A. Evaluation of the clinical supervision and professional development of student nurses. J Nurs Manage. 2010;18:669-77. 25. Lampert M, Ball D. Aligning teacher education with contemporary k-12 reform visions. San Fransisco: Jossey-Bass; 1999. 26. Oana J, Ona AI. Assertiveness in self-fulfilment and professional success. Interpersonal dynamics in the didactic relation. Psychology. 2019;10:1235-47. 27. Speed BC, Goldstein BL, Goldfried MR. Assertiveness training: a forgotten evidence‐based treatment. Clin Psychol Sci Pract. 2018;25:e12216. 28. Sprecher S, Treger S, Wondra JD. Effects of self-disclosure role on liking, closeness, and other impressions in get-acquainted interactions. J Soc Person Relat. 2013;30:497-514. 29. Gellert FJ, Schalk R. Age‐related attitudes: the influence on relationships and performance at work. J Health Organ Manage. 2012;26:98-117. 30. van Knippenberg D, Schippers MC. Work group diversity. Ann Rev Psychol. 2006;58:515-41.
(1)
[1] S.Altendorf, Major Tropical Fruits Market Review 2018, Food and Agriculture Organization of the United Nations Rome. (2019), p. 1-10. [2] N.A. Abdul Halim, et al., In vitro shoot regeneration and analysis of biochemical, antioxidant and anticancer properties of Ananas comosus var. MD2. Malaysian Journal of Fundamental and Applied Sciences. 14(2), (2018), p. 263-268. [3] Information on https://lembagananasarawak.wixsite.com/cawangansarawak/kultivar-nanas. [4] R. Mopoung, N. Kengkhetkit, Lead and cadmium removal efficiency from aqueous solution by NaOH treated pineapple waste. International Journal of Applied Chemistry, 12(1), (2016): p. 23-35. [5] N.A. Rahmat, et al., Removal of Remazol Brilliant Blue R from aqueous solution by adsorption using pineapple leaf powder and lime peel powder. Water, Air, & Soil Pollution, 227(4), 2016. [6] S.S Hassan, et al., Application of pineapple leaves as adsorbents for removal of Rose Bengal from wastewater: Process optimization operating Face-Centered Central Composite Design (FCCCD). Molecules, 25(16), 2020. [7] M. Asim, et al., A review on pineapple leaves fibre and its composites. International Journal of Polymer Science, (2015): p. 1-16. [8] S. Razali, M. Ishak, Clinical waste handling and obstacles in Malaysia. Journal of Urban and Environmental Engineering, 4, (2010): p. 47-54. [9] N. Li, et al., Glucose Addition Enhanced the Advanced Treatment of Coking Wastewater. Water, 13(23), (2021): p. 3365. [10] F.S. Nino, Sustainable Development Goals—United Nations. United Nations Sustainable Development, 2015. [11] S. Chowdhury, S. Chakraborty, P. Saha, Biosorption of Basic Green 4 from aqueous solution by Ananas comosus (pineapple) leaf powder. Colloids and Surfaces B: Biointerfaces, 84(2), (2011): p. 520-7. [12] A.J.H. Challabi, et al., Effect of superheated steam treatment on the mechanical properties and dimensional stability of PALF/PLA biocomposite. Polymers, 11(3), (2019): p. 482. [13] K. Patrick, R.O. Onchiri, and G.N. Mang’uriu, Inspection of pineapple leaf fibers extraction to be used in construction industry. Environmental Pollution and Protection, 2019. 4(2). [14] M.A. Mohamed, et al., Fourier transform infrared (FTIR) spectroscopy, in Membrane Characterization. Elsevier, (2017). p. 3-29. [15] S.H. Siddiqui, The removal of Cu2+, Ni2+ and Methylene Blue (MB) from aqueous solution using Luffa Actangula Carbon: Kinetics, thermodynamic and isotherm and response methodology. Groundwater for Sustainable Development, 6, (2018): p. 141-149. [16] B.M. Cherian, et al., Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydrate polymers, 81(3), (2010).: p. 720-725. 206 Functional and Engineering Materials [17] W.E. Triastuti, Effect of alkali treatment on processing of pineapple leaf fibers. in AIP Conference Proceedings. AIP Publishing LLC. 2021. [18] D. Zawawi, et al., Analysis of the chemical compositions and fiber morphology of pineapple (Ananas comosus) leaves in Malaysia. Journal of Applied Sciences, 14(12), (2014): p. 1355-1358. [19] J. Zhu, H. Abhyankar, J. Njuguna, Effect of fibre treatment on water absorption and tensile properties of flax/tannin composites. Proceedings of the ICMR, 2013. [20] Z. A. Zakaria, R. Boopathy, J. R. Dib, Valorisation of agro-industrial residues-Volume I: Biological approaches: Springer. (2020). [21] M. Zainuddin, et al., Effect of moisture content on physical properties of animal feed pellets from pineapple plant waste. Agriculture and Agricultural Science Procedia, 2, (2014): p. 224-230. [22] A. Sabin, Problems in particle size: laser diffraction observations. Particle Technology Labs. [online] http://www. particletechlabs. com Pristupljeno, 2011. [23] E. Torres, Biosorption: A review of the latest advances. Processes, 8(12), 2020. [24] D. Firmansyah, B. Rumhayati, Masruri, Modification of pineapple leaf cellulose with citric acid for Fe2+ adsorption. International Journal of ChemTech Research, 10(4), (2017): p. 674-680. [25] C.H. Weng, Y.-C. Wu, Potential Low-Cost Biosorbent for Copper Removal: Pineapple Leaf Powder. Journal of Environmental Engineering 2012. 138: p. 286-292. [26] W. Sun, W. Sun, Y. Wang, Biosorption of Direct Fast Scarlet 4BS from aqueous solution using the green-tide-causing marine algae Enteromorpha prolifera. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 223, (2019): p. 117347. [27] A.O. Dada, et al., Sustainable and low-cost Ocimum gratissimum for biosorption of indigo carmine dye: kinetics, isotherm, and thermodynamic studies. International Journal of Phytoremediation, 22(14), (2020): p. 1524-1537.
(1)
1. Sanislav T, Mois GD, Zeadally S, Folea SC (2021) Energy harvesting techniques for internet of things (IoT). IEEE Access 9:39530–39549. https://doi.org/10.1109/ACCESS.2021.3064066 2. Bai Y, Jantunen H, Juuti J (2021) Hybrid, multi-source, and integrated energy harvesters. Front Mater 5. https://doi.org/10.3389/fmats.2018.00065 3. GlobesNewswire (2021) Energy harvesting system market size to reach USD 817.2 million by 2026—Report by Market Research Future (MRFR). Market Research Future, 27 Oct 2021. Accessed on 18 Oct 2021 [Online]. Available: https://www.globenewswire.com/news-rel ease/2021/10/27/2321811/0/en/Energy-Harvesting-System-Market-Size-to-Reach-USD-817- 2-Million-by-2026-Report-by-Market-Research-Future-MRFR.html 4. Amos K (2016) The how and why of energy harvesting for low-power applications, all about circuits, 23 June 2016. Accessed on 18 Oct 2021 [Online]. Available: https://www.allaboutc ircuits.com/technical-articles/how-why-of-energy-harvesting-for-low-power-applications/ 5. Steve R (2020) What is the IoT? Everything you need to know about the internet of things right now. ZDNet, 3 Feb 2020. Accessed on 18 Oct 2021 [Online]. Available: https://www.zdnet.com/ article/what-is-the-internet-of-things-everything-you-need-to-know-about-the-iot-right-now/ 6. Oracle (2021) What is IoT? Oracle. Accessed on 18 Oct 2021 [Online]. Available: https://www. oracle.com/internet-of-things/what-is-iot/ 7. Saha CR, Huda MN, Mumtaz A, Debnath A, Thomas S, Jinks R (2020) Photovoltaic (PV) and thermo-electric energy harvesters for charging applications. Microelectron J 96:104685. https://doi.org/10.1016/j.mejo.2019.104685 8. Mohsen S, Zekry AA, Youssef KY, Ebrahim MA (2020) Design and implementation of hybrid energy harvesting system for medical wearable sensor nodes. Ph.D. dissertation, Department of Electronics and Communication Engineering, Ain Shams University, Cairo, Dec 2020 [Online]. Available: https://www.researchgate.net/publication/346381943_Design_and_Imp lementation_of_Hybrid_Energy_Harvesting_System_for_Medical_Wearable_Sensor_Nodes 9. Akin-Ponnle E, Carvalho NB (2021) Energy harvesting mechanisms in a smart city—a review. Smart Cities 4(2):476–498 (2021). https://doi.org/10.3390/smartcities4020025 10. Tomar A et al (eds) (2022) Proceedings of 3rd international conference on machine learning, advances in computing, renewable energy and communication (MARC 2021), vol 915. Springer, Berlin, 781pp. ISBN: 978-981-19-2830-7. https://doi.org/10.1007/978-981-19- 2828-4 11. Weddell AS, Magno M (2018) Energy harvesting for smart city applications. In: 2018 International symposium on power electronics, electrical drives, automation and motion (SPEEDAM), June 2018, pp 111–117 [Online]. https://doi.org/10.1109/SPEEDAM.2018.8445323
(1)
1. Scott M. Grundy, Fhair, James I. Cleeman, MD, Stephen R. Daniels, Karen A. Donato, Robert H. Eckel, Barry A. Franklin, David J. Gordon, Ronald M. Krauss, Peter J. Savage, Sidney C. Smith, Jr, John A. Spertus, and FernandoCosta. Diagnosis and Management of the Metabolic Syndrome. An American Heart Association/National Heart, Lung and Blood Institute Scientific Statement. Volume 112, Issue 17, 25 October 2005; Pages 2735-2752. DOI: 10.1161/CIRCULATIONAHA.105.169404 Jean Jacques Noubiap, Jobert Richie Nansseu, Eric Lontchi-Yimagou, Jan René Nkeck, Ulrich Flore Nyaga, Anderson T. Ngouo, Dahlia Noelle Tounouga, Frank-Leonel Tianyi, Audrey Joyce Foka, Aude Laetitia Ndoadoumgue, Jean Joel Bigna. Geographic distribution of metabolic syndrome and its components in the general adult population: A meta-analysis of global data from 28 million individuals, Diabetes Research and Clinical Practice, Volume 188, 2022, 109924, ISSN 0168-8227, https://doi.org/10.1016/j. diabres.2022.109924. E Dal Canto, B Farukh and L Faconti. Why are there ethnic differences in cardio- metabolic risk factors and cardiovascular disease? JRSM Cardiovascular Disease. 2018;7 DOI:10.1177/2048004018818923 4. Adjei, N.K., Samkange-Zeeb, F., Kebede, M. et al. Racial/ethnic differences in the prevalence and incidence of metabolic syndrome in high-income countries: a protocol for a systematic review. Syst Rev 9, 134 (2020). https://doi.org/10.1186/s13643- 020-01400-y Rampal S, Mahadeva S, Guallar E, Bulgiba A, Mohamed R, Rahmat R, Arif MT, Rampal L. Ethnic differences in the prevalence of metabolic syndrome: results from a multi-ethnic population-based survey in Malaysia. PLoS One. 2012;7(9):e46365. DOI: 10.1371/journal.pone.0046365. Epub 2012 Sep 28. PMID: 23029497; PMCID: PMC3460855. 6. Lim Kean Ghee. Cheah Wee Kooi. A Review of Metabolic Syndrome Research in Malaysia. Med J Malaysia Vol 71 Supplement 1 June 2016 7. Indigenous peoples and ethnic minorities in Sarawak. Minority Rights Group International. January 2018. Available at https://minorityrights.org 8. Malaysian clinical practice guidelines on management of obesity, 2004 9. Stephanie Watson and Rachel Nall. Waist-to- Hip Ratio: Chart, Ways to Calculate, and More. Updated on February 2, 2023. Available at https:// www.healthline.com/health/waist-to-hip-ratio 10. Cuisle Forde. Scoring the International Physical Activity Qyestionnaire IPAQ. Trinity College Dublin. Available at https://ugc.futurelearn.com/ uploads/files/bc/c5/bcc53b14-ec1e-4d90-88e3- 1568682f32ae/IPAQ_PDF.pdf 11. Ranasinghe P, Mathangasinghe Y, Jayawardena R, Hills AP, Misra A. Prevalence and trends of metabolic syndrome among adults in the asia- pacific region: a systematic review. BMC Public Health. 2017 Jan 21;17(1):101. doi: 10.1186/ s12889-017-4041-1. PMID: 28109251; PMCID: PMC5251315. 12. Wiliane J. T. Marbou and Victor Kuete. Prevalence of Metabolic Syndrome and Its Components in Bamboutos Division’s Adults, West Region of Cameroon. Hindawi BioMed Research International Volume 2019, Article ID 9676984, 12 pages https://doi.org/10.1155/2019/9676984 13. Hossein-Ali Nikbakht, Abbas Rezaianzadeh, Mozhgan Seif, Haleh Ghaem, Prevalence of metabolic syndrome and its components among a population-based study in south of Iran, PERSIAN Kharameh cohort study, Clinical Epidemiology and Global Health, Volume 8, Issue 3, 2020, Pages 678- 683, ISSN 2213-3984, https://doi.org/10.1016/j. cegh.2020.01.001 14. Hildrum, B., Mykletun, A., Hole, T. et al. Age- specific prevalence of the metabolic syndrome defined by the International Diabetes Federation and the National Cholesterol Education Program: the Norwegian HUNT 2 study. BMC Public Health 7, 220 (2007). https://doi.org/10.1186/1471-2458- 7-220 15. Gouveia ÉR, Gouveia BR, Marques A, Peralta M, França C, Lima A, Campos A, Jurema J, Kliegel M, Ihle A. Predictors of Metabolic Syndrome in Adults and Older Adults from Amazonas, Brazil. Int J Environ Res Public Health. 2021 Feb 1;18(3):1303. DOI: 10.3390/ijerph18031303. PMID: 33535582; PMCID: PMC7908119 16. Devers MC, Campbell S, Simmons D. Influence of age on the prevalence and components of the metabolic syndrome and the association with cardiovascular disease BMJ Open Diabetes Research and Care 2016;4:e000195 DOI: 10.1136/ bmjdrc-2016-000195 17. Mark W. Pataky, William F. Young, K. Sreekumaran Nair. Hormonal and Metabolic Changes of Aging and the Influence of Lifestyle Modifications. Mayo Clinic Proceedings,Volume 96, Issue 3,2021,Pages 788-814,ISSN 0025-6196, https:// doi.org/10.1016/j.mayocp.2020.07.033 18. Stephens CR, Easton JF, Robles-Cabrera A, Fossion R, de la Cruz L, Martínez-Tapia R, Barajas- Martínez A, Hernández-Chávez A, López-Rivera JA, Rivera AL. The Impact of Education and Age on Metabolic Disorders. Front Public Health. 2020 May 20;8:180. DOI: 10.3389/fpubh.2020.00180. PMID: 32671006; PMCID: PMC7326131 19. Purnell JQ. Definitions, Classification, and Epidemiology of Obesity. [Updated 2023 May 4]. In: Feingold KR, Anawalt B, Blackman MR, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279167/ 20. Savva SC, Lamnnisos D, Kafatos AG. Predicting cardiometabolic risk: waist-to-height ratio or BMI. A Meta-analysis. Diabetes Metabolic Syndrome Obes 2013;6:403-19 DOI: 10.2147/DMSO. S34220. PMID: 24179379; PMCID: PMC3810792 21. Bener A, Yousafzai MT, Darwish S, Al-Hamaq AO, Nasralla EA, Abdul-Ghani M. Obesity Index that better predict metabolic syndrome: body mass index, waist circumference, waist hip ratio or waist height ratio. J Obes. 2013;2013:269038. DOI: 10.1155/2013/269038. Epub 2013 Aug 12. PMID: 24000310; PMCID: PMC3755383 22. Zatterale F, Longo M, Naderi J, Raciti GA, Desiderio A, Miele C, Beguinot F. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front Physiol. 2020 Jan 29;10:1607. DOI: 10.3389/fphys.2019.01607. PMID: 32063863; PMCID: PMC7000657 23. Myers J, Kokkinos P, Nyelin E. Physical Activity, Cardiorespiratory Fitness, and the Metabolic Syndrome. Nutrients. 2019 Jul 19;11(7):1652. doi: 10.3390/nu11071652. PMID: 31331009; PMCID: PMC6683051. 24. Park SK, Larson JL. The relationship between physical activity and metabolic syndrome in people with chronic obstructive pulmonary disease. J Cardiovasc Nurs. 2014 Nov-Dec;29(6):499-507. doi: 10.1097/JCN.0000000000000096. PMID: 24165700; PMCID: PMC4032377. 25. Leonardo Daniel Tavares, Andre Manoel, Thiago Henrique Rizzi Donato, Fernando Cesena, Carlos André Minanni, Nea Miwa Kashiwagi, Lívia Paiva da Silva, Edson Amaro, Claudia Szlejf. Prediction of metabolic syndrome: A machine learning approach to help primary prevention, Diabetes Research and Clinical Practice, Volume 191, 2022, 110047, ISSN 0168-8227. https://doi. org/10.1016/j.diabres.2022.110047.
(1)
[1] S. D. Douglas et al., IEEE Recommended Practice for Powering and Grounding Electronic Equipment, vol. 2005, 2005. [2] J. A. Martinez-Velasco, Transient Analysis of Power Systems: Solution Techniques, Tools and Applications, United Kingdom: John Wiley and Sons, Ltd, 2015. [3] M. M. Saha and J. J. Izykowski, Fault Location on Power Networks, London: Springer, 2010. [4] O. Prakash, A. G. Shaik, and N. Gupta, “A critical review of detection and classification of power quality events,” Renew. Sustain. Energy Rev., vol. 41, pp. 495–505, 2015. [5] W. Deng and S. Zuo, “Analytical Modeling of the Electromagnetic Vibration and Noise for an External Rotor Axial Flux in-Wheel Motor,” IEEE Trans. Ind. Electron., vol. 65, no. 3, pp. 1991–2000, 2017. [6] R. E. Brown, Electric Power Distribution Reliability, Boca Raton: CRC Press, Taylor and Francis Group, 2009. [7] R. Alaei and S. A. Khajehoddin, “The Operation of a Power Transmission Line with Injected Third Harmonic Voltage,” IEEE Trans. Power Deliv., vol. 32, no. 1, pp. 226-233, 2017. [8] C. L. Bak and F. Faria da Silva, “High voltage AC underground cable systems for power transmission – A review of the Danish experience, part 1,” Electr. Power Syst. Res., vol. 140, pp. 984–994, 2016. [9] I. M. Rawi, M. P. Yahaya, M. Z. A. Ab. Kadir, and N. Azis, “Experience and long term performance of 132kV overhead lines gapless-type surge arrester,” 2014 Int. Conf. Light. Prot. ICLP 2014, pp. 517–520, 2014. [10] H. Mokhlis, A. Halim, A. Bakar, H. A. Illias, and M. F. Shafie, “Insulation Coordination Study of 275kV AIS Substation in Malaysia Insulation Coordination Study of 275kV AIS Substation in Malaysia,” no. March 2012, 2014. [11] V. Bathini, C. Shekhar, R. Atla, K. Balaraman, and K. Parthasarathy, “Surge Transfer Study for Power Transformer Using EMTDC / PSCAD,” pp. 548–553, 2010. [12] P. Kajoijilertsakul et al., “Modeling and Simulation of 500 kV Transmission network for numerical fault calculation, detection, using PSCAD / EMTDC,” pp. 1–4, 2011. [13] P. Karunakaran, “Electric Power Grid Optimization for the State of Sarawak as an Example for,” Int. J. Elec&Electr.Eng&Telecoms, 2014. [14] A. Tashackori, H. Hosseini, Seyyed, and M. Sabahi, “Power Quality Improvement Using a Power Electronic Transformer Based DVR,” pp. 1597–1601, 2015. [15] D. Somayajula, M. L. Crow, and A. P. Stage, “An Integrated Dynamic Voltage Restorer-Ultracapacitor Design for Improving Power Quality of the Distribution Grid,” vol. 6, no. 2, pp. 616–624, 2015. [16] R. Liang, Z. Yang, N. Peng, C. Liu, and F. Zare, “Asynchronous Fault Location in Transmission Lines Considering Accurate Variation of the Ground-Mode,” 2017.
(1)
[1] Sgambi, L., Gkoumas, K., & Bontempi, F. (2012). Genetic Algorithms for the Dependability Assurance in the Design of a Long-Span Suspension Bridge. Computer-Aided Civil and Infrastructure Engineering, 27. https://doi.org/10.1111/j.1467-8667.2012.00780.x [2] Kociecki, M., & Adeli, H. (2013). Two-phase genetic algorithm for size optimization of free-form steel space-frame roof structures. Journal of Constructional Steel Research, 90, 283–296. [3] Roshanfar, M., Azad, A. R. G., & Forouzanfar, M. (2023). Predicting fatigue life of shear connectors in steel‐concrete composite bridges using artificial intelligence techniques. Fatigue & Fracture of Engineering Materials & Structures. [4] Lau, S. H., Ng, C. K., & Tay, K. M. (2015). Data-driven SIRMs-connected FIS for prediction of external tendon stress. Computers and Concrete, 15(1), 55–71. [5] Zain, M., Keawsawasvong, S., Thongchom, C., Sereewatthanawut, I., Usman, M., & Prasittisopin, L. (2023). Establishing efficacy of machine learning techniques for vulnerability information of tubular buildings. Engineered Science. [6] Meddage, D., Mohotti, D., & Wijesooriya, K. (2024). Predicting transient wind loads on tall buildings in three-dimensional spatial coordinates using machine learning. Journal of Building Engineering, 108725. [7] Tayfur, G., Erdem, T. K., & Kırca, Ö. (2014). Strength Prediction of High-Strength Concrete by Fuzzy Logic and Artificial Neural Networks. Journal of Materials in Civil Engineering, 26(11), 11. https://doi.org/10.1061/(asce)mt.1943-5533.0000985 [8] Chiew, F. H., Chai, K. C., Ng, C. K., & Tay, K. M. (2014). A fuzzy ART-based approach for estimation of high performance concrete mix proportion. In Lecture Notes in Computer Science (p, 407–414. [9] Chiew, F. H., Ng, C. K., Chai, K. C., & Tay, K. M. (2017). A fuzzy adaptive resonance theory‐based model for mix proportion estimation of high‐performance concrete. Computer-Aided Civil and Infrastructure Engineering, 32(9), 772–786. [10] Chiew, F. H., Lau, S. H., & Ng, C. K. (2018). Monotonicity preserving SIRMs-connected fuzzy inference system for predicting HPC compressive strength. Intelligent Decision Technologies, 12(3), 293–302. [11] Chiew, F. H., Petrus, C., Nyuin, J. D., Lau, U. H., & Ng, C. K. (2022). Prediction of HFRC compressive strength using HS-based SIRMs connected fuzzy inference system. Physics and Chemistry of the Earth, Parts A/B/C, 128(10327), 5. [12] Liang, W., Yin, W., Zhao, Y., Tao, Q., Li, K., Zhu, Z., Zou, Z., Zeng, Y., Yuan, S., & Han, C. (2023). Mixed artificial intelligence models for compressive strength prediction and analysis of fly ash concrete. Advances in Engineering Software, 185(10353), 2. [13] Beskopylny, A. N., Stel’makh, S. A., Shcherban, E. M., Mailyan, L. R., Meskhi, B., Razveeva, I., Kozhakin, A., Pembek, A., El’shaeva, D., Chernil’nik, A., & Beskopylny, N. (2024). Prediction of the compressive strength of vibrocentrifuged concrete using machine learning methods. Buildings, 14(2), 377. [14] Chiadighikaobi, P. C., Hematibahar, M., Kharun, M., Stashevskaya, N. A., & Camara, K. (2024). Predicting mechanical properties of self-healing concrete with Trichoderma Reesei Fungus using machine learning. Cogent Engineering, 11(1), 1. https://doi.org/10.1080/23311916.2024.2307193 [15] Montalvo, I., Izquierdo, J., Pérez-Garc\’\ia, R., & Herrera, M. (2014). Water Distribution System Computer‐Aided design by Agent Swarm Optimization. Computer-Aided Civil and Infrastructure Engineering, 29(6), 433–448. [16] Abkenar, S. M. S., Stanley, S. D., Miller, C. J., Chase, D. V, & McElmurry, S. P. (2015). Evaluation of genetic algorithms using discrete and continuous methods for pump optimization of water distribution systems. Sustainable Computing: Informatics and Systems, 8, 18–23. [17] Perea, R. G., Poyato, E. C., & D\’\iaz, J. R. (2024). Attention is all water need: Multistep time series irrigation water demand forecasting in irrigation disctrics. Computers and Electronics in Agriculture, 218(10872), 3. [18] Lee, H., Yi, C., Lee, D., & Arditi, D. (2015). An advanced stochastic time‐cost tradeoff analysis based on a CPM‐guided genetic algorithm. Computer-Aided Civil and Infrastructure Engineering, 30(10), 824–842. [19] Hanafi, A. G., Nawi, M. N. M., Rahim, M. K. I. A., Nifa, F. A. A., & Mohamed, O. (2022). Project managers selection in the construction industry: Towards the integration with artificial emotional intelligence and technology. Journal of Advanced Research in Applied Sciences and Engineering Technology, 29(1), 160–176. [20] Zabala-Vargas, S., Jaimes-Quintanilla, M., & Jimenez-Barrera, M. H. (2023). Big data, data science, and artificial intelligence for project management in the architecture, engineering, and construction industry: A systematic review. Buildings, 13(12), 2944. [21] Ji, C., Zhang, F., Huang, X., Song, Z., Hou, W., Wang, B., & Chen, G. (2023). STAE‐YOLO: Intelligent detection algorithm for risk management of construction machinery intrusion on transmission lines based on visual perception. IET Generation Transmission & Distribution. [22] Dong, J., Yassine, A., Armitage, A., & Hossain, M. S. (2023). Multi-agent reinforcement learning for intelligent V2G integration in future transportation systems. IEEE Transactions on Intelligent Transportation Systems, 24(12), 15974–15983. [23] Santos, K., Firme, B., Dias, J. P., & Amado, C. (2023). Analysis of motorcycle accident injury severity and performance comparison of machine learning algorithms. Transportation Research Record, 2678(1), 736–748. 6 [24] Foong, L. K., & Moayedi, H. (2021). Slope stability evaluation using neural network optimized by equilibrium optimization and vortex search algorithm. Engineering with Computers, 38, 1269–1283. [25] Bardhan, A., & Asteris, P. G. (2023). Application of hybrid ANN paradigms built with nature inspired meta-heuristics for modelling soil compaction parameters. Transportation Geotechnics, 41(10099), 5. [26] Li, Q., & Zhu, Z. (2023). Calibration of an elastoplastic model of sand liquefaction using the swarm intelligence with a multi-objective function. Journal of Rock Mechanics and Geotechnical Engineering, 15(3), 789–802. [27] Nagaraju, T. V, Mantena, S., Sunil, B. M., & Alisha, S. S. (2023). A review on application of soft computing techniques in geotechnical engineering. In Lecture Notes in Civil Engineering, 313–322. [28] Shafighfard, T., Kazemi, F., Bagherzadeh, F., Mieloszyk, M., & Yoo, D. (2024). Chained machine learning model for predicting load capacity and ductility of steel fiber-reinforced concrete beams. Computer-Aided Civil and Infrastructure Engineering. [29] Ojeda, J. M. P., Herrera, N., Huatangari, L. Q., & Calderón, B. a. C. (2023). Determination of steel area in reinforced concrete beams using data mining techniques. Revue D’intelligence Artificielle, 37, 4. [30] Katam, R., Pasupuleti, V. D. K., & Kalapatapu, P. (2023). A review on structural health monitoring: past to present. Innovative Infrastructure Solutions, 8(9), 9. https://doi.org/10.1007/s41062-023-01217-3 [31] Dodampegama, S., Hou, L., Asadi, E., Zhang, K., & Setunge, S. (2024). Revolutionizing construction and demolition waste sorting: Insights from artificial intelligence and robotic applications. Resources, Conservation and Recycling, 202(10737), 5. [32] Frangopol, D. M., & Liu, M. (2007). Maintenance and management of civil infrastructure based on condition, safety, optimization, and life-cycle cost. Structure and Infrastructure Engineering, 3(1), 29–41. [33] Damaševi cius, R., Ba canin, N., & Misra, S. (2023). From sensors to safety: Internet of emergency services (IOES) for emergency response and disaster management. Journal of Sensor and Actuator Networks, 12(3), 41. [34] Regona, M., Yiğitcanlar, T., Xia, B., & Li, R. Y. M. (2022). Opportunities and adoption challenges of AI in the construction industry: A PRISMA review. Journal of Open Innovation: Technology, Market, and Complexity, 8(1), 45. [35] Lou, Y., Wang, H., Amin, M., Arifeen, S. U., Dodo, Y. A., Althoey, F., & Deifalla, A. F. (2024). Predicting the crack repair rate of self-healing concrete using soft-computing tools. Materials Today Communications, 108043.
(1)
[1] Shafie, Nur Fathin Amirah, Nazira Syahira Zulkifli, Roshafima Rasit Ali, Zatil Izzah Tarmizi, and Syazwani Mohd Faizo. "Green Synthesis of Titanium Dioxide Nanoparticles Using Extraction of Psidium Guajava for Smart Packaging Application." Journal of Research in Nanoscience and Nanotechnology 11, no. 1 (2024): 16-23. https://doi.org/10.37934/jrnn.11.1.1623 [2] Peron, Ryan Vitthaya, Amirul Ridzuan Abu Bakar, Mohd Asraf Mohd Zainuddin, Ang Qian Yee, Nik Muhammad Azhar Nik Daud, Ahmad Mukhlis Abdul Rahman, and Nurul Husna Khairuddin. "Insights into the Pharmacognostic Elucidation of Harumanis Mango (Mangifera Indica Linn.) Leaves Extracts as Therapeutic Agent." Journal of Advanced Research in Micro and Nano Engineering 17, no. 1 (2024): 28-41. https://doi.org/10.37934/armne.17.1.2841 [3] Dolhan, Mimi Malisa, Nur Shuhada Arbaan, and Noor Farahin Bain. "Phytoremediation of POME Using Water Lettuce and Duckweed." Frontiers in Water and Environment 3, no. 1 (2024): 1-8. https://doi.org/10.37934/fwe.3.1.18 [4] Naidu, Suriya Narhayhanen Rama, Shreeshivadasan Chelliapan, and Mohd Taufik Salleh. "The impact of sewage treatment plant loading to river basin during Movement Control Order." Progress in Energy and Environment (2023): 1-13. https://doi.org/10.37934/progee.23.1.113 [5] Chowdhury, Md Fahim Faisal, Moupia Tajrin Oyshi, and Mahbub Hasan. "Thermo-Mechanical, Structural, and Biodegradability Properties of Water Hyacinth and Sheep Wool Fiber Reinforced Hybrid Polypropylene Composites." Malaysian Journal on Composites Science and Manufacturing 13, no. 1 (2024): 14-24. https://doi.org/10.37934/mjcsm.13.1.1424 [6] Syafiuddin, Achmad, Salmiati Salmiati, Tony Hadibarata, Ahmad Beng Hong Kueh, Mohd Razman Salim, and Muhammad Abbas Ahmad Zaini. "Silver nanoparticles in the water environment in Malaysia: inspection, characterization, removal, modeling, and future perspective." Scientific Reports 8, no. 1 (2018): 986. https://doi.org/10.1038/s41598-018-19375-1 [7] Syafiuddin, Achmad, Salmiati, Tony Hadibarata, Ahmad Beng Hong Kueh, and Mohd Razman Salim. "Novel weedextracted silver nanoparticles and their antibacterial appraisal against a rare bacterium from river and sewage treatment plan." Nanomaterials 8, no. 1 (2017): 9. https://doi.org/10.3390/nano8010009 [8] Loh, Zhang Zhan, Nur Syamimi Zaidi, Achmad Syafiuddin, Ee Ling Yong, Raj Boopathy, Ahmad Beng Hong Kueh, and Dedy Dwi Prastyo. "Shifting from conventional to organic filter media in wastewater biofiltration treatment: a review." Applied Sciences 11, no. 18 (2021): 8650. https://doi.org/10.3390/app11188650 [9] Ratnasari, Anisa, Achmad Syafiuddin, Ahmad Beng Hong Kueh, Suhartono Suhartono, and Tony Hadibarata. "Opportunities and challenges for sustainable bioremediation of natural and synthetic estrogens as emerging water contaminants using bacteria, fungi, and algae." Water, Air, & Soil Pollution 232, no. 6 (2021): 242. https://doi.org/10.1007/s11270-021-05183-3 [10] Ratnasari, Anisa, Nur Syamimi Zaidi, Achmad Syafiuddin, Raj Boopathy, Ahmad Beng Hong Kueh, Rizki Amalia, and Dedy Dwi Prasetyo. "Prospective biodegradation of organic and nitrogenous pollutants from palm oil mill effluent by acidophilic bacteria and archaea." Bioresource Technology Reports 15 (2021): 100809. https://doi.org/10.1016/j.biteb.2021.100809 [11] Mudhafar, Mustafa, Hasan Ali Alsailawi, Mohammed Zorah, Mustafa Mohammed Karhib, Ismail Zainol, and Furqan Kifah Kadhim. "Biogenic synthesis and characterization of AgNPs using CEPS: Cytotoxicity and antibacterial activites." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 106, no. 1 (2023): 65-75. https://doi.org/10.37934/arfmts.106.1.6575 [12] Rusli, Nur Syahirah, Mohd Nizam Lani, Sakina Shahabudin, Nina Suhaity Azmi, Elham Taghavi, Wan Zawiah Wan Abdullah, Azizah Mahmood, Anis Athirah Bahri, Suguna Migeemanathan, and Mohd Nasir Mohd Desa. "Antibiotic susceptibility and antimicrobial activity of lactic acid bacteria from malaysian fermented foods against biofilmforming escherichia coli strains." Journal of Advanced Research in Applied Sciences and Engineering Technology 31, no. 1 (2023): 168-182. https://doi.org/10.37934/araset.31.1.168182 [13] Tan, Xiao, Danfeng Zhang, Keshab Parajuli, Sanjina Upadhyay, Yuji Jiang, and Zhipeng Duan. "Comparison of four quantitative techniques for monitoring microalgae disruption by low-frequency ultrasound and acoustic energy efficiency." Environmental Science & Technology 52, no. 5 (2018): 3295-3303. https://doi.org/10.1021/acs.est.7b05896 [14] Kueh, Ahmad BH. "Resonant frequency of coronavirus: The tensegrity approach." Alexandria Engineering Journal 79 (2023): 252-258. https://doi.org/10.1016/j.aej.2023.08.024 [15] Joyce, Eadaoin, A. Al-Hashimi, and Timothy J. Mason. "Assessing the effect of different ultrasonic frequencies on bacterial viability using flow cytometry." Journal of Applied Microbiology 110, no. 4 (2011): 862-870. https://doi.org/10.1111/j.1365-2672.2011.04923.x [16] Al Bsoul, Abeer, Jean-Pierre Magnin, Nadine Commenges-Bernole, Nicolas Gondrexon, John Willison, and Christian Petrier. "Effectiveness of ultrasound for the destruction of Mycobacterium sp. strain (6PY1)." Ultrasonics Sonochemistry 17, no. 1 (2010): 106-110. https://doi.org/10.1016/j.ultsonch.2009.04.005 [17] Gao, Shengpu, Yacine Hemar, Muthupandian Ashokkumar, Sara Paturel, and Gillian D. Lewis. "Inactivation of bacteria and yeast using high-frequency ultrasound treatment." Water Research 60 (2014): 93-104. https://doi.org/10.1016/j.watres.2014.04.038 [18] Zou, Huasheng, and Lifang Wang. "The disinfection effect of a novel continuous-flow water sterilizing system coupling dual-frequency ultrasound with sodium hypochlorite in pilot scale." Ultrasonics Sonochemistry 36 (2017): 246-252. https://doi.org/10.1016/j.ultsonch.2016.11.041 [19] Gao, Shengpu, Yacine Hemar, Gillian D. Lewis, and Muthupandian Ashokkumar. "Inactivation of Enterobacter aerogenes in reconstituted skim milk by high-and low-frequency ultrasound." Ultrasonics Sonochemistry 21, no. 6 (2014): 2099-2106. https://doi.org/10.1016/j.ultsonch.2013.12.008 [20] Li, Yitao, Xingdong Shi, Zhi Zhang, and Yazhou Peng. "Enhanced coagulation by high-frequency ultrasound in Microcystis aeruginosa-laden water: Strategies and mechanisms." Ultrasonics Sonochemistry 55 (2019): 232-242. https://doi.org/10.1016/j.ultsonch.2019.01.022 [21] Ingber, Donald E., Ning Wang, and Dimitrije Stamenović. "Tensegrity, cellular biophysics, and the mechanics of living systems." Reports on Progress in Physics 77, no. 4 (2014): 046603. https://doi.org/10.1088/0034- 4885/77/4/046603 [22] Ingber, Donald E., Laura Dike, Linda Hansen, Seth Karp, Helen Liley, Andrew Maniotis, Helen McNamee, David Mooney, George Plopper, John Sims, and Ning Wang. "Cellular tensegrity: exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis." International Review of Cytology 150 (1994): 173-224. https://doi.org/10.1016/S0074-7696(08)61542-9 [23] Kueh, A. B. H., and V. T. Kho. "Strut waviness and load orientation affected fracture toughness knockdown in biaxially woven square lattices." International Journal of Mechanical Sciences 164 (2019): 105172. https://doi.org/10.1016/j.ijmecsci.2019.105172 [24] Kueh, A. B. H. "Fitting-free hyperelastic strain energy formulation for triaxial weave fabric composites." Mechanics of Materials 47 (2012): 11-23. https://doi.org/10.1016/j.mechmat.2012.01.001 [25] Kueh, Ahmad BH. "Buckling of sandwich columns reinforced by triaxial weave fabric composite skinsheets." International Journal of Mechanical Sciences 66 (2013): 45-54. https://doi.org/10.1016/j.ijmecsci.2012.10.007 [26] Budari, N. M., M. F. Ali, K. H. Ku Hamid, K. A. Khalil, M. Musa, and N. F. Khairuddin. "Escherichia coli Wild Type Cells Disruption by Low Intensity Ultrasound for Bacterial Disinfection." In InCIEC 2015: Proceedings of the International Civil and Infrastructure Engineering Conference, pp. 21-31. Springer Singapore, 2016. https://doi.org/10.1007/978-981-10-0155-0_3 [27] Ajiboye, Timothy O., Stephen O. Babalola, and Damian C. Onwudiwe. "Photocatalytic Inactivation as a Method of Elimination of E. coli from Drinking Water." Applied Sciences 11, no. 3 (2021): 1313. https://doi.org/10.3390/app11031313 [28] Wu, Fabai, Aleksandre Japaridze, Xuan Zheng, Jakub Wiktor, Jacob WJ Kerssemakers, and Cees Dekker. "Direct imaging of the circular chromosome in a live bacterium." Nature Communications 10, no. 1 (2019): 2194. https://doi.org/10.1038/s41467-019-10221-0 [29] Nurliyana, M. R., M. Z. Sahdan, K. M. Wibowo, A. Muslihati, H. Saim, S. A. Ahmad, Y. Sari, and Z. Mansor. "The detection method of Escherichia coli in water resources: A review." In Journal of Physics: Conference Series, vol. 995, p. 012065. IOP Publishing, 2018. https://doi.org/10.1088/1742-6596/995/1/012065 [30] Gammoudi, Ibtissem, Marion Mathelie-Guinlet, Fabien Morote, Laure Beven, Daniel Moynet, Christine Grauby- Heywang, and Touria Cohen-Bouhacina. "Morphological and nanostructural surface changes in Escherichia coli over time, monitored by atomic force microscopy." Colloids and Surfaces B: Biointerfaces 141 (2016): 355-364. https://doi.org/10.1016/j.colsurfb.2016.02.006 [31] Odonkor, Stephen T., and Joseph K. Ampofo. "Escherichia coli as an indicator of bacteriological quality of water: An overview." Microbiology Research 4, no. 1 (2013): e2. https://doi.org/10.4081/mr.2013.e2 [32] Cui, Qianqian, Tianqing Liu, Xiangqin Li, Lidan Zhao, Qiqi Wu, Xin Wang, Kedong Song, and Dan Ge. "Validation of the mechano-bactericidal mechanism of nanostructured surfaces with finite element simulation." Colloids and Surfaces B: Biointerfaces 206 (2021): 111929. https://doi.org/10.1016/j.colsurfb.2021.111929 [33] Gumbart, James C., Morgan Beeby, Grant J. Jensen, and Benoît Roux. "Escherichia coli peptidoglycan structure and mechanics as predicted by atomic-scale simulations." PLoS Computational Biology 10, no. 2 (2014): e1003475. https://doi.org/10.1371/journal.pcbi.1003475 [34] Lewis, Christina L., Caelli C. Craig, and Andre G. Senecal. "Mass and density measurements of live and dead gramnegative and gram-positive bacterial populations." Applied and Environmental Microbiology 80, no. 12 (2014): 3622-3631. https://doi.org/10.1128/AEM.00117-14 [35] Martinez-Salas, E., J. A. Martin, and M. Vicente. "Relationship of Escherichia coli density to growth rate and cell age." Journal of Bacteriology 147, no. 1 (1981): 97-100. https://doi.org/10.1128/jb.147.1.97-100.1981 [36] Shiloach, Joseph, and Rephael Fass. "Growing E. coli to high cell density—a historical perspective on method development." Biotechnology advances 23, no. 5 (2005): 345-357. https://doi.org/10.1016/j.biotechadv.2005.04.004 [37] Tuson, Hannah H., George K. Auer, Lars D. Renner, Mariko Hasebe, Carolina Tropini, Max Salick, Wendy C. Crone, Ajay Gopinathan, Kerwyn Casey Huang, and Douglas B. Weibel. "Measuring the stiffness of bacterial cells from growth rates in hydrogels of tunable elasticity." Molecular Microbiology 84, no. 5 (2012): 874-891. https://doi.org/10.1111/j.1365-2958.2012.08063.x [38] Kandemir, Nehir, Waldemar Vollmer, Nicholas S. Jakubovics, and Jinju Chen. "Mechanical interactions between bacteria and hydrogels." Scientific Reports 8, no. 1 (2018): 10893. https://doi.org/10.1038/s41598-018-29269-x [39] Koo, S. Q., and A. B. H. Kueh. "Finite Element State-Space Model of Edge Initiating Localized Interfacial Degeneration of Damped Composite Laminated Plates." In IOP Conference Series: Materials Science and Engineering, vol. 620, no. 1, p. 012072. IOP Publishing, 2019. https://doi.org/10.1088/1757-899X/620/1/012072 [40] Drahman, Siti Hasyyati, Ahmad Beng Hong Kueh, and Ahmad Razin Zainal Abidin. "Low-velocity impact of composite sandwich plate with facesheet indentation description." Jurnal Teknologi 77, no. 16 (2015). https://doi.org/10.11113/jt.v77.6383 [41] Kam, Chee Zhou, and Ahmad Beng Hong Kueh. "Bending Response of Cross-Ply Laminated Composite Plates with Diagonally Perturbed Localized Interfacial Degeneration." The Scientific World Journal 2013, no. 1 (2013): 350890. https://doi.org/10.1155/2013/350890 [42] Abo Sabah, Saddam Hussein, and Ahmad Beng Hong Kueh. "Finite element modeling of laminated composite plates with locally delaminated interface subjected to impact loading." The Scientific World Journal 2014, no. 1 (2014): 954070. https://doi.org/10.1155/2014/954070 [43] Kueh, A. B. H. "Thermally-induced responses of triaxially woven fabric composites." Heliyon 9, no. 7 (2023). https://doi.org/10.1016/j.heliyon.2023.e17631 [44] Al-Fasih, M. Y., A. B. H. Kueh, SH Abo Sabah, and M. Y. Yahya. "Influence of tows waviness and anisotropy on effective Mode I fracture toughness of triaxially woven fabric composites." Engineering Fracture Mechanics 182 (2017): 521-536. https://doi.org/10.1016/j.engfracmech.2017.03.051 [45] Al-Fasih, M. Y., A. B. H. Kueh, and M. H. W. Ibrahim. "Failure behavior of sandwich honeycomb composite beam containing crack at the skin." Plos one 15, no. 2 (2020): e0227895. https://doi.org/10.1371/journal.pone.0227895 [46] Rasin, Norhidayah, Ahmad BH Kueh, Muhammad NH Mahat, and Airil Y. Mohd Yassin. "Stability of triaxially woven fabric composites employing geometrically nonlinear plate model with volume segmentation ABD constitution." Journal of Composite Materials 50, no. 19 (2016): 2719-2735. https://doi.org/10.1177/0021998315612538 [47] Wittrick, W_H, and FW2890000227 Williams. "A general algorithm for computing natural frequencies of elastic structures." The Quarterly Journal of Mechanics and Applied Mathematics 24, no. 3 (1971): 263-284. https://doi.org/10.1093/qjmam/24.3.263 [48] Li, Jiao, Luyao Ma, Xinyu Liao, Donghong Liu, Xiaonan Lu, Shiguo Chen, Xingqian Ye, and Tian Ding. "Ultrasoundinduced Escherichia coli O157: H7 cell death exhibits physical disruption and biochemical apoptosis." Frontiers in Microbiology 9 (2018): 2486. https://doi.org/10.3389/fmicb.2018.02486 [49] Liao, Xinyu, Jiao Li, Yuanjie Suo, Shiguo Chen, Xingqian Ye, Donghong Liu, and Tian Ding. "Multiple action sites of ultrasound on Escherichia coli and Staphylococcus aureus." Food Science and Human Wellness 7, no. 1 (2018): 102-109. https://doi.org/10.1016/j.fshw.2018.01.002 [50] Kueh, A. B. H. "Artificial neural network and regressed beam-column connection explicit mathematical momentrotation expressions." Journal of Building Engineering 43 (2021): 103195. https://doi.org/10.1016/j.jobe.2021.103195 [51] Kueh, A. B. H., A. W. Razali, Y. Y. Lee, S. Hamdan, I. Yakub, and N. Suhaili. "Acoustical and mechanical characteristics of mortars with pineapple leaf fiber and silica aerogel infills–Measurement and modeling." Materials Today Communications 35 (2023): 105540. https://doi.org/10.1016/j.mtcomm.2023.105540
(1)
1. Sherwood, L. Human physiology: from cells to systems (Cengage Learning, Boston, 2015). 2. Parsons, K. Human thermal environments: the effects of hot, moderate, and cold environments on human health, comfort, and performance (CRC Press, Boca Rato, 2014). 3. Kenefick, R. W. Drinking strategies: planned drinking versus drinking to thirst. Sports Med. 48, 31–37 (2018). 4. Chappells, H. et al. Arsenic in private drinking water wells: an assessment of jurisdictional regulations and guidelines for risk remediation in North America. J. Water Health 12, 372–392 (2014). 5. Delpla, I., Legay, C., Proulx, F. & Rodriguez, M. J. Perception of tap water quality: Assessment of the factors modifying the links between satisfaction and water consumption behavior. Sci. Total. Environ. 722, 137786 (2020). 6. Flanagan, S. V., Marvinney, R. G. & Zheng, Y. Influences on domestic well water testing behavior in a Central Maine area with frequent groundwater arsenic occurrence. Sci. Total Environ. 505, 1274–1281 (2015). 7. Ochoo, B., Valcour, J. & Sarkar, A. Association between perceptions of public drinking water quality and actual drinking water quality: A community-based exploratory study in Newfoundland (Canada). Environ. Res. 159, 435–443 (2017). 8. Wedgworth, J. C. et al. Associations between perceptions of drinking water service delivery and measured drinking water quality in rural Alabama. Int. J. Environ. Res. Publ. Health 11, 376–7392 (2014). 9. Wee, S. Y. & Aris, A. Z. Occurrence and public-perceived risk of endocrine disrupting compounds in drinking water. npj Clean. Water 2, 4 (2019). 10. Wee, S. Y. & Aris, A. Z. Endocrine disrupting compounds in drinking water supply system and human health risk implication. Env. Int. 106, 207–233 (2017). 11. Simazaki, D. et al. Occurrence of selected pharmaceuticals at drinking water purification plants in Japan and implications for human health. Water Res. 76, 187–200 (2015). 12. Liu, J. et al. The spatial distribution of pollutants in pipe-scale of large-diameter pipelines in a drinking water distribution system. J. Hazard Mater. 317, 27–35 (2016). 13. Taheran, M. et al. Membrane processes for removal of pharmaceutically active compounds (PhACs) from water and wastewaters. Sci. Total Environ. 547, 60–77 (2016). 14. Park, H. B. et al. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017). 15. Cheng, X. Q. et al. Towards sustainable ultrafast molecular-separation membranes: From conventional polymers to emerging materials. Prog. Mater. Sci. 92, 258–283 (2018). 16. Lee, S., Jeong, W., Kannan, K. & Moon, H. B. Occurrence and exposure assessment of organophosphate flame retardants (OPFRs) through the consumption of drinking water in Korea. Water Res. 103, 182–188 (2016). 17. Wee, S. Y., Aris, A. Z., Yusoff, F. M. & Praveena, S. M. Occurrence and risk assessment of multiclass endocrine disrupting compounds in an urban tropical river and a proposed risk management and monitoring framework. Sci. Total. Environ. 671, 431–442 (2019). 18. Leung, H. W. et al. Pharmaceuticals in tap water: human health risk assessment and proposed monitoring framework in China. Environ. Health Perspect. 121, 839–846 (2013). 19. US EPA. Exposure Factors Handbook 2011 Edition (Final). (United States Environmental Protection Agency, Washington, DC, 2011). 20. US EPA. Methodology for Deriving Ambient Water Quality Criteria for the Protection of Human Health (2000) (United States Environmental Protection Agency, Washington, DC, 2000). 21. Natale, V. & Rajagopalan, A. Worldwide variation in human growth and the World Health Organization growth standards: a systematic review. BMJ Open 4, e003735 (2014). 22. Ferreira-Pêgo, C. et al. Total fluid intake and its determinants: cross-sectional surveys among adults in 13 countries worldwide. Eur. J. Nutr. 54, 35–43 (2015). 23. Martin, W. E., Martin, I. M. & Kent, B. The role of risk perceptions in the risk mitigation process: the case of wildfire in high risk communities. J. Environ. Manag. 91, 489–498 (2009). 24. Wachinger, G., Renn, O., Begg, C. & Kuhlicke, C. The risk perception paradox implications for governance and communication of natural hazards. Risk Anal. 33, 1049–1065 (2013). 25. Janmaimool, P. & Watanabe, T. Evaluating determinants of environmental risk perception for risk management in contaminated sites. Int. J. Environ. Res. Publ. Health 11, 6291–6313 (2014). 26. DOS. Household Income and Basic Amenities Survey Report 2016 (Department of Statistics, Malaysia, 2017). 27. Amarra, M. S. V., Khor, G. L. & Chan, P. Intake of added sugar in Malaysia: a review. Asia Pac. J. Clin. Nutr. 25, 227–240 (2016). 28. Bujang, M. A. et al. Mortality rates by specific age group and gender in Malaysia: Trend of 16 years, 1995–2010. J. Health Inform. Dev. Ctries 6, 521–529 (2012). 29. DOS. Selected Demographic Indicators Malaysia 2018 (Department of Statistics, Malaysia, 2018). 30. NCCFN. Recommended Nutrient Intakes for Malaysia. A Report of the Technical Working Group on Nutritional Guidelines. (National Coordinating Committee on Food and Nutrition, Ministry of Health Malaysia, Putrajaya, 2017). 31. Sui, Z., Zheng, M., Zhang, M. & Rangan, A. Water and beverage consumption: analysis of the Australian 2011–2012 National Nutrition and Physical Activity Survey. Nutrients 8, 678 (2016). 32. Hu, Z., Morton, L. W. & Mahler, R. Bottled water: United States consumers and their perceptions of water quality. Int. J. Environ. Res. Public Health 8, 565–578 (2011). 33. Johnstone, N. & Serret, Y. Determinants of bottled and purified water consumption: results based on an OECD survey. Water Policy 14, 668–679 (2012). 34. Levêque, J. G. & Burns, R. C. Predicting water filter and bottled water use in Appalachia: a community-scale case study. J. Water Health 15, 451–461 (2017). 35. McLeod, L., Bharadwaj, L. & Waldner, C. Risk factors associated with the choice to drink bottled water and tap water in rural Saskatchewan. Int. J. Environ. Res. Publ. Health 11, 1626–1646 (2014). 36. Amiridou, D. & Voutsa, D. Alkylphenols and phthalates in bottled waters. J. Hazard. Mater. 185, 281–286 (2011). 37. Aris, A. Z., Kam, R. C. Y., Lim, A. P. & Praveena, S. M. Concentration of ions in selected bottled water samples sold in Malaysia. Appl. Water Sci. 3, 67–75 (2013). 38. Gaffney, V. D. J. et al. Occurrence of pharmaceuticals in a water supply system and related human health risk assessment. Water Res. 72, 199–208 (2015). 39. Wee, S. Y. et al. Active pharmaceutical ingredients in Malaysian drinking water: consumption, exposure, and human health risk. Environ. Geochem. Health 42, 3247–3261 (2020). 40. Dohle, S., Campbell, V. E. & Arvai, J. L. Consumer-perceived risks and choices about pharmaceuticals in the environment: a cross-sectional study. Environ. Health 12, 45 (2013). 41. DOS. Population Distribution and Basic Demographic Characteristic Report 2010 (Department of Statistics, Malaysia, 2011). 42. Daniel, W. W. Biostatistics: A Foundation for Analysis in the Health Sciences, 7th edition (John Wiley & Sons, New York, 1999). 43. Lichtenberg, F. R. Pharmaceutical innovation and the burden of disease in developing and developed countries. J. Med. Philos. 30, 663–690 (2005). 44. Prüss-Ustün, A., Vickers, C., Haefliger, P. & Bertollini, R. Knowns and unknowns on burden of disease due to chemicals: a systematic review. Environ. Health 10, 9 (2011). 45. Suresh, K. P. & Chandrashekara, S. Sample size estimation and power analysis for clinical research studies. J. Hum. Reprod. Sci. 5, 7–13 (2012). 46. Connelly, L. M. Pilot studies. Medsurg. Nurs. 17, 411 (2008). 47. Treece, E. W. & Treece, J. W. Elements of research in nursing. (St. Louis, Mosby, 1982). 48. Hill, R. What sample size is “enough” in internet survey research? IPCT-J. 6, 1–10 (1998). 49. Isaac, S. & Michael, W. B. Handbook in research and evaluation (Educational and Industrial Testing Services, San Diego, 1995). 50. Gliem, J. A. & Gliem, R. R. “Calculating, interpreting, and reporting Cronbach’s alpha reliability coefficient for Likert-type scales” in Midwest Research-to-Practice Conference in Adult, Continuing, and Community Education (Columbus, 2003), pp.82–88. 51. APVMA. Acceptable Daily Intakes (ADI) for Agricultural and Veterinary Chemicals Used in Food Producing Crops or Animals (Australian Pesticide and Veterinary Medicines Authority, Canberra, 2017). 52. Murray, K. E., Thomas, S. M. & Bodour, A. A. Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment. Environ. Pollut. 158, 3462–3471 (2010). 53. Prosser, R. S. & Sibley, P. K. Human health risk assessment of pharmaceuticals and personal care products in plant tissue due to biosolids and manure amendments, and wastewater irrigation. Environ. Int. 75, 223–233 (2015). 54. Snyder, S. A. Occurrence, treatment, and toxicological relevance of EDCs and pharmaceuticals in water. Ozone Sci. Eng. 30, 65–69 (2008).
(1)
[1] Sidi, J., Fa, L. W., & Junaini, S. N. (2009). Simulatio of Traffic Congestion at the Tourist Attraction Spot of Kuching Waterfront, Sarawak. 2009 International Conference on Computer Technology and Development. doi:10.1109/icctd.2009.225 [2] Sidi, J., Fa, L. W., & Junaini, S. N. (2009). Shortest Path Simulation Using Interactive SVG Map. 2009 International Conference on Computer Technology and Development. doi:10.1109/icctd.2009.204 [3] "JomParking® - A quick and convenient way to pay for parking", Web.jomparking.com, 2019. [Online]. Available: https://web.jomparking.com/. [Accessed: 30-Oct- 2019]. [4] "Julia Ali: Cara Bayar Kupon Parking di Melaka (MBMB dan MPHTJ)", Julia Ali, 2019. [Online]. Available: https://juliaali.blogspot.com/2019/05/cara-bayar-kupon-parking-dimelaka-mbmb.html. [Accessed: 30- Oct- 2019]. [5] O. NATHAN, "Scratch-and-display parking system in Subang Jaya met with mixed reactions", The Star Online, 2019. [Online]. Retrieve 25 October 2019 from https://www.thestar.com.my/metro/focus/2015/02/05/coupons-makea-comeback-scratchanddisplay-parking-system-in-subang-jaya-metwith-mixed-reactions.
(1)
[1] Singh, Nidhi, Neena Sinha, and Francisco J. Liébana-Cabanillas. "Determining factors in the adoption and recommendation of mobile wallet services in India: Analysis of the effect of innovativeness, stress to use and social influence." International Journal of Information Management 50 (2020): 191-205. https://doi.org/10.1016/j.ijinfomgt.2019.05.022 [2] Nizam, Faisal, Ha Jin Hwang, and Naser Valaei. "Measuring the effectiveness of E-wallet in Malaysia." Big Data, Cloud Computing, Data Science & Engineering 3 (2019): 59-69. https://doi.org/10.1007/978-3-319-96803-2_5 [3] Wong, Teck-Lee, Wee-Yeap Lau, and Tien-Ming Yip. "Cashless payments and economic growth: Evidence from selected OECD countries." Journal of Central Banking Theory and Practice 9, no. s1 (2020): 189-213. https://doi.org/10.2478/jcbtp-2020-0028 [4] Karim, Md Wasiul, Ahasanul Haque, Mohammad Arije Ulfy, Md Alamgir Hossain, and Md Zohurul Anis. "Factors influencing the use of E-wallet as a payment method among Malaysian young adults." Journal of International Business and Management 3, no. 2 (2020): 1-12. [5] MCMC. Handphone users survey. Malaysian Communications and Multimedia Commission 2021. [6] Suo, Wen-Jing, Chai-Lee Goi, Mei-Teh Goi, and Adriel KS Sim. "Factors influencing behavioural intention to adopt the QR-code payment: Extending UTAUT2 model." International Journal of Asian Business and Information Management (IJABIM) 13, no. 2 (2022): 1-22. https://doi.org/10.4018/IJABIM.20220701.oa8 [7] Davis, Fred D. "Perceived usefulness, perceived ease of use, and user acceptance of information technology." MIS quarterly (1989): 319-340. https://doi.org/10.2307/249008 [8] Lai, P. C. "Security as an extension to TAM model: Consumers’ intention to use a single platform EPayment." Asia-Pacific Journal of Management Research and Innovation 13, no. 3-4 (2017): 110-119. https://doi.org/10.1177/2319510X18776405 [9] Narayan, Shyam, and Shubhankar K Singh. "Factors affecting the adoption of mobile payment services: Empirical evidence from India." Journal of Systems and Information Technology 22, no. 2 (2020): 203-226. [10] Amin, Hanudin. "Mobile wallet acceptance in Sabah: an empirical analysis." Labuan Bulletin of International Business and Finance 7 (2009): 33. https://doi.org/10.51200/lbibf.v7i.2587 [11] Farida, Ida, and Wawan Ardiansyah. "Technology Acceptance Model Factors: Implications on Digital-Wallet on Interest to Buy in Franchise Business." Golden Ratio of Marketing and Applied Psychology of Business 2, no. 2 (2022): 147-157. https://doi.org/10.52970/grmapb.v2i2.139 [12] Li, Xiang-ze, and Xiao-jian Liang. "Understanding mobile payment users' continuance intention: An empirical analysis." Industrial Management & Data Systems 118 no. 3 (2018): 646-661. [13] Rahmayanti, P., I. G. N. J. A. Widagda, N. Yasa, I. G. A. K. Giantari, Martaleni Martaleni, D. Sakti, Suwitho Suwitho, and Putri Anggreni. "Integration of technology acceptance model and theory of reasoned action in pre-dicting ewallet continuous usage intentions." International Journal of Data and Network Science 5, no. 4 (2021): 649-658. https://doi.org/10.5267/j.ijdns.2021.8.002 [14] Hidayat, D., C. H. Pangaribuan, O. P. B. Putra, and F. J. Taufiq. "Expanding the technology acceptance model with the inclusion of trust and mobility to assess e-wallet user behavior: Evidence from OVO consumers in Indonesia." In IOP Conference Series: Earth and Environmental Science, vol. 729, no. 1, p. 012050. IOP Publishing, 2021. https://doi.org/10.1088/1755-1315/729/1/012050 [15] Lew, Susan, Garry Wei-Han Tan, Xiu-Ming Loh, Jun-Jie Hew, and Keng-Boon Ooi. "The disruptive mobile wallet in the hospitality industry: An extended mobile technology acceptance model." Technology in society 63 (2020): 101430. https://doi.org/10.1016/j.techsoc.2020.101430 [16] Nirmawan, Handri Mufti, and Winny Astiwardhani. "The effect of perceived cost, trust, usefulness, and customer value addition on intention to use of go-pay mobile payment services in small traders." Journal of Business and Management Review 2, no. 10 (2021): 715-732. https://doi.org/10.47153/jbmr210.2392021 [17] Hansen, Jared M., George Saridakis, and Vladlena Benson. "Risk, trust, and the interaction of perceived ease of use and behavioral control in predicting consumers’ use of social media for transactions." Computers in human behavior 80 (2018): 197-206. https://doi.org/10.1016/j.chb.2017.11.010 [18] Hameed, M. A., M. M. Khan, and A. Riaz. "The Role of Perceived Ease of Use in Mobile Payment Acceptance: An Empirical Investigation in Pakistan." Journal of Business and Social Review in Emerging Economies 6, no.2 (2020): 260-269. [19] Khoa, Bui Thanh. "The role of mobile skillfulness and user innovation toward electronic wallet acceptance in the digital transformation era." In 2020 international conference on information technology systems and innovation (ICITSI), pp. 30-37. IEEE, 2020. https://doi.org/10.1109/ICITSI50517.2020.9264967 [20] Christian, Lay, Hanny Juwitasary, Yakob Utama Chandra, and Edi Purnomo Putra. "Evaluation of the E-service quality for the intention of community to use NFC technology for mobile payment with TAM." In 2019 International Conference on Information Management and Technology (ICIMTech), vol. 1, pp. 24-29. IEEE, 2019. https://doi.org/10.1109/ICIMTech.2019.8843811 [21] Osman, Sharina, Norhayati Jabaruddin, A. Suria Zon, Amir Aizzat Jifridin, and Anis Khalidah Zolkepli. "Factors influencing the use of E-wallet among millennium tourist." (2021). [22] Zhang, Jing, and En Mao. "Cash, credit, or phone? An empirical study on the adoption of mobile payments in the United States." Psychology & Marketing 37, no. 1 (2020): 87-98. https://doi.org/10.1002/mar.21282 [23] Nirmawan, Handri Mufti, and Winny Astiwardhani. "The effect of perceived cost, trust, usefulness, and customer value addition on intention to use of go-pay mobile payment services in small traders." Journal of Business and Management Review 2, no. 10 (2021): 715-732. https://doi.org/10.47153/jbmr210.2392021 [24] De Luna, Iviane Ramos, Francisco Liébana-Cabanillas, Juan Sánchez-Fernández, and Francisco Muñoz-Leiva. "Mobile payment is not all the same: The adoption of mobile payment systems depending on the technology applied." Technological Forecasting and Social Change 146 (2019): 931-944. https://doi.org/10.1016/j.techfore.2018.09.018 [25] Mei, Yap Chin, and Ng Boon Aun. "Factors influencing consumers' perceived usefulness of M-Wallet in Klang valley, Malaysia." Review of Integrative Business and Economics Research 8 (2019): 1-23. [26] Civelek, Mustafa Emre. "Comparison of covariance-based and partial least square structural equation modeling methods under non-normal distribution and small sample size limitations." Eurasian Academy of Sciences Eurasian Econometrics, Statistics & Emiprical Economics Journal 10 (2018): 39-50.. [27] Shmueli, Galit, Soumya Ray, Juan Manuel Velasquez Estrada, and Suneel Babu Chatla. "The elephant in the room: Predictive performance of PLS models." Journal of business Research 69, no. 10 (2016): 4552-4564. https://doi.org/10.1016/j.jbusres.2016.03.049 [28] Hair Jr, Joe F., Lucy M. Matthews, Ryan L. Matthews, and Marko Sarstedt. "PLS-SEM or CB-SEM: updated guidelines on which method to use." International Journal of Multivariate Data Analysis 1, no. 2 (2017): 107-123. https://doi.org/10.1504/IJMDA.2017.10008574 [29] Russo, Daniel, and Klaas-Jan Stol. "PLS-SEM for software engineering research: An introduction and survey." ACM Computing Surveys (CSUR) 54, no. 4 (2021): 1-38. https://doi.org/10.1145/3447580 [30] Joseph F. Hair, Christian M. Ringle, and Marko Sarstedt. "A primer on partial least squares structural equation modeling (PLS-SEM)." Sage Publications. 2016. [31] Johnson, Vess L., Angelina Kiser, Ronald Washington, and Russell Torres. "Limitations to the rapid adoption of Mpayment services: Understanding the impact of privacy risk on M-Payment services." Computers in Human Behavior 79 (2018): 111-122. https://doi.org/10.1016/j.chb.2017.10.035 [32] Malik, Akmal Nashren Abd, and Sharifah Nurafizah Syed Annuar. "The effect of perceived usefulness, perceived ease of use, reward, and perceived risk toward e-wallet usage intention." In Eurasian Business and Economics Perspectives: Proceedings of the 30th Eurasia Business and Economics Society Conference, pp. 115-130. Springer International Publishing, 2021. https://doi.org/10.1007/978-3-030-65147-3_8 [33] Raninda, Ratna, Wisnalmawati Wisnalmawati, and Hadi Oetomo. "The Effect of Perceived Usefulness, Perceived Ease of Use, Perceived Security, and Cashback Promotion on Behavioral Intention to the DANA E-Wallet: A Survey of People in the Special Region of Yogyakarta." Jurnal Ilmiah Manajemen Kesatuan 10, no. 1 (2022): 63-72. https://doi.org/10.37641/jimkes.v10i1.1218 [34] Olivia, Michelle, and Nony Kezia Marchyta. "The influence of perceived ease of use and perceived usefulness on E-wallet continuance intention: intervening role of customer satisfaction." PhD diss., Petra Christian University, 2022. https://doi.org/10.9744/jti.24.1.13-22
(1)
[1] S. Mathew and J. Varia, "Overview of Amazon Web Services AWS whitepaper," Amazon Web Services, Seattle, WA, 2020. [2] I. Odun-Ayo, M. Ananya, F. Agono and R. Goddy-Worlu, "Cloud computing architecture: A critical analysis," in 18th International Conference on Computational Science and Its Applications, ICCSA 2018, Melbourne, 2018. [3] A. Krishna, S. Cowley, S. Singh and L. Kesterson-Townes, "Assembling your cloud orchestra: A field guide to multicloud management.," 2018. [Online]. Available: https://www.ibm.com/thought-leadership/institute-business-value/report/multicloud. [4] ISO, "IEC/IEEE International Standard-Systems and Software Engineering–Vocabulary," ISO/IEC/IEEE 24765: 2017 (E), 2017. [5] J. Opara-Martins, R. Sahandi and F. Tian, "Critical analysis of vendor lock-in and its impact on cloud computing migration: a business perspective," Journal of Cloud Computing, vol. 5, no. 1, pp. 1-18, 2016. [6] B. Varghese and R. Buyya, "Next generation cloud computing: New trends and research directions," Future Generation Computer Systems, vol. 79, pp. 849-861, 2018. [7] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah and P. Merle, "Elasticity in cloud computing: state of the art and research challenges," IEEE Transactions on Services Computing, vol. 11, no. 2, pp. 430-447, 2017. [8] G. T. Ayem, S. G. Thandekkattu and N. R. Vajjhala, "Review of interoperability issues influencing acceptance and adoption of cloud computing technology by consumers," in Intelligent Systems and Sustainable Computing: Proceedings of ICISSC 2021, Singapore, 2022. [9] M. N. Birje, P. S. Challagidad, R. H. Goudar and M. T. Tapale, "Cloud computing review: concepts, technology, challenges and security," International Journal of Cloud Computing, vol. 6, no. 1, pp. 32-57, 2017. [10] M. Ayachi, H. Nacer and H. Slimani, "Cloud computing interoperability: An overview," in 2nd International Conference on New Technologies of Information and Communication, NTIC 2022, Virtual, Online, 2022. [11] J. S. Hurwitz and D. Kirsch, Cloud computing for dummies, John Wiley & Sons, 2020. [12] P. Mell and T. Grance, "The NIST definition of cloud computing, Special Publication (NIST SP)," National Institute of Standards and Technology, Gaithersburg, MD, 2011. [13] S. Namasudra, "Cloud computing: A new era," Journal of Fundamental and Applied Sciences, vol. 10, no. 2, 2018. [14] S. Liu, K. Yue, H. Yang, L. Liu, X. Duan and T. Guo, "The research on SaaS model based on cloud computing," in 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, IMCEC 2018, Xi'an, 2018. [15] A. Rashid and A. Chaturvedi, "Cloud computing characteristics and services: A brief review," International Journal of Computer Sciences and Engineering, vol. 7, no. 2, pp. 421-426, 2019. [16] E. B. Chawki, A. Ahmed and T. Zakariae, "IaaS cloud model security issues on behalf cloud provider and user security behaviors," in Procedia Computer Science, Las Palmas de Gran Canaria, 2018. [17] G. Ramachandra, M. Iftikhar and F. A. Khan, "A comprehensive survey on security in cloud computing," in 14th International Conference on Mobile Systems and Pervasive Computing, MobiSPC 2017, Leuven, 2017. [18] P. Wang, C. Zhao, W. Liu, Z. Chen and Z. Zhang, "Optimizing data placement for cost effective and high available multi-cloud storage," Computing and Informatics, vol. 39, no. 1-2, pp. 51-82, 2020. [19] J. Hong, T. Dreibholz, J. A. Schenkel and J. A. Hu, "An overview of multi-cloud computing," in 33rd International Conference on Advanced Information Networking and Applications, AINA 2019, Matsue, 2019. [20] E. Nogueira, A. Moreira, D. Lucrédio, V. Garcia and R. Fortes, "Issues on developing interoperable cloud applications: definitions, concepts, approaches, requirements, characteristics and evaluation models," Journal of Software Engineering Research and Development, vol. 4, no. 1, pp. 1-23, 2016. [21] M. Kostoska, M. Gusev and S. Ristov, "An overview of cloud interoperability," in Federated Conference on Computer Science and Information Systems, FedCSIS 2016, Gdansk, 2016. [22] P. H. D. Valle, L. Garcés and E. Y. Nakagawa, "A typology of architectural strategies for interoperability," in 13th Brazilian Symposium on Software Components, Architectures, and Reuse, SBCARS 2019, Salvador, 2019. [23] Z. A. Adhoni, "Framework, semantic and standard approaches in multi-clouds to achieve interoperability: A survey," Journal of Integrated Science and Technology, vol. 10, no. 2, pp. 67-72, 2022. [24] L. Rachana and S. Shridevi, "A literature survey: Semantic technology approach in machine learning," in 2nd International Conference on Power Engineering, Computing and Control, PECCON 2019, Chennai, 2021. [25] M. Sreenivasan and A. M. Chacko, "Interoperability issues in EHR systems: Research directions," in Data Analytics in Biomedical Engineering and Healthcare, Elsevier, 2020, p. 13–28. [26] C. Ramalingam and P. Mohan, "Addressing semantics standards for cloud portability and interoperability in multi cloud environment," Symmetry, vol. 13, no. 2, pp. 1-18, 2021. [27] H. A. Imran, U. Latif, A. A. Ikram, M. Ehsan, A. J. Ikram, W. A. Khan and S. Wazir, "Multi-cloud: A comprehensive review," in 23rd IEEE International Multi-Topic Conference, INMIC 2020, Bahawalpur, 2020. [28] A. Bergmayr, U. Breitenbücher, N. Ferry, A. Rossini, A. Solberg, M. Wimmer, G. Kappel and F. Leymann, "A systematic review of cloud modeling languages," ACM Computing Surveys, vol. 51, no. 1, pp. 1-38, 2018. [29] K. Kaur, D. S. Sharma and D. K. S. Kahlon, "Interoperability and portability approaches in inter-connected clouds: A review," ACM Computing Surveys, vol. 50, no. 4, pp. 1-40, 2017. [30] O. Tomarchio, D. Calcaterra and G. D. Modica, "Cloud resource orchestration in the multi-cloud landscape: a systematic review of existing frameworks," Journal of Cloud Computing, vol. 9, no. 1, pp. 1-24, 2020. [31] H. Brabra, A. Mtibaa, L. Sliman, W. Gaaloul and F. Gargouri, "Semantic web technologies in cloud computing: a systematic literature review.," in In 2016 IEEE International Conference on Services Computing (SCC), 2016. [32] I. Harrow, R. Balakrishnan, E. Jimenez-Ruiz, S. Jupp, J. Lomax, J. Reed, M. Romacker, C. Senger, A. Splendiani, J. Wilson and P. Woollard, "Ontology mapping for semantically enabled applications," Drug discovery today, vol. 24, no. 10, pp. 2068-2075, 2019. [33] G. Zacharewicz, S. Diallo, Y. Ducq, C. Agostinho, R. Jardim-Goncalves, H. Bazoun, Z. Wang and G. Doumeingts, "Model-based approaches for interoperability of next generation enterprise information systems: state of the art and future challenges," Information Systems and e-Business Management, vol. 15, no. 2, pp. 229-256, 2017. [34] N. Ferry, F. Chauvel, H. Song, A. Rossini, M. Lushpenko and A. Solberg, "CloudMF: Model-driven management of multi-cloud applications," ACM Transactions on Internet Technology (TOIT), pp. 1-24, 2018. [35] B. Di Martino, G. Cretella and A. Esposito, "Cloud portability and interoperability," in Encyclopedia of Cloud Computing, 2016, pp. 163-177. [36] N. E. H. Bouzerzour, S. Ghazouani and Y. Slimani, "A survey on the service interoperability in cloud computing: Client-centric and provider-centric perspectives," Software - Practice and Experience, vol. 50, no. 7, pp. 1025 - 1060, 2020. [37] A. Patel and S. Jain, "Present and future of semantic web technologies: A research statement," International Journal of Computers and Applications, vol. 43, no. 5, pp. 413-422, 2021. [38] A. Rejeb, J. Keogh, W. Martindale, D. Dooley, E. Smart, S. Simske, S. Wamba, J. Breslin, K. Bandara, S. Thakur and K. e. a. Liu, "Charting past, present, and future research in the semantic web and interoperability," Future internet, vol. 14, no. 6, p. 161, 2022. [39] J. Agbaegbu, O. T. Arogundade, S. Misra and R. Damaševičius, "Ontologies in cloud computing—review and future directions," Future Internet, vol. 13, no. 12, p. 302, 2021. [40] M. M. Al-Sayed, H. A. Hassan and F. A. Omara, "Towards evaluation of cloud ontologies," Journal of Parallel and Distributed Computing, vol. 126, pp. 82-106, 2019. [41] E. L. F. Ribeiro, M. Souza and D. B. Claro, "MIDAS-OWL: An Ontology for Interoperability between Data and Service Cloud Layers," in 17th Brazilian Symposium on Information Systems: Intelligent and Ubiquitous Information Systems: New Challenges and Opportunities, 2021. [42] N. Bassiliades, M. Symeonidis, P. Gouvas, E. Kontopoulos, G. Meditskos and I. Vlahavas, "PaaSport semantic model: An ontology for a platform-as-a-service semantically interoperable marketplace," Data and Knowledge Engineering, vol. 113, pp. 81-115, 2018. [43] S. Partelow, "What is a framework? Understanding their purpose, value, development and use," Journal of Environmental Studies and Sciences, vol. 13, no. 4, p. 510–519, 2023. [44] J. Soldatos, E. Troiano, P. Kranas and A. Mamelli, "A reference architecture model for big data systems in the finance sector," in Big Data and Artificial Intelligence in Digital Finance: Increasing Personalization and Trust in Digital Finance using Big Data and AI, Springer, Cham, 2022, pp. 3-28. [45] F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger and D. Leaf, "NIST cloud computing reference architecture," NIST special publication 500-292, 2011. [46] P. H. D. Valle, L. Garcés, T. Volpato, S. Martínez-Fernández and E. Y. Nakagawa, "Towards suitable description of reference architectures," PeerJ Computer Science, vol. 7, pp. 1-36, 2021. [47] K. Bakshi and L. Beser, "Cloud reference frameworks," in Encyclopedia of Cloud Computing, Wiley, 2016, pp. 71-88. [48] K. Sana, N. A. C. E. R. Hassina and B. B. Kadda, "Towards a reference architecture for interoperable clouds," in 8th International Conference on Electrical and Electronics Engineering, ICEEE 2021, Antalya, 2021. [49] R. &. P. I. A. Zota, "An Overview of the Most Important Reference Architectures for Cloud Computing," Informatica Economica, vol. 18, no. 4, 2014. [50] S. Challita, F. Zalila and P. Merle, "Specifying semantic interoperability between heterogeneous cloud resources with the FCLOUDS formal language," in 11th IEEE International Conference on Cloud Computing, CLOUD 2018, San Francisco, 2018. [51] G. G. Castañé, H. Xiong, D. Dong and J. P. Morrison, "An ontology for heterogeneous resources management interoperability and HPC in the cloud," Future Generation Computer Systems, vol. 88, pp. 373-384, 2018. [52] J. De Carvalho, F. Trinta and D. Vieira, "PacificClouds: A flexible microservices based architecture for interoperability in multi-cloud environments," in 8th International Conference on Cloud Computing and Services Science, CLOSER 2018, Funchal, Madeira, 2018. [53] C. Anglano, M. Canonico and M. Guazzone, "EasyCloud: A rule based toolkit for multi-platform cloud/edge service management," in 5th International Conference on Fog and Mobile Edge Computing, FMEC 2020, Paris, 2020. [54] N. E. H. Bouzerzour, S. Ghazouani and Y. Slimani, "Cloud interoperability based on a generic cloud service description: Mapping OWL-S to GCSD," in 29th IEEE International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises, WETICE 2020, Virtual, Bayonne, 2020. [55] C. Anglano, M. Canonico and M. Guazzone, "EasyCloud: Multi-clouds made easy," in 45th IEEE Annual Computers, Software, and Applications Conference, COMPSAC 2021, Virtual, Online, 2021. [56] K. Benhssayen and A. Ettalbi, "Semantic interoperability framework for IAAS resources in multi-cloud environment," International Journal of Computer Science and Network Security, vol. 21, no. 2, pp. 1-8, 2021. [57] B. Mane, A. P. Magalhaes, G. Quinteiro, R. S. P. Maciel and D. B. Claro, "A domain specific language to provide middleware for interoperability among SaaS and DaaS/DBaaS through a metamodel approach," in 23rd International Conference on Enterprise Information Systems, ICEIS 2021, Virtual, Online, 2021. [58] D. Andročec and R. Picek, "Cloud ERP API ontology," in International Conference on Electrical, Computer and Energy Technologies, ICECET 2022, Prague, 2022. [59] K. Benhssayen and A. Ettalbi, "An extended framework for semantic interoperability in PaaS and IaaS multi-cloud," in Digital Technologies and Applications: Proceedings of ICDTA’22, Fez, Morocco, 2022. [60] N. E. H. Bouzerzour and Y. Slimani, "Towards a MaaS Service for Cloud Service Interoperability," in 10th International Conference on Model-Driven Engineering and Software Development, MODELSWARD 2022, Virtual, Online, 2022.
(1)
[1] S. N. Wahyudin, R. A. Diantari, and T. M. Rahmatullah, “Analisa Proteksi Differensial pada Generator di PLTU Suralaya,” Energi & Kelistrikan, vol. 9, no. 1, pp. 84–92, 2017. http://dx.doi.org/10.33322/ENERGI.V9I1.51 [2] D. F. Pamungkas, “Laporan Kerja Praktek PT. PJB UBJOM PLTU Rembang Sistem Eksitasi pada Generator PLTU 1 Jawa Tengah Rembang,” Semarang (ID), 2015. [3] A. Kutsyk, M. Semeniuk, M. Korkosz, and G. Podskarbi, “Diagnosis of the Static Excitation Systems of Synchronous Generators with the Use of Hardware-In-the-Loop Technologies,” Energies, vol. 14, no. 21, p. 6937, 2021. http://dx.doi.org/10.3390/EN14216937 [4] PJB Integrated Manamegent System PT. Pembangkitan Jawa Bali Unit Bisnis Jasa O&M PLTU Rembang, “RCFA Gangguan Generator Stator Unit 20 No. RCFA: 03/RCFA/SOT/UJRB/2021,” Rembang (ID), 2021. [5] J. K. Mohanty, M. Sihna, A. Adarsh, N. Prabhakaran, P. R. Dash, and P. K. Pradhan, “Enhancement of Turbine Performance Using Root Cause Failure Analysis and LPDE Correction,” J. Fail. Anal. Prev., vol. 20, pp. 1704–1710, 2020. http://dx.doi.org/10.1007/S11668-020-00977-9/METRICS [6] D. Cahyadi and Hermawan, “Analisa Perhitungan Efisiensi Turbine Generator QFSN-300-2-20B Unit 10 dan 20 PT. PJB UBJOM PLTU Rembang,” Lap. Kerja Prakt. Jur. Tek. Elektro Univ. Diponegoro, vol. 2015, pp. 1–8, 2015. [7] J. Purnomo and M. Effendy, “Analisa Pengaruh Load Capacity Pembangkit Listrik Tenaga Uap Tanjung Awar-Awar 350 MW Terhadap Efisiensi Turbin Generator QFSN-350-2 Unit 1,” J. Pendidik. Tek. Mesin, vol. 7, no. 3, 2018. [8] J. Permana and I. Kurniawan, “Analisis Perhitungan Daya Turbin yang Dihasilkan dan Efisiensi Turbin Uap pada Unit 1 dan Unit 2 di PT. Indonesia Power UBOH UJP Banten 3 Lontar,” Mot. Bakar J. Tek. Mesin, vol. 1, no. 2, 2017. http://dx.doi.org/10.31000/MBJTM.V1I2.731 [9] S. S. Dirmanto and A. R. Effendi, “Analisis Perubahan Tekanan Vakum Kondensor Terhadap Kerja Turbin dan Produksi Listrik PLTU Unit 1 Sebalang Menggunakan Simulasi Cycle Tempo,” J. Powerpl., vol. 8, no. 1, pp. 1–29, 2020. http://dx.doi.org/10.33322/POWERPLANT.V8I1.1047 [10] U. Usman, A. Multazam, and A. Gaffar, “Perbandingan Efisiensi Aktual Dan Spesifikasi Generator BTG II Power Plant PT. Semen Tonasa 2×35 MW Pada Berbagai Beban Aktual,” J. ELTIKOM J. Tek. Elektro, Teknol. Inf. dan Komput., vol. 6, no. 2, pp. 163–173, 2022. http://dx.doi.org/10.31961/ELTIKOM.V6I2.554 [11] A. G. Romdhon, M. Ilham, R. P. Astutik, and D. Irawan, “Penanganan Lonjakan Vibrasi pada Rotor Elektrik Turbin di PLTU Gresik,” J. Appl. Smart Electr. Netw. Syst., vol. 1, no. 02, pp. 47–54, 2020. http://dx.doi.org/10.52158/JASENS.V1I02.116 [12] A. Raymond, C. Millet, and H. Provencher, “Analysis of a hydro- generator stator winding failure,” in 2021 IEEE Electrical Insulation Conference (EIC), 2021, pp. 389–392. http://dx.doi.org/10.1109/EIC49891.2021.9612386 [13] G. C. Stone, E. A. Boulter, I. Culbert, and H. Dhirani, Electrical insulation for rotating machines: design, evaluation, aging, testing, and repair, 21st ed. New Jersey (US): John Wiley & Sons, Inc., 2004. [14] G. C. Stone and V. Warren, “Objective methods to interpret partial- discharge data on rotating-machine stator windings,” IEEE Trans. Ind. Appl., vol. 42, no. 1, pp. 195–200, 2006. http://dx.doi.org/10.1109/TIA.2005.861273 [15] G. Stone and J. Kapler, “Stator winding monitoring,” IEEE Ind. Appl. Mag., vol. 4, no. 5, pp. 15–20, 1998. http://dx.doi.org/10.1109/2943.715501 [16] S. R. Campbell and G. C. Stone, “Investigations into the use of temperature detectors as stator winding partial discharge detectors,” in Conference Record of the 2006 IEEE International Symposium on Electrical Insulation, 2006, vol. 2007, pp. 369–375. http://dx.doi.org/10.1109/ELINSL.2006.1665335 [17] G. C. Stone, I. Culbert, E. A. Boulter, and H. Dhirani, “Rotating Machine Insulation Systems,” in Electrical Insulation for Rotating Machines: Design, Evaluation, Aging, Testing, and Repair, John Wiley & Sons, Inc., 2014, pp. 1–46. http://dx.doi.org/10.1002/9781118886663.CH1 [18] R. E. Fenton, B. E. B. Gott, and C. V. Maughan, “Preventative maintenance of turbine-generator stator windings,” IEEE Trans. Energy Convers., vol. 7, no. 1, pp. 216–222, 1992. http://dx.doi.org/10.1109/60.124563 [19] A. Gegenava, A. Khazanov, and B. Moore, “Evaluation of electrical insulation quality for high voltage stator windings machines through visual inspection of dissected coils,” in 2016 IEEE Electrical Insulation Conference (EIC), Aug. 2016, pp. 156– 161. http://dx.doi.org/10.1109/EIC.2016.7548656 [20] V. I. J. Kokko, “Ageing due to thermal cycling by power regulation cycles in lifetime estimation of hydroelectric generator stator windings,” in 2012 XXth International Conference on Electrical Machines, 2012, pp. 1559–1564. http://dx.doi.org/10.1109/ICELMACH.2012.6350086 [21] X. Bao, T. Wang, and Y. Liu, “Electromagnetic force analysis of turbogenerator stator end winding,” in 2020 5th International Conference on Electromechanical Control Technology and Transportation (ICECTT), May 2020, pp. 111–115. http://dx.doi.org/10.1109/ICECTT50890.2020.00032 [22] B. Yue, X. Chen, Y. Cheng, J. Song, and H. Xie, “Diagnosis of stator winding insulation of large generator based on partial discharge measurement,” IEEE Trans. Energy Convers., vol. 21, no. 2, pp. 387–395, 2006. http://dx.doi.org/10.1109/TEC.2006.874223 [23] G. C. Stone and V. Warren, “Effect of manufacturer, winding age and insulation type on stator winding partial discharge levels,” IEEE Electr. Insul. Mag., vol. 20, no. 5, pp. 13–17, 2004. http://dx.doi.org/10.1109/MEI.2004.1342428 [24] G. C. Stone, M. K. W. Stranges, and D. G. Dunn, “Recent developments in IEEE and IEC standards for off-line and on-line partial discharge testing of motor and generator stator windings,” in 2014 IEEE Petroleum and Chemical Industry Technical Conference (PCIC), Nov. 2014, pp. 79–84. http://dx.doi.org/10.1109/PCICON.2014.6961921 [25] W. S. Lee, D. L. Grosh, F. A. Tillman, and C. H. Lie, “Fault Tree Analysis, Methods, and Applications ߝ A Review,” IEEE Trans. Reliab., vol. R-34, no. 3, pp. 194–203, 1985. http://dx.doi.org/10.1109/TR.1985.5222114 [26] P. A. Crosetti, “Computer Program for Fault Tree Analysis,” Richland (DC), Apr. 1969. [27] W. G. Schneeweiss, Tutorial on Advanced Concepts in Fault Tree Analysis. Hagen (DE): FernUniversität in Hagen, 1984. [28] A. A. Baig, R. Ruzli, and A. B. Buang, “Reliability Analysis Using Fault Tree Analysis: A Review,” Int. J. Chem. Eng. Appl., vol. 4, no. 3, pp. 169–173, 2013. [29] B. M. Ayyub, Risk analysis in engineering and economics. London (UK): Chapman and Hall/CRC, 2014. [30] NW Power and Dongfang Electric, Thermodynamic Performance for Model N300-16.7-538-538-8 Turbine. Rembang (ID): PLTU 1 Jawa Tengah Rembang. [31] NW Power and Dongfang Electric, Turbine Operation Manual. Rembang (ID): PLTU 1 Jawa Tengah Rembang. [32] NW Power and Dongfang Electric, Electric Operation Manual Generator and Electrical Equipment. Rembang (ID): PLTU 1 Jawa Tengah Rembang. [33] PT PLN, SPLN K5.007 - 2020 Pengujian Generator. Jakarta (ID): PT. PLN, 2020. [34] IEEE, “Guide for the Rewind of Synchronous Generators, 50 Hz and 60 Hz, Rated 1 MVA and Above.” 2009. [35] A. Sinha, Sinha Ashutosh Kumar, and A. Anand, “A Next-Gen Power Generation Using Simulation And Machine Learning Forecasting,” Int. J. Sci. Res. Comput. Sci. Eng., vol. 9, no. 1, pp. 56–65, 2021. [36] C. C. Okolo, E. J. Uduh, I. C. Ezeugbor, N. Okwuelu, and O. M. Sani, “Improving the Transient Stability of Ajaokuta Bus in the Nigerian 330KV Transmission System Using Proportional Integral Based VSC- HVDC Method,” World Acad. J. Eng. Sci., vol. 7, no. 2, pp. 92–99, 2020.
(1)
1. Sood R. Long case examination-Can it be improved. Journal of Indian Academy of Clinical Medicine. 2001; 2(4): 252-5. 2. Khan KZ, Fau RS, Fau GK, Pushkar P. The objective structured clinical examination (OSCE): AMEE Guide No. 81. Part I: an historical and theoretical perspective. Med Teacher 2013; 35(6): e1437-46. 3. Tadlock L, Barone N, Pangrazio-Kulbersh V, Sabott D, Foley P, Trulove T, Park J, Hernandez-Orsini R, Chung C-H. American Board of Orthodontics: update on the new scenario-based clinical examination. Am J Orthod Dentofacial Orthop 2019; 155: 765-6. 4. O'Brien Janet E, Hagler D, Thompson Marilyn S. Designing simulation scenarios to support performance assessment validity. J Contin Educ Nurs 2015; 46(11): 492-8. 5. Troncon EA. A standardized, structured long-case examination of clinical competence of senior medical students. Med Teacher 2000; 22(4): 380-85. 6. Barone N, Pangrazio-Kulbersh V, Sabott DG, Foley PF, Trulove TS, Park JH et al. American Board of Orthodontics: Progress of the scenario-based clinical examination. Am J Orthod Dentofacial Orthop 2020; 158: 14-5. 7. van der Vleuten C. Validity of final examinations in undergraduate medical training. BMJ 2000; 11(321): 7270. 8. Hall EJ, Simpson A, Imrie H, Ruedisueli N. Time-constrained scenario-based practical examinations (TSPEs): an alternative to OSCEs? Vet Nurs J 2019; 34(6): 154-8. 9. Robles MJ, Miralles R, Esperanza A, Riera M. Different ways to present clinical cases in a classroom: video projection versus live representation of a simulated clinical scene with actors. BMC Med Educ 2019; 19(1): 70. 10. Gayef A. Using simulated patients in medical and health professions education. SHS Web of Conferences 2019; 66: 01016. 11. Pheister M, Stagno S, Cotes R, Prabhakar D, Mahr F, Crowell A et al. Simulated patients and scenarios to assess and teach psychiatry residents. Acad Psychiatry 2017; 41(1): 114-7. 12. Bokken L, Rethans JJ, van Heurn L, Duvivier R, Scherpbier A, van der Vleuten C. Students' views on the use of real patients and simulated patients in undergraduate medical education. Acad Med 2009; 84(7): 958-63. 13. Wanjari S, Vagha S. Utility of OSLER for assessing enhancement of learning in postgraduate students. South-East Asian J Med Educ 2020; 13: 37. 14. Kamarudin MA, Mohamad N, Siraj MNABHH, Yaman MN. The relationship between modified long case and objective structured clinical examination (Osce) in final professional examination 2011 held in UKM Medical Centre. Procedia - Social Behav Sci. 2012; 60: 241-8.
(1)
[1] Sorensen C, Hess J. Treatment and prevention of heat-related illness. N Engl J Med. 2022;387:1404–13. [2] Yezli S, Yassin Y, Ghallab S, et al. Classic heat stroke in a desert climate: a systematic review of 2632 cases. J Intern Med. 2023;294:7–20. [3] Rublee C, Dresser C, Giudice C, et al. Evidence-based heatstroke management in the emergency department. West J Emerg Med. 2021;22:186–95. [4] Epstein Y, Yanovich R. Heatstroke. N Engl J Med. 2019;380:2449–59. [5] Leon LR, Bouchama A. Heat stroke. Compr Physiol. 2015;5:611–47. [6] Sullivan SJL, Rinaldi JE, Hariharan P, et al. Clinical evaluation of non-contact infrared thermometers. Sci Rep. 2021;11:22079. [7] Westwood CS, Fallowfield JL, Delves SK, et al. Individual risk factors associated with exertional heat illness: a systematic review. Exp Physiol. 2021;106:191–9. [8] Demartini JK, Casa DJ, Stearns R, et al. Effectiveness of cold water immersion in the treatment of exertional heat stroke at the Falmouth Road Race. Med Sci Sports Exerc. 2015;47:240–5. [9] Knoll JM, Knight LR, Quiroz D, et al. Variation in clinical presentations and outcomes of heat stroke victims in the mass-casualty setting. J Emerg Med. 2019;57:866–70. [10] Liu S, Xing L, Wang Q, et al. Association between early stage-related factors and mortality in patients with exertional heat stroke: a retrospective study of 214 cases. Int J General Med. 2021;14:4629–38. [11] Walter EJ, Carraretto M. The neurological and cognitive consequences of hyperthermia. Crit Care. 2016;20:199. [12] Szabadi E. Functional organization of the sympathetic pathways controlling the pupil: light-inhibited and light-stimulated pathways. Front Neurol. 2018;9:1069. [13] Cooksley T, Rose S, Holland M. A systematic approach to the unconscious patient. Clin Med (Lond). 2018;18:88–92. [14] May R, Hunt K. Clinical approach to comatose patients. Anaesth Intensive Care Med. 2019;21:16–9. [15] Fernandes PM, Davenport RJ. How to do it: investigate exertional rhabdomyolysis (or not). Pract Neurol. 2019;19:43–8.
(1)
1. Sritharan N., Sahari S., Sharon C.C.S. A Systematic Literature Review on Tax Evasion: Insights and Future Research Agenda. International Journal of Academic Research in Accounting Finance and Management Sciences. 2022;12(2): 84–105. https://doi.org/10.6007/IJARAFMS/v12-i2/13089 2. Ministry of Finance Malaysia. Budget 2019. The Budget Speech Text; 2019. Available at: https://www.mof.gov.my/portal/arkib/budget/2019/bs19.pdf 3. Salawati S., Sritharan N., Sheung S.C.C., Mohamed A.S. Does Tax Knowledge Motivate Tax Compliance in Malaysia? Research in World Economy. 2021;12(1):238–251. https://doi.org/10.5430/rwe.v12n1p238 4. Sritharan N., Salawati S. Examining the Moderating Effect of Tax Knowledge on the Relationship between Individual Factors and Income Tax Compliance Behaviour in Malaysia. International Journal of Academic Research in Accounting, Finance and Management Sciences. 2019;9(3):160–172. https://doi.org/10.6007/ijarafms/v9-i3/6355 5. Sritharan N., Salawati S., Cheuk S.C.-S. How Social Factor Determine Individual Taxpayers’ Tax Compliance Behaviour in Malaysia? International Journal of Business and Society. 2020;21(3):1444–1463. https://doi.org/10.33736/ijbs.3363.2020 6. Schneider F., Enste D. Hiding in the Shadows: The Growth of the Underground Economy. Economic Issues. 2002. No. 30 International Monetary Fund. Available at: https://www.imf.org/external/pubs/ft/issues/issues30/#:%7E:text=the%20official%20economy.-,What%20Is%20the%20Shadow%20Economy%3F,from%20monetary%20or%20barter%20transactions 7. Ministry of Finance Malaysia. Budget 2020. Government of Malaysia; 2019. Available at: https://phl.hasil.gov.my/pdf/pdfam/Budget_2020.pdf 8. Sritharan N., Salawati S., Sharon C.C.S., Syubaili M.A. Corporate Tax Avoidance: A Systematic Literature Review and Research Agenda. International Journal of Academic Research in Business and Social Sciences.2022;12(8):1160–1180. https://doi.org/10.6007/IJARBSS/v12-i8/14683 9. Sritharan N., Salawat S. Economic Factors Impact on Individual Taxpayers’ Tax Compliance Behaviour in Malaysia. International Journal of Academic Research in Accounting, Finance and Management Sciences. 2019;9(2):172–182. https://doi.org/10.6007/IJARAFMS/v9-i2/6166 10. Manrejo S., Yulaeli T. Tax Compliance Model Based on Taxpayers Planned Behavior in Indonesia. Journal of Tax Reform. 2022;8(3):298–311. https://doi.org/10.15826/jtr.2022.8.3.123 11. Sritharan N., Sahari S., Sharon C.C.S., Syubaili M.A. Examining the Moderating Effect of Financial Constraint on Tax Compliance: A Sequential Explanatory Design Study on Malaysian Tax Professionals. International Business Education Journal. 2022;15(2):29–48. https://doi.org/10.37134/ibej.Vol15.2.3.2022 12. Bagdad M.A., Noor R.M., Hamid N.A., Aziz R.A. Factors Affecting Tax Gap: Evidence from Tax Audit Cases. Governance and Sustainability of Global Business Economics. 2017;17(1):149–156. https://doi.org/10.33369/gsgbe.11.1.33-52 13. Sritharan N., Sahari S., Sharon C.C.S., Syubaili M.A. Identifying the factors impacting upon personal tax compliance: a study involving tax affairs officers of Malaysian businesses. eJournal of Tax Research. 2022;20(1):48–71. Available at: https://www.unsw.edu.au/content/dam/pdfs/unsw-adobe-websites/business-school/faculty/research/ejournal-of-tax-research/2022-volume-20-number-1/2022-11-Volume20-No1-P48.pdf 14. Kelman H.C. Compliance, identification, and internalization three processes of attitude change. Journal of Conflict Resolution. 1985;2(1). https://doi.org/10.1177/002200275800200106 15. Kogler C., Muehlbacher S., Kirchler E. Testing the “slippery slope framework” among self-employed taxpayers. Economics of Governance. 2015;16(2):125–142. https://doi.org/10.1007/s10101-015-0158-9 16. Kelman H.C. Interests, relationships, identities: Three central issues for individuals and groups in negotiating their social environment. Annual Review of Psychology. 2006;57(1):1–26. https://doi.org/10.1146/annurev.psych.57.102904.190156 17. Ajzen I. From Intentions to Actions: A Theory of Planned Behavior. Action Control. In: Kuhl J., Beckmann J. (eds) Action Control. SSSP Springer Series in Social Psychology. Berlin, Heidelberg: Springer; 1985. https://doi.org/10.1007/978-3-642-69746-3_2 18. Lefebvre M., Pestieau P., Riedl A., Villeval M.C. Tax evasion and social information: an experiment in Belgium, France, and the Netherlands. International Tax and Public Finance. 2015;22(3):401–425. https://doi.org/10.1007/s10797-014-9318-z 19. Alm J., Bloomquist K.M., McKee M. When You Know Your Neighbour Pays Taxes: Information, Peer Effects and Tax Compliance. Fiscal Studies. 2017;38(4):587–613. https://doi.org/10.1111/1475-5890.12111 20. Inasius F. Factors Influencing SME Tax Compliance: Evidence from Indonesia. International Journal of Public Administration. 2018;42(5):367–379. https://doi.org/10.1080/01900692.2018.1464578 21. Puspitasari E., Susilowati Y., Meiranto W. Experimental Study on Individual Taxpayer: Motivational Posture and Peer Reporting Behavior. Jurnal Dinamika Manajemen. 2017;8(1):59–67. https://doi.org/10.15294/jdm.v8i1.10411 22. Ho J.K., Loo E.C., Lim K.P. Perspective of non-taxpayers’ perceptions on issues of ethics and equity in tax compliance. Malaysian Accounting Review.2006;5(2):47–59. https://ir.uitm.edu.my/id/eprint/278/ 23. Alshirah A.F., Jabbar H.A., Samsudin R.S. The Effect of Tax Moral on Sales Tax Compliance among Jordanian SME. International Journal of Academic Research in Accounting, Finance and Management Sciences. 2019;9(1):30–41. https://doi.org/10.6007/ijarafms/v9-i1/5722 24. BIT. Applying Behavioural Insights to Reduce Fraud, Error and Debt. London: Cabinet Office, UK; 2012. Available at: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/60539/BIT_FraudErrorDebt_accessible.pdf 25. Obaid A., Mahdi M., Ibrahim I., Udin M.N. An Investigation of the Determinants of Tax Compliance Among Yemeni Manufacturing SMEs Using the Fisher Model. International Journal of Psychosocial Rehabilitation. 2020;24(04):1809–1824. https://doi.org/10.37200/ijpr/v24i4/pr201289 26. Lutfi A.A., Idris K.M., Mohamad R. AIS usage factors and impact among Jordanian SMEs: The moderating effect of environmental uncertainty. Journal of Advanced Research in Business and Management Studies. 2017;6(1):24–38. Available at: http://repo.uum.edu.my/id/eprint/21825/ 27. Allingham M.G., Sandmo A. Income tax evasion: a theoretical analysis. Journal of Public Economics. 1972;1(3/4):323–338. https://doi.org/10.1016/0047-2727(72)90010-2 28. Zandi G.R., Elwahi A.S.M. Tax Compliance Audit: The Perspectives of Tax Auditors in Malaysia. Asian Development Policy Review. 2016;4(4):143–149. https://doi.org/10.18488/journal.107/2016.4.4/107.4.143.149 29. Ayers B.C., Seidman J.K., Towery E.M. Tax Reporting Behavior Under Audit Certainty. Contemporary Accounting Research. 2018;36(1):326–358. https://doi.org/10.1111/1911-3846.12439 30. Modugu K.P., Anyaduba J.O. Impact of tax audit on tax compliance in Nigeria. International Journal of Business and Social Science.2014;5(9):207–215. Available at: https://ijbssnet.com/journals/Vol_5_No_9_August_2014/25.pdf 31. DeBacker J, Heim B.T, Tran A., Yuskavage A. Legal enforcement and corporate behavior: An analysis of tax aggressiveness after an audit. The Journal of Law and Economics. 2015;58(2):291–324. https://doi.org/10.1086/684037 32. D’Agosto E., Manzo M., Pisani S., D’Arcangelo F. M. The Effect of Audit Activity on Tax Declaration. Public Finance Review. 2017;46(1):29–57. https://doi.org/10.1177/1091142117698035 33. Supriyono A., Utami I., Muktiyanto A. Exploration of Tax Compliance Determination on Micro, Small and Medium Enterprise. Jurnal Akuntansi. 2021;11(1):1–20. https://doi.org/10.33369/j.akuntansi.11.1.33-52 34. Chong K.-R., Arunachalam M. Determinants of Enforced Tax Compliance: Empirical Evidence from Malaysia. Advances in Taxation. 2018;25(1):147–172. https://doi.org/10.1108/s1058-749720180000025007 35. Alm J., Cherry T., Jones M., McKee M. Taxpayer information assistance services and tax compliance behavior. Journal of Economic Psychology. 2010;31(4):577–586. https://doi.org/10.1016/j.joep.2010.03.018 36. Palil M.R, Hamid M.A., Hanafiah M.H. Taxpayers compliance behaviour: Economic factors approach. Jurnal Pengurusan. 2013;38(1);75–85. Available at: http://journalarticle.ukm.my/6972/1/4614-10795-1-SM.pdf 37. Kasipillai J., Baldry J. What do Malaysian taxpayers know? Malaysian Accountant. 1998;3(2):145–161. Available at: https://www.micpa.com.my/news-media/malaysian-accountant-journal/ 38. Pope J., Abdul-Jabbar H. Small and Medium-Sized Enterprises and Tax Compliance Burden in Malaysia: Issues and Challenges for Tax Administration. Small Enterprise Research. 2011;16(1):47–60. https://doi.org/10.5172/ser.16.1.47 39. Braithwaite V. Defiance in Taxation and Governance: Resisting and Dismissing Authority in a Democracy. Books, Edward Elgar Publishing, No 12542; 2009. Available at: https://static1.squarespace.com/static/5c05f8595cfd7901fc57139d/t/5c130f0eaa4a99798c7c813f/1544752928514/defiance+in+taxation+book.pdf 40. Bobek D.D., Radtke R.R. An Experiential Investigation of Tax Professionals’ Ethical Environments. Journal of the American Taxation Association.2007;29(2):63–84. https://doi.org/10.2308/jata.2007.29.2.63 41. OECD. (2010). Understanding and Influencing Taxpayers’ Compliance Behaviour. Organisation for Economic Cooperation and Development, France; 2010. Available at: https://www.oecd.org/tax/forum-on-tax-administration/publications-and-products/46274793.pdf 42. Murphy K. The Role of Trust in Nurturing Compliance: A Study of Accused Tax Avoiders. Law and Human Behavior. 2004;28(2):187–209. https://doi.org/10.1023/B:LAHU.0000022322.94776.ca 43. Reeson A., Dunstall S. Behavioural Economics and Complex Decision-Making: Implications for the Australian Tax and Transfer System. Australia: CSIRO Mathematical and Information Sciences. 2009; 09/110. Available at: https://www.researchgate.net/publication/242762186_Behavioural_Economics_and_Complex_Decision-Making_Implications_for_the_Australian_Tax_and_Transfer_System 44. NEF. Behavioural Economics: Seven Principles for Policy-Makers. New Economics Foundation, UK; 2005. Available at: https://neweconomics.org/uploads/files/cd98c5923342487571_v8m6b3g15.pdf 45. Swedish Tax Agency (STA). Right from The Start– Research and Strategies. Swedish Tax Agency. 2005. Available at: https://sweden.se/society/why-swedes-are-okay-with-paying-taxes/ 46. Doerrenberg P. Does the use of tax revenue matter for tax compliance behavior? Economics Letters. 2015;128:30–34. https://doi.org/10.1016/j.econlet.2015.01.005 47. Mohani A. Personal income tax noncompliance in Malaysia, PhD thesis, Victoria University, Melbourne. 2001. Available at: https://vuir.vu.edu.au/15760/1/Abdul_2001compressed.pdf 48. Alasfour F., Samy M., Bampton R. The determinants of tax morale and tax compliance: Evidence from Jordan. Advances in Taxation. 2016;23(1):125–171. https://doi.org/10.1108/S1058-749720160000023005 49. Roberts M.L., Hite P.A. Progressive taxation, fairness, and compliance. Law and Policy. 1994;16(1):27–48. https://doi.org/10.1111/j.1467-9930.1994.tb00115.x 50. Johnson B.R., Jang S.J., Larson D.B., Deli S. Does adolescent’s religious commitment matter? a re-examination of the effects of religiosity on delinquency. Journal of Research in Crime and Delinquency. 2001;38(1):22–44. https://doi.org/10.1177/0022427801038001002 51. Worthington E.L., Nathaniel G.W., Terry L.H., Jennifer S.R., Michael E.M., Jack W.B., Michelle M.S., James T.B., Kevin H.B., Lynn O. The Religious Commitment Inventory-10: Development, Refinement, and Validation of a Brief Scale for Research and Counselling. Journal of Counseling Psychology. 2003;50(1):84–96. https://doi.org/10.1037/0022-0167.50.1.84 52. Torgler B. Tax Morale and Direct Democracy. European Journal of Political economy. 2005;21(2):525–531. https://doi.org/10.1016/j.ejpoleco.2004.08.002 53. Torgler B. Moral Suasion: An Alternative Tax Policy Strategy? Evidence from A Controlled Field Experiment in Switzerland. Economics of Governance. 2004;5(3):235–253. https://doi.org/10.1007/s10101-004-0077-7 54. Torgler B. Tax Moral and Institutions. Centre for Research in Economics. Crema Working Papers No. 2003-09. https://doi.org/10.2139/ssrn.663686 55. Ross M.A., McGee R.W. Attitudes toward Tax Evasion: A Demographic Study of Malaysia. Asian Journal of Law and Economics. 2011;2(3):6–14. https://doi.org/10.2202/2154-4611.1028 56. Torgler B. The Importance of Faith: Tax Morale and Religiosity. Journal of Economic Behaviour & Organization. 2006;61(1):81–109. https://doi.org/10.1016/j.jebo.2004.10.007 57. Sawyer A.J. Enhancing taxpayers’ rights in New Zealand– an opportunity missed? eJournal of Tax Research. 2020;18(2):441–465. Available at: https://hdl.handle.net/10092/101559 58. Mohdali R., Pope J. The influence of religiosity on taxpayers’ compliance attitudes. Accounting Research Journal. 2014;27(1):71–91. https://doi.org/10.1108/arj-08-2013-0061 59. Riahi-Belkaoui A. Relationship between tax compliance internationally and selected determinants of tax morale. Journal of International Accounting, Auditing and Taxation. 2004;13(2):135–143. https://doi.org/10.1016/j.intaccaudtax.2004.09.001 60. Ali M., Raihana N. The influence of religiosity on tax compliance in Malaysia. Curtain University. 2017. Available at: http://hdl.handle.net/20.500.11937/2069 61. Barro R., McCleary R. Religion and Economic Growth. NBER Working Paper No. 9682;2003. https://doi.org/10.3386/w9682 62. Nurunnabi M. Tax evasion and religiosity in the Muslim world: the significance of Shariah regulation. Quality and Quantity. 2017;52:371–394. https://doi.org/10.1007/s11135-017-0471-1 63. Sekaran U. Cram 101 textbook outlines to accompany. 4th ed., Moorpark, CA: Academic Internet Publ., 2005. Available at: https://archive.org/details/cram101textbooko0000unse_i6m9 64. Kirchler E., Hoelzl E., Wahl I. Enforced versus voluntary tax compliance: The “‘slippery slope’’ framework. Journal of Economic Psychology. 2008;29(2):210–225. https://doi.org/10.1016/j.joep.2007.05.004 65. Berbekova A., Uysal M., Assaf A.G. A thematic analysis of crisis management in tourism: A theoretical perspective. Tourism Management. 2021;86:104342. https://doi.org/10.1016/j.tourman.2021.104342 66. Huang Y.-C., Chang L.L., Backman K.F. Detecting common method bias in predicting creative tourists’ behavioural intention with an illustration of theory of planned behaviour. Current Issues in Tourism. 2018;22(3):307–329. https://doi.org/10.1080/13683500.2018.1424809 67. Kock N. Common Method Bias in PLS-SEM. International Journal of E-Collaboration. 2015;11(4):1–10. https://doi.org/10.4018/ijec.2015100101 68. Khreisat M.N., Mugableh A.I. Multidimensionality of EFL Recreational Reading Attitudes: An EFA and CFA Approach. Journal of Research in Applied Linguistics. 2020;11(2):57–69. https://doi.org/10.22055/RALS.2020.15946 69. Hair J.F., Risher J.J., Sarstedt M., Ringle C.M. When to use and how to report the results of PLS-SEM. European Business Review. 2019;31(1):2–24. https://doi.org/10.1108/ebr-11-2018-0203 70. Supriyono A., Utami I., Muktiyanto A. Exploration of Tax Compliance Determination on Micro, Small and Medium Enterprise. Jurnal Akuntansi. 2021;11(1):1–20. https://doi.org/10.33369/j.akuntansi.11.1.33-52 71. Khalil S., Sidani Y. The influence of religiosity on tax evasion attitudes in Lebanon. Journal of International Accounting, Auditing and Taxation. 2020;40:100335. https://doi.org/10.1016/j.intaccaudtax.2020.100335 72. Budiarto D.S., Pramudiati N. Does Technology Improve SMEs Business Success? Empirical Research on Indonesian SMEs. Journal of Economics and Management Sciences. 2018;1(2):546–553. https://doi.org/10.30560/jems.v1n2p115 73. Atmoko A.D. Does intrinsic religiosity moderate between the self-assessment system and tax evasion? a research-based on gender. Jurnal Akuntansi Dan Pendidikan. 2021;10(2):113–123. https://doi.org/10.25273/jap.v10i2.5105 74. Abu Bakar R., Melan M. Information Quality Impact toward Continuous Intention of Using Tax E-Filing System. International Journal of Scientific and Research Publications. 2018;8(8):416–421. https://doi.org/10.29322/ijsrp.8.8.2018.p8050 75. Benk S., McGee R.W., Yüzbaşı B. How Religions Affect Attitudes Toward Ethics of Tax Evasion? A Comperative and Demographic Analysis. Journal for the Study of Religions and Ideologies. 2015;14(41):202–223. Available at: https://www.academia.edu/33558578/HOW_RELIGIONS_AFFECT_ATTITUDES_TOWARD_ETHICS_OF_TAX_EVASION_A_COMPARATIVE_AND_DEMOGRAPHIC_ANALYSIS 76. Mohdali R., Benk S., Budak T., MohdIsa K., Yussof S.H. A cross-cultural study of religiosity and tax compliance attitudes in Malaysia and Turkey. eJournal of Tax Research. 2017;15(3):490–505. Available at: http://classic.austlii.edu.au/au/journals/eJlTaxR/2017/22.pdf
(1)
[1] S. Sen, and N. Antara, “Influencing factors to stay off-campus living by students,” International Multidisciplinary Research Journal, vol.8, no.1, pp. 40–44, 2018. [2] T. Kobue, A. Oke, and C. Aigbavboa, “Understanding the determinants of students’ choice of occupancy for creative construction,” Procedia Engineering, vol.196, pp. 423-428, 2017. [3] J.U. Adama, D.O. Aghimien, and C.O. Fabunmi, “Students’ housing in private universities in Nigeria: Influencing factors and effect on academic Performance,” International Journal of Built Environment and Sustainability, vol.5, no.1, pp. 12–20, 2018. [4] K. Nantomah, K. Haruna, B. and J. K. Kaba, “Predicting student’s choice of hostel: An application of multinomial logistic regression,” International Journal of Engineering Science Technologies, vol. 2, no.1, pp. 28–36, 2017. [5] M.H. Muslim, H.A. Karim, and I.C. Abdullah, “Well-being of UiTM Shah Alam students living in off�campus environment,” Asian Journal of Environment-Behavior Studies, vol.3, no.8, pp. 221-228, 2018. [6] F.A. Razak, N. Shariffuddin, H.M. Padil, and N.H. Hanafi, “Phenomenon living in off-campus accommodation among UiTM Students,” International Journal of Academic Research in Business and Social Sciences, vol.7, no.3, pp. 786-796, 2017. [7] Z.A. Ghani, and N. Suleiman, “Theoretical underpinning for understanding student housing,” Journal of Environment and Earth Science, vol. 6, no.1, pp.163–176, 2016. [8] J.W. Creswell, Educational research: Planning, conducting, and evaluating quantitative and qualitative research. Upper Saddle River, NJ: Merrill Prentice Hall, 2002. [9] J.W. Creswell, and V.L. Plano-Clark, Designing and conducting mixed methods research. Los Angeles, Sage Publications (2nd Edition), 2011.
(1)
[1] S. Shivalli, “Lightning Phenomenon, Effects and Protection of Structures from Lightning,” vol. 11, pp. 44–50, doi: 10.9790/1676- 1103014450. [2] S. Sreedhar and V. Srinivasan, “Lightning strokes and its effects on historical monuments, heritage properties, and important landmarks a detailed perspective of traditional and scientific methods of lightning protection systems,” Int. J. Eng. Technol., vol. 7, no. 2, pp. 784–794, 2018, doi: 10.14419/ijet.v7i2.12421. [3] Gomes and M. Z. Ab Kadir, “Lightning protection: Getting it wrong,” IEEE Technol. Soc. Mag., vol. 30, no. 2, pp. 12–21, 2011, doi: 10.1109/MTS.2011.941326. [4] V. Cooray, “Non-conventional lightning protection systems,” Feb. 2017, doi: 10.1109/ICLP.2010.7845981. [5] H. Z. Abidin and R. Ibrahin, “Conventional and Unconventional Lightning Air Terminals: An Overview,” Jan. 2004. [Online]. Available: http://case.agu.org/NFPAreport.pdf. [6] S. Visacro, “Recent advances in lightning research and their impact on the protection of electric systems,” Oct. 2018, doi: 10.1109/ICLP.2018.8503440. [7] IEC 62305: Standard for Lightning Protection, 2009. [8] International Electrotechnical Commission -Technical Committee 81, Protection against lightning. Part 1: General principles. International Electrotechnical Commission, 2010. [9] G. Parise, L. Martirano, and M. Lucheroni, “Level, class, and prospected safety performance of a lightning protection system for a complex of structures (LPCS),” IEEE Trans. Ind. Appl., vol. 46, no. 5, pp. 2106–2110, Sep. 2010, doi: 10.1109/TIA.2010.2059370. [10] G. Flavio, D. Bispo, M. V Silva, I. S. Peretta, and E. A. Lamounier, “LightningProtection Design Using InformationVisualizationand Virtual Reality” Conf. PowerTech - IEEE Power Energy Soc., vol. v1, 2011, doi: 10.13140/RG.2.1.4170.9600. [11] A. Singhasathein, N. Phanthuna, and S. Thongkeaw, “The Design and Simulation of the External Lightning Protection for a Tall Building according to IEC62305; The Design and Simulation of the External Lightning Protection for a Tall Building according to IEC62305,” 2019. [12] A. Singhasathein, W. Thansiphraserth, and K. Sumanonta, “Simulation of a Lightning Protective Area through the Protective Angle Method and the Rolling Sphere Method,” in Proceeding of the 2021 9th International Electrical Engineering Congress, iEECON 2021, Mar. 2021, pp. 49–52, doi: 10.1109/iEECON51072.2021.9440336. Authorized
(1)
1. SS. Trisno, I.I. Smolyaninov, S.D. Milner, C.C. Davis (2005)., Characterization of time delayed diversity to mitigate fading in atmospheric turbulence channels, in Free-Space Laser Communications V, Proc. SPIE 5892, 388-397. 2. Samir A. Al-Gailani, Nor Shahida Mohd Shah, Ali Ahmed Salem, Nasir A. Algeelani and Mohammed A. Bantahar (2021), Performance Evaluation of Multiple-Beam Free Space Optics in Tropical Rainy Weather, Conference: 2021 2nd International Conference on Smart Computing and Electronic Enterprise (ICSCEE), Year: 2021, Page 251 3. Q. Cao, M. Brandt-Pearce, S. G. Wilson, and L. C. Brown, (2006). Free-space optical MIMO system using an optical pre-amplifier. IEEE Global Telecommunications Conference pp. 1-5, Nov. 4. Rahman, A., et al.: Improve the bit error rate performance of free space optic due to atmospheric turbulence using new dual diffuser modulation. 2014 IEEE 5th International Conference on Photonics (ICP). IEEE, Piscataway, NJ (2014) 5. Nistazakis, H.E., Tsiftsis, T.A., & Tombras, G.S. (2009), Performance analysis of free-space optical communication systems over atmospheric turbulence channels IET Commun., 3, pp. 1402–1409, DOI: 10.1049/iet-com.2008.0212 6. Esmail MA, Ragheb AM, Fathallah HA, Altamimi M, Alshebeili SA. 5G-28 GHz Signal Transmission over Hybrid All-Optical FSO/RF Link in Dusty Weather Conditions. IEEE (2019), DOI: 10.1109/ACCESS.2019.2900000. 7. Laialy Darwesh and Natan S. Kopeika (2020), Deep Learning for Improving Performance of OOK Modulation Over FSO Turbulent Channels, Journal: IEEE Access, 2020, Volume 8, Page 155275, DOI: 10.1109/ACCESS.2020.3019113 8. G. K. Varotsos, H. E. Nistazakis, W. Gappmair, H. G. Sandalidis and G. S. Tombras, "SIMO subcarrier PSK FSO links with phase noise and non-zero boresight pointing errors over turbulence channels", IET Commun., vol. 13, no. 7, pp. 831-836, Apr. 2019, DOI: 10.1049/iet-com.2018.5608 9. Varun Srivastava, Abhilash Mandloi and Gireesh G. Soni (2019), Outage probability and average BER estimation of FSO system employing wavelength diversity, Journal: Optical and Quantum Electronics, 2019, Volume 51, Number 7, DOI: 10.1007/s11082-019-1943-4. 10. Fei-yue Yang, Xin-yue Ming, Yong-xin Xu and Zi-qiang Huang (2019), Research on Unite DAPPM with Turbo Code in Free Space Optical Communication, Conference: IEEE 19th International Conference on Communication Technology (ICCT), Page 701, DOI: 10.1109/ICCT46805.2019.8947108 11. Feng, X., et al.: 60 Gbit/s coherent wavelength-division multiplexing free-space optical modulating retro- reflector in a turbulence-tunable atmospheric cell. Opt. Commun. 448, 111–115 (2019), DOI: 10.1016/j.optcom.2019.05.025. 12. Rahman, A., et al.: A new modulation technique to improve received power under turbulence effects for free space optical communication. IOP Conference Series: Materials Science and Engineering. IOP Publishing, Bristol (2020) 13. Antonios Lionis, Konstantinos Peppas, Hector E. Nistazakis, Andreas Tsigopoulos, Keith Cohn and Athanassios Zagouras (2021), Using Machine Learning Algorithms for Accurate Received Optical Power Prediction of an FSO Link over a Maritime Environment, Journal: Photonics, Volume 8, Number 6, Page 212 14. Won-Ho Shin and Sang-Kook Han (2019), Channel Robust Free Space Optical Transmission Using Differential On-Off Keying Technique, Conference: 21st International Conference on Transparent Optical Networks (ICTON),
(1)
[1] Statista Research Department. Number of mobile phone users worldwide from 2015 to 2020 (in billions). 2016 [cited 2019 July 5]; Available from: https://www.statista.com/statistics /274774/forecast-of-mobile-phone-users-worldwide/ [2] Payne, K.F.B., H. Wharrad, and K. Watts, Smartphone and medical related App use among medical students and junior doctors in the United Kingdom (UK): a regional survey. BMC medical informatics and decision making, 2012. 12(1): p. 121. https://doi.org/10.1186/1472- 6947-12-121 [3] Statista Research Department. Mobile phone users worldwide 2015-2020. 2016 [cited 2020 14 August ]; Available from: https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide/ [4] Alfawareh, H.M. and S. Jusoh, Smartphones Usage Among University Students: Najran University Case. International Journal of Academic Research, 2014. 6(2). https://doi.org/10. 7813/2075-4124.2014/6-2/b.48 [5] Al Said, N. and K. Al-Said, Assessment of Acceptance and User Experience of HumanComputer Interaction with a Computer Interface. International Journal of Interactive Mobile Technologies, 2020. Vol. 14(No. 11): p. 107-125. https://doi.org/10.3991/ijim.v14i11. 13943 [6] Mothar, N.M.M., et al., The importance of smartphone’s usage among Malaysian undergraduates. IOSR Journal of Humanities and Social Science, 2013. 14(3): p. 112-118. https://doi.org/10.9790/1959-143112118 [7] Suruhanjaya Komunikasi dan Multimedia Malaysia, Internet Users Surveys. 2016, SKMM: Cyberjaya, Selangor. [8] Razzaq, A., Y.T. Samiha, and M. Anshari, Smartphone habits and behaviors in supporting students self-efficacy. International Journal of Emerging Technologies in Learning, 2018. 13(2). https://doi.org/10.3991/ijet.v13i02.7685 [9] Berolo, S., R.P. Wells, and B.C. Amick III, Musculoskeletal symptoms among mobile handheld device users and their relationship to device use: a preliminary study in a Canadian university population. Applied ergonomics, 2011. 42(2): p. 371-378. https://doi.org/10. 1016/j.apergo.2010.08.010 [10] Rosen, L.D., et al., Media and technology use predicts ill-being among children, preteens and teenagers independent of the negative health impacts of exercise and eating habits. Computers in human behavior, 2014. 35: p. 364-375. https://doi.org/10.1016/j.chb.2014.01.036 [11] Alzarea, B.K. and S.R. Patil, Mobile phone head and neck pain syndrome: proposal of a new entity. Headache, 2015. 251: p. 63. [12] Krejcie, R.V. and D.W. Morgan, Determining sample size for research activities. Educational and psychological measurement, 1970. 30(3): p. 607-610. https://doi.org/10.1177/ 001316447003000308 [13] Shan, Z., et al., Correlational analysis of neck/shoulder pain and low back pain with the use of digital products, physical activity and psychological status among adolescents in Shanghai. Plos one, 2013. 8(10): p. e78109. https://doi.org/10.1371/journal.pone.0078109 [14] Shariat, A., et al., The bahasa melayu version of cornell musculoskeletal discomfort questionnaire (CMDQ): reliability and validity study in Malaysia. Work, 2016. 54(1): p. 171- 178. https://doi.org/10.3233/wor-162269 [15] World Health Organisation. Musculoskeletal conditions. 2019 [cited 2019 6 November]; Available from: https://www.who.int/news-room/fact-sheets/detail/musculoskeletal-conditions. [16] Toh, S.H., et al., The associations of mobile touch screen device use with musculoskeletal symptoms and exposures: A systematic review. PloS one, 2017. 12(8): p. e0181220. https://doi.org/10.1371/journal.pone.0181220 [17] Hakala, P.T., et al., Frequent computer-related activities increase the risk of neck–shoulder and low back pain in adolescents. The European Journal of Public Health, 2006. 16(5): p. 536-541. https://doi.org/10.1093/eurpub/ckl025 [18] Pollock, C., et al., Neck/shoulder pain is more strongly related to depressed mood in adolescent girls than in boys. Manual therapy, 2011. 16(3): p. 246-251. https://doi.org/10. 1016/j.math.2010.10.010 [19] Shin, D., et al., Interaction, engagement, and perceived interactivity in single-handed interaction. Internet Research, 2016. 26(5): p. 1134-1157. https://doi.org/10.1108/intr-12-2014- 0312 [20] Fejer, R., K.O. Kyvik, and J. Hartvigsen, The prevalence of neck pain in the world population: a systematic critical review of the literature. European spine journal, 2006. 15(6): p. 834-848. https://doi.org/10.1007/s00586-004-0864-4 [21] Othman, A., N. Shaarib, and Y.M. Yusoffc, Digital Healthy Lifestyle Application for UUM Computer User. International Journal of Interactive Mobile Technologies, 2021. Volume 15(N. 06): p. 77-90. https://doi.org/10.3991/ijim.v15i06.20675 [22] Sharan, D., et al., Musculoskeletal disorders of the upper extremities due to extensive usage of hand held devices. Annals of occupational and environmental medicine, 2014. 26(1): p. 22. https://doi.org/10.1186/s40557-014-0022-3 [23] Rau, P.-L.P., et al., How Large is Your Phone? A Cross-cultural Study of Smartphone Comfort Perception and Preference between Germans and Chinese. Procedia Manufacturing, 2015. 3: p. 2149-2154. https://doi.org/10.1016/j.promfg.2015.07.354 [24] Subramani Parasuraman, A.T.S., et al., Smartphone usage and increased risk of mobile phone addiction: A concurrent study. International journal of pharmaceutical investigation, 2017. 7(3): p. 125. https://doi.org/10.4103/jphi.jphi_56_17 [25] Barsawade, V., et al., Study on Incorrect Sitting & Standing Posture and its Implication on Neck Pain. International Research Journal of Engineering and Technology (IRJET), 2019. 06 (05): p. 1575-1578. [26] Asundi, K., et al., Notebook computer use on a desk, lap and lap support: effects on posture, performance and comfort. Ergonomics, 2010. 53(1): p. 74-82. https://doi.org/10.1080/ 00140130903389043 [27] Xie, Y., G. Szeto, and J. Dai, Prevalence and risk factors associated with musculoskeletal complaints among users of mobile handheld devices: A systematic review. Applied ergonomics, 2017. 59: p. 132-142. https://doi.org/10.1016/j.apergo.2016.08.020 [28] Ketola, R., et al., Effects of ergonomic intervention in work with video display units. Scandinavian journal of work, environment & health, 2002: p. 18-24. https://doi.org/10.5271/ sjweh.642 [29] Hägg, G., The cinderella hypothesis. Chronic work-related myalgia. Gävle University Press, Gävle, Sweden, 2003: p. 127-32. [30] Diepenmaat, A., et al., Neck/shoulder, low back, and arm pain in relation to computer use, physical activity, stress, and depression among Dutch adolescents. Pediatrics, 2006. 117(2): p. 412-416. https://doi.org/10.1542/peds.2004-2766 [31] Cho, C.-Y., Y.-S. Hwang, and R.-J. Cherng, Musculoskeletal symptoms and associated risk factors among office workers with high workload computer use. Journal of Manipulative and Physiological therapeutics, 2012. 35(7): p. 534-540. https://doi.org/10.1016/j.jmpt .2012.07.004 [32] Jacobs, K. and N.A. Baker, The association between children's computer use and musculoskeletal discomfort. Work, 2002. 18(3): p. 221-226.
(1)
[1] Stimper K, Ackerman G, Ehrler J, Scheibe, K. “Transient overvoltages in low-voltage systems-A field study in Germany”, IEEE Electrical Insulation Magazine, 1998, vol. 14, pp.15–22, April 1998. [2] Standler, R.B. “Transients on the mains in a residential environment, ”IEEE Transactions on Electromagnetic Compatibility, vol. 31. pp. 170–176, February 1989. [3] S.B Smith and R. B. Standler, “The effects of surges on electronic appliances,” IEEE Transactions on Power Delivery, vol. 7, Issue 3, pp. 1275–1282, July 1992. [4] Lightning and surge protection, http://www.msystem.co.jp/mssenglish/service/emmrester.pdf [5] Henry W. Ott, Henry Ott Consultants, Electromagnetic Compatibility Engineering. EMC notebook. 2009. [6] Lightning and surge protection, http://www.msystem.co.jp/mssenglish/service/emmrester.pdf [7] K. Ermeler, W. Pfeiffer, D. Schoen and M. Schocke, “Surge immunity of electronic equipment”. IEEE Electrical Insulation Magazine, vol. 16, pp. 12–16, February 2000. [8] IEC 61000-4-5:2005, Electromagnetic compatibility (EMC)-Part 4-5:Testing and measurement techniques - Surge immunity test.
(1)
1. Taewee, T.K.: Cracker “Keropok”: a review on factors influencing expansion. Int. Food Res. J. 18(3), 855–866 (2011) 2. Mohamaddan, S., Mohd Mohtar, A.M.A.A., Junaidi, N., Mohtadzar, N.A.A., Mohamad Suffian, M.S.Z.: Development of Keropok Keping drying machine for small & medium enterprises (SMEs). Mater. Sci. Eng. 114, 1–6 (2016) 3. Darvishi, H., Asl., A.R., Asghari. A., Najafi. G., Gazori, H.A.: Mathematical modeling, moisture diffusion, energy consumption and efficiency of thin layer drying of potato slices. J. Food Process. Technol. 4(3), 4–9 (2013) 4. Veleșcu, I., Tenu. I., Carlescu., P.: Experimental study of drying behaviour of potato. Lucrări Ştiinţifice. 56(1), 107–112 (2013) 5. Kushwaha, H.L., Srivastava, A.P., Singh, H.: Development and performance evaluation of an okra seed extractor. Res. J. Appl. Sci. Eng. Technol. 3(9), 1–13 (2005) 6. Modi, S.K., Durgaprasad, B., Basavaraj, M.: An experimental study on drying kinetics of guava fruit (Psidium Guajava L) by thin layer drying. J. Environ. Sci. Toxicol. Food Technol. 9(1), 74–80 (2015) 7. Kumar, S.K.S.: Analysis of ginger drying inside a natural convection indirect solar dryer: an experimental study. J. Mech. Eng. Sci. (JMES) 9, 1671–1685 (2015) 8. Mohanraj, M., Chandrasekar, P.: Performance of a forced convection solar drier integrated with gravel as heat storage material for chili drying. J. Eng. Sci. Technol. 4(3), 305–314 (2009) 9. Olufemi, A., Fatukasi, S.O., Awotunde, O.W.: Design and development of a domestic biscuit cabinet tray dryer. J. Eng. Res. Appl. 4(3), 13–20 (2014) 10. Santos-Sánchez.: Effect of rotating tray drying on antioxidant components, color and rehydration ratio of tomato saladette slices: LWT. Food Sci. Technol. 46(1), 298–304 (2012) 11. Ghazanfari, A., Tabil, L.: Evaluating a solar dryer for in-shell drying of split pistachio nuts. Drying Technol. Int. J. 21(7), 1357–1368 (2014) 12. Susanti, D.Y., Joko, N.Y.K., Mariyam, S.: Drying characteristics of crackers from sorghum using tray dryer in different drying air velocities. J. Adv. Agric. Technol. 3(4), 258–264 (2016) 13. Golisz, E., Jaros, M., Kalicka, M.: Analysis of convection drying process of peach. Tech. Sci. 16(4), 333–343 (2013) 14. Fudholi, A., Othman, Y.M., Ruslan, M.H., Yahya, M., Zaharim, A., Sopian, K.: The effects of drying air temperature and humidity on the drying kinetics of seaweed. Recent Res. Geogr. Geol. Energy Environ. Biomed. 129–133 (2011) 15. Ezekoye, B.A., Enebe, O.M., State, E.: Development and performance evaluation of modified integrated passive solar grain dryer. Pasific J. Sci. Technol. 7(2), 185–190 (2006) 16. Wilson, K.K.: Design, development and evaluation of a continuous-flow mixing grain drayer. Master Thesis (2011) 17. Akoy, E.O.M.: Experimental characterization and modeling of thin-layer drying of mango slices. Int. Food Res. J. 21(5), 1911–1917 (2014) 18. Akpinar, E.K.: Mathematical modelling and experimental investigation on sun and solar drying of white mulberry. J. Mech. Sci. Technol. 22, 1544–1553 (2008) 19. Adamade, C.A., Olaoye, J.O.: Performance evaluation of a dryer for processed. Locust Bean Condiments. Agrosearch. 14(2), 103–112 (2014)
(1)
[1] Takeda S, Kadowaki S, Haga T, Takaesu H, Mitaku S. Identification of G protein-coupled receptor genes from the human genome sequence. FEBS Lett 2002; 520(1-3): 97-101. [2] International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 2004; 431(7011): 931-945. [3] Kroeze WK, Sheffler DJ, Roth BL. G-protein-coupled receptors at a glance. J Cell Sci 2003; 116(Pt 24): 4867-4869. [4] Vassilatis DK, Hohmann JG, Zeng H, et al. The G protein-coupled receptor repertoires of human and mouse. Proc Natl Acad Sci USA 2003; 100(8): 4903-4908. [5] Offermanns S, Simon MI. Organization of transmembrane signalling by heterotrimeric G proteins. Cancer Surv 1996; 27: 177-198. [6] Hopkins AL, Groom CR. The druggable genome. Nat Rev Drug Discov 2002; 1(9): 727-730. [7] Wess J. G-protein-coupled receptors: molecular mechanisms involved in receptor activation and selectivity of G-protein recognition. FASEB J 1997; 11(5): 346-354. [8] Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 2003; 63(6): 1256-1272
(1)
[1] Tamrin, K. F., Zakariyah, S., & Sheikh, N. A. (2015). Multi-criteria optimization in CO2 laser ablation of multimode polymer waveguides. Optics and Lasers in Engineering, 75, 48-56. [2] Tamrin, K. F., Zakariyah, S., Hossain, K., & Sheikh, N. A. (2018). Experiment and prediction of ablation depth in excimer laser micromachining of optical polymer waveguides. Advances in Materials Science and Engineering, 2018, 9. [3] Tamrin, K., Sheikh, N., Ridzuan, M., & Nadirah, A. (2018). Multiple-Objective Optimization Techniques in Laser Joining of Dissimilar Materials Classes: A Comparison between Grey and Ratio Analyses. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 10(1-12), 13-18. [4] Rao, S., Sethi, A., Das, A. K., Mandal, N., Kiran, P., Ghosh, R., Dixit, A., & Mandal, A. (2017). Fiber laser cutting of CFRP composites and process optimization through response surface methodology. Materials and Manufacturing Processes, 32(14), 1612-1621. [5] Ali, A. H. & Bidin, N. (2009). Study of Laser-Induced Plasma Using Two Focusing Techniques. Journal of Science and Technology, 1(1). [6] Kononenko, T., Freitag, C., Komlenok, M., Weber, R., Graf, T., & Konov, V. (2018). Heat accumulation between scans during multi-pass cutting of carbon fiber reinforced plastics. Applied Physics A, 124(2), 217. [7] Hu, J. & Zhu, D. (2018). Experimental study on the picosecond pulsed laser cutting of carbon fiber- reinforced plastics. Journal of Reinforced Plastics and Composites, 37(15), 993-1003. [8] Hejjaji, A., Singh, D., Kubher, S., Kalyanasundaram, D., & Gururaja, S. (2016). Machining damage in FRPs: Laser versus conventional drilling. Composites Part A: Applied Science and Manufacturing, 82, 42-52. [9] Sapuan, S., Tamrin, K., Nukman, Y., El-Shekeil, Y., Hussin, M., & Aziz, S. (2016). 1.8 Natural Fiber-Reinforced Composites: Types, Development, Manufacturing Process, and Measurement. Comprehensive Materials Finishing, 203. [10] Tamrin, K., Sheikh, N., & Sapuan, S. (2019). Laser drilling of composite material: A review, in Hole-Making and Drilling Technology for Composites. Elsevier. p. 89-100. [11] Wahab, M., Dalgarno, K., & Cochrane, R. (2009). Development of polymer nanocomposites for rapid manufacturing application. International Journal of Integrated Engineering, 1(1). [12] Huang, H., Yang, L.-M., & Liu, J. (2014). Micro-hole drilling and cutting using femtosecond fiber laser. Optical Engineering, 53(5), 051513. [13] Hof, L. & Abou Ziki, J. (2017). Micro-hole drilling on glass substrates—A review. Micromachines, 8(2), 53. [14] Mishra, S., Sridhara, N., Mitra, A., Yougandar, B., Dash, S. K., Agarwal, S., & Dey, A. (2017). CO2 laser cutting of ultra thin (75 µm) glass based rigid optical solar reflector (OSR) for spacecraft application. Optics and Lasers in Engineering, 90, 128-138. [15] Sen, A., Doloi, B., & Bhattacharyya, B. (2017). Fiber Laser Micro-machining of Engineering Materials, in Non-traditional Micromachining Processes. Springer. p. 227-252. [16] Shumon, M. R. H., Ahmed, S., & Islam, M. T. (2014). Electronic waste: present status and future perspectives of sustainable management practices in Malaysia. Environmental earth sciences, 72(7), 2239-2249. [17] Norhazni, M. S. (2016). Household e-waste management in Malaysia: The existing practice and future direction. institution Household e-waste management in Malaysia: The existing practice and future direction, 8. [18] Goyal, R. & Dubey, A. K. (2016). Modeling and optimization of geometrical characteristics in laser trepan drilling of titanium alloy. Journal of Mechanical Science and Technology, 30(3), 1281-1293. [19] Tamrin, K. F., Nukman, Y., & Sheikh, N. (2015). Laser spot welding of thermoplastic and ceramic: An experimental investigation. Materials and Manufacturing Processes, 30(9), 1138-1145. [20] Mishra, S. & Yadava, V. (2015). Finite Element (FE) Simulation to Investigate the Effect of Sheet Thickness on Hole Taper and Heat Affected Zone (HAZ) During Laser Beam Percussion Drilling of Thin Aluminium Sheet. Lasers in Engineering (Old City Publishing), 30. [21] Herzog, D., Schmidt-Lehr, M., Canisius, M., Oberlander, M., Tasche, J.-P., & Emmelmann, C. (2015). Laser cutting of carbon fiber reinforced plastic using a 30 kW fiber laser. Journal of Laser Applications, 27(S2), S28001. [22] Kononenko, T., Freitag, C., Komlenok, M., Onuseit, V., Weber, R., Graf, T., & Konov, V. (2015). Heat accumulation effects in short-pulse multi-pass cutting of carbon fiber reinforced plastics. Journal of Applied Physics, 118(10), 103105.
(1)
1. Tarlochan, F., & Hamouda, A. M. (2016). A framework for developing innovative problem-solving and creativity skills for engineering undergraduates. In Advances in Engineering Education in the Middle East and North Africa (pp. 161-186). Cham, Switzerland: Springer International Publishing. 2. Voogt, J., & Roblin, N. P. (2012). A comparative analysis of international frameworks for 21st century competences: Implications for national curriculum policies. Journal of curriculum studies, 44(3), 299-321. 3. Griffin, P., & Care, E. (Eds.). (2014). Assessment and teaching of 21st century skills: Methods and approach. London, UK: Springer. 4. Shively, K., Stith, K. M., & Rubenstein, L. D. (2018). Measuring what matters: Assessing creativity, critical thinking, and the design process. Gifted Child Today, 41(3), 149-158. 5. Belski, I., Baglin, J., & Harlim, J. (2013). Teaching TRIZ at university: A longitudinal study. International Journal of Engineering Education, 29, 346-354 6. Chung, C. C., Dzan, W. Y, & Lou, S. J. (2017). Applying TRIZ instructional strategies to vocational students’ imaginative learning and practice. EURASIA Journal of Mathematics, Science and Technology Education, 3(11), 7147-7160 7. Keong, C. S., Yip, M. W., Swee, S.L.N., Toh, G. G., & Tai, S. C. (2017), A review of TRIZ and its beneϐits & challenges in stimulating creativity in problem solving of pre-university students: A TARUC case study. Journal of Advances in Humanities and Social Sciences, 3(5), 247-263. 8. Lou, S. J., Dzan, W. Y., Lee, C. Y., & Chung, C. C. (2014). Learning effectiveness of applying TRIZ-Integrated BOPPPS. International Journal of Engineering Education, 30,(5), 1303–1312. 9. Hala´sz, G., & Michel, A. (2011) Key competences in Europe: implementation, interpretation, policy formulation and implementation. European Journal of Education, 46(3), 289–306. 10. Schleicher, A. (2012). Preparing teachers and developing school leaders for the 21st century: Lessons from around the world. Paris, France: OECD Publishing. 11. Silva, E. (2009). Measuring skills for 21st-century learning. Phi Delta Kappan, 90(9), 630-634. 12. Kivunja, C. (2015). Exploring the Pedagogical Meaning and Implications of the 4Cs" Super Skills" for the 21st Century through Bruner's 5E Lenses of Knowledge Construction to Improve Pedagogies of the New Learning Paradigm. Creative Education, 6, 224-239 13. Rotherham, A. J., & Willingham, D. T. (2010). 21st-century” skills: Not new, but a worthy challenge. American Educator, 17(1), 17-20. 14. Snyder, L. G., & Snyder, M. J. (2008). Teaching critical thinking and problem solving skills. The Journal of Research in Business Education, 50(2), 90. 15. Brookhart, S. M. (2013). How to create and use rubrics for formative assessment and grading. Alexandria, VA: ASCD. 16. Andrade, H. G. (2000). Using rubrics to promote thinking and learning. Educational Leadership, 57(5), 13-19. 17. Hilton, M. (2010). Exploring the intersection of science education and 21st century skills: A workshop summary. Washington, D.C: National Academies Press. 18. Chu S. K. W., Reynolds R. B., Tavares N. J., Notari, M., Lee C. W. Y. (2017). Assessment instruments for twenty-first century skills. In 21st Century Skills Development Through Inquiry- Based Learning. Springer, Singapore. 19. Xu, J. (2011). The application of critical thinking in teaching English reading. Theory and Practice in Language Studies, 1(2), 136-141. 20. Ralston, P. A., Larson, A. E., & Bays, C. L. (2011). An assessment of undergraduate engineering students’ critical thinking skills guided by the Paul-Elder critical thinking framework. INQUIRY: Critical Thinking Across the Disciplines, 26(3), 25-32. 21. Bissell, A. N., & Lemons, P. P. (2006). A new method for assessing critical thinking in the classroom. BioScience, 56(1), 66-72. 22. Sharef, N., Hamdan, H., & Madzin, H. (2014). Innovation-enhanced rubrics assessment for final year projects. Global Journal of Engineering Education, 16(3), 129-135. 23. Rusman, E., & Dirkx, K. (2017). Developing Rubrics to Assess Complex (Generic) Skills in the Classroom: How to Distinguish Skills’ Mastery Levels? Practical Assessment, Research, and Evaluation, 22(1), 12. 24. Rochford, L., & Borchert, P. S. (2011). Assessing higher level learning: Developing rubrics for case analysis. Journal of Education for Business, 86(5), 258-265. 25. Petkov, D., & Petkova, O. (2006). Development of scoring rubrics for IS projects as an assessment tool. Issues in Informing Science & Information Technology, 3, 499–510. 26. Wiggins, G. (1998). Educative assessment designing assessments to inform and improve student performance. San Francisco, CA: Jossey Bass 27. Ministry of Education Malaysia. (2015). Malaysia Education Blueprint 2015-2025 (Higher Education). Putrajaya, Malaysia: Kementerian Pendidikan Malaysia. 28. Baker, M., Rudd, R., & Pomeroy, C. (2001). Relationships between critical and creative thinking. Journal of Southern Agricultural Education Research, 51(1), 173-188. 29. Paul, R., & Elder, L. (2019). A guide for educators to critical thinking competency standards: Standards, principles, performance indicators, and outcomes with a critical thinking master rubric. Rowman & Littlefield. 30. Scriven, M. (1976). Reasoning. New York City, NY: McGraw-Hill. 31. Allen, D., & Tanner, K. (2006). Rubrics: Tools for making learning goals and evaluation criteria explicit for both teachers and learners. CBE—Life Sciences Education, 5(3), 197-203. 32. Stevens, C. D., & Levi, A. J. (2005). Introductions to rubrics: An assessment tool to save grading time, convey effective feedback and promote effective feedback and promote student learning. Sterling, VA: Stylus Publishing. 33. Wilkerson, J. R. (2019). Rubrics meeting quality assurance and improvement needs in the accreditation context. Quality Assurance in Education, 28(1), 19-32. 34. Andrade, H., & Du, Y. (2005). Student perspectives on rubric-referenced assessment. Practical Assessment, Research & Evaluation, 10(3), 1-11. 35. Wechsler, S. M., Saiz, C., Rivas, S. F., Vendramini, C. M. M., Almeida, L. S., Mundim, M. C., & Franco, A. (2018). Creative and critical thinking: Independent or overlapping components? Thinking Skills and Creativity, 27, 114-122. 36. Finn, T., Cennamo, K., Baum, L., & Newbill, P. (2012, March). Creative Collaboration: Transdisciplinary Methods to Enhance Critical and Creative Thinking. In Society for Information Technology & Teacher education International Conference (pp. 2781-2785). Association for the Advancement of Computing in Education (AACE).
(1)
1. Teasdale C, Mortensen NJ. Acute necrotizing colitis and obstruction. Br J Surg. 1983;70:44-47. 2.Chang HK, Min BS, KoYT, et al. Obstructive Colitis Proximal to Obstructive Colorectal Carcinoma. Asian J Surg. 2009;32:26–32. 3.Gratama S, Smedts F, Whitehead R. Obstructive colitis: an analysis of 50 cases and a review of the literature. Pathology. 1995;27:324-329. 4.Feldman PS. Ulcerative disease of the colon proximal to partially obstructive lesions: report of two cases and review of the literature. Dis Colon Rectum. 1975;18:601-612. 5.Rutledge RH. Pseudo-ulcerative colitis proximal to obstructing colon carcinoma. Am Surg. 1969;35:384-388. 6.Matsunaga H, Shida D, Kamesaki M, Hamabe Y. Acute necrotizing colitis due to sigmoid colon cancer. World J Surg Oncol. 2014;12:19. 7.Ganchrow MI, Clark, Benjamin HG. Ischemic colitis proximal to obstructing carcinoma of colon. DisColon Rectum. 1970;14:38-42. 8.Harada T, Umezawa I, Mogami K, Itoh A. Acute gangrenous colitis proximal to obstructive cancer of the sigmoid colon. Jpn J Surg. 1975;5:39-47. 9.Tietjen GW, Markowitz AM. Colitis proximal to obstructing colonic carcinoma. Arch Surg. 1975;110:1133-1138. 10.Tsai MH, Yang YC, Leu FJ. Obstructive colitis proximal to partially obstructive colonic carcinoma: a case report and review of the literature. Int J Colorectal Dis.2004;19:268-72. 11.Levine TS, Price AB. Obstructive enterocolitis: a clinico-pathological discussion. Histopathology. 1994;25:57-64. 12.Toner M, Condell D, OBriain DS. Obstructive colitis. Ulceroinflammatory lesiosoccurring proximal to colonic obstruction. Am J Surg Pathol. 1990;14:719-728. 13.Stillwell GK. The Law of Laplace. Some clinical applications. Mayo Clin Proc. 1973 48: 863-869
(1)
1. Teo, S., Ang, W. F., Lok, A. F. S. L., Kurukulasuriya, B. R., & Tan, H. T. W. (2010). The status and distribution of the Nipah palm Nypa fruticans Wurmb. (Arecaceae), in Singapore. Nature in Singapore, 3(February), 45–52. 2. Tsuji, K., et al. (2011). Biological and ethnobotanical characteristics of Nipa Palm (Nypa fructicans wurmb.): A review. Sains Malaysiana, 40(12), 1407–1412. 3. Sarawak Forestry Corporation (SFC). (2018). Mangrove forest in Sarawak. 4. (2019). Nypa fruticans (nipa palm). Retrieved September 30, 2021, from http://www.cabi.org/ isc/datasheet/36772 5. Cao, L. N. H., Nguy˜ên,T.B.T., Lu, o, ng, H. V. T.,Mai,V.P.T., &Tr`ân, N. P. L. (2021). Nghiên c´ u, uvâ.tliê.u composite thân thiê.nmôi tru,`o, ng t`u, so, . icu´ông d`u, anu,´ o, c và nhu, . a polyethylene tyij tro. ng cao tái ch´ê. Can Tho University Journal of Science, 57(6), 42–52. https://doi.org/10. 22144/ctu.jvn.2021.171 6. Mohammed, L., Ansari, M. N. M., Pua, G., Jawaid, M., & Islam, M. S. (2015). A review on natural fiber reinforced polymer composite and its applications. International Journal of Polymer Science, 2015. https://doi.org/10.1155/2015/243947 7. Hamilton, L. S., & Murphy, D. H. (1988). Use and management of Nipa palm (Nypa fruticans, arecaceae): A review. Economic Botany, 42(2), 206–213. https://doi.org/10.1007/BF02858921 8. Neves, S., Muylaert, F., Rodrigues, G., Leite, R., & Picanço, M. (2015). Tensile strength of polyester composites reinforced with thinner buriti fibers. 805, 466–471. https://doi.org/10. 4028/www.scientific.net/MSF.805.466 9. Kruse, K. (2001). Properties of nipa-and coconut fibers and production and properties of particle-and MDF-boards made from nipa and coconut (pp. 1–41). 10. Faruk, O., Bledzki, A. K., Fink, H. P., & Sain, M. (2014). Progress report on natural fiber rein-forced composites. Macromolecular Materials and Engineering (Wiley-VCH Verlag), 299(1), 9–26. https://doi.org/10.1002/mame.201300008 11. Salit, M. S., Jawaid, M., bin Yusoff, N., & Hoque, M. E. (2015). Manufacturing of natural fibre reinforced polymer composites (pp. 1–383). https://doi.org/10.1007/978-3-319-07944-8 12. Dickie, T., Syazali, S. T. B. S., & Noor Mohamed, N. H. B. (2020). Development of nipah palm fibre extraction process. Materials Science Forum, 997, 57–65. https://doi.org/10.4028/www. scientific.net/MSF.997.57 13. Tamburini, E., León, A. G., Perito, B., di Candilo, M., & Mastromei, G. (2004). Exploitation of bacterial pectinolytic strains for improvement of hemp water retting. Euphytica, 140(1–2), 47–54. https://doi.org/10.1007/s10681-004-4754-y 14. Liu, M., et al. (2015). Effect of harvest time and field retting duration on the chemical compo-sition, morphology and mechanical properties of hemp fibers. Industrial Crops and Products, 69, 29–39. https://doi.org/10.1016/j.indcrop.2015.02.010 15. Masashi Shibata, S. S., Varman, M., Tono, Y., & Miyafuji, H. (2008). Characterization in chemical composition of the oil palm (Elaeis guineensis). Journal of the Japan Institute of Energy, (87), 383–388. https://doi.org/10.1046/j.1365-2559.2002.14891.x 16. Tamunaidu, P., & Saka, S. (2011). Chemical characterization of various parts of nipa palm (Nypa fruticans). Industrial Crops and Products, 34(3), 1423–1428. https://doi.org/10.1016/j. indcrop.2011.04.020 17. Ridzuan, M. J. M., Abdul Majid, M. S., Afendi, M., Aqmariah Kanafiah, S. N., Zahri, J. M., & Gibson, A. G. (2016). Characterisation of natural cellulosic fibre from Pennisetum purpureum stem as potential reinforcement of polymer composites. Materials and Design, 89, 839–847. https://doi.org/10.1016/j.matdes.2015.10.052 18. Yusriah, L., Sapuan, S. M., Zainudin, E. S., & Mariatti, M. (2014). Characterization of physical, mechanical, thermal and morphological properties of agro-waste betel nut (Areca catechu) husk fibre. Journal of Cleaner Production, 72, 174–180. https://doi.org/10.1016/j.jclepro.2014. 02.025 19. Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2013). Tensile properties of chemically treated hemp fibres as reinforcement for composites. Composites Part B: Engineering, 53, 362–368. https://doi.org/10.1016/j.compositesb.2013.05.048 20. Hossain, M. K., et al. (2014). Comparative mechanical and thermal study of chemically treated and untreated single sugarcane fiber bundle. Industrial Crops and Products, 58(November 2017), 78–90. https://doi.org/10.1016/j.indcrop.2014.04.002 21. Yue, Y., Han, J., Han, G., Aita, G. M., & Wu, Q. (2015). Cellulose fibers isolated from energycane bagasse using alkaline and sodium chlorite treatments: Structural, chemical and thermal properties. Industrial Crops and Products, 76, 355–363. https://doi.org/10.1016/j.ind crop.2015.07.006 22. Abral, H., et al. (2012). Alkali treatment of screw pine (Pandanus odoratissimus) fibers and its effect on unsaturated polyester composites. Polymer-Plastics Technology and Engineering, 51(August 2013), 12–18. https://doi.org/10.1080/03602559.2011.593090 23. Hashim, M. Y., Amin, A. M., Mohd, O., & Marwah, F. (2017). The effect of alkali treatment under various conditions on physical properties of kenaf fiber. 24. Mwaikambo, L. Y., & Ansell, M. P. (2002). Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. Journal of Applied Polymer Science, 84(12), 2222–2234. https:// doi.org/10.1002/app.10460 25. Mwaikambo, L. Y. (2008). Kapok/cotton fabric—polypropylene composites. Polymer Testing, 19(2000), 905–918. 26. Reddy, K. O., Maheswari, C. U., Reddy, D. J. P., & Rajulu, A. V. (2009). Thermal properties of Napier grass fibers. Materials Letters, 63(27), 2390–2392. https://doi.org/10.1016/j.matlet. 2009.08.035 27. Wang, Z., Li, J., Barford, J. P., Hellgradt, K., & Mckay, G. (2016). A comparison of chemical treatment methods for the preparation of rice husk cellulosic fibers. (1), 67–77. 28. Sain, M., & Panthapulakkal, S. (2006). Bioprocess preparation of wheat straw fibers and their characterization. Industrial Crops and Products, 23(1), 1–8. https://doi.org/10.1016/j.indcrop. 2005.01.006 29. Valadez-Gonzalez, A., Cervantes-Uc, J. M., Olayo, R., & Herrera-Franco, P. J. (1999). Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced composites. Composites Part B: Engineering, 30(3), 309–320. https://doi.org/10.1016/S1359-8368(98)000 54-7 30. Cai, M., Takagi, H., Nakagaito, A. N., Li, Y., & Waterhouse, G. I. N. (2016). Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing, 90(August), 589–597. https://doi.org/10.1016/j.compos itesa.2016.08.025 31. Rasidi, M. S. M., Husseinsyah, S., & Leng, T. P. (2014). Chemical modification of nypa fruticans filled polylactic acid/recycled low-density polyethylene biocomposites. BioResources, 9(2), 2033–2050. 32. Júnior, A. E. C., Barreto, A. C. H., Rosa, D. S., Maia, F. J. N., Lomonaco, D., & Mazzetto, S. E. (2015). Thermal and mechanical properties of biocomposites based on a cashew nut shell liquid matrix reinforced with bamboo fibers. Journal of Composite Materials, 49(18), 2203–2215. https://doi.org/10.1177/0021998314545182 33. Segal, L., Creely, J. J., MartinJr, A. E., & Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Têxtil Research Journal, 29, 786–794. https://doi.org/10.1177/004051755902901003 34. Haameem, J. A. M., Abdul Majid, M. S., Afendi, M., Haslan, M., & Fahmi, I. (2016). Alkaline treatment and thermal properties of Napier grass fibres. International Journal of Automotive and Mechanical Engineering, 13(1), 3238–3247. https://doi.org/10.15282/ijame.13.1.2016.10. 0270 35. Vardhini, K. J. V., Murugan, R., Selvi, C., & Surjit, R. (2016). Optimisation of alkali treatment of banana fibres on lignin removal. Indian Journal of Fibre and Textile Research, 41(2), 156–160. 36. Reddy, K. O., Maheswari, C. U., Shukla, M., & Rajulu, A. V. (2012). Chemical composition and structural characterization of Napier grass fibers. Materials Letters, 67(1), 35–38. https:// doi.org/10.1016/j.matlet.2011.09.027 37. Han, S. O., & Choi, H. Y. (2010). Morphology and surface properties of natural fiber treated with electron beam. Microscopy: Science, Technology, Applications and Education, 1880, 1880– 1887. 38. Guimarães, J. L., Frollini, E., da Silva, C. G., Wypych, F., & Satyanarayana, K. G. (2009). Characterization of banana, sugarcane bagasse and sponge gourd fibers of Brazil. Industrial Crops and Products, 30(3), 407–415. https://doi.org/10.1016/j.indcrop.2009.07.013 39. Cai, M., Takagi, H., Nakagaito, A. N., Kusaka, K., Katoh, M., & Li, Y. (2015). Influence of alkali concentration on morphology and tensile properties of abaca fibers. Advanced Materials Research, 1110, 302–305. https://doi.org/10.4028/www.scientific.net/AMR.1110.302 40. Boynard, C. A., & D’Almeida, J. R. M. (2000). Morphological characterization and mechanical behavior of sponge gourd (Luffa cylindrica)-polyester composite materials. Polymer—Plastics Technology and Engineering, 39(3), 489–499. https://doi.org/10.1081/PPT-100100042 41. Melkamu, A., Kahsay, M. B., & Tesfay, A. G. (2018). Mechanical and water-absorption prop-erties of sisal fiber (Agave sisalana)-reinforced polyester composite. Journal of Natural Fibers, 1–9. https://doi.org/10.1080/15440478.2018.1441088. 42. Monteiro, S. N., Terrones, L. A. H., & D’Almeida, J. R. M. (2008). Mechanical performance of coir fiber/polyester composites. Polymer Testing, 27(5), 591–595. https://doi.org/10.1016/j. polymertesting.2008.03.003 43. Nascimento, D. C. O., Lopes, F. P. D., & Monteiro, S. N. (2010). Tensile behavior of lignocel-lulosic fiber reinforced polymer composites: Part I piassava/epoxy (a) (b) (pp. 189–194). 44. Haameem, M., Majid, A., Afendi, M., Marzuki, H. F. A., Fahmi, I., & Gibson, A. G. (2016). Mechanical properties of Napier grass fibre/polyester composites. Composite Structures, 136, 1–10. https://doi.org/10.1016/j.compstruct.2015.09.051 45. Mazuki, A. A. M., Akil, H. M., Safiee, S., Ishak, Z. A. M., & Bakar, A. A. (2011). Degradation of dynamic mechanical properties of pultruded kenaf fiber reinforced composites after immersion in various solutions. Composites Part B: Engineering, 42(1), 71–76. https://doi.org/10.1016/j. compositesb.2010.08.004
(1)
[1] Tesla Cable, “N2XS(F)2Y | Single-Core XLPE Insulated Cable with PE Outer Sheath, longitudinally watertight (6/10 kV, 12/20 kV, 18/30 kV),” Tesla Cables Ltd, 2018. [Online]. Available: https://www.teslacables.com/en/product/368. [2] L. Andrei, I. Vlad, and F. Ciuprina, “Electric Field Distribution in Power Cable Insulation Affected by Various Defects,” 2014 Int. Symp. Fundam. Electr. Eng., pp. 1–5, 2014. [3] M. A. Musse, “High Power Transmission and Distribution,” Kota Samarahan, 2018. [4] W. Thue, Electrcial Power Cable Engineering, Third EDIT. Boca Raton: CRC Press, 2012. [5] J. Densley, “Ageing and diagnostics in extruded insulations for power cables,” 1995. [6] F. N. Lim, R. J. Fleming, and R. D. Naybour, “Space Charge Accumulation in Power Cable XLPE Insulation,” vol. 6, no. 3, pp. 273–281, 1999. [7] V. N. Pugach, D. A. Polyakov, K. I. Nikitin, and D. A. Yurchuk, “XLPEInsulated Cables Temperature Monitoring for the Determination of Their Residual Life,” 2017. [8] COMSOL, “COMSOL Multiphysics,” 2018. [Online]. Available: https://www.comsol.com/comsol-multiphysics. [9] IEC, International Electrotechnical Comission (IEC) 60502-2 Standard, vol. 2005. 2005. [10] K. V Cables, X. Insulated, P. V. C. Or, and P. E. Sheathed, “According to international standard IEC 60502 - 1,” vol. 3. [11] K. Emna, A. Rabah, and C. Nejib, “Numerical modeling of the electric field and the potential distributions in heterogeneous cavities inside XLPE power cable insulation Numerical Modeling of the Electric Field and the Potential Distributions in Heterogeneous Cavities inside XLPE Power Cable,” no. April 2018, 2016. [12] G. Chen, “Electrical Treeing Characteristics in XLPE Power Cable Insulation in Frequency Range between 20 and 500 Hz,” vol. 16, no. 1, pp. 179–188, 2009. [13] M. M. Salleh, M. Hafiez, I. Saad, Y. Z. Arief, and N. A. Muhamad, “Water Tree Simulation on Underground Polymeric Cable Using Finite Element Method,” vol. 10, no. 1, pp. 107–112. [14] C. N. Sanniyati, Y. Z. Arief, Z. Adzis, N. A. Muhamad, M. H. Ahmad, M. A. B. Sidik, K. Y. Lau, “Water Tree in Polymeric Cables: A Review”, Malaysian Journal of Fundamental and Applied Sciences, Vol. 12, No. 1, pp. 12-21, 2016.
(1)
1. Thompson P, Paker R, Cox S (2015), Interrogating creative theory and creative work: Inside the game studio. Sociology 50(2): 316-332. 2. Orland K (2014, September), Introducing steam gauge: Ars reveals steams most popular games. Available online: http://arstechnica.com/gaming/2014/04/introducing-steam-gaugears-re veals-steams-most-popular-games/ 3. Valve Corporation (2012), The international dota2 championshipsofficial website. Available online: http://www.dota2.com/ international/overview/ 4. Sifa R, Bauckhage C and Drachen A (2014), The playtime principle: Large scale cross-games interest modeling. In Proceedings of the IEEE Computational Intelligence and Games, pp.1-8. 5. Kinkade N, Jolla L & Lim K (2015), DOTA 2 Win Prediction. University of California San Diego. Technical report. 6. Smith AM, Lewis C, Hullet K, Smith G, Sullivan A (2011), An inclusive taxonomy of player modelling. University of California, Santa Cruz. Technical report UCSC-SOE-11-13. 7. Nareyek A (2004), AI in computer games. Queue 1(10): 58-65. 8. Machado MC, Fantini EP, Chaimowicz L (2011), Player modelling: Towards a common taxonomy. In Proceedings of 16th International Conference on Computer Games (CGAMES), pp. 50-57. 9. Laja Uggah L & Manaf AA (2015), Overcoming the uncanny valley theory in digital characters based on human attitudes. Pertanika Journal of Social Science and Humanities 23(May): 13–22. 10. Desurvire H, Wiberg C (2009), Game usability heuristics (PLAY) for evaluating and designing better games: the next iteration. OCSC '09 Proceedings of the 3d International Conference on Online Communities and Social Computing: Held as Part of HCI International, pp. 557-566. 11. Varonis EM & Varonis ME (2015), Deconstructing candy crush: What instructional design can learn from game design. International Journal of Information and Learning Technology 32(3): 150–164. https://doi.org/10.1108/IJILT-09-2014-0019 12. Uggah LL, Azaini A & Adis AA (2018), Evaluating South Korean Based Mobile Role Playing Games with Playability Heuristic Evaluation. International Journal of Engineering & Technology 7(3.18): 1–3. 13. Brooke J (1986), SUS: a "quick and dirty" usability scale. In P. W. Jordan, B. Thomas, B. A. Weerdmeester, & A. L. McClelland. Usability Evaluation in Industry. London: Taylor and Francis. 14. system-usability-scale @ www.usability.gov. (n.d.). Available online: https://www.usability.gov/how-to-and-tools/methods/system-usability- scale.html. 15. Freeman TL (2001), Critical thinking, communications, and teamwork. In Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition: Peppers, papers, Pueblos and Professors, 24-27 June, Albuquerque, NM. Available online: https://scholar.google.com/scholar_lookup?hl=en&author=Terrence.+L .+Freeman&title=%E2%80%9CCritical+Thinking%2C+Communicati ons%2C+and+Teamwork.%E2%80%9D
(1)
1. Ting (2005), “The Egalitarian Architecture of the Iban Longhouse”, Paper read at 22ndAnnual Conference of the Society of Architectural Historians, Australia and New Zealand, at New Zealand ,2005. 2. H. Steiner (2007), “People of The Longhouse and Jungle Sarawak”, Opus Publications, Kota Kinabalu, 2007. 3. T.T.Sim,T.H.Khan (2014), “Reimaging Iban Longhouses in Urban Context: a study in Sarawak, Malaysia, Scottish Journal of Arts”, Social Sciences and Scientific studies, 18(1)(2014), pp.3-11 4. Zhang Ling et al, 2016, “CFD study on effect of the air supply location on the performance of the displacement ventilation system”, Building and Environment 40(8), 2016, pg 1051-1067 5. CinziaBurattia, Domenico Palladinoa, Elisa Moretti, 2017, “Prediction Of Indoor Conditions And Thermal Comfort Using CFD Simulations: A Case Study Based On Experimental Data”, Science Direct, Energy Procedia 126 (201709), pg 115–122 6. Mandau A., Kristianto N., Agya Utama , Andhy Muhammad, Fathoni, 2014. “Analyzing Indoor Environment of Minahasa Traditional House Using CFD”, Procedia Environmental Sciences 20 (2014), pg 172-179, 7. DouaaK.AlAssaada Mohamad S. OrabiaNesreenK.Ghaddara Kamel F. Ghalia Darine A. Salam b Djamel Ouahranic Mohamad T.Farrand Rima R.Habibe, 2021, “A sustainable localised air distribution system for enhancing thermal environment and indoor air quality of poultry house for semiarid region”, Biosystems Engineering, Volume 203, March 2021, Pg 70-92 8. Mansur F.2000.”The effect of rain on the Turbidity of Fravity Feed Water Supply in Remote Villages in Marudi District, Sarawak,” Master Thesis, Universiti Putra Malaysia. 9. Entamin M. 2000, “A Study on Fire Safety of Longhouses in the Seblak Area, Sri Aman District of Sarawak,” Master Thesis, Universiti Putra Malaysia, 70 pages 10. Hata S., Wahab M.H. (2018) Malaysia: Longhouse of Sarawak. In: Kubota T., Rijal H., Takaguchi H. (eds) Sustainable Houses and Living in the Hot-Humid Climates of Asia. Springer, Singapore 11. A. H. Patterson, N. R. Chiswick, The role of the social and physical environment in privacy maintenance among the Iban of Borneo, Journal of Environmental Psychology 1(2) (1981) 131–139. 12. Victoria, J., Mahayuddin, S. A., Zaharuddin, W. A., Harun, S. N., & Ismail, B. (2017). Bioclimatic design approach in Dayak Traditional Longhouse. Procedia Engineering, 180, 562-570. doi:10.1016/j.proeng.2017.04.215 13. Narenda K. Bansal, Gerd Hauser, Gernot Minke. 1994, Passive building design : a handbook of natural climatic control, Amsterdam ; New York : Elsevier Science B.V. 14. Hasim Altan, Mona Hajibandeh, Kheira Anissa TabetAouland Akash Deep, “Passive Design”, Chapter 8, In book: ZEMCH: Toward the Delivery of Zero Energy Mass Custom Homes (pp.209-236), June 2016, ISSN 2366-259X ISSN 2366-2603 (electronic)Springer Tracts in Civil Engineering ISBN 978-3-319-31965-0 ISBN 978-3-319-31967-4 (eBook) DOI 10.1007/978-3-319-31967-4 15. Khan, T. H. (2014). Reimaging Iban longhouses in urban context: A study in Sarawak, Malaysia. 16. Slee, Ben & Hyde, Richard. (2015). Using Thermal Mass in Timber-framed Buildings: Effective use of thermal mass for increased comfort and energy efficiency.
(1)
[1] T. Khengwee et al., “A review of sarawak off-grid renewable energy potential and challenges,” J. Telecommun. Electron. Comput. Eng., vol. 9, no. 3–10, pp. 29–33, 2017. [2] User Manual, “LABVIEW user manual, Ed 320999E-01. National Instruments, Austin, Texas, USA, Apr. 2008,” no. 320999, 2008. [3] S. S. Abd Wahid et al., “Evaluation of Residential Grid-Connected Photovoltaic System as the Potential Energy Source in Malaysia,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 14, no. 4, p. 1235, 2016. [4] P. D. Abd. Aziz, S. S. A. Wahid, Y. Z. Arief, and N. Ab. Aziz, “Evaluation of solar energy potential in Malaysia,” Trends Bioinforma., vol. 9, no. 2, pp. 35–43, 2016. [5] M. S. Ismail, M. Moghavvemi, and T. M. . Mahlia, “Techno-economic analysis of an optimized photovoltaic and diesel generator hybrid renewable power system for remote houses in tropical climate,” Energy Convers. Manag., vol. 69, pp. 163–173, 2013. [6] H. Efficiency and M. Perc, “High efficiency mono perc module,” no. 1, 2015. [7] A. . Fallis, “MLU series photovoltaic modules,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2013. [8] O. Power, “SINGLE PHASE STRING,” pp. 0–1. [9] M. Uddin, M. F. Romlie, and M. F. Abdullah, “Feasibility study of grid connected solar home system: The perspective of Malaysia,” IET Conf. Publ., vol. 2016, no. CP688, pp. 2–7, 2016.
(1)
[1] T. M. Belete, “Recent progress in the development of new antimalarial drugs with novel targets,” Drug Design, Development and Therapy, pp. 3875−3889, 2020. [2] R. S. Tabuti, John, and S. B. Obakiro et al., “Medicinal plants used for treatment of malaria by indigenous communities of Tororo District, Eastern Uganda,” Tropical Medicine and Health, vol. 51, 34, 2023. doi: 10.1186/s41182-023-00526-8 [3] D. G. I. Kingston, and M. B. Cassera, “Antimalarial natural products,”in Antimalarial Natural Products, A. Kinghorn, Falk, Gibbons, Ed. Yoshinori Asakawa, Ji-Kai Liu and Verena M. Dirsch, Cham: Springer International Publishing, 2022, pp. 1−106. [4] B. Salehi and C. Quispe et al., “Nigella plants—Traditional uses, bioactive phytoconstituents, preclinical and clinical studies,” Frontiers in Pharmacology, vol. 12, 625386, 2021. [5] S. O. Yagoub, “Chapter four—Black cumin: morphology, physiology, growth, and agricultural yield,” in Biochemistry, Nutrition, and Therapeutics of Black Cumin Seed, Mariod, Ed. Academic Press, 2023, pp. 19−25. [6] J. Oyweri and A. Mohammed et al., “In vitro and in vivo antimalarial activity of Nigella sativa L. extracts,” Journal of Medicinal Plants Research, vol. 13, pp. 501−508, 2019. [7] T. Salima, O. Benayad, M. Berrabah, I. E. Mounsi, and M. Mimouni, “Phytochemical profile and antioxidant activity of Nigella sativa L. growing in Morocco,” The Scientific World Journal, 6623609, 2021. doi: 10.1155/2021/6623609 [8] F. S. Shafodino, J. M. Lusilao, and L. M. Mwapagha, “Phytochemical characterization and antimicrobial activity of Nigella sativa seeds,” PLOS ONE, vol. 17, no. 8, e0272457, 2022. doi: 10.1371/journal.pone. 0272457 [9] R. M. Pop, and O. Sabin et al., “Nigella Sativa’s anti-inflammatory and antioxidative effects in experimental inflammation,” Antioxidants, vol. 9, no. 10, 921, 2020. doi: 10.3390/antiox9100921 [10] M. Alrashidi, D. Derawi, J. Salimon, and M. F. Yusoff, “An investigation of physicochemical properties of Nigella sativa L. Seed oil from Al-Qassim by different extraction methods,” Journal of King Saud University—Science, vol. 32, no. 8, pp. 3337−3342, 2020. https://doi.org/10.1016/j.jksus.2020.09.019 [11] W. Brand-Williams, M. E. Cuvelier, and C. Berset, “Use of a free radical method to evaluate antioxidant activity,” LWT—Food Science and Technology, vol. 28, no. 1, pp. 25−30, 1995. https://doi.org/10.1016/S0023-6438(95)80008-5 [12] World Health Organization. (2001). In vitro micro-test (Mark III) for the assessment of the response of Plasmodium falciparum to chloroquine, mefloquine, quinine, amodiaquine, sulfadoxine/pyrimethamine and artemisinin instructions for use of the in vitro micro-test kit. [Online]. Available: https://iris.who.int/handle/10665/67373 [13] S. Kamiloglu, G. Sari, T. Ozdal, and E. Capanoglu, “Guidelines for cell viability assays,” Food Frontiers, vol. 1, no. 3, pp. 332−349, 2020. https://doi.org/10.1002/fft2.44 [14] I. Gulcin, and S. H. Alwasel, “DPPH radical scavenging assay,” Processes, vol. 11, no. 8, 2248, 2023. doi: 10.3390/pr11082248 [15] H. Outtar, O. Zouirech, and K. Mohammed et al., “In vitro study of the phytochemical composition and antioxidant, immunostimulant, and hemolytic activities of Nigella sativa (Ranunculaceae) and lepidium sativum seeds,” Molecules, vol. 27, no. 18, 5946, 2022. doi: 10.3390/molecules27185946 [16] G. Barabde and A. A. S. Qureshi. (2021). Effect of extraction techniques on antioxidant activity, DNA protection potential and antimicrobial properties of N. sativa (Kalonji) seed extract. The International Journal of Engineering and Science. [Online]. vol. 7, no. 11, pp. 1−5. Available: https://www.theijes.com/papers/vol7- issue11/Version-2/A0711020105.pdf [17] M. Dalli, S. Azizi, F. Kandsi, and N. Gseyra, “Evaluation of the in vitro antioxidant activity of different extracts of Nigella sativa L. seeds, and the quantification of their bioactive compounds,” Materials Today: Proceedings, vol. 45, no. 8, pp. 7259−7263, 2021. https://doi.org/10.1016/j.matpr.2020.12.743 [18] J. Gathirwa, G. M. Rukunga, and E. N. M. Njagi, “The in vitro anti�plasmodial and in vivo anti-malarial efficacy of combinations of some medicinal plants used traditionally for treatment of malaria by the Meru community in Kenya,” Journal of Ethnopharmacology, vol. 115, no. 2, pp. 223−231, 2008. doi: 10.1016/j.jep.2007.09.021 [19] H. B. Gabriel, R. A. C. Sussmann, E. A. Kimura, and A. Marin et al., “Terpenes as potential antimalarial drugs.” in Terpenes and Terpenoids, Shagufta and Areej, Ed. Rijeka: Intech Open, 2018. Ch. 3. doi:10.5772/intechopen.75108 [20] F. Irabor, O. Ebohon, N. Erhunse, O. T. Okugbo, and E. S. Omoregie, “In vitro antiplasmodial activity, cytotoxicity, antioxidant action and GC-FID analysis of Allanblackia floribunda Oliv,” SN Applied Sciences, vol. 3, 820, 2021. doi: 10.1007/s42452-021-04812-0
(1)
[1] Transparency Market Research. (2013). Wound dressings market – Global industry analysis, size, share, trends, and forecast, 2012–2018. [2] Powell, L. C., Khan, S., Chinga-Carrasco, G., Wright, C. J., Hill, K. E., & Thomas, D. W. (2016). An investigation of Pseudomonas aeruginosa biofilm growth on novel nanocellulose fibre dressings. Carbohydrate polymers, 137, 191-197. [3] Jayakumar, R., Prabaharan, M., Kumar, P. S., Nair, S. V., & Tamura, H. (2011).Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology advances, 29(3), 322-337. [4] Perkasa, D. P., Erizal, E., Purwanti, T., & Tontowi, A. E. (2018). Characterization of Semi-Interpenetrated Network Alginate/Gelatin Wound Dressing Crosslinked at Sol Phase. Indonesian Journal of Chemistry, 18(2), 367-375. [5] Uzun, M., Anand, S. C., & Shah, T. (2013). In vitro characterisation and evaluation of different types of wound dressing materials. J Biomed Eng Technol, 1, 1-7. [6] Mennini, N., Greco, A., Bellingeri, A., De Vita, F., & Petrella, F. (2016). Quality of wound dressings: a first step in establishing shared criteria and objective procedures to evaluate their performance. Journal of wound care, 25(8), 428-437. [7] Eshun, K., & He, Q. (2004). Aloe vera: a valuable ingredient for the food, pharmaceutical and cosmetic industries—a review. Critical reviews in food science and nutrition, 44(2), 91-96. [8] Boudreau, M. D., & Beland, F. A. (2006). An evaluation of the biological and toxicological properties of Aloe barbadensis (miller), Aloe vera. Journal of Environmental Science and Health Part C, 24(1), 103-154. [9] Quispe, C., Villalobos, M., Bórquez, J., & Simirgiotis, M. (2018). Chemical Composition and Antioxidant Activity of Aloe vera from the Pica Oasis (Tarapacá, Chile) by UHPLC-Q/Orbitrap/MS/MS. Journal of Chemistry, 2018. [10] Christian N, (2016). Aloe Vera: Health Benefits and Medical Uses. Retrieved from http://www.medicalnewstoday.com/articles/265800.php. Accessed on 18 November 2019. [11] Hashemi, S. A., Madani, S. A., & Abediankenari, S. (2015). The review on properties of Aloe vera in healing of cutaneous wounds. BioMed research international, 2015. [12] Sharrif Moghaddasi, M., & Verma, S. K. (2011). International Journal of Biological & Medical Research. Int J Biol Med Res, 2(1), 466-471. [13] Pereira, R., Mendes, A., & Bártolo, P. (2013). Alginate/Aloe vera hydrogel films for biomedical applications. Procedia CIRP, 5, 210-215. [14] Huizeng, F. (2001). Sea cucumber: Ginseng of sea. Zhongguo Marine Medicine, 82(4), 37-44. [15] Bordbar, S., Anwar, F., & Saari, N. (2011). High-value components and bioactives from sea cucumbers for functional foods—a review. Marine drugs, 9(10), 1761- 1805. [16] Wen, J., Hu, C., & Fan, S. (2010). Chemical composition and nutritional quality of sea cucumbers. Journal of the Science of Food and Agriculture, 90(14), 2469-2474. [17] Yaacob, H., Kim, K. H., Shahimi, M. M., & Jamalullail, S. M. S. (1994). Water Extract of Stichopus SP1 (gamat) Improves Wound Healing. [18] Ridzwan, B. H. (2007). Sea cucumbers: a Malaysian heritage. Research Centre of International Islamic University Malaysia (IIUM), Kuala Lumpur Wilayah Persekutuan: Kuala Lumpur, Malaysia. [19] Pereira, R., Tojeira, A., Vaz, D. C., Mendes, A., & Bártolo, P. (2011). Preparation and characterization of films based on alginate and aloe vera. International Journal of Polymer Analysis and Characterization, 16(7), 449-464. [20] Saibuatong, O. A., & Phisalaphong, M. (2010). Novo aloe vera–bacterial cellulose composite film from biosynthesis. Carbohydrate Polymers, 79(2), 455-460.
(1)
1. Tsigos C, Hainer V, Basdevant A, Finer N, Fried M, Mathus-Vliegen E, et al. Management of obesity in adults: European clinical practice guidelines. Obes Facts. 2008;1(2):106–116. [PMC free article] [PubMed] [Google Scholar] 2. World Health Organization . Obesity and overweight [Internet] Geneva (CH): World Health Organization; 2006. [cited 2009 Nov 15]. Available from: http://www.who.int/mediacentre/factsheets/fs311/en/index.html. [Google Scholar] 3. International Obesity Taskforce . Childhood obesity [Internet] London (GB): International Obesity Taskforce; 2002. [cited 2009 Nov 15]. Available from: http://www.iotf.org/childhoodobesity.asp. [Google Scholar] 4. Centers for Disease Control and Prevention . Overweight and obesity [Internet] Atlanta (GA): Centers for Disease Control and Prevention; 2009. [cited 2009 Nov 15]. Available from: http://www.cdc.gov/obesity/childhood/consequences.html. [Google Scholar] 5. Li AM, Chan D, Wong E, Yin J, Nelson EAS, Fok TF. The effects of obesity on pulmonary function. Arch Dis Child. 2003;88(4):361–363. [PMC free article] [PubMed] [Google Scholar] 6. Lusky A, Barell V, Lubin F, Kaplan G, Layani V, Shohat Z, et al. Relationship between morbidity and extreme values of body mass index in adolescents. Int J Epidemiol. 1996;25(4):829–834. [PubMed] [Google Scholar] 7. Williams LB, Considine RV. Etiology of obesity. In: Gumbiner B, editor. Obesity. Philadelphia (PA): American College of Physicians; 2001. pp. 23–50. [Google Scholar] 8. Bellows B, Roach J. Childhood overweight [Internet] Colorado (US): Colorado State University Extension; 2009. [cited 2009 Oct 30]. Available from: http://www.extcolostate.edu/pubs/foodnut/09317.html. [Google Scholar] 9. Ministry of Health Malaysia . National and Health Morbidity Study III (NHMS III) 2006. Kuala Lumpur (MY): Institute for Public Health, National Institutes of Health, Ministry of Health Malaysia; 2008. [Google Scholar] 10. Proctor MH, Moore LL, Gao D, Cupples LA, Bradlee ML, Hood MY, et al. Television viewing and change in body fat from preschool to early adolescence: The Framingham Children’s Study. Int J Obes Relat Metab Disord. 2003;27(7):827–833. [PubMed] [Google Scholar] 11. Wang Y, Monteiro C, Popkin BM. Trends of obesity and underweight in older children and adolescents in the United States, Brazil, China, and Russia. Am J Clin Nutr. 2002;75(6):971–977. [PubMed] [Google Scholar] 12. Giammattei J, Blix G, Marshak HH, Wollitzer AO, Pettitt DJ. Television watching and soft drink consumption: Associations with obesity in 11- to 13-year-old schoolchildren. Arch Pediatr Adolesc Med [Internet] 2003;157(9):882–886. [cited 2010 Sep 13]; Available from: www.archpediatrics.com. [PubMed] [Google Scholar] 13. Wiecha JL, Peterson KE, Ludwig DS, Kim J, Sobol A, Gortmaker SL. When children eat what they watch: Impact of television viewing on dietary intake in youth. Arch Pediatr Adolesc Med [Internet] 2006;160(4):436–442. [cited 2010 Sep 13]; Available from: www.archpediatrics.com. [PubMed] [Google Scholar] 14. Temple JL, Giacomelli AM, Kent KM, Roemmich JN, Epstein LH. Television watching increases motivated responding for food and energy intake in children. Am J Clin Nutr. 2007;85(2):355–361. [PubMed] [Google Scholar] 15. Saelens BE, Sallis JF, Wilfley DE, Patrick K, Cella JA, Buchta R. Behavioural weight control for overweight adolescents initiated in primary care. Obes Res. 2002;10(1):22–32. [PubMed] [Google Scholar] 16. Eisenmann JC, Bartee RT, Wang MQ. Physical activity, TV viewing, and weight in U.S. youth: 1999 Youth Risk Behaviour Survey. Obes Res. 2002;10(5):379–385. [PubMed] [Google Scholar] 17. Dennison BA, Erb TA, Jenkins PL. Television viewing and television in bedroom associated with overweight risk among low-income preschool children. Pediatrics. 2002;109(6):1028–1035. [PubMed] [Google Scholar] 18. Zalilah MS, Khor GL, Mirnalini K, Norimah AK, Ang M. Dietary intake, physical activity and energy expenditure of Malaysian adolescents. Singapore Med J. 2006;47(6):491–498. [PubMed] [Google Scholar] 19. Khor GL, Zalilah MS, Phan YY, Ang M, Maznah B, Norimah AK. Perceptions of body image among Malaysian male and female adolescents. Singapore Med J. 2009;50(3):303–311. [PubMed] [Google Scholar] 20. Norimah AK, Ruzita AT, Poh BK, Nurunnajiha N, Wong JE, Raduan S, et al. Food habits and physical activity pattern among primary schoolchildren in Malaysia. Malaysian J Nutr. 2009;15(2):S5–S6. [Google Scholar] 21. Doustmohammadian A, Dorostymotlagh AR, Keshavarz A, Sadrzadehyeganeh H, Mohammadpour-Ahrangani B. Socio-demographic factors associated with body mass index of female adolescent students in Semnan City, Iran. Malaysian J Nutr. 2009;15(1):27–35. [PubMed] [Google Scholar] 22. Rahman M, Mostofa G, Nasrin SO. Nutritional status among children aged 24–59 months in rural Bangladesh: an assessment measured by BMI index. Internet J Biol Anthropol [Internet] 2009;3(1) [cited 2009 Oct 20]; Available from: http://www.ispub.com/journal/the_internet_journal_of_biological_anthropology/volume_3_number_1_63/article/nutritional-status-among-children-aged-24-59-months-in-rural-bangladesh-an-assessment-measured-by-bmi-index.html. [Google Scholar] 23. Wang Y. Cross-national comparison of childhood obesity: The epidemic and the relationship between obesity and socioeconomic status. Int J Epidemiol. 2001;30(5):1129–1136. [PubMed] [Google Scholar] 24. Giuogliano R, Carneiro EC. Factors associated with obesity in school children. J Pediatr (Rio J) 2004;80(1):17–22. [PubMed] [Google Scholar] 25. A2/M2 Three Screen Report: 1st Quarter 2009 [Internet] New York (US): The Nielsen Company; 2009. [cited 2009 Oct 20]. Available from: http://blog.nielsen.com/nielsenwire/wp-content/uploads/2009/05/nielsen_threescreenreport_q109.pdf. [Google Scholar] 26. Barr-Anderson DJ, van den Berg P, Neumark-Sztainer DR, Story MT. Characteristics associated with older adolescents who have a TV in their bedroom. Pediatrics. 2008;121(4):718–24. [PubMed] [Google Scholar] 27. Norman GJ, Schmid BA, Sallis JF, Calfas KJ, Patrick K. Psychosocial and environmental correlates of adolescent sedentary behaviours. Pediatrics. 2005;116(4):908–916. [PubMed] [Google Scholar] 28. Cummings HM, Vandewater EA. Relation of adolescent video game play to time spent in other activities. Arch Pediatr Adolesc Med. 2007;161(7):684–689. [PMC free article] [PubMed] [Google Scholar] 29. Andersen RE, Crespo CJ, Bartlett SJ, Cheskin LJ, Pratt M. Relationship of physical activity and television watching with body weight and level of fatness among children: Results from the Third National Health and Nutrition Examination Survey. JAMA. 1998;279(12):938–942. [PubMed] [Google Scholar] 30. Cruz VA, Hisa QZT, Imson MG, Mang-usan DA. Obesity in school-aged children: Prevalence and causes. U Cordilleras Res J. 2009;1(4):109–126. [Google Scholar] 31. Bere E, Lenthe FV, Klepp KI, Brug J. Why do parents’ education level and income affect the amount of fruits and vegetables adolescents eat? Eur J Public Health. 2009;18(6):611–615. [PubMed] [Google Scholar]
(1)
[1] T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio, D. Golberg, A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors, Sensors 9 (2009) 6504-6529. [2] J. N. Tiwari, R. N. Tiwari, K. S. Kim, Zero-dimensional, one-dimensional, two-dimensional, and three-dimensional nanostructured materials for advanced electrochemical energy devices, Prog. Mater. Sci. 57 (2012) 724-803. [3] R. S. Devan, R. A. Patil, J.-H. Lin, Y.-R. Ma, One Dimensional Metal-Oxide Nanostructures: Recent Developments in Synthesis, Characterization, and Applications, Adv. Funct. Mater. 22(2012) 3326-3370. [4] L. Xu, X. Li, Z. Zhan, L. Wang, S. Feng, X. Chai, W. Lu, J. Shen, Z. Weng, J. Sun, CatalystFree, Selective Growth of ZnO Nanowires on SiO2 by Chemical Vapor Deposition for Transfer-Free Fabrication of UV Photodetectors, ACS Appl. Mater. Interfaces 7 (2015) 20264. [5] S. K. Panda, A. N. Singh, A. S. Pal, A. C. Jacob, Thickness dependent growth of needle-like and flower-like ZnO nanostructures, J Mater Sci Mater Electron 20 (2009) 771-775. [6] Z. Yuan, Low-temperature growth of well-aligned ZnO nanowire arrays by chemical bath deposition for hybrid solar cell application, Mater Sci Mater Electron 25 (2014) 2248-2252. [7] H. K. Park, M. H. Oh, S. W. Kim, G. H. Kim, D. H. Youn, S. Lee, S. H. Kim, K. C. Kim, S. L. Maeng, Vertically Well-Aligned ZnO Nanowires on cAl2O3 and GaN Substrates by Au Catalyst, ETRI J. 28 (2006) 787-789. [8] T. LI, SU & Zhang, Xiaozhong & Yan, Bin & Yu, Growth mechanism and diameter control of well-aligned small-diameter ZnO nanowire arrays synthesized by a catalyst-free thermal evaporation method, Nanotechnology (2009). [9] U. Schubert, N. Husing, Synthesis of Inorganic Materials, Wiley-VCH Verlag GmbH & Co., Weinheim, 2019. [10] X. San, G. Wang, B. Liang, Y. Song, S. Gao, J. Zhang, F. Catalyst-free growth of one dimensional ZnO nanostructures on SiO2 substrate and in situ investigation of their H2 sensing properties, Meng, J. Alloys Compd. 622 (2015) 73. [11] A. Umar, S. H. Kim, J. H. Kim, A. Al-Hajry, Y. B. Hahn, Temperature-dependant non-catalytic growth of ultraviolet-emitting ZnO nanostructures on silicon substrate by thermal evaporation process, J. Alloys Compd. 463 (2008) 516-521. [12] I. Udom, M. K. Ram, E. K. Stefanakos, A. F. Hepp, D. Y. Goswami, One dimensional-ZnO nanostructures: synthesis, properties and environmental applications, Mater. Sci. Semicond. Process. 16 (2013) 2070-2083. [13] H. Zhuang, J. Wang, H. Liu, J. Li, P. Xu, Structural and Optical Properties of ZnO Nanowires Doped with Magnesium, Acta Phys. Pol. A 119 (2011) 819. [14] R. Yousefi, B. Kamaluddin, Dependence of photoluminescence peaks and ZnO nanowires diameter grown on silicon substrates at different temperatures and orientations, J. Alloys Compd. 479 (2009) L11-L14. [15] Y. M. Zhao, Y. H. Li, Y. Z. Jin, X. P. Zhang, W. B. Hu, I. Ahmad, G. McCartney, Y. Q. Zhu, Growth and characterization of Cu-catalyzed ZnO nanowires, J. Phys. Conf. Ser. 61 (2007) 703-707. [16] A. Samavati, Z. Othaman, S. K. Ghoshal, M. R. Dousti, Optical and structural investigations of self-assembled Ge/Si bi-layer containing Ge QDs, J. Lumin. 154 (2014) 51-57. [17] F. Paquin, J. Rivnay, A. Salleo, N. Stingelin, C. Silva, Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors, J. Mater. Chem. C 3 (2015) 10715-10722. [18] T. Steiner, Ed. , Semiconductor Nanostructures for Optoelectronics Applications, Artech House, Inc, Boston, 2004. [19] G. Kenanakis, D. Vernardou, N. Katsarakis, Light-induced self-cleaning properties of ZnO nanowires grown at low temperatures, Appl. Catal. A Gen. 7 (2012) 411–412. [20] H. A. Wahab, A. A. Salama, A. A. El-Saeid, O. Nur, M. Willander, I. K. Battisha, Optical, structural and morphological studies of (ZnO) nano-rod thin films for biosensor applications using sol gel technique, Results Phys. 3 (2013) 46-51. [21] C.-H. Liu, X. Yu, Silver Nanowire-Based Transparent, Flexible, and Conductive Thin Film, Nano Rxpress (2011). [22] T. Dorji, S. Sakrani, S. Suhaimi, Structural Properties of Aluminum Doped Zinc Oxide Nanowires 4th ICOWOBAS-RAFSS (2013). [23] S. Y. Li, P. Lin, C. Y. Lee, T. Y. Tseng, Effect of atmosphere on growth of single crystal zinc oxide nanowires, J. Mater. Sci. Mater. Electron. 15 (2004) 505-510.
(1)
[1] UNESCO. "COVID-19 educational disruption and response." UNESCO. https://geo.uis.unesco.org/covid-19 (accessed 22-06-2024, 2024). [2] Jisc. " Digital capabilities in the UK FE and HE workforce: An exploration of staff confidence and practice. ." Jisc. https://www.jisc.ac.uk/reports/student-digital-experience-insights-survey-2020-uk-higher-education-findings (accessed. [3] T. Ayala-Perez and J. Joo-Nagata, "The digital culture of students of pedagogy specialising in the humanities in Santiago de Chile," Computers & Education, vol. 133, pp. 1-12, 2019. [4] T. Bates, "Teaching in a digital age: Guidelines for designing teaching and learning. BCcampus Open Education," ed, 2015. [5] D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, and t. PRISMA Group*, "Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement," Annals of internal medicine, vol. 151, no. 4, pp. 264-269, 2009. [6] D. Tranfield, D. Denyer, and P. Smart, "Towards a methodology for developing evidence‐informed management knowledge by means of systematic review," British journal of management, vol. 14, no. 3, pp. 207-222, 2003. [7] İ. Aktaş and H. Özmen, "Assessing the performance of Turkish science pre-service teachers in a TPACK-practical course," Education and Information Technologies, vol. 27, no. 3, pp. 3495-3528, 2022/04/01 2022, doi: 10.1007/s10639-021-10757-z. [8] S. E. Anderson and R. S. Putman, "Special education teachers’ experience, confidence, beliefs, and knowledge about integrating technology," Journal of Special Education Technology, vol. 35, no. 1, pp. 37-50, 2020. [9] E. Bahcivan, M. D. Gurer, N. Yavuzalp, and S. Akayoglu, "Investigating the relations among pre-service teachers’ teaching/learning beliefs and educational technology integration competencies: A structural equation modeling study," Journal of Science Education and Technology, vol. 28, pp. 579-588, 2019. [10] R. R. Buss, T. S. Foulger, K. Wetzel, and L. Lindsey, "Preparing teachers to integrate technology into K–12 instruction II: Examining the effects of technology-infused methods courses and student teaching," Journal of Digital Learning in Teacher Education, vol. 34, no. 3, pp. 134-150, 2018. [11] V. H. Shinas, R. Karchmer-Klein, C. Mouza, S. Yilmaz-Ozden, and J. J. Glutting, "Analyzing preservice teachers' Technological Pedagogical Content Knowledge development in the context of a multidimensional teacher preparation program," Journal of Digital Learning in Teacher Education, vol. 31, no. 2, pp. 47-55, 2015. [12] I. Celik, I. Sahin, and A. O. Akturk, "Analysis of the relations among the components of technological pedagogical and content knowledge (TPACK): A structural equation model," Journal of educational computing research, vol. 51, no. 1, pp. 1-22, 2014. [13] Y.-H. Chen and S.-J. Jang, "Interrelationship between stages of concern and technological, pedagogical, and content knowledge: A study on Taiwanese senior high school in-service teachers," Computers in human behavior, vol. 32, pp. 79-91, 2014. [14] E. Güneş and E. Bahçıvan, "A multiple case study of preservice science teachers’ TPACK: Embedded in a comprehensive belief system," 2016. [15] Ş. Gökçearslan, T. Karademir, and A. T. Korucu, "Preservice teachers’ level of web pedagogical content knowledge: Assessment by individual innovativeness," Journal of Educational Computing Research, vol. 55, no. 1, pp. 70-94, 2017. [16] D. Roussinos and A. Jimoyiannis, "Examining primary education teachers’ perceptions of TPACK and the related educational context factors," Journal of Research on Technology in Education, vol. 51, no. 4, pp. 377-397, 2019. [17] S. Birisci and E. Kul, "Predictors of technology integration self-efficacy beliefs of preservice teachers," Contemporary educational technology, vol. 10, no. 1, pp. 75-93, 2019. [18] M. H. Seif and A. Biranvand, "Examining the factors influencing technology integration in the teaching-learning process: A case study," Library Philosophy and Practice, pp. 1-17, 2019. [19] B. Wright and D. Akgunduz, "The relationship between technological pedagogical content knowledge (TPACK) self-efficacy belief levels and the usage of Web 2.0 applications of pre-service science teachers," World Journal on Educational Technology: Current Issues, vol. 10, no. 1, pp. 52-69, 2018. [20] R. Susanto, R. Rachmadtullah, and W. Rachbini, "Technological and Pedagogical models," Journal of Ethnic and Cultural Studies, vol. 7, no. 2, pp. 1-14, 2020. [21] H. Yanış and N. Yürük, "Development, validity, and reliability of an educational robotics based technological pedagogical content knowledge self-efficacy scale," Journal of Research on Technology in Education, vol. 53, no. 4, pp. 375-403, 2020. [22] W. Zhao, S. B. Baharom, and N. Abd Razak, "Factors Impacting Teachers’ Behavioral Intention to Use the Interactive Whiteboard in Hebei, China," International Journal of Information and Education Technology, vol. 14, no. 4, 2024. [23] M. M. Ali, A. M. Alaa, and A. Shahnaz, "The impact of mobile learning in English language classrooms in Pakistan," Asian-Pacific Journal of Second and Foreign Language Education, vol. 9, no. 1, 2024 2024, doi: 10.1186/s40862-024-00274-0. [24] S. E. Anderson and R. S. Putman, "Elementary special education teachers’ thinking while planning and implementing technology-integrated lessons," Education and Information Technologies, vol. 28, no. 8, pp. 9459-9481, 2023 2023, doi: 10.1007/s10639-022-11358-0. [25] E. Angraini, S. Zubaidah, and H. Susanto, "TPACK-based Active Learning to Promote Digital and Scientific Literacy in Genetics," Pegem Egit. Ogr. Dergisi, vol. 13, no. 2, pp. 50-61, 2023 2023, doi: 10.47750/pegegog.13.02.07. [26] I. Backfisch, L. Sibley, A. Lachner, K. T. Kirchner, C. Hische, and K. Scheiter, "Enhancing pre-service teachers’ technological pedagogical content knowledge (TPACK): Utility-value interventions support knowledge integration," Teaching and Teacher Education, vol. 142, 2024 2024, doi: 10.1016/j.tate.2024.104532. [27] A. Bahari, J. S. Barrot, and M. Sarkhosh, "Current state of research on the use of technology in language teacher education and professional development," TESOL Journal, vol. 13, no. 4, 2022 2022, doi: 10.1002/tesj.672. [28] E. Bahcivan, M. D. Gurer, N. Yavuzalp, and S. Akayoglu, "Investigating the Relations Among Pre-Service Teachers’ Teaching/Learning Beliefs and Educational Technology Integration Competencies: a Structural Equation Modeling Study," Journal of Science Education and Technology, vol. 28, no. 5, pp. 579-588, 2019 2019, doi: 10.1007/s10956-019-09788-6. [29] A. Baltynova et al., "Pedagogical Conditions for the Training of Future Teachers Based on Digital Educational Technologies," International Journal of Emerging Technologies in Learning, vol. 18, no. 18, pp. 121-137, 2023 2023, doi: 10.3991/ijet.v18i18.43209. [30] N. Belo, S. McKenney, J. Voogt, and B. Bradley, "Teacher knowledge for using technology to foster early literacy: A literature review," Computers in Human Behavior, vol. 60, pp. 372-383, 2016 2016, doi: 10.1016/j.chb.2016.02.053. [31] L. Bhattacharya, M. Nandakumar, C. Dasgupta, and S. Murthy, "Shaping the Discourse around Quality EdTech in India: Including Contextualized and Evidence-Based Solutions in the Ecosystem," Education Sciences, vol. 14, no. 5, 2024 2024, doi: 10.3390/educsci14050481. [32] S. Birisci and U. Kul, "Predictors of technology integration self-efficacy beliefs of preservice teachers," Contemporary Educational Technology, vol. 10, no. 1, pp. 75-93, 2019 2019, doi: 10.30935/cet.512537. [33] F. C. Bonafini and Y. Lee, "Portraying Mathematics Pre-service Teachers’ Experience of Creating Video Lessons with Portable Interactive Whiteboards through the TPACK," New Educ., vol. 17, no. 4, pp. 327-352, 2021 2021, doi: 10.1080/1547688X.2021.1980167. [34] S. E. Anderson and K. B. Kyzar, "Between school and home: TPACK-in-practice in elementary special education contexts," Computers in the Schools, vol. 39, no. 4, pp. 323-341, 2022. [35] X. Zhou, Y. Padron, and H. Waxman, "Exploring the Relationship between Professional Development Experience and Skills in Educational Technology Integration among Primary EFL Teacher," Contemporary Educational Technology, vol. 14, no. 1, 2022. [36] J. P. Carpenter et al., "What should teacher educators know about technology? Perspectives and self-assessments," Teaching and teacher education, vol. 95, p. 103124, 2020. [37] J. M. Willis, "Examining technology and teaching efficacy of preservice teacher candidates: A deliberate course design model," Current Issues in Education, vol. 18, no. 3, 2015. [38] M. J. Swallow and M. W. Olofson, "Contextual understandings in the TPACK framework," Journal of Research on Technology in Education, vol. 49, no. 3-4, pp. 228-244, 2017. [39] S. Ghavifekr and W. A. W. Rosdy, "Teaching and learning with technology: Effectiveness of ICT integration in schools," International journal of research in education and science, vol. 1, no. 2, pp. 175-191, 2015. [40] J. Cabero and J. Barroso, "ICT teacher training: a view of the TPACK model/Formación del profesorado en TIC: una visión del modelo TPACK," Culture and Education, vol. 28, no. 3, pp. 633-663, 2016. [41] Y. Dong, C. S. Chai, G.-Y. Sang, J. H. L. Koh, and C.-C. Tsai, "Exploring the profiles and interplays of pre-service and in-service teachers' technological pedagogical content knowledge (TPACK) in China," Journal of Educational Technology & Society, vol. 18, no. 1, pp. 158-169, 2015. [42] D. Ginting et al., "Students’ perception on TPACK practices on online language classes in the midst of pandemic," International Journal of Evaluation and Research in Education (IJERE), vol. 11, no. 4, pp. 1995-2009, 2022. [43] M. Gonzalez and G. A. Mohamad, "Virtual literacy instruction: An investigation of how elementary educators exhibited TPACK during COVID-19 school closures," Journal of Pedagogical Research, vol. 6, no. 5, pp. 54-88, 2022. [44] K.-Y. Huang, Y.-H. Chen, and S.-J. Jang, "TPACK in special education schools for SVI: A comparative study between Taiwanese and Chinese in-service teachers," International journal of disability, development and education, vol. 69, no. 2, pp. 435-450, 2022. [45] D. Polly, E. J. Byker, S. M. Putman, and L. K. Handler, "Preparing elementary education teacher candidates to teach with technology: The role of modeling," Journal of Digital Learning in Teacher Education, vol. 36, no. 4, pp. 250-265, 2020. [46] J. A. Hall, J. Lei, and Q. Wang, "The first principles of instruction: An examination of their impact on preservice teachers’ TPACK," Educational Technology Research and Development, vol. 68, pp. 3115-3142, 2020. [47] R. Voithofer and M. J. Nelson, "Teacher educator technology integration preparation practices around TPACK in the United States," Journal of teacher education, vol. 72, no. 3, pp. 314-328, 2021. [48] L. Woodlands and S. Dart, "Enhancing novice educator confidence to teach synchronously online during the COVID-19 pandemic," Student Success, vol. 14, no. 3, pp. 18-28, 2023. [49] E. C. Bouck and S. Flanagan, "Technological advances in special education," Adv. Spec. Educ., vol. 27, pp. 209-235, 2014 2014, doi: 10.1108/S0270-401320140000027007. [50] A. C. Burrows et al., "Finding spaces: Teacher education technology competencies (tetcs)," Education Sciences, vol. 11, no. 11, 2021 2021, doi: 10.3390/educsci11110733. [51] J. Cabero and J. Barroso, "ICT teacher training: A view of the TPACK model," Cultura y Educacion, vol. 28, no. 3, pp. 633-663, 2016 2016, doi: 10.1080/11356405.2016.1203526. [52] K. Cagiltay, H. Cakir, N. Karasu, O. F. Islim, and F. Cicek, "Use of educational technology in special education: Perceptions of teachers," Participatory Educational Research, vol. 6, no. 2, pp. 189-205, 2019 2019, doi: 10.17275/per.19.21.6.2. [53] J. P. Carpenter et al., "What should teacher educators know about technology? Perspectives and self-assessments," Teaching and Teacher Education, vol. 95, 2020 2020, doi: 10.1016/j.tate.2020.103124. [54] A. Çebi, "Teachers' perceptions toward technology integration into the language teaching practices," Journal of Narrative and Language Studies, vol. 6, no. 11, pp. 150-177, 2018 2018. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064279427&partnerID=40&md5=6cdf358c7425d546e5e79ab8fba939da. [55] K. Cekerol and E. Ozen, "Evaluation Of Teachers’ Technological Pedagogical Content Knowledge Within The Framework Of educational Information Network And Other Variables," Turkish Online Journal of Distance Education, vol. 21, pp. 61-78, 2021 2021, doi: 10.17718/TOJDE.770914.
(1)
[1] UNICEF Malaysia. "The internet: cool or ugly?" United Nations Children’s Fund (UNICEF) Malaysia (2017). [2] Cambridge University Press. "Definition of grooming." Cambridge Advanced Learner's Dictionary & Thesaurus. [3] Patrick O’Leary, Emma Koh, and Andrew Dare. "Grooming and child sexual abuse in institutional contexts." Royal Commission into Institutional Responses to Child Sexual Abuse (2017) [4] Wolf, Molly R., and Doyle K. Pruitt. "Grooming hurts too: The effects of types of perpetrator grooming on trauma symptoms in adult survivors of child sexual abuse." Journal of child sexual abuse 28, no. 3 (2019): 345-359. https://doi.org/10.1080/10538712.2019.1579292 [5] Planned Parenthood. "What is Sex Education?" Planned Parenthood Federation of America Inc. [6] UNESCO. "Why comprehensive sexuality education is important." (2018). [7] Women, U. N., and UNICEF. International technical guidance on sexuality education: an evidence-informed approach. UNESCO Publishing, 2018. [8] MCMC. "Internet Users Survey 2020." Malaysian Communications and Multimedia Commission (2020). [9] BERNAMA. "MCMC looking into more areas to bolster online child protection efforts." Malaysian Communications and Multimedia Commission (2021). [10] MCMC. "Working Together For Better Online Child Protection." Malaysian Communications and Multimedia Commission (2019). [11] Chow, S. "Predator on the silver screen." R.AGE (2016). [12] May Lee, L., and Venner-Pack, N. "The war against digital demons." R.AGE (2016). [13] R.AGE. "To catch a child sex predator." R.AGE (2016). [14] Kaler, S. "What’s next after the SOAC2017?" R.AGE (2017). [15] Dorasamy, Magiswary, Manimekalai Jambulingam, and Thesigarhupani Vigian. "Building a bright society with au courant parents: combating online grooming." In PACIS, p. 317. 2018. [16] R.AGE. "Why we need anti-grooming laws." R.AGE (2016). [17] Karagiorgas, Dimitrios N., and Shari Niemann. "Gamification and game-based learning." Journal of Educational Technology Systems 45, no. 4 (2017): 499-519. https://doi.org/10.1177/0047239516665105 [18] Bertozzi, Elena, Amelia Bertozzi-Villa, Swathi Padankatti, and Aparna Sridhar. "Outcomes assessment pitfalls: challenges to quantifying knowledge gain in a sex education game." Gates Open Research 4 (2020). https://doi.org/10.12688/gatesopenres.13129.1 [19] Wulanyani, Ni Made Swasti, IGAP Wulan Budi Setyani, Adijanti Marheni, and Putu Yoga Sukma Pratama. "How Animated Videos and the Snakes–Ladders Game Can Prevent Sexual Abuse in Children." In International Conference on Educational Psychology and Pedagogy-" Diversity in Education"(ICEPP 2019), pp. 202-205. Atlantis Press, 2020. https://doi.org/10.2991/assehr.k.200130.114 [20] Jan, Mingfong, and Matthew Gaydos. "What is game-based learning? Past, present, and future." Educational Technology (2016): 6-11. [21] Marc, Prensky. "Digital natives, digital immigrants." On the horizon 9, no. 5 (2001): 1-6. https://doi.org/10.1108/10748120110424816 [22] Plass, Jan L., Richard E. Mayer, and Bruce D. Homer, eds. Handbook of game-based learning. Mit Press, 2020. [23] Anastasiadis, Theofylaktos, Georgios Lampropoulos, and Kerstin Siakas. "Digital game-based learning and serious games in education." International Journal of Advances in Scientific Research and Engineering 4, no. 12 (2018): 139-144. https://doi.org/10.31695/IJASRE.2018.33016 [24] Kiel, Nina. "Using Digital Games for Sexual Education: Design Rules, Issues, and Applications." Games and Ethics: Theoretical and Empirical Approaches to Ethical Questions in Digital Game Cultures (2020): 215-237. https://doi.org/10.1007/978-3-658-28175-5_14 [25] Incerti, Federica, Teresa Franklin, and Greg Kessler. "Amazon Echo: Perceptions of an emerging technology for formal and informal learning." Game-based learning: Theory, strategies, and performance outcomes (2017): 25-44. [26] Rugelj, Jože, and Maria Lapina. "Game design based learning of programming." In Proceedings of SLET-2019–International Scientific Conference Innovative Approaches to the Application of Digital Technologies in Education and Research, pp. 20-23. 2019. [27] Watt, Keith, and Tamarah Smith. "based game design for serious games." Simulation & Gaming 52, no. 5 (2021): 601-613. https://doi.org/10.1177/10468781211006758 [28] Haruna, Hussein, Xiao Hu, Samuel Kai Wah Chu, Robin R. Mellecker, Goodluck Gabriel, and Patrick Siril Ndekao. "Improving sexual health education programs for adolescent students through game-based learning and gamification." International journal of environmental research and public health 15, no. 9 (2018): 2027.https://doi.org/10.3390/ijerph15092027 [29] Greipl, Simon, Elise Klein, Antero Lindstedt, Kristian Kiili, Korbinian Moeller, H-O. Karnath, Julia Bahnmueller, Johannes Bloechle, and Manuel Ninaus. "When the brain comes into play: Neurofunctional correlates of emotions and reward in game-based learning." Computers in Human Behavior 125 (2021): 106946. https://doi.org/10.1016/j.chb.2021.106946 [30] Barreto, Daisyane, Lucas Vasconcelos, and Michael Orey. "Motivation and learning engagement through playing math video games." Malaysian Journal of Learning and Instruction 14, no. 2 (2017): 1-21. https://doi.org/10.32890/mjli2017.14.2.1 [31] Valenza, Matheus V., Isabela Gasparini, and Marcelo da S. Hounsell. "Serious game design for children." Journal of Educational Technology & Society 22, no. 3 (2019): 19-31. [32] Winters, Georgia M., and Elizabeth L. Jeglic. "Stages of sexual grooming: Recognizing potentially predatory behaviors of child molesters." Deviant behavior 38, no. 6 (2017): 724-733. https://doi.org/10.1080/01639625.2016.1197656 [33] Kloess, Juliane A., Catherine E. Hamilton-Giachritsis, and Anthony R. Beech. "Offense processes of online sexual grooming and abuse of children via internet communication platforms." Sexual Abuse 31, no. 1 (2019): 73-96. https://doi.org/10.1177/1079063217720927 [34] Pritha, Sadia Tasnuva, Rahnuma Tasnim, Muhammad Ashad Kabir, Sumaiya Amin, and Anik Das. "A systematic review of mobile apps for child sexual abuse education: Limitations and design guidelines." arXiv preprint arXiv:2107.01596 (2021). [35] Winters, Georgia M., Sarah Schaaf, Rasmus F. Grydehøj, Cecilia Allan, Amber Lin, and Elizabeth L. Jeglic. "The sexual grooming model of child sex trafficking." Victims & Offenders 17, no. 1 (2022): 60-77. https://doi.org/10.1080/15564886.2021.1926031 [36] Sison, Raymund, Candy Espulgar, Luis Madrigal, Jarl Brent Obedoza, Neil Romblon, Jazmine Sace, and Maynard Si. "Toward an outcome-based methodology for developing game-based learning environments." (2018): 613. [37] Zokhi, Aini Nurrasyidah Md. "Aplikasi Inovasi Q-Track Kit Dalam Proses Pengajaran dan Pembelajaran Bagi Modul Teoritikal: Innovative Application of Q-Track Kit in the Teaching and Learning Process for Theoretical Modules." International Journal of Advanced Research in Future Ready Learning and Education 27, no. 1 (2022): 20-29.
(1)
[1] United Nations. Climate Change 2022: Mitigation of Climate Change [Internet]. 2022.Available from: https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC [2] Official Website of Malaysia Meteorology Department [Internet]. Gov.my. [cited 20Jan10].Available from: https://www.met.gov.my [3] Werndl C. On defining climate and climate change 2016 The British Journal for the Philosophy [4] Weatherall A, Nabuurs GJ, Velikova V, Santopuoli G, Neroj B, Bowditch E, Temperli C, Binder F, Ditmarová LU, Jamnická G, Lesinski J 2022 Defining Climate-Smart Forestry. Climate- Smart Forestry in Mountain Regions. 35-58. [5] Valente F, Laurini M. Urban climate change: A statistical analysis for São Paulo 2022 Urban Climate 41107 [6] United States Geological Survey. Climate [Internet]. 2022. Available from:https://www.usgs.gov/science/science-explorer/climate [7] Pappas C, Bélanger N, Bergeron Y, Blarquez O, Chen HY, Comeau PG, De Grandpré L,Delagrange S, DesRochers A, Diochon A, and D’Orangeville L 2022 Climate-Smart Forestry in Mountain Regions 40 7521-543 [8] Alfonso S, Gesto M, Sadoul B. Temperature increase and its effects on fish stress physiology in the context of global warming 2021 Journal of Fish Biology 98 1496-1508 [9] Kumar P. Climate change and cities: challenges ahead 2021 Frontiers in Sustainable Cities 3 645 [10] Silvestre BS, Ţîrcă DM. Innovations for sustainable development: Moving toward a sustainable future 2019 Journal of cleaner production 208 325-332 [11] Cohen B, Cowie A, Babiker M, Leip A, Smith P. Co-benefits and trade-offs of climate change mitigation actions and the Sustainable Development Goals 2021 Sustainable Production and Consumption 26 805-813 [12] Hunter GW, Sagoe G, Vettorato D, Jiayu D. Sustainability of low carbon city initiatives in China: a comprehensive literature review 2019 Sustainability 11 4342 [13] Malaysian Green Technology and Climate Change Centre. Green Technology Master Plan 2017-2030 [Internet]. 2017. Available from: https://www.mgtc.gov.my/wpcontent/ uploads/2020/05/Green-Technology-Master-Plan-Malaysia-2017-20301.pdf [14] Ministry of Energy, Green Technology and Water. National Low Carbon Cities Master Plan [Internet]. 2021. Available from: https://www.kasa.gov.my/resources/alamsekitar/ NLCCM.pdf [15] Shah Alam City Councils ,Universiti Teknologi Mara. Low Carbon City Action Plan Focus Group Discussion 2021 [16] Guo Y, Chen J, Liu Z. Government responsiveness and public acceptance of big-data technology in urban governance: Evidence from China during the COVID-19 pandemic 2022 Cities 122 103-536 [17] Liu G, Fu X, Han Q, Huang R, Zhuang T Research on the collaborative governance of urban regeneration based on a Bayesian network: The case of Chongqing 2021 Land Use Policy 109 105 [18] Wu F, Zhang F. Rethinking China’s urban governance: The role of the state in neighbourhoods, cities and regions 2022 Progress in Human Geography 46 775 [19] Jiang H. Smart urban governance in the ‘smart’era: Why is it urgently needed? 2021 Cities 111 103 [20] An BY, Bostic RW. What determines where public investment goes? Regional governance and the role of institutional rules and power 2021 Public Administration Review 81 64-80 [21] Liu H, Zhou R, Yao P, Zhang J. Assessing Chinese governance low-carbon economic peer effects in local government and under sustainable environmental regulation 2022 Environmental Science and Pollution Research 1 20 [22] Russell E, Christie I. Developing a Carbon Baseline to Support Multi-Stakeholder, Multi-Level Climate Governance at County Level 2022 In Addressing the Climate Crisis 63-72 [23] Dyson J, Harvey-Scholes C. How Have Climate Emergency Declarations Helped Local Government Action to Decarbonise? 2022 InAddressing the Climate Crisis 51-61 [24] Abdul-Azeez IA. Low Carbon Development through Measuring and Monitoring Carbon Emission in Johor Bahru, Malaysia 2021 J. Environ. Treat. Tech 9 242-252 [25] Zhang H, Peng J, Yu D, You L, Wang R. Carbon emission Governance zones at the County level to promote sustainable development 2021 Land 10 197 [26] Rotondo F, Abastante F, Cotella G, Lami IM. Questioning low-carbon transition governance: A comparative analysis of European case studies 2020 Sustainability 24 104-160 [27] Liu T, Wang Y, Song Q, Qi Y. Low-carbon governance in China–Case study of low carbon industry park pilot 2018 Journal of cleaner production 174 837-846
(1)
[1] United Nations, Department of Economic and Social Affairs, Population Division (2019). World Population Prospects 2019: Data Booklet (ST/ESA/SER.A/424). [2] Sidek, T. M. and Hasanuddin, I., (2023). Maqasid Syariah Sebagai Satu Panduan dalam Pengurusan Warga Emas Muslim di Malaysia [Maqasid Sharia as a Guide in the Management of Muslim Elderly in Malaysia]. International Journal of Humanities Technology and Civilization. https://www.semanticscholar.org /paper/MAQASID-SYARIAH-SEBAGAISATU-PANDUAN-DALAM-WARGA-DISidek-Hasanuddin/c72fc523be7a46ecaedab07 ccad9c9a639a2f13a?utm_source=direct_link. [3] Ahmad, A., Masron, T., Junaini, S. N., Barawi, M. H., Redzuan, M. S., Kimura, Y., Jubit, N., Bismelah, L. H. and Ali, A. S. M., (2024). Criminological Insights: A Comprehensive Spatial Analysis of Crime Hot Spots of Property Offenses in Malaysia's Urban Centers. Forum Geografi, Vol. 38(1), 94-109. https://doi.org/ 10.23917/forgeo.v38i1.4306. [4] Ahmad, A., Masron, T., Jubit, N., Redzuan, M. S., Soda, R., Bismelah, L. H. and Mohd Ali, A. S., (2024). Analysis of the Movement Distribution Pattern of Violent Crime in Malaysia's Capital Region Selangor, Kuala Lumpur, and Putrajaya. International Journal of Geoinformatics, Vol. 20(2), 11–26. https://doi.org/10.52939/ijg.v20i2.3061. [5] Bismelah, L. H., Masron, T., Ahmad, A., Syakinah Mohd Ali, A. and Echoh, D. U., (2024). Geospatial Assessment of Healthcare Distribution and Population Density in Sri Aman, Sarawak, Malaysia. GeografiaMalaysian Journal of Society and Space, Vol. 20(3), 51-67. https://doi.org/10.17576/geo-202 4-2003-04. [6] World Health Organization, (2022). Ageing and Health. World Health Organization. https://www.who.int/news-room/fact-sheets/de tail/ageing-and-health. [7] United Nations, Economic and Social Commission for Asia and the Pacific (UNESCAP), (2022). Asia-Pacific Report on Population Ageing 2022: Trends, Policies and Good Practices Regarding Older Persons and Population Ageing (ST/ESCAP/3041). [8] Yaakub, U., Masron, T. and Fujimaki, M., (2009). Spatial Distribution of Senior Citizen in Peninsular Malaysia 1991 and 2000. Ritsumeikan Geographical Journal, Vol. 21, 59-69. https://www.ritsumei.ac.jp/lt/area/assets /file/research/geo/letter/21/21-2009-usman.pdf. [9] Abd Mutalib, Z. A., Ismail, M. F. and Miskiman, N., (2020). Spatial Analysis: Ageing Population of Multi-Ethnic in Rural Area, Malaysia. The 2020 Asia–Pacific Statistics Week: A Decade of Action for the 2030 Agenda: Statistics that Leaves No One and Nowhere Behind, Bangkok, Thailand. 1-8. https://www.unescap.org/sites/default/files/AP S2020/70_Spatial_Analysis_Ageing_Populatio n_of_Multi-ethnic_in_Rural_Area_Malaysia. pdf. [10] Ong, E., (2023). The Quality of Life Among Our Ageing Population. Borneo Post Online. https://www.theborneopost.com/2023/06/03/th e-quality-of-life-among-our-ageing-population. International Journal of Geoinformatics, Vol. 21, No. 2, February, 2025 ISSN: 1686-6576 (Printed) | ISSN 2673-0014 (Online) | © Geoinformatics International 121 [11] Yu, S. and Li, W., (2019). Research on the Application of GIS in the Problem of Aging. Proceedings of the 2019 4th International Conference on Humanities Science and Society Development (ICHSSD 2019). 279-282. https://doi.org/10.2991/ichssd-19.2019.56. [12] Cleary, M. and Eaton, P., (1993). Review of the Book Borneo: Change and Development. by M. Cleary & P. Eaton. Modern Asian Studies, Vol. 27(4), 913-917. https://doi.org/10.1017/S0026 749X00001372. [13] Tobler, W. R., (1970). A Computer Movie Simulating Urban Growth in the Detroit Region. Economic Geography, Vol. 46, 234. [14] Scerpella, D. L., Adam, A., Marx, K. and Gitlin, L. N., (2019). Implications of Geographic Information Systems (GIS) for Targeted Recruitment of Older Adults with Dementia and their Caregivers in the Community: A Retrospective Analysis. Contemporary Clinical Trials Communications, Vol. 14. https://doi. org/10.1016/j.conctc.2019.100338. [15] Averill, J. B., (2012). Priorities for Action in a Rural Older Adults Study. Family & Community Health, Vol. 35(4), 358-372. https://doi.org/10.1097/FCH.0b013e31826668 6e. [16] Portal Gerbang Borneo, (2024). Sarawak Ebuana: Gedung Khazanah Bangsa [Sarawak Ebuana: National Treasure Building]. Portal Gerbang Borneo. https://eborneo.dbp.gov.my/ sarawak/. [17] Department of Statistics Malaysia, (2020). Data Request: Population by Sex, Age Group, Ethnic Group, Administrative District, Sarawak, 1980- 2020. Malaysia Population and Housing Census 2020. From Department of Statistics Malaysia. [18] Awal, M. A., Rabbi, J., Hossain, S. I. and Hashem, M., (2016). Using Linear Regression to Forecast Future Trends in Crime of Bangladesh. 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV), 333-338. https://doi.org/10.1109/ICIEV.2016 .7760021. [19] Barnes, E. A. and Barnes, R. J., (2015). Estimating Linear Trends: Simple Linear Regression Versus Epoch Differences. Journal of Climate, Vol. 28, 9969-9976. https://doi.org/ 10.1175/JCLI-D-15-0032.1. [20] Li, B., Zhang, L., Yan, Q. and Xue, Y., (2014). Application of Piecewise Linear Regression in the Detection of Vegetation Greenness Trends on the Tibetan Plateau. International Journal of Remote Sensing, Vol. 35(4), 1526-1539. https:// doi.org/10.1080/01431161.2013.878066 [21] Rodríguez, R. O., Llanes, C. O. and Duarte, R. F., (2021). How the Chaos Theory Is Defeated in the Yabu Meteorological Station, Cuba. Journal of Biomedical Research & Environmental Sciences, Vol. 2(10), 1059- 1066. https://doi.org/10.37871/jbres1348. [22] Rodríguez, R. O., (2022). Chaos Theory of Mathematics as Seen from a New Perspective for Weather Forecasting. Bioscience Biotechnology Research Communications, Vol. 15(3). https://doi.org/10.21786/bbrc/15.3.4. [23] Florea, N. M., Meghișan, G. and Nistor, C. S., (2016). Multiple Linear Regression Equation for Economic Dimension of Standard of Living. Finante - Provocarile Viitorului (Finance - Challenges of the Future), Vol. 1(18), 103-108. http://feaa.ucv.ro/FPV/018-011.pdf. [24] Bogner, F. X. and Suarez, B. R., (2022). Environmental Preferences of Adolescents Within a Low Ecological Footprint Country. Frontiers in Psychology, Vol. 13. https://doi. org/10.3389/fpsyg.2022.894382. [25] Panriansaen, R., Suksee, S., Siladlao, S., Kingkaew, M., and Prabsangob, K. (2024). Behavioral Patterns and Recreational Preferences among Elderly Individuals in the Lower Central Region of Thailand. International Journal of Geoinformatics, Vol. 20(3), 44–53. https://doi.org/10.52939/ijg.v20i 3.3129. [26] Adnand, F. E. M., Che Rose, R. A., Aiyub, K., Lyndon, N. and Hussain, M. Y., (2021). Kesedaran Kesihatan Mempengaruhi Kadar Penuaan di Bandaraya Kuala Lumpur [Health Awareness Affects the Aging Rate in the City of Kuala Lumpur]. GEOGRAFIA: Malaysian Journal of Society and Space, Vol. 17(3), 221- 233. https://doi.org/10.17576/geo-2021-1703- 16. [27] Salleh, N. A., Abdul Rashid, S. M. and Md Nor, N. N., (2022). Kesejahteraan Hidup Warga Emas: Persepsi Warga Emas Terhadap Penubuhan Pusat Aktiviti Warga Emas (PAWE) di Marang, Terengganu [The WellBeing of the Elderly: The Perception of the Elderly Towards the Establishment of an Activity Center for the Elderly (PAWE) in Marang, Terengganu]. e-Bangi Journal of Social Science and Humanities, Vol. 19(4). https://doi.org/10.17576/ebangi.2022.1904.13. [28] PLANMalaysia (Jabatan Perancangan Bandar dan Desa), (2018). Garis Panduan Perancangan Fizikal bagi Warga Emas [Physical Planning Guidelines for the Elderly]. Kementerian Wilayah Persekutuan. https://my International Journal of Geoinformatics, Vol. 21, No. 2, February, 2025 ISSN: 1686-6576 (Printed) | ISSN 2673-0014 (Online) | © Geoinformatics International 122 townnet.planmalaysia.gov.my/ver2/gp/GPP_W ARGA_EMAS.pdf. [29] Jiang, J., Xia, Z., Sun, X., Wang, X. and Luo, S., (2022). Social Infrastructure and Street Networks as Critical Infrastructure for Aging�Friendly Community Design: Mediating the Effect of Physical Activity. International Journal of Environmental Research and Public Health, Vol. 19(19). https://doi.org/10.3390/ ijerph191911842. [30] Sudsawart, J., Korsanan, N., Pochanakul, K., and Wattanaprapa, N. (2024). Forecasting Elderly Well-Being through Decision Tree Modeling Techniques: Integrating Google Maps for Community Engagement in Bang Jakreng, Samut Songkhram Province, Thailand. International Journal of Geoinformatics, Vol. 20(10), 1–9. https://doi.org/10.52939/ijg.v20i1 0.3625. [31] Ting, K. W., (2021). Improved Fittings and Facilities for Elderly Welcome, but Other Residents Need to be Accommodated Too: Experts. CNA. https://www.channelnewsasia .com/singapore/elderly-care-enhanced-fittings�facilities-welcome-other-residents-experts- 3713451. [32] Rahim Abdul Hamid, A., Muhamad, N. A., Zakaria, R., Aminuddin, E., Akmal Alwee, A. and Tok, A., (2018). The Challenges of the Ageing Population on the Malaysian Construction Industry. Journal of Physics: Conference Series, Vol. 1049(1). https://doi.org /10.1088/1742-6596/1049/1/012034. [33] Tyagi, R. and Paltasingh, T., (2017). Determinants of Health Among Senior Citizens. Journal of Health Management, Vol. 19, 132- 143. https://doi.org/10.1177/09720634166826 13. [34] Ab Rahman, M., Murad, A., Thaidi, H. and Rahman, A. A., (2020). Peranan Institusi Wakaf dalam Melestarikan Pengurusan Warga Emas di Malaysia [The Role of Waqf Institutions in Preserving the Management of the Elderly in Malaysia]. Perdana: International Journal of Academic Research, Vol. 8(1), 21-30. https:// perdanajournal.com/index.php/perdanajournal/ article/view/93. [35] Ahmad, A., Masron, T., Syakinah Mohd Ali, A. and Kimura, Y., (2024). Demographic Dynamics and Urban Property Crime: A Linear Regression Analysis in Kuala Lumpur and Putrajaya (2015-2020). Planning Malaysia: Journal of the Malaysian Institute of Planners, Vol. 22(4), 302-319. http://doi.org/10.21837 /pm.v22i33.1550. [36] Nithikathkul, C., Meenorngwar, C., Krates, J., and Kijphati, R. (2024). Mobile Application for Improving the Quality of Life and Elderly Health Care. International Journal of Geoinformatics, Vol. 20(7), 93–110. https://doi. org/10.52939/ijg.v20i7.3409. [37] Tan, Y. R., Tan, E. H., Jawahir, S., Mohd Hanafiah, A. N. and Mohd Yunos, M. H., (2021). Demographic and Socioeconomic Inequalities in Oral Healthcare Utilisation in Malaysia: Evidence from a National Survey. BMC Oral Health, Vol. 21(1). https://doi.org /10.1186/s12903-020-01388-w. [38] Yusuf, M. M., Mohamed, S. and Basah, M. Y. A., (2020). The Impact of Ageing Population on Malaysian Economic Growth. ASM Science Journal, Vol. 13. https://doi.org/10.32802/asm scj.2020.sm26(1.24). [39] Dmello, V. and Hussain, D., (2023). Cultural Differences in Factors that Influence the Well�Being of Older People: A Narrative Review. Human Arenas. https://doi.org/10.1007/s42 087-023-00386-y. [40] Bedford, O. and Yeh, K. H., (2019). The History and the Future of the Psychology of Filial Piety: Chinese Norms to Contextualized Personality Construct. Frontiers in Psychology, Vol. 10. https://doi.org/10.3389/fpsyg.2019.0 0100. [41] Rajani, M., Saheb, S. H., Damodharan, S., Murali, K. and Subbarayudu, M., (2017). Statistical Modeling for Population. International Journal of Innovative Research in Science, Engineering and Technology, Vol. 6(9). https://doi.org/10.15680/IJIRSET.2017.0 609059. [42] Lee, R. and Mason, A., (2010). Fertility, Human Capital, and Economic Growth Over the Demographic Transition. European Journal of Population = Revue Europeenne de Demographie, Vol. 26(2), 159–182. https://doi.org/10.1007/s10680-009-9186-x.
(1)
[1] van Gevelt T, Canales Holzeis C, George F and Zaman T 2017 Indigenous community preferences for electricity services: Evidence from a choice experiment in Sarawak, Malaysia Energy Policy 108 102–10 [2] Anyi M, Kirke B and Ali S 2010 Remote community electrification in Sarawak, Malaysia Renew. Energy 35 1609–13 [3] Sarawak Energy 2020 Power Generation [4] Heng S Y, Asako Y, Suwa T, Tan L K, Sharifmuddin N B and Kamadinata J O 2019 Performance of a small-scale solar cogeneration system in the equatorial zone of Malaysia Energy Convers. Manag. 184 127–38 [5] Mekhilef S, Safari A, Mustaffa W E S, Saidur R, Omar R and Younis M A A 2012 Solar energy in Malaysia: Current state and prospects Renew. Sustain. Energy Rev. 16 386–96 [6] Melling L 2016 Peatland in Malaysia Peatland in Malaysia (Springer, Tokyo) pp 59–73 [7] Butler E, Hung Y, Yeh R Y, Suleiman M and Ahmad A 2011 Electrocoagulation in Wastewater Treatment Water 3 495–525 [8] Cerquiera A A, Souza P S A and Marques M R C 2014 Effects of direct and alternating current on the treatment of oily water in an electroflocculation process Brazilian J. Chem. Eng. 31 693–701 [9] Chen G, Chen X and Yue P L 2000 E Lectrocoagulation and E Lectroflotation J. Environ. Eng. 126 858–63 [10] Vasudevan S, Lakshmi J and Sozhan G 2011 Effects of alternating and direct current in electrocoagulation process on the removal of cadmium from water J. Hazard. Mater. 192 26– 34 [11] Liu H, Zhao X and Qu J 2010 Electrocoagulation in Water Treatment Electrochemistry for the Environment (New York, NY: Springer New York) pp 245-262 [12] Mollah M, Schennach R, Parga Torres J and Cocke D 2001 Electrocoagulation (EC) – Science and Applications J. Hazard. Mater. 84 29–41 [13] Ng T N 2004 Assessment of Aluminium contaminant in public water supply in Sarawak (Universiti Malaysia Sarawak, Malaysia) [14] Boukenoui R, Ghanes M, Barbot J P, Bradai R, Mellit A and Salhi H 2017 Experimental assessment of maximum power point tracking methods for photovoltaic systems Energy 132 324-40 [15] Pradiko H, Afiatun E and Fabian E 2018 Influence of mixing and detention time in electro coagulation process to treat raw water at Badak Singa Water Treatment Plant Indones. J. Urban Environ. Technol. 1 137–50 [16] Solar Calculator 2020 The Effect of Temperature on Solar Panel Performance [17] Amelia A R, Irwan Y M, Leow W Z, Irwanto M, Safwati I and Zhafarina M 2016 Investigation of the effect temperature on photovoltaic (PV) panel output performance Int. J. Adv. Sci. Eng. Inf. Technol. 6 682–8 [18] Jakhrani A Q, Othman A, Rigit A R H and Samo S R 2012 Assessment of solar and wind energy resources at five typical locations in Sarawak J. Energy Environ. 4 1–6 [19] Kuokkanen V, Kuokkanen T, Ramo J and Lassi U 2015 Electrocoagulation treatment of peat bog drainage water containing humic substances Water Res. 79 79–87
(1)
1. Venugopal P, Gupta PK. Identification and diagnosis of risk factors and symptoms for rheumatic heart disease. Journal of Cardiovascular Disease Research. 2018;9(3):109-114.https://doi.org/10.5530/jcdr.2018.3.26 2. Marijon E, Mirabel M, Celermajer DS, Jouven X. Rheumatic heart disease. The Lancet. 2012;379(9819):953-964.https://doi.org/10.1016/S0140-6736(11)61171-9 3. Harris C, Croce B, Cao C. Rheumatic heart disease. Annals of cardiothoracic surgery. 2015;4(5):492.https://doi.org/10.3978/j.issn.2225-319X.2015.09.05 4. Boyarchuk O, Hariyan T, Kovalchuk T. Clinical features of rheumatic heart disease in children and adults in Western Ukraine. Bangladesh Journal of Medical Science. 2019;18(1):87-93.https://doi.org/10.3329/bjms.v18i1.39556 5. Zühlke L, Karthikeyan G, Engel ME, et al. Clinical outcomes in 3343 children and adults with rheumatic heart disease from 14 low-and middle-income countries: two-year follow-up of the Global Rheumatic Heart Disease Registry (the REMEDY Study). Circulation. 2016;134(19):1456-1466.https://doi.org/10.1161/CIRCULATIONAHA.116.024769 6. Nascimento BR, Beaton AZ. Rheumatic heart disease and socioeconomic development. The Lancet Global Health. 2019;7(10):e1297-e1299.https://doi.org/10.1016/S2214-109X(19)30369-9 7. Rérolle C, Faisant M, Lefrancq T, Saint‐Martin P. Sudden death due to undiagnosed rheumatic heart disease in a child. Journal of forensic sciences. 2016;61(3):848-850 8. Mutagaywa RK, Wind AM, Kamuhabwa A, Cramer MJ, Chillo P, Chamuleau S. Rheumatic heart disease anno 2020: Impacts of gender and migration on epidemiology and management. European Journal of Clinical Investigation. 2020;50(12):e13374.https://doi.org/10.1111/eci.13374 9. Dassel JL, Ralph AP, Carapetis JR. Controlling acute rheumatic fever and rheumatic heart disease in developing countries: are we getting closer? Current opinion in pediatrics. 2015;27(1):116-123.https://doi.org/10.1097/MOP.0000000000000164 10. Yakub MA, Dillon J, Krishna Moorthy PS, Pau KK, Nordin MN. Is rheumatic aetiology a predictor of poor outcome in the current era of mitral valve repair? Contemporary long-term results of mitral valve repair in rheumatic heart disease. European Journal of Cardio-Thoracic Surgery. 2013;44(4):673 25. Shrank WH, Patrick AR, Brookhart MA. Healthy user and related biases in observational studies of preventive interventions: a primer for physicians. J Gen Intern Med. 2011;26(5):546-550.https://doi.org/10.1007/s11606-010-1609-1
(1)
[1] V. M. Malhotra, and P. Kumar Mehta, “Pozzolanic and cementitious materials”, in Advances in Concrete Technology, [2] Vol. 1. Taylor & Francis, London and New York, 2004, pp. 4-5. [3] T. Abeile, A. Keller, and R. Zurbriggen, “Efflorescence mechanism of formation and ways to prevent, Elotex AG,Swizerland. [4] Cement Concrete & Aggregates Australia, “Efflorescence”, Cement Concrete & Aggregates Australia, St Leonards,N.S.W., Australia [5] J. Bensted, “Efflorescence – a visual problem on buildings”, Construction Repair, vol. 8, no 1, pp. 47-49, 1994 [6] P. Kresse, “Efflorescence – mechanism of occurrence and possibilities of prevention”, Concrete Plant + Precast Technology, vol. 53, pp. 160-168, 1982 [7] P. Kresse, “Coloured concrete and its enemy: efflorescence”, Chemistry and Industry, no. 4, pp. 93-95, 1989 [8] V. M. Malhotra, and P. Kumar Mehta, “Pozzolanic and cementitious materials”, in Advances in Concrete Technology, Vol. 1. Taylor & Francis, London and New York, 2004, pp. 90-91. [9] CUR-report 144, “Fly ash as addition to concrete”, CUR, Gouda, 1992, pp. 39-45. [10] ACI Committee 234 Report, “Guide for the use of silica fume in concrete”, American Concrete Insitute, ACI 234R-06, 2006. [11] ACICommittee 232.2 Report, “Use of fly ash in concrete”, American Concrete Institute, ACI 232.2R96, 1996. [12] H. A. Toutanji and T. El-Korchi, “The influence of silica fume on the compressive strength of cement paste and mortar”, Cement and Concrete Research, Vol. 25, No. 7, pp. 1591-1602, 1995 [13] S. F. U. Ahmed, Y. Ohama and K. Demura, “ Comparison of mechanical properties and durability of mortar modified by silica fume and finely ground blast furnace slag”, Journal of Civil Engineering, vol. 27, no. 2, 1999 [14] C. F. Christy and D. Tensing, “ Efflect of Class-F fly ash as partial replacement with cement and fine aggregate in mortar”, Indian Journal of Engineering & Materials Sciences, vol. 17, pp. 140-144, 2010 [15] D. P. Bentz and P. E. Stutzman, “Evolution of porosity and calcium hydroxide in laboratory concretes containing silica fume”, Cement and Concrete Research, Vol. 24, no. 6, pp. 1044-1050, 1994
(1)
1. Wang, X., Washington, D. & Weber, G.F. Complex systems analysis informs on the spread of COVID-19. Epidemiol. Methods 10, 20210019 (2021). 2. Borrego-Salcido, C., Juarez-Del-Toro, R. & Fonseca-Zendejas, A.S. The waves and cycles of Covid-19 pandemic: a phase synchronization approach. Austrian J. Stat. 52, 25-38 (2023). 3. Cappi, R., Casini, L., Tosi, D. & Roccetti, M. Questioning the seasonality of SARS-COV-2: a Fourier spectral analysis. BMJ Open 12 (2022). 4. Akdi, Y., Karamanoğlu, Y.E., Ünlü, K.D. & Baş, C. Identifying the cycles in COVID-19 infection: the case of Turkey. J. Appl. Stat. 50, 2360-2372 (2023). 5. Gao, L. et al. Evolving trend change during the COVID-19 pandemic. Front. Public Health 10, 957265 (2022). 6. Kriston, L. A statistical definition of epidemic waves. Epidemiologia 4, 267-275 (2023). 7. Abusam, A. Dynamics of COVID-19 in the Gulf Cooperation Council (GCC) countries. J. Taibah Univ. Med. Sci. 17, 461-466 (2022). 8. Kumar, U., Kumar, H. & Gandhi, A. Prediction & analysis of Covid-19 cases using autoregressive integrated moving average (arima). Int. J. Intell. Syst. Appl. Eng. 11, 680-690 (2023). 9. Tran, Q.H. & Hasegawa, Y. Topological time-series analysis with delay-variant embedding. Phys. Rev. E 99, 032209 (2019). 10. Wadhwa, R.R., Williamson, D.F., Dhawan, A. & Scott, J.G. TDAstats: R pipeline for computing persistent homology in topological data analysis. J. Open Source Softw. 3, 860 (2018). 11. Skraba, P., De Silva, V. & Vejdemo-Johansson, M. Topological analysis of recurrent systems. In NIPS 2012 Workshop on Algebraic Topology and Machine Learning 1-5 (2012). 12. Pereira, C.M. & de Mello, R.F. Persistent homology for time series and spatial data clustering. Expert Syst. Appl. 42, 6026-6038 (2015). 13. Costa, J.P. & Škraba, P. A topological data analysis approach to the epidemiology of influenza. In SIKDD15 Conference Proceedings (2015). 14. Lo, D. & Park, B. Modeling the spread of the Zika virus using topological data analysis. PLoS One 13, e0192120 (2018). 15. Soliman, M., Lyubchich, V. & Gel, Y.R. Ensemble forecasting of the Zika space‐time spread with topological data analysis. Environmetrics 31, e2629 (2020). 16. Chen, Y. & Volić, I. Topological data analysis model for the spread of the coronavirus. PLoS One 16, e0255584 (2021). 17. Ault, S.V. & Lu, J. Comparison of the spread of novel coronavirus: topological data analysis of 13 countries. JIS 6 (2022). 18. Hu, C. The topological properties of COVID-19 global activity time series forecasting in 5th Int. Conf. on Information Science, Computer Technology and Transportation (ISCTT) 228-237 IEEE (2020). 19. Campi, G., Perali, A., Marcelli, A. & Bianconi, A. Sars-Cov2 world pandemic recurrent waves controlled by variants evolution and vaccination campaign. Sci. Rep. 12, 18108 (2022). 20. Tan, E. et al. Selecting embedding delays: an overview of embedding techniques and a new method using persistent homology. Chaos 33 (2023). 21. Takens, F. Detecting strange attractors in turbulence in Dynamical systems and turbulence, Warwick 1980 366-381 (Springer, 1981). 22. Sivakumar, B. & Deepthi, B. Complexity of COVID-19 dynamics. Entropy 24, 50 (2021). 23. Wallot, S. & Mønster, D. Calculation of average mutual information (AMI) and false-nearest neighbors (FNN) for the estimation of embedding parameters of multidimensional time series in Matlab. Front. Psychol. 9, 1679 (2018). 24. Lu, S. & Oberst, S. Recurrence-based reconstruction of dynamic pricing attractors. Nonlinear Dyn. 1-16 (2023). 25. Zulkepli, N.F.S., Noorani, M.S.M., Razak, F.A., Ismail, M. & Alias, M.A. Hybridization of hierarchical clustering with persistent homology in assessing haze episodes between air quality monitoring stations. J. Environ. Manage. 306, 114434 (2022). 26. Tan, C.V. et al. Forecasting COVID-19 case trends using SARIMA models during the third wave of COVID-19 in Malaysia. Int. J. Environ. Res. Public Health 19, 1504 (2022). 27. Soukhovolsky, V. et al. The cyclicity of coronavirus cases: “Waves” and the “weekend effect”. Chaos Soliton Fract. 144, 110718 (2021). 28. Wiemken, T.L. et al. Seasonal trends in COVID-19 cases, hospitalizations, and mortality in the United States and Europe. Sci. Rep. 13, 3886 (2023). 29. Yu, C.Y. et al. Whole genome sequencing analysis of SARS-CoV-2 from Malaysia: from alpha to omicron. Front. Med. 9, 1001022 (2022). 30. Lee, T.Y., Lim, W.F., Ang, G.Y. & Yu, C.Y. Genomic surveillance of Sars-Cov-2 in Malaysia during the era of endemic COVID-19. Life 13, 1644 (2023). 31. Shamsa, E.H., Shamsa, A. & Zhang, K. Seasonality of COVID-19 incidence in the United States. Front. Public Health 11, 1298593 (2023). 32. Stender, M., Bartolomeo, M.D., Massi, F. & Hoffmann, N. Revealing transitions in friction-excited vibrations by nonlinear time-series analysis. Nonlinear Dyn. 98, 2613-2630 (2019). 33. Wong, H.S., Hasan, M.Z., Sharif, O. & Rahman, A. Effect of total population, population density and weighted population density on the spread of Covid-19 in Malaysia. PLoS One 18, e0284157 (2023). 34. Campi, G., & Bianconi, A. Periodic recurrent waves of Covid-19 epidemics and vaccination campaign. Chaos Soliton Fract. 160, 112216 (2022). 35. Luo, Z., Zhang, L., Liu, N. & Wu, Y. Time series clustering of COVID-19 pandemic-related data. Data Sci. Manag. 6, 79-87 (2023). 36. Pun, C.S., Lee, S.X. & Xia, K. Persistent-homology-based machine learning: a survey and a comparative study. Artif. Intell. Rev. 55, 5169-5213 (2022). 37. Arnaout, R. & Arnaout, R. Visualizing omicron: COVID-19 deaths vs. cases over time. PLoS One 17, e0265233 (2022). 38. Deckard, A., Anafi, R.C., Hogenesch, J.B., Haase, S.B. & Harer, J. Design and analysis of large-scale biological rhythm studies: a comparison of algorithms for detecting periodic signals in biological data. Bioinformatics 29, 3174-3180 (2013). 39. Perea, J.A., Deckard, A., Haase, S.B. & Harer, J. SW1PerS: Sliding windows and 1-persistence scoring; discovering periodicity in gene expression time series data. BMC Bioinformatics 16, 1-12 (2015). 40. Huffaker, R. & Fearne, A. Reconstructing systematic persistent impacts of promotional marketing with empirical nonlinear dynamics. PLoS One 14, e0221167 (2019). 41. Babasola, O., Kayode, O., Peter, O.J., Onwuegbuche, F.C. & Oguntolu, F.A. Time-delayed modelling of the COVID-19 dynamics with a convex incidence rate. Inform. Med. Unlocked 35, https://doi.org/10.1016/j.imu.2022.101124 (2022). 42. Kennel, M.B. & Abarbanel, H.D. False neighbors and false strands: A reliable minimum embedding dimension algorithm. Phys. Rev. E 66, 026209 (2002). 43. Mansor, Z., & Mokhtar, S.A. COVID-19 clusters in Malaysia: a descriptive analysis. doi:10.2991/ahsr.k.220108.002 (2022). 44. Chin, W.C.B. & Chan, C.H. Analyzing the trends of COVID-19 and human activity intensity in Malaysia. Trop. Med. Infect. Dis. 8, 72 (2023). 45. Isnain, A.R., Dom, N.C., Abdullah, S., Precha, N. & Salim, H. Efficiency of Malaysian states in managing the COVID-19 outbreak in 2020 and 2021. PLoS One 17, 1-11 https://doi.org/10.1371/journal.pone.0275754 (2022) 46. Pang, N.T.P., Kamu, A., Kassim, M.A.M., & Ho, C.M. Monitoring the impact of Movement Control Order (MCO) in flattening the cumulative daily cases curve of Covid-19 in Malaysia: a generalized logistic growth modeling approach. Infect. Dis. Model. 6, 898-908 (2021). 47. Zhang, X. et al. The effect of population size for pathogen transmission on prediction of COVID-19 spread. Sci. Rep. 11, 18024 (2021). 48. Kim, H. et al. Which national factors are most influential in the spread of COVID-19? Int. J. Environ. Res. Public Health 18, 7592 (2021). 49. Bi, S., Bie, S., Hu, X. & Zhang, H. Analysis on the characteristics of spatio-temporal evolution and aggregation trend of early COVID-19 in mainland China. Sci. Rep. 12, 4380 (2022). 50. Phang, P., Labadin, J., Suhaila, J., Aslam, S. & Hazmi, H. Exploration of spatiotemporal heterogeneity and socio-demographic determinants on COVID-19 incidence rates in Sarawak, Malaysia. BMC Public Health 23, 1396 (2023). 51. Varley, T.F., Denny, V., Sporns, O. & Patania, A. (2021). Topological analysis of differential effects of ketamine and propofol anaesthesia on brain dynamics. R. Soc. Open Sci. 8, 201971 (2021). 52. Zou, Y., Donner, R.V., Marwan, N., Donges, J.F. & Kurths, J. Complex network approaches to nonlinear time series analysis. Phys. Rep. 787, 1-97 (2019). 53. Sadowski, A., Galar, Z., Walasek, R., Zimon, G. & Engelseth, P. Big data insight on global mobility during the Covid-19 pandemic lockdown. J. Big Data 8, 78 (2021).
(1)
[1] Wang, Yung-Fu, Ya-Fang Hsu, and Kwoting Fang. "The key elements of gamification in corporate training-The Delphi method." Entertainment Computing 40 (2022): 100463. https://doi.org/10.1016/j.entcom.2021.100463 [2] Manzano-León, Ana, Pablo Camacho-Lazarraga, Miguel A. Guerrero, Laura Guerrero-Puerta, José M. Aguilar-Parra, Rubén Trigueros, and Antonio Alias. "Between level up and game over: A systematic literature review of gamification in education." Sustainability 13, no. 4 (2021): 2247. https://doi.org/10.3390/su13042247 [3] Yung, Ong C., Syahrul N. Junaini, Ahmad A. Kamal, and L. F. Ibharim. "Slash 100%: Gamification of mathematics with hybrid QR-based card game." Indonesian Journal of Electrical Engineering and Computer Science 20, no. 3 (2020): 1453-1459. https://doi.org/10.11591/ijeecs.v20.i3.pp1453-1459 [4] Martínez-Hita, María, Cosme Jesús Gómez-Carrasco, and Pedro Miralles-Martínez. "The effects of a gamified project based on historical thinking on the academic performance of primary school children." Humanities and Social Sciences Communications 8, no. 1 (2021): 1-10. https://doi.org/10.1057/s41599-021-00796-9 [5] Sipone, Silvia, Víctor Abella-García, Marta Rojo, and Luigi dell'Olio. "Using ClassCraft to improve primary school students' knowledge and interest in sustainable mobility." Sustainability 13, no. 17 (2021): 9939. https://doi.org/10.3390/su13179939 [6] Sermet, Yusuf, Ibrahim Demir, and Marian Muste. "A serious gaming framework for decision support on hydrological hazards." Science of The Total Environment 728 (2020): 138895. https://doi.org/10.1016/j.scitotenv.2020.138895 [7] Arinta, Rania Rizki, Suyoto Suyoto, and Andi W. R. Emanuel. "Effectiveness of Gamification for Flood Emergency Planning in the Disaster Risk Reduction Area." International Journal of Engineering Pedagogy 10, no. 4 (2020): 108-124. https://doi.org/10.3991/ijep.v10i4.13145 [8] Kimura, Yukiya, and Pauline N. Kawamoto. "Gamifying the Element of Forgetting in E-learning Systems." In 2018 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE), pp. 751-754. IEEE, 2018. https://doi.org/10.1109/TALE.2018.8615352 [9] Manalang, Lemson L., Angelo Paolo A. Misa, Neilsen M. Soriano, Mary Jane C. Samonte, Ariel Kelly D. Balan, and Ma Liza C. Daluz. "Kidzaster: A Web-based Learning Management System on Disaster Preparedness for Kids." In Proceedings of the 6th International Conference on Frontiers of Educational Technologies, pp. 16-20. 2020. https://doi.org/10.1145/3404709.3404740 [10] Azmi, Ezza S., Vivien How, and Haliza Abdul Rahman. "Effect of health belief model on flood-risk educational approach among elementary school children in Malaysia." Jàmbá: Journal of Disaster Risk Studies 13, no. 1 (2021): 1-6. https://doi.org/10.4102/jamba.v13i1.1102 [11] MacLeod, David, Evan Easton-Calabria, Erin Coughlan de Perez, and Catalina Jaime. "Verification of forecasts for extreme rainfall, tropical cyclones, flood and storm surge over Myanmar and the Philippines." Weather and Climate Extremes 33 (2021): 100325. https://doi.org/10.1016/j.wace.2021.100325 [12] Naim, Nurul Natasha Nabila, Nurul Hani Mardi, Marlinda Abdul Malek, Su Yean Teh, Mohd Azwan Wil, Abd Halim Shuja, and Ali Najah Ahmed. "Tsunami inundation maps for the northwest of Peninsular Malaysia and demarcation of affected electrical assets." Environmental Monitoring and Assessment 193, no. 7 (2021): 405. https://doi.org/10.1007/s10661-021-09179-8 [13] Islam, Md Mahfuzul, A. Aldrie Amir, and Rawshan Ara Begum. "Community awareness towards coastal hazard and adaptation strategies in Pahang coast of Malaysia." Natural Hazards 107 (2021): 1593-1620. https://doi.org/10.1007/s11069-021-04648-2 [14] Khattak, Muhammad Adil, Lee Jun Keat, Khairul Anwar Bapujee, Tan Xin Hui, Amirul Syafiq Othman, Afiq Danial Abd Rasid, Lailatul Fitriyah Ahmad Shafii, and Suhail Kazi. "Global energy security and Malaysian perspective: A review." Progress in Energy and Environment 6 (2018): 1-18. [15] Hawthorn, Steven, Rui Jesus, and Maria Ana Baptista. "Identification of Knowledge Gaps to Inform a Serious Game for Tsunami Risk Communication." In 2021 14th International Conference on Human System Interaction (HSI), pp. 1-6. IEEE, 2021. https://doi.org/10.1109/HSI52170.2021.9538748 [16] Kankanamge, Nayomi, Tan Yigitcanlar, Ashantha Goonetilleke, and Md Kamruzzaman. "How can gamification be incorporated into disaster emergency planning? A systematic review of the literature." International Journal of Disaster Resilience in the Built Environment 11, no. 4 (2020): 481-506. https://doi.org/10.1108/IJDRBE-08-2019-0054 [17] Zokhi, Aini Nurrasyidah Md. "Aplikasi Inovasi Q-Track Kit Dalam Proses Pengajaran dan Pembelajaran Bagi Modul Teoritikal: Innovative Application of Q-Track Kit in the Teaching and Learning Process for Theoretical Modules." International Journal of Advanced Research in Future Ready Learning and Education 27, no. 1 (2022): 20-29. [18] Mohamad Jamil, Putri Anis Syahira, Karmegam Karuppiah, Nur Athirah Diyana Mohammad Yusof, Dayana Hazwani Mohd Suadi Nata, Nurhanim Abdul Aziz, Vivien How, Shamsul Bahri Mohd Tamrin, and Hassan Sadeghi Naeni. "Usability testing of a wireless individual indicator system application: Monitoring exposure to outdoor air pollution among Malaysian Traffic Police." Digital Health 8 (2022): 20552076221103336. https://doi.org/10.1177/20552076221103336 [19] Savoldelli, Anna, Andrea Vitali, Andrea Remuzzi, and Vittorio Giudici. "Improving the user experience of televisits and telemonitoring for heart failure patients in less than 6 months: a methodological approach." International Journal of Medical Informatics 161 (2022): 104717. https://doi.org/10.1016/j.ijmedinf.2022.104717 [20] Matsuno, Yutaka, Futaba Fukanuma, and Shigenobu Tsuruoka. "Development of flood disaster prevention simulation smartphone application using gamification." Dynamics of Disasters: Impact, Risk, Resilience, and Solutions 169 (2021): 147-159. https://doi.org/10.1007/978-3-030-64973-9_9 [21] Teague, A., Y. Sermet, I. Demir, and M. Muste. "A collaborative serious game for water resources planning and hazard mitigation." International Journal of Disaster Risk Reduction 53 (2021): 101977. https://doi.org/10.1016/j.ijdrr.2020.101977 [22] Mishra, Prabhaker, Chandra M. Pandey, Uttam Singh, Anshul Gupta, Chinmoy Sahu, and Amit Keshri. "Descriptive statistics and normality tests for statistical data." Annals of Cardiac Anaesthesia 22, no. 1 (2019): 67. https://doi.org/10.4103/aca.ACA_157_18 [23] Saha, Avijit, Arpita Dutta, and Ridwan Islam Sifat. "The mental impact of digital divide due to COVID-19 pandemic induced emergency online learning at undergraduate level: Evidence from undergraduate students from Dhaka City." Journal of Affective Disorders 294 (2021): 170-179. https://doi.org/10.1016/j.jad.2021.07.045 [24] Sifat, Ridwan Islam. "COVID-19 pandemic: Mental stress, depression, anxiety among the university students in Bangladesh." International Journal of Social Psychiatry 67, no. 5 (2021): 609-610. https://doi.org/10.1177/0020764020965995
(1)
1. Ward, K. and Z.H. Fan, Mixing in microfluidic devices and enhancement methods. Journal of Micromechanics Microengineering, 2015. 25(9): p. 094001. 2. Lee, C.-Y. and L.-M. Fu, Recent advances and applications of micromixers. Sensors and Actuators B: Chemical, 2018. 259: p. 677-702. 3. Hessel, V., H. Löwe, and F. Schönfeld, Micromixers—a review on passive and active mixing principles. Chemical Engineering Science, 2005. 60(8-9): p. 2479-2501. 4. Lee, C.-Y., W.-T. Wang, C.-C. Liu, and L.-M. Fu, Passive mixers in microfluidic systems: A review. Chemical Engineering Journal, 2016. 288: p. 146-160. 5. Sarkar, S., K. Singh, V. Shankar, and K. Shenoy, Numerical simulation of mixing at 1–1 and 1–2 microfluidic junctions. Chemical Engineering and Processing: Process Intensification, 2014. 85: p. 227-240. 6. Shah, I., S.W. Kim, K. Kim, Y.H. Doh, and K.H. Choi, Experimental and numerical analysis of Y-shaped split and recombination micro-mixer with different mixing units. Chemical Engineering Journal, 2019. 358: p. 691-706. 7. Chen, X., T. Li, H. Zeng, Z. Hu, and B. Fu, Numerical and experimental investigation on micromixers with serpentine microchannels. International Journal of Heat and Mass Transfer, 2016. 98: p. 131-140. 8. Li, Y., D. Zhang, X. Feng, Y. Xu, and B.-F. Liu, A microsecond microfluidic mixer for characterizing fast biochemical reactions. Talanta, 2012. 88: p. 175-180. 9. Le The, H., H. Le Thanh, T. Dong, B.Q. Ta, N. Tran-Minh, and F. Karlsen, An effective passive micromixer with shifted trapezoidal blades using wide Reynolds number range. Chemical Engineering Research Design, 2015. 93: p. 1-11. 10. Sivashankar, S., S. Agambayev, Y. Mashraei, E.Q. Li, S.T. Thoroddsen, and K.N. Salama, A “twisted” microfluidic mixer suitable for a wide range of flow rate applications. Biomicrofluidics, 2016. 10(3): p. 034120. 11. Chen, X., J. Shen, and Z. Hu, Fabrication and performance evaluation of two multi-layer passive micromixers. Sensor Review, 2018. 38(3): p. 321-325. 12. Ansari, M.A., K.-Y. Kim, K. Anwar, and S.M. Kim, A novel passive micromixer based on unbalanced splits and collisions of fluid streams. Journal of Micromechanics and Microengineering, 2010. 20(5): p. 055007. 13. Nimafar, M., V. Viktorov, and M. Martinelli, Experimental comparative mixing performance of passive micromixers with H-shaped sub-channels. Chemical Engineering Science, 2012. 76: p. 37-44. 14. Wang, H., L. Shi, T. Zhou, C. Xu, and Y. Deng, A novel passive micromixer with modified asymmetric lateral wall structures. Asia‐Pacific Journal of Chemical Engineering, 2018. 13(3): p. e2202. 15. Jännig, O. and N.-T. Nguyen, A polymeric high-throughput pressure-driven micromixer using a nanoporous membrane. Microfluidics nanofluidics 2011. 10(3): p. 513-519. 16. ITU, RECOMMENDATION ITU-R BT.601-5 :Studio encoding parameters of digital television for standard 4: 3 and wide-screen 16: 9 aspect ratios. 17. Fu, H., X. Liu, and S. Li, Mixing indexes considering the combination of mean and dispersion information from intensity images for the performance estimation of micromixing. RSC Advances, 2017. 7(18): p. 10906-10914. 18. Johnson, T.J., D. Ross, and L.E. Locascio, Rapid microfluidic mixing. Analytical chemistry, 2002. 74(1): p. 45-51. 19. Chen, X. and X. Wang, Optimized modular design and experiment for staggered herringbone chaotic micromixer. International Journal of Chemical Reactor Engineering, 2015. 13(3): p. 305-309. 20. Yamamoto, D., T. Maki, S. Watanabe, H. Tanaka, M.T. Miyahara, and K. Mae, Synthesis and adsorption properties of ZIF-8 nanoparticles using a micromixer. Chemical engineering journal, 2013. 227: p. 145-150. 21. Surdo, S., A. Diaspro, and M. Duocastella, Micromixing with spark-generated cavitation bubbles. Microfluidics Nanofluidics, 2017. 21(5): p. 82. 22. Zha, L., X. Pu, M. Shang, G. Li, W. Xu, Q. Lu, and Y. Su, A study on the micromixing performance in microreactors for polymer solutions. AIChE Journal, 2018. 64(9): p. 3479-3490. 23. McDonough, J., M. Oates, R. Law, and A. Harvey, Micromixing in oscillatory baffled flows. Chemical Engineering Journal, 2019. 361: p. 508-518. 24. Rafeie, M., M. Welleweerd, A. Hassanzadeh-Barforoushi, M. Asadnia, W. Olthuis, and M. Ebrahimi Warkiani, An easily fabricated three-dimensional threaded lemniscate-shaped micromixer for a wide range of flow rates. Biomicrofluidics, 2017. 11(1): p. 014108. 25. Engler, M., N. Kockmann, T. Kiefer, and P. Woias, Numerical and experimental investigations on liquid mixing in static micromixers. Chemical Engineering Journal, 2004. 101(1-3): p. 315-322. 26. Luo, P., Y. Cheng, Z. Wang, Y. Jin, and W. Yang, Study on the mixing behavior of thin liquid-sheet impinging jets using the PLIF technique. Industrial engineering chemistry research, 2006. 45(2): p. 863-870. 27. Parsa, M.K., F. Hormozi, and D. Jafari, Mixing enhancement in a passive micromixer with convergent–divergent sinusoidal microchannels and different ratio of amplitude to wave length. Computers and Fluids, 2014. 105: p. 82-90. 28. Sudarsan, A.P. and V.M. Ugaz, Fluid mixing in planar spiral microchannels. Lab on a Chip, 2006. 6(1): p. 74-82. 29. Sudarsan, A.P. and V.M. Ugaz, Multivortex micromixing. Proceedings of the National Academy of Sciences, 2006. 103(19): p. 7228-7233. 30. Jeon, N.L., S.K. Dertinger, D.T. Chiu, I.S. Choi, A.D. Stroock, and G.M. Whitesides, Generation of solution and surface gradients using microfluidic systems. Langmuir, 2000. 16(22): p. 8311-8316. 31. Zhou, Y., Microfluidic Concentration Gradient Generation and Integrated Magnetic Sorting of Microparticles. 2013, Columbia University. 32. Faryadi, M., M. Rahimi, S. Safari, and N. Moradi, Effect of high frequency ultrasound on micromixing efficiency in microchannels. Chemical Engineering Processing: Process Intensification, 2014. 77: p. 13-21. 33. Karthikeyan, K. and L. Sujatha, Study of Permissible Flow Rate and Mixing Efficiency of the Micromixer Devices. International Journal of Chemical Reactor Engineering, 2019. 17(1). 34. Lin, C.-H., L.-M. Fu, and Y.-S. Chien, Microfluidic T-form mixer utilizing switching electroosmotic flow. Analytical chemistry, 2004. 76(18): p. 5265-5272. 35. Wang, L., D. Liu, X. Wang, and X. Han, Mixing enhancement of novel passive microfluidic mixers with cylindrical grooves. Chemical Engineering Science, 2012. 81: p. 157-163. 36. Scherr, T., C. Quitadamo, P. Tesvich, D.S.-W. Park, T. Tiersch, D. Hayes, J.-W. Choi, K. Nandakumar, and W.T. Monroe, A planar microfluidic mixer based on logarithmic spirals. Journal of Micromechanics and Microengineering, 2012. 22(5): p. 055019. 37. Yang, J.-T., K.-J. Huang, K.-Y. Tung, I.-C. Hu, and P.-C. Lyu, A chaotic micromixer modulated by constructive vortex agitation. Journal of Micromechanics and Microengineering, 2007. 17(10): p. 2084. 38. Hong, C.-C., J.-W. Choi, and C.H. Ahn, A novel in-plane passive microfluidic mixer with modified Tesla structures. Lab on a Chip, 2004. 4(2): p. 109-113. 39. Matsunaga, T., H.-J. Lee, and K. Nishino, An approach for accurate simulation of liquid mixing in a T-shaped micromixer. Lab on a Chip, 2013. 13(8): p. 1515-1521. 40. Rudyak, V. and A. Minakov, Modeling and optimization of Y-type micromixers. Micromachines, 2014. 5(4): p. 886-912. 41. Galletti, C., M. Roudgar, E. Brunazzi, and R. Mauri, Effect of inlet conditions on the engulfment pattern in a T-shaped micro-mixer. Chemical Engineering Journal, 2012. 185: p. 300-313.
(1)
1. Weijie Liu et al. (2022). A Self-Powered Wearable Motion Sensor for Monitoring Volleyball Skill and Building Big Sports Data, Biosensors 2022, 12(2), 60; https://doi.org/10.3390/bios12020060 2. Ziao Xue et al. (2023). Self-Powered Biosensors for Monitoring Human Physiological Changes, Biosensors 2023, 13(2), 236; https://doi.org/10.3390/bios13020236 3. Yupeng Mao et al. (2021). A Portable and Flexible Self-Powered Multifunctional Sensor for Real-Time Monitoring in Swimming, Biosensors 2021, 11(5), 147; https://doi.org/10.3390/bios11050147 4. Paul D.J. et al. (2020). Wearable sensors for sports and athletics. IEEE Sensors Journal, 20(8), 4264-4281. DOI: 10.1109/JSEN.2019.2965779. 5. Yupeng Mao et al. (2020). A Self-Powered Biosensor for Monitoring Maximal Lactate Steady State in Sport Training, Biosensors 2020, 10(7), 75; https://doi.org/10.3390/bios10070075 6. Boullosa D.A. et al. (2020). Wearable sensors in sport: Let the data speak for itself. Sports Medicine, 50(3), 429-432. DOI: 10.1007/s40279-019-01183-9 7. De Vito G. et al. (2019). Wearable inertial sensors for human movement analysis. Sports Medicine, 49(7), 1065-1084. DOI: 10.1007/s40279-019-01118-4.
(1)
[1] W. He, D. Goodkind, and P. R. Kowal, “An aging world: 2015,” United States Census Bureau, 2016. Accessed: Feb. 22, 2022. [Online]. Available: https://www.census.gov/content/dam/Census/library/publications/2016/demo/p95-16-1.pdf. [2] A. D. Tripathi, R. Mishra, K. K. Maurya, R. B. Singh, and D. W. Wilson, “Estimates for World Population and Global Food Availability for Global Health,” in The Role of Functional Food Security in Global Health, Elsevier, 2019, pp. 3–24. [3] S. U. M. Tobi, M. S. Fathi, and D. Amaratunga, “Ageing in place, an overview for the elderly in Malaysia,” 2017, doi: 10.1063/1.5005434. [4] L. Partridge, J. Deelen, and P. E. Slagboom, “Facing up to the global challenges of ageing,” Nature, vol. 561, no. 7721, pp. 45–56, Sep. 2018, doi: 10.1038/s41586-018-0457-8. [5] S. T. Ng, N. P. Tey, and M. N. Asadullah, “What matters for life satisfaction among the oldest-old? Evidence from China,” PLoS one, vol. 12, no. 2, p. e0171799, Feb. 2017, doi: 10.1371/journal.pone.0171799. [6] J. Holt-Lunstad, T. B. Smith, M. Baker, T. Harris, and D. Stephenson, “Loneliness and Social Isolation as Risk Factors for Mortality,” Perspectives on Psychological Science, vol. 10, no. 2, pp. 227–237, Mar. 2015, doi: 10.1177/1745691614568352. [7] L. A. Peplau, “Loneliness,” in Social Problems and Mental Health, Routledge, 2022, pp. 93–95. [8] N. K. Alici and B. Kalanlar, “Validity and reliability of the Lubben Social Network Scale-Revised (LSNS-R) on older adults in Turkey,” Current Psychology, vol. 40, no. 1, pp. 21–28, Oct. 2020, doi: 10.1007/s12144-020-01125-0. [9] J. E. Lubben, “Assessing social networks among elderly populations,” Family & Community Health, vol. 11, no. 3, pp. 42–52, Nov. 1988, doi: 10.1097/00003727-198811000-00008. [10] H. M. Orpana, J. J. Lang, and K. Yurkowski, “Validation of a brief version of the Social Provisions Scale using Canadian national survey data,” Health Promotion and Chronic Disease Prevention in Canada, vol. 39, no. 12, pp. 323–332, Dec. 2019, doi: 10.24095/hpcdp.39.12.02. [11] Public Health Agency of Canada, “Measuring Positive Mental Health in Canada: Social support,” 2016. Accessed: Feb. 22, 2022. [Online]. Available: https://www.canada.ca/en/public-health/services/publications/healthy-living/measuring-positive-mental-health-canada-social-support.html. [12] R. Weiss, “The provisions of social relationships,” in Doing unto others, Z. Rubin, Ed. Englewood Cliffs, USA: Prentice Hall, 1974, pp. 17–26. [13] C. E. Cutrona, V. Cole, N. Colangelo, S. G. Assouline, and D. W. Russell, “Perceived parental social support and academic achievement: An attachment theory perspective,” Journal of Personality and Social Psychology, vol. 66, no. 2, pp. 369–378, 1994, doi: 10.1037/0022-3514.66.2.369. [14] G. Cipriani, S. Danti, L. Picchi, A. Nuti, and M. Di Fiorino, “Daily functioning and dementia,” Dementia Neuropsychologia, vol. 14, no. 2, pp. 93–102, Jun. 2020, doi: 10.1590/1980-57642020dn14-020001. [15] P. S. Priyamvada, N. Viswanath, K. T. H. Kumar, S. Haridasan, and S. Parameswaran, “Functional status in hemodialysis - A comparative study with FIM, ADLQ and 7D5L instruments,” Indian Journal of Nephrology, vol. 29, no. 3, p. 172, 2019, doi: 10.4103/ijn.ijn_363_17. [16] G. Arik et al., “Validation of Katz index of independence in activities of daily living in Turkish older adults,” Archives of Gerontology and Geriatrics, vol. 61, no. 3, pp. 344–350, Nov. 2015, doi: 10.1016/j.archger.2015.08.019. [17] P.-H. Lee, T.-T. Yeh, H.-Y. Yen, W.-L. Hsu, V. J.-Y. Chiu, and S.-C. Lee, “Impacts of stroke and cognitive impairment on activities of daily living in the Taiwan longitudinal study on aging,” Scientific Reports, vol. 11, no. 1, Jun. 2021, doi: 10.1038/s41598-021-91838-4. [18] M. Pashmdarfard and A. Azad, “Assessment tools to evaluate Activities of Daily Living (ADL) and Instrumental Activities of Daily Living (IADL) in older adults: A systematic review,” Medical Journal of The Islamic Republic of Iran, vol. 34, p. 33, Oct. 2020, doi: 10.47176/mjiri.34.33. [19] S. Katz, T. D. Downs, H. R. Cash, and R. C. Grotz, “Progress in Development of the Index of ADL,” The Gerontologist, vol. 10, no. 1 Part 1, pp. 20–30, 1970, doi: 10.1093/geront/10.1_part_1.20. [20] O. Baiyewu and R. O. Jegede, “Life Satisfaction in Elderly Nigerians: Reliability and Factor Composition of the Life Satisfaction Index Z,” Age and Ageing, vol. 21, no. 4, pp. 256–261, 1992, doi: 10.1093/ageing/21.4.256. [21] B. Mehrotra, N. M. Pandey, P. Kumar, S. Sinha, and S. C. Tiwari, “Life satisfaction and its Determinants in Rural Aging Population of Lucknow, India,” Journal of Psychosocial Research, vol. 13, no. 1, pp. 33–41, 2018, doi: 10.32381/jpr.2018.13.01.4. [22] P.-S. Li, C.-J. Hsieh, E. B. Tallutondok, Y.-L. Shih, and C.-Y. Liu, “Development and Assessment of the Validity and Reliability of the Short-Form Life Satisfaction Index (LSI-SF) among the Elderly Population,” Journal of Personalized Medicine, vol. 12, no. 5, p. 709, 2022, doi: 10.3390/jpm12050709. [23] K. A. Wallace and A. J. Wheeler, “Reliability Generalization of the Life Satisfaction Index,” Educational and Psychological Measurement, vol. 62, no. 4, pp. 674–684, 2002, doi: 10.1177/0013164402062004009. [24] S. Papi and M. Cheraghi, “Multiple factors associated with life satisfaction in older adults,” Menopausal Review, vol. 20, no. 2, pp. 65–71, 2021, doi: 10.5114/pm.2021.107025. [25] T.-M. Lyyra, T. M. Tormakangas, S. Read, T. Rantanen, and S. Berg, “Satisfaction With Present Life Predicts Survival in Octogenarians,” The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, vol. 61, no. 6, pp. P319--P326, 2006, doi: 10.1093/geronb/61.6.p319. [26] B. G. Tabachnick and L. S. Fidell, Using multivariate statistics, 6th ed. Boston, MA, USA: Pearson, 2013. [27] J. Caron, “Une validation de la forme abrégée de l’Échelle de provisions sociales: l’ÉPS-10 items,” Santé mentale au Québec, vol. 38, no. 1, pp. 297–318, 2013, doi: 10.7202/1019198ar. [28] IBM Corp, IBM SPSS Statistics for Windows, Version 27.0. New York: IBM Corp, 2020. Accessed: Feb. 22, 2022. [Online]. Available: https://www.ibm.com/support/pages/how-cite-ibm-spss-statistics-or-earlier-versions-spss. [29] A. Hasanein, M. Essawy, and M. El-dien, "The Impact of Web-based Training Characteristics on Transfer of Training: An Application on Hotel Front Office Department," Journal Tourism, vol. 13, pp. 19, 2015, doi: 10.13140/RG.2.2.32553.44640. [30] Q. Chang, F. Sha, C. H. Chan, and P. S. F. Yip, “Validation of an abbreviated version of the Lubben Social Network Scale (LSNS-6) and its associations with suicidality among older adults in China,” PLoS one, vol. 13, no. 8, p. e0201612, 2018, doi: 10.1371/journal.pone.0201612. [31] C.-Y. Chiu, R. W. Motl, and N. Ditchman, “Validation of the Social Provisions Scale in people with multiple sclerosis.,” Rehabilitation Psychology, vol. 61, no. 3, pp. 297–307, Aug. 2016, doi: 10.1037/rep0000089. [32] C. Borg, I. R. Hallberg, and K. Blomqvist, “Life satisfaction among older people (65+) with reduced self-care capacity: the relationship to social, health and financial aspects,” Journal of Clinical Nursing, vol. 15, no. 5, pp. 607–618, 2006, doi: 10.1111/j.1365-2702.2006.01375.x. [33] Z. M. Saman, A. H. Siti-Azrin, A. Othman, and Y. C. Kueh, “The Validity and Reliability of the Malay Version of the Cyberbullying Scale among Secondary School Adolescents in Malaysia,” International Journal of Environmental Research and Public Health, vol. 18, no. 21, p. 11669, Nov. 2021, doi: 10.3390/ijerph182111669. [34] A. M. Steigen and D. Bergh, “The Social Provisions Scale: psychometric properties of the SPS-10 among participants in nature-based services,” Disability and Rehabilitation, vol. 41, no. 14, pp. 1690–1698, Feb. 2018, doi: 10.1080/09638288.2018.1434689. [35] J. DiBello, L. Murphy, and I. Palacios, “Social Integration and Community Health Participation of Elderly Men in Peri-Urban Ecuador,” Annals of Global Health, vol. 86, no. 1, p. 138, Oct. 2020, doi: 10.5334/aogh.3020. [36] P. Tiikkainen, R.-L. Heikkinen, and E. Leskinen, “The Structure and Stability of Perceived Togetherness in Elderly People during a 5-Year Follow-Up,” Journal of Applied Gerontology, vol. 23, no. 3, pp. 279–294, Sep. 2004, doi: 10.1177/0733464804267582. [37] L. Wang, L. Yang, X. Di, and X. Dai, “Family Support, Multidimensional Health, and Living Satisfaction among the Elderly: A Case from Shaanxi Province, China,” International Journal of Environmental Research and Public Health, vol. 17, no. 22, p. 8434, Nov. 2020, doi: 10.3390/ijerph17228434. [38] X. Wang, “Subjective well-being associated with size of social network and social support of elderly,” Journal of Health Psychology, vol. 21, no. 6, pp. 1037–1042, Aug. 2014, doi: 10.1177/1359105314544136. [39] R. Veenhoven, " Happiness: Also Known as “Life Satisfaction” and “Subjective Well-Being”," Handbook of Social Indicators and Quality of Life Research, pp. 63–77, 2011, doi: 10.1007/978-94-007-2421-1_3. [40] E. S. Kim, J. K. Sun, N. Park, L. D. Kubzansky, and C. Peterson, “Purpose in life and reduced risk of myocardial infarction among older U.S. adults with coronary heart disease: a two-year follow-up,” Journal of Behavioral Medicine, vol. 36, no. 2, pp. 124–133, Feb. 2012, doi: 10.1007/s10865-012-9406-4. [41] R K. M. van Leeuwen, M. S. van Loon, F. A. van Nes, J. E. Bosmans, H. C. de Vet, J. C. Ket, G. A. Widdershoven, and R. W.Ostelo," What does quality of life mean to older adults? A thematic synthesis," PLOS ONE, vol. 14, no. 3, 2019, doi: 10.1371/journal.pone.0213263. [42] S. T. D. Nordbakke, “Mobility, Out-of-Home Activity Participation and Needs Fulfilment in Later Life,” International Journal of Environmental Research and Public Health, vol. 16, no. 24, p. 5109, Dec. 2019, doi: 10.3390/ijerph16245109. [43] P. F. Edemekong, D. L. Bomgaars, S. Sukumaran, and S. B. Levy, Activities of daily living. USA: StatPearls Publishing, 2021. [44] G. Sideridis, A. Saddaawi, and K. Al-Harbi, “Internal consistency reliability in measurement: Aggregate and multilevel approaches,” Journal of Modern Applied Statistical Methods, vol. 17, no. 1, Jun. 2018, doi: 10.22237/jmasm/1530027194. [45] L. A. Clark and D. Watson, “Constructing validity: Basic issues in objective scale development,” in Methodological issues and strategies in clinical research (4th ed.)., American Psychological Association, pp. 187–203. [46] Knoema, “Malaysia - Total population aged 60 years and over.” https://knoema.com/atlas/Malaysia/topics/Demographics/Age/Population-aged-60-years (accessed Aug. 27, 2022).
(1)
1. Whitmore A, Krishnaswami CS (1912) An account of the dis- covery of a hitherto undescribed disease among the population of Rangoon. Indian Med Gazette 97:262–267 2. 3. 4. 5. 6. 7. 8. 9. 10. Kingsley PV, Leader M, Nagodawithana NS, Tipre M, Sathiaku- mar N (2016) Melioidosis in Malaysia: a review of case reports. PLoS Negl Trop Dis 10(12):e0005182 Menon R et al (2021) Risk Factors for Mortality in Melioidosis: a single-centre, 10-year retrospective cohort study”. Sci World J 8154810(5):2021 Nathan S, Chieng S, Kingsley PV et al (2018) Melioidosis in Malaysia: incidence, clinical challenges, and advances in under- standing pathogenesis. Trop Med Infect Dis. 3(1):25 Puthucheary SD (2009) Melioidosis in Malaysia. Med J Malaysia 64(4):266–274 Lim RSM, Flatman S, Dahm MC (2013) (2013) Sinonasal Meli- oidosis in a returned traveller presenting with nasal cellulitis and sinusitis". Case Rep Otolaryngol 920352(3):2013 Saleh KA, Razif GBS (2011) Nasal NK/T cell lymphoma mim- icking an latrogenic lateral nasal wall infection: a diagnostic dilemma. Med J Malaysia 66(2):160–161 Steele TO, Buniel MC, Mace JC, El Rassi E, Smith TL (2016) Lymphoma of the nasal cavity and paranasal sinuses: a case series. Am J Rhinol Allergy 30(5):335–339 Peng KA, Kita AE, Suh JD, Bhuta SM, Wang MB (2014) Sinona- sal lymphoma: case series and review of the literature. Int Forum Allergy Rhinol 4(8):670–674 Barman P, Sidhwa H, Shirkhande PA (2011) Melioidosis: a case report. J Glob Infect Dis 3(2):183–186
(1)
1. WHO. World Malaria Report 2019. Geneva: World Health Organization. https:// www. who. int/ publi catio ns/i/ item/ 97892 41565 721. 2. WHO. World Malaria Report 2018. Geneva: World Health Organization. https:// www. who. int/ malar ia/ publi catio ns/ world- malar ia- report- 2018/ en/. 3. WHO. The E-2020 initiative of 21 malaria eliminating countries 2019 progress report. Geneva: World Health Organization. https:// www. who. int/ malar ia/ publi catio ns/ atoz/e- 2020- progr ess- report- 2019/ en/. 4. Cooper DJ, Rajahram GS, William T, Jelip J, Mohammad R, Benedict J, et al. Plasmodium knowlesi malaria in Sabah, Malaysia, 2015–2017: ongoing increase in incidence despite near-elimination of the human-only Plasmodium species. Clin Infect Dis. 2020;70:361–7. 5. Rahim MAFA, Munajat MB, Idris ZM. Malaria distribution and performance of malaria diagnostic methods in Malaysia (1980–2019): a systematic review. Malar J. 2020;19:395. 6. Bedford KJA. Gombak Hospital, the Orang Asli hospital: Government healthcare for the indigenous minority of Peninsular Malaysia. Indones Malay World. 2009;37:23–44. 7. Mason R, Arifin S. The ‘Bumiputera policy’: dynamics and dilemmas. Special issues of Orang Asli. J Malaysian Stud. 2005;21:315–29. 8. Liew JWK, Mahpot R, Dzul S, Abdul Razak HA, Kamarudin M, Russell B, et al. Importance of proactive malaria case surveillance and management in Malaysia. Am J Trop Med Hyg. 2018;98:1709–13. 9. Al-Adhroey AH, Nor ZM, Al-Mekhlafi HM, Mahmud R. Opportunities and obstacles to the elimination of malaria from Peninsular Malaysia: knowledge, attitudes and practices on malaria among aboriginal and rural communities. Malar J. 2010;9:137. 10. Gurpreet K. Malaria endemicity in an Orang Asli community in Pahang. Malaysia Trop Biomed. 2009;26:57–66. 11. Norhayati M, Rohani AK, Hayati MI, Halimah AS, Sharom MY, Abidin AH, et al. Clinical features of malaria in Orang Asli population in Pos Piah. Malaysia Med J Malaysia. 2001;56:271–4. 12. Khor CS, Hassan H, Mohd-Rahim NF, Chandren JR, Nore SS, Johari J, et al. Seroprevalence of Borrelia burgdorferi among the indigenous people (Orang Asli) of Peninsular Malaysia. J Infect Dev Ctries. 2019;13:449–54. 13. Zulkifli A, Anuar AK, Athiya A, Yano A. The prevalence of malnutrition and geo-helminth infections among primary schoolchildren in rural Kelantan. Southeast Asian J Trop Med Public Health. 2000;31:339–45. 14. Masron T, Masami F, Ismail N. Orang Asli in Peninsular Malaysia: population, spatial distribution and socio-economic condition. J Ritsumeikan Soc Sci Humanit. 2013;6:75–115. 15. Koenker H, Keating J, Alilio M, Acosta A, Lynch M, Nafo-Traore F. Strategic roles for behaviour change communication in a changing malaria landscape. Malar J. 2014;13:1. 16. Anuar TS, Ghani MKA, Azreen SN, Salleh FM, Moktar N. Blastocystis infection in Malaysia: evidence of waterborne and human-to-human transmissions among the Proto-Malay, Negrito and Senoi tribes of Orang Asli. Parasit Vectors. 2013;6:40. 17. Anuar TS, Salleh FM, Moktar N. Soil-transmitted helminth infections and associated risk factors in three Orang Asli tribes in Peninsular Malaysia. Sci Rep. 2014;4:4101. 18. Elyana FN, Al-Mekhlafi HM, Ithoi I, Abdulsalam AM, Dawaki S, Nasr NA, et al. A tale of two communities: intestinal polyparasitism among Orang Asli and Malay communities in rural Terengganu. Malaysia Parasit Vectors. 2016;9:398. 19. Liu X, Yunus Y, Lu D, Aghakhanian F, Saw W-Y, Deng L, et al. Differential positive selection of malaria resistance genes in three indigenous populations of Peninsular Malaysia. Hum Genet. 2015;134:375–92. 20. Killeen GF. Characterizing, controlling and eliminating residual malaria transmission. Malar J. 2014;13:330. 21. Mathania MM, Kimera SI, Silayo RS. Knowledge and awareness of malaria and mosquito biting behaviour in selected sites within Morogoro and Dodoma regions Tanzania. Malar J. 2016;15:287. 22. Kitidamrongsuk P, Jareinpituk S, Pattanasin S, Viwatwongkasem C, Soontornpipit P, Silabutra J, et al. Determinants of impregnated net ownership and utilization in rural community on the Thai-Myanmar border in Prachuab Khiri Khan. Thailand Procedia Comput Sci. 2016;86:224–7. 23. Nyunt MH, Aye KM, Kyaw MP, Kyaw TT, Hlaing T, Oo K, et al. Challenges in universal coverage and utilization of insecticide-treated bed nets in migrant plantation workers in Myanmar. Malar J. 2014;13:211. 24. Unit Malaria. Pelan pengurusan wabak malaria 2016. Sektor Penyakit Bawaan Vektor Bahagian Kawalan Penyakit, Kementerian Kesihatan Malaysia (KKM). https:// www. moh. gov. my/ moh/ resou rces/ Pener bitan/. 25. Pan X, Kwan M-P, Yang L, Zhou S, Zuo Z, Wan B. Evaluating the accessibility of healthcare facilities using an integrated catchment area approach. Int J Environ Res Public Health. 2018;15:2051. 26. Matsumoto-Takahashi ELA, Tongol-Rivera P, Villacorte EA, Angluben RU, Jimba M, Kano S. Patient knowledge on malaria symptoms is a key to promoting universal access of patients to effective malaria treatment in Palawan, the Philippines. PLoS ONE. 2015;10:e0127858. 27. Joshi A, Banjara M. Malaria related knowledge, practices and behaviour of people in Nepal. J Vector Borne Dis. 2008;45:44. 28. Imwong M, Madmanee W, Suwannasin K, Kunasol C, Peto TJ, Tripura R, et al. Asymptomatic natural human infections with the simian malaria parasites Plasmodium cynomolgi and Plasmodium knowlesi. J Infect Dis. 2019;219:695–702. 29. Singh B, Daneshvar C. Human infections and detection of Plasmodium knowlesi. Clin Microbiol Rev. 2013;26:165–84. 30. Shearer FM, Huang Z, Weiss DJ, Wiebe A, Gibson HS, Battle KE, et al. Estimating geographical variation in the risk of zoonotic Plasmodium knowlesi infection in countries eliminating malaria. PLoS Negl Trop Dis. 2016;10:e0004915. 31. Fornace K, Alexander N, Brock P, Grigg M, Murphy A, William T, et al. Association between landscape factors and spatial patterns of Plasmodium knowlesi infections in Sabah. Malaysia Emerg Infect Dis. 2015;22:201–8. 32. Ta TH, Hisam S, Lanza M, Jiram AI, Ismail N, Rubio JM. First case of a naturally acquired human infection with Plasmodium cynomolgi. Malar J. 2014;13:68. 33. Grignard L, Shah S, Chua TH, William T, Drakeley CJ, Fornace KM. Natural human infections with Plasmodium cynomolgi and other malaria species in an elimination setting in Sabah. Malaysia J Infect Dis. 2019;220:1946–9. 34. Nada Raja T, Hu T, Kadir K, Mohamad D, Rosli N, Wong L, et al. Naturally acquired human Plasmodium cynomolgi and Plasmodium knowlesi infections. Malaysian Borneo Emerg Infect Dis. 2020;26:1801–9. 35. Hocking S, Divis PCS, Kadir K, Singh B, Conway D. Population genomic structure and recent evolution of Plasmodium knowlesi. Peninsular Malaysia Emerg Infect Dis. 2020;26:1749. 36. Lau Y-L, Lee W-C, Chen J, Zhong Z, Jian J, Amir A, et al. Draft genomes of Anopheles cracens and Anopheles maculatus: comparison of simian malaria and human malaria vectors in Peninsular Malaysia. PLoS ONE. 2016;11:e0157893.
(1)
1. World Health Organization declares global emergency_ A review of the 2019 novel coronavirus (COVID-19) _ Elsevier Enhanced Reader. 2. Abdullah MT, Lola MS, Edinur HA, Safuan S, Mat NFC, Khalil I, et al. Framework Of Measures For Covid-19 Pandemic In Malaysia: Threats, Initiatives And Opportunities. J Sustain Sci Manag. 2022 Mar 1;17(3):8–18. 3. Pokhrel S, Chhetri R. A Literature Review on Impact of COVID-19 Pandemic on Teaching and Learning. Higher Education for the Future. 2021 Jan 1;8(1):133–41. 4. Shahirah binti Zakaria A, Hayat Adnan W. Youth Awareness: A Survey on Mobile Gaming Addiction Concerning Physical Health Performance on Young Adults in Malaysia. Vol. 15, Journal of Media and Information Warfare. 2022. 5. Nesi J, Choukas-Bradley S, Prinstein MJ. Transformation of Adolescent Peer Relations in the Social Media Context: Part 1—A Theoretical Framework and Application to Dyadic Peer Relationships. Clin Child Fam Psychol Rev [Internet]. 2018;21(3):267–94. Available from: https://doi.org/10.1007/s10567-018-0261-x 6. Choukas-Bradley S, Nesi J, Widman L, Galla BM. The Appearance-Related Social Media Consciousness Scale: Development and validation with adolescents. Body Image [Internet]. 2020;33:164–74. Available from: https://doi.org/10.1016/j.bodyim.2020.02.017 7. Ali I, Danaee M, Firdaus A. Social networking sites usage & needs scale (Snsun): A new instrument for measuring social networking sites’ usage patterns and needs. Journal of Information and Telecommunication. 2020;4(2):151–74. 8. Beverly K. Mendelson MJM& DRW. Body- Esteem Scale for Adolescents and Adults. J Pers Assess. 2001;76(1):90–106. 9. Ellis WE, Dumas TM, Forbes LM. Physically isolated but socially connected: Psychological adjustment and stress among adolescents during the initial COVID-19 crisis. Canadian Journal of Behavioural Science. 2020 Jul 1;52(3):177–87. 10. Fernandes B, Biswas UN, Tan-Mansukhani R, Vallejo A, Essau CA. The impact of COVID-19 lockdown on internet use and escapism in adolescents. Revista de Psicologia Clinica con Ninos y Adolescentes. 2020;7(3):59–65. 11. Vall-Roqué H, Andrés A, Saldaña C. The impact of COVID-19 lockdown on social network sites use, body image disturbances and self-esteem among adolescent and young women. Prog Neuropsychopharmacol Biol Psychiatry. 2021 Aug 30;110:110293. 12. Pharamita WF, Dariyo A. The Correlation Between the Use of Instagram and Female Adolescents’ Body Image. Proceedings of the International Conference on Economics, Business, Social, and Humanities (ICEBSH 2021). 2021;570(Icebsh):1053–8. 13. Lessard LM, Puhl RM. Adolescents’ exposure to and experiences of weight stigma during the COVID-19 pandemic. J Pediatr Psychol. 2021;46(8):950–9.
(1)
1. World Health Organization. Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV). 2020. 2. Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020;24:91-8. 3. Ministry of Health M. Situasi terkini COVID-19 Malaysia. 2020. 4. Prime Minister’s Office M. The Prime Minister’s Special Message on COVID-19 – 16 March 2020. 2020. 5. Pfefferbaum B, North CS. Mental Health and the Covid-19 Pandemic. N Engl J Med. 2020 Aug 6;383(6):510-512. 6. Browning MHEM, Larson LR, Sharaievska I, Rigolon A, McAnirlin O, Mullenbach L, et al. Psychological impacts from COVID-19 among university students: Risk factors across seven states in the United States. PLoS One. 2021 Jan 7;16(1):e0245327. 7. Lakhani HV, Pillai SS, Zehra M, Sharma I, Sodhi K. Systematic Review of Clinical Insights into Novel Coronavirus (CoVID-19) Pandemic: Persisting Challenges in U.S. Rural Population. Int J Environ Res Public Health. 2020 Jun 15;17(12):4279. 8. Frasquilho D, Matos MG, Salonna F, Guerreiro D, Storti CC, Gaspar T, et al. Mental health outcomes in times of economic recession: a systematic literature review. BMC Public Health. 2016 Feb 3;16:115. 9. Sultana MS, Khan AH, Hossain S, Islam T, Hasan MT, Ahmed HU, et al. The Association Between Financial Hardship and Mental Health Difficulties Among Adult Wage Earners During the COVID-19 Pandemic in Bangladesh: Findings From a Cross-Sectional Analysis. Front Psychiatry. 2021 Sep 20;12:635884. 10. Marjanovic Z, Fiksenbaum L, Greenglass E. Financial threat correlates with acute economic hardship and behavioral intentions that can improve one’s personal finances and health. J Behav Exp Econ. 2018;77:151-7. 11. Mamun MA, Akter S, Hossain I, Faisal MTH, Rahman MA, Arefin A, et al. Financial threat, hardship and distress predict depression, anxiety and stress among the unemployed youths: A Bangladeshi multi-city study. J Affect Disord. 2020 Nov 1;276:1149-58. 12. Ministry of Health Malaysia. Malaysian Mental Healthcare Performance: Technical report 2016. Putrajaya, Kuala Lumpur: Malaysian Healthcare Performance Unit; 2017. 13. Lovibond. Depression Anxiety Stress Scale (DASS). 1995. 14. Ialongo C. Understanding the effect size and its measures. Biochemia Medica 2016;26(2):150-63. 15. IBM SPSS Statistics for Windows [computer program]. Version 27. Armonk, NY, USA: IBM SPSS; 2020. 16. Perveen A, Hamzah H, Othamn A, Ramlee F. Prevalence of Anxiety, Stress, Depression among Malaysian Adults during COVID-19 Pandemic Movement Control Order Corresponding Author Citation Article Cycle. Indian J Comm Health. 2020;32:579-585. 17. Wang GY, Tang SF. Perceived psychosocial health and its sociodemographic correlates in times of the COVID-19 pandemic: a community-based online study in China. Infect Dis Poverty. 2020;9(1):148. 18. Wang J, Yuan B, Li Z, Wang Z. Evaluation of Public Health Emergency Management in China: A Systematic Review. Int J Environ Res Public Health. 2019;16(18):3478. 19. Shi L, Lu ZA, Que JY, Huang XL, Liu L, Ran MS, et al. Prevalence of and Risk Factors Associated With Mental Health Symptoms Among the General Population in China During the Coronavirus Disease 2019 Pandemic. JAMA Netw Open. 2020 Jul 1;3(7):e2014053. 20. Zhang Y, Chen YP, Wang J, Deng Y, Peng D, Zhao L. Anxiety Status and Influencing Factors of Rural Residents in Hunan During the Coronavirus Disease 2019 Epidemic: A Web-Based Cross-Sectional Survey. Front Psychiatry. 2020 Nov 24;11:564745. 21. Department of Statistics Malaysia. Department of Statistics Malaysia Official Portal; 2020. 22. Panchal N, Kamal R, Cox C, Garfield R. The Implications of COVID-19 for Mental Health and Substance Use. USA: Kaiser Family Foundation,; 2021. 23. Zivin K, Paczkowski M, Galea S. Economic downturns and population mental health: research findings, gaps, challenges and priorities. Psychol Med. 2011;41(7):1343-1348. 24. University of Oxford. COVID-19 inequality: poorest workers hit by worse outcomes: University of Oxford,; 2020. 25. Fitzgerald DA, Wong GWK. COVID-19: A tale of two pandemics across the Asia Pacific region. Paediatr Respir Rev. 2020 Sep;35:75-80. 26. Son C, Hegde S, Smith A, Wang X, Sasangohar F. Effects of COVID-19 on College Students’ Mental Health in the United States: Interview Survey Study. J Med Internet Res. 2020 Sep 3;22(9):e21279. 27. Mirowsky J, Ross CE. Age and the effect of economic hardship on depression. J Health Soc Behav. 2001 Jun;42(2):132-50. PMID: 11467249. 28. Alnazly E, Khraisat OM, Al-Bashaireh AM, Bryant CL. Anxiety, depression, stress, fear and social support during COVID-19 pandemic among Jordanian healthcare workers. PLoS One. 2021 Mar 12;16(3):e0247679. 29. Bell DNF, Blanchflower DG. Young people and the Great Recession. Oxford Review of Economic Policy. 2011;27(2):241-67. 30. Ahmad A, Rahman I, Agarwal M. Factors Influencing Mental Health During Covid-19 Outbreak: An Exploratory Survey Among Indian Population. medRxiv. 2020:2020.2005.2003.20081380. 31. Brooks SK, Webster RK, Smith LE, Woodland L, Wessely S, Greenberg N, et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. The Lancet. 2020;395(10227):912-920. 32. Maideen SFK, Sidik SM, Rampal L, Mukhtar F. Prevalence, Associated Factors and Predictors of Depression among Adults in the Community of Selangor, Malaysia. PLoS One. 2014;9(4):e95395. 33. Wilson JM, Lee J, Fitzgerald HN, Oosterhoff B, Sevi B, Shook NJ. Job Insecurity and Financial Concern During the COVID-19 Pandemic Are Associated With Worse Mental Health. J Occup Environ Med. 2020 Sep;62(9):686-91.
(1)
1. World Health Organization (WHO) Coronavirus (COVID-19) Dashboard, https://covid19.who.int/. Last Accessed 04 Aug 2021 2. Pung R, Chiew CJ, Young BE, Chin S, Chen MI et al (2020) Investigation of three clusters of COVID-19 in Singapore: implications for surveillance and response measures. The Lancet 395(10229):1039–1046 3. Tang KHD (2020) Movement control as an effective measure against Covid-19 spread in Malaysia: an overview. J Public Health 17–20 4. Crisis Preparedness & Response Centre (CPRC) Ministry of Health Malaysia, https://covid-19.moh.gov.my/. Last Accessed 06 Aug 2021 5. Fatima M,O’Keefe KJ,WeiW, Arshad S, GruebnerO(2021) Geospatial analysis ofCOVID-19: a scoping review. Int J Environ Res Public Health 18(5):2336 6. Franch-Pardo I, Napoletano BM, Rosete-Verges F, Billa L (2020) Spatial analysis and GIS in the study of COVID-19. a review. Sci Total Environ 739:140033 7. Adekunle IA, Onanuga AT, Akinola OO, Ogunbanjo OW (2020) Modelling spatial variations of coronavirus disease (COVID-19) in Africa. Sci Total Environ 729:138998 8. Oyedotun TDT, Moonsammy S (2020) Spatiotemporal variation of COVID-19 and its spread in South America: a rapid assessment. Ann Am Assoc Geogr 1–12 9. Gayawan E et al. (2020) The spatio-temporal epidemic dynamics of COVID-19 outbreak in Africa. Epidemiol Infect 148 10. Amdaoud M, Arcuri G, Levratto N (2021) Are regions equal in adversity? A spatial analysis of spread and dynamics of COVID-19 in Europe. Eur J Health Econ 1–14 11. Giuliani D, Dickson MM, Espa G, Santi F (2020) Modelling and predicting the spatio-temporal spread of COVID-19 in Italy. BMC Infect Dis 20(1):1–10 12. Guliyev H (2020) Determining the spatial effects of COVID-19 using the spatial panel data model. Spat Statistics 38:100443 13. Kang D, Choi H, Kim JH, Choi J (2020) Spatial epidemic dynamics of the COVID-19 outbreak in China. Int J Infect Dis 94:96–102 14. Sarkodie SA, Owusu PA (2020) Investigating the cases of novel coronavirus disease (COVID-19) in China using dynamic statistical techniques. Heliyon 6(4):e03747 15. Mollalo A, Rivera KM, Vahabi N (2021) Spatial statistical analysis of pre-existing mortalities of 20 diseases with COVID-19 mortalities in the continental United States. Sustain Cities Soc 67:102738 16. XiongY, WangY, Chen F, ZhuM(2020) Spatial statistics and influencing factors of the COVID-19 epidemic at both prefecture and county levels in Hubei Province, China. Int J Environ Res Public Health 17(11):3903 17. Sarkar SK, Ekram KMM, Das PC (2021) Spatial modeling of COVID-19 transmission in Bangladesh. Spat Inf Res 1–12 18. Arauzo-Carod JM (2021) A first insight about spatial dimension of COVID-19: analysis at municipality level. J Public Health 43(1):98–106 19. Raymundo CE, Oliveira MC, Eleuterio TDA, André SR, da Silva, MG, Queiroz ERDS, Medronho RDA (2021) Spatial analysis of COVID-19 incidence and the sociodemographic context in Brazil. Plos One 16(3):e0247794 20. Dutta I, Basu T, Das A (2021) Spatial analysis of COVID-19 incidence and its determinants using spatial modeling: a study on India. Environ Challenges 4:100096 21. YahyaMSS, Safian EEM, Burhan B (2020) The trend distribution and temporal pattern analysis of COVID-19 pandemic using GIS framework in Malaysia. AIJR Prepr 22. Faziera YN, Elizabeth EA, Danggat C, Tarmiji M (2020) Coronavirus (COVID-19): density risk mapping using population and housing Census of Malaysia 2010. GEOGRAFI 8(2):21–47 23. Ullah S, Nor NHM, Daud H, Zainuddin N, Gandapur MSJ, Ali I, Khalil A (2020) Spatial cluster analysis of COVID-19 in Malaysia (Mar-Sep, 2020). Geospatial Health 16(1) 24. Rendana M, Idris WMR, Rahim SA (2021) Spatial distribution of COVID-19 cases, epidemic spread rate, spatial pattern, and its correlation with meteorological factors during the first to the second waves. J Infect Publ Health 25. Department of Statistics Malaysia Homepage, https://www.mycensus.gov.my/. Last Accessed 06 Aug 2021 26. Bivand R, Millo G, Piras G (2021) A review of software for spatial econometrics in R. Mathematics 9(11):1276 27. Edward C (2021) Pasai Cluster—largest Covid-19 cluster in Sarawak to date comes to an end. The Borneo Post 28. Piras G (2014) Impact estimates for static spatial panel data models in R. Lett Spat Resour Sci 7(3):213–223
(1)
1. World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard. Available from: https://covid19.who.int/?gclid=EAIaIQobChMI2_CM6eDZ6gIVghh9Ch3nDQm1EAAYASAAEgLqwPD_BwE. Accessed 15 Feb 2021. 2. World Health Organization. COVID-19 Situation in WHO Western Pacific Region. Available from: https://www.who.int/westernpacific/emergencies/covid-19/situation-reports. Accessed 15 Feb 2021. 3. Chakraborty C, Sharma A, Bhattacharya M, Sharma G, Lee SS. The 2019 novel coronavirus disease (COVID-19) pandemic: a zoonotic prospective. Asian Pac J Trop Med. 2020;13(6):242–6. https://doi.org/10.4103/1995-7645.281613. CAS Article Google Scholar 4. Chakraborty C, Sharma R, Sharma G, Bhattacharya M. Extensive partnership, collaboration, and teamwork is required to stop the COVID-19 outbreak. Arch Med Res. 2020;51(7):728–30. https://doi.org/10.1016/j.arcmed.2020.05.021. CAS Article PubMed PubMed Central Google Scholar 5. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(February 15):497–506. https://doi.org/10.1016/S0140-6736(20)30183-5. CAS Article PubMed PubMed Central Google Scholar 6. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–20. https://doi.org/10.1056/NEJMoa2002032. CAS Article Google Scholar 7. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–13 Available from: https://doi.org/10.1016/S0140-6736(20)30211-7. CAS Article Google Scholar 8. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020;383(27):2603–15. https://doi.org/10.1056/NEJMoa2034577. CAS Article PubMed PubMed Central Google Scholar 9. Koven S. Emergency Use Authorization of Covid Vaccines-Safety and Efficacy Follow-up Considerations. N Engl J Med. 2020;393(19):e107(1–3). Available from: nejm.org 10. Ledford H, Cyranoski D, Van Noorden R. The UK has approved a COVID vaccine - here’s what scientists now want to know. Nature. 2020;588(7837):205–6. https://doi.org/10.1038/d41586-020-03441-8. CAS Article PubMed Google Scholar 11. Cohen J. First vaccine may stymie hunt for better ones. Science (80- ). 2020;23(370):389–90. Article Google Scholar 12. No, we are not paying 20 times more, says Khairy. Available from: https://www.freemalaysiatoday.com/category/nation/2020/12/21/no-we-are-not-paying-20-times-more-says-khairy/. Accessed 3 Jan 2021. 13. Malik AA, McFadden SAM, Elharake J, Omer SB. Determinants of COVID-19 vaccine acceptance in the US. EClinicalMedicine. 2020;26:100495 Available from: https://doi.org/10.1016/j.eclinm.2020.100495. Article Google Scholar 14. Lazarus J V., Ratzan SC, Palayew A, Gostin LO, Larson HJ, Rabin K, et al. A global survey of potential acceptance of a COVID-19 vaccine. Nat Med. 2020; Available from: https://doi.org/10.1038/s41591-020-1124-9 15. Harapan H, Wagner AL, Yufika A, Winardi W, Anwar S, Gan AK, et al. Acceptance of a COVID-19 vaccine in Southeast Asia: a cross-sectional study in Indonesia. Front Public Heal. 2020;8(July):1–8. Google Scholar 16. Wang J, Jing R, Lai X, Zhang H, Lyu Y, Knoll MD, et al. Acceptance of covid-19 vaccination during the covid-19 pandemic in China. Vaccines. 2020;8(482):1–14. Google Scholar 17. Neumann-Böhme S, Varghese NE, Sabat I, Barros PP, Brouwer W, van Exel J, et al. Once we have it, will we use it? A European survey on willingness to be vaccinated against COVID-19. Eur J Heal Econ. 2020;21(7):977–82 Available from: https://doi.org/10.1007/s10198-020-01208-6. Article Google Scholar 18. Al-Mohaithef M, Padhi BK. Determinants of COVID-19 vaccine acceptance in Saudi Arabia: a web-based National Survey. J Multidiscip Healthc. 2020;13:1657–63. https://doi.org/10.2147/JMDH.S276771. Article PubMed PubMed Central Google Scholar 19. Echoru I, Ajambo PD, Bukenya EM. Acceptance and Risk Perception of COVID-19 Vaccine in Uganda: A Cross Sectional Study in Western Uganda. Res Sq. 2020;1–11. Available from: https://doi.org/10.21203/rs.3.rs-78780/v1 20. Robertson E, Reeve KS, Niedzwiedz CL, Moore J, Blake M, Green M, et al. Predictors of COVID-19 vaccine hesitancy in the UK household longitudinal study. Brain Behav Immun. 2021;94(January):41–50 Available from: https://doi.org/10.1016/j.bbi.2021.03.008. CAS Article Google Scholar 21. Khubchandani J, Sharma S, Price JH, Wiblishauser MJ, Sharma M, Webb FJ. COVID-19 vaccination hesitancy in the United States: a rapid National Assessment. J Community Health. 2021;46(2):270–7. Available from: https://doi.org/10.1007/s10900-020-00958-x. 22. Musa AF, Soni T, Cheong XP, Bin NR. Vaccine hesitancy among parents in Kuala Lumpur: a single center study. F1000Research. 2020;8(September):1653. Google Scholar 23. Funk C, Tyson A. Intent to Get a COVID-19 Vaccine Rises to 60% as Confidence in Research and Development Process Increases. Pew Res Cent. 2020;(December):1–29. Available from: https://www.pewresearch.org/science/2020/12/03/intent-to-get-a-covid-19-vaccine-rises-to-60-as-confidence-in-research-and-development-process-increases/ 24. June LFW, Leong CT, Teh HS, Woon YL.[Internet]2020. Factors influencing acceptance of COVID-19 vaccination among Malaysian adults. https://doi.org/10.5281/zenodo.4019910. 25. Kementerian Kesihatan Malaysia. KKMalaysia on Twitter:"Hasil tinjauan vaksin #COVID19: Terima atau tolak?. Available from: https://twitter.com/kkmputrajaya/status/1344580831206023169?lang=en. Accessed 31 Dec 2020. 26. Dodd RH, Cvejic E, Bonner C, Pickles K, McCaffery KJ, Ayre J, et al. Willingness to vaccinate against COVID-19 in Australia. Lancet Infect Dis. 2021;21(3):318–9. https://doi.org/10.1016/S1473-3099(20)30559-4. Article PubMed Google Scholar 27. M Anderson R, Vegvari C, Truscott J, S Collyer B. Challenges in creating herd immunity to SARS-CoV-2 infection by mass vaccination. Lancet. 2020;396(November):1614–1616, DOI: https://doi.org/10.1016/S0140-6736(20)32318-7. 28. World Health Organization. Coronavirus disease (COVID-19): Herd immunity, lockdowns and COVID-19. 2020. Available from: https://www.who.int/news-room/q-a-detail/herd-immunity-lockdowns-and-covid-19 29. Experts: Majority ready to accept Covid-19 vaccine but more awareness needed. Available from: https://www.thestar.com.my/news/nation/2021/01/08/experts-majority-ready-to-accept-covid-19-vaccine-but-more-awareness-needed. Accessed 12 Jan 2012. 30. Megget K. Even covid-19 can’t kill the anti-vaccination movement. BMJ. 2020;369(June):1–2 Available from: https://doi.org/10.1136/bmj.m2184. Google Scholar 31. World Health Organization. Status of COVID-19 Vaccines within WHO EUL/PQ evaluation process. 2021. Available from: https://extranet.who.int/pqweb/sites/default/files/documents/Status_COVID_VAX_20Jan2021_v2.pdf. Accessed 23 Jan 2021. 32. Centers for Disease Control and Prevention. What to Expect after Getting a COVID-19 Vaccine. 2021. Google Scholar 33. Taib WRW, Yusoff NAM, Hussin TMAR, Ahmad A. Issues in vaccine hesitancy in Malaysia: a countering approach. J Biomed Clin Sci. 2017;2(1):42–6 Available from: http://apps.amdi.usm.my/journal/. Google Scholar 34. Burki T. The online anti-vaccine movement in the age of COVID-19. Lancet Digit Heal [Internet]. 2020;2(10):e504–5 Available from: https://doi.org/10.1016/S2589-7500(20)30227-2. Article Google Scholar 35. Douglas KM. COVID-19 conspiracy theories. Gr Process Intergr Relations. 2021;24(2):270–5. https://doi.org/10.1177/1368430220982068. Article Google Scholar 36. Jolley D, Douglas KM. The effects of anti-vaccine conspiracy theories on vaccination intentions. PLoS One. 2014;9(2):e89177. https://doi.org/10.1371/journal.pone.0089177. CAS Article PubMed PubMed Central Google Scholar 37. Khan YH, Mallhi TH, Alotaibi NH, Alzarea AI, Alanazi AS, Tanveer N, et al. Threat of COVID-19 vaccine hesitancy in Pakistan: the need for measures to neutralize misleading narratives. Am J Trop Med Hyg. 2020;103(2):603–4. https://doi.org/10.4269/ajtmh.20-0654. Article PubMed PubMed Central Google Scholar 38. World Health Organization. Coronavirus (COVID-19) in Malaysia. Information for the public. Available from: https://www.who.int/malaysia/emergencies/covid-19-in-malaysia/information. Accessed 15 Jan 2021. 39. Centers for Disease Control and Prevention. COVID-19. Available from: https://www.cdc.gov/coronavirus/2019-ncov/index.html. Accessed 15 Jan 2021. 40. Kementerian Kesihatan Malaysia. COVID-19 Malaysia. Available from: http://covid-19.moh.gov.my/. Accessed 15 Jan 2021.
(1)
1. World Health Organization (WHO). Pertussis, update 2017. In: The immonological basis for Immunization series [Internet]. 2017 [cited 2018 Nov 17]. (Module 4). Available from: http://apps.who.int/iris/handle/10665/259388 2. Haviari S, Bénet T, Saadatian-Elahi M, André P, Loulergue P, Vanhems P. Vaccination of healthcare workers: A review. Hum Vaccines Immunother. 2015 Nov 2;11(11):2522–37. 3. National Immunisation Advisory Committee. Pertussis. In: Immunisation Guideline [Internet].2016 [cited 2018 Nov 17]. (Chapter 15). Available from: https://www.hse.ie/eng/health/immunisation/hcpinfo/guidelines/ 4. Pertussis vaccines: WHO position paper, August 2015—Recommendations. Vaccine. 2016 Mar;34(12):1423–5. 5. Cunegundes KSA, de Moraes-Pinto MI, Takahashi TN, Kuramoto DAB, Weckx LY. Bordetella pertussis infection in paediatric healthcare workers. J Hosp Infect. 2015 Jun;90(2):163–6. 6. Liang JL, Tiwari T, Moro P, Messonnier NE, Reingold A, Sawyer M, et al. Prevention of Pertussis, Tetanus, and Diphtheria with Vaccines in the United States: Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2018 Apr 27;67(2):1–44. 7. Lu P, Graitcer SB, O’Halloran A, Liang JL. Tetanus, diphtheria and acellular pertussis (Tdap) vaccination among healthcare personnel—United States, 2011. Vaccine. 2014 Jan;32(5):572–8. 8. Hope K, Butler M, Massey PD, Cashman P, Durrheim DN, Stephenson J, et al. Pertussis vaccination in Child Care Workers: room for improvement in coverage, policy and practice. BMC Pediatr [Internet]. 2012 Dec [cited 2018 Oct 1];12(1). Available from: http://bmcpediatr.biomedcentral.com/articles/10.1186/1471-2431-12-98 9. Paranthaman K, McCarthy N, Rew V, van Zoelen S, Cockerill L. Pertussis vaccination for healthcare workers: staff attitudes and perceptions associated with high coverage vaccination programmes in England. Public Health. 2016 Aug;137:196–9. 10. National Safety Council. Risk Perception: Theories, Strategies and next steps [Internet]. Campbell Institute; 2014 [cited 2018 Nov 17]. Available from: www.thecampbellinstitute.org 11. Ferrer RA, Klein WM. Risk perceptions and health behavior. Curr Opin Psychol. 2015 Oct;5:85–9. 12. Rogers EM. Diffusion of innovations. 3rd ed. New York : London: Free Press ; Collier Macmillan; 1983. 453 p. 13. Xiao H, Li S, Chen X, Yu B, Gao M, Yan H, et al. Protection Motivation Theory in Predicting Intention to Engage in Protective Behaviors against Schistosomiasis among Middle School Students in Rural China. Hotez PJ, editor. PLoS Negl Trop Dis. 2014 Oct 16;8(10):e3246. 14. MacDonell K. A Protection Motivation Theory-Based Scale for Tobacco Research among Chinese Youth. J Addict Res Ther [Internet]. 2013 [cited 2018 Nov 17];04(03). Available from: https://www.omicsonline.org/a-protection-motivation-theory-based-scale-for-tobacco-research-among-chinese-youth-2155-6105.1000154.php?aid=15632 15. Taber KS. The Use of Cronbach’s Alpha When Developing and Reporting Research Instruments in Science Education. Res Sci Educ. 2018 Dec;48(6):1273–96. 16. Lawrence S. Meyers, Glenn C. Gamst, A.J.Guarino. Performing Data Analysis Using IBM SPSS. John Wiley & Sons; 2013. 17. Clark DA, Bowles RP. Model Fit and Item Factor Analysis: Overfactoring, Underfactoring, and a Program to Guide Interpretation. Multivar Behav Res. 2018 Jul 4;53(4):544–58. 18. Nematollahi M, Eslami AA. Development and Validation of Social Cognitive Theory Based Questionnaire for Physical Activity to Preventing Osteoporosis (PAQ-SCT). Iran J Psychiatry Behav Sci [Internet]. 2018 Aug 1 [cited 2019 Jul 17];In Press(In Press). Available from: http://ijpsychiatrybs.com/en/articles/12662.html 19. Nabizadeh SM, Taymoori P, Hazhir MS, Shirazi M, Roshani D, Shahmoradi B. Predicting vitamin E and C consumption intentions and behaviors among factory workers based on protection motivation theory. Environ Health Prev Med [Internet]. 2018 Dec [cited 2019 Jun 24];23(1). Available from: https://environhealthprevmed.biomedcentral.com/articles/10.1186/s12199-018-0742-z
(1)
[1]W.S. Langley, G.G. Carette, V.M. Malhotra, Structural concrete incorporating high volumes of ASTM Class F fly ash, ACI Materials J86 (1989) 507–514. [2]C.S. Poon, L. Lam, Y.L. Wong, A study on high strength concrete prepared with large volumes of low calcium fly ash, submitted to Cement and Concrete Research (1999). [3]G. Carette, A. Bilodeau, R.L. Chevrier, V.M. Malhotra, Mechanical properties of concrete incorporating high volumes of fly ash from sources in the U. S., ACI Materials J 90 (1993) 535-544. [4]D.P. Bentz, E.J. Garboczi, Simulation studies of the effects of mineral admixtures on the cement paste-aggregate interfacial zone, ACI Materials J 88 (1991) 518–529. [5]C.S. Poon, L. Lam, Y.L. Wong, Effects of fly ash and silica fume on interfacial porosity, Journal of Materials in Civil Engineering ASCE 11 (1999) 197–205. [6]ASTM C 618, Standard specification for coal fly ash and raw or Calcined natural Pozzolan for use as a mineral admixture in concrete, ASTM C 618-97, Annual Book ASTM Stand.04.02 (1997) 294– 296.
(1)
[1] Yadav, Dharmendra Kumar, and I. Chakrabarty. " Effect of cooling slope casting and partial remelting treatment on microstructure and mechanical properties of A319-xMg2Si In-Situ composites." Materials Science and Engineering: A 791 (2020): 139790. https://doi.org/10.1016/j.msea.2020.139790 [2] Haga, Toshia, and Shinsuke Suzuki. "Casting of aluminum alloy ingots for thixoforming using a cooling slope." Journal of materials processing technology 118, no. 1-3 {2001): 169-172. https://doi.org/10.1016/S0924-0136(01)00888-3 [3] Tajudin, M. F. M., A. H. Ahmad, and M. M. Rashidi. "Effects of Direct Thermal Method Processing Parameters on Mechanical Properties of Semisolid A6061 Feedstock." International Journal of Automotive and Mechanical Engineering 18, no. 1 (2021): 8585-8591.https://doi.org/10.15282/ijame.18.1.2021.17.0652 [4] Zhu, Yanli, Xiaolong Xu, Junwen Zhao, and Guangzhong Hu. "Effect on microstructure and corrosion resistance of semi-solid slurry of 7A04 aluminum alloy by electromagnetic stirring." Materials Research Express 8, no. 1 (2021): 016506. https ://doi.org/10.1088/2053-1591/a bd5d7 [5] Abdelgnei, M.A. H., M. Zaidi Omar, M. J. Ghazali, M.A. Gebril, and M. N. Mohammed. "The effect of the rheocast process on the microstructure and mechanical properties of Al-5.7 Si-2Cu-0.3 Mg alloy." Jurnal Kejuruteraan 31, no. 2 {2019): 317-326. https://doi.org/10.17576/jkukm-2019-31(2)-17 [6] Rao, Ravipudi Venkata. "Jaya: an advanced optimization algorithm and its engineering applications." (2019): 770-780. https://doi.org/10.1007 /978-3-319-78922-4 [7] Altawabeyeh, Saed. "A Model-Driven Approach to Support Parameter Solving in Engineering Design." PhD diss.,ResearchSpace@ Auckland, 2023. [8] Ducic, Nedeljko, Srecko Manasijevic, Aleksandar Jovicic, Zarko Cojbasic, and Radomir Radisa. "Casting process improvement by the application of artificial intelligence." Applied Sciences 12, no. 7 (2022): 3264. https://doi.org/10.3390/app12073264 [9] Rao, R. Venkata, V. D. Kalyankar, and G. Waghmare. "Parameters optimization of selected casting processes using teaching-learning-based optimization algorithm." Applied Mathematical Modelling 38, no. 23 (2014): 5592-5608. https://doi.org/10.1016/j.apm.2014.04.036 [10] Brezocnik, Miran, and Uros Zuperl. "Optimization of the continuous casting process of hypoeutectoid steel grades using multiple linear regression and genetic programming-An industrial study." Metals 11, no. 6 (2021): 972. https://doi.org/10.3390/met11060972 [11] Patel GC, M., Parappagoudar Krishna, and M. B. Parappagoudar. "Modelling of squeeze casting process using design of experiments and response surface methodology." International Journal of Cast Metals Research 28, no. 3 (2015): 167-180. https://doi.org/10.1179/1743133614Y.0000000144 [12] Zheng, Kaikui, Youxi Lin, Weiping Chen, and Lei Liu. "Numerical simulation and optimization of casting process of copper alloy water-meter shell." Advances in Mechanical Engineering 12, no. 5 (2020): 1-12. https://doi.org/10.1177 /1687814020923450 [13] Esonye, C., 0. D. Onukwuli, V. C. Anadebe, J. N. 0. Ezeugo, and N. J. Ogbodo. "Application of soft-computing techniques for statistical modeling and optimization of Dyacrodes edulis seed oil extraction using polar and nonpolar solvents." Heliyon 7, no. 3 (2021). https://doi.org/10.1016/j.heliyon.2021.e06342 [14] Onifade, Moshood, Abiodun Ismail Lawal, Adeyemi Emman Aladejare, Samson Bada, and Musa Adebayo Idris. "Prediction of gross calorific value of solid fuels from their proximate analysis using soft computing and regression analysis." International Journal of Coal Preparation and Utilization 42, no. 4 (2022): 1170-1184. https://doi.org/10.1080/19392699.2019.1695605 [15] Singh, Aparajita, R. M. Singh, AR Senthil Kumar, Ashish Kumar, Subodh Hanwat, and V. K. Tripathi. "Evaluation of soft computing and regression-based techniques for the estimation of evaporation." Journal of Water and Climate Change 12, no. 1 (2021): 32-43. https://doi.org/10.2166/wcc.2019.101 [16] Khosravi, Hamed, Reza Eslami-Farsani, and Mohsen Askari-Paykani. "Modeling and optimization of cooling slope process parameters for semi-solid casting of A356 Al alloy." Transactions of Nonferrous Metals Society of China 24, no. 4 (2014): 961-968. https://doi.org/10.1016/S1003-6326(14)63149-6 [17] Manjunath, Patel, B. S. Ajith, R. Jonathan, D. S. Allan, M. Aniruddh, and M. Ashwith. "Teaching learning based optimization of squeeze casting process for quality castings." In /OP Conference Series. Materials Science and Engineering {Online), vol. 376, no. 1. 2018. https://doi.org/10.1088/1757-899X/376/1/012112 [18] Sada, Samuel 0. "The use of multi-objective genetic algorithm (MOGA) in optimizing and predicting weld quality." Cogent Engineering 7, no. 1 (2020): 1741310. https://doi.org/10.1080/23311916.2020.1741310 [19] Patel, GC Manjunath, P. Krishna, P. R. Vundavilli, and M. B. Parappagoudar. " Multi-objective optimization of squeeze casting process using genetic algorithm and particle swarm optimization." Archives of Foundry Engineering 16 (2016). https:ljdoi.org/10.1515/afe-2016-0073 [20] Tanvi r, Mahamudul Hasan, Afzal Hussain, MM Towfiqur Rahman, Sakib lshraq, Khandoker Zishan, SK Tashowar Tanzim Rahul, and Mohammad Ahsan Habib. "Multi-objective optimization of turning operation of stainless steel using a hybrid whale optimization algorithm." Journal of manufacturing and materials processing 4, no. 3 (2020): 64. https://doi.org/10.3390/jmmp4030064 [21] Feng, Yixiong, Runjie Lu, Yicong Gao, Hao Zheng, Yushan Wang, and Wenjia Mo. "Multi-objective optimization of VBHF in sheet metal deep-drawing using Kriging, MOABC, and set pair analysis." The international journal of advanced manufacturing technology 96 (2018): 3127-3138. https:ljdoi.org/10.1007 /s00l 70-017-1506-4 [22] Musa, Zulkifli, Zuwairie Ibrahim, Mohd Ibrahim Shapiai, and Yusei Tsuboi. "Cubature Kalman optimizer: a novel metaheuristic algorithm for solving numerical optimization problems." Journal of Advanced Research in Applied Sciences and Engineering Technology 33, no. 1 (2023): 333-355. https://doi.org/10.37934/araset.33.1.333355 [23] Maddina, Suresh Babu, R. Thirunavukkarasu, and N. Karthik. "Optimization of Energy Storage Unit Size and Location in a Radial Distribution Network to Minimize Power Loss Using Firefly Algorithm." Journal of Advanced Research in Applied Sciences and Engineering Technology 31, no. 3 (2023): 25-42. https://doi.org/10.37934/araset.31.3.2542 [24] Hardhienata, Medria Kusuma Dewi, Karlisa Priandana, Daffa Rangga Putra, Mamiek Sriatun, Agus Buono, and Raihani Mohamed. "Modification of the Ant Colony Optimization Algorithm for Solving Multi-Agent Task Allocation Problem in Agricultural Application." Journal of Advanced Research in Applied Sciences and Engineering Technology 34, no. 1 (2024): 90-105. https://doi.org/10.37934/araset.34.1.90105 [25] Mane, S., M. Narsingrao, and V. Patil. "A many-objective Jaya algorithm for many-objective optimization problems." Decision science letters 7, no. 4 (2018): 567-582. https://doi.org/10.5267 /j.dsl.2017.11.001 [26] Rao, R. Venkata, V. D. Kalyankar, and G. Waghmare. "Parameters optimization of selected casting processes using teaching-learning-based optimization algorithm." Applied Mathematical Modelling 38, no. 23 (2014): 5592-5608. https://doi.org/10.1016/j.apm.2014.04.036 [27] Hanumantha Rao, D., G. R. N. Tagore, and G. Ranga Janardhana. "Evolution of Artificial Neural Network (ANN) model for predicting secondary dendrite arm spacing in aluminium alloy casting." Journal of the Brazilian Society of Mechanical Sciences and Engineering 32 (2010): 276-281. https://doi.org/10.1590/S1678-58782010000300011
(1)
[1] Yadegaridehkordi, Elaheh, Liyana Shuib, Mehrbakhsh Nilashi, and Shahla Asadi. "Decision to adopt online collaborative learning tools in higher education: A case of top Malaysian universities." Education and Information Technologies 24 (2019): 79-102. https://doi.org/10.1007/s10639-018-9761-z. [2] Jiang, Lianjiang, and Shulin Yu. "Understanding changes in EFL teachers’ feedback practice during COVID-19: Implications for teacher feedback literacy at a time of crisis." The Asia-Pacific Education Researcher 30, no. 6 (2021):509-518. https://doi.org/10.1007/s40299-021-00583-9 [3] Jie, C. Y., and N. Mat Ali. "COVID-19: What are the challenges of online learning? A literature review." International Journal of Advanced Research in Future Ready Learning and Education 23, no. 1 (2021): 23-29. [4] Irons, Alastair, and Sam Elkington. Enhancing learning through formative assessment and feedback. Routledge, 2021. https://doi.org/10.4324/9781138610514. [5] Kechik, Tuan Siti Mastazameatun Long Tuan. "Factors of Technologies-Reliant for ‘Pengajian Malaysia’Subject in Online Learning (OLL): A Conceptual Review." International Journal of Advanced Research in Future Ready Learning and Education 29, no. 1 (2022): 32-40. [6] Haughney, Kathryn, Shawnee Wakeman, and Laura Hart. "Quality of feedback in higher education: A review of literature." Education Sciences 10, no. 3 (2020): 60. https://doi.org/10.3390/educsci10030060. [7] Nicol, David, Avril Thomson, and Caroline Breslin. "Rethinking feedback practices in higher education: a peer review perspective." Assessment & evaluation in higher education 39, no. 1 (2014): 102-122.https://doi.org/10.1080/02602938.2013.795518. [8] Tan, Fiona DH, Peter R. Whipp, Marylene Gagne, and Niels Van Quaquebeke. "Expert teacher perceptions of two-way feedback interaction." Teaching and Teacher Education 87 (2020): 102930.https://doi.org/10.1016/j.tate.2019.102930. [9] Barboza, Esdras Jorge Santos, and Márcia Terra da Silva. "The importance of timely feedback to interactivity in online education." In Advances in Production Management Systems. Initiatives for a Sustainable World: IFIP WG 5.7 International Conference, APMS 2016, Iguassu Falls, Brazil, September 3-7, 2016, Revised Selected Papers, pp. 307314. Springer International Publishing, 2016. https://doi.org/10.1007/978-3-319-51133-7_37 [10] Nor, Siti Rohani Mohd, Adina Najwa Kamarudin, and Nurul Aini Jaafar. "Comparison on the Student’s Performances during Physical and Online Learning in Financial Mathematics Course." International Journal of Advanced Research in Future Ready Learning and Education 28, no. 1 (2022): 1-8. [11] Bajaj, JAGMINDER KAUR, K. U. L. B. I. R. Kaur, R. A. J. I. V. Arora, and Satinder Jit Singh. "Introduction of feedback for better learning." Journal of Clinical and Diagnostic Research 12 (2018): 12. https://doi.org/10.7860/JCDR/2018/36744.12402. [12] Fish, Wade, Rick Lumadue, and Lee Rusty Waller. "A Technology Based Approach to Providing Quality Feedback to Students: A Paradigm Shift for the 21st Century." [13] Pitt, Edd, and Lin Norton. "‘Now that’s the feedback I want!’Students’ reactions to feedback on graded work and what they do with it." Assessment & Evaluation in Higher Education 42, no. 4 (2017): 499-516. https://doi.org/10.1080/02602938.2016.1142500. [14] Pezzino, Mario. "Online assessment, adaptive feedback and the importance of visual learning for students. The advantages, with a few caveats, of using MapleTA." International Review of Economics Education 28 (2018): 11-28. https://doi.org/10.1016/j.iree.2018.03.002. [15] Mutch, Allyson, Charlotte Young, Tamzyn Davey, and Lisa Fitzgerald. "A journey towards sustainable feedback." Assessment & Evaluation in Higher Education 43, no. 2 (2018): 248-259. https://doi.org/10.1080/02602938.2017.1332154. [16] Mathisen, Petter. "Video feedback in higher education–A contribution to improving the quality of written feedback." Nordic Journal of Digital Literacy 7, no. 2 (2012): 97-113. https://doi.org/10.18261/ISSN1891-943X- 2012-02-02. [17] Hattie, John, and Helen Timperley. "The power of feedback." Review of educational research 77, no. 1 (2007): 81-112. https://doi.org/10.3102/003465430298487. [18] Van der Kleij, Fabienne, Lenore Adie, and Joy Cumming. "Using video technology to enable student voice in assessment feedback." British Journal of Educational Technology 48, no. 5 (2017): 1092-1105. https://doi.org/10.1111/bjet.12536. [19] O’Malley, Emer, Anne-Maria Scanlon, Lucy Alpine, and Sinéad McMahon. "Enabling the feedback process in work- based learning: an evaluation of the 5 minute feedback form." Assessment & Evaluation in Higher Education 46, no. 7 (2021): 1020-1034. https://doi.org/10.1080/02602938.2020.1842852. [20] Pokorny, Helen, and Pamela Pickford. "Complexity, cues and relationships: Student perceptions of feedback." Active learning in higher education 11, no.1 (2010):21-30. https://doi.org/10.1177/1469787409355872. [21] Auld, Ruth G., Phillip J. Belfiore, and Mary Catherine Scheeler. "Increasing pre-service teachers’ use of differential reinforcement: Effects of performance feedback on consequences for student behavior." Journal of Behavioral Education 19 (2010): 169-183. https://doi.org/10.1007/s10864-010-9107-4. [22] Mory, Edna Holland. "Feedback research revisited." Handbook of research on educational communications and technology 2 (2004): 745-783. [23] Van der Kleij, Fabienne M., Theo JHM Eggen, Caroline F. Timmers, and Bernard P. Veldkamp. "Effects of feedback in a computer-based assessment for learning." Computers & Education 58, no. 1 (2012): 263-272. https://doi.org/10.1016/j.compedu.2011.07.020. [24] Shute, Valerie J. "Focus on formative feedback." Review of educational research 78, no. 1 (2008): 153-189. https://doi.org/10.3102/0034654307313795. [25] Thurlings, Marieke, and Migchiel van Diggelen. "Perceptions of practical knowledge of learning and feedback among academic teachers." European Journal of Engineering Education 46, no. 1 (2021): 139-160. https://doi.org/10.1080/03043797.2019.1677559. [26] Andrade, Heidi L., Randy E. Bennett, and Gregory J. Cizek, eds. Handbook of formative assessment in the disciplines.Routledge, 2019. https://doi.org/10.4324/9781315166933. [27] Boud, David, and Elizabeth Molloy, eds. Feedback in higher and professional education: understanding it and doing it well. Routledge, 2013. https://doi.org/10.4324/9780203074336.
(1)
[1] Y. Bao, B. Wang, Z. He, R. Kang, and J. Guo, “Recent progress in flexible supporting technology for aerospace thin-walled parts: A review,” Chinese Journal of Aeronautics, vol. 35, no. 3, pp. 10-26, 2022.[2] W. Zhaohui, D. Ji-wang, Z. Minghua, and F. Xiumin, "Survey on flexible shipbuilding technologies for curved ship-blocks," Procedia Engineering, vol. 174, pp. 800-807, 2017.[3] K. Draganová, K. Semrád, M. Spodniak, and M. Cúttová, "Innovative analysis of the physical-mechanical properties of airport conveyor belts," Transportation Research Procedia, vol. 51, pp. 20–27, 2020.[4] S. Julai, M. O. Tokhi, M. Mohamad, and I. Abd. Latiff, “Control of a flexible plate structure using particle swarm optimization,” In 2009 IEEE Congress on Evolutionary Computation, 2009, pp. 3183-3190.[5] A.R.Tavakolpour, I. Z. M. Darus, M. O. Tokhi, and M. Mailah, “Genetic algorithm-based identification of transfer function parameters for a rectangular flexible plate system,” Engineering Applications of Artificial Intelligence, vol. 23, no. 8, pp.1388-1397, 2010.[6] M. J. Mohammed, M. K. Ahmed, and B. A. Abbas, “Modeling and control of horizontal flexible plate using PID-CS controller,” Journal of Mechanical Engineering Research and Developments, vol. 42, no. 4, pp. 138–142, 2019.[7] M. Marinaki, Y. Marinakis, and G. E. Stavroulakis, “Vibration control of beams with piezoelectric sensors and actuators usingparticle swarm optimization,” Expert Systems With Applications, vol. 38, no. 6, pp. 6872–6883, 2011.[8] S. Khooshechin, F. Mansourzadeh, M. Imani, J. Safdari and M. H. Mallah, “Optimization of flexible square cascade for high separation of stable isotopes using enhanced PSO algorithm,” Progress in Nuclear Energy, vol. 140, p. 103922, 2021.[9] D. Negri, F. K. Fiorentin, and J. M. C. Filho, “A model updating method for plate elements using particle swarm optimization (PSO), modeling the boundary flexibility, including uncertainties on material and dimensional properties,” Latin American Journal of Solids and Structures, vol. 15, no. 10, pp.1-18, 2018.[10] K. Belhadj, N. B. Guedria, A. Helali, and C. Bouraoui, “A two-stage approach to solve structural damage detection problem in plate structures,”in Advances in Materials, Mechanics and Manufacturing II. A3M 2021. Lecture Notes in Mechanical Engineering, M. Ben Amar, A. Bouguecha, E. Ghorbel, A. El Mahi, F. Chaari, and M. Haddar, Eds. Cham: Springer, 2022, pp.pp. 63 -72.[11] J. Wang, M. Liu, W. Liao, K. Yun, Y. Tan, and Z. Zhang, “Spline interpolation method based on arc length parameterization and its application in stress field interpolation for flexible plates,” in IEEE Access, vol. 9, pp. 35879-35887, 2021.[12] S. Julai, M. O. Tokhi, M. Mohamad, and I. A. Latiff, "Active vibration control of a flexible plate structure using particle swarm optimization," In 2010 IEEE 9th International Conference on Cyberntic Intelligent Systems, 2010, pp. 1-6. [13] A Jamali, I.Z.M. Darus, “Intelligent evolutionary controller for flexible robotic arm”, Journal of Physics: Conference Series vol. 1500, no. 1, p. 012020, 2020.[14] X. S. Yang, S. Deb, “Cuckoo search: recent advances and applications,” Neural Computing & Applications,vol. 24, pp. 169–174, 2014.[15] H. Tran-Ngoc, S. Khatir, G. D. Roeck, T. Bui-Tien, and M. A. Wahab, “An efficient artificial neural network for damage detection in bridges and beam-like structures by improving training parameters using cuckoo search algorithm,” Engineering Structures, vol. 199, pp.1-16, 2019.[16] A. A. S. N. Sukri, S. S. Z. Nazri, M. S. Hadi, A. Jamali, H. M. Yatim and I. Z. M. Darus, “Hub angle control for a single-link flexible manipulator based on Cuckoo Search algorithm,” In 2021 IEEE 7th International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA), pp. 162-167, 2021. [17] A. A. Al-Khafaji and I. Z. M. Darus, “Controller optimization using cuckoo search algorithm of a flexible single-link manipulator,” In 1st International Conference on System Informatics, Modelling and Simulation, pp. 39-44, 2014.[18] H. J. Xu, J. K. Liu, and Z. R. Lu, “Structural damage identification based on cuckoo search algorithm,” Advances in Structural Engineering,vol. 19, no. 5, pp. 849-859, 2016.[19] I. Z. M. Darus, A. A. M. Al-Khafaji, and M. F. Jamid, “Neuro modelling of flexible plate structure rig for development of active vibration control algorithm,” In Asia International Conference on Modelling & Simulation, pp. 396-401, 2010.[20] D. Freitas, L. G. Lopes, and F. Morgado-Dias, “Particle swarm optimization: A historical review up to the current developments,” Entropy, vol. 22, no. 3, pp. 1–36, 2020.[21] A. A. M. Al-Khafaji, I. Z. M. Darus, and M. F. Jamid, “ANFIS modelling of flexible plate structure,” In 2010 1st International Conference on Energy, Power and Control, vol. 6, no. 1, pp. 78–82, 2010.
(1)
[1] Ye, H. Z. (2015). Wind Turbine Control Technology. Mechanical Industry Press, Beijing. [2] Toriki, M. B., Asy'ari, M. K., & Musyafa A. (2021). Enhanced performance of PMSG in WECS using MPPT– fuzzy sliding mode control. Journal Européen des Systèmes Automatisés, 54(1), 85-96. https://doi.org/10.18280/jesa.540110 [3] Yuan, T. Z., Li, H., & Jia, D. (2022). Modeling and Control Strategy of Wind-Solar Hydrogen Storage Coupled Power Generation System. Journal of Intelligent Systems and Control, 1(1), 18-34. https://doi.org/10.56578/jisc010103 [4] Benabbas, A. Zaidi, E., & Abdessemed, R. (2022). Sliding mode control of a wind power system based on a self-excited asynchronous generator. Journal Européen des Systèmes Automatisés, 55(1), 131-137. https://doi.org/10.18280/jesa.550114 [5] Zhang, L., Jin, S. T., & Nie, S. L. (2006). Simulation research on large wind turbine control based on PID method. China Science and Technology Information, 22, 34-36. https://doi.org/10.3969/j.issn.1001-8972.2006.22.007 [6] Zheng, Y. (2012). Independent pitch control of wind turbine based on neuron PID. Water Resources and Power, 30(2), 151-154. [7] Yuan, C. Y., Li, J., Chen, J. Y., & Xu, Q. (2019). Research on variable pitch ABC-PID control of large wind turbines. Acta Energiae Solaris Sinica, 40(10), 3002-3008. https://doi.org/10.19912/j.0254-0096.2019.10.039 [8] Qin, S. S., Hu G. W., Gu, C. L., & Li, D. (2012). Constant power H∞ robust control of wind power generation system. Control Theory & Applications, 29(5), 617-622. https://doi.org/10.7641/j.issn.1000-8152.2012.5.ccta100816 [9] Liu, Y. M., Zhu, J. S., Yao, X. J., Ma, K. C., Wang, X. D., & Guo, Q. D. (2015). Research on robust control technology of variable pitch for large wind turbines based on H2/H∞ hybrid optimization. Acta Energiae Solaris Sinica, 36(3), 714-719. https://doi.org/10.3969/j.issn.0254-0096.2015.03.032 [10] Namik, H. & Stol, K. (2010). Individual blade pitch control of floating offshore wind turbines. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 13(1), 74-85. https://doi.org/10.1002/we.332 [11] Jaramillo-Lopez F, Kenne G, & Lamnabhi-Lagarrigue F. (2016). A novel online training nerual network-based algorithm for wind speed estimation and adaptive control of PMSG wind turbine system for maximum power extraction. Renewable Energy, 86, 38-48. https://doi.org/10.1016/j.renene.2015.07.071 [12] Jiao, X., Meng, W., Yang, Q., Fu, L., & Chen, Q. (2019). Adaptive continuous neural pitch angle control for variablespeed wind turbines. Asian Journal of Control, 21(4), 1966- 1979. https://doi.org/10.1002/asjc.1963 [13] Ren, H., Hou, B., Zhou, G., Shen, L., Wei, C., & Li, Q. (2020). Variable pitch active disturbance rejection control of wind turbines based on BP neural network PID. IEEE Access, 8, 71782-71797. https://doi.org/10.1109/ACCESS.2020.2987912 [14] Yarmohammadi, M. J., Sadeghzadeh, A., & Taghizadeh, M. (2020). Gain-scheduled control of wind turbine exploiting inexact wind speed measurement for full operating range. Renewable Energy, 149, 890-901. https://doi.org/10.1016/j.renene.2019.09.148 [15] Colombo, L., Corradini, M. L., Ippoliti, G., & Orlando, G. (2020). Pitch angle control of a wind turbine operating above the rated wind speed: A sliding mode control approach. ISA Transactions, 96, 95-102. https://doi.org/10.1016/j.isatra.2019.07.002 [16] Narayana, M., Sunderland, M., Putrus, G., & Conlon, M. F. (2017). Adaptive linear predicion for optimal control of wind turbine. Renewable Energy, 113, 895-906. https://doi.org/10.1016/j.renene.2017.06.041 [17] Chen, P., Han, D., Tan, F., & Wang, J. (2020). Reinforcement-based robust variable pitch control of wind turbines. IEEE Access, 8, 20493-20502. https://doi.org/10.1109/ACCESS.2020.2968853 [18] Yang, Q., Jiao, X., Luo, Q., Chen, Q., & Sun, Y. (2020). L1 adaptive pitch angle controller of wind energy conversion systems. ISA transactions, 103, 28-36. https://doi.org/10.1016/j.isatra.2020.04.001 [19] Fan, Y. J., Xu, H. T., & He, Z. Y. (2022). Smoothing the output power of a wind energy conversion system using a hybrid nonlinear pitch angle controller. Energy Exploration & Exploitation, 40(2), 539-553. https://doi.org/10.1177/01445987211041779 [20] Ma, X., Wong, P. K., Zhao, J., & Xie, Z. (2019). Cornering stability control for vehicles with active front steering system using TS fuzzy based sliding mode control strategy. Mechanical Systems and Signal Processing, 125, 347-364. https://doi.org/10.1016/j.ymssp.2018.05.059 [21] Shi, J. & Zhang, Q. (2019). Dynamic sliding-mode control for T-S fuzzy singular time-delay systems with H∞ Performance. IEEE Access, 7, 115388-115399. https://doi.org/10.1109/ACCESS.2019.2935456 [22] Liu, J., Yin, T., Xie, X., Tian, E., & Fei, S. (2019). Eventtriggered state estimation for T-S fuzzy neural networks with stochastic cyber-attacks. International Journal of Fuzzy Systems, 21(2), 532-544. https://doi.org/10.1007/s40815-018-0590-4 [23] Liu, J., Cui, Y., Song, H., Zhang, X., & Qu, Y. (2021). Stability analysis of TS fuzzy-model-based coupled control systems with nonlinear TS fuzzy control and its application. Neural Computing and Applications, 33(22), 15481-15493. https://doi.org/10.1007/s00521-021-06170-9 [24] Wang, P. & Li, N. (2019). Stable controller design for T-S fuzzy control systems with piecewise multi-linear interpolations into membership functions. International Journal of Fuzzy Systems, 21, 1585-1596. https://doi.org/10.1007/s40815-019-00665-3 [25] Wu, X. G., Zhang, X. C., Yin Y. H., & Dai, H. Z. (1998). Mathematical model for dynamic stability analysis of asynchronous wind power generation system and its application. Grid Technology, 22(6), 68-72. [26] Sun, Z. X. (2021). Intelligent Control. Beijing, Tsinghua University Press. [27] Qin, S., Ngu, S., & Zeng, T. (2022). Optimal constant power control of wind turbine generators based on Takagi-Sugeno fuzzy model. Alexandria Engineering Journal, 61(8), 5977- 5982. https://doi.org/10.1016/j.aej.2021.11.024 [28] Fang, J. S., Tsai, J. S. H., Yan, J. J., & Guo, S. M. (2021). Adaptive H-infinity SMC-based model reference tracker for uncertain nonlinear systems with input nonlinearity. International Journal of Control, Automation and Systems, 19(4), 1560-1569. https://doi.org/10.1007/s12555-019-0967-7 [29] Tan, S., Yang, J., Khajepour, A., Zhao, X., & Yu, W. (2021). H-Infinity shifting control in a dual-speed transmission for electric vehicle. International Journal of Automotive Technology, 22, 155-164. https://doi.org/10.1007/s12239-021-0016-4 [30] Mu, Y., Zhang, H., Su, H., & Wang, Y. (2021). Robust normalization and H∞ stabilization for uncertain Takagi- Sugeno fuzzy singular systems with time-delays. Applied Mathematics and Computation, 388, 125534. Shengsheng QIN et al.: H-infinity Variable-Pitch Control for Wind Turbines Based on Takagi-Sugeno Fuzzy Theory 1396 Technical Gazette 30, 5(2023), 1387-1396 https://doi.org/10.1016/j.amc.2020.125534 [31] Du, Z. B. & Hu, S. S. (2017). Fuzzy hybrid H2/H∞ sampleddata control for nonlinear systems. Control and Decision, 32(5), 930-934. [32] Anagie, G. A., Hassen, A. A., & Sintie, Y. T. (2021). Performance investigation of small wind turbine installed over a pick up vehicle to charge an electric vehicle battery. Journal Européen des Systèmes Automatisés, 54(5), 783- 788. https://doi.org/10.18280/jesa.540514
(1)
[1] Y. Okamura et al., Free Standing Biodegradable Poly(lactic acid) Nanosheet for Sealing Operations in Surgery, ADVANCED MATERIALS, 2009;21(43), pp4388-4392. [2] T. Fujie et al., Ubiquitous Transference of a Free-Standing Polysaccharide Nanosheet with the Development of a Nano-Adhesive Plaster, Adv. Mater, 2007, 19, 3549-3553 [3] Y. Kai et al., Microstructure Fabrication on Poly (L-lactic acid) Nanosheets Using Micro Gravure Printing Method, Aachen, Germany, September, 17-19, 2017. [4] S. Zhang et al., Tactile Sliding Behavior of R2R Mass- Produced PLLA Nanosheet towards Biomedical Device in Skin Applications, nanomaterials, 2018;8(4),210. [5] Y. Mizutani, Ceramide biosynthesis in keratinocyte and its role in skin function, Biochimie, 2009; 91 (6), pp784-790
(1)
[1] You-Dong Yun, Lee, C., & Lim, H.-S. (2016). Designing an intelligent UI/UX system based on the cognitive response for smart senior. 2016 2nd International Conference on Science in Information Technology (ICSITech). https://doi.org/10.1109/icsitech.2016.7852648 [2] Anam, R., & Abid, A. (2020). Usability study of smart phone messaging for elderly users. International Journal of Advanced Computer Science and Applications, 11(3). https://doi.org/10.14569/ijacsa.2020.0110313 . [3] M. Pattison, and A. Stedmon. (2006). "Inclusive design and human factors: designing mobile phones for older users". Psychology Journal,vol. 4, no. 3, pp. 267-284. [4] Al-Razgan, M. S., Al-Khalifa, H. S., & Al-Shahrani, M. D. (2014, June). Heuristics for evaluating the usability of mobile launchers for elderly people. In International Conference of Design, User Experience, and Usability (pp. 415-424). Springer, Cham. [5] Willis, G. B., & Artino Jr, A. R. (2013). What do our respondents think we're asking? Using cognitive interviewing to improve medical education surveys. Journal of graduate medical education, 5(3), 353- 356. [6] Rasid, N., Nohuddin, P. N., Alias, H., Hamzah, I., & Nordin, A. I.(2017, November). Using data mining strategy in qualitative research.In International Visual Informatics Conference (pp. 100-111).Springer, Cham. [7] Tavares-Júnior, J. W. L., De Souza, A. C. C., Alves, G. S., Bonfadini,J. D. C., Siqueira-Neto, J. I., & Braga-Neto, P. (2019). Cognitive assessment tools for screening older adults with low levels of education: a critical review. Frontiers in psychiatry, 10, 878. [8] Xue, J., Chen, J., Hu, R., Chen, C., Zheng, C., Su, Y., & Zhu, T. (2020). Twitter discussions and emotions about the COVID-19 pandemic: Machine learning approach. Journal of medical Internet research, 22(11), e20550. [9] Abduljabbar, D. A., & Omar, N. (2015). Exam questions classification based on Bloom's taxonomy cognitive level using classifiers combination. Journal of Theoretical and Applied Information Technology, 78(3), 447. [10] Gupta, S. (2018). Sentiment Analysis: Concept, Analysis and Applications. Medium. https://towardsdatascience.com/sentimentanalysis- concept-analysis-and-applications-6c94d6f58c17 [11] E. Ubam, I. Hipiny and H. Ujir, "User Interface/User Experience (UI/UX) Analysis & Design of Mobile Banking App for Senior Citizens: A Case Study in Sarawak, Malaysia," 2021 International Conference on Electrical Engineering and Informatics (ICEEI), 2021, pp. 1-6, doi: 10.1109/ICEEI52609.2021.9611136.
(1)
1. Young KS. Internet Addiction:A New Clinical Phenomenon and Its Consequences. American Behavioral Scientist. 2004;48(4):402-15. 2. Guan NC, Isa SM, Hashim AH, Pillai SK, Harbajan Singh MK. Validity of the Malay version of the Internet Addiction Test: a study on a group of medical students in Malaysia. Asia-Pacific journal of public health. 2015;27(2):Np2210-9. 3. Ching SM, Hamidin A, Vasudevan R, Sazlyna MS, Wan Aliaa WS, Foo YL, et al. Prevalence and factors associated with internet addiction among medical students - A cross-sectional study in Malaysia. The Medical journal of Malaysia. 2017;72(1):7-11. 4. Kim Y, Park JY, Kim SB, Jung I-K, Lim YS, Kim J-H. The effects of Internet addiction on the lifestyle and dietary behavior of Korean adolescents. Nutrition research and practice. 2010;4(1):51-7. 5. Shaohua H, Fengjuan S, editors. Influencing factors of adolescent internet addiction. 2010 IEEE 2nd Symposium on Web Society; 2010 16-17 Aug. 2010. 6. Lee JY, Kim SY, Bae KY, Kim JM, Shin IS, Yoon JS, et al. Prevalence and risk factors for problematic Internet use among rural adolescents in Korea. Asia-Pacific psychiatry : official journal of the Pacific Rim College of Psychiatrists. 2018;10(2):e12310. 7. Vigna-Taglianti F, Brambilla R, Priotto B, Angelino R, Cuomo G, Diecidue R. Problematic internet use among high school students: Prevalence, associated factors and gender differences. Psychiatry research. 2017;257:163-71.
(1)
[1] Y. Sun and J. Liu, "Transformation of the value connotation of folk costumes," Journal of Nantong Textile Vocational and Technical College, 2, pp. 45-38, 2013. [2] L. X. Li, "Analysis on the value of Hani costumes - Taking Hani costumes in Mojiang Hani Autonomous County, Pu'er City, Yunnan Province as an example," China Nationalities Expo, 3, pp. 28-31, 2016. [3] J. Pei, "Study on the Artistic Value of Guangxi Minority Costumes," Popular Literature and Art, vol. 17, pp. 70-71, 2016. [4] E. N. Hua, A Study of Miao Costume Culture and Aesthetic Value, China: Jiangsu University, 2013. [5] X. Y. Chen, "Interpretation of the Educational Value of Miao Costume Symbols - An Educational Anthropological Study Based on Xijiang," Guizhou Ethnic Studies, vol 5, pp. 58-63, 2012. [6] J. W. Zhong, Introduction to Folklore. Shanghai: Shanghai Literature and Art Publishing House, 1999. [7] H. Y. Cai, "Traditional educational value and contemporary educational methods of Miao costumes," Journal of Baoshan University, 35(4), pp. 61-69, 2016. [8] S. Zeng, Research on the Value and Development of Tourism Resources of Miao Nationality Costume Culture in Guizhou Province. Chongqing: Chongqing Normal University, 2012. [9] M. K. Zhou, "The cultural characteristics, functions and values of costumes in "The Biography of King Gesar": Taking Lingguo costumes as an example," Tibet Studies, 5, pp. 90-99, 2013. [10] W. Zou, "The cultural value of Chinese traditional costume craftsmanship," Hundred Schools in Arts, A1, pp. 471- 472, 2012. [11] Y. Lai, "Development of Western Minority Cultural Resources to Market," Nationalities Publishing House, vol. 2, pp. 216, 2007. [12] J. Jin and J.J. Li, "Ecological value and cultural self-consciousness of ethnic costumes in the Wuling Mountains," Journal of Wuhan Textile University, 30(4), pp. 21-24, 2017. [13] x. Ru, New dictionary of social sciences. Chongqing: Chongqing Publishing House, 1988. [14] G.T. Zhou, "Questionnaire survey method," Psychological development and education, 1, pp. 31-34, 1990. [15] F. Q. Gao and J. H. Lu, Theory and Art of Survey Research. Peking: China University of Political Science and Law Press, 1987. [16] D. S. Yang, "On Dress-ology as a Sub-discipline in Art Theory," Art & Design Research, 4, pp. 5-9, 2017. [17] L. N. Stolovich and J. Y. Ling, The Function of Art Activities. Shanghai: Xuelin Publishing House, 2008. [18] L. N. Stolovich, Life`Creation`People-The Function of Art Activities. Peking: Renmin University of China Press, 1993. [19] Y. Y. Zhu, Y. M. Rafee and F. Sahari, "Lisu Women Costumes in Nujiang as a Cultural Heritage," International Journal of Service Management and Sustainability, 5(2), pp. 107-128, 2020. [20] J. B. Lu, Lisu Studies Historical Materials Series. Kunming: Yunnan University Press, 2020. [21] X. H. Xing, Art mastery. Peking: Beijing Times Chinese Press, 2016.
(1)
[1] Y. Y. Choong, K. W. Chou and I. Norli 2018 Strategies for improving biogas production of palm oil mill effluent (POME) anaerobic digestion: A critical review, Renewable and Sustainable Energy Reviews822993-3006 [2] M. A. Ahmad Farid, A. M. Roslan, M. A. Hassan, F. Aziz Ujang, Z. Mohamad, M. Y. Hasan and S. Yoshihito 2019 Convective sludge drying by rotary drum dryer using waste steam for palm oil mill effluent treatment, Journal of Cleaner Production240 117986 [3] Y. D. Tan and J. S. Lim 2019 Feasibility of palm oil mill effluent elimination towards sustainable Malaysian palm oil industry, Renewable and Sustainable Energy Reviews111507-522 [4] United Nation Environmental Programme 2021 Methane emissions are driving climate change. Here’s how to reduce them 28 October 2021 https://www.unep.org/news-and-stories/story/methane-emissions-are-driving-climate-change-heres-how-reduce-them [5] V. Paolini, F. Petracchini, M. Segreto, L. Tomassetti, N. Naja and A. Cecinato 2018 Environmental impact of biogas: A short review of current knowledge, Journal of Environmental Science and Health, Part A53 899-906 [6] Nahrul Hayawin Zainal, Nor Faizah Jalani, Ropandi Mamat and A. A. Astimar 2017 A Review on the Development of Palm Oil Moll Effluent (POME) Final Discharge Polishing Treatments, Journal of Oil Palm Research29528-540 [7] Mohamad Anuar Kamaruddin, Norli Ismail, Tan Hwee Kuen and Rasyidah Alrozi 2018 Sustainable Treatment of Palm Oil Mill Effluent (POME) by using Pectin and Chitosan in Jar Test Protocol – Sequential Comparison, International Journal of Integrated Engineering: Special Issue 2018: Innovations in Civil Engineering1063-68 [8] E. Awere, A. Bonoli and P. A. Obeng 2020 Solids-liquid separation and solar drying of palm oil mill wastewater sludge: Potential for sludge reuse, Case Studies in Chemical and Environmental Engineering2 100057 [9] Parveen Fatemeh Rupani, Rajeev Pratap Singh, M. Hakimi Ibrahim and Norizan Esa 2010 Review of Current Palm Oil Mill Effluent (POME) Treatment Methods: Vermicomposting as a Sustainable Practice, World Applied Sciences Journal 11 [10] S. K. Loh, M. E. Lai and M. Ngatiman 2019 Vegetative growth enhancement of organic fertilizer from anaerobically-treated palm oil mill effluent (POME) supplemented with chicken manure in food-energy-water nexus challenge, Food and Bioproducts Processing117 95-104 [11] M. N. Khairuddin, A. J. Zakaria, I. M. Isa, H. Jol, W. M. N. W. A. Rahman and M. K. S. Salleh 2016 The Potential of Treated Palm Oil Mill Effluent (POME) Sludge as an Organic Fertilizer, 201638 13 %J AGRIVITA, Journal of Agricultural Science [12] Akash D Motharkar, Akash D Pounikar, Akash S Choudhri, Anil Dansena, Sunil Dansena and Tomesh V. Sahu 2018 Design and Fabrication of Sludge Drying Machine, International Journal of Innovative Science and Research Technology3 742-744 [13] H. Eom, Y. H. Jang, D. Y. Lee, S. S. Kim, S. M. Lee and E. M. Cho 2019 Optimization of a hybrid sludge drying system with flush drying and microwave drying technology, Chemical Engineering Research and Design148 68-74 [14] C. O. Nwuche, H. Aoyagi and J. C. Ogbonna 2014 Treatment of Palm Oil Mill Effluent by a Microbial Consortium Developed from Compost Soils, International Scholarly Research Notices2014762070 [15] A. Akhbari, P. K. Kutty, O. C. Chuen and S. Ibrahim 2020 A study of palm oil mill processing and environmental assessment of palm oil mill effluent treatment, Environmental Engineering Research25212-221 [16] I. Ekmekci and M. Koksal 2015 Triz Methodology and an Application Example for Product Development, Procedia - Social and Behavioral Sciences1952689-2698 [17] S. Li, W. Liang and Z. Kai 2017 Fluid dynamics simulation for design on sludge drying equipment, Journal of Physics: Conference Series916012046 [18] X. Xu and L. Ma 2015 Analysis of the effects of evaporative cooling on the evaporation of liquid droplets using a combined field approach, Scientific Reports5 8614 [19] Hock Lim Siong, Baharuddin Azhari Samsu, Ahmad Mohd Najib, Umi Kalsom Md Shah, Nor' Aini Abdul Rahman, Hassan Suraini Abd-Aziz and Shirai Yoshihito 2009 Physicochemical Changes in Windrow Co-Composting Process of Oil Palm Mesocarp Fiber and Palm Oil Mill Effluent Anaerobic Sludge, Australian Journal of Basic and Applied Sciences3 2809-2816 [20] Nur Eliza Badrul Hisham and Nor Hanuni Ramli 2020 Incorporation of Rice Husk Ash with Palm Oil Mill Wastes in Enhancing Physicochemical Properties of the Compost, Pertanika Journal of Tropical Agricultural Science44221-236
(1)
[1] Z. Heng, M. Dipu & K.-H. Yap, “Hybrid supervised deep learning for ethnicity classification using face images,” Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), pp. 1-5, 2018. [2] S. Masood, S. Gupta, A. Wajid, S. Gupta, and M. Ahmed, “Prediction of Human Ethnicity from Facial Images Using Neural Networks,” Data Engineering and Intelligent Computing, pp. 217–226, 2018. [3] Tin, H. H., and M. M. Sein. “Race identification for face images,” – ACEEE International Journal on Information Technology, Vol. 1, No. 02, pp. 118-120, 2011. [4] N. Srinivas, H. Atwal, D. C. Rose, G. Mahalingam, K. Ricanek and D. S. Bolme, "Age gender and fine-grained ethnicity prediction using convolutional neural networks for the east asian face dataset," Proc. 12th IEEE Int. Conf. Autom. Face Gesture Recognit. (FG), pp. 953- 960, 2017. [5] A. Khan, A. Sohail, U. Zahoora, and A.S. Qureshi, “A survey of the recent architectures of deep convolutional neural networks,” Artif. Intell. Rev. 53, 5455–5516, 2020. https://doi.org/10.1007/s10462-020- 09825-6. [6] Z. Li, F. Liu, W. Yang, S. Peng and J. Zhou, “A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects,” In IEEE Transactions on Neural Networks and Learning Systems (2021), doi: 10.1109/TNNLS.2021.3084827. [7] H. Ujir, L. C. Sing and I. Hipiny, “A modular approach and voting scheme on 3D face recognition,” International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), 2014, pp. 196-199, doi: 10.1109/ISPACS.2014.7024451. [8] Khalid Jilani, Shelina & Ugail, Hassan & Bukar, Ali & Logan, Andrew & Munshi, Tasnim, “A Machine Learning Approach for Ethnic Classification: The British Pakistani Face,” 170-173, 2017. 10.1109/CW.2017.27. [9] H.Zuo, L.Wang, and J.Qin, “XJU1: A Chinese Ethnic Minorities Face Database,” 2017 International Conference on Machine Vision and Information Technology (CMVIT), 7-11, 2017. [10] I.N.Buang and H.Ujir,“MUA3D:Malaysian Ethnicity Recognition,” International Journal of Advanced Trends in Computer Science and Engineering, Vol. 8, No.1.6, 2019 https://doi.org/10.30534/ijatcse/2019/8081.62019. [11] A.Greco,G.Percannella,M.Vento,etal.,“Benchmarkingdeepnetwork architectures for ethnicity recognition using a new large face dataset,” Machine Vision and Applications 31, 67, 2020. https://doi.org/10.1007/s00138-020-01123-z. [12] N. A. Al-Humaidan, and M. Prince, “Classification of Arab Ethnicity Based on Face Image Using Deep Learning Approach,” IEEE Access 9, 50755-50766, 2021. https://10.1109/ACCESS.2021.3069022 [13] Anwar, Inzamam and Ul Islam, Naeem, “Learned Features are Better for Ethnicity Classification,” Cybernetics and Information Technologies, 2017. 17. 10.1515/cait-2017-0036. [14] C. Wang, Q. Zhang, X. Duan, and J. Gan, “Multiethnical Chinese facial characterization and analysis,” Multimed. Tools Appl., vol. 77, no. 23, pp. 30311–30329, 2018. [15] Lu.Xiaoguang, and A. K. Jain, “Ethnicity identification from face images,” In: Proc. of SPIE International Symposium on Defense and Security: Biometric Technology for Human Identification, Orlando, Florida, USA, pp.114-123, 2004. [16] X. D.Duan, C. R. Wang, X. D. Liu, Z. J. Li, J. Wu, and H. L. Zhang, “Ethnic features extraction and recognition of human faces,” – In: Proc. of the 2nd International Conference on Advanced Computer Control (ICACC), Shenyang, Liaoning, China, pp.125-130, 2010. [17] H.Chen,Y.Deng,andS.Zhang,“Whereamifrom?–eastasianethnicity classification from facial recognition,” Project study in Stanford University, 2016. [18] Krizhevsky, Alex & Sutskever, Ilya & Hinton, Geoffrey. “ImageNet Classification with Deep Convolutional Neural Networks,” Neural Information Processing Systems, 2012. 25. 10.1145/3065386. [19] Y.LeCun, L.Bottou, Y.Bengio, and H.P., “Gradient-based learning applied to document recognition,” Proceedings of the IEEE 86(11), 2278–2324, 1998. [20] F. Schroff, D. Kalenichenko and J. Philbin, "FaceNet: A unified embedding for face recognition and clustering," 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 815- 823, doi: 10.1109/CVPR.2015.7298682. [21] Amri, A’inur & Ismail, Amelia Ritahani and Mohammad, Omar, “Evolutionary deep belief networks with bootstrap sampling for imbalanced class datasets,” International Journal of Advances in Intelligent Informatics, 2019. 5. 123. 10.26555/ijain.v5i2.350.
(1)
[1] Zorpas, A. A. (2020). Strategy development in the framework of waste management. Science of The Total Environment, 716, 137088. https://doi.org/10.1016/j.scitotenv.2020.137088 [2] Yong, Bashir, Ng, Sethupathi, Lim, & Show. (2019). Sustainable Waste-to-Energy Development in Malaysia: Appraisal of Environmental, Financial, and Public Issues Related with Energy Recovery from Municipal Solid Waste. Processes, 7(10), 676. https://doi.org/10.3390/pr7100676 [3] Cheng, K. M., Tan, J. Y., Wong, S. Y., Koo, A. C., & Amir Sharji, E. (2022). A Review of Future Household Waste Management for Sustainable Environment in Malaysian Cities. Sustainability, 14(11), 6517. https://doi.org/10.3390/su14116517 [4] Ghazvinei, P. T., Mir, M. A., Darvishi, H. H., & Ariffin, J. (2017). Solid Waste–Management Framework. In University Campus Solid Waste Management: Combining Life Cycle Assessment and Analytical Hierarchy Process (pp. 81–91). Springer. https://doi.org/10.1007/978-3-319-43228-1_6 [5] Google Trends. (2023). Google Trends.com. Retrieved February 20, 2023, from https://trends.google.com/home [6] Nelles, M., Grünes, J., & Morscheck, G. (2016). Waste Management in Germany – Development to a Sustainable Circular Economy? Procedia Environmental Sciences, 35, 6–14. https://doi.org/10.1016/j.proenv.2016.07.001 [7] Scopus. (2023). Scopus Database. [8] Wordclouds. (2023). Wordclouds.com. Retrieved March 27, 2023, from https://www.wordclouds.com/
(1)
[1] Z. Tao, L. H. Han, and Z. B. Wang, “Experimental behaviour of stiffened concrete-filled thin-walled hollow steel structural (HSS) stub columns,” J Constr Steel Res, vol. 61, no. 7, pp. 962–83, 2005. [2] Z. Tao, L. H. Han, and D. Y. Wang, “Experimental behavior of concrete-filled stiffened thin-walled steel tubular columns,” Thin-Walled Struct, vol. 45, pp. 517-527, 2007. [3] H. J. Lee, I. R. Choi, H. G. Park, “Eccentric compression strength of rectangular concrete-filled tubular columns using high-strength steel thin plates,” J Struct Eng, 10.1061/(ASCE)ST.1943-541X.0001724.; 04016228. [4] H. L. Hsu and J. L. Juang, “Performance of thin-walled box columns strengthened with internal braces,” Thin-Walled Struct, vol. 37, pp. 241-58, 2000. [5] J. Cai and Z. Q. He, “Axial load behavior of square CFT stub column with binding bars,” J Constr Steel Res, vol. 62, pp. 472-483, 2006. [6] C. S. Huang, Y. K. Ye, G. Y. Liu, H. T. Hu, K. C. Tsai, Y. T. Weng, S. H. Wang, and M. H. Wu, “Axial load behavior of stiffened concrete-filled steel columns,” J Struct Eng, vol. 128, pp. 1222-1230, 2002. [7] Y. Wang, Y. Yang, and S. Zhang, “Static behaviors of reinforcement-stiffened square concrete-filled steel tubular columns,” Thin-Walled Struct, vol. 58, pp. 18-31, 2012. [8] Y. Yang, Y. Wang, and F. Fu, “Effect of reinforcement stiffeners on square concrete-filled steel tubular columns subjected to axial compressive load,” Thin-Walled Struct, vol. 82, pp. 132-144, 2014. [9] Design of Composite Steel and Concrete Structures. Part 1-1: General rules and rules for buildings, Eurocode 4, 2004. [10] R. Park, “State-of-the-art report on ductility evaluation from laboratory and analytical testing,” in Proc., 9th World Conf. on Earthquake Engineering, International Association for Earthquake Engineering (IAEE), p.605–616, vol. 8, Tokyo, 1988.
(1)
[1] Z. Turan, Z. Avinc, K. Kara, and Y. Goktas, “Gamification and education: achievements, cognitive loads, and views of students,” International Journal of Emerging Technologies in Learning (iJET), vol. 11, no. 07, p. 64, Jul. 2016, doi: 10.3991/ijet.v11i07.5455. [2] A. C. T. Klock, I. Gasparini, M. S. Pimenta, and J. Hamari, “Tailored gamification: a review of literature,” International Journal of Human Computer Studies, vol. 144, 2020, doi: 10.1016/j.ijhcs.2020.102495. [3] L. Sardi, A. Idri, and J. L. Fernández-Alemán, “A systematic review of gamification in e-health,” Journal of Biomedical Informatics, vol. 71, pp. 31–48, 2017, doi: 10.1016/j.jbi.2017.05.011. [4] D. Johnson, S. Deterding, K.-A. Kuhn, A. Staneva, S. Stoyanov, and L. Hides, “Gamification for health and wellbeing: a systematic review of the literature,” Internet Interventions, vol. 6, pp. 89–106, Nov. 2016, doi: 10.1016/j.invent.2016.10.002. [5] E. Nasirzadeh and M. Fathian, “Investigating the effect of gamification elements on bank customers to personalize gamified systems,” International Journal of Human-Computer Studies, vol. 143, p. 102469, Nov. 2020, doi: 10.1016/j.ijhcs.2020.102469. [6] V. W. S. Cheng, “Recommendations for implementing gamification for mental health and wellbeing,” Frontiers in Psychology, vol. 11, 2020, doi: 10.3389/fpsyg.2020.586379. [7] L. F. Rodrigues, A. Oliveira, and H. Rodrigues, “Main gamification concepts: a systematic mapping study,” Heliyon, vol. 5, no. 7, 2019, doi: 10.1016/j.heliyon.2019.e01993. [8] R. Hammady and S. Arnab, “Serious gaming for behaviour change: a systematic review,” Information (Switzerland), vol. 13, no. 3, 2022, doi: 10.3390/info13030142. [9] A. Manzano-León et al., “Between level up and game over: a systematic literature review of gamification in education,” Sustainability (Switzerland), vol. 13, no. 4, pp. 1–14, 2021, doi: 10.3390/su13042247. [10] G. Çera, I. Pagria, K. A. Khan, and L. Muaremi, “Mobile banking usage and gamification: the moderating effect of generational cohorts,” Journal of Systems and Information Technology, vol. 22, no. 3, pp. 243–263, 2020, doi: 10.1108/JSIT-01-2020-0005. [11] A. Granić and N. Marangunić, “Technology acceptance model in educational context: a systematic literature review,” British Journal of Educational Technology, vol. 50, no. 5, pp. 2572–2593, 2019, doi: 10.1111/bjet.12864. [12] M. Al-Emran, V. Mezhuyev, and A. Kamaludin, “Is m-learning acceptance influenced by knowledge acquisition and knowledge sharing in developing countries?” Education and Information Technologies, vol. 26, no. 3, pp. 2585–2606, 2021, doi: 10.1007/s10639-020-10378-y. [13] J. S. Wang, “Exploring biometric identification in fintech applications based on the modified tam,” Financial Innovation, vol. 7, no. 1, 2021, doi: 10.1186/s40854-021-00260-2. [14] H. Li and J. Yu, “Learners’ continuance participation intention of collaborative group project in virtual learning environment: an extended tam perspective,” Journal of Data, Information and Management, vol. 2, no. 1, pp. 39–53, 2020, doi: 10.1007/s42488-019-00017-8. [15] S. M. Schöbel, A. Janson, and M. Söllner, “Capturing the complexity of gamification elements: a holistic approach for analysing existing and deriving novel gamification designs,” European Journal of Information Systems, vol. 29, no. 6, pp. 641–668, 2020, doi: 10.1080/0960085X.2020.1796531. [16] A. R. Janssen and M. I. Prasetiyowati, “Gamifying student routines to improve campus experience through mobile application in Indonesia,” International Journal of Engineering and Technology (UAE), vol. 7, no. 4, pp. 85–89, 2018, doi: 10.14419/ijet.v7i4.40.24081. [17] L. F. Rodrigues, A. Oliveira, and C. J. Costa, “Playing seriously - how gamification and social cues influence bank customers to use gamified e-business applications,” Computers in Human Behavior, vol. 63, pp. 392–407, 2016, doi: 10.1016/j.chb.2016.05.063. [18] R. Samar and A. G. Mazuri, “Does gamified elements influence on user’s intention to adopt internet banking with integration of UTAUT and general self-confidence?” International Journal of Business Excellence, vol. 19, no. 3, pp. 394–414, 2019, doi: 10.1504/IJBEX.2019.102835. [19] R. Ab. Rahman, S. Ahmad, and U. R. Hashim, “The effectiveness of gamification technique for higher education students engagement in Polytechnic Muadzam Shah Pahang, Malaysia,” International Journal of Educational Technology in Higher Education, vol. 15, no. 41, 2018, doi: 10.1186/s41239-018-0123-0. [20] D. Oluwajana, A. Idowu, M. Nat, V. Vanduhe, and S. Fadiya, “The adoption of students’ hedonic motivation system model to gamified learning environment,” Journal of Theoretical and Applied Electronic Commerce Research, vol. 14, no. 3, pp. 156–167, 2019, doi: 10.4067/S0718-18762019000300109. [21] G. Dick and A. Yagmur Akbulut, “Innovative use of the erpsim game in a management decision making class: an empirical study,” Journal of Information Technology Education: Research, vol. 19, pp. 615–637, 2020, doi: 10.28945/4632. [22] C. Yoo, S. Kwon, H. Na, and B. Chang, “Factors affecting the adoption of gamified smart tourism applications: an integrative approach,” Sustainability (Switzerland), vol. 9, no. 12, 2017, doi: 10.3390/su9122162. [23] V. Z. Vanduhe, M. Nat, and H. F. Hasan, “Continuance intentions to use gamification for training in higher education: integrating the technology acceptance model (TAM), social motivation, and task technology fit (TTF),” IEEE Access, vol. 8, pp. 21473–21484, 2020, doi: 10.1109/ACCESS.2020.2966179. [24] R. Maskeliūnas, A. Kulikajevas, T. Blažauskas, R. Damaševičius, and J. Swacha, “An interactive serious mobile game for supporting the learning of programming in JavaScript in the context of eco-friendly city management,” Computers, vol. 9, no. 4, pp. 1–18, 2020, doi: 10.3390/computers9040102. [25] L. P. S. Dias, J. L. V. Barbosa, L. P. Feijó, and H. D. Vianna, “Development and testing of iAware model for ubiquitous care of patients with symptoms of stress, anxiety and depression,” Computer Methods and Programs in Biomedicine, vol. 187, 2020, doi: 10.1016/j.cmpb.2019.105113. [26] A. García-Jurado, P. Castro-González, M. Torres-Jiménez, and A. L. Leal-Rodríguez, “Evaluating the role of gamification and flow in e-consumers: millennials versus generation x,” Kybernetes, vol. 48, no. 6, pp. 1278–1300, Jun. 2019, doi: 10.1108/K-07-2018-0350. [27] C. Catal, A. Akbulut, B. Tunali, E. Ulug, and E. Ozturk, “Evaluation of augmented reality technology for the design of an evacuation training game,” Virtual Reality, vol. 24, no. 3, pp. 359–368, 2020, doi: 10.1007/s10055-019-00410-z. [28] G. Aydin, “Effect of demographics on use intention of gamified systems,” International Journal of Technology and Human Interaction, vol. 14, no. 1, pp. 1–21, 2018, doi: 10.4018/IJTHI.2018010101. [29] H. Crompton, D. Burke, and Y. C. Lin, “Mobile learning and student cognition: a systematic review of pk-12 research using bloom’s taxonomy,” British Journal of Educational Technology, vol. 50, no. 2, pp. 684–701, 2019, doi: 10.1111/bjet.12674. [30] N. Al-Qaysi, N. Mohamad-Nordin, and M. Al-Emran, “Employing the technology acceptance model in social media: a systematic review,” Education and Information Technologies, vol. 25, no. 6, pp. 4961–5002, 2020, doi: 10.1007/s10639-020-10197-1. [31] N. Wilson, K. Keni, and P. H. P. Tan, “The role of perceived usefulness and perceived ease-of-use toward satisfaction and trust which influence computer consumers’ loyalty in China,” Gadjah Mada International Journal of Business, vol. 23, no. 3, pp. 262–294, 2021, doi: 10.22146/gamaijb.32106. [32] J. Lin, “The effects of gamification instruction on the roles of perceived ease of learning, enjoyment, and useful knowledge toward learning attitude,” TOJET: The Turkish Online Journal of Educational Technology, vol. 21, no. 2, pp. 81–91, 2022. [33] N. M. Trocky and K. M. Buckley, “Evaluating the impact of wikis on student learning outcomes: an integrative review,” Journal of Professional Nursing, vol. 32, no. 5, pp. 364–376, 2016, doi: 10.1016/j.profnurs.2016.01.007. [34] J. Hamari, L. Hassan, and A. Dias, “Gamification, quantified-self or social networking? matching users’ goals with motivational technology,” User Modeling and User-Adapted Interaction, vol. 28, no. 1, pp. 35–74, 2018, doi: 10.1007/s11257-018-9200-2. [35] M. Sailer, J. U. Hense, S. K. Mayr, and H. Mandl, “How gamification motivates: an experimental study of the effects of specific game design elements on psychological need satisfaction,” Computers in Human Behavior, vol. 69, pp. 371–380, 2017, doi: 10.1016/j.chb.2016.12.033. [36] N. Zaric, V. Lukarov, and U. Schroeder, “A fundamental study for gamification design: exploring learning tendencies’ effects,” International Journal of Serious Games, vol. 7, no. 4, pp. 3–25, 2020, doi: 10.17083/ijsg.v7i4.356. [37] M. Carrión-Toro, M. Santorum, P. Acosta-Vargas, J. Aguilar, and M. Pérez, “IPlus a user-centered methodology for serious games design,” Applied Sciences (Switzerland), vol. 10, no. 24, pp. 1–33, 2020, doi: 10.3390/app10249007. [38] L. R. Murillo-Zamorano, J. Á. López Sánchez, A. L. Godoy-Caballero, and C. Bueno Muñoz, “Gamification and active learning in higher education: is it possible to match digital society, academia and students’ interests?” International Journal of Educational Technology in Higher Education, vol. 18, no. 1, 2021, doi: 10.1186/s41239-021-00249-y. [39] A. M. Díez-Pascual and M. P. G. Díaz, “Audience response software as a learning tool in university courses,” Education Sciences, vol. 10, no. 12, pp. 1–19, 2020, doi: 10.3390/educsci10120350. [40] H. P. Lu and H. C. Ho, “Exploring the impact of gamification on users’ engagement for sustainable development: a case study in brand applications,” Sustainability (Switzerland), vol. 12, no. 10, 2020, doi: 10.3390/su12104169. [41] N. F. Jamaludin, T. S. M. T. Wook, S. F. M. Noor, and F. Qamar, “Gamification design elements to enhance adolescent motivation in diagnosing depression,” International Journal of Interactive Mobile Technologies, vol. 15, no. 10, pp. 154–172, 2021, doi: 10.3991/ijim.v15i10.21137. [42] B. I. J. M. Van der Heijden et al., “Gamification in Dutch businesses: an explorative case study,” SAGE Open, vol. 10, no. 4, 2020, doi: 10.1177/2158244020972371. [43] A. Khaleghi, Z. Aghaei, and M. A. Mahdavi, “A gamification framework for cognitive assessment and cognitive training: qualitative study,” JMIR Serious Games, vol. 9, no. 2, 2021, doi: 10.2196/21900. [44] M. Riar, B. Morschheuser, R. Zarnekow, and J. Hamari, “Gamification of cooperation: a framework, literature review and future research agenda,” International Journal of Information Management, vol. 67, 2022, doi: 10.1016/j.ijinfomgt.2022.102549. [45] W. R. Malatji, R. van Eck, and T. Zuva, “Understanding the usage, modifications, limitations and criticisms of technology acceptance model (TAM),” Advances in Science, Technology and Engineering Systems, vol. 5, no. 6, pp. 113–117, 2020, doi: 10.25046/aj050612. [46] A. S. Alfaqiri, S. F. M. Noor, and N. S. Ashaari, “Exploring indicators of engagement: applications for gamification of online training systems,” Periodicals of Engineering and Natural Sciences, vol. 8, no. 4, pp. 2096–2106, 2020. [47] J. de Souza Gaspar et al., “A mobile serious game about the pandemic (covid-19 - did you know?): design and evaluation study,” JMIR Serious Games, vol. 8, no. 4, 2020, doi: 10.2196/25226. [48] N. B. Rajani, N. Mastellos, and F. T. Filippidis, “Impact of gamification on the self-efficacy and motivation to quit of smokers: observational study of two gamified smoking cessation mobile apps,” JMIR Serious Games, vol. 9, no. 2, 2021, doi: 10.2196/27290. [49] N. M. Tuah, F. Ahmedy, A. Gani, and L. N. Yong, “A survey on gamification for health rehabilitation care: applications, opportunities, and open challenges,” Information (Switzerland), vol. 12, no. 2, pp. 1–27, 2021, doi: 10.3390/info12020091. [50] K. Bovermann and T. J. Bastiaens, “Towards a motivational design? connecting gamification user types and online learning activities,” Research and Practice in Technology Enhanced Learning, vol. 15, no. 1, 2020, doi: 10.1186/s41039-019-0121-4. [51] M. F. Shahzad, S. Xu, O. ul Rehman, and I. Javed, “Impact of gamification on green consumption behavior integrating technological awareness, motivation, enjoyment and virtual CSR,” Scientific Reports, vol. 13, no. 1, 2023, doi: 10.1038/s41598-023-48835-6. [52] R. Khoshkangini, G. Valetto, A. Marconi, and M. Pistore, “Automatic generation and recommendation of personalized challenges for gamification,” User Modeling and User-Adapted Interaction, vol. 31, no. 1, 2021, doi: 10.1007/s11257-019-09255-2. [53] P. D. Paraschos and D. E. Koulouriotis, “Game difficulty adaptation and experience personalization: a literature review,” International Journal of Human-Computer Interaction, vol. 39, no. 1, pp. 1–22, 2023, doi: 10.1080/10447318.2021.2020008. [54] E. Novak, K. McDaniel, and J. Li, “Factors that impact student frustration in digital learning environments,” Computers and Education Open, vol. 5, p. 100153, 2023, doi: 10.1016/j.caeo.2023.100153. [55] M. Fernández-Raga, D. Aleksić, A. K. İkiz, M. Markiewicz, and H. Streit, “Development of a comprehensive process for introducing gamebased learning in higher education for lecturers,” Sustainability (Switzerland), vol. 15, no. 4, 2023, doi: 10.3390/su15043706. [56] A. Pasqualotto, J. Parong, C. S. Green, and D. Bavelier, “Video game design for learning to learn,” International Journal of Human- Computer Interaction, vol. 39, no. 11, pp. 2211–2228, 2023, doi: 10.1080/10447318.2022.2110684. [57] H. Nasrollahi et al., “Review of serious energy games: objectives, approaches, applications, data integration, and performance assessment,” Energies, vol. 16, no. 19, 2023, doi: 10.3390/en16196948. [58] J. Santhosh, A. P. Pai, and S. Ishimaru, “Toward an interactive reading experience: deep learning insights and visual narratives of engagement and emotion,” IEEE Access, vol. 12, pp. 6001–6016, 2024, doi: 10.1109/ACCESS.2024.3350745. [59] L. J. Cabeza-Ramírez, F. J. Rey-Carmona, M. del Carmen Cano-Vicente, and M. Á. Solano-Sánchez, “Analysis of the coexistence of gaming and viewing activities in twitch users and their relationship with pathological gaming: a multilayer perceptron approach,” Scientific Reports, vol. 12, no. 1, 2022, doi: 10.1038/s41598-022-11985-0. [60] C. J. Passmore and R. L. Mandryk, “A taxonomy of coping strategies and discriminatory stressors in digital gaming,” Frontiers in Computer Science, vol. 2, 2020, doi: 10.3389/fcomp.2020.00040. [61] X. Ye, H. Ning, P. Backlund, and J. Ding, “Flow experience detection and analysis for game users by wearable-devices-based physiological responses capture,” IEEE Internet of Things Journal, vol. 8, no. 3, pp. 1373–1387, 2021, doi: 10.1109/JIOT.2020.3010853. [62] X. Cai, J. Cebollada, and M. Cortiñas, “A grounded theory approach to understanding in-game goods purchase,” PLoS ONE, vol. 17, no. 1 January, 2022, doi: 10.1371/journal.pone.0262998. [63] I. Obaid, M. S. Farooq, and A. Abid, “Gamification for recruitment and job training: model, taxonomy, and challenges,” IEEE Access, vol. 8, pp. 65164–65178, 2020, doi: 10.1109/ACCESS.2020.2984178. [64] M. A. W. Putra Rahmadhan, D. I. Sensuse, R. R. Suryono, and Kautsarina, “Trends and applications of gamification in e-commerce: a systematic literature review,” Journal of Information Systems Engineering and Business Intelligence, vol. 9, no. 1, pp. 28–37, 2023, doi: 10.20473/jisebi.9.1.28-37. [65] J. Dah et al., “Gamification equilibrium: the fulcrum for balanced intrinsic motivation and extrinsic rewards in electronic learning systems,” International Journal of Serious Games, vol. 10, no. 3. 2023, doi: 10.17083/ijsg.v10i3.633. [66] F. K. Alzahrani and W. S. Alhalafawy, “Gamification for learning sustainability in the blackboard system: motivators and obstacles from faculty members’ perspectives,” Sustainability (Switzerland), vol. 15, no. 5, 2023, doi: 10.3390/su15054613. [67] G. Lampropoulos, E. Keramopoulos, K. Diamantaras, and G. Evangelidis, “Integrating augmented reality, gamification, and serious games in computer science education,” Education Sciences, vol. 13, no. 6, 2023, doi: 10.3390/educsci13060618. [68] Sheetal, R. Tyagi, and G. Singh, “Gamification and customer experience in online retail: a qualitative study focusing on ethical perspective,” Asian Journal of Business Ethics, vol. 12, no. 1, pp. 49–69, 2023, doi: 10.1007/s13520-022-00162-1. [69] J. Krath, L. Schürmann, and H. F. O. von Korflesch, “Revealing the theoretical basis of gamification: a systematic review and analysis of theory in research on gamification, serious games and game-based learning,” Computers in Human Behavior, vol. 125, 2021, doi: 10.1016/j.chb.2021.106963. [70] M. M. Alhammad and A. M. Moreno, “Challenges of gamification in software process improvement,” Journal of Software: Evolution and Process, vol. 32, no. 6, 2020, doi: 10.1002/smr.2231. [71] M. Raftopoulos, “Has gamification failed, or failed to evolve? lessons from the frontline in information systems applications,” CEUR Workshop Proceedings, vol. 2637, pp. 21–30, 2020. [72] E. Gkintoni, F. Vantaraki, C. Skoulidi, P. Anastassopoulos, and A. Vantarakis, “Promoting physical and mental health among children and adolescents via gamification—a conceptual systematic review,” Behavioral Sciences, vol. 14, no. 2, 2024, doi: 10.3390/bs14020102. [73] A. Darejeh and S. S. Salim, “Gamification solutions to enhance software user engagement—a systematic review,” International Journal of Human-Computer Interaction, vol. 32, no. 8, pp. 613–642, 2016, doi: 10.1080/10447318.2016.1183330.
(1)
2. Khan KZ, Fau RS, Fau GK, Pushkar P. The objective structured clinical examination (OSCE): AMEE Guide No. 81. Part I: an historical and theoretical perspective. Med Teacher 2013; 35(6): e1437-46. 3. Tadlock L, Barone N, Pangrazio-Kulbersh V, Sabott D, Foley P, Trulove T, Park J, Hernandez-Orsini R, Chung C-H. American Board of Orthodontics: update on the new scenario-based clinical examination. Am J Orthod Dentofacial Orthop 2019; 155: 765-6. 4. O'Brien Janet E, Hagler D, Thompson Marilyn S. Designing simulation scenarios to support performance assessment validity. J Contin Educ Nurs 2015; 46(11): 492-8. 5. Troncon EA. A standardized, structured long-case examination of clinical competence of senior medical students. Med Teacher 2000; 22(4): 380-85. 6. Barone N, Pangrazio-Kulbersh V, Sabott DG, Foley PF, Trulove TS, Park JH et al. American Board of Orthodontics: Progress of the scenario-based clinical examination. Am J Orthod Dentofacial Orthop 2020; 158: 14-5. 7. van der Vleuten C. Validity of final examinations in undergraduate medical training. BMJ 2000; 11(321): 7270. 8. Hall EJ, Simpson A, Imrie H, Ruedisueli N. Time-constrained scenario-based practical examinations (TSPEs): an alternative to OSCEs? Vet Nurs J 2019; 34(6): 154-8. 9. Robles MJ, Miralles R, Esperanza A, Riera M. Different ways to present clinical cases in a classroom: video projection versus live representation of a simulated clinical scene with actors. BMC Med Educ 2019; 19(1): 70. 10. Gayef A. Using simulated patients in medical and health professions education. SHS Web of Conferences 2019; 66: 01016. 11. Pheister M, Stagno S, Cotes R, Prabhakar D, Mahr F, Crowell A et al. Simulated patients and scenarios to assess and teach psychiatry residents. Acad Psychiatry 2017; 41(1): 114-7. 12. Bokken L, Rethans JJ, van Heurn L, Duvivier R, Scherpbier A, van der Vleuten C. Students' views on the use of real patients and simulated patients in undergraduate medical education. Acad Med 2009; 84(7): 958-63. 13. Wanjari S, Vagha S. Utility of OSLER for assessing enhancement of learning in postgraduate students. South-East Asian J Med Educ 2020; 13: 37. 14. Kamarudin MA, Mohamad N, Siraj MNABHH, Yaman MN. The relationship between modified long case and objective structured clinical examination (Osce) in final professional examination 2011 held in UKM Medical Centre. Procedia - Social Behav Sci. 2012; 60: 241-8.
(1)
407
(1)
Aaijaz, N. and Ibrahim, M.D. (2010) ‘Green clothing and eco-fashion: a growing sustainable market for SME’s’, International Conference on Technology Innovation and Industrial Management, pp.102–123. Aakko, M. and Koskennurmi-Sivonen, R. (2013) ‘Designing sustainable fashion: Possibilities and challenges’, Research Journal of Textile and Apparel, Vol. 17, No. 1, p.13. Åkermark, A-M. (2005) The Crucial Role of the Designer in EcoDesign, In PhD Dissertation, Royal Institute of Technology – KTH, Stockholm. Allwood, J.M., Laursen, S.E., de Rodriguez, C.M. and Bocken, N.M. (2015) ‘Well dressed?: the present and future sustainability of clothing and textiles in the United Kingdom’, Journal of the Home Economics Institute of Australia, Vol. 22, No. 1, p.42. Ashdown, S.P. and O’Connell, E.K. (2006) ‘Comparison of test protocols for judging the fit of mature women’s apparel’, Clothing and Textiles Research Journal, Vol. 24, No. 2, pp.137–146. Balach, M., Cichocka, A., Frydrych, I. and Kinsella, M. (2020) ‘Initial investigation into real 3D body scanning versus avatars for the virtual fitting of garments’, Autex Research Journal, Vol. 20, No. 2, p.128. Banim, M., Green, E.E. and Guy, A. (2001) Through the Wardrobe: Women’s Relationships with Their Clothes, Berg, UK. Bhatia, D., Sharma, A. and Malhotra, U. (2014) ‘Recycled fibres: an overview’, International Journal of Fiber and Textile Research, Vol. 4, No. 4, pp.77–82. Bianchi, C. and Birtwistle, G. (2010) ‘Sell, give away, or donate: an exploratory study of fashion clothing disposal behaviour in two countries’, The International Review of Retail, Distribution and Consumer Research, Vol. 20, No. 3, pp.353–368. Biel, A. and Thøgersen, J. (2007) ‘Activation of social norms in social dilemmas: a review of the evidence and reflections on the implications for environmental behaviour’, Journal of Economic Psychology, Vol. 28, No. 1, pp.93–112. Birtwistle, G. and Moore, C.M. (2007) ‘Fashion clothing – where does it all end up?’, International Journal of Retail & Distribution Management, Vol. 35, No. 3, pp.210–216. Black, S. (2012) The Sustainable Fashion Handbook, Thames and Hudson, UK. Broega, A., Ferreira, J. and Providência, B. (2012) ‘Re-design clothing another step in slow design’, Paper presented at the CIMODE 20l2 1st International Fashion and Design Congress. Brown, S. (2010) Eco-Fashion, Laurence King, UK. Bye, E.K. (2010) Fashion Design, Berg Publishers, UK. Cao, H., Chang, R., Kallal, J., Manalo, G., McCord, J., Shaw, J. and Starner, H. (2014) ‘Adaptable apparel: a sustainable design solution for excess apparel consumption problem’, Journal of Fashion Marketing and Management, Vol. 18, No. 1, pp.52–69. Cao, H., Frey, L.V., Farr, C.A. and Gam, H. (2006) ‘An environmental sustainability course for design and merchandising students’, Journal of family and consumer sciences, Vol. 98, No. 2, pp.75–88. Carrico, M. and Kim, V. (2014) ‘Expanding zero-waste design practices: a discussion paper’, International Journal of Fashion Design, Technology and Education, Vol. 7, No. 1, pp.58–64. Cassidy, T.D. (2017) ‘Exploring the garment fit paradigm from a sustainability perspective and its meaning for firstcycle and second-cycle fashion retailers’, Current Trends in Fashion Technology & Textile Engineering, Vol. 1, No. 3, pp.1–13. Cassidy, T. D. and Han, S.L-C. (2017) ‘Upcycling fashion for mass production’, Journal of Sustainability in Fashion and Textiles, Vol. 1, No. 1, pp.148–163. Cline, E.L. (2013) Overdressed: The Shockingly High Cost of Cheap Fashion, Portfolio, USA. Connell, K.Y.H. (2010) ‘Internal and external barriers to eco‐conscious apparel acquisition’, International Journal of Consumer Studies, Vol. 34, No. 3, pp.279–286. Cowan, K. and Kinley, T. (2014) ‘Green spirit: consumer empathies for green apparel’, International Journal of Consumer Studies, Vol. 38, No. 5, pp.493–499. Cross, N. (2003) Engineering Design Methods: Strategies for Product Design, 2000, John Wiley & Sons Ltd., Milton Keynes, UK. Cuc, S. and Vidovic, M. (2011) ‘Environmental sustainability through clothing recycling’, Operations and Supply Chain Management, Vol. 4, Nos. 2/3, pp.108–115. Cunha, J. and Broega, A. (2009) ‘Designing multifunctional textile fashion products’, Paper presented at the AUTEX 2009: 9th World Textile Conference. Curwen, L.G., Park, J. and Sarkar, A.K. (2013) ‘Challenges and solutions of sustainable apparel product development: a case study of Eileen Fisher’, Clothing and Textiles Research Journal, Vol. 31, No. 1, pp.32–47. Dāboliņa, I. and Vilumsone, A. (2012) ‘The role of the latest clothing CAD/CAM system applications in the educational process’, Journal of Material Science, Textile and Clothing Technology, Vol. 1, No. 1, pp.63–67. Davaadorj, K., Tuvshinbayar, K. and Ehrmann, A. (2016) ‘Recycling of cashmere yarn and possible alternative fibres’, Paper presented at the Proceedings of Aachen-Dresden- Denkendorf International Textile Conference, Dresden. De Macedo Guimarães, L.B. (2012) ‘Sociotechnical design for a sustainable world’, Theoretical Issues in Ergonomics Science, Vol. 13, No. 2, pp.240–269. Dervojeda, K., Verzijl, D., Rouwmaat, E., Probst, L. and Frideres, L. (2014) ‘Clean technologies, circular supply chains’, Journal of Business Innovation Observatory, Vol. 1, No. 1, pp.94–100.
(1)
Aaijaz, N., Ibrahim, M.D. (2010). Green clothing and eco-fashion: A growing sustainable market for SME's. Proceedings of 2010 International Conference on Techology Innovation and Industrial Management, June 16-18, Pattaya, Thailand. Artin, P. (2022). Critical sustainability factors of regional SMEs: A case study of regional Australia. Current Research in Environmental Sustainability, 4, 100138. Ball, M. (2009). Betek, Tali ngan Atap Knots, String and Blades: Production and use of organic utility objects by the Orang Ulu of Sarawak. Doctoral dissertation, Durham University. Dey, P.K., Malesios, C., Chowdhury, S., Saha, K., Budhwar, P. & De, D. (2022). Adoption of circular economy practices in small and medium-sized enterprises: Evidence from Europe. International Journal of Production Economics, 248, 108496. Fahad, S., Alnori, F., Su, F. & Deng, J. (2022). Adoption of green innovation practices in SMEs sector: Evidence from an emerging economy. Economic Research, 35(1), 5486-5501. Feijs, L., Toeters, M. (2018). Cellular automata-based generative design of pied-de-poule patterns using emergent behavior: Case study of how fashion pieces can help to understand modern complexity. International Journal of Design, 12(3), 127-144. Fujioka, R., Wubs, B. (2020). Competitiveness of the Japanese denim and jeans industry: The cases of Kaihara and Japan Blue, 1970–2015. In European Fashion, 223-243. Manchester University Press. Ismail, N., Che Ishak, F.A., Arsyad, M.M., Karnjamapratum, S. & Sirison, J. (2021). The Malay’s traditional sweet, dodol: A review of the Malaysia’s heritage delicacy alongside with the rendition of neighbouring countries. Journal of Ethnic Foods, 8(1), 1-13. Jalil, M.H., Shaharuddin, S.S. (2019). Consumer purchase behavior of eco-fashion clothes as a trend to reduce clothing waste. International Journal of Innovative Technology and Exploring Engineering, 8(12), 4224-4233. Jalil, M.H., Shaharuddin, S.S. (2020). Fashion designer behavior toward eco-fashion design. Journal of Visual Art and Design, 12(1), 1-24. Kawane, T., Zhao, R., Ozaki, Y., Otaki, T., Mazumder, S. & Shaw, R. (2022). Local Production, Consumption, and Innovation: Enhancing Sustainability through SMEs in Japan. Rural and Regional Development, 1(2), 10008. Leibrick, F.M. (1989). The Power of Objects: Material Culture's Strategic Importance to Orang Ulu Ethnicity and the Processes of Social Change. Sarawak Museum. Lungu, A., Androne, A., Gurău, L. & Coşereanu, C. (2021). Simulating traditional textile heritage motifs by applying CAD-CAM-CAE tool for furniture decoration. In MATEC Web of Conferences, 343, 04012. EDP Sciences. Miyauchi, R., Zhou, X. & Inoue, Y. (2023). Design elements that increase the willingness to pay for denim fabric products. Textiles, 3(1), 11-25. Moon, H., Miller, D.R. & Kim, S.H. (2013). Product design innovation and customer value: Cross‐cultural research in the United States and Korea. Journal of Product Innovation Management, 30(1), 31-43. Munusamy, J., Chelliah, S. (2011). An investigation of impact of service strategy on customers' satisfaction in the budget airline industry in Malaysia: A case study of air Asia. Contemporary Marketing Review, 1(1), 1-13. Nawawi, N.M., Legino, R. (2016). Traditional Songket and contemporary designs towards commercial products. In Proceedings of the 2nd International Colloquium of Art and Design Education Research (i-CADER 2015), 71-80. Springer Singapore. Prown, J.D. (1982). Mind in matter: An introduction to material culture theory and method. Winterthur portfolio, 17(1), 1-19. Rehman, S.U., Bresciani, S., Yahiaoui, D. & Giacosa, E. (2022). Environmental sustainability orientation and corporate social responsibility influence on environmental performance of small and medium enterprises: The mediating effect of green capability. Corporate Social Responsibility and Environmental Management, 29(6), 1954-1967. Rodríguez-Espíndola, O., Cuevas-Romo, A., Chowdhury, S., Díaz-Acevedo, N., Albores, P., Despoudi, S. & Dey, P. (2022). The role of circular economy principles and sustainableoriented innovation to enhance social, economic and environmental performance: Evidence from Mexican SMEs. International Journal of Production Economics, 248, 108495. Rosli, N.H., Tugang, N.A., Safar, N.W.I.B.M. & Bahari, U.A. (2021). The uniqueness of motif design in the community of Uma Ukit Belaga, Sarawak. International Journal of Applied and Creative Arts, 4(1), 55-67. Sahari, F. (2013). Orang Ulu basketry: Design and material adaptations. Konferensi Antar Universiti Se Borneo-Kalimantan Ke-7 (KABOKA 7), Kota Samarahan, Sarawak. Sahari, F., Hasan, R. H. (2016). Innovation in Orang Ulu indigenous crafts. Journal of Borneo Kalimantan, 2(1), 54-61. Sellato, B. (2017). Material culture studies and ethnocultural identity. Borneo Studies in History, Society and Culture, 57-78. Springer. Suaib, N., Ismail, N., Sadimon, S. & Yunos, Z.M. (2020). Cultural heritage preservation efforts in Malaysia: A survey. In IOP Conference Series: Materials Science and Engineering, 979(1), 012008. IOP Publishing. Suhaimy, N.S., Abdullah, N.Q.J. (2019). Localizing Mimpi through the artistry of Orang Ulu motifs in the set design. Jurnal Wacana Sarjana, 3(3), 1-16. Tung, F.W. (2012). Weaving with Rush: Exploring craft-design collaborations in revitalizing a local craft. International Journal of Design, 6(3). Yadegaridehkordi, E., Foroughi, B., Iranmanesh, M., Nilashi, M. & Ghobakhloo, M. (2023). Determinants of environmental, financial and social sustainable performance of manufacturing SMEs in Malaysia. Sustainable Production and Consumption, 35, 129140.
(1)
Aakash, K., Muzzammil, A.M., Raghavendra, B., & Siddhant, A. (2016). Time, cost, productivity and quality analysis of precast concrete system. International Journal of Innovative Science, Engineering and Technology, 3(5), 252-257. Abdullah, M.R., Arif, M., Haron, T., Kamar, K.A.M., & Nawi, M.N.M. (2009). Industrialised Building System: A definition and concept. Proceeding in ARCOM Conference (pp. 45-52). Nottingham, United Kingdom. Abedi, M., Fathi, M.S., & Mirassa, A.K. (2011). Establishment and development of IBS in Malaysia. International Building and Infrastructure Technology Conference (pp. 404-412). Penang, Malaysia. Ahmad, M.S., Anuar, K., Azman, A., Hamid, Z.A., Sanusi, M., & Zuhairi, M.N.A. (2011). Industrialised Building System (IBS): Revisiting issues of definition and classification. International Journal of Emerging Science, 1(2), 120-132. Aini, J., Azmi, A.B., Napsiah, I., Rizan, A., & Rosnah, Y. (2012). Factors influencing the construction cost of Industrialised Building System (IBS) projects. Procedia - Social and Behavioral Sciences, 35, 689–696. Aishah, S., & Ali, M. (2012). Cost comparison for construction of house using conventional and interlocking block method. Project paper, Universiti Malaysia Pahang. Akash, L., & Venkateswarlu, D. (2016). Design, cost & time analysis of precast & RCC building. International Research Journal of Engineering and Technology, 3(6), 343- 350. Akintoye, A., & Takim, R. (2002). Performance indicators for successful construction project performance. 18th Annual ARCOM Conference (pp 545-555). University of Northumbria, United Kingdom. Alinaitwe, H.M., Hansoon, B., & Mwakali, J.A. (2006). Assessing the degree of Industrialisation in construction – A case of Uganda. Journal of Civil Engineering and Management, 12(3), 221-229. Amir, F., Amir, M., Kadir, M., Hossein, O., Masine, M.T., Saeed, R.M., & Sanaz, T. (2015). Economic comparison of Industrialised Building System and conventional construction system using Building Information Modeling. Journal of Technology, 78(1), 195-207. Andres, C.K., & Smith, R.C. (1998). Principal and practices of heavy construction (5th ed.). New York, United States: Prentice Hall. Angela, L., Herman, S.A., & Nasrun, M.N. (2013). A review of IBS Malaysia current and future study. International Journal of Engineering Research and Technology, 2(10), 2378-2383. Asiah, A.R., Ismail, Z., & Saodah, W. (2012). Users’ perception on housing using IBS in Malaysia: Case study in Klang Valley. Construction Industry Development Board, Kuala Lumpur. Asmah, A.M.B., Khairul, N.A., Martin, S., Melissa, T., Xia, B., & Xiaoling, Z. (2012). The path towards greening the Malaysian construction industry. Renewable and Sustainable Energy Reviews, 52, 1742-1748. Azam, N.H., & Zanarita, A.M. (2012). Construction cost variance for school project in Malaysia. European International Journal of Science and Technology, 1(1), 43-55. Azam, N., Haron, Rahim, M., & Syazwan, M. (2013). Construction cost comparison between conventional and formwork system for condominium project. International Journal of Advanced Studies in Computer Science and Engineering, 2(5), 19-25. Azhari, A., Kamarul, A.M.K, Khairolden, G., Maria, Z.M.Z, Sanusi, S., Taksiah A.M., & Zuhairi A.H. (2012), Drivers and barriers to Industrialised Building System (IBS)roadmaps in Malaysia. Malaysian Construction Research Journal, 9(1), 113-121. Azman, M.N.A., Hamid, Z.A., & Kamar, K.A.M. (2011). Industrialised Building System (IBS): Revisiting issue of definition and classification. International Journal of Emerging Sciences, 1(2), 120-132. Azman, M.N.A., Dzulkalnine, N., Hamid, Z.A., Kamar, K.A.M., & Nawi, M.N.M. (2013). Payment scenario in the Malaysian Construction Industry prior to CIPAA. Retrieved from https://jurnalteknologi.utm.my/index.php/jurnalteknologi/article/view/2804 Badir, Y.F., & Kadir, M.R.A. (1998). Theory of classification and Badir-Razali building systems classification. IJM International Journal of Multilingualism, 50-56. Bari, N., Ismail, N., Jaapar, A., & Yusuff, R. (2011). Factors influencing the construction cost of industrialised Building System Projects. Procedia of Social and Behavioral Science, 35(1), 689-696. Begum, R.A., Jaafar, A.H., Siwar, C., & Pereira, J.J. (2006). A benefit-cost analysis on the economic feasibility of construction waste minimisation: The case of Malaysia. Resources, Conservation and Recycling, 48(1), 86-98. Bhavani, B. (2014). The Indian precast industry- Gaining prominence, The Masterbuilder, p.94. Bouweentrum, P.R.C. (1995). A comparison of international building costs comparisons. A guide into the jungle of costs-and price-comparing studies for the Nertherlands, Belgium, UK, France and Germany. Retrieved from https://thescipub.com/pdf/ 10.3844/ ajassp. 2005. 819.823 Bubshait A.A., & Al-Juwairah, Y.A. (2002). Factors contributing to construction costs in Saudi Arabia. Cost Engineering, 44(5), 30-34. Chan, S.L., & Park M. (2005). Project cost estimation using principal component regression. Construction, Management & Economics, 23(3), 295-304. Chan, Yi., & Wen (2014). Critical review of labor productivity research in construction journals. Journal of Management in Engineering, 30, 214-225. Chan, P.C., & Osei-Kyei (2015). Review of studies on the critical success factors for public– private partnership (PPP) projects from 1990 to 2013. International Journal of Project Management, 33(6), 1335-1346. Chan, T.K. (2011). Comparison of precast construction costs – Case studies in Australia and Malaysia. Proceedings of the 27th Annual ARCOM Conference of the Association of Researchers in Construction Management (pp. 3-12). Bristol, United Kingdom. Chen, Y., Okudan, G.E., & Riley, D.R. (2010). Sustainable performance criteria for construction method selection in concrete buildings. Automation in Construction, 19(2), 235-244. Chung, L.P., & Kadir, A.M. (2007). Implementation strategy for Industrialised Building System (PhD’s thesis). Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia. Construction Industry Development Board (CIDB). (2013, October). Modular construction in construction industry. IBS Digest, 3, 34-37. Construction Industry Development Board (CIDB). (2016). CIDB technical report publication No: 82. Dynamism and sustainability through IBS. Retrieved from http://www.cidb.gov.my/ images/content/laporan-teknikal-pembinaan/Dynamism-- sustainability-through-IBS.pdf Construction Industry Development Board Malaysia (CIDB). (2016). Wage rate assumptions made for the major category of labour. Retrieved from http://myn3c.cidb.gov.my/ cidb_n3c/ progress/lwr.php?4# Construction Industry Development Board Malaysia (CIDB). (2017). IBS Catalogue for Precast Concrete Building System Revision 2017 [Catalogue]. Malaysia: Lembaga Pembangunan Industri Pembinaan Malaysia. Construction Industry Development Board (CIDB). (2017). Industrialised Building Systems (IBS) homepage, Construction Industry Development Board (CIDB). Retrieved from http://www. cidb.gov.my/cidbv3/ Construction Industry Development Board Malaysia (CIDB). (2017). Major materials pricing schedule. Retrieved from https://www.yumpu.com/en/document/view/ 5824795/cidb-average-price-of- building-materials-sm-bmdam Construction Industry Master Plan CIMP. (2007). Construction Industry Master Plan 2006- 2015 (CIMP 2006-2015), Construction Industry Development Board Malaysia (CIDB), Kuala Lumpur. Construction Research Institute of Malaysia (CREAM). (2010). 3rd IBS Roundtable Workshop Report. Construction Research Institute of Malaysia (CREAM), Malaysia. Construction Research Institute of Malaysia (CREAM). (2007). Development of a construction career path model in fulfilling future demands and inspiring youths to establish careers in construction Retrieved from http://www.cream.my/main/ index.php/research-development-r-d/productivity. Dabhade, U.D., Gupta, L.M., Hedaoo, N.A., & Ronghe, G.N. (2009). Time and cost evaluation of construction of steel framed composite floor with precast concrete floor structure. 26th International Symposium on Automation and Robotics in Construction (pp. 139-148), Austin Texas, United State America. Dani, S., Osman, W.N., Zulkifli, M.U. (2012). Adoption Level of Sustainable Construction Practices: A study on Malaysia’s construction stakeholders. The Journal of Southeast Asian Research, 2, 1-6, doi: 10.5171/2012.270273 Davis Langdon Management Consultant. (2010). Literature review of life cycle costing (LCC) and life cycle cost analysis (LCCA). Retrieved from https://www.tmb.org.tr/arastirma_yayinlar/ LCC_Literature_Review_Report.pdf Department of Statistics Malaysia. (2016). Official Portal. Retrieved from http://www.statistic.gov.my. Dineshkumar, N., & Kathirvel, P. (2015). Comparative study on prefabrication construction with cast in-situ construction of residential buildings. International Journal of Innovative Science, Engineering & Technology, 2(4), 527-532. Ding, D. (2008). Sustainable construction – The role of environmental assessment tools. Journal of Environmental Management, 86(3), 451-464. Eastman, C.M. (2008). Relative productivity in the AEC industries in the United States for on-site activities. Journal of Construction Engineering and Management, 134(7), 517-526. Egan, J. (1998). Rethinking construction, report of the construction task force on the scope for improving the quality and efficiency of UK construction industry. Retrieved from http://constructingexcellence.org.uk/wpcontent/uploads/2014/10/rethinking_constru ction_ report. pdf Ekholm, A., Lessing, J., & Stehn, L. (2005). Industrialised housing- Definition and categorization of the concept. Proceedings of the 13th International Group for Lean Construction (pp. 471-480). Sydney, Australia. Elhag, T.M.S., Boussabaine, A.H., & Ballal, T.M.A. (2005). Critical determinants of construction tendering costs: Quantity surveyor’s standpoint. International Journal of Project Management, 23, 538-545. Elias, M.E., Nasrun, M.N., Nadarajan, S., Nizamuddin, Z. (2017). Construction sustainability & awareness amongst contractors in the northern region of Malaysia. International Journal of Supply Chain Management, 6, 259-264. Eurostat. (1996). Pricing guidelines for construction projects. Official publications of the European communities, Luxemborg. Retrieved from Eurostat Publications and databases. Gibb, A. (1999). Offsite fabrication. Scotland, United Kingdom: Whittles Publishing. Gibb, A. & Goodier, C. (2006). Build offsite: Promoting construction offsite. United Kingdom: Loughborough University. Goodier, C., & Gibb, A. (2007). Future opportunities for offsite in the UK. Journal of Construction and Engineering Management, 25(6), 548-585. Hafiz, Z., Hafizal, H., Zainal, A., & Zakwan, R. (2016). Cost comparison on Industrialised Building System (IBS) and conventional method for school construction project. Journal of Scientific Research and Development, 3(4), 95-101. Hao, J.L., Hao, Y., Shen, L.Y., & Tam, Y. (2007). A checklist for assessing sustainability performance of construction projects. Journal of civil Engineering and Management, 14(4), 273-281. Haron, N.A., Hassim, S., Kadir, R., & Jaafar, S. (2005). Building cost comparison between conventional and formwork system: A case study of four-storey school buildings in Malaysia. American Journal of Applied Sciences, 2(4), 819-823. Haron, Nuzul, Syazwan, M.D., & Rahim, M. (2013). Construction cost comparison between conventional and formwork system for condominium project. International Journal of Advanced Studies in Computer Science and Engineering, 2(5), 19-25. Henk, M.V. and Peter, & H.V.M. (1999). Construction costs in the Netherlands in an international context. Construction Management and Economics, 17, 269-283. Idrus, N.F.K., & Utomo, C. (2008). Perception of Industrialised Building System (IBS) within the Malaysian Market. International Conference on Construction and Building Technology, 7, 75-92. Industry Building System (2014). IBS manufacturers in Malaysia. Retrieved from http://ibsportal.cidb.gov.my/Directory?cat=SUPPLIER. Institute of Engineer Malaysia (IEM). (2001, February). A need for new building technologies. Bulletin of Institution of Engineers, Malaysia, 7-8. Ismail, E., & Shaari, S.N. (2003). Promoting the usage of Industrialised Building System (IBS) and modular coordination (MC) in Malaysia Construction Industry. Bulletin of Institute Engineers Malaysia (IEM), 14-26. Ismail, F., Haharuddin, H.E.A., & Yusuwan, N.M. (2012). Management factors for successful IBS projects iImplementation. Procedia-Social and Behavioural Science, 68, 99-107. aafar, M.S., Kadir, M.R.A., Peng, L.W., Salit, M.S., & Thanoon, W.A.M. (2003). The experiences of Malaysia and other countries in Industrialized Building System. Proceeding of International Conference Industrialized building systems (pp. 255- 261). Kuala Lumpur, Malaysia. Jabar, I.L., Ismail, F., & Mustafa, A.A. (2013). Issues in managing construction phase of IBS projects. Procedia-Social Behavioural Science, 101, 81-89. Jabatan Kerja Raya. (2017). School building cost data from element cost analysis form ECA form.Retrieved from https://www.rics.org/globalassets/rics-website/media/ products /data-product/bcis-construction/bcis-elemental-standard-form-cost-analysis-4th-nrm-edition-2012.pdf Jailion, L., & Poon, C. (2008). Sustainable construction aspects of using prefabrication in dense urban environment: A Hong Kong case study. Construction Management Economic, 26(9), 953-966. doi: 10.1080/01446190802259043 Jaillon, L., & Poon, C. (2009). The evolution of prefabricated residential building systems in Hong Kong: A review of the public and the private sector. Automation in Construction, 18(3), 2239-2248. Junid, S.M.S. (1986). Industrialised Building System. Retrieved from https://pdfs.semantic scholar. org/d789/95881f53c69c28dc9495f44416e90a6286ef.pdf Kamar, K.A.M., Mustafa, A., & Zuhairi, A.H. (2009). Barriers to Industrialised Building System (IBS): The case of Malaysia. Proceeding in BuHu 9th International Postgraduate Research Conference (IPGRC) (pp. 29-30). Safford, United Kingdom. Khaiat, H., & Qaddumi, N. (1989). Technical views on the use of prefabricated building systems in Kuwait housing projects. International Journal of Housing Policy, 13, 243-250. Khalfan, M.M.A., & McDermott, P. (2009). The integration of suppliers and manufacturers within construction supply chains through innovative procurement strategies. International Journal of Value Chain Management, 2(3), 359-370. Kow, C.M. (2017). How can CIDB and industry players work hand in hand to promote usage of IBS. Industrialised Building Systems (IBS), Functional Designs, Cost Savings, & Sustainable Practices. Retrieved from http://rehdainstitut e.com/event/ibs-2017/ . Lai, K.W. (2005). Construction labour productivity study for conventional cast in-situ and precast construction methods (Master’s thesis). Malaysia University of Science and Technology, Malaysia. Laws of Malaysia (2018). Malaysian Employment Act 1955. Retrieved from https://www.ilo.org/dyn/natlex/docs/WEBTEXT/48055/66265/E55mys01.htm Lim, M.H., Maksat, O., Serdar, D., & Syuhaida, I. (2017). Significant contributors to cost overruns in construction projects of Cambodia. Cogent Engineering Journal, 4(1), 1-10. Lou, E.C.W., & Kamar, K.A.M. (2012). Industrialised Building Systems: Strategic outlook for manufactured construction in Malaysia. Journal of Architectural Engineering, 18(2), 69-74. Majid, T., Syarifah, A.S.Z., Shukri, Y., Shaharudin, S.Z., & Sanusi, S.A. (2011). Quantitative analysis on the level of IBS acceptance in the Malaysian Construction Industry. Journal of Engineering Science and Technology, 6(2), 179-190. Malaysia Architect Association. (2010). Architects (Scale of Minimum Fees) Rules 2010. Retrieved from https://theveritasdesigngroup.com/global_files/pdf/Architects_ Scale _of_Minimun_ Fees.pdf Malaysia Equity Research. (2014). Construction IBS practical solution to rising costs. Retrieved from http://www.midf.com.my/images /Downloads /Research /EqStrategy /SpecialReports/ Construction-IBS MIDF 140214.pdf. Marsono, A.K., Mokhtar, A.M., & Tap, M.M. (2006). Simulation of Industrialised Building System (IBS) components production. Proceedings of the 6th Asia-Pacific Structural Engineering and Construction Conference (APSEC 2006) (pp. 87-93). Kuala Lumpur, Malaysia. Martinez, S., Navarro, J.M., & Patricia, G. (2008). Building Industrialization: Robotics assembly of modular products. Assembly Automation, 28(2), 134-142. McCarthy, P. (2011). Measuring the size of the world economy: Construction (pp. 343-368). The World Bank Group, Washington, United States. Mcdermott, P. & Will, S. (2007). Building trust in construction projects: Supply chain management. An International Journal, 12, 385-391. Memon, A.H. & Rahman, L., (2010). Factors affecting construction cost in Mara large construction project: Perspective of project management consultant. International Journal of Sustainable Construction Engineering & Technology, 1(2), 41-54. Miller, J., Stephen, E.M., & William, I. (2000). Toward a new paradigm: Simultaneous use of multiple project delivery methods. Journal of Management in Engineering, 16(3), 58-67. Norazmi, A.B. (2008). Exploring the types of construction cost modelling for IBS projects in Malaysia. Conference Proceeding, 1st International Conference on Industrialised, Integrated Intelligent Construction (pp. 14-16). Loughborough, United Kingdom. Omar, W., & Rahman, A.B.A. (2006). Issues and challenge in the implementation of IBS in Malaysia. Proceeding of the 6th Asia-Pacific Structural Engineering and Construction Conference (pp. 45-53). Kuala Lumpur, Malaysia. Parid, W. (2003). Global trends in research, development and construction. Proceeding of The International Conference on Industrialised Building System (IBS 2003). Construction Industry Development Board, Kuala Lumpur, Malaysia. Retrieved from http://malcat.uum.edu.my/kip/Record/upm.239327/Details Phang A.T. (2017). Facilities and incentives for industrialised building systems in Malaysia. Modern construction technologies Industrialised Building Systems (IBS), functional designs, cost savings, & sustainable practices. Retrieved from http://rehdainstitute.com/event/ibs-2017/. Proverbs, D., & Xiao, H. (2002). The performances of contractors in Japan, the UK and the USA. A comparative evaluation of construction cost. Construction Management and Economics, 22, 425-435. Rahim, M., & Syazwan, M. (2013). Construction cost comparison between conventional and formwork system for condominium project. International Journal of Advanced Studies in Computer Science and Engineering, 2(5), 19-25. Rajendra, H.N. & Vivek. (2015). Case study on conventional and fast track construction techniques. International Journal of Science, Engineering and Technology, 3, 1232- 1235. Research Design and Standards Organisation. (2014). Report on cost comparison of precast vs. conventional system in Indian railways, Report No.: WKS-04-2014 (R-1) May 2014. Retrieved from Report on Prefabricated Buildings. Rohana, M., & Siti, S.K. (2013). Enhancing the quality of life by adopting IBS: An economic perspective on mechanisation and automation. Procedia - Social and Behavioral Sciences, 101, 71-80. Rozana, Z., Siti, M.S., & Sarajul, F.M. (2015). Economic attributes in Industrialised Building System in Malaysia. International Journal of Modern Trends in Engineering and Research, 2(7), 65-73. Sarja, A. (1998). Open and industrialised building, international council for building research, studies and documentation. London: E &FN Spoon. Shamsuddin, S.M., Zakaria, R., & Mohamed, S.F.Z. (2013). Economic attributes in Industrialised Building System in Malaysia. Procedia – Social and Behavioral Science, 105, 75-84. Sivapriya, C., Senhamilkumar, S., & Thanjavur. (2014). Time and cost management in precast concrete constructions. International Journal of Scientific Research, 3(4), 171-174 . Stapel, S. (2002). The Eurostat construction price surveys: History, current methodology and new ways for the future. International Conference on ICP, World Bank (pp. 175- 187). Washington, United States. Stoy, C., & Schalcher, H.R. (2007). Residential building projects: Building cost indicators and drivers. Journal of Construction Engineering and Management, 133(2), 139-145. Suyanto, H.O. (2017). Typical Malaysian contractor’s material wastage allowance. Retrieved from https://slideplayer.com/slide/6288022/ Trikha, D.N. (1999). Industrialised Building System: Prospects in Malaysia. Proceeding of World Engineering Congress, Kuala Lumpur, Malaysia. Retrieved from https://books. google.com.my/books?id=sqlqCAAAQBAJ&pg=PA97&lpg=PA97&dq=industriali sed+building+system:+prospects+in+malaysia+trikha&source Trikha, D.N. (2004). Industrialised Building Systems. Retrieved from http://psasir.upm.edu.My/id/ eprint/40368/ Virendravyas, V. (2015). Survey of precast concrete method and cast-in-situ concrete method. International Journal of Engineering and Technical Research, 3(11), 70-73. Walsh, K., & Sawhney, A. (2004). Process for implementation of the basket of construction components approach. Retrieved from http://pubdocs.worldbank.org/en/841101487 648/Construction-AS.pdf Warszawski, A.E.D. (1999). Industrialized and automated building systems: A managerial approach (2nd Edition). London, United Kingdom: E & FN Spon. Yang, J., & Yunus, R. (2011). Sustainability criteria for Industrialised Building Systems (IBS) in Malaysia. Procedia Engineering, 14, 1590-1598. Yong, T.N. (2010). Research project report. Feasibility of precast concrete construction system in Malaysia: A comparative study between Australia and Malaysia. Retrieved from The University of Melbourne, Australia. Zarim, A.B. (2017). Industrialised Building Systems. Modern construction technologies Industrialised Building Systems (IBS), functional designs, cost savings, & sustainable practices. Retrieved from http://rehdainstitute.com/event/ibs-2017/.
(1)
Aaker, D. A. (1991) Managing Brand Equity. New York, The Free PressNY. Batra, R., Lehmann, D. R. & Singh, D. (1993) The Brand Personality Component of Brand Goodwill: Some Antecedents And Consequence. In: Aaker, D. A. & Biel, A. L. (eds.) Brand Equity & Advertising. New York, New York, Psychology Press. Bossel, V., Geyskens, K. & Goukens, C. (2019) Facing a trend of brand logo simplicity: The impact of brand logo design on consumption. Food Quality and Preference. 71, 129–135. Available from: doi: 10.1016/j.foodqual.2018.06.009 Chan, A. K. K. & Huang, Y. Y. (2001) Chinese brand naming: A linguistic analysis of the brands of ten product categories. Journal of Product & Brand Management. 10 (2), 103–119. Available from: doi: 10.1108/10610420110388663 De Mooij, M. K. (2010) Consumer behavior and culture: Consequences for global marketing and advertising. Thousand Oaks, Sage. Deng, X. & Wang, L. (2020) The impact of semantic fluency on consumers’ aesthetic evaluation in graphic designs with text. Journal of Contemporary Marketing Science. 3 (3), 433–446. Available from: doi: 10.1108/jcmars-08-2020-0034 Eckhardt, G. M., Belk, R. W. & Wilson, J. A. J. (2015) The rise of inconspicuous consumption. Journal of Marketing Management. 31 (7–8), 807–826. Available from: doi: 10.1080/0267257X.2014.989890 Heine, K. (2010) The personality of luxury fashion brands. Journal of Global Fashion Marketing. 1 (3), 154–163. Available from: doi:10.1080/20932685.2010.10593067 Heine, K. & Gutsatz, M. (2015) Luxury brand building in China: Eight case studies and eight lessons learned. Journal of Brand Management. 22 (3), 229–245. Available from: doi: 10.1057/bm.2014.25 Heine, K. & Phan, M. (2013) A Case Study of Shanghai Tang. Asia Marketing Journal. 15 (1). Available from: doi: 10.53728/2765-6500.1507 Hennigs, N., Wiedmann, K. P., Klarmann, C., Strehlau, S., Godey, B., Pederzoli, D., Neulinger, A., Dave, K., Aiello, G., Donvito, R., Taro, K., Táborecká-Petrovičová, J., Santos, C. R., Jung, J. & Oh, H. (2012) What is the Value of Luxury? A Cross-Cultural Consumer Perspective. Psychology and Marketing. 29 (12),1018–1034. Available from: doi: 10.1002/mar.20583 Herbert, D. T. (ed.) (1995) Heritage, tourism and society. London, Pinter. Hofstede, G. (1984) Culture’s Consequences: International Differences in Work-Related Values. London, Sage. Hofstede, G. (1994) Management scientists are human. Management Science. 40 (1), 4-13. Jang, J. Y., Baek, E., Yoon, S. Y. & Choo, H. J. (2018) Store design: Visual complexity and consumer responses. International Journal of Design. 12 (2), 105–118. Kim, M. J. & Lim, J. H. (2019) A comprehensive review on logo literature: research topics, findings, and future directions. Journal of Marketing Management. 35 (13–14), 1291–1365. Available from: doi: 10.1080/0267257X.2019.1604563 Kim, S., Yi Luk, K., Xia, B., Xu, N. & Yin, X. (2020) Brand name and ethnicity of endorser in luxury goods: does a glocalization strategy work in China?. International Journal of Advertising. 39 (6), 824–842. Available from: doi: 10.1080/02650487.2018.1548197 Ko, E. & Lee, S. (2011) Cultural heritage fashion branding in Asia. In: Woodside, A. G. (ed.) Tourism Sensemaking: Strategies to Give Meaning to Experience: Volume 5. Bingley, England, Emerald Publishing Limited, pp. 89-109. Available from: doi: 10.1108/S1871-3173(2011)0000005008 Kumar, V., Sunder, S. & Sharma, A. (2015) Leveraging distribution to maximize firm performance in emerging markets. Journal of Retailing. 91 (4), 627-643. Available from: doi: 10.1016/j.jretai.2014.08.005 Lannes, B. & Zhang, C. (2020) China's Unstoppable 2020 Luxury Market. Bain & Company. Available from: https://www.bain.cn/pdfs/202012160134321779.pdf Lee, J. E., Hur, S. & Watkins, B. (2018) Visual communication of luxury fashion brands on social media: effects of visual complexity and brand familiarity. Journal of Brand Management, 25 (5), 449–462. Available from: doi: 10.1057/s41262-018-0092-6 Lee, J. E. & Shin, E. (2020) The effects of apparel names and visual complexity of apparel design on consumers’ apparel product attitudes: A mental imagery perspective. Journal of Business Research. 120, 407–417. Available from: doi: 10.1016/j.jbusres.2019.08.023 Lim, K. H. & Yoon, J. S. (2008) A study on culture content using cultural archetype. Journal of Korea Design Forum. 19, 169–177. Liu, J., Krotova, T., Yezhova, O. & Pashkevich, K. (2018) Traditional elements of Chinese culture in logo design. International Circular of Graphic Education and Research. 11, 66-75. Loureiro, S. M. C., Jiménez-Barreto, J. & Romero, J. (2020) Enhancing brand coolness through perceived luxury values: Insight from luxury fashion brands. Journal of Retailing and Consumer Services. 57. Available from: doi: 10.1016/j.jretconser.2020.102211 Lu, P. X. (2010) Luxury consumer behavior in mainland China: What exists behind the facade of New Wealth?. The World Financial Review. Available from: https://worldfinancialreview.com/luxury-consumer-behavior-in-mainland-china-whatexists-behind-the-facade-of-new-wealth/# Lyppert, E. M. (2020) Rebranding of Luxury – A Case Study of How To Communicate. MSc thesis. The Swedish School of Textiles. Melewar, T. C. & Jenkins, E. (2002) Defining the Corporate Identity Construct. Corporate Reputation Review. 5 (1), 76–90. Available from: doi: 10.1057/palgrave.crr.1540166 Pan, Y. & Schmitt, B. H. (1996) Language and brand attitudes: Impact of script and sound matching in Chinese and English. Journal of Consumer Psychology. 5 (3), 263 – 277. Available from: doi: 10.1207/s15327663jcp0503_03 Paulicelli, E. & Clark, H. (2008) The fabric of cultures-fashion, identity, and globalization. London, Routledge. Pieters, R., Wedel, M. & Batra, R. (2010) The stopping power of advertising: Measures and effects of visual complexity. Journal of Marketing. 74 (5), 48–60. Available from: doi: 10.1509/jmkg.74.5.48 Prentice, R. (1993) Tourism and Heritage Attractions. London, Routledge. Reber, R., Winkielman, P. & Schwarz, N. (1998). Effects of perceptual fluency on affective judgments. Psychological Science. 9 (1), 45-48. Available from: doi: 10.1111/1467-9280.00008 Reber, R., Schwarz, N. & Winkielman, P. (2004) Processing fluency and aesthetic pleasure: is beauty in the perceiver’s processing experience?. Personality and Social Psychology Review. 8 (4), 364-382. Available from: doi: 10.1207/s15327957pspr0804_3 Schroeder, J. E. (2017) Corporate Branding in Perpective: A Typology. European Journal of Marketing. 51 (9-10), 1522-1529. Available from: doi: 10.1108/EJM-07-2017-0450 Schroeder, J. E., Borgerson, J. L. & Wu, Z. (2014). A Brand Culture Approach to Brand Literacy: Consumer Co-Creation and Emerging Chinese Luxury Brands. SSRN Electronic Journal. Available from: doi: 10.2139/ssrn.2511638 Shi, J. & Jiang, Z. (2022) Chinese cultural element in brand logo and purchase intention. Marketing Intelligence and Planning. 41 (2), 171-185. Available from: doi: 10.1108/MIP-04-2022-0175 Shu, H. (2003) Chinese writing system and learning to read. International Journal of Psy-chology. 38 (5), 274–285. Available from: doi: 10.1080/00207590344000060 Song, H. & Kim, J. H. (2022) Developing a brand heritage model for time-honored brands: extending signalling theory. Current Issues in Tourism. 25 (10), 1570–1587. Available from: doi: 10.1080/13683500.2021.1926441 Southworth, S. S. (2019) U.S. Consumers’ Perception of Asian Brands’ Cultural Authenticity and Its Impact on Perceived Quality, Trust, and Patronage Intention. Journal of International Consumer Marketing. 31 (4), 287–301. Available from: doi: 10.1080/08961530.2018.1544528 Stewart-Allen, L. A. (2002) Heritage branding helps in global markets. Marketing News. 36 (16). Tavassoli, N. T. & Han, J. K. (2002) Auditory and visual brand identifiers in Chinese and English. Journal of International Marketing. 10 (2), 13–28. Available from: doi: 10.1509/jimk.10.2.13.19531 Teng, L., Xie, C., Liu, T., Wang, F. & Foti, L. (2021). The effects of uppercase vs. lowercase letters on consumers’ perceptions and brand attitudes. Journal of Business Research. 136, 164–175. Available from: doi: 10.1016/j.jbusres.2021.07.013 Thakor, M. V. & Lavack, A. M. (2003) Effect of perceived brand origin associations on consumer perceptions of quality. Journal of Product & Brand Management. 12 (6), 394-407. Available from: doi: 10.1108/10610420310498821 Turunen, L. L. M. (2017) Interpretations of Luxury: Exploring the Consumer Perspective. London, Palgrave Macmillan Cham. Available from: doi: 10.1007/978-3-319-60870-9 Urde, M. (2007) Corporate brands with a heritage. Brand Management. 15 (1), 4–19. Available from: doi: 10.1057/palgrave.bm.2550106 Van Grinsven, B. & Das, E. (2016) Logo design in marketing communications: Brand logo complexity moderates exposure effects on brand recognition and brand attitude. Journal of MarketingCommunications. 22 (3), 256–270. Available from: doi: 10.1080/13527266.2013.866593 Wang, Y., Wang, T., Mu, W. & Sun, Y. (2022) What is the glamor of black-and-white? The effect of color design on evaluations of luxury brand ads. Journal of Consumer Behaviour. 21 (5), 973–986. Available from: doi: 10.1002/cb.2030 Wiley, R. W. & Rapp, B. (2019) From complexity to distinctiveness: The effect of expertise on letter perception. Psychonomic Bulletin and Review. 26 (3), 974–984. Available from: doi: 10.3758/s13423-018-1550-6 Wu, Z. (2022) Crafting Inconspicuous Luxury Brands Through Brand Authenticity in China. Frontiers in Psychology. 13. Available from: doi: 10.3389/fpsyg.2022.826890 Xu, X., Chen, R. & Liu, M. W. (2017) The effects of uppercase and lowercase wordmarks on brand perceptions. Marketing Letters. 28 (3), 449–460. Available from: doi: 10.1007/s11002-016-9415-0 Yin, R. (1981) The Case Study Crisis: Some Answers. Administrative Science Quarterly. 26 (1), 58-65. Available from: doi: 10.2307/2392599 Ying, W., Sun, S. & Song, Y. (2011) Chinese luxury consumers: Motivation, attitude and behavior. Journal of Promotion Management. 17 (3), 345–359. Available from: doi: 10.1080/10496491.2011.596122 Yu, Y., Zhou, X., Wang, L. & Wang, Q. (2022) Uppercase Premium Effect: The Role of Brand Letter Case in Brand Premiumness. Journal of Retailing. 98 (12), 335- 355. Available from: doi: 10.1016/j.jretai.2021.03.002 Zheng, W., Shanat, M. & Kanyan, L. R. (2022) The Effect of Serif and San Serif Typeface of Luxury Fashion Logotype on Chinese Consumers’ Brand Perception. Journal of Business Administration Research. 11 (2), 9-18. Available from: doi: 10.5430/jbar.v11n2p9 Zhiyan, W., Borgerson, J. & Schroeder, J. (2013). From Chinese Brand Culture to Global Brands. London, Palgrave Macmillan, pp. 151-166. Available from: doi: 10.1057/9781137276353_6
(1)
Aaker, D. A., & Day, G. S. (1978). Consumerism: Search for the Consumer Interest (3rd ed.). New York: The Free Press. Abe-Matsumoto, L. T., Sampaio, G. R., & Bastos, D.H.M. (2018). Do the labels of Vitamin A, C, And E supplements reflect actual vitamin content in commercial supplements? Journal of Food Composition and Analysis, 72, 141-149. Ahmad, N., Shamsu, L. S., & Iqbal Ariffin, M. D. (2023). Halal meat, food fraud, and consumer protection: A comparison of Islamic, European and Malaysian perspectives. Manchester Journal of Transnational Islamic Law & Practice, 19(2), 80-98. Alalwan, A. (2020). Mobile food ordering apps: An empirical study of the factors affecting customer e-satisfaction and continued intention to reuse. International Journal of Information Management, 50, 28-44. Alsmadi, S., & Alnawas, I. (2019). Consumer rights paradigm: Development of the construct in the Jordanian context. Journal of Business Ethics, 159(3), 777-794. Anbumathi, R., Dorai, S., Palaniappan, U. (2023). Evaluating the role of technology and non-technology factors influencing brand love in Online Food Delivery services. Journal of Retailing and Consumer Services. 71. Bant, E., & Paterson, J.M. (2017). Consumer redress legislation: Simplifying or subverting the law of contract. Modern Law Review, 80(5), 895-926. Boone, L.E., Kurtz, D.L., Berston, S., Khan, M.H., & Canzer, B.M. (2020). Contemporary Business (3rd ed.). Toronto: John Wiley & Sons Inc. Bovay, J., & Alston, J.M. (2018). GMO food labels in the United States: Economic implications of the new law. Food Policy, 78, 14-25. Chai, L. T., Ng, D., & Yat, C. (2019). Online food delivery services: Making food delivery the new normal. Journal of Marketing Advances and Practices, 1(1), 64-79. Chawla, N., & Kumar, B. (2022). E-Commerce and consumer protection in India: The emerging trend. Journal of Business Ethics, 180, 581-604. Cheng, C.C., Chang, Y.Y., & Chen, C.T. (2021). Construction of a service quality scale for the online food delivery industry. International Journal of Hospitality Management, 95, 102938. https://doi.org/10.1016/J.IJHM.2021.102938 Cho, M., Bonn, M.A., & Li, J. (2019). Differences in perceptions about food delivery apps between single-person and multi-person households. International Journal of Hospitality Management, 77, 108-116. Claeys, I., & Terryn, E. (2017). Digital Content and Distance Sales: New Developments at EU Level. Cambridge: Intersentia. Consumer Protection Act 1999; Available at: https://mysafe.kpdn.gov.my/img/portal/consumersafety/akta_perlindunganpengguna1999.pdf Dewan Rakyat Malaysia. (1999). Perbahasan Rang Undang-Undang Perlindungan Pengguna 1999. Penyata Rasmi Dewan Rakyat. 30: 4-86 Parlimen Kesembilan Penggal Kelima. Donnelly, M., & White, F. (2019). Digital content and consumer protection: An empirical study of supplier compliance with consumer information obligations. Computer Law & Security Review, 35(6), 1-12. Eu, E. Z. R., & Sameeha, M.J. (2021). Consumers' perceptions of healthy food availability in online food delivery applications (OFD apps) and its association with food choices among public university students in Malaysia. Frontiers in Nutrition, 8, 1-10. Ferretti, F. (2014). EU Competition Law, The Consumer Interest and Data Protection: The Exchange of Consumer Information in The Retail Financial Sector. London: Springer. Frohlich, X. (2017). The informational turn in food politics: The US FDA's nutrition label as information infrastructure. Social Studies of Science, 47(2), 145-171. Gazi, M. N. I. (2018). Eating out eats into health costs. NST. Retrieved from https://www.nst.com.my/opinion/leaders/2018/02/330859/eating-out-eats-health-costs. Ghosh, D. (2020). Customer satisfaction towards fast food through online food delivery (OFD) services: An exploratory study. International Journal of Management, 11(10), 645-658. Hakim, M. P., Zanetta, L. D, Oliveira, J. M. D., & Cunha, D. T. D. (2020). The mandatory labeling of genetically modified foods in Brazil: Consumer's knowledge, trust, and risk perception. Food Research International, 132, 1-10. Ibarra, V. C., & Revilla, C. D. (2014). Consumers awareness on their eight basic rights: A comparative study of Filipinos in the Philippines and Guam. International Journal of Management and Marketing Research, 7(2), 65-78. Ismail, R., Ahmad Yusoff, S. S., Suhor, S., Aziz, A. A., Razman, M. R., & Aboo Talib, K. (2012). Consumer right to safe product: The application of strict criminal liability in product safety legislations in Malaysia. Pertanika Journal of Social Sciences & Humanities, 20(S), 57-72. Kaur, P., Dhir, A., Talwar, S., & Ghuman, K. (2021). The value proposition of food delivery apps from the perspective of theory of consumption value. Contemporary Hospitality Management, 33(4), 1129-1159. Kim, J., Jin, B., & Swinney, J. L. (2009). The role of etail quality, e-satisfaction and e-trust in online loyalty development process. Journal of Retailing and Consumer Services, 16(4), 239-247. Kim, Y., Wang, Q., & Roh, T. (2021). Do information and service quality affect perceived privacy protection, satisfaction, and loyalty? Evidence from a Chinese O2O-based mobile shopping application. Telematics and Informatics, 56, 1-16. Kirillova, E. A., Shergunova, E. A., Ustinovich, E. S., Nadezhin, N. N., & Sitdikova, L. B. (2016). The principles of the consumer right protection in electronic trade: A comparative law analysis. International Journal of Economics and Financial Issues, 6(S2), 117-122. Koay, K. Y., Cheah, C. W., & Chang, Y. X. (2022). A model of online food delivery service quality, customer satisfaction and customer loyalty: A combination of PLS-SEM and NCA approaches. British Food Journal, 124(12), 1-17. Laasch, O., Suddaby, R., Freeman, R. E., & Jamali, D. (2020). Research Handbook of Responsible Management. Cheltenham: Edward Elgar Publishing. Lee, S. O., & Han, H. (2022). Food delivery application quality in customer brand loyalty formation: Identifying its antecedent and outcomes. International Journal of Hospitality Management, 107(5):103292. Liu, X., Lim, X., Cheah, J., Ng, S. I., & Kamal Basha, N. (2023). Food at your doorstep? Examining customer loyalty towards online food delivery applications. British Food Journal, https://doi.org/10.1108/BFJ-02-2023-0116. Loos, M. B. M. & Samoy, I. (2014). The Position of Small and Medium-Sized Enterprises in European Contract Law. Cambridge: Intersentia. Mahgoub, S. E. O., & Nollet, L. M. L. (2019). Testing And Analysis Of GMO-Containing Foods and Feed. Boca Raton: CRC Press. Makanyeza, C., Svotwa, T. D., & Jaiyeoba, O. (2021). The effect of consumer rights awareness on attitude and purchase intention in the hotel industry: Moderating role of demographic characteristics. Cogent Business & Management, 8(1), 1-18. Micklitz, H. W., & Saumier, G. (2018). Enforcement And Effectiveness of Consumer Law. Cham: Springer. Nadason, M., Raj, P. S., & Madarajan, R. D. (2016). Consumer Issues in Malaysia: Strengthening Consumer Protection and Enhancing Consumer Empowerment. Petaling Jaya: Consumer Research and Resource Centre. Nunnally, J. C., & Bernstein, I. R. (1994). Psychometric Theory (3rd ed.). New York: McGraw-Hill. Oliver, R. L. (1999). Whence consumer loyalty?. Journal of Marketing, 63(4), 33-44. Oppotus. (2023). Malaysian Food Delivery Apps in 2023 – Food at Your Fingertips. https://www.oppotus.com/malaysianfooddeliveryappsin2023/ Pee, L., Jiang, J., & Klein, G. (2018). E-store loyalty: Longitudinal comparison of website usefulness and satisfaction. International Journal of Market Research, 12, 1-17. Phuong, N. N. D., & Trang, T. T. D. (2018). Repurchase intention: The effect of service quality, system quality, information quality, and customer satisfaction as mediating role: A PLS approach of M-Commerce ride hailing service in Vietnam. Marketing and Branding Research, 5, 78-91. Pigatto, G., Machado, J. G. D. C. F., Negreti, A. S., & Machado, L.M. (2017). Have you chosen your request? Analysis of online food delivery companies in Brazil. British Food Journal, 119(3), 639-657. Pillai, S. G., Kim, W. G., Haldorai, K., & Kim, H. S. (2022). Online food delivery services and consumers' purchase intention: Integration of theory of planned behavior, theory of perceived risk, and the elaboration likelihood model. International Journal of Hospitality Management, 105, 103275. Prasetyo, Y.T., Tanto, H., Mariyanto, M., Hanjaya, C., Young, M. N., Persada, S. F., Miraja, B. A., & Redi, A. A. N. P. (2021). Factors affecting customer satisfaction and loyalty in online food delivery service during the COVID-19 pandemic: Its relation with open innovation. Journal of Open Innovation: Technology, Markets and Complexity, 7(1), 76-91. Rizzi, M. (2017). The evolution of consumer product safety policy and regulation in India. Journal of Consumer Policy, 40(3), 389-412. Rombach, M., Kartikasari, A., Dean, D. L., Suhartanto, D, & Chen, B. T. (2023). Determinants of customer loyalty to online food service delivery: Evidence from Indonesia, Taiwan, and New Zealand. Journal of Hospitality Marketing & Management, 32(6), 818-842. Ryngelblum, A. L., & Vianna, N. (2017). Accomplishments and relevance of consumer protection organisations. International Journal of Organizational Analysis, 25(1), 160-174. Saad, A. T. (2021). Factors affecting online food delivery service in Bangladesh: An empirical study. British Food Journal, 123(2), 535-550. Sharma, S., Devi, K., Naidu, S., Greig, T., Singh, G., & Slack, N. (2023). From brick and mortar to click and order: Consumers' online food delivery service perceptions post-pandemic. British Food Journal, 125(11), 4143-4162. Shweta, (2022). Role of the consumer protection act in protecting the rights of consumer. Indian Journal of Law and Legal Research, 4, 1-11. Sidharta, S. M., Adityo, D. B., Iqbal, P. M., & Gunad, W. (2021). Customer loyalty analysis on online food delivery services. Turkish Journal of Computer and Mathematics Education, 12(3), 4003-4013. Singh, S. P., Dash, B. P., Sachan, A., & Adhikari, A. (2023). Price or quality? Consumers' preferences and willingness to pay (WTP) for online food delivery services in the COVID-19 era. The TQM Journal, https://doi.org/10.1108/TQM-04-2023-0112 Smith, D. (2016). Is the High Court mistaken about the aim of statutory interpretation?. Federal Law Review, 44(2), 227-255. Statista. (2023). Online Food Delivery in Malaysia. https://www.statista.com/outlook/dmo/online-food-delivery/malaysia Suhartanto, D., Ali, M.H., Tan, K.H., Sjahroeddin, F., & Kusdibyo, L. (2019). Loyalty toward online food delivery service: the role of e-service quality and food quality. Journal of Foodservice Business Research, 22(1), 81-97. Triyuni, N. N., Leo. G., & Suhartanto, D. (2021). Online food delivery service: The link between food quality, e-service quality, trust, and loyalty. Advances in Engineering Research, 207, 697-702. Troise, C., O'Driscoll, A., Tani, M., & Prisco, A. (2020). Online food delivery services and behavioural intention – A test of an integrated TAM and TPB framework. British Food Journal, 123(2), 664-683. Tsai, P-h., Chen, W-H., & Hsiao, C-T. (2023). Factors influencing the consumers' behavioural intention to use online food delivery service: Empirical evidence from Taiwan. Journal of Retailing and Consumer Services, 73. VanVoorhis, C.R.W., & Morgan, B.L. (2007). Understanding power and rules of thumb for determining sample sizes. Tutorials in Quantitative for Psychology, 3(2), 43‐50. Wakita, T., Ueshima, N., & Noguchi, H. (2012). Psychological distance between categories in the Likert scale: Comparing different numbers of options. Educational and psychological measurement, 72(4), 533-546. Whittaker, S. (2019). Unfair terms in commercial contracts and the two laws of competition: French Law and English Law contrasted. Oxford Journal of Legal Studies, 39(2), 404-434. Xin, Y., Irfan, M., Ahmad, B., Ali, M., & Xia, L. (2023). Identifying how e-service quality affects perceived usefulness of online reviews in post-COVID-19 context: A sustainable food consumption behavior paradigm. Sustainability, 15(2), 1-16. Yahya, N. H., & Rasit, R. M. (2019). Muslim consumer rights based on Islamic advertising principles. Islamiyyat, 41(1), 83-92. Yeo, V. C. S., Goh, S., & Rezaei, S. (2017). Consumer experiences, attitude and behavioural intention toward online food delivery (OFD) services. Journal of Retailing and Consumer Services, 35, 150-162. Zharkenova, S. B., & Kulmakhanova, L.S. (2015). Consumer rights protection in international and municipal law: Problems and perspectives. European Research Studies, 18(4), 147-166.
(1)
Aaker, D. A., & Jacobson, R. (2001). The Value Relevance of Brand Attitude in High-Technology Markets. Journal of Marketing Research, 38(4), 485–493. Abbasi, A. (2008). Categorization, analysis, and visualization of computer-mediated communication and electronic markets (PhD Thesis). University of Arizona, USA. Adelopo, I., Asante, J., Dart, E., & Rufai, I. (2017). Learning groups: The effects of group diversity on the quality of group reflection. Accounting Education, 26(5), 553–575. https://doi.org/10.1080/09639284.2017.1327360 Aguirre Garzón, E. A. (2018). Unlicensed EFL Teachers Co-constructing Knowledge and Transforming Curriculum Through Collaborative-Reflective Inquiry. Profile: Issues in Teachers´ Professional Development, 20(1), 73–87. Al-Buhairan, F. (2012). Persuasive design: An information-systems design-theory approach to persuade employment-seeking behavior among people with disabilities (PhD Thesis). Claremont Graduate University, USA. Ali, H. O., Rahman, A. Abdul., & Abidin, W. Z. (2012). Service Learning: An Investigation into its Viability as a Strategy to Achieve Institutional Goals. Procedia - Social and Behavioral Sciences, 56, 388–395. https://doi.org/10.1016/j.sbspro.2012.09.667 Alias, R., Alias, N. A., Luaran, J. E., Noor, H. M., & Rahenan, N. F. (2017). Service Learning for Inclusive Society in Malaysia: Driving Learning through Meaningful Experience. In Student-Driven Learning Strategies for the 21st Century Classroom (pp. 169-178). Al-Samarraie, H., Teng, B. K., Alzahrani, A. I., & Alalwan, N. (2017). E-learning continuance satisfaction in higher education: A unified perspective from instructors and students. Studies in Higher Education, 43(11), 2003–2019. https://doi.org/10.1080/03075079.2017.1298088 226 Alzahrani, A. I., Mahmud, I., Ramayah, T., Alfarraj, O., & Alalwan, N. (2017). Modelling digital library success using the DeLone and McLean information system success model. Journal of Librarianship and Information Science, 51(2), 291–306. Aparicio, M., Bacao, F., & Oliveira, T. (2016). An e-Learning Theoretical Framework. Journal of Educational Technology & Society, 19(1), 292–307. Aparicio, M., Bacao, F., & Oliveira, T. (2017). Grit in the path to e-learning success. Computers in Human Behavior, 66(1), 388–399. Arora, H. (2009). Building decision support for dynamic decision making: A design science approach. (PhD Thesis). Arizona State University, USA. Asghar, M., & Rowe, N. (2017). Reciprocity and critical reflection as the key to social justice in service learning: A case study. Innovations in Education and Teaching International, 54(2), 117–125. https://doi.org/10.1080/14703297.2016.1273788 Ash, S. L., & Clayton, P. H. (2004). The articulated learning: An approach to guided reflection and assessment. Innovative Higher Education, 29(2), 137–154. Ash, S. L., & Clayton, P. H. (2009). Generating, deepening, and documenting learning: The power of critical reflection in applied learning. Journal of Applied Learning in Higher Education, 1, 25-48. Ash, S. L., Clayton, P. H., & Atkinson, Maxine. P. (2005). Integrating Reflection and Assessment to Capture and Improve Student Learning. Michigan Journal of Community Service Learning, 11(2), 49–60. Asmawi, A., & Jaladin, R. A. M. (2017). Exploring Online Collaborative Reflective Practice for Teaching and Counseling Internship. In F. L. Gaol & F. D. Hutagalung (Eds.), Social Interactions and Networking in Cyber Society (pp. 93–107). 227 Baharom, S. S. (2013). Designing Mobile Learning Activities in the Malaysian HE Context: A Social Constructivist Approach (PhD Thesis). Salford Business School University of Salford, UK. Balaban, I., Mu, E., & Divjak, B. (2013). Development of an electronic Portfolio system success model: An information systems approach. Computers & Education, 60(1), 396–411. https://doi.org/10.1016/j.compedu.2012.06.013 Bartleet, B.-L., Bennett, D., Marsh, K., Power, A., & Sunderland, N. (2014). Reconciliation and Transformation through Mutual Learning: Outlining a Framework for Arts-based Service Learning with Indigenous Communities in Australia. International Journal of Education & the Arts, 15(8), 1–23. Bartleet, B.-L., Bennett, D., Power, A., & Sunderland, N. (2019). Service learning with First Peoples: A framework to support respectful and reciprocal learning. Intercultural Education, 30(1), 15–30. https://doi.org/10.1080/14675986.2018.1528526 Bayne, S. (2015). What’s the matter with ‘technology-enhanced learning’? Learning, Media and Technology, 40(1), 5–20. https://doi.org/10.1080/17439884.2014.915851 Becker, S., Cummins, M., Davis, A., Freeman, A., Brown, M., & Hanarayanan, V. (2017). NMC Horizon Report: 2017 Higher Education Edition (p. 60). Retrieved from Texas: The New Media Consortium website: http://cdn.nmc.org/media/2017-nmc-horizon-report-he-EN.pdf Beers, P. J., Boshuizen, H. P. A. (Els), Kirschner, P. A., & Gijselaers, W. H. (2005). Computer support for knowledge construction in collaborative learning environments. Computers in Human Behavior, 21(4), 623–643. Bell, A., Kelton, J., McDonagh, N., Mladenovic, R., & Morrison, K. (2011). A critical evaluation of the usefulness of a coding scheme to categorise levels of reflective 228 thinking. Assessment & Evaluation in Higher Education, 36(7), 797–815. https://doi.org/10.1080/02602938.2010.488795 Bentley-Williams, R. (2017). Engaging university casual tutors in collaborative reflection for improving student learning outcomes. Reflective Practice, 18(4), 540–553. https://doi.org/10.1080/14623943.2017.1323732 Bereiter, C. (2005). Education and mind in the knowledge age. Routledge. Biasutti, M., & Frate, S. (2018). Group metacognition in online collaborative learning: Validity and reliability of the group metacognition scale (GMS). Educational Technology Research and Development, 66(6), 1321–1338. Billig, S. H. (2011). Making the most of your time: Implementing the K-12 service-learning standards for quality practice. The Prevention Researcher, 18(1), 8–14. Birney, R. (2012). Reflective Writing: Quantitative Assessment and Identification of Linguistic Features. (PhD Thesis). Waterford Institute of Technology. Bloomquist, C. (2015). 169 Reflecting on Reflection as a Critical Component in Service Learning. Journal of Education for Library and Information Science Online, 56(2), 169–172. https://doi.org/10.12783/issn.2328-2967/56/2/1 Blunk, O., Prilla, M., & Attwell, G. (2016). Reflection Analytics in Online Communities: Guiding Users to become active in Collaborative Reflection. AR℡@ EC-℡, 27–33. Retrieved from http://ceur-ws.org/Vol-1736/paper2.pdf Boe, T., Gulbrandsen, B., & Sorebo, O. (2015). How to stimulate the continued use of ICT in higher education: Integrating Information Systems Continuance Theory and agency theory. Computers in Human Behavior, 50(1), 375–384. https://doi.org/10.1016/j.chb.2015.03.084 229 Bohoj, M., Borchorst, N. G., Bødker, S., Korn, M., & Zander, P.-O. (2011). Public deliberation in municipal planning: Supporting action and reflection with mobile technology. Proceedings of the 5th International Conference on Communities and Technologies, 88–97. Retrieved from http://dl.acm.org/citation.cfm?id=2103367 Boud, D., Keogh, R., & Walker, D. (1985). Reflection Turning experience into learning. Routledge. Bourelle, T. (2014). Adapting Service-Learning into the Online Technical Communication Classroom: A Framework and Model. Technical Communication Quarterly, 23(4), 247–264. https://doi.org/10.1080/10572252.2014.941782 Bowie, A., & Cassim, F. (2016). Linking classroom and community: A theoretical alignment of service learning and a human-centered design methodology in contemporary communication design education. Education as Change, 1(1), 1–23. Bringle, R., & Clayton, P. H. (2012). Civic Education through Service Learning: What, How, and Why? In L. McIlrath, A. Lyons, & R. Munck (Eds.), Higher Education and Civic Engagement (pp. 101–124). https://doi.org/10.1057/9781137074829_7 Bringle, R. G., & Hatcher, J. A. (1995). A Service-Learning Curriculum for Faculty. Michigan Journal of Community Service Learning, 2(1), 112–122. Bringle, R., & Hatcher, J. A. (1996). Implementing Service Learning in Higher Education. The Journal of Higher Education, 67(2), 221–239. https://doi.org/10.2307/2943981 Bringle, R., & Hatcher, J. A. (1999). Reflection in service learning: Making meaning or experience. Educational Horizons, 2(1), 179–185. Bringle, R., & Hatcher, J. A. (2000). Institutionalization of Service Learning in Higher Education. The Journal of Higher Education, 71(3), 273–290. 230 Bringle, R., & Hatcher, J. A. (2009). Innovative Practices in Service-Learning and Curricular Engagement. New Directions for Higher Education, 147(147), 37–46. Bringle, Robert G., & Hatcher, J. A. (1995). A service-learning curriculum for faculty. Michigan Journal of Community Service Learning, 2(1), 112–122. Brooks, D. C., & Jeffrey, P. (2017). ECAR Study of Undergraduates Students and Information Technology,2017 (p. 41) [Research Report]. Louisville. Brown, S. A., Dennis, A. R., & Venkatesh, V. (2010). Predicting Collaboration Technology Use: Integrating Technology Adoption and Collaboration Research. Journal of Management Information Systems, 27(2), 9–54. https://doi.org/10.2753/MIS0742-1222270201 Bryman, A., & Bell, E. (2011). Business Research Methods (3rd ed.). New York: NY: Oxford University Press, Inc. Burhan-Horasanlı, E., & Ortactepe, D. (2016). Reflective practice-oriented online discussions: A study on EFL teachers’ reflection-on, in and for-action. Teaching and Teacher Education, 59(1), 372–382. https://doi.org/10.1016/j.tate.2016.07.002 Caird, S., & Lane, A. (2015). Conceptualising the role of information and communication technologies in the design of higher education teaching models used in the UK: ICTs in higher education teaching models. British Journal of Educational Technology, 46(1), 58–70. https://doi.org/10.1111/bjet.12123 Carrington, S., Mercer, K. L., Iyer, R., & Selva, G. (2015). The impact of transformative learning in a critical service-learning program on teacher development: Building a foundation for inclusive teaching. Reflective Practice, 16(1), 61–72. https://doi.org/10.1080/14623943.2014.969696 231 Carver, R. L. (1997). Theoretical underpinnings of service learning. Theory Into Practice, 36(3), 143–149. https://doi.org/10.1080/00405849709543760 Cecil, A. (2012). A Framework for Service Learning in Hospitality and Tourism Management Education. Journal of Teaching in Travel & Tourism, 12(4), 313–331. https://doi.org/10.1080/15313220.2012.729452 Checkland, P. (1981). Systems thinking, systems practice. John Wiley & Sons. Cheng, G. (2017). The impact of online automated feedback on students’ reflective journal writing in an EFL course. The Internet and Higher Education, 34, 18–27. https://doi.org/10.1016/j.iheduc.2017.04.002 Chengjun, W. (2009). The analyses of Operating System structure. In Second International Symposium on Knowledge Acquisition and Modeling, 2, 354–357. IEEE. Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern Methods for Business Research, 295(2), 295–336. Chin, W. W., & Newsted, P. R. (1999). Structural Equation Modeling Analysis with Small Samples Using Partial Least Squares. In R. Hoyle (Ed.), Statistical Strategies for Small Sample Research (pp. 307–341). London; Thousand Oakes, Calif: Sage Publications Limited Inc. Chin, W. W. (2010). How to Write Up and Report PLS Analyses. In V. E. Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of Partial Least Squares: Concepts, Methods and Applications (pp. 655–690). https://doi.org/10.1007/978-3-540-32827-8_29 Chirema, K. D. (2007). The use of reflective journals in the promotion of reflection and learning in post-registration nursing students. Nurse Education Today, 27(3), 192–202. https://doi.org/10.1016/j.nedt.2006.04.007 232 Churchill, D. (2011). Web 2.0 in education: A study of the explorative use of blogs with a postgraduate class. Innovations in Education and Teaching International, 48(2), 149–158. https://doi.org/10.1080/14703297.2011.564009 Cidral, W. A., Oliveira, T., Di Felice, M., & Aparicio, M. (2018). E-learning success determinants: Brazilian empirical study. Computers & Education, 122(1), 273–290. https://doi.org/10.1016/j.compedu.2017.12.001 Clara, M., Kelly, N., Mauri, T., & Danaher, P. A. (2017). Can massive communities of teachers facilitate collaborative reflection? Fractal design as a possible answer. Asia-Pacific Journal of Teacher Education, 45(1), 86–98. Clara, M., Mauri, T., Colomina, R., & Onrubia, J. (2019). Supporting collaborative reflection in teacher education: A case study. European Journal of Teacher Education, 42(2), 175–191. https://doi.org/10.1080/02619768.2019.1576626 Costa, C. J., Ferreira, E., Bento, F., & Aparicio, M. (2016). Enterprise resource planning adoption and satisfaction determinants. Computers in Human Behavior, 63(1), 659–671. https://doi.org/10.1016/j.chb.2016.05.090 Coulson, D., & Harvey, M. (2013). Scaffolding student reflection for experience-based learning: A framework. Teaching in Higher Education, 18(4), 401–413. Cress, U., & Kimmerle, J. (2008). A systemic and cognitive view on collaborative knowledge building with wikis. International Journal of Computer-Supported Collaborative Learning, 3(2), 105–122. https://doi.org/10.1007/s11412-007-9035-z Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed., international student edition). Los Angeles London New Delhi Singapore Washington, DC: SAGE. 233 Crompton, H. (2017). Moving toward a mobile learning landscape: Presenting a mlearning integration framework. Interactive Technology and Smart Education, 14(2), 97–109. https://doi.org/10.1108/ITSE-02-2017-0018 Cupelli, L. (2016). An innovative service-learning project to develop cultural competency in undergraduate nursing students. Teaching and Learning in Nursing, 11(3), 113–117. https://doi.org/10.1016/j.teln.2016.01.004 Degeling, M., & Prilla, M. (2011). Modes of collaborative reflection. Organizational Dynamics, 25, 1-5. Retrieved from https://hal.archives-ouvertes.fr/hal-00836670/ Delano, J. D. (2011). Toward end-user specification and design of business systems (PhD Thesis). University of Wisconsin, Milwaukee, USA. DeLone, W. H., & McLean, E. R. (1992). Information Systems Success: The Quest for the Dependent Variable. Information Systems Research, 3(1), 60–95. DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean Model of Information Systems Success: A Ten-Year Update. Journal of Management Information Systems, 19(4), 9–30. https://doi.org/10.1080/07421222.2003.11045748 DeLone, W. H., & McLean, E. R. (2004). Measuring e-Commerce Success: Applying the DeLone & McLean Information Systems Success Model. International Journal of Electronic Commerce, 9(1), 31–47. Devaus, D. A. (2002). Survey in Social Research (4th ed.). London: UCL Press. Dewey, J. (1938). Experience and Education. New York: NY: MacMillan. Dickerson, C., Jarvis, J., Levy, R., & Thomas, K. (2017). Using action, reflection and modelling (ARM) in Malaysian primary schools: Connecting ‘the ARM theory’ with student teachers’ reported practice. Teachers and Teaching, 23(4), 494–514. https://doi.org/10.1080/13540602.2016.1211101 234 Dillman, D. A., Phelps, G., Tortora, R., Swift, K., Kohrell, J., Berck, J., & Messer, B. L. (2009). Response rate and measurement differences in mixed-mode surveys using mail, telephone, interactive voice response (IVR) and the Internet. Social Science Research, 38(1), 1–18. https://doi.org/10.1016/j.ssresearch.2008.03.007 Donnelly, R. (2006). Integrating Learning Technologies with Experiential Learning in a Postgraduate Teacher Education Course. Studying Teacher Education: A Journal of Self-Study of Teacher Education Practices, 2(1), 91–104. Doyle, C. (2016). Social media enabled collaborative learning environments: A design science research approach (PhD Thesis). University College Cork, Ireland. Dresch, A., Lacerda, D. P., & Antunes, J. A. V. (2015). Design Science Research. In Design Science Research (pp. 67–102). https://doi.org/10.1007/978-3-319-07374-3_4 Driessen, E. W., van Tartwijk, J., Overeem, K., Vermunt, J. D., & van der Vleuten, C. P. M. (2005). Conditions for successful reflective use of portfolios in undergraduate medical education. Medical Education, 39(12), 1230–1235. Durbin, D. J., & Marchel, C. A. (2015). Powerful Teaching: A Framework for Utilizing Service Learning in the Classroom. Journal of Teacher Education, 6, 1-17. Epler, C., Drape, T., Broyles, T., & Rudd, R. (2013). The Influence of Collaborative Reflection and Think-Aloud Protocols on Pre-Service Teachers’ Reflection: A Mixed Methods Approach. Journal of Agricultural Education, 54(1), 47–59. https://doi.org/10.5032/jae.2013.01047 Erdogan, F. (2019). Effect of Cooperative Learning Supported by Reflective Thinking Activities on Students’ Critical Thinking Skills. Eurasian Journal of Educational Research, 19(80), 1–24. https://doi.org/10.14689/ejer.2019.80.5 235 Ertmer, P. A., & Newby, T. J. (1993). Behaviorism, Cognitivism, Constructivism: Comparing Critical Features from an Instructional Design Perspective. Performance Improvement Quarterly, 6(4), 50–72. Ertmer, P. A., & Newby, T. J. (2013). Behaviorism, cognitivism, constructivism: Comparing critical features from an instructional design perspective. Performance Improvement Quarterly, 26(2), 43–71. Farooq, M. S., Salam, M., Fayolle, A., Jaafar, N., & Ayupp, K. (2018). Impact of service quality on customer satisfaction in Malaysia airlines: A PLS-SEM approach. Journal of Air Transport Management, 67(1), 169–180. Fessl, A., Blunk, O., Prilla, M., & Pammer, V. (2017). The known universe of reflection guidance. International Journal of Technology Enhanced Learning, 9(3), 103–125. Fleck, R, & Fitzpatrick, G. (2010). Reflecting on Reflection: Framing a Design Landscape. Proceedings of the 22nd Conference of the Computer-Human Interaction Special Interest Group of Australia on Computer-Human Interaction (OZCHI 2010), 216–223. Brisbane, Australia: ACM. Fleck, Rowanne, & Fitzpatrick, G. (2009). Teachers’ and tutors’ social reflection around SenseCam images. International Journal of Human-Computer Studies, 67(12), 1024–1036. https://doi.org/10.1016/j.ijhcs.2009.09.004 Foong, L. Y. Y., Nor, M. B. M., & Nolan, A. (2018). The influence of practicum supervisors’ facilitation styles on student teachers’ reflective thinking during collective reflection. Reflective Practice, 19(2), 225–242. Gable, G., Sedera, D., & Chan, T. (2008). Re-conceptualizing Information System Success: The IS-Impact Measurement Model. Journal of the Association for Information Systems, 9(7), 377–408. https://doi.org/10.17705/1jais.00164 236 Gao, Q., Dai, Y., Fan, Z., & Kang, R. (2010). Understanding factors affecting perceived sociability of social software. Computers in Human Behavior, 26(6), 1846–1861. https://doi.org/10.1016/j.chb.2010.07.022 Garrison, J. (1995). Deweyan pragmatism and the epistemology of contemporary social constructivism. American Educational Research Journal, 32(4), 716–740. Geerts, G. L. (2011). A design science research methodology and its application to accounting information systems research. International Journal of Accounting Information Systems, 12(2), 142–151. https://doi.org/10.1016/j.accinf.2011.02.004 Ghavifekr, S., Razak, A. Z. A., Ghani, A. M. F., & Ran, N. Y. (2015). ICT Integration In Education: Incorporation for Teaching & Learning Improvement. The Malaysian Online Journal of Educational Technology, 2(2), 22–45. Gibbs, G. (1988). Learning by doing: A guide to learning and teaching methods. Oxford Brookes University,Oxford. Gibson, A., Aitken, A., Sándor, Á., Buckingham Shum, S., Tsingos-Lucas, C., & Knight, S. (2017). Reflective writing analytics for actionable feedback. Learning Analytics and Knowledge, 153–162. https://doi.org/10.1145/3027385.3027436 Giles, Jr., Dwightr, E., & Janet, E. (1994). The Theoretical Roots of Service-Learning in John Dewey: Toward a Theory of Service-Learning. Michigan Journal of Community Service Learning, 1(1), 77–85. Graham, C. R., Borup, J., & Smith, N. B. (2012). Using TPACK as a framework to understand teacher candidates’ technology integration decisions: TPACK decision making. Journal of Computer Assisted Learning, 28(6), 530–546. 237 Grand, J. A., Braun, M. T., Kuljanin, G., Kozlowski, S. W. J., & Chao, G. T. (2016). The dynamics of team cognition: A process-oriented theory of knowledge emergence in teams. Journal of Applied Psychology, 101(10), 1353–1385. Gregor, S., & Hevner, A. R. (2013). Positioning and Presenting Design Science Research for Maximum Impact. MIS Quarterly, 37(2), 337–355. Gunawardena, C. N., & Zittle, F. J. (1997). Social presence as a predictor of satisfaction within a computer‐mediated conferencing environment. American Journal of Distance Education, 11(3), 8–26. https://doi.org/10.1080/08923649709526970 Gungor, M. N., & Gungor, M. A. (2019). Pre-service English language teachers’ collaborative development: The emergence of research, rehearsal and reflection (3R) model from an activity theory perspective. European Journal of Teacher Education, 42(1), 98–115. https://doi.org/10.1080/02619768.2018.1545016 Guo, F., Yao, M., Wang, C., Yan, W., & Zong, X. (2016). The Effects of Service Learning on Student Problem Solving: The Mediating Role of Classroom Engagement. Teaching of Psychology, 43(1), 16–21. Hair, J. F., Hollingsworth, C. L., Randolph, A. B., & Chong, A. Y. L. (2017). An updated and expanded assessment of PLS-SEM in information systems research. Industrial Management & Data Systems, 117(3), 442–458. Hair, J. F., Hult, Tomas. M. G., Ringle, C. M., & Sarstedt, M. (2014). A primer on partial least squares structural equation modeling (PLS-SEM). Sage. Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet. Journal of Marketing Theory and Practice, 19(2), 139–152. Hakkinen, P., Järvelä, S., Mäkitalo-Siegl, K., Ahonen, A., Näykki, P., & Valtonen, T. (2017). Preparing teacher-students for twenty-first-century learning practices (PREP 21): A 238 framework for enhancing collaborative problem-solving and strategic learning skills. Teachers and Teaching, 23(1), 25–41. Halberstadt, J., Schank, C., Euler, M., & Harms, R. (2019). Learning Sustainability Entrepreneurship by Doing: Providing a Lecturer-Oriented Service Learning Framework. Sustainability, 11(5), 1-22. https://doi.org/10.3390/su11051217 Haque, Md. M., Chin, H. C., & Huang, H. (2009). Modeling fault among motorcyclists involved in crashes. Accident Analysis & Prevention, 41(2), 327–335. Hart, S. (2015). Engaging the learner: The ABC’s of service–learning. Teaching and Learning in Nursing, 10(2), 76–79. https://doi.org/10.1016/j.teln.2015.01.001 Harvey, M., Baker, M., Semple, A.-L., & Lloyd, K. (2017). Reflection for Learning: A Holistic Approach to Disrupting the Text. In K. McLachlan, G. Walkerden, & V. Fredericks (Eds.), Learning Through Community Engagement (pp. 171–184). https://doi.org/10.1007/978-981-10-0999-0_11 Harvey, M., Coulson, D., & Mackaway, J. (2010). Aligning reflection in the cooperative education curriculum. International Journal of Work-Integrated Learning, 11(3), 137-152. Hassanzadeh, A., Kanaani, F., & Elahi, S. (2012). A model for measuring e-learning systems success in universities. Expert Systems with Applications, 39(12), 10959–10966. https://doi.org/10.1016/j.eswa.2012.03.028 Hatcher, J. A., & Bringle, R. (1997). Reflection: Bridging the Gap between Service and Learning. College Teaching, 45(4), 153–158. Hellmuth, W. (2015). Design Theory for innovation of classroom-based information systems (PhD Thesis). Queensland University of Technology, Queensland, Australia. 239 Helms, M. M., Rutti, R. M., Hervani, A. A., LaBonte, J., & Sarkarat, S. (2015). Implementing and Evaluating Online Service Learning Projects. Journal of Education for Business, 90(7), 369–378. Hennessy, S., Rojas-Drummond, S., Higham, R., Márquez, A. M., Maine, F., Ríos, R. M., … Barrera, M. J. (2016). Developing a coding scheme for analysing classroom dialogue across educational contexts. Learning, Culture and Social Interaction, 9(1), 16–44. https://doi.org/10.1016/j.lcsi.2015.12.001 Henseler, J., Ray, P. A., & Hubona, G. (2016). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management & Data Systems, 116(1), 2-20. https://doi.org/10.1108/IMDS-09-2015-0382 Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8 Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). Advances in International Marketing (20th ed.). Emerald. https://doi.org/10.1108/S1474-7979(2009)0000020014 Hevner, A. R., & Chatterjee, S. (2010). Design Research in Information Systems (2nd Ed.). Springer Science & Business Media. https://doi.org/10.1007/978-1-4419-5653-8 Hevner, A. R., March, S. T., & Ram, S. (2004). Design Science in Information Systems Research. MIS Quarterly, 28(1), 75–105. Hill, Y. Z., Renner, T., Acoba, F., Hiser, K., & Franco, R. W. (2014). Service-Larning’s Role in Achieving Institutional Outcomes: Engagement, Learning, and Achievement. In A. E. Traver & Z. P. Katz (Eds.), Service-Learning at the American Community College (pp. 169–182). 240 Hong, H.-Y., Lin, P.-Y., Chai, C. S., Hung, G.-T., & Zhang, Y. (2019). Fostering design-oriented collective reflection among preservice teachers through principle-based knowledge building activities. Computers & Education, 130, 105–120. https://doi.org/10.1016/j.compedu.2018.12.001 Hou, H.-T., & Wu, S.-Y. (2011). Analyzing the social knowledge construction behavioral patterns of an online synchronous collaborative discussion instructional activity using an instant messaging tool: A case study. Computers & Education, 57(2), 1459–1468. https://doi.org/10.1016/j.compedu.2011.02.012 Huggard, M., Boland, F., & Goldrick, C. M. (2014). Using cooperative learning to enhance critical reflection. Frontiers in Education Conference (FIE) Proceedings, 1–8. IEEE. Hulland, J. (1999). Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strategic Management Journal, 20(2), 195–204. Hullender, R., Hinck, S., Wood-Nartker, J., Burton, T., & Bowlby, S. (2015). Evidences of transformative learning in service-learning reflections. Journal of the Scholarship of Teaching and Learning, 15(4), 58–82. Hwang, H.-L., Wang, H.-H., Tu, C.-T., Chen, S., & Chang, S.-H. (2014). Reciprocity of service learning among students and paired residents in long-term care facilities. Nurse Education Today, 34(5), 854–859. https://doi.org/10.1016/j.nedt.2012.04.001 Isaacs, E., Konrad, A., Walendowski, A., Lennig, T., Hollis, V., & Whittaker, S. (2013). Echoes from the past: How technology mediated reflection improves well-being. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1071–1080. Retrieved from http://dl.acm.org/citation.cfm?id=2466137 Jeffrey, P., & Brooks, D. C. (2017). Faculty IT Study 2017 (p. 43) [Research Report]. Louisville. 241 Jonassen, D., Davidson, M., Collins, M., Campbell, J., & Haag, B. B. (1995). Constructivism and computer‐mediated communication in distance education. American Journal of Distance Education, 9(2), 7–26. https://doi.org/10.1080/08923649509526885 Julie, H. (2014). The development of an implementation framework for service-learning in the undergraduate nursing programme in the Western Cape (PhD Thesis, University of the Western Cape). Retrieved from http://etd.uwc.ac.za/xmlui/handle/11394/4117 Junglas, I., Goel, L., Abraham, C., & Ives, B. (2013). The Social Component of Information Systems—How Sociability Contributes to Technology Acceptance. Journal of the Association for Information Systems, 14(10), 585–616. Keane, T., Keane, W. F., & Blicblau, A. S. (2013). The use of educational technologies to equip students with 21st century skills. Presented at the In 10th IFIP World Conference on Computers in Education, Torun,Poland. Keane, T., Keane, W. F., & Blicblau, A. S. (2014). Beyond traditional literacy: Learning and transformative practices using ICT. Education and Information Technologies, 21(4), 769–781. https://doi.org/10.1007/s10639-014-9353-5 Khan, T. M., & Jacob, S. A. (2015). Service learning for pharmacy students: Experience of a home-grown Community Engagement Elective unit: Service learning for pharmacy students. Journal of Pharmacy Practice and Research, 45(3), 314–317. Kimmerle, J., Moskaliuk, J., Oeberst, A., & Cress, U. (2015). Learning and Collective Knowledge Construction With Social Media: A Process-Oriented Perspective. Educational Psychologist, 50(2), 120–137. Kirkwood, A., & Price, L. (2014). Technology-enhanced learning and teaching in higher education: What is ‘enhanced’ and how do we know? A critical literature review. Learning, Media and Technology, 39(1), 6–36. 242 Kohlbry, P., & Daugherty, J. (2013). Nursing Faculty Roles in International Service–Learning Projects. Journal of Professional Nursing, 29(3), 163–167. https://doi.org/10.1016/j.profnurs.2012.04.018 Kolb, D. A. (1984). Experiential Learning: Experience as the Source of Learning and Development. Englewood Cliffs: New Jersey: Prentice Hall. Kolb, D. A. (2014). Experiential Learning: Experience as the Source of Learning and Development. FT Press. Koo, C., Wati, Y., & Chung, N. (2013). A Study of Mobile and Internet Banking Service: Applying for IS Success Model. Asia Pacific Journal of Information Systems, 23(1), 65–86. Kothari, C. R. (2004). Research Methodology Methods and Techniques (2nd ed.). New Age International Limited, Publishers. Kreijns, K., & Kirschner, P. A. (2004). Designing Sociable CSCL Environments. In J.-W. Strijbos, P. A. Kirschner, & R. L. Martens (Eds.), What We Know About CSCL: And Implementing It In Higher Education (pp. 221–243). https://doi.org/10.1007/1-4020-7921-4_9 Kreijns, K., & Kirschner, P. A. (2018). Extending the SIPS-Model: A Research Framework for Online Collaborative Learning. In V. Pammer-Schindler, M. Pérez-Sanagustín, H. Drachsler, R. Elferink, & M. Scheffel (Eds.), Lifelong Technology-Enhanced Learning (Vol. 11082, pp. 277–290). https://doi.org/10.1007/978-3-319-98572-5_21 Kreijns, K., Kirschner, P. A., & Jochems, W. (2003). Identifying the pitfalls for social interaction in computer-supported collaborative learning environments: A review of the research. Computers in Human Behavior, 19(3), 335–353. 243 Kreijns, K., Kirschner, P. A., Jochems, W., & van Buuren, H. (2007). Measuring perceived sociability of computer-supported collaborative learning environments. Computers & Education, 49(2), 176–192. https://doi.org/10.1016/j.compedu.2005.05.004 Kreijns, K., Kirschner, P. A., & Vermeulen, M. (2013). Social Aspects of CSCL Environments: A Research Framework. Educational Psychologist, 48(4), 229–242. Kreijns, K., Van Acker, F., Vermeulen, M., & Van Buuren, H. (2014). Community of Inquiry: Social Presence Revisited. E-Learning and Digital Media, 11(1), 5–18. https://doi.org/10.2304/elea.2014.11.1.5 Krogstie, B. R., Prilla, M., Wessel, D., Knipfer, K., & Pammer, V. (2012). Computer Support for Reflective Learning in the Workplace: A Model. 2012 IEEE 12th International Conference on Advanced Learning Technologies, 151–153. Krutka, D. G., Bergman, D. J., Flores, R., Mason, K., & Jack, A. R. (2014). Microblogging about teaching: Nurturing participatory cultures through collaborative online reflection with pre-service teachers. Teaching and Teacher Education, 40(1), 83–93. https://doi.org/10.1016/j.tate.2014.02.002 Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174. Langlois, J. (2019). Self-Determined Service-Learning Framework: Enhancing Graduate Students’ Perceptions of Competence (PhD Thesis). University of St. Thomas, Minnesota, USA. Laylavi, F. (2017). A Framework for Adopting Twitter Data in Emergency Response (PhD Thesis). The University of Melbourne, Victoria, Australia. Le Grange, L. (2007). The ‘theoretical foundations’ of community service-learning: From taproots to rhizomes. Education as Change, 11(3), 3–13. 244 Le, Q. T., Pedro, A., & Park, C. S. (2015). A Social Virtual Reality Based Construction Safety Education System for Experiential Learning. Journal of Intelligent & Robotic Systems, 79(3–4), 487–506. https://doi.org/10.1007/s10846-014-0112-z Lee, S. M., & Lee, S. (2012). Success factors of open‐source enterprise information systems development. Industrial Management & Data Systems, 112(7), 1065–1084. Leino, J. (1995). Cooperative Reflection in Teacher Education: A Finish Perspective. Teacher Education Quarterly, 22(1), 31–38. Lim, C. P., Lee, J. C.-K., & Jia, N. (2016). E-portfolios in Pre-service Teacher Education: Sustainability and Lifelong Learning. In J. Chi-Kin Lee & C. Day (Eds.), Quality and Change in Teacher Education (pp. 163–174). Lin, H.-F. (2007). Measuring Online Learning Systems Success: Applying the Updated DeLone and McLean Model. CyberPsychology & Behavior, 10(6), 817–820. https://doi.org/10.1089/cpb.2007.9948 Lin, L. (2015). Exploring Collaborative Learning: Theoretical and Conceptual Perspectives. In L. Lin (Ed.), Investigating Chinese HE EFL Classrooms (pp. 11–28). https://doi.org/10.1007/978-3-662-44503-7_2 Lin, X., Hmelo, C., Kinzer, C. K., & Secules, T. J. (1999). Designing technology to support reflection. Educational Technology Research and Development, 47(3), 43–62. https://doi.org/10.1007/BF02299633 Longart, P., Wickens, E., Ocaña, W., & Llugsha, V. (2017). A stakeholder analysis of a service learning project for tourism development in An Ecuadorian Rural Community. Journal of Hospitality, Leisure, Sport & Tourism Education, 20, 87–100. https://doi.org/10.1016/j.jhlste.2017.04.002 245 Machado-Da-Silva, F. N., Meirelles, F. D. S., Filenga, D., & Filho, M. B. (2015). Student Satisfaction Process In Virtual Learning System: Considerations Based In Information And Service Quality From Brazil’s Experience. Turkish Online Journal of Distance Education, 15(3), 122–142. https://doi.org/10.17718/tojde.52605 March, S. T., & Smith, G. F. (1995). Design and natural science research on information technology. Decision Support Systems, 15(4), 251–266. Martins, J., Branco, F., Gonçalves, R., Au-Yong-Oliveira, M., Oliveira, T., Naranjo-Zolotov, M., & Cruz-Jesus, F. (2018). Assessing the success behind the use of education management information systems in higher education. Telematics and Informatics, 38(1), 182–193. https://doi.org/10.1016/j.tele.2018.10.001 Md-Ali, A. (2013). Web Interactive Multimedia Technology in University Learning Environments (PhD Thesis). RMIT University, Australia. Meyer, C. L., Harned, M., Schaad, A., Sunder, K., Palmer, J., & Tinch, C. (2016). Inmate Education as a Service Learning Opportunity for Students: Preparation, Benefits, and Lessons Learned. Teaching of Psychology, 43(2), 120–125. Mishra, P., & Koehler, M. J. (2006). Technological Pedagogical Content Knowledge: A Framework for Teacher Knowledge. Teachers College Record, 108(6), 1017–1054. Mitchell, T. D., Richard, F. D., Battistoni, R. M., Rost-Banik, C., Netz, R., & Zakoske, C. (2015). Reflective Practice That Persists: Connections between Reflection in Service-Learning Programs and in Current Life. Michigan Journal of Community Service Learning, 21(2), 49–63. MOEM. (2015). Malaysia Education Blueprint 2015-2025 (p. 40). Retrieved from Ministry of Education Malaysia website: www.mohe.gov.my 246 Mohammadi, H. (2015). Investigating users’ perspectives on e-learning: An integration of TAM and IS success model. Computers in Human Behavior, 45(1), 359–374. https://doi.org/10.1016/j.chb.2014.07.044 Mokko Ahonen. (2011). Designing an Information System for Open Innovation Bridging the Gap between Individual and Organisational Creativity (PhD Thesis). University of Tampere, Finland. Molee, L. M., Henry, M. E., Sessa, V. I., & McKinney-Prupis, E. R. (2010). Assessing Learning in Service-Learning Courses Through Critical Reflection. Journal of Experiential Education, 33(3), 239–257. https://doi.org/10.5193/JEE33.3.239 Molinillo, S., Aguilar-Illescas, R., Anaya-Sánchez, R., & Vallespín-Arán, M. (2018). Exploring the impacts of interactions, social presence and emotional engagement on active collaborative learning in a social web-based environment. Computers & Education, 123(1), 41–52. https://doi.org/10.1016/j.compedu.2018.04.012 Montgomery, S. E., Miller, W., Foss, P., Tallakson, D., & Howard, M. (2017). Banners for Books: “Mighty-Hearted” Kindergartners Take Action through Arts-Based Service Learning. Early Childhood Education Journal, 45(1), 1–14. Moon, J. A. (1999). Reflection in learning and professional development: Theory and practice. London: Kogan Page. Musa, N., Ibrahim, D. H. A., Abdullah, J., Saee, S., Ramli, F., Mat, A. R., & Khiri, M. J. A. (2017). A Methodology for Implementation of Service Learning in Higher Education Institution: A case study from Faculty of Computer Science and Information Technology, UNIMAS. Journal of Telecommunication, Electronic and Computer Engineering, 9(2–10), 101–109. 247 Myers, M. D., & Venable, J. R. (2014). A set of ethical principles for design science research in information systems. Information & Management, 51(6), 801–809. Nejmeh, B. A. (Ed.). (2012). Service-Learning in the Computer and Information Sciences: Practical Applications in Engineering Education. Nguyen, Q. H. (2015). Building a Web Application with Laravel 5. Oulu University of Applied Sciences. Nielsen, D. (2016). Facilitating Service Learning in the Online Technical Communication Classroom. Journal of Technical Writing and Communication, 46(2), 236–256. https://doi.org/10.1177/0047281616633600 Novakovich, J. (2016). Fostering critical thinking and reflection through blog-mediated peer feedback: Fostering critical thinking and reflection. Journal of Computer Assisted Learning, 32(1), 16–30. https://doi.org/10.1111/jcal.12114 Olfat, H. (2013). Automatic Spatial Metadata Updating and Enrichment (PhD Thesis). The University of Melbourne, Melbourne, Australia. O’Neil, C. A., Rietschel, M. J., & Fisher, C. A. (2013). Developing Online Learning Environments in Nursing Education (3rd ed.). Springer Publishing Company. Osman, K. (2011). The Inculcation of Generic Skills through Service Learning Experience among Science Student Teachers. Procedia - Social and Behavioral Sciences, 18(1), 148–153. https://doi.org/10.1016/j.sbspro.2011.05.022 Pallant, J. (2011). SPSS Survival Manual: A Step By Step Guide to Data Analysis Using SPSS (4th ed.). Retrieved from www.allenandunwin.com Peacock, C. (2012). Design science research toward designing/prototyping a repeatable model for testing location management (LM) algorithms for wireless networking (PhD Thesis). Capella University, USA. 248 Peffers, K., Rothenberger, M., & Kuechler, B. (2012). Design Science Research in Information Systems: Advances in Theory and Practice (1st ed.). Springer. https://doi.org/10.1007/978-3-642-29863-9 Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A Design Science Research Methodology for Information Systems Research. Journal of Management Information Systems, 24(3), 45–77. https://doi.org/10.2753/MIS0742-1222240302 Petkus, E. (2000). A Theoretical and Practical Framework for Service-Learning in Marketing: Kolb’s Experiential Learning Cycle. Journal of Marketing Education, 22(1), 64–70. https://doi.org/10.1177/0273475300221008 Petter, S., DeLone, W., & McLean, E. (2008). Measuring information systems success: Models, dimensions, measures, and interrelationships. European Journal of Information Systems, 17(3), 236–263. https://doi.org/10.1057/ejis.2008.15 Phielix, C., Prins, F. J., Kirschner, P. A., Erkens, G., & Jaspers, J. (2011). Group awareness of social and cognitive performance in a CSCL environment: Effects of a peer feedback and reflection tool. Computers in Human Behavior, 27(3), 1087–1102. https://doi.org/10.1016/j.chb.2010.06.024 Piaget, J. (1977). The development of thought: Equilibration of cognitive structures. New York: NY: Viking Press. Pianpeng, T., & Koraneekij, P. (2016). Development of a Model of Reflection Using Video Based on Gibbs’s Cycle in Electronic Portfolio to Enhance Level of Reflective Thinking of Teacher Students. International Journal of Social Science and Humanity, 6(1), 26–31. https://doi.org/10.7763/IJSSH.2016.V6.612 Plack, M. M., Driscoll, M., Blissett, S., McKenna, R., & Plack, T. P. (2005). A method for assessing reflective journal writing. Journal of Allied Health, 34(4), 199–208. 249 Poulova, P., & Simonova, I. (2014). E-learning Reflected in Research Studies in Czech Republic: Comparative Analyses. Procedia - Social and Behavioral Sciences, 116(1), 1298–1304. https://doi.org/10.1016/j.sbspro.2014.01.386 Price, L., & Kirkwood, A. (2014). Using technology for teaching and learning in higher education: A critical review of the role of evidence in informing practice. Higher Education Research & Development, 33(3), 549–564. Prilla, M. (2015). Supporting Collaborative Reflection at Work: A Socio-Technical Analysis. AIS Transactions on Human-Computer Interaction, 7(1), 1–17. Prilla, M., & Blunk, O. (2015). Reflective TEL: Augmenting Learning Tools with Reflection Support. In Lecture Notes in Computer Science. Design for Teaching and Learning in a Networked World (pp. 626–629). https://doi.org/10.1007/978-3-319-24258-3_74 Prilla, M., Degeling, M., & Herrmann, T. (2012). Collaborative reflection at work: Supporting informal learning at a healthcare workplace. Proceedings of the 17th ACM International Conference on Supporting Group Work, 55–64. Retrieved from http://dl.acm.org/citation.cfm?id=2389185 Prilla, M., Nolte, A., Blunk, O., Liedtke, D., & Renner, B. (2015). Analyzing collaborative reflection support: A content analysis approach. ECSCW 2015: Proceedings of the 14th European Conference on Computer Supported Cooperative Work, 19-23 September 2015, Oslo, Norway, 123–142. Prilla, M., Pammer, V., & Krogstie, B. (2013). Fostering collaborative redesign of work practice: Challenges for tools supporting reflection at work. ECSCW 2013: Proceedings of the 13th European Conference on Computer Supported Cooperative 250 Work, 21-25 September 2013, Paphos, Cyprus, 249–268. Retrieved from http://link.springer.com/chapter/10.1007/978-1-4471-5346-7_13 Prilla, M., & Renner, B. (2014). Supporting Collaborative Reflection at Work: A Comparative Case Analysis. 18th International Conference on Supporting Group Work, 182–193. https://doi.org/10.1145/2660398.2660400 Puentedura, R. R. (2009). As We May Teach: Educational Technology, From Theory Into Practice. Rashid, T., & Asghar, H. M. (2016). Technology use, self-directed learning, student engagement and academic performance: Examining the interrelations. Computers in Human Behavior, 63(1), 604–612. https://doi.org/10.1016/j.chb.2016.05.084 Richardson, S. M. (2006). Healthcare Information Systems: Design theory, principles and application’ (PhD Thesis). University of Central Florida, USA. Roakes, S. L., & Norris-Tirrell, D. (2000). Community Service Learning in Planning Education A Framework for Course Development. Journal of Planning Education and Research, 20(1), 100–110. https://doi.org/10.1177/073945600128992636 Rodriguez, M. A. (2014). Content Analysis as a Method to Assess Online Discussions for Learning. SAGE Open, 4(4), 1–14. https://doi.org/10.1177/2158244014559019 Rolfe, G., Freshwater, D., & Jasper, M. (2001). Critical reflection for nursing and the helping professions: A user’s guide. Palgrave Basingstoke. Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case study research in software engineering. Empirical Software Engineering, 14(2), 131–164. https://doi.org/10.1007/s10664-008-9102-8 251 Rutti, R. M., LaBonte, J., Helms, M. M., Hervani, A. A., & Sarkarat, S. (2016). The service learning projects: Stakeholder benefits and potential class topics. Education + Training, 58(4), 422–438. https://doi.org/10.1108/ET-06-2015-0050 Ryan, M. (2011). Improving reflective writing in higher education: A social semiotic perspective. Teaching in Higher Education, 16(1), 99–111. Ryan, M., & Ryan, M. (2013). Theorising a model for teaching and assessing reflective learning in higher education. Higher Education Research & Development, 32(2), 244–257. https://doi.org/10.1080/07294360.2012.661704 Salam, M., Awang Iskandar, D. N., Ibrahim, D. H. A., & Farooq, M. S. (2019). Service learning in higher education: A systematic literature review. Asia Pacific Education Review. 20(4), 573–593. https://doi.org/10.1007/s12564-019-09580-6 Salam, M., Iskandar, D. N. F. A., & Ibrahim, D. H. A. (2017). Service Learning Support for Academic Learning and Skills Development. Journal of Telecommunication, Electronic and Computer Engineering, 9(2–10), 111–117. Sam, A. (2016). A Framework for Micro Level Assessment and 3D Visualisation of Flood Damage to a Building (PhD Thesis). The University of Melbourne, Victoria, Australia. Samardzija, A. Ć. (2016). Measuring the Success of the Interactive Mobile Information Systems at the Individual Level of Use (PhD Thesis). University of Zagreb. Sanchez-Franco, M. J. (2009). The Moderating Effects of Involvement on the Relationships Between Satisfaction, Trust and Commitment in e-Banking. Journal of Interactive Marketing, 23(3), 247–258. https://doi.org/10.1016/j.intmar.2009.04.007 252 Scardamalia, M. (2002). Collective cognitive responsibility for the advancement of knowledge. In B. Smith & C. Bereiter (Eds.), Liberal education in a knowledge society (B. Simth). Chicago: Open Court. Scardamalia, M., & Bereiter, C. (1991). Higher Levels of Agency for Children in Knowledge Building: A Challenge for the Design of New Knowledge Media. Journal of the Learning Sciences, 1(1), 37–68. https://doi.org/10.1207/s15327809jls0101_3 Scardamalia, M., & Bereiter, C. (2006). Knowledge building: Theory, pedagogy, and technology. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (2nd ed., pp. 97–118). New York: Cambridge University Press. Schon, D. A. (1983). The reflective practitioner: How professionals think in action (Vols. 1–5126). New York: Basic Books. Schuh, K. L., & Barab, S. A. (2008). Philosophical Perspectives. In D. Jonassen, M. J. Spector, M. Driscoll, & M. D. Merrill (Eds.), Handbook of Research on Educational Communications and Technology, (pp. 67–82). New York: Routledge. Shanmugapriya, S., & Subramanian, K. (2015). Structural equation model to investigate the factors influencing quality performance in Indian construction projects. Sadhana, 40(6), 1975–1987. https://doi.org/10.1007/s12046-015-0421-3 Siegel, A. W., & Schraagen, J. M. (2017). Team reflection makes resilience-related knowledge explicit through collaborative sensemaking: Observation study at a rail post. Cognition, Technology & Work, 19(1), 127–142. Singh, G., Hawkins, L., & Whymark, G. (2009). Collaborative knowledge building process: An activity theory analysis. VINE, 39(3), 223–241. 253 Smit, E. M., & Tremethick, M. J. (2017). Value of Online Group Reflection After International Service-Learning Experiences: I Never Thought of That. Nurse Educator, 42(6), 286–289. https://doi.org/10.1097/NNE.0000000000000381 Sommerville, I. (2011). Software engineering (9th ed.). Addison-Wesley Educational Publishers Inc. Soria, K. M., & Weiner, B. (2013). A “Virtual Fieldtrip”: Service Learning in Distance Education Technical Writing Courses. Journal of Technical Writing and Communication, 43(2), 181–200. https://doi.org/10.2190/TW.43.2.e Stahl, G. (2000). A model of collaborative knowledge-building. Fourth International Conference of the Learning Sciences, 10, 70–77. Mahwah, NJ: Erlbaum, 2000a. Stahl, G. (2002). Contributions to a Theoretical Framework for CSCL. Proceedings of the Conference on Computer Support for Collaborative Learning: Foundations for a CSCL Community, 62–71. Stahl, G. (2005). Group cognition in computer-assisted collaborative learning. Journal of Computer Assisted Learning, 21(2), 79–90. Stahl, G. (2013). Theories of Cognition in Collaborative Learning. In C. E. Hmelo-Silver (Ed.), The international handbook of collaborative learning (1st ed., pp. 86–102). Routledge. Stahl, G., & Hesse, F. (2009). Practice perspectives in CSCL. International Journal of Computer-Supported Collaborative Learning, 4(2), 109–114. Stahl, G., Koschmann, T., & Suthers, D. (2006). Computer-supported collaborative learning. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (R. K. Sawyer). Cambridge, UK: Cambridge University Press. 254 Stale, W. (2012). Model-Driven Software Development for Continuity of Care Information Systems (PhD Thesis). University of Tromso, Norway. Stokes, J., McCormick, M., Farrell, V., & Bratsou, M.-L. (2017). Innovation through reflection and collaboration: Students and clinicians learn side by side. Bulletin: The Official Magazine of the Royal College of Speech and Language Therapists, 18–19. Stover, C. M. (2016). Reflection Promotes Transformation in a Service Learning Course. Metropolitan Universities, 27(1), 25–43. Sun, P., Tsai, R. J., Finger, G., Chen, Y.-Y., & Yeh, D. (2008). What drives a successful e-Learning? An empirical investigation of the critical factors influencing learner satisfaction. Computers & Education, 50(4), 1183–1202. Sun, Y.-C., & Yang, F.-Y. (2015). I help, therefore, I learn: Service learning on Web 2.0 in an EFL speaking class. Computer Assisted Language Learning, 28(3), 202–219. https://doi.org/10.1080/09588221.2013.818555 Talbot, P., & Bizzell, B. (2016). Teaching, Technology, and Transformation. In R. Papa & F. W. English (Eds.), Educational Leaders Without Borders (pp. 83–104). Tam, C., & Oliveira, T. (2016). Understanding the impact of m-banking on individual performance: DeLone & McLean and TTF perspective. Computers in Human Behavior, 61(1), 233–244. https://doi.org/10.1016/j.chb.2016.03.016 Tenenhaus, M., Vinzi, V. E., Chatelin, Y.-M., & Lauro, C. (2005). PLS path modeling. Computational Statistics & Data Analysis, 48(1), 159–205. Tracey, M. W., & Kacin, S. E. (2014). Graduate students in a service learning design case: The development of a parenting program. Journal of Computing in Higher Education, 26(3), 227–237. https://doi.org/10.1007/s12528-014-9086-x 255 Tu, C.-H., & McIsaac, M. (2002). The Relationship of Social Presence and Interaction in Online Classes. The American Journal of Distance Education, 16(3), 131–150. Turky, M. A. (2016). Promoting Reflective Thinking Skills by Using Web 2.0 Application. Electronic Journal Tanta University, Egypt, 1(1), 1-8. Retrieved from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2758239 Turnley, M. (2007). Integrating Critical Approaches to Technology and Service-Learning Projects. Technical Communication Quarterly, 16(1), 103–123. https://doi.org/10.1080/10572250709336579 Uppal, M. A., Ali, S., & Gulliver, S. R. (2017). Factors determining e-learning service quality. British Journal of Educational Technology, 49(3), 412–426. Urbach, N., Smolnik, S., & Riempp, G. (2010). An empirical investigation of employee portal success. The Journal of Strategic Information Systems, 19(3), 184–206. Veen, M., & dela-Croix, A. (2016). Collaborative Reflection Under the Microscope: Using Conversation Analysis to Study the Transition From Case Presentation to Discussion in GP Residents’ Experience Sharing Sessions. Teaching and Learning in Medicine, 28(1), 3–14. https://doi.org/10.1080/10401334.2015.1107486 Venable, J. (2006). A framework for design science research activities. In Emerging Trends and Challenges in Information Technology Management, 184–187. Washington, DC , USA: Idea Group Publishing. Venable, J., Pries-Heje, J., & Baskerville, R. (2012). A Comprehensive Framework for Evaluation in Design Science Research. In K. Peffers, M. Rothenberger, & B. Kuechler (Eds.), Design Science Research in Information Systems. Advances in Theory and Practice, (1st ed., pp. 423–438). https://doi.org/10.1007/978-3-642-29863-9_31 256 Venable, J., Pries-Heje, J., & Baskerville, R. (2016). FEDS: A Framework for Evaluation in Design Science Research. European Journal of Information Systems, 25(1), 77–89. https://doi.org/10.1057/ejis.2014.36 Venkatesh, W., Morris, M. G., Davis, G. B. & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425–478. Vinitha, P. G. (2015). The role of reflective learning, service-learning and social impact in the sustainability of Malaysian universities (PhD Thesis, Universiti Utara Malaysia). Retrieved from http://etd.uum.edu.my/5759/ Voss, H. C., Mathews, L. R., Fossen, T., Scott, G., & Schaefer, M. (2015). Community–Academic Partnerships: Developing a Service–Learning Framework. Journal of Professional Nursing, 31(5), 395–401. Vygotsky, L. (1980). Mind in society: The development of higher psychological processes. Cambridge: MA: Harvard University Press. Walker, R., Voce, J., & Jenkins, M. (2016). Charting the development of technology-enhanced learning developments across the UK higher education sector: A longitudinal perspective (2001–2012). Interactive Learning Environments, 24(3), 438–455. https://doi.org/10.1080/10494820.2013.867888 Wang, H. C., & Chiu, Y. F. (2011). Assessing e-learning 2.0 system success. Computers & Education, 57(2), 1790–1800. https://doi.org/10.1016/j.compedu.2011.03.009 Wang, Y.-S., & Liao, Y.-W. (2008). Assessing eGovernment systems success: A validation of the DeLone and McLean model of information systems success. Government Information Quarterly, 25(4), 717–733. https://doi.org/10.1016/j.giq.2007.06.002 257 Wasko, M. M., & Faraj, S. (2005). Why Should I Share? Examining Social Capital and Knowledge Contribution in Electronic Networks of Practice. MIS Quarterly, 29(1), 35–57. https://doi.org/10.2307/25148667 Weidlich, J., & Bastiaens, T. J. (2019). Designing sociable online learning environments and enhancing social presence: An affordance enrichment approach. Computers & Education, 142, 1-17. https://doi.org/10.1016/j.compedu.2019.103622 Wetzels, M., Odekerken-Schröder, G., & van Oppen, C. (2009). Using PLS Path Modeling for Assessing Hierarchical Construct Models: Guidelines and Empirical Illustration. MIS Quarterly, 33(1), 177–195. https://doi.org/10.2307/20650284 Whitley, M. A., & Walsh, D. S. (2014). A Framework for the Design and Implementation of Service-learning Courses. Journal of Physical Education, Recreation & Dance, 85(4), 34–39. https://doi.org/10.1080/07303084.2014.884835 Wixom, B. H., & Todd, P. A. (2005). A Theoretical Integration of User Satisfaction and Technology Acceptance. Information Systems Research, 16(1), 85–102. https://doi.org/10.1287/isre.1050.0042 Wright, N. (2010). Twittering in teacher education: Reflecting on practicum experiences. Open Learning: The Journal of Open, Distance and e-Learning, 25(3), 259–265. https://doi.org/10.1080/02680513.2010.512102 Yamada, M., & Goda, Y. (2012). Application of social presence principles to CSCL design for quality interactions. In J. Jia (Ed.), Educational stages and interactive learning: From kindergarten to workplace training (pp. 31–48). Retrieved from http://mark-lab.net/wp-content/uploads/2014/10/CALL20_1-1.pdf 258 Yamada, M., Goda, Y., Matsukawa, H., Hata, K., & Yasunami, S. (2016). A Computer-Supported Collaborative Learning Design for Quality Interaction. IEEE MultiMedia, 23(1), 48–59. https://doi.org/10.1109/MMUL.2015.95 Yin, Robert. K. (2003). Case Study Research Design and Methods (3rd ed.). London: Sage. Yoder, K. M. (2006). A Framework for Service-Learning in Dental Education. Journal of Dental Education, 70(2), 115–123. Yukawa, J. (2006). Co-reflection in online learning: Collaborative critical thinking as narrative. International Journal of Computer-Supported Collaborative Learning, 1(2), 203–228. https://doi.org/10.1007/s11412-006-8994-9 Zhang, G., Zeller, N., Griffith, R., Metcalf, D., Williams, J., Shea, C., & Misulis, K. (2011). Using the context, input, process, and product evaluation model (CIPP) as a comprehensive framework to guide the planning, implementation, and assessment of service-learning programs. Journal of Higher Education Outreach and Engagement, 15(4), 57–84. Zheng, L. (2017a). Analyzing Knowledge Convergence in CSCL: An Empirical Study. In L. Zheng (Ed.), Knowledge Building and Regulation in Computer-Supported Collaborative Learning (pp. 33–46). https://doi.org/10.1007/978-981-10-1972-2_3 Zheng, L. (2017b). Promoting Productive Collaborative Learning Using Concept Maps: A Case Study. In L. Zheng (Ed.), Knowledge Building and Regulation in Computer-Supported Collaborative Learning (pp. 99–114). https://doi.org/10.1007/978-981-10-1972-2_7
(1)
Aamidfar, M., Azimi, L., Azizi, M. R., & Heysieattalab, S. (2017). Changes in the brain's bioelectrical activity in cognition, consciousness, and mental disorders. Medical Journal of The Islamic Republic of Iran, 31(53), 307-312. https://doi.org/10.14196/mjiri.31.53 Angelidis, A., Barry, R. J., Blasio, F. M. D., Fogarty, J. S., Putman, P., & Son, D. V. (2019). Frontal EEG theta/beta ratio during mind-wandering episodes. Biological Psychology, 140, 19-27. https://doi.org/10.1016/j.biopsycho.2018.11.003 Arman, F., Balcisoy, S., Cetin, M., Ekici, B., Eroglu, G., & Gurkan, M. (2018). Can we predict who will respond more to neurofeedback with resting state EEG?. 2018 Medical Technologies National Congress (TIPTEKNO). http://dx.doi.org/10.1109/TIPTEKNO.2018.8596857 Journal of Cognitive Sciences and Human Development. Vol.8(1), March 2022 108 Barry, R. J., Clarke, A. R., Johnstone, S. J., Magee, C. A., & Rushby, J. A. (2007). EEG differences between eyes-closed and eyes-open resting conditions. Clinical Neurophysiology, 118(12), 2765- 2773. https://doi.org/10.1016/j.biopsycho.2017.09.010 Barry, R. J., Karamacoska, D., & Steiner, G. Z. (2017). Resting state intrinsic EEG impacts ongoing stimulus-response processes. Psychophysiology, 54(6), 894-903. https://doi.org/10.1111/psyp.12851 Barry, R. J., Blasio, F. M. D., Does, W. V. D., Putman, P., & Son, D. V. (2019). Electroencephalography theta/beta ratio covaries with mind wandering and functional connectivity in the executive control network. Annals of the New York Academy of Sciences, 1452(1), 52-64. https://doi.org/10.1111/nyas.14180 Bastiaansen, M. C. M., Hagoort, P., Norris, D. G., Oostenveld, R., Petersson, K. M., & Scheeringa, R. (2008). Frontal theta EEG activity correlated negatively with the default mode network in the resting state. International Journal of Psychophysiology, 67(3), 242-251. https://doi.org/10.1016/j.ijpsycho.2007.05.017 Becker, B., Goebel, R., Kendrick, K., Li, J., Li, K., Luhrs, M., Sindermann, C., Yao, S., Zhao, F., Zhao, W., & Zhao, Z. (2019). Real-Time Functional Connectivity-Informed Neurofeedback of Amygdala-Frontal Pathways Reduces Anxiety. Psychotherapy and Psychosomatics, 88(1), 5-15. https://doi.org/10.1159/000496057 Birn, R. M., Kirk, G. R., Meier, T. B., Meyerand, M. E., Molloy, E. K., Nair, V. A., Patriat, R., & Prabhakaran, V. (2014). The effect of resting condition on resting-state fMRI reliability and consistency: A comparison between resting with eyes open, closed, and fixated. Neuroimage, 78, 463-473. https://doi.org/10.1016/j.neuroimage.2013.04.013 Bischoff, M., Blecker, C., Gebhardt, H., Morgen, K., Sammer, G., Stark, R., & Vaitl, D. (2007). Relationship between Regional Hemodynamic Activity and Simultaneously Recorded EEG-Theta Associated with Mental Arithmetic-Induced Workload. Human Brain Mapping, 28, 793-803. https://doi.org/10.1002/hbm.20309 Bohnen, J. L., & Sunder, K. R. (2017). The progression of neurofeedback: an evolving paradigm in addiction treatment and relapse prevention. MOJ Addiction Medicine & Therapy, 3(3), 75-78. https://doi.org/10.15406/mojamt.2017.03.00037 Burke, M. R., Bunce, D., Delvenne, J. F., & Scally, B. (2018). Resting-state EEG power and connectivity are associated with alpha peak frequency slowing in healthy ageing. Neurobiology of Aging, 71, 149-155. https://doi.org/10.1016/j.neurobiolaging.2018.07.004 Castanon, A. N., Chai, X .J., Cohen, B. M., Gabrieli, J. D. E., Gabrieli, S. W., McCarthy, J. M., Ongur, D., & Shinn, A. K. (2011). Abnormal Medial prefrontal Cortex Resting-State Connectivity in Bipolar Disorder and Schizophrenia. Neuropsychopharmacology, 36(10), 2009-2017. https://doi.org/10.1038/npp.2011.88 Journal of Cognitive Sciences and Human Development. Vol.8(1), March 2022 109 Chen, Y., Li, J., Shao, S., Xiao, Y., Wu, J., & Zhou, Q. (2021). Decreased resting-state alpha band activation and functional connectivity after sleep deprivation. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-020-79816-8 Cheon, E., Choi, J. H., & Koo, B. H. (2016). The Efficacy of Neurofeedback in Patients with Major Depressive Disorder: An Open Labelled Prospective Study. Applied Psychophysiology and Biofeedback, 41(1), 107-110. https://doi.org/10.1007/s10484-015-9315-8 Cherry, K. (2020, June 3). What Is Operant Conditioning and How Does It Work?. Retrieved from https://www.verywellmind.com/operant-conditioning-a2- 2794863#:~:text=Operant%20conditioning%20relies%20on%20a,story%20again%20in%20the %20future. Choi, G. Y., Choi, S. I., & Hwang, H. J. (2018). Individual identification based on resting-state EEG. 2018 6th International Conference on Brain-Computer Interface (BCI). https://doi.org/10.1109/IWW-BCI.2018.8311515 Deijin, J. B., Eichhorn, D., Ejik, L. V., Engelbregt, H. J., Karch, S., Keeser, D., Pogarell, O., & Suiker, E. M. (2016). Short and long-term effects of sham-controlled prefrontal EEGneurofeedback training in healthy subjects. Clinical Neurophysiology, 124(4), 1931-1937. https://doi.org/10.1016/j.clinph.2016.01.004 Eades, L. H., Helvig, A., & Wade, S. (2016). Rest and the associated benefits in restorative sleep: a concept analysis. Journal of Advanced Nursing, 72(1), 62-72. https://doi.org/10.1111/jan.12807 Galili, T. (2010, February 22). Post hoc analysis for Friedman’s Test (R code). R-statistics blog. Retrieved from https://libanswers.snhu.edu/faq/190823 Ghasemi, A., & Zahediasl, S. (2012). Normality Tests for Statistical Analysis: A Guide for NonStatisticians. International Journal of Endocrinology Metabolism, 10(2), 486-489. https://dx.doi.org/10.5812%2Fijem.3505 Greer, J. M. H., Hamilton, C., McMullon, M. E. G., Riby D. M., & Riby, L. M. (2021). An EEG investigation of alpha and beta activity during resting states in adults with Williams syndrome. BMC Psychology, 9, 72. https://doi.org/10.1186/s40359-021-00575-w Gutmann, B., Hildebrand, C., Hollmann, W., Huldunker, T., Mierau, A., & Struder, H. K. (2015). Effects of Physical Exercise on Individual Resting State EEG Alpha Peak Frequency. Neural Plasticity, 2015, 717312. https://doi.org/10.1155/2015/717312 Hampson, M., Gruner, P., Pittenger, C., Saksa, J., Scheinost, D., Stoica, T., & Wasylink, S. (2014). Resting state functional connectivity predicts neurofeedback response. Frontiers in Behavioural Neuroscience, 8, 338. https://dx.doi.org/10.3389%2Ffnbeh.2014.00338 Hara, M., Ikeda, T., Kawakami, K., Kawakami, K., Matsushita, K., Nagase, Y., Nojima, I., Sugata, H., Tsuruta, K., Yagawa, S., & Yagi, K. (2020). Role of beta-band resting-state functional Journal of Cognitive Sciences and Human Development. Vol.8(1), March 2022 110 connectivity as a predictor of motor learning ability. NeuroImage, 210, 116562. https://doi.org/10.1016/j.neuroimage.2020.116562 He, H., Qiu, S., Wang, S., Yi, W., & Zhang, C. (2020). The Lasting Effects of Low-Frequency Repetitive Transcranial Magnetic Stimulation on Resting State EEG in Healthy Subjects. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(4). 832-841. https://doi.org/10.1109/TNSRE.2020.2977883 Hsiao, J. H., Lau, E. Y. Y., & Zhang, J. (2018). Sleep deprivation compromises resting-state emotional regulatory processes: An EEG study. Journal of Sleep Research, 28(3). https://doi.org/10.1111/jsr.12671 Hsieh, S., & Wang, J.R. (2013). Neurofeedback training improves attention and working memory performance. Clinical Neurophysiology, 124(12), 2406-2420. https://doi.org/10.1016/j.clinph.2013.05.020 Huang, J. (2019). Greater brain activity during the resting state and the control of activation during the performance of tasks. Scientific Reports, 9, 5027. https://doi.org/10.1038/s41598-019-41606- 2 Jin, Z., Kong, X., Ling, L., Tan, B., & Ping, Y. (2013). The Difference of Brain Functional Connectivity between Eyes-Closed and Eyes-Open Using Graph Theoretical Analysis. Computational and Mathematical Methods in Medicine, 2013, 976365. https://doi.org/10.1155/2013/976365 Jones, D. (2016, July 29). Biofeedback’s early history. Retrieved from https://www.biofeedbacktech.com/articles/2016/7/29/biofeedbacks-early-history Krauz, R., Kublik, E., Rogala, J., & Wrobel, A. (2020). Resting-state EEG activity predicts frontoparietal network reconfiguration and improved attentional performance. Scientific Reports, 10,1-15. https://doi.org/10.1038/s41598-020-61866-7 Laerd Statistics. (n.d). Friedman Test in SPSS Statistics. Retrieved from https://statistics.laerd.com/spss-tutorials/friedman-test-using-spss-statistics.php Laerd Statistics. (n.d). Testing for Normality using SPSS Statistics. Retrieved from https://statistics.laerd.com/spss-tutorials/testing-for-normality-using-spss-statistics.php Limbrick, D. D., Raichle, M. E., Schlaggar, B. L., Shah, M. N., Shimony, J. S., Smyth, M. D., Snyder, A. Z., & Pizoli, C. E. (2011). Resting-state activity in development and maintenance of normal brain function. Proceedings of the National Academy of Sciences, 108(28), 11638-11643. https://doi.org/10.1073/pnas.1109144108 Mansourian, M., Marateb, H.R., & Marzbani, H. (2016). Neurofeedback: A Comprehensive Review on System Design, Methodology and Clinical Applications. Basic and Clinical Neuroscience Journal, 7(2). 143-158. https://doi.org/10.15412/J.BCN.03070208 Journal of Cognitive Sciences and Human Development. Vol.8(1), March 2022 111 Piantoni, G., Romenjin, N., Smit, D. J., Someren, E. J. V., Werf, Y. D. V. D., & Verweij, I. M. (2014). Sleep deprivation leads to a loss of functional connectivity in frontal brain regions. BMC Neuroscience, 15, 88. https://doi.org/10.1186/1471-2202-15-88 Sattar, FA., & Valdiya, PS. (2017). Biofeedback In Medical Practice. Medical Journal Armed Forces India, 55(1), 51-54. https://dx.doi.org/10.1016%2FS0377-1237(17)30315-5 Sleep.org. (2021, March 16). Resting vs Sleeping. Retrieved from https://www.sleep.org/restingvssleeping/#:~:text=Rest%20has%20a%20broader%20definition,level%20of%20disengagement %20as%20sleep. Strehl, U. (2014). What learning theories can teach us in designing neurofeedback treatments. Frontiers in Human Neuroscience, 8. 894. https://doi.org/10.3389/fnhum.2014.00894
(1)
Aamir, S. (2018). A rapid and efficient method of fungal genomic DNA extraction, suitable for PCR based molecular methods. Plant Pathology & Quarantine, 5(2), 74–81. http://doi.org/10.5943/ppq/5/2/6 Adebola Azeez, L., Muid, S., & Hasnul, B. M. (2016). Identification of Volatile Secondary Metabolites From An Endophytic Microfungus. Malaysian Journal of Analytical Sciences, 20(4), 751–759. http://doi.org/10.17576/mjas-2016-2004-07 Alexopoulos, C. J., Bold, H. C., & Delevoryas, T. (1980). Morphology of plants and fungi. Harper & Row. Alsarhan, A., Sultana, N., Al-Khatib, A., & Kadir, M. R. A. (2014). Review on some Malaysian traditional medicinal plants with therapeutic properties. Journal of Basic and Applied Sciences, 10, 149-159. Alsohaili, S. A., & Bani-Hasan, B. M. (2018). Morphological and Molecular Identification of Fungi Isolated from Different Environmental Sources in the Northern Eastern Desert of Jordan. Jordan Journal of Biological Sciences, 11(3), 82-97. Al-Hatmi, A. M., Meis, J. F., & de Hoog, G. S. (2016). Fusarium: molecular diversity and intrinsic drug resistance. PLoS Pathogens, 12(4), e1005464. Amatuzzi, R. F., Cardoso, N., Poltronieri, A. S., Poitevin, C. G., Dalzoto, P., Zawadeneak, M. A., & Pimentel, I. C. (2018). Potential of endophytic fungi as biocontrol agents of Duponchelia fovealis (Zeller) (Lepidoptera: Crambidae). Brazilian Journal of Biology, 78(3), 429-435. Anderson, I.C., & Parkin, P.I. (2007). Detection of active soil fungi by RT-PCR amplification of precursor rRNA molecules. Journal of Microbiology Methods, 68(1), 248–253. Aneja, M., Gianfagna, T. J., & Hebbar, P. K. (2005). Trichoderma harzianum produces nonanoic acid, an inhibitor of spore germination and mycelial growth of two cacao pathogens. Physiological and Molecular Plant Pathology, 67(6), 304-307.98 Ariffin, S. A., Davis, P., & Ramasamy, K. (2011). Cytotoxic and antimicrobial activities of Malaysian marine endophytic fungi. Botanica Marina, 54(1), 95-100. Bakar, A., Izzany, F., Bakar, A., Fadzelly, M., Abdullah, N., Endrini, S., & Rahmat, A. (2018). A Review of Malaysian Medicinal Plants with Potential Anti-Inflammatory Activity. Advances in Pharmacological Sciences, 2018. Http://doi.org/10.1155/2018/8603602 Baker, C. J., Harrington, T. C., Krauss, U., & Alfenas, A. C. (2003). Genetic variability and host specialization in the Latin American clade of Ceratocystis fimbriata. Phytopathology, 93(10), 1274-1284. http://doi.org/10.1094/phyto.2003.93.10.1274 Ballabio, A., Gibbs, R., & Caskey, C. T. (1990). PCR test for cystic fibrosis deletion. Nature, 343(6255), 220. Bastakoti, S., Belbase, S., Manandhar, S., & Arjyal, C. (2017). Trichoderma species as Biocontrol Agent against Soil Borne Fungal Pathogens. Nepal Journal of Biotechnology, 5(1), 39-45. Begum, M. M., Sariah, M., Abidin, Z. M. A., Puteh, A. B., & Rahman, M. A. (2008). Antagonistic potential of selected fungal and bacterial biocontrol agents against Colletotrichum truncatum of soybean seeds. Pertanica Journal of Tropical Agricultural Science, 31, 45-53. Bezerra, J. D., Nascimento, C. C., Barbosa, R. D. N., da Silva, D. C., Svedese, V. M., Silva-Nogueira, E. B., & Souza-Motta, C. M. (2015). Endophytic fungi from medicinal plant Bauhinia forficata: Diversity and biotechnological potential. Brazilian Journal of Microbiology, 46(1), 49-57. http://doi.org/10.1590/S1517-838246120130657 Bhardwaj, N. R., & Kumar, J. (2017). Characterization of volatile secondary metabolites from Trichoderma asperellum. Journal of Applied and Natural Science, 9(2), 954-959. Brawner, J., Japarudin, Y., Lapammu, M., Rauf, R., Boden, D., & Wingfield, M. J. (2015). Evaluating the inheritance of Ceratocystis acaciivora symptom expression in a diverse Acacia mangium breeding population. Southern Forests: A Journal of Forest Science, 77(1), 83-90. http://10.2989/20702620.2015.1007412 Bronicka, M., Raman, A., Hodgkins, D., & Nicol, H. (2007). Abundance and diversity of fungi in a saline soil in central-west New South Wales, Australia. Sydowia-Horn, 59(1), 7-24.99 Cabrera, L., Rojas, P., Rojas, S., Pardo‐De la Hoz, C. J., Mideros, M. F., Danies, G. & Restrepo, S. (2018). Most Colletotrichum species associated with tree tomato (Solanum betaceum) and mango (Mangifera indica) crops are not host‐specific. Plant pathology, 67(5), 1022-1030. Cannon, P. F., Damm, U., Johnston, P. R., & Weir, B. S. (2012). Colletotrichum–current status and future directions. Studies in Mycology, 73, 181-213. Cano, J., Guarro, J., & Gené, J. (2004). Molecular and Morphological Identification of Colletotrichum Species of Clinical Interest. Journal of Clinical Microbiology Jun 2004, 42 (6) 2450-2454. http://doi: 10.1128/JCM.42.6.2450-2454.2004 Chan, E. W., Lim, Y. Y., & Wong, S. K. (2013). Botany, uses, phytochemistry and pharmacology of selected Etlingera gingers: A review. Pharmacognosy Communications, 3(4), 3-12. http://doi.org/10.5530/pc.2013.4.2 Contreras-Cornejo, H. A., Macías-Rodríguez, L., Herrera-Estrella, A., & López-Bucio, J. (2014). The 4-phosphopantetheinyl transferase of Trichoderma virens plays a role in plant protection against Botrytis cinerea through volatile organic compound emission. Plant and Soil, 379(1-2), 261-274. Damm, U., Cannon, P. F., Woudenberg, J. H. C., & Crous, P. W. (2012). The Colletotrichum acutatum species complex. Studies in Mycology, 73, 37-113. http://doi.org/10.3114/sim0010. Dean, R., Van Kan, J. A., Pretorius, Z. A., Hammond‐Kosack, K. E., Di Pietro, A., Spanu, P. D., & Foster, G. D. (2012). The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13(4), 414-430. http://doi.org/10.1111/J.1364-3703.2011.00783.X Den Hond, F., Groenewegen, P., & Van Straalen, N. (Eds.). (2008). Pesticides: problems, improvements, alternatives. John Wiley & Sons. Dennis, C., & Webster, J. (1971). Antagonistic properties of species-groups of Trichoderma: II. Production of volatile antibiotics. Transactions of the British Mycological Society, 57(1), 41- 54.100 Dos Santos, P. J. C., Savi, D. C., Gomes, R. R., Goulin, E. H., Senkiv, C. D. C., Tanaka, F. A. O., & Glienke, C. (2016). Diaporthe endophytica and D. terebinthifolii from medicinal plants for biological control of Phyllosticta citricarpa. Microbiological Research, 186, 153-160. Douanla-Meli, C., Langer, E., & Mouafo, F. T. (2013). Fungal endophyte diversity and community patterns in healthy and yellowing leaves of Citrus limon. Fungal Ecology, 6(3), 212-222. Ellis, M. B. (1971). Dematiaceous hyphomycetes. Commonwealth Mycological Institure Kew, 608(1), 1-25. Fesel, P. H., & Zuccaro, A. (2016). Dissecting endophytic lifestyle along the parasitism/mutualism continuum in Arabidopsis. Current Opinion in Microbiology, 32, 103-112. Gaddeyya, G., Niharika, P. S., Bharathi, P., & Kumar, P. R. (2012). Isolation and identification of soil mycoflora in different crop fields at Salur Mandal. Advances in Applied Science Research, 3(4), 2020-2026. Ganley, R. J., Sniezko, R. A., & Newcombe, G. (2008). Endophyte-mediated resistance against white pine blister rust in Pinus monticola. Forest Ecology and Management, 255(7), 2751-2760. González-Teuber, M. (2016). The defensive role of foliar endophytic fungi for a South American tree. AoB Plants, 8. Gouda, S., Das, G., Sen, S. K., Shin, H. S., & Patra, J. K. (2016). Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiology 7, 1538. http://doi.org/10.3389/fmicb.2016.01538 Greenfield, M., Pareja, R., Ortiz, V., Gómez-Jiménez, M. I., Vega, F. E., & Parsa, S. (2015). A novel method to scale up fungal endophyte isolations. Biocontrol Science and Technology, 25(10), 1208-1212. http://doi: 10.1080/09583157.2015.1033382 Guarro, J. (2013). Fusariosis, a complex infection caused by a high diversity of fungal species refractory to treatment. European Journal of Clinical Microbiology & Infectious Diseases, 32(12), 1491-1500.101 Hamdi, N.B., Salem, I. B., & M’Hamdi, M. (2018). Evaluation of the efficiency of Trichoderma, Penicillium, and Aspergillus species as biological control agents against four soil-borne fungi of melon and watermelon. Egyptian Journal of Biological Pest Control, 28(1), 25. http://doi.org/10.1186/s41938-017-0010-3 Hamzah, T. N. T., Lee, S. Y., Hidayat, A., Terhem, R., Faridah-Hanum, I., & Mohamed, R. (2018). Diversity and characterization of endophytic fungi isolated from the tropical mangrove species, Rhizophora mucronata and identification of potential antagonists against the soilborne fungus, Fusarium solani. Frontiers in Microbiology, 9(6), 1-17. http://doi.org/10.3389/fmicb.2018.01707 Hardoim, P. R., Van Overbeek, L. S., Berg, G., Pirttilä, A. M., Compant, S., Campisano, A., Doring, M., & Sessitsch, A. (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews., 79(3), 293-320. http://doi.org/10.1128/mmbr.00050-14 Hazalin, N. A., Ramasamy, K., Lim, S. S. M., Wahab, I. A., Cole, A. L., & Majeed, A. B. A. (2009). Cytotoxic and antibacterial activities of endophytic fungi isolated from plants at the National Park, Pahang, Malaysia. BMC Complementary and Alternative Medicine, 9(1), 46. Https://doi.org/10.1186/1472-6882-9-46 Heath, R. N. (2009). Ceratocystis species in southern and eastern Africa with particular reference to Ceratocystis albifundus (Doctoral dissertation, University of Pretoria). Hibbett, D. S., & Taylor, J. W. (2013). Fungal systematics: is a new age of enlightenment at hand. Nature Reviews Microbiology, 11(2), 129. Hidayat, A., Turjaman, M., Faulina, S. A., Ridwan, F., Irawadi, T. T., & Iswanto, A. H. (2019). Antioxidant and Antifungal Activity of Endophytic Fungi Associated with Agarwood Trees. Journal of the Korean Wood Science and Technology, 47(4), 459-471. Hilber-Bodmer, M., Schmid, M., Ahrens, C. H., & Freimoser, F. M. (2017). Competition assays and physiological experiments of soil and phyllosphere yeasts identify Candida subhashii as a novel antagonist of filamentous fungi. BMC Microbiology, 17(1), 4.102 Holland, L. A., Lawrence, D. P., Nouri, M. T., Travadon, R., Harrington, T. C., & Trouillas, F. P. (2019). Taxonomic revision and multi-locus phylogeny of the North American clade of Ceratocystis. Fungal Systematics and Evolution, 3(1), 319-340. Innis, M. A., Gelfand, D. H., Sninsky, J. J., & White, T. J. (Eds.). (1990). Optimization of PCRs. PCR protocols: a guide to methods and applications. Academic Press, 3-12. Jia, M., Chen, L., Xin, H. L., Zheng, C. J., Rahman, K., Han, T., & Qin, L. P. (2016). A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Frontiers in Microbiology, 7(6), 906. http://doi.org/10.3389/fmicb.2016.00906 Juwita, T., Puspitasari, I. M., & Levita, J. (2018). Torch Ginger (Etlingera elatior): A Review on its Botanical Aspects, Phytoconstituents and Pharmacological Activities. Pakistan Journal of Biological Sciences, 21(4), 151-165. http://doi.org/10.3923/pjbs.2018.151.165 Kameshwari, S., Mohana, B., & Thara Saraswathi, K. J. (2015). Isolation and identification of endophytic fungi from Urginea indica, a medicinal plant from diverse regions of south India. International Journal of Latest Research in Science and Technology, 4(1), 75-80. Katoch, M., & Pull, S. (2017). Endophytic fungi associated with Monarda citriodora, an aromatic and medicinal plant and their biocontrol potential. Pharmaceutical Biology, 55(1), 1528-1535. http://doi.org/10.1080/13880209.2017.1309054 Khan, R., Shahzad, S., Choudhary, M. I., Khan, S. A., & Ahmad, A. (2010). Communities of endophytic fungi in medicinal plant Withania somnifera. Pakistan Journal of Botany, 42(2), 1281-1287. Khan, S. I., Shah, Z. I. H. U., & Hussain, S. (2017). In Vitro Antagonistic Activity for Selected Fungal Species Against Wilt Causing Phytopathogens. Sarhad Journal of Agriculture, 33(1), 144-150. http://doi.org/10.17582/journal.sja/2017.33.1.144.150 Krnjaja, V., Stanković, S., Obradović, A., Petrović, T., Mandić, V., Bijelić, Z., & Božić, M. (2018). Trichothecene genotypes of Fusarium graminearum populations isolated from winter wheat crops in Serbia. Toxins, 10(11), 460. http://doi.org/10.3390/toxins10110460103 Kumar, D. S. S., & Hyde, K. D. (2004). Biodiversity and tissue-recurrence of endophytic fungi in Tripterygium wilfordii. Fungal Diversity, 17(1), 9-69. Kumar, S., & Kaushik, N. (2013). Endophytic fungi isolated from oil-seed crop Jatropha curcas produces oil and exhibit antifungal activity. PloS One, 8(2), e56202. http://doi.org/10.1371/journal.pone.0056202 Lahlali, R., & Hijri, M. (2010). Screening, identification and evaluation of potential biocontrol fungal endophytes against Rhizoctonia solani AG3 on potato plants. FEMS Microbiology Letters, 311(2), 152-159. http://doi.org/10.1111/j.1574-6968.2010.02084.x Landum, M. C., do Rosário Félix, R., Cabrita, M. J., Rei, F., & Varanda, C. M. (2016). Antagonistic activity of fungi of Olea europaea L. against Colletotrichum acutatum. Microbiological Research, 183, 100-108. http://doi.org/10.1016/j.micres.2015.12.001 Lee, P. Y., Costumbrado, J., Hsu, C. Y., & Kim, Y. H. (2012). Agarose gel electrophoresis for the separation of DNA fragments. Journal of Visualized Experiments, 62, 1–5. http://doi.org/10.3791/3923 Leelavathi, M. S., Vani, L., & Reena, P. (2014). Antimicrobial activity of Trichoderma harzianum against bacteria and fungi. International Journal of Current Microbiology and Applied Science, 3, 96-103. Li, J. L., Sun, X., Chen, L., & Guo, L. D. (2016). Community structure of endophytic fungi of four mangrove species in Southern China. Mycology, 7(4), 180-190. http://doi.org/10.1080/21501203.2016.1258439 Lutzoni, F., Kauff, F., Cox, C.J., Mc Laughlin, D., Celio, G. (2004). Assembling the fungal tree of life: progress, classification and evolution of the subcellular traits. American Journal of Botany, 91(1), 1446−1480. Maharachchikumbura, S. S., Hyde, K. D., Jones, E. G., McKenzie, E. H. C., Bhat, J. D., Dayarathne, M. C., & Shang, Q. J. (2016). Families of Sordariomycetes. Fungal Diversity, 79(1), 1-317. Http://doi.org/10.1007/s13225-016-0369-6104 Maid, M., & Ratnam, W. (2014, September). Incidences and severity of vascular wilt in Acacia mangium plantations in Sabah, Malaysia. In AIP Conference Proceedings, 1614(1), 784–789. Http://doi.org/10.1063/1.4895302 Mbenoun, M., De Beer, Z. W., Wingfield, M. J., Wingfield, B. D., & Roux, J. (2014). Reconsidering species boundaries in the Ceratocystis paradoxa complex, including a new species from oil palm and cacao in Cameroon. Mycologia, 106(4), 757-784. http://doi.org/10.3852/13-298. Meena, M., Swapnil, P., Zehra, A., Dubey, M. K., & Upadhyay, R. S. (2017). Antagonistic assessment of Trichoderma spp. by producing volatile and non-volatile compounds against different fungal pathogens. Archives of Phytopathology and Plant Protection, 50(13-14), 629- 648. http://doi: 10.1080/03235408.2017.1357360. Mejdoub-Trabelsi. B., Rania Aydi Ben A, Nawaim A, Mejda Daami R (2017) Antifungal Potential of Extracellular Metabolites from Penicillium spp. and Aspergillus spp. Naturally Associated to Potato against Fusarium species. Causing Tuber Dry Rot. Journal of Microbial and Biochemical Technology 9(4), 181-190. http://doi: 10.4172/1948-5948.1000364 Mendoza, J. L. H., Pérez, M. I. S., Prieto, J. M. G., Velásquez, J. D. Q., Olivares, J. G. G., & Langarica, H. R. G. (2015). Antibiosis of Trichoderma spp. strains native to northeastern Mexico against the pathogenic fungus Macrophomina phaseolina. Brazilian Journal of Microbiology, 46(4), 1093-1101. Mishra, V. K., Passari, A. K., Chandra, P., Leo, V. V., Kumar, B., Uthandi, S., & Singh, B. P. (2017). Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD-GC-MS analysis. PloS One, 12(10), 1–24. http://doi.org/10.1371/journal.pone.0186234. Mongkolporn, O., & Taylor, P. W. J. (2018). Chili anthracnose: Colletotrichum taxonomy and pathogenicity. Plant Pathology, 67(6), 1255-1263. Morath, S. U., Hung, R., & Bennett, J. W. (2012). Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biology Reviews, 26(2-3), 73-83. http://doi.org/10.1016/j.fbr.2012.07.001105 Nagamani, P., Bhagat, S., Biswas, M. K., & Viswanath, K. (2017). Effect of Volatile and Non Volatile Compounds of Trichoderma spp. against soil borne diseases of chickpea. International Journal of Current Microbiology and Applied Science, 6(7), 1486-1491. Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P., & Hens, L. (2016). Chemical pesticides and human health: the urgent need for a new concept in agriculture. Frontiers in Public Health, 4, 148. http://doi.org/10.3389/fpubh.2016.00148 Pazouki, M., & Panda, T. (2000). Understanding the morphology of fungi. Bioprocess Engineering, 22(2), 127-143. Ploetz, R. C. (2015). Fusarium wilt of banana. Phytopathology, 105(12), 1512-1521. Radu, S., & Kqueen, C. Y. (2002). Preliminary screening of endophytic fungi from medicinal plants in Malaysia for antimicrobial and antitumor activity. The Malaysian Journal of Medical Sciences, 9(2), 23. Rahman, M. A., Begum, M. F., & Alam, M. F. (2009). Screening of Trichoderma isolates as a biological control agent against Ceratocystis paradoxa causing pineapple disease of sugarcane. Mycobiology, 37(4), 277-285. http://doi.org/10.4489/MYCO.2009.37.4.277 Raja, H. A., Miller, A. N., Pearce, C. J., & Oberlies, N. H. (2017). Fungal identification using molecular tools: a primer for the natural products research community. Journal of Natural Products, 80(3), 756-770. http://doi.org/10.1021/acs.jnatprod.6b01085 Rajesh, R. W., Rahul, M. S., & Ambalal, N. S. (2016). Trichoderma: A significant fungus for agriculture and environment. African Journal of Agricultural Research, 11(22), 1952–1965. http://doi.org/10.5897/AJAR2015.10584 Ramasamy, K., Lim, S. M., Bakar, H. A., Ismail, N., Ismail, M. S., Ali, M. F., & Cole, A. L. (2010). Antimicrobial and cytotoxic activities of Malaysian endophytes. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 24(5), 640-643. http://doi:10.1002/ptr.2891106 Raut, I., Doni, M. B., Calin, M., & Oancea, F. (2014). Effect of volatile and non-volatile metabolites from Trichoderma spp. against important phytopathogens. Revista de Chimie, 65, 1285-1288. Reddy, B. N., Saritha, K. V., & Hindumathi, A. (2014). In vitro screening for antagonistic potential of seven species of Trichoderma againts different plant pathogenic fungi. Journal of Biology,2, 29-36. Refaei, J., Jones, E. B. G., Sakayaroj, J., & Santhanam, J. (2011). Endophytic fungi from Rafflesia cantleyi: species diversity and antimicrobial activity. Mycosphere, 2(4), 429-447. http://doi.org/10.1002/eat.20710 Ridzuan, R., Rafii, M., Ismail, S., Mohammad Yusoff, M., Miah, G., & Usman, M. (2018). Breeding for Anthracnose Disease Resistance in Chili: Progress and Prospects. International Journal of Molecular Sciences, 19(10), 3122. http://doi.org/10.3390/ijms19103122 Rusli, M. H., Seman, I. A., & Yusof, Z. N. B. (2013). Fusarium Vascular Infection of Oil Palm: Epidemiology, Molecular Diagnostic Tools and the Potential of Fusarium Suppressive Soil in Malaysia. Journal of Environmental Science and Engineering, 2(10), 578–585. Rohilla, S. K., & Salar, R. K. (2012). Isolation and characterization of various fungal strains from agricultural soil contaminated with pesticides. Research Journal of Recent Sciences,1, 297–303. Schmidt, R., de Jager, V., Zühlke, D., Wolff, C., Bernhardt, J., Cankar, K., Jules, B., Ijcken, W.V., Sleutels, F., Boer, W. D., Garbeva, P., & Riedel, K. (2017). Fungal volatile compounds induce production of the secondary metabolite Sodorifen in Serratia plymuthica PRI-2C. Scientific Reports, 7(1), 862. http://doi.org/10.1038/s41598-017-00893-3 Schulz, B., Römmert, A. K., Dammann, U., Aust, H. J., & Strack, D. (1999). The endophyte-host interaction: a balanced antagonism?. Mycological Research, 103(10), 1275-1283. Seepe, H. A., Amoo, S. O., & Nxumalo, W. (2018). Potential application of medicinal plant extracts against pathogenic Fusarium species. South African Journal of Botany, 115, 308-309. Sepiah, M. & Ploetz, R. C. (2003). Diseases of Carambola. Diseases of Tropical Fruit Crops, 1, 145 -161107 Sharma, M., & Kulshrestha, S. (2015). Colletotrichum gloeosporioides: an anthracnose causing pathogen of fruits and vegetables. Biosciences Biotechnology Research Asia, 12(2), 1233- 1246. Shittu, H. O., Castroverde, D. C., Nazar, R. N., & Robb, J. (2009). Plant-endophyte interplay protects tomato against a virulent Verticillium. Planta, 229(2), 415-426. Siddiquee, S., Al Azad, S., Bakar, F. A., Naher, L., & Kumar, S. V. (2015). Separation and identification of hydrocarbons and other volatile compounds from cultures of Aspergillus niger by GC–MS using two different capillary columns and solvents. Journal of Saudi Chemical Society, 19(3), 243-256. http://doi.org/10.1016/j.jscs.2012.02.007 Strobel, G., Singh, S. K., Riyaz-Ul-Hassan, S., Mitchell, A. M., Geary, B., & Sears, J. (2011). An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiology Letters, 320(2), 87-94. Summerell, B. A. (2019). Resolving Fusarium: Current Status of the Genus. Annual Review of Phytopathology, 57, 323-339. Suresh, N., & Nelson, R. (2016). Isolation of antagonistic fungi and evaluation of antifungal activity of the separated metabolite against the red rot of sugarcane pathogen. European Journal of Experimental Biology, 6, 15-21. Suryanto, D., Yeldi, N., & Munir, E. (2016). Antifungal activity of endophyte bacterial isolates from torch ginger (Etlingera elatior (Jack.) RM Smith)) root to some pathogenic fungal isolates. International Journal of Pharmacy and Technology Research, 9, 340-347. Tabarestani, M. S., Rahnama, K., Jahanshahi, M., Nasrollanejad, S., & Fatemi, M. H. (2016). Identification of Volatile Organic Compounds from Trichoderma virens (6011) by GC-MS and Separation of a Bioactive Compound via Nanotechnology. International Journal of Engineering-Transactions A: Basics, 29(10), 1347-1353. Than, P. P., Prihastuti, H., Phoulivong, S., Taylor, P. W., & Hyde, K. D. (2008). Chilli anthracnose disease caused by Colletotrichum species. Journal of Zhejiang University Science B,9(10), 764. Http://doi.org/10.1631/jzus.B0860007108 Timmerman, A. D., Kalisch, J. A., Korus, K. A., & Vantassel, S. M. (2014). Common Signs and Symptoms of Unhealthy Plants. University of Nebraska--Lincoln, Extension. Ting, A. S. Y., Mah, S. W., & Tee, C. S. (2010). Identification of volatile metabolites from fungal endophytes with biocontrol potential towards Fusarium oxysporum F. sp. cubense Race 4. American Journal of Agricultural and Biological Sciences, 5(2), 177-182. http://doi.org/10.3844/ajabssp.2010.177.182 Toju, H., Tanabe, A. S., Yamamoto, S., & Sato, H. (2012). High-coverage ITS primers for the DNAbased identification of ascomycetes and basidiomycetes in environmental samples. PloS one, 7(7), e40863. Valdetaro, D. C., Oliveira, L. S., Guimarães, L. M., Harrington, T. C., Ferreira, M. A., Freitas, R. G., & Alfenas, A. C. (2015). Genetic variation, morphology and pathogenicity of Ceratocystis fimbriata on Hevea brasiliensis in Brazil. Tropical Plant Pathology, 40(3), 184-192. https://doi.org/10.1007/s40858-015-0036-6 Vandermolen, K. M., Raja, H. A., El-Elimat, T., & Oberlies, N. H. (2013). Evaluation of culture media for the production of secondary metabolites in a natural products screening program. Amb Express, 3(1), 71. Waing, K. G. D., Abella, E. A., Kalaw, S. P., Waing, F. P., & Galvez, C. T. (2015). Antagonistic interactions among different species of leaf litter fungi of Central Luzon State University. Plant Pathology and Quarantine Journal, 5, 122-130. http://doi.org/10.5943/ppq/5/2/9. Wang, Z., Nilsson, R. H., James, T. Y., Dai, Y., & Townsend, J. P. (2016). Future perspectives and challenges of fungal systematics in the age of big data. Biology of Microfungi, 1(5), 25−46. Ward, E., & Akrofi, A. Y. (1994). Identification of fungi in the Gaeumannomyces-Phialophora complex by RFLPs of PCR-amplified ribosomal DNAs. Mycological Research, 98(2), 219-224. Watanabe, M., Yonezawa, T., Lee, K. I., Kumagai, S., Sugita-Konishi, Y., Goto, K., & Hara-Kudo,Y. (2011). Molecular phylogeny of the higher and lower taxonomy of the Fusarium genus and differences in the evolutionary histories of multiple genes. BMC Evolutionary Biology, 11(1), 322. http://doi.org/10.1186/1471-2148-11-322109 Wijedasa, M. H., & Liyanapathirana, L. V. C. (2012). Evaluation of an alternative slide culture technique for the morphological identification of fungal species. Sri Lankan Journal of Infectious Diseases, 2(2), 47. http://doi.org/10.4038/sljid.v2i2.4070 Woo, P. C. Y., Ngan, A. H. Y., Chui, H. K., Lau, S. K. P., & Yuen, K. Y. (2010). Agar block smear preparation: A novel method of slide preparation for preservation of native fungal structures for microscopic examination and long-term storage. Journal of Clinical Microbiology, 48(9), 3053– 3061. http://doi.org/10.1128/JCM.00917-10 Wu, Y., Yuan, J., E, Y., Raza, W., Shen, Q., & Huang, Q. (2015). Effects of volatile organic compounds from Streptomyces albulus NJZJSA2 on growth of two fungal pathogens. Journal of Basic Microbiology, 55(9), 1104–1117. http://doi.org/10.1002/jobm.201400906 Yeole, G., Kotkar, H. M., & Mendki, P. S. (2016). Herbal fungicide to control Fusarium wilt in tomato plants. Biopesticide International, 12, 25-35. Zakaria, L. (2017). Mycotoxigenic Fusarium species from agricultural crops in Malaysia. Mycotoxins, 67(2), 67–75. http://doi.org/10.2520/myco.67_2_2 Zakaria, L., Nuraini, W., Aziz, W., & Pisang, D. (2018). Molecular Identification of Endophytic Fungi from Banana Leaves. Tropical Life Sciences Research, 29(2), 201–211. Zhang, X. F., Zhao, L., Xu Jr, S. J., Liu, Y. Z., Liu, H. Y., & Cheng, G. D. (2013). Soil moisture effect on bacterial and fungal community in Beilu River (Tibetan Plateau) permafrost soils with different vegetation types. Journal of Applied Microbiology, 114(4), 1054-1065. http://doi.org/10.1111/jam.12106 Zhu, T., Meng, T., Zhang, J., Zhong, W., Müller, C., & Cai, Z. (2015). Fungi-dominant heterotrophic nitrification in a subtropical forest soil of China. Journal of Soils and Sediments, 15(3), 705- 709. Živković, S., Stojanović, S., Ivanović, Ž., Gavrilović, V., Popović, T., & Balaž, J. (2010). Screening of antagonistic activity of microorganisms against Colletotrichum acutatum and Colletotrichum gloeosporioides. Archives of Biological Sciences, 62(3), 611-623.
(1)
Aaronson, L. (2007). The social animal (9th ed.). McGraw-Hill. Abdul Hamid, T. A. T. (2015). Population aging in Malaysia: A mosaic of issues, challenges and prospects. UPM University Press: Serdang (Malaysia). Abel, A. B. (1985). Precautionary saving and accidental bequests. The American Economic Review, 75(4), 777-791. Adee, S., & Lau, E. (2022). A light purse is a heavy curse: A systematic review. Research Article, DLSU Business & Economics Review, 31(2), 110-124. Agarwal, S., Amromin, G., Ben-David, I., Chomsisengphet, S., & Evanoff, D. D. (2011). Financial counselling, financial literacy and household decision-making. Financial Literacy: Implications for Retirement Security and the Financial Marketplace (1st ed.). New York: Oxford University Press Inc. Ahmed, Z. U., Ghingold, M., & Dahari, Z. (2007). Malaysian shopping mall behavior: An exploratory study. Asia Pacific Journal of Marketing and Logistics, 19(4), 331-348. Ajzen, I. (1985). From intentions to actions: A theory of planned behaviour. In J. Kuhi & J. Beckmann (Eds.), Action-control: From cognition to behaviour, 11-39. Heidelberg: Springer. Ajzen, I. (2011). The theory of planned behaviour: Reactions and reflections. Psychology & Health, 26(9), 1113-1127. Akhtar, M. (2008). What is self-efficacy? Bandura's 4 sources of efficacy beliefs. Positive psychology. http://positivepsychology.org.uk/self-efficacy-definition-bandura meaning/ Alessie, R., Lusardi, A., & Kapteync, A. (1999). Saving after retirement: Evidence from three different surveys. Labour Economics, 6(2), 277-310. Ali, A., Rahman, M. S. A., & Bakar, A. (2013). Financial literacy and satisfaction in Malaysia: A pilot study. International Journal of Trade, Economics and Finance, 4(5), 319-324. Alsshenqeeti, H. (2014). Interviewing as a data collection method: A critical review. English Linguistics Research, 3(1), 39-45. Anong, S. T., & DeVaney, S. A. (2010). Determinants of adequate emergency funds including the effects of seeking professional advice and industry affiliation. Family and Consumer Sciences Research Journal, 38(4), 405-419. Asebedo, S. D., & Seay, M. C. (2018). Financial self-efficacy and the saving behavior of older pre-retirees. Journal of Financial Counselling and Planning, 29(2), 357-368. Ashraf, N., Camerer, C. F., & Loewenstein, G. (2005). Adam Smith, Behavioral economist. Journal of Economics Perspectives, 19(3), 131-145. Asriyani, Y., & Johan, I. R. (2023). The effect of financial literacy and self-efficacy on interest in using peer lending among millenials. Journal of Child, Family and Consumer Studies, 2(2), 167-178. Atlas, S. A., Lu, J., Micu, P. D., & Porto, N. (2019). Financial knowledge, confidence, credit use, and financial satisfaction. Journal of Financial Counseling and Planning, 30(2), 175–190. Avery, R. B., & Kennickell, A. B. (1991). Household saving in the U.S. Review of Income and Wealth, 37(4), 409-432. Awais, A., Khan, R., & Arslan, M. (2023). The media's role in fostering knowledge of financial management: A case of Pakistan. Journal of Workplace Behavior, 4(1), 51-67. Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191-215. Bandura, A. (1994). Self-efficacy. In V.S. Ramachaudran (Ed.), Encylopedia of Human Behavior, 4, 71-81. Bandura, A. (1997). Self-efficacy: The exercise of control. New York: W.H. Freeman. Banks, J., & Tanner, S. (1999). Patterns in household giving: Evidence from U.K data. Voluntas: International Journal of Voluntary and Nonprofit Organizations, 10, 167-178. Barrett, G. F., & Kecmanovic, M. (2012). Changes in subjective well-being with retirement: Assessing savings adequacy in Australia. Social and Economic Dimensions of an Aging Population Research Papers, 96. Bartzsch, N. (2008). Precautionary saving and income uncertainty in Germany - The new evidence from microdata. SSRN Electronic Journal, 228(1), 5-24. Basit, T. (2003). Manual or electronic? The role of coding in qualitative data analysis. Educational Research, 45(2), 143-154. Batty, M., Collins, J. M., & Odders-White, E. (2015). Experimental evidence on the effects of financial education on elementary school students’ knowledge, behavior and attitudes. Journal of Consumer Affairs, 49(1), 69-96. Bayar, Y., Sezgin, H. F., Ozturk, O. F., & Sasmaz, M. U. (2020). Financial literacy and financial risk tolerance of individual investors: Multinomial logistic regression approach. SAGE Open. Bazeley, P. (2009). Analysing qualitative data: More than 'identifying themes'. The Malaysian Journal of Qualitative Research, 2(2), 6-22. Bell, J. (2010). Doing your research project: A guide for first-time researchers in education, health and social science. (5th ed.). McGraw Hill. Bernheim, B. D., Shleifer, A. & Summers, L. H. (1985). The strategic bequest motive. Journal of Political Economy, 93(6), 1045-1076. Bernheim, B. D., Garrett, D. M., & Maki, D. M. (2001). Education and saving: The long-term effects of high school financial curriculum mandates. Journal of Public Economics, 83(3), 435-465. Bongini, P., & Cucinelli, D. (2019). University students and retirement planning: Never too early. International Journal of Bank Marketing, 37(3), 775-797. Boyatzis, R. E. (1998). Transforming qualitative information: Thematic analysis and code development. Thousand Oaks, CA: Sage. Boyd, J. W., & Kousky, C. (2015). Growing environmentalism: The difference between desires, behaviour and preferences. Boyes, W., & Melvin, M. (2011). South-Western Cengage Learning, p. 452-455. Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101. Browning, M., & Lusardi, A. (1996). Household saving: Micro theories and micro facts. Journal of Economic Literature, 34(4), 1797-1855. Bryman, A. (2012). Social research methods. (5th ed.). United Kingdom: Oxford University Press. Bucks, B. K., Kennickell, A. B., Mach, T. L., & Moore, K. B. (2009). Recent changes in U.S. family finances: Evidence from the 2004 and 2017 survey of consumer finances. Federal Reserve Bulletin, 95, A1-A55. Byrne, B. M. (2016). Structural equation modeling with Amos: Basic concepts, applications and programming. (3rd ed.). New York: Routledge. Campara, J. P., Vieira, K. M., & Potrich, A. C. G. (2017). Overall life satisfaction and financial well-being: Revealing the perceptions of the beneficiaries of the bolsa família program. Revista de Administração Pública, 51, 182-200. CEIC. Malaysian household debt. https://ceicdata.com/en/indicator/malaysia/household-debt Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern Methods for Business Research, 295(2), 295-336. Chin, W. W. (2010). Handbook of partial least squares. University of Houston, Research Gate. Chong, K. F., Sabri, M. F., Magli, A. S., Rahim, H. A., Mokhtar, N., & Othman, M. A. (2021). Journal of Asian Finance, Economics and Business, 8(3), 905-915. Clear, T. (2001). Research paradigms and the nature of meaning and truth. ACM SIGCSE Bulletin, 33(2), 9-10. Cohen, J. (1988). Statistical power analysis for the behavioral sciences. (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers. Connelly, L. M. (2008). Pilot studies. Medsurg Nursing, 17(6), 411-413. Coursolle, K. M., Sweeney, M. M., Raymo, J. M., & Ho, J. H. (2010). The association between retirement and emotional well-being: Does prior work-family conflict matter? The Journals of Gerontology, 65B(5), 609-620. Credit Counselling and Debt Management Agency. (2018). Helping Malaysian Manage Personal Finances. Annual Report. Creswell, J. W. (2003). Research Design: Qualitative, quantitative and mixed method approaches. (2nd ed.). Sage Publications. Croson, R., & Gneezy, U. (2004). Gender differences in preferences. Journal of Economic Literature, 47 No. (2), 448-474. Cude, B. J. (2010). Financial literacy. The Journal of Consumer Affairs, 44(2), 271-275. Curtis, C., Lugauer, S., & Mark, N. (2017). Demographics and aggregate household saving in Japan, China and India. Journal of Macroeconomics,51, 175-191. Davies, J. B. (1981). Uncertain lifetime, consumption, and dissaving in retirement. Journal of Political Economy, 89(3), 561-577. Dawadi, S., Shrestha, S., & Giri, R. A. (2021). Mixed-methods research: A discussion on its types, challenges, and criticisms. Journal of Practical Studies in Education, 2(2), 25-36. Demery, D., & Duck, N. W. (2006). Savings – Age profiles in the United Kingdom. Journal of Population Economics, 19, 521-541. Der Hovanesian, M. (1999). Coming on strong: The children of the baby boomers are affecting spending and investing as significantly as their parents did. The similarity ends there. Eastern ed. Dey, I. (1993). Qualitative data analysis: A user-friendly guide for social scientists. London: Routledge. Diamantopoulos, A., & Siguaw, J. A. (2006). Formative versus reflective indicators in organizational measure development: A comparison and empirical illustration. British Journal of Management, 17(4), 263-282. Diener, E., Wirtz, D., Tov, W., Kim-Prieto, C., Choi, D., Oishi, S., & Biswas-Diener, R. (2010). New well-being measures: Short scales to assess flourishing and positive and negative feelings. Social Indicators Research, 97, 143-156. Dougal, C., Engelberg, J., Parsons, C. A., & Edward, D. V. W. (2015). Anchoring on credit spreads. The Journal of Finance, 70(3), 1039-1080. Douthitt, R.A., & Fedyk, J. M. (1989). The use of saving as a family resource management strategy to meet childrearing costs. Lifestyles: Family and economic issue, 10(3), 233-248. Egboh, E. A., Chidozie, O. C. (2021). Retirement planning and adjustment to life after retirement by Nigerian Federal Public Sector pensioners. International Journal of Advances in Engineering and Management, 3(7), 2468-2475. Ely, M., Anzul, M., Friedman, T., & Gardner, D. (1991). Doing qualitative research: Circles within circles. Bristol, PA: The Falmer Press. Falk, R. F., & Miller, N. B. (1992). A primer for soft modeling. The University of Akron Press, Akron, Ohio. Fan, L., Henager, R. (2022). A structural determinants framework for financial well-being. Journal of Family and Economic Issues (43), 415–428. Farrell, L., Fry, T. R. L., & Risse, L. (2016). The significance of financial self-efficacy in explaining women’s personal finance behaviour. Journal of Economic Psychology, 54, 85-99. Fei, C. K., Sabri, M. F., Mohamed, N. A., Wijekoon, R., & Majid, A. Z. A. (2020). Determinants of financial vulnerability among young employees in Malaysia. Journal of Critical Reviews, 7(15), 3097-3107. Feldman, D. C., & Beehr, T. A. (2011). A three-phase model of retirement decision making. American Psychologist, 66(3), 193-203. Feng, W., & Reich, R. W. (2021). Practice improves performance. The mediating interaction of active management on financial literacy and financial well-being. Journal of Applied Financial Research, 10(1), 60-86. Fenta, H. M., Dessie, Z. G., Mitku, A. A., & Muluneh, E. K. (2017). Saving habits and its determinants in Ambara national regional state, Ethiopia. Oman Chapter of Arabian Journal of Business and Management Review, 34(82), 1-10. Fisher, I. (1930). Celebrating Irving Fisher: The legacy of a great economist in Dimand, R. W., and Geanakoplos, J. The American Journal of Economics and Sociology, 64(1). Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behaviour: An introduction to theory and research. Addison-Wesley Publishing Co, Inc., Boston. Fisher, P. J., & Anong, S. T. (2012). Relationship of saving motives to saving habits. Journal of Financial Counselling and Planning, 23(1), 63-79. Flyvbjerg, B. (2021). Top ten behavioral biases in project management: An overview. Project Management Journal, 52(6), 531-546. Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Journal of Marketing Research, 18(3), 382-388. Fornell, C., & Cha, J. (1994). Partial least squares. Advanced Methods of Marketing Research, R. P Bagozzi (Ed.), 52-78. Cambridge, MA: Blackwell. Franzoi, S. L. (2006). Social Psychology, 154, 354-373. Furnham, A. (1999). The saving and spending habits of young people. Journal of Economic Psychology, 20, 677-697. Garrison, S. T., & Gutter, M. S. (2010). Gender differences in financial socialisation and willingness to take financial risks. Journal of Financial Counselling and Planning, 21(2), 60-72. Garland, H. (1983). Influence of ability, assigned goals and normative information on personal goals and performance: A challenge to the goal attainability assumption. Journal of Applied Psychology, 68(1), 20-30. Garman, E. T., & Forgue, R. E. (1997). Personal finance education for employees: Evidence on the bottom-line benefits. Association for Financial Counseling and Planning Education, 8(2), 1-8. Gefen, D., Detmar, S., & Marie-Claude, B. (2000). Structural modeling and regression: Guidelines for research practice. Communications of the Association for Information Systems, 4(7). Geisser, S. (1974). The predictive sample reuse method with applications. Journal of The American Statistical Association, 70(350), 320-328. Glamser, F. D. (1981). Predictors of retirement attitude. Aging and Work, 4(1), 23-39. Gockel, A. F., & Akoena, S. K. (2002). Financial intermediation for the poor: Credit demand by micro, small and medium scale enterprises in Ghana. A further assignment for financial sector policy? IFLIP, Research Paper, No.02-6. Goi, M. T., Palil, M. R., Mohd Zain, N. H., & Mamat, N. H. (2019). Predicting private saving within Malay community. Asian Academy of Management Journal, 24(1), 1-17. Goldstein, D. G., Johnson, E. J., & Sharpe, W. F. (2008). Choosing outcomes versus choosing products: Consumer-focused retirement investment advice. Journal of Consumer Research, 35(3), 440-456. Gottschalck, A. O. (2008). Net worth and the assets of households: 2002. Current Population Reports, 70-115. Gough, O., & Sozou, P. D. (2005). Pensions and retirement savings: Cluster analysis of consumer behaviour and attitudes. International Journal of Bank Marketing, 23(7), 558-570. Greenfield, T. (2002). Research methods guidance for postgraduates (2nd ed.). Metchigin: Hodder Education. Guariglia, A. (2001). Saving behaviour and earnings uncertainty: Evidence from the British household panel survey. Family, Household and Work Book Series, 135-150. Guido, G., Amatuli, C., & Sestino, A. (2020). Elderly consumers and financial choices: A systematic review. Journal of Financial Services Marketing, 25, 76-85. Gutter, M., & Copur, Z. (2011). Financial behaviors and financial well-being of college students: Evidence from a national survey. Journal of Family and Economic Issues, 32, 699-714. Gutter, M. S., Fox, J. J., & Montalto, C. P. (1999). Racial differences in investor decision making. Financial Services Review, 8(3), 149-162. Hair, J. F., Anderson, R. E., Babin, B. J., & Black, W. C. (2010). Multivariate data analysis: A global perspective (Vol. 7). Upper Saddle River, NJ: Peason. Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139-152. Hair, J. F., Sarstedt, M., Pieper, T. M., & Ringle, C. M. (2012). The use of partial least squares structural equation modeling in strategic management research: A review of past practices and recommendations for future applications. Long Range Planning, 45(5-6), 320-340. Hair, J. F., Sarstedt, M., Ringle, C. M., & Mena J. A. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40(3), 414-433. Hair, J. F., Hult, G. T. M, Ringle, C. M, & Sarstedt, M. (2014). A primer on partial least squares structural equation modeling (PLS-SEM). Thousand Oaks, CA: Sage Publications, Inc. Hair, J. F., Sarstedt, M., & Kuppelwieser, V. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool for business research article. European Business Review, 26(2), 106-121. Hair, J., Hollingsworth, C. L., Randolph, A. B., & Chong, A. Y. L. (2017). An updated and expanded assessment of PLS-SEM information system research. Industrial Management & Data Systems, 117(3), 442-458. Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). A primer on partial least squares structural equation modeling (PLS-SEM) (2nd ed.). Thousand Oaks, CA: Sage Publications Inc. Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Partial least squares structural equation modeling (PLS-SEM) using R. Classroom companion: Business. Hershfield, H. E., Goldstein, D. G., Sharpe, W. F., Fox, J., Yeykelis, L., Carstensen, L. L., & Bailenson, J. N. (2011). Increasing saving behavior through age-progressed renderings of the future self. Journal of Marketing Research, 48(SPL), S23-S37. Henseler, J., Ringle, C. M., & Rudolf, R. S. (2009). The use of partial least squares path modeling in international marketing (Vol. 20). Emerald JAI Press. Henseler, J. (2012). Why generalized structured component analysis is not universally preferable to structural equation modeling. Journal of the Academy of Marketing Science, 40(3), 402-413. Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing, 43, 115-135. Herrnstein, R. J. (1961). Relative and absolute strength of response as a function of frequency of reinforcement. Journal of the Experimental Analysis of Behavior, 4, 267-272. Highest increases in poverty rates in Sabah, Sarawak, Kelantan, Kedah. (2022, June 16). Free Malaysia Today. https://www.freemalaysiatoday.com/category/nation/2022/06/16/highest-increases-in-poverty-rates-in-sabah-sarawak-kelantan-kedah/ Hira, T. (1987). Households’ financial management factors influencing solvency and satisfaction. The Journal of Japan Society of Household Economics, 10, 199-210. Hira, T. K., Sabri, M. F., & Loibl, C. (2013). Financial socialisation’s impact on investment orientation and household net worth. International Journal of Consumer Studies, 37(1), 29-35. Hoffmann, A. O. I., & Plotkina, D. (2021). Positive framing when assessing the personal resources to manage one's finances increases consumers' retirement self-efficacy and improves retirement goal clarity. Psychology & Marketing, 38(12), 2286-2304. Hoffmann, A. O. I., & Plotkina, D. (2021). Let your past define your future? How recalling successful financial experiences can increase beliefs of self-efficacy in financial planning. The Journal of Consumer Affairs, 55(3), 847-871. Huang, H. C., Lai, M. C., Lin, L. H., & Chen, C. T. (2013). Overcoming organizational inertia to strengthen business model innovation: An open innovation perspective. Journal of Organizational Change Management, 26(6), 977-1002. Hufner, F., & Koske, I. (2010). Explaining household saving rates in G7 countries – Implications for Germany. OECD Economics Department Working Papers, 754, 1-26. Huhmann, B. A., & McQuitty, S. (2009). A model of consumer financial numeracy. International Journal of Bank Marketing, 7(4), 270-293. Hulland, J. (1999). Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strategic Management Journal, 20(2), 195-204. Huston, S. J. (2010). Measuring financial literacy. The Journal of Consumer Affairs, 44(2), 296-316. James, W. B., & Carolyn, K. (2015). Growing Environmentalism: The Difference between Desires, Behaviour, and Preferences. Johnson, R. B., Onwuegbuzie, A. J., & Turner, L. A. (2007). Toward a definition of mixed methods research. Journal of Mixed Methods Research, 1(2), 112-133. Jacobs-Lawson, J. M., & Hershey, D. A. (2005). Influence of future time perspective financial knowledge and financial risk tolerance on retirement saving behaviors. Financial Services Review, Greenwich, 14(4), 331-344. Katona, G. (1975). Psychological Economics. New York: Elsevier. Kendall, E., & Sproles, G. B. (1990). Consumer decision-making styles as a function of individual learning styles. The Journal of Consumer Affairs, 24(1), 134-147. Keynes, J. M. (1936). The General Theory of Employment, Interest and Money. London: Macmillan. Kimball, M. S. (1990). Precautionary saving in the small and in the large. Econometrica, 58(1), 53-73. Kline, R. B. (2011). Convergence of structural equation modeling and multilevel modeling. The SAGE Handbook of Innovation in Social Research Methods. Kok, C. (2016). Many Malaysian household at risk of shocks. The Star. https://www.thestar.com.my/business/business-news/2016/09/03/many-malaysian households-at-risk-of-shocks/ Kotlikoff, L. J. (1988). Intergenerational transfers and savings. Journal of Economic Perspectives, 2(2), 41-58. Lange, P. A. M. V., Kruglanski, A. W., & Higgins, E.T. (2012). The Handbook of Theories of Social Psychology (Vol. 1). SAGE. Lapp, W. M. (2010). Behaviour models for prosperity: A statistical assessment of savings and behavioral change. CA, USA: Earned Assets Resources Network. Lawson, J. M. J., & Hershey, D. A. (2005). Influence of future time perspective, financial knowledge and financial risk tolerance on retirement saving behaviours. Financial Services Review, 14, 331-344. Leal, C. C., & Oliveira, B. (2021). Choice: Nudging for sustainable behavior. Sustainable Management for Managers and Engineers, 1-17. Lee, S., Park, M., & Montalto, C. P. (2000). The effect of family life cycle and financial management practices on household saving patterns. Journal of Korean Home Economics Association English Edition, 1, 79-92. Lenth, R. V. (2001). Some practical guidelines for effective sample size determination. The American Statistician, 55(3), 187-193. León, A. K., & Pfeifer, C. (2017). Religious activity, risk-taking preferences and financial behaviour: Empirical evidence from German survey data. Journal of Behavioural and Experimental Economics, 69, 99-107. Liberda, B., & Tokarski, T. (1999). Determinants of saving and economic growth in Poland in comparison to the OECD countries. Working Papers Series, 1-28. Ling, H. K., & Wong, S. K. (2012). High cost of living and social safety nets in urban Sarawak (1st ed.). Institute of Southeast Asian Studies. Livingstone, S. M., & Lunt, P. K. (1993). Savers and borrowers: Strategies of personal financial management. Human Relations, 46(8), 963-985. Loibl, C., Moulton, S., Haurin, D., & Edmunds, C. (2022). The role of consumer and mortgage debt for financial stress. Aging & Mental Health, 26(1), 116-129. Loke, Y. J. (2014). Living beyond one’s means: Evidence from Malaysia. International Journal of Social Economics, 43(1), 2-18. Lotlikoff, L. J., & Summer, L. (1998). The contribution of intergenerational transfers to total wealth: A reply. In D. Kessler & A. Masson (Eds.), Modeling the Accumulation and Distribution of Wealth, New York: Oxford University Press. Love, D. A. (2010). The effect of marital status and children on savings and portfolio choice. The Review of Financial Studies, 23(1), 385-432. Low, D. (2012). Behavioural Economics and Policy Design: Examples from Singapore. World Scientific Publishing Co. Pte.Ltd. Lown, J. M. (2011). Development and validation of a financial self-efficacy scale. Journal of Financial Counselling and Planning, 32(2), 54-63. Lown, J. M., Kim, J., Gutter, M. S., & Hunt, A. T. (2015). Self-efficacy and savings among middle and low income households. Journal of Family and Economics Issues, 36, 491-502. Lunt, P. K., & Livingstone, S. M. (1991). Psychological, social and economic determinants of saving: Comparing recurrent and total savings. Journal of Economic Psychology, 12, 621-641. Lusardi, A. (1998). On the importance of the precautionary saving motive. The American Economic Review, 88(2), 449-453. Lusardi, A., & Mitchell, O. S. (2011). Financial literacy around the world: An overview. Journal of Pension Economics & Finance, 10(4), 497-508. Lusardi, A., Mitchell, O. S., & Oggero, N. (2020). Debt and financial vulnerability on the verge of retirement. Journal of Money, Credit and Banking, 52(5), 1005-1034. Mahdzan, N. S., & Tabiani, S. (2013). The impact of financial literacy on individual saving: An exploratory study in the Malaysian context. Transformations in Business & Economics, 12(1), 41–55. Malaysian Digest. (2016). Retirement homes: The Way Forward to Adapt to Malaysia's Ageing Population. Malhotra, N. K., & Dash, S. (2011). Marketing research an applied orientation. Pearson Publishing, London. Mankiw, N. G., Quah, E., & Wilson, P. (2008). Principles of Economics (Asian ed.). Cengage Learning. Marcoulides, G. A. (2013). Modern Methods for Business (2nd ed.). Psychology Press. McCracken, G. D. (1998). The Long Interview. Qualitative Research Methods (Vol. 13). Newbury Park: SAGE. Merriam, S. B. (2007). Qualitative research and case study: Application in education. Revised and Expanded from Case Study Research in Education. Merriam, S. B. (2009). Qualitative research: A guide to design and implementation. San Francisco, CA: Jossey-Bass. Mikolajczak, P. A., & Golas, Z. (2014). The socioeconomic conditions of saving behaviours in Polish household. Oecanomia, 13(4), 7-17. Miller, R. G. (2011). Economics Today (15th ed.). Addison-Wesley. Miles, M.B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. SAGE Mishra, H., Mishra, A., Rixom, J., & Chatterjee, P. (2013). Influence of motivated reasoning on saving and spending decisions. Journal of Organisational Behaviour and Human Decision Processes, 121(1), 13-23. Mitchell, T. R. (1974). Expectancy models of job satisfaction, occupational preference and effort: A theoretical, methodological, and empirical appraisal. Psychological Bulletin, 81(12), 1053. Modigliani, F., & Brumberg, R. (1954). Utility analysis and the consumption function: An interpretation of cross-section data. Franco Modigliani, 1(1), 88-436. Morgan, P. J., Huang, B., & Trinh, L. Q. (2019). The need to promote digital financial literacy for the digital age. The 2019 G20 Osaka Summit, Japan: The Future of Work and Education for the Digital Age, August, 40-46. Morris, A. (2012). Behavioural Economics for Dummies (1st ed.). Wiley. Mullainathan, S., & Thaler, R. H. (2000). Behavioural Economics. National Bureau of Economic Research, 7948. https://econpapers.repec.org/paper/nbrnberwo/7948.htm Naziman, Y. H. N. M., Omar, W. M. W., Omar., S. N. Z., & Taib, M. R. M. (2022). Employee intention for early retirement: A preliminary study on local authority. Journal of Global Business and Social Entrepreneurship (GBSE), 7(23), 139-149. Ngui, N. (2016). Malaysian are borrowing too much, not saving enough. The Star. http://www.thestar.com.my/business/businessnews/2016/08/30/khazanahmalaysians -borrowing-too-much/ Noviarini, J., Coleman, A., Roberts, H. & Whiting, R. H. (2021). Financial literacy, debt, risk tolerance and retirement preparedness: Evidence from New Zealand. Pacific-Basin Finance Journal, 68. Nunnally, J. C. (1978). Psychometric theory (Vol. 2). New York: McGraw-Hill. Nyhus, E. K., & Webley, P. (2001). The role of personality in household saving and borrowing behaviour. European Journal of Personality, 15, 85-103. OECD (Organisation for Economic Co-operation and Development). (2017). Household savings. https://data.oecd.org/hha/household-savings.htm O’Guinn, T. C. & Faber, R. J. (1989). Compulsive buying: A phenomenological exploration. The Journal of Consumer Research, 16, 147-157. Ozyuksel, S., & Gunay, U. (2019). Retirement preparedness in Turkey and the need for personal financial planning. Eurasian Journal of Economics and Finance, 7(1), 15-35. Patton, M. Q. (1990). Qualitative evaluation and research methods (2nd ed.). California, USA: Thousand Oaks. Patton, M. Q. (2002). Qualitative research and evaluation methods. (3rd ed.). California: SAGE. Perugini, M., & Bagozzi, R. (2001). The role of desires and anticipated emotions in goal-directed behaviours: Broadening and deepening the theory of planned behaviour. Journal of Social Psychology, 40(1), 79-98. Picciano, A. G. (2016). Paradigms, methodologies, methods, and the role of theory in online and blended learning research in Conducting Research in Online and Blended Learning Environments New Pedagocical Fronties (1st ed.). Routledge: New York and London. Pollak, R. (1970). Habit Formation and Dynamic Demand. Journal of Political Economy, 78(4), 745-763. Poole, W. (2010). The causes and consequences of the financial crisis of 2007-2009. Harvard Journal of Law and Public Policy, 33(2), 421-441. Poth, C., & Munce, S. E. P. (2020). Commentary - Preparing today's researchers for a yet unknown tomorrow: Promising practices for a synergetic and sustainable mentoring approach to mixed methods research learning. International Journal of Multiple Research Approaches, 12(1), 56-64. Potter, J. (2002). Two kinds of natural. Discourse Studies, 4(4), 539-542. Powell, R., Do, A., Gengatharen, D., Yong, J., & Gengatharen, R. (2023). The relationship between responsible financial behaviours and financial wellbeing: The case of buy-now-pay-later. Accounting & Finance, 00, 1-21 Proctor, S. (1998). Linking philosophy and method in the research process: The case for realism. Nurse Researcher, 5(4), 73-79. Putri, W. W., & Hamidi, M. (2019). Pengaruh literasi keuangan, efikasi keuangan, dan faktor demografi terhadap pengambilan keputusan investasi (studi kasus pada mahasiswa magister manajemen fakultas ekonomi universitas andalas padang). Jurnal Ilmiah Mahasiswa Ekonomi Manajemen, 4(1), 210-224. Quick, H. E., & Moen, P. (1998). Gender, employment and retirement quality: A life course approach to the differential experiences of men and women. Journal of Occupational Health Psychology, 3(1), 44-64. Rabinovich, A., & Webley, P. (2007). Filling the gap between planning and doing: Psychological factors involved in the successful implementation of saving intention. Journal of Economic Psychological, 28, 444-461. Rahayu, R., Ali, S., Aulia, A., & Hidayah, R. (2022). The current digital financial literacy and financial behavior in Indonesian millenial generation. Journal of Accounting and Investment, 23(1), 78-94. Rahman, N. A. A., Kosim, Z., & Siew, G. Y. (2016). Household indebtness in Malaysia: A survey evidence international. Journal of Trade, Economics and Finance, 7(4), 102-104. Ramayah, T., Cheah, J., Chuah, F., Ting, H., & Memon, M.A. (2018). Partial least squares structural equation modeling (PLS-SEM) using SmartPLS 3.0, an updated and practical guide to statistical analysis (2nd ed.). Pearson. Reinsdorf, M. B. (2007). Alternative measures of personal saving. Survey of Current Business, 7-13. Remund, D. L. (2010). Financial literacy explicated: The case for a clearer definition in an increasingly complex economy. The Journal of Consumer Affairs, 44(2), 276-294. Rendon, M., & Kranz, R. (1992). Straight talk about money. New York: Facts on File. Rengarajan, V., Sankararaman, G., Sundaran, M. K., Rizwan, M. M., & Nibin, S. M. P. (2016). Influence of demographic variables on saving behaviour of rural households – A study with references to Sriperumpudur, Chennai. Indian Journal of Science and Technology, 9(31), 1-7. Rha, J., Montalto, C., & Hanna, S. (2006). The effect of self-control mechanisms on household saving behaviour. Journal of Financial Counseling and Planning, 17(2), 3-16. Rider, E. W. (2014). The impact of retirement on subjective well-being. Honors Theses. 591. Rindfleisch, A., Burroughs, J. E., & Denton, F. (1997). Family structure, materialism, and compulsive consumption. Journal of Consumer Research, 23, 312-325. Ritchie, J., Lewis, J., & Elam, R. G. (2013). Selecting samples. Qualitative Research Practice: A Guide for Social Science Students and Researchers. SAGE. Rob, A., Annamaria, L., & Ari, K. (1999). Saving after retirement: Evidence from three different surveys. Labour Economics, Elsevier, 6(2), 277-310. Roberston, R. L. (2019). Good job, good pension? The influence of the workplace on saving for retirement. Ageing & Society, 39(1), 2483-2501. Roldan, J. L., & Sanchez-Franco, M. J. (2012). Modeling: Guidelines for using partial least squares in information systems research in M. Mora, O. Gelman, A. Steenkamp, and M. Raisinghani (Eds.), Research Methodologies, Innovations and Philosophies in Software Systems Engineering and Information Systems, 193-221. Roscoe, J. T. (1975). Fundamental research statistics for the behavioral sciences (Second ed.). New York: Holt Rinehart and Winston Ryan, F., Coughlan, M., & Cronin, P. (2013). Step-by-step guide to critiquing research. Part 2. British Journal of Nursing, 16(2). Sabri, M. F., Reza, T. S., & Wijekoon, R. (2020). Financial management, savings behavior, investment behavior and financial well-being of working women in the public sector. Majalah Ilmiah Bijak, 17(2), 135-153. Sarantakos, S. (2013). Social research (4th ed.). Hampshire: Palgrave MacMillan. Schmidt, H. K., Webb, S. B., & Corsetti, G. (1992). Household saving in developing countries: First cross – Country evidence. The World Bank Economic Review, 6(3), 529-547. Schooley, D. K., & Worden, D. D. (2013). Accumulating and spending retirement assets: A behavioral finance explanation. Financial Services Review: The Journal of Individual Management, 22(2), 173-186. Schuberth, F., Henseler, J., & Dijkstra, T. K. (2018). Confirmatory composite analysis. Frontiers in Psychology, 9, 2541. Sekaran, U., & Bougie, R. (2009). Research method for business, a skill building approach (5th ed.). Wiley. Senda, D. A., Rahayu, C. W. E., & Rahmawati, C. H. T. (2020). The effect of financial literacy level and demographic factors on investment decision. Media Ekonomi dan Manajemen, 35(1), 100-111. Sendhil, M & Richard, H. T. (2000). Behavioural economics. NBER Working Paper Series. https://ideas.repec.org/p/nbr/nberwo/7948.html Setiawan, M., Effendi, N., Santoso, T., Dewi, V. I., & Sapulette, M. S. (2020). Digital financial literacy, current behavior of saving and spending and its future foresight. Economics of Innovation and New Technology, 1-19. Shaffer, J. A., DeGeest, D., & Li, A. (2016). Tackling the problem of construct proliferation: A guide to assessing the discriminant validity of conceptually related constructs. Organizational Research Methods, 19(1), 80–110. Shagar, L. K. (2016). Malaysians not saving enough for retirement. The Star. http://www.thestar.com.my/news/nation/2016/05/04/malaysians-not-savingenough-for-retirement/ Shanmugam, A., & Abidin, F. Z. (2013). Retirement confidence and preparedness: A study among working adults in a northern state in Malaysia. Business Management Research Paper, 404-414. Shefrin, H. M., & Thaler, R. H. (1988). The behavioral life-cycle hypothesis. Journal of the Western Economic Association International, 26(4), 609-643. Shukry, A. (2014, November 27). With zero savings, most Malaysian may face dire straits. The Edge Financial Daily. http://www.theedgemarkets.com/article/zero-savings-most-malaysians-may-face-dire-straits Shmueli, G. (2010). To explain or predict? Statistical Science, 25(3), 289-310. Shmueli, G., Ray, S., Estrada, J. M. V., & Chatla, S. B. (2016). The elephant in the room: Predictive performance of PLS models. Journal of Business Research, 69(10), 4552-4564. Silverman, D. (2004). Qualitative research: Theory, method and practice (2nd ed.). Sage Publications. Simon, H. A. (1955). A behavioural model of rational choice. The Quarterly Journal of Economics, 69, 99-118. Sims, T., Raposo, S., Bailenson, J. N., & Carstensen, L. L. (2020). The future is now: Age-progressed images motivate community college students to prepare for their financial future. Journal of Experimental Psychology: Applied, 26(4), 593-603. Singh, Y., Adil, M., & Haque, S. M. I. (2023). Personality traits and behavior biases: The moderating role of risk-tolerance. Quality & Quantity, 57, 3549-3573. Snell, S. A., & Dean, J. W. (1992). Integrated manufacturing and human resource management: A human capital perspective. The Academy of Management Journal, 35(3), 467-504. Sonuga-Barke, E., & Webley, P. (1993). Children’s saving: Study in the development of economic behaviour. Hove:CEA. Spinnewijn, J. (2015). Unemployed but optimistic: Optimal insurance design with biased beliefs. Journal of the European Economic Association, 13(1), 130-167. Stawski, R. S., Hershey, D. A., & Lawson, J. M. J. (2007). Goal clarity and financial planning activities as determinants of retirement savings contributions. The International Journal of Aging and Human Development, 64(1), 13-32. Stone, M. (1974). Cross validatory choice and assessment of statistical predictions. Journal of The Royal Statistical Society, 36(2), 111-147. Tabachnick, B. G., & Fidell, L. S. (2007). Using Multivariate Statistics (5th ed.). Boston, MA: Allyn & Bacon. Taft, M. K., Hosein, Z. Z., Mehrizi, S. M. T., & Roshan, A. (2013). The relation between financial literacy, financial wellbeing and financial concerns. International Journal of Business and Management, 8(11), 63-75. Taylor, S., & Bogdan, R. (1998). Introduction to qualitative research methods: The search for meanings (3rd ed.). Hoboken, NJ; John Wiley & Sons. Thaler, R. (1999). Mental accounting matters. Decision Making, 12, 183-206. Thinagar, S., Roslan, S. N. M., Ismail, M. K., & Chamhuri, N. (2021). COVID-19: B40 household's financial and consumption during the implementation of movement control order (MCO). Journal of the Malaysian Institute of Planners, 19(1), 65-76. Tomar, S., Baker, H. K., Kumar, S. & Hoffmann, A. O. I. (2021). Psychological determinants of retirement financial planning behaviour. Journal of Business Research, 133, 432-449. Tversky, A., & Kahneman, D. (1974). Judgement under uncertainty: Heuristics and biases. Science, 187, 1124-1131. Urbis, V. P., Rintol, D., Power, B., & Keevy, N. (2008). Young people (12-17 years) and financial debt, commonwealth of Australia. Vasallo, A. C. R. (2003). Children’s perception of their influence over purchases: The role of parental communication patterns. Journal of Consumer Marketing, 20(1), 55-66. Venti, S., & Wise, D. (1998). The cause of wealth dispersion at retirement: Choice or chance? American Economic Review, 88(2), 185-191. Vijaindren, A. (2015, December 20). Young, educated and in debt. The New Straits Time. https://www.nst.com.my/news/2015/12/118172/young-educated-and-debt Vlaev, I., King, D., Darzi, A., & Dolan, P. (2019). Changing health behaviors using financial incentives: A review from behavioral economics. BMC Public Health 19, (1059), 1-19. Wang, M. (2007). Profiling retirees in the retirement transition and adjustment process: Examining the longitudinal change patterns of retirees' psychological well-being. Journal of Applied Psychology, 92(2), 455-474. Warneryd, K. E. (1999). The psychology of saving. A study of economic psychology. Chichester: Edward Elgar Publishing. Webley, P., & Nyhus, E. K. (2006). Parents’ influence on children’s future orientation and saving. Journal of Economic Psychology, 27, 140-164. Westaby, J. D., & Fishbein, M. (1996). Factors underlying behavioral choice: Testing a new reasons theory approach. Journal of Applied Psychology, 26(15), 1307-1323. Westaby, J. D. (2005). Behavioral reasoning theory: Identifying new linkages underlying intentions and behavior. Organizational Behavior and Human Decision Processes, 98(2), 97-120. Wheelan, C. (2010). Naked economics: Undressing the dismal science. W. W Norton & Company, Inc. Wherry, R. J. (1931). A new formula for predicting the shrinkage of the coefficient of multiple correlation. The Annals of Mathematical Statistics, 2(4), 440–457. Widjaja, I., Arifin, A., & Setini, M. (2020). The effects of financial literacy and subjective norms on saving behavior. Management Science Letter, 10(15), 3635-3642. Wilkinson, N. & Klaes, M. (2012). An introduction to behavioral economics (2nd ed.). Palgrave Macmillan. Winchester, H. P. M. (2004). Interviews and questionnaires as mixed methods in population geography: The case of lone fathers in Newcastle, Australia. The Professional Geographer, 51(1), 60-67. Yao, R., Sharpe, D. L., & Wang, F. (2011). Decomposing the age effect on risk tolerance. Journal of Socio-Economics, 40(6), 879-887. Zebardast, A., Besharat, M. A., & Hghighatgoo, M. (2011). The relationship between self-efficacy and time perspective in students. Procedia-Social and Behavioral Sciences, 30, 935-938. Zimbardo, P. G., & Boyd, J. N. (2015). Putting time in perspective: A valid, reliable individual-differences metric. In: Stolarski, M., Fieulaine, N., & Van Beek, W. (Eds.). Time Perspective Theory: Review, Research and Application. Springer, Cham.
(1)
Aarseth, E. (2012). A narrative theory of games. Proceedings of The International Conference on The Foundations of Digital Games (pp. 129-133). Aksakal, N. (2015). Theoretical view to the approach of the edutainment. Procedia-Social and Behavioral Sciences, 186, 1232-1239. Aurisch, R., Ahmed, M., & Barkat, A. (2019). An outlook at Agile methodologies for the independent games developer. International Journal of Computers and Applications, 1-7. Bouzid, T., Darhmaoui, H., & Kaddari, F. (2017). Promoting elementary mathematics learning through digital games: Creation, implementation and evaluation of an edutainment game to promote basic mathematical operations. In Proceedings of the 2nd international Conference on Big Data, Cloud and Applications (pp. 1-4). Brezovszky, B., McMullen, J., Veermans, K., Hannula-Sormunen, M. M., Rodríguez-Aflecht, G., Pongsakdi, N., Laakkonen, E., & Lehtinen, E. (2019). Effects of a mathematics game-based learning environment on primary school students' adaptive number knowledge. Computers & Education, 128, 63-74. Calvo-Morata, A., Alonso-Fernández, C., Freire, M., Martínez-Ortiz, I., & Fernández-Manjón, B. (2020). Serious games to prevent and detect bullying and cyberbullying: A systematic serious games and literature review. Computers & Education, 103958. doi:10.1016/j.compedu.2020.103958 Chin Y. S. J., De Pretto L., Thuppil, V., & Ashfold, M. J. (2019). Public awareness and support for environmental protection - A focus on air pollution in Peninsular Malaysia. PLoS ONE,14(3), e0212206. https://doi.org/10.1371/journal.pone.0212206 Eldridge, R. G. (1969). Mist - the transition from haze to fog. Bulletin of the American Meteorological Society, 50(6), 422-427. doi: 10.1175/1520-0477-50.6.422 Gardeli, A., Vosinakis, S., Englezos, K., Mavroudi, D., Stratis, M., & Stavrakis, M. (2017). A week without plastic bags: Creating games and interactive products for environmental awareness. In International Conference on Advances in Computer Entertainment (pp. 128-138). Springer, Cham. Hamari, J., & Keronen, L. (2017). Why do people play games? A meta-analysis. International Journal of Information Management, 37(3), 125-141. Hao, J., Zhang, G., Yang, Y., Xingtai, M. B., & Handan, M. B. (2017). The characteristics of atmospheric visibility and influencing factors. Journal of Arid Land Resources andEnvironment, 31. Jupit, A. J. R., Minoi, J., Arnab, S., & Yeao, A. (2011). Cross-cultural awareness in game-based learning using a TPACK approach. In The 10th International Workshop on Internationalisation of Products and Systems. Jupit, A. J. R., Minoi, J-L., Arnab, S.,& Wee, A. Y. (2012). Story-telling and narrative methods with localised content to preserve knowledge. In P. Felicia (Ed). Proceedings of The 6th European Conference on Games Based Learning – ECGBL 2012 (pp. 210-218). Academic Publishing International. Kasurinen, J., Palacin-Silva, M., & Vanhala, E. (2017). What concerns game developers? A study on game development processes, sustainability and metrics. In 2017 IEEE/ACM 8th Workshop on Emerging Trends in Software Metrics (WETSoM) (pp. 15-21). IEEE. Keat, O. Y. B., Wahid, N., Murli, N., & Hamid, R. A. (2018). Augmented Reality to Induce Enjoyment in Edutainment Mobile Game. JOIV: International Journal on Informatics Visualization, 2(3-2), 188-193. Landrigan, P. J. (2017). Air pollution and health. The Lancet Public Health, 2(1), e4-e5. Mannucci, P. M., Harari, S., Martinelli, I., & Franchini, M. (2015). Effects on health of air pollution: a narrative review. Internal and Emergency Medicine, 10(6), 657-662. Maraffi, S., & Sacerdoti, F. M. (2018). Innovative Digital Games to Improve Science Education through Storytelling, Mystery and Myth. British DiGRA. Nel, A. (2005). Air pollution-related illness: effects of particles. Science, 308(5723), 804-806. doi: 10.1126/science.1108752 Othman, J., Sahani, M., Mahmud, M., & Ahmad, M. K. S. (2014). Transboundary smoke haze pollution in Malaysia: Inpatient health impacts and economic valuation. Environmental Pollution, 189,194-201. Rahman, A. A., Sahrir, M. S., Zainuddin, N., & Khafidz, H. A. (2018). An evaluation of Global Zakat Game (GZG) as edutainment board game in enhancing Zakat education in Malaysia. Educational Research and Reviews, 13(5), 166-172. Raybourn, E. M. (2014). A new paradigm for serious games: Transmedia learning for more effective training and education. Journal of Computational Science, 5(3), 471-481. Rothschild, R. E. (2019). Poisonous Skies: Acid Rain and the Globalization of Pollution. University of Chicago Press. Schoenau-Fog, H. (2011). Hooked! - Evaluating engagement as continuation desire in interactive narratives. In: International Conference on Interactive Digital Storytelling(pp. 219-230). Springer, Berlin, Heidelberg. Schoenau-Fog, H. (2014). The Player Engagement Process - An Exploration of Continuation Desire in Digital Games. In DiGRA 2011 Conference: Think Design Play, 6, 1-18.isbn: 9781119055006. doi: 10.1002/9781119055006.ch13. url:http://www.digra.org/wp-content/uploads/digital-library/11307.06025.pdf Sharma, S., Sarkar, D., & Gupta, D. (2012). Agile processes and methodologies: A conceptual study. International Journal on Computer Science and Engineering, 4(5), 892-898. Suffari, N. F., Zain, M., Majid, M., & Tazilah, M. D. A. K. (2019). A Conceptual Study of Social Responsibility Awareness and Practices among School Children.International Journal of Business and Technology Management, 1(1), 1-17. Thomas, C. (2015). The design, implementation, and incorporation of" hack and slash" animation into the unreal development kit.All Theses, 2270. Walters, R. (2014). Air pollution and invisible violence. In Invisible Crimes and Social Harms(pp. 142-160). Palgrave Macmillan, London. doi: 10.1057/9781137347824_8 World Meteorological Organization (2017). Manual on Codes (WMO-No. 306), Volume I.1, Part A –Alphanumeric Codes. (2011 ed.).
(1)
Aarts, J. W. M., Huppelschoten, A. G., Van Empel, I. W. H., Boivin, J., Verhaak, C. M., Kremer, J. A., & Nelen, W. L. (2012). How patient centred care relates to patients’ quality of life and distress: A study in 427 women experiencing infertility. Human Reproduction, 27(2), 488–495. https://doi.org/10.1093/humrep/der386 Abdollahpour, S., Taghipour, A., Vahed, S. H. M., & Roudsari, R. L. (2021). The efficacy of behavioural theraphy on stress, anxiety and depression of infertile couples: A systematic review and meta-analysis. Journal of Obstetrics & Gynaecology. DOI: 10.1080/01443615.2021.1904217 Anniina, K., Bjorn, P., Eronen, L., & Karna, E. (2019). Managing epistemic imbalances in peer interaction during mathematics lesson. Discourse Studies, 21(3). https://doi.org/10.1177/1461445619829236 Bjørkdahl, K., & Druglitrø, Y. (2018). When authority goes viral: Digital communication and health expertise on pandemic.no. In K. Bjørkdahl, & B. Carlsen, (Eds.), Pandemics, publics, and politics (pp. 75-91). Palgrave Macmillan. Brooks, A. W., Gino, F., & Schweitzer, M. E. (2015). Smart people ask for (my) advice: Seeking advice boosts perceptions of competence. Management Science, 61(6), 1421- 1435. https://www.hbs.edu/ris/Publication%20Files/Advice%20Seeking_59ad2c42- 54d6-4b32-8517-a99eeae0a45c.pdf Brown, P., & Levinson, S. (1987). Politeness: Some universals in language usage. Cambridge University Press. Buttny, R. (2004). Talking problems: Studies of discursive construction. State University of New York Press. Cheng, Y. A. (2020). Ultra-low fertility in east Asia: Confucianism and its discontents. Vienna Yearbook of Population Research, 18, 1-38. Chentsova-Dutton, Y. E., & Vaughn, A. (2012). Let me tell you what to do: Cultural differences in advice-giving. Journal of Cross-Cultural Psychology, 43(5), 687– 703. https://doi.org/10.1177/0022022111402343 Collins, P. (2005). The modals and quasi-modals of obligation and necessity in Australian English and other Englishes. English World-Wide, 26, 249-73. Copeland, M. P., Reynolds, K., & Burton, J. B. (2008). Social identity, status characteristics and social networks: Predictors of advice seeking in a manufacturing facility. Asian Journal of Social Psychology, 11, 75-87. Duan, J., Xia, X., & Van Swol, L. M. (2018). Emoticons’ influence on advice taking. Computers in Human Behavior, 79, 53-58. https://doi.org/10.1016/j.chb.2017.10.030 GEMA Online® Journal of Language Studies Volume 22(1), February 2022 http://doi.org/10.17576/gema-2022-2201-13 eISSN: 2550-2131 ISSN: 1675-8021 233 Eley, N. T. Namey, E., McKenna, K., Johnson, A. C. & Guest, G. (2019). Beyond the individual: Social and cultural influences on the health-seeking behaviors of African American men. American Journal of Men’s Health, 13(1). https://doi.org/10.1177%2F1557988319829953 Erčulj, V. I., & Žiberna, A. (2021). The role of online social support in patients undergoing infertility treatment – A comparison of pregnant and non-pregnant members. Health Communication. DOI: 10.1080/10410236.2021.1915517 Erčulj, V. I., Žiberna, A., & Velikonja, V. G. (2019). Exploring online social support among infertility treatment patients: A text-mining approach. Information Research, 24(1). http://InformationR.net/ir/24-1/paper807.html Faezah Shekh Abdullah, Rosliah Harun, & Norliza Ahmad. (2012). Study on public awareness and knowledge regarding infertility. http://familyrepository.lppkn.gov.my/376/2/Extended_Abstrak_- _STUDY_ON_PUBLIC_AWARENESS_AND_KNOWLEDGE_REGARDING_INF ERTILITY.pdf Fatimah Sham, Norhashimah Yunus, Neani Surayani Hasimin, Rohana Mohd Saad, Salmi Razali, & Suzana Yusof. (2020). Anxiety and depression among infertile couple in Malaysia. Healthscope: The Official Research Book of Faculty of Health Sciences, UiTM, 3(1), 78-81. Feng, B., & Feng, H. (2011). Examining cultural similarities and differences in responses to advice: A comparison of American and Chinese college students. Communication Research, 40(5), 623-644. https://escholarship.org/content/qt65s7344h/qt65s7344h_noSplash_c5e7af505b63ee2 d45c368970f8516b6.pdf Feng, B., & Feng, H. (2018). Advice across cultures. In E. L. MacGeorge, & L. M. Van Swol (Eds.), The Oxford handbook of advice (pp. 381-402). Oxford University Press Feng, H. (2015). Understanding cultural variations in giving advice among Americans and Chinese. Communication Research, 42(8), 1143-1167. Feng, H., Zhang, W., & Huang, W. (2016). A mediation model of giving advice intention across two cultures. Intercultural Communication Studies, 25(3). https://www-s3- live.kent.edu/s3fs-root/s3fs-public/file/H-FENG-W-ZHANG-W-HUANG-S-HONG.pdf Ferber, G. M. (1995). An empathy-supporting approach to the treatment of infertile women. Psychotherapy: Theory, Research, Practice, Training, 32(3), 437–442. https://doi.org/10.1037/0033-3204.32.3.437 Franzke, A. S., Bechmann, A., Zimmer, M., Ess, C,. & the Association of Internet Researchers (2020). Internet Research: Ethical Guidelines 3.0. https://aoir.org/reports/ethics3.pdf Gaertig, C., & Simmons, J. P. (2018). Do people inherently dislike uncertain advice? Psychological Science, 29(4), 504-520. Gall, S. (1985). Help-seeking behavior in learning. Review of Research in Education, 12, 55- 90. doi:10.2307/1167146 Gino, F., Brooks, A. W., & Schweitzer, M. E. (2012) Anxiety, advice, and the ability to discern: Feeling anxious motivates individuals to seek and use advice. Journal of Personality and Social Psychology, 102(3), 497–512. Glide, M. (2015). Cuáles son sus recomendaciones? A comparative analysis of Spanish and English advice given on a Mexican Subreddit. IU Working Papers in Linguistics, 15(1), 181-207. Goldsmith, D. J., & MacGeorge, E. L. (2000). The impact of politeness and relationship on perceived quality of advice about a problem. Human Communication Research, 26, 234– 263. doi:10.1111/j.1468-2958.2000.tb00757.x GEMA Online® Journal of Language Studies Volume 22(1), February 2022 http://doi.org/10.17576/gema-2022-2201-13 eISSN: 2550-2131 ISSN: 1675-8021 234 Hampel, E. (2015). “Mama Zimbi, pls help me!” - Gender differences in (im)politeness in Ghanaian English advice-giving on Facebook. Journal of Politeness Research, 11(1), 99-130. Heritage, J. (2010). Questioning in medicine. In A. F. Freed & S. Ehrlich (Eds.), “Why do you ask?”: The function of questions in institutional discourse (pp. 42–68). Oxford University Press. Heritage, J. (2012). Epistemics in action: Action formation and territories in knowledge. Research on Language and Social Interaction, 45(1), 1-29. Heritage, J. (2013). Epistemics in conversation. In J. Sidnell & T. Stivers (Eds.), The handbook of conversation analysis (pp. 370-394). Wiley-Blackwell. Heritage, J., & Sefi, S. (1992). Dilemmas of advice: Aspects of the delivery and reception of advice in interactions between health visitors and first-time mothers. In P. Drew & J. Heritage (Eds.), Talk at work: Interaction in institutional settings (pp. 359-417). Cambridge University Press. Hinkel, E. (1995). The use of modal verbs as a reflection of cultural values. TESOL Quarterly, 29(2), 325-343. Ireland, M. E., Slatcher, R. B., Eastwick, P. W., Scissors, L. E., Finkel, E. J., & Pennebaker, J. W. (2011). Language style matching predicts relationship formation and stability. Psychological Science, 22, 39-44. Jariah Mohd. Jan, & Pung, W. C. (2016). Strategies used and cultural considerations in seeking advice on In-Vitro Fertilisation online: A case of Malaysian women. 3L: Language, Linguistics, Literature, 22(2), 1-16. Ji, L. J., Zhang, N., Li, Y., Zhang, Z., Harper, G., Khei, M., & Li, J. (2016). Cultural variations in reasons for advice seeking. Journal of Behavioral Decision Making, 30(3), 708-718. Kale, S. H., Harland, D., & Moores, K. (2020). Impact of national culture on governance and management of family businesses: Australia versus India. NHRD Network Journal, 13(1), 73-83. Kizilay, Y. (2019). Semi-modal verb “need to” and the modality of obligation “must & have to” in authentic corpus-based English. RumeliDE Dil ve Edebiyat Araştırmaları Dergisi, (Ö6), 240-257. DOI: 10.29000/rumelide.648857 Koh, K. C., Lau, K. M., Yusof, S. A. M., Mohamad, A. I., Shahabuddin, F. S. A., Ahmat, N. H., & Teh, P. C. (2015). A study on the use of abbreviations among doctors and nurses in the medical department of a tertiary hospital in Malaysia. Med J Malaysia, 70(6), 334-340. https://pubmed.ncbi.nlm.nih.gov/26988205/ Kouper, I. (2010). The pragmatics of peer advice in a LiveJournal Community. Language@Internet, 7, Article 1. https://www.languageatinternet.org/articles/2010/2464/Kouper.pdf Kwan, V. S. Y., Bond, M. H., & Singelis, T. M. (1997). Pancultural explanations for life satisfaction: Adding relationship harmony to self-esteem. Journal of Personality and Social Psychology, 73, 1038-1051. Leon, I. G. (2010). Understanding and treating infertility: Psychoanalytic considerations. The Journal of American Academy of Psychoanalysis and Dynamic Psychiatry, 38(1), 47- 75. doi: 10.1521/jaap.2010.38.1.47 Leppanen, V. (1998). The straightforwardness of advice. Advice-giving in interactions between Swedish district nurses and patients. Research on Language and Social Interaction, 31, 209-239. Liljenquist, K. A. (2010). Resolving the impression management dilemma: The strategic benefits of soliciting others for advice. [Unpublished doctoral dissertation]. Northwestern University. GEMA Online® Journal of Language Studies Volume 22(1), February 2022 http://doi.org/10.17576/gema-2022-2201-13 eISSN: 2550-2131 ISSN: 1675-8021 235 Limberg, H. (2010). Discourse structure of academic talk in university office hour interactions. Discourse Studies, 9, 176-193. Limberg, H., & Locher, M. A. (Eds.). (2012). Advice in discourse. John Benjamins. Lindholm, L. (2019). Form and function of response stories in online advice. [Doctoral dissertation, Abo Akademi University]. Locher, M. A. (2006). Advice online. John Benjamins. Ma, J., Korpak, A., Choukas-Bradley, S., & Macapagal, K. (2021). Patterns of online relationship seeking among transgender and gender diverse adolescents: Advice for others and common inquiries. Psychology of Sexual Orientation and Gender Diversity. http://dx.doi.org/10.1037/sgd0000482 MacGeorge, E. L., & Van Swol, L. M. (Eds.). (2018). The Oxford handbook of advice. Oxford University Press. Maiuolo, M., Deane, F. P., & Ciarrochi, J. (2019). Parental authoritativeness, social support and help-seeking for mental health problems in adolescents. Journal of Youth and Adolescence, 48, 1056-1067. Mamykina, L., Nakikj, D., & Elhadad, N. (2015). Collective sensemaking in online health forums. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. Melati Sumari, Dini Farhana Baharudin, Norfaezah Md Khalid, Nor Hasniah Ibrahim, & Ida Hartina Ahmed Tharbe. (2020). Family functioning in a collectivist culture of Malaysia: A qualitative study. The Family Journal, 28(4), 396– 402. https://doi.org/10.1177/1066480719844334sumari Mirc, N., & Parker, A. (2020). If you do not know who knows what: Advice seeking under changing conditions of uncertainty after an acquisition. Social Networks, 61, 53-66. Mojaverian, T., Hashimoto, T., & Kim, H. S. (2013). Cultural differences in professional help seeking: A comparison of Japan and the U. S. Frontiers in Psychology, 3, Article 615. Morrow, P. R. (2006). Telling about problems and giving advice in an Internet discussion forum: Some discourse features. Discourse Studies, 8(4), 531-548. Morrow, P. R. (2012). Online advice in Japanese: Giving advice in an Internet discussion forum. In H. Limberg & M. A. Locher (Eds.), Advice in discourse (pp. 222-280). John Benjamins. Nouman, H., & Zanbar, L. (2020). Support of stressor? The community as a predictor of perceptions of infertility. Social Work in Health Care, 59(9-10), 650-667. Ortega, L., Boda, Z., Thompson, I., & Daniels, H. (2020). Understanding the structure of school staff advice relations: An inferential social network perspective. International Journal of Educational Research, 99, Article 101517. Paige, S. R., Wilczewski. H., Casale, T. B., & Bunnell, B. E. (2021). Using a computer-tailored COPD screening assessment to promote advice-seeking behaviors. World Allergy Organization Journal, 14(11), Article 100603. Paik, J. (2014). The effects of solicitation of advice and want for advice on evaluation of advice: Testing the mediating role of perceived face threat in the context of graduate students’ adjustment. (Order No. 1555206) [Master’s thesis, Michigan State University]. ProQuest Dissertations and Theses Global. https://www.proquest.com/dissertationstheses/effects-solicitation-advice-want-on-evaluation/docview/1530298796/se- 2?accountid=40705 Park, M., & Chelsa, C. (2010). Understanding complexity of Asian American family care practices. Archives of Psychiatric Nursing, 24, 189–201. Pozza, A., Dettore, D., & Coccia, M. E. (2019). Depression and anxiety in pathways of medically assisted reproduction: The role of infertility stress dimensions. Clinical GEMA Online® Journal of Language Studies Volume 22(1), February 2022 http://doi.org/10.17576/gema-2022-2201-13 eISSN: 2550-2131 ISSN: 1675-8021 236 Practice and Epidemiology in Mental Health, 15, 101- 109. doi: 10.2174/1745017901915010101 Ried, K., & Alfred, A. (2013). Quality of life, coping strategies and support needs of women seeking Traditional Chinese Medicine for infertility and viable pregnancy in Australia: A mixed methods approach. BMC Women’s Health, 13(17). https://doi.org/10.1186/1472-6874-13-17 Rouchou, B. (2013). Consequences of infertility in developing countries. Perspectives in Public Health, 133(3), 174-179. doi: 10.1177/1757913912472415 Sillence, E. (2013). Giving and receiving peer advice in an online breast cancer support group. Cyberpsychology, Behavior, and Social Networking, 16(6), 480-485. https://nrl.northumbria.ac.uk/id/eprint/13713/1/nrl.northumbria.ac.uk_13713_1_revise d_cybertherapy.pdf Silverman, D. (1997). Discourses of counselling: HIV counselling as social interaction. Sage Publications. Tovares, A., & Kulbayeva, A. (2021). Performing friendship in a lab setting: Advice in troubles talk between friends. Journal of Sociolinguistics. https://doi.org/10.1111/josl.12514 Tsurikova, L., & Evanson, V. (1995). Advice: A pragmatic approach to teaching functions in English. Revista De Lenguas Para Fines Específicos, 2, 13-22. Recuperado a partir de https://ojsspdc.ulpgc.es/ojs/index.php/LFE/article/view/78 Van Swol, L. M., Prahl, A., MacGeorge, E., & Branch, S. (2019). Imposing advice on powerful people. Communication Reports, 32(3), 173-187. https://doi.org/10.1080/08934215.2019.1655082 Vehvilainen, S. (2009). Student-initiated advice in academic supervision. Research on Language and Social Interaction, 42(2), 163-190. Vollmann, R., & Wooi, S. T. (2019). The sociolinguistic status of Malaysian English. Grazer Linguistische Studien. 91(S), 133-150. Wan Nur Asyura Wan Adnan, Noor Aireen Ibrahim, Nur’ain Balqis Haladin, & Wan Farah Wani Wan Fakhruddin. (2019). Illness experience sharing on personal blogs: A case study of Malaysian breast cancer survivors. GEMA Online Journal of Language Studies, 19(4). http://doi.org/10.17576/gema-2019-1904-02 Wenger-Trayner, E. (2015). Introduction to communities of practice. http://wenger�trayner.com/introduction-to-communities-of-practice/ Zheng, S., Masuda, T., Matsunaga, M., Noguchi, Y., Ohtsubo, Y. Yamasue, H., & Ishii, K. (2021). Cultural differences in social support seeking: The mediating role of empathic concern. PLoS ONE, 16(12), e0262001. https://doi.org/10.1371/journal.pone.0262001 Zillien, N., Haake, G., Fröhlich, G., Bense, T., & Souren, D. (2011). Internet use of fertility patients: A systematic review of the literature. Journal of Reproductive Medicine and Endocrinology, 8(4), 281–287. https:// www.kup.at/kup/pdf/10199.pdf
(1)
Aasia, A., Waqas, R., & Yasir, K. (2011). Impact of financial leverage on dividend policy: Empirical evidence from Karachi Stock Exchange-listed companies. Article in African Journal of Business Management, 5(4), 1312–1324. Al-Ajmi, J., & Hussain, H. A. (2011). Corporate dividends decisions: evidence from Saudi Arabia. Journal of Risk Finance, 12(1), 41–56. Al-Kayed, L. T. (2017). Dividend payout policy of Islamic vs conventional banks: case of Saudi Arabia. International Journal of Islamic and Middle Eastern Finance and Management, 10(1), 117–128. Alli, K. L., Khan, A. Q., & Ramirez, G. G. (1993). Determinants of Corporate Dividend Policy: A Factorial Analysis. The Financial Review, 28(4), 523–547. Alzomaia, T. S., & Al-Khadhiri, A. (2013). Determination of Dividend Policy: The Evidence from Saudi Arabia. International Journal of Business and Social Science, 4(1). Anazonwu, H. O., Egbunike, F. C., & Echekoba, F. N. (2018). Agency Cost and Dividend Payout: A Study of Selected Listed Manufacturing Firms in Nigeria. Indonesian Journal of Management and Business Economics, 1(1), 42–51. Anisah, S. (2021, February 11). Malaysia’s Economy Suffers Worst Year Since 1998 Asian Crisis. Bloomberg. Retrieved from https://www.bloomberg.com/news/articles/2021-02- 11/malaysia-s-economy-suffers-worst-year-since-1998-asian-crisis Atmaja, L. S. (2009). Dividend Policy in Australia. Jurnal Keuangan Dan Perbankan, 13(2), 260– 270. Bakri, M. A., Abd Jalil, M. I., & Hassan, Z. (2021). Dividend policy in Malaysia: A comparison of determinants pre and post Malaysian code on corporate governance. International Journal of Banking and Finance, 16(2), 1–22. Banks paid higher dividends amid slower growth and strong capitalisation. (2020, March 6). RAM Ratings. Retrieved from https://www.ram.com.my/pressrelease/?prviewid=5295 Bassey, N. E., Asinya, F. A., & Elizabeth, A. (2014). Determinants of dividend payout of financial Institutions in Nigeria: A study of selected commercial banks. Research Journal of Finance and Accounting, 5(7), 74–79. Che-Yahya, N., & Alyasa-Gan, S. S. (2020). Explaining dividend payout: Evidence from Malaysia’s blue-chip companies. Journal of Asian Finance, Economics and Business, 7(12), 783–793. Della Fauzi, I., & Rukmini, R. (2018). The Effect of Financial Performance Measured With Rentability Ratio Against Dividend Payout Ratio (Empirical Study on Manufacturing Companies group listed on BEI). International Journal of Economics, Business and Accounting Research (IJEBAR), 2(1). Duqi, A., Jaafar, A., & Warsame, M. H. (2020). Payout policy and ownership structure: The case of Islamic and conventional banks. British Accounting Review, 52(1). Ee Lin, W. (2021). Dividend drought among Malaysian banks likely to end | The Edge Markets. The Edge Markets. Retrieved from https://www.theedgemarkets.com/article/dividend-drought-among-malaysian-bankslikely-end Eng, S. H., Yahya, M. H., & Hadi, A. R. A. (2013). The dividend payout policy–A comparison on Malaysian Islamic and conventional financial institutions. Journal of WEI Business and Economics-August, 2(2), 12–20. Farahani, M. H., & Jhafari, G. M. (2013). Impact of Financial Leverage on Dividend Policy at Tehran Stock Exchange: A Case Study in Food Industry. European Online Journal of Natural and Social Sciences, 2(3). Febrian & Tamma. (2019). Banks 2019 Malaysian Islamic Banking Overview Continued Momentum Amid Regulatory Push. Fitch Ratings. Retrieved from www.fitchratings.com Hosain, M. Z. (2016). Determinants of the Dividend Payout Policy: A Study on Listed Private Commercial Banks of Dhaka Stock Exchange Limited in Bangladesh. IOSR Journal of Economics and Finance, 7(5), 1–10. Jovkovic, B., Vasic, A. S., & Bogicevic, J. (2021). Determinants of dividend policy: A case of Serbia’s banking sector. Nase Gospodarstvo/Our Economy, 67(1), 13–22. Lestari, H. S. (2018). Determinants of corporate dividend policy in Indonesia. IOP Conference Series: Earth and Environmental Science, 106(1). Lin, C. O., Thaker, H. M. T., Khaliq, A., & Thaker, M. A. M. T. (2018). The Determinants of Dividend Payout: Evidence from the Malaysian Property Market. IQTISHADIA, 11(1), 27- 46. Lintner, J. (1956). Distribution of incomes of corporations among dividends, retained earnings, and taxes. The American Economic Review, 46(2), 97–113. Maladjian, C., & El Khoury, R. (2014). Determinants of the dividend policy: An empirical study on the Lebanese Listed Banks. International Journal of Economics and Finance, 6(4), 240–252. https://doi.org/10.5539/ijef.v6n4p240 May, M. G., & Yacob, N. (2018). The influences of company’s size and past year’s dividend information to the public listed companies in Malaysia. Taylor’s Business Review, 7(1), 63-81. Mughal, S., Gul, S., Bukhari, S. A., & Shabir, N. (2012). The determinants of corporate dividend policy: An investigation of Pakistani Banking Industry. European Journal of Business and Management, 4(12), 1-5. Mui, Y. T., & Mustapa, M. (2016). Determinants of dividend payout ratio: Evidence from Malaysian public listed firms. Journal of Applied Environmental and Biological Sciences, 6(1), 48–54. Naser, K., Nuseibeh, R., & Rashed, W. (2013). Managers’ perception of dividend policy: Evidence from companies listed on Abu Dhabi Securities Exchange. Issues in Business Management and Economics, 1(1), 1–12. Omar, M. M. S., & Abdelghani, E. (2019). Dividend policy and payout practices in Malaysia: A qualitative analysis. Journal of Accounting, Finance and Auditing Studies, 5(1), 226–240. Patra, T., Poshakwale, S., & Ow-Yong, K. (2012). Determinants of corporate dividend policy in Greece. Applied Financial Economics, 22(13), 1079–1087. Salman, A. (2019). Determinants of dividend policy. Investment Management and Financial Innovations, 16(1), 167–177. Sulhan, M., & Herliana, T. Y. (2019). The effect of liquidity and profitability to dividend policy with asset growth as moderating variable (Study on property sector, real estate and building construction listed On Indonesia Stock Exchange). In 2018 International Conference on Islamic Economics and Business (ICONIES 2018), 23–28. Thanatawee, Y. (2011). Life-cycle theory and free cash flow hypothesis: Evidence from dividend policy in Thailand. International Journal of Financial Research, 2(2), 52. Yusof, Y., & Ismail, S. (2016). Determinants of dividend policy of public listed companies in Malaysia. Review of International Business and Strategy, 26(1), 88–99. Zhou, H., & De Wit, G. (2009). Determinants and dimensions of firm growth. SCALES EIM Research Reports.
(1)
A Aziz, M. M., Kassim, K. A., ElSergany, M., Anuar, S., Jorat, M. E., Yaacob, H., Ahsan, A., Imteaz, M. A., & Arifuzzaman. (2020). Recent advances on palm oil mill effluent (POME) pretreatment and anaerobic reactor for sustainable biogas production. Renewable and Sustainable Energy Reviews, 119. https://doi.org/10.1016/j.rser.2019.109603 Azad, S. Al, Chin, F. S., & Lal, M. T. B. M. (2019). Efficacy of Purple Non Sulphur Bacterium <i>Rhodobacter sphaeroides</i> Strain UMSFW1 in the Utilization of Palm Oil Mill Effluent. Journal of Geoscience and Environment Protection, 07(10), 1–12. https://doi.org/10.4236/gep.2019.710001 Bahadi, M. A., Japir, A.-W., Nadia, S., & Jumat, S. (2016). Free Fatty Acids Separation From Malaysian High Free. Malaysian Journal of Analytical Sciences, 20(5), 1042–1051. Kaniapan, S., Hassan, S., Ya, H., Nesan, K. P., & Azeem, M. (2021). The utilisation of palm oil and oil palm residues and the related challenges as a sustainable alternative in biofuel, bioenergy, and transportation sector: A review. In Sustainability (Switzerland) (Vol. 13, Issue 6). MDPI AG. https://doi.org/10.3390/su13063110 Mclaughlin, J. L., Rogers, L. L., & Anderson, J. E. (1998). The use of biological assays to evaluate botanicals. Therapeutic Innovation & Regulatory Science, 32(2), 513–524. https://doi.org/10.1177/009286159803200223 Murphy, D. J., Goggin, K., & Paterson, R. R. M. (2021). Oil palm in the 2020s and beyond: challenges and solutions. CABI Agriculture and Bioscience, 2(1), 1–22. https://doi.org/10.1186/s43170-021-00058-3 Nuryanti, R., Emilia Agustina, T., & Indah Sari, T. (2019). The Utilization of Palm Oil Mill Effluent For Renewable Energy. Indonesian Journal of Fundamental and Applied Chemistry, 4(3), 116–121. https://doi.org/10.24845/ijfac.v4.i3.116
(1)
Abadi, H. (2016, September 10). Indie dan sastera kreatif. Utusan Borneo, pp. 12- 13. Abas, L. (1995). Kritikan karya sastera sebagai karya seni. Dewan Bahasa dan Pustaka. Abdullah, M. R. T. (2010). Cabaran integrasi antara kaum di Malaysia: Perspektif sejarah, keluarga dan pendidikan. Jurnal Hadhari, 3(1), 61-84. Abdullah, J. I. L. (2017, February 3). Memperkasa dan memartabatkan industri buku Malaysia. BernamaPlus. http://youth.bernama.com/v2/news.php?id =979928&c=6 Adenan, M. K., Kayad, F. G., & Daud, M. Z. (2018). Analisis stilistik melalui penggunaan bahasa dalam novel sastera Indie: Karya Azwar Kamaruzaman. Jurnal Kesidang, 3(1), 106-121. Affizal, A. (2008). Kepentingan pendidikan dalam pembentukan kualiti hidup sejahtera. Malaysian Education Dean’s Council Journal, 2(1), 1-8. Ahmad, A. (1986). Gubahan novel. Dewan Bahasa dan Pustaka. Ali, H. A., Zakaria, N., & Mohamad, A. (2017).Gambaran budaya masyarakat Brunei dalam Kumpulan Puisi Diam-Diam karya K. Manis. Jurnal Melayu, 16(2),235-254. Ali, S.M., Ngah, N., & Kumar, S. A. (2010, June 24). Pentaksiran berasaskan sekolah ganti UPSR, PMR. BHOnline. http://www.bhari an.com.my/bharian/articles/Pentaksiran Berasa skanSekolahgantiUPSR_PMR/Article Ary, D., Jacobs, L. C., Irvine, C. K., & Walker, D. (1990). Introduction to research in education. Cengage Learning Publisher. Awang, H. (1988). Cerpen Malaysia sebelum perang dunia ke-2. Dewan Bahasa dan Pustaka. Awang, M. M., Rahman, N. A. A., Amin, N. M., & Ahmad, A. R. (2015). Mesej perpaduan dalam buku teks Bahasa Malaysia Tingkatan 4 dan 5: Analisis terhadap peribahasa Melayu. Jurnal Pendidikan Bahasa Melayu, 5(1), 44-52. Aziz, A. (2017, December 2). Babi, laknat dan lucah, benarkah novel indie semakin kasar dan celupar. Astro Awani. https://www.google.com/amp/www.astroawani. com/gaya-hidup/babi-laknat-dan-lucah-benarkah-novel-indie-semakin-kasar-dan-ce lupar-161835%3famp=1 Aziz, S. A. (2015, June 24). Wakil rakyat perlu responsif kepada keperluan masyarakat. BH Online. https://www.bharian.com.my/node/63229 Bahaudin, R. (2015). Kunang pesisir morten. Nubook Press Sdn. Bhd. Bakar, N. N., & Rashid, A. M. (2014). Membangunkan penghayatan agama di kalangan kanak-kanak: Analisis pandangan Abdullah Nasih Ulwan [Paper presentation]. International Research Management and Innovation Conference 2014, Selangor, Malaysia. Bakar, R. A., Sujud, A., & Shuhaimi, N. A. (2016). Falsafah pemikiran Hatta Azad Khan dalam kumpulan drama Dunia Belum Kiamat. Ulum Islamiyyah Journal, 18(1), 67-89. Basri, M. (2012). Model polisi maklumat: Kes Malaysia [Unpublished doctoral dissertation]. Universiti Kebangsaan Malaysia. Biro Tata Negara. (2015, March 11). Gerakan Indie di Malaysia. https://archive.org/de tails/GerakanIndieDiMalaysia Buang, S. (2017, June 7). PAS pula dituduh buat acara politik dalam surau. Malaysia Kini. https://www.malaysiakini.com/news/384751 Creswell, J. W. (1994). Research design: Qualitative and quantitative approaches. Sage Publications. Creswell, J. W. (2003). Research design: Qualitative, quantitative, and mixed methods approaches. Sage Publications. Daud, M. A., & Besar, J. A. (2016). Mahathir dan berakhirnya dasar aparteid di Afrika Selatan. GEOGRAFIA Online, Malaysian Journal of Society and Space, 12(9), 123- 134. Dokumen standard kurikulum dan pentaksiran Bahasa Melayu Tingkatan 3. (2019). Kementerian Pendidikan Malaysia. https://www.malaysian-ghost-research.org/wp- content/uploads/2018/12/001-DSKP-KSSM-BAHASA-MELAYU-TINGKATAN- 3.pdf Douglas, S. A. (1967). Political socialization and student activism in Indonesia. Illinois Publisher. Eagleton, T. (1996). Literary Theory: An Introduction, 2nd Edition. Blackwell Publishers. Fatimah, N. (2017). Nilai-Nilai Religius dalam Novel “Bulan Terbelah di Langit Amerika” Karya Hanum Salsabiela Rais dan Hanum dan Rangga Almahendra. Tarbiyatuna 1(2), 39-54. Ghani, Z. A., & Mansor, N. S. A. (2006). Penghayatan agama sebagai asas pembangunan pelajar: Analisis terhadap beberapa pandangan al-Imam al-Ghazali [Paper presentation]. National Student Development Conference (NASDEC) 2006, Kuala Lumpur, Malaysia. Gorky, M. (2015, August 30). Gorky on Soviet literature. Seventeen Moments in Soviet History. https://soviethistory.msu.edu/1934-2/writers-congress/writers-congress-t exts/gorky-on-soviet-literature/ Hakim, L. (2019, March 10). Sastera Melayu kena berdamai dengan sastera dunia [Facebook page]. https://www.facebook.com/1030146951/posts/ 1021672 25 46749282/?sfnsn=mo Hamid, S. A. (2016). Pengaruh media massa terhadap perubahan sosial masyarakat. Journal of Social Sciences and Humanities, 1(1), 214-226. Hantaran tinggi punca ramai lelaki hidup bujang. (2017, August 18). BaitulMuslim.com. https://baitulmuslim.com/artikel-tips-dan-petua/hantaran- tinggi-punca-ramai-lelaki-hidup-bujang Hashim, M. (2013, July 24). BN (Politik tidak islamik) lekat poster dalam surau dan masjid. https://www.ibnuhasyim.com/2013/07/bn-politik-tidak-islamik-lekat-poster .html?m=1 Hassan, S. F. (2017, October 23). Jika tak pasti usah ‘forward’. MyMetro. https://www.hmetro.com.my/utama/2017/10/275675/jika-tak-pasti-usah-forward Husin, K. (1988). Kaedah pengajaran kesusasteraan. Penerbit Fajar Bakti. Hwia, G. (2010). Kendali interaksional sebagai cerminan ideologi: Analisis wacana kritis Trilogi Drama Opera Kecoa. Linguistik Indonesia, 28(1), 11-22. Hyman, H. H. (1959). Political socialization: A study in the psychology of political behavior. The Free Press. Ismail, M. Y. & Hassan, S. N. S. (2011). Pendekatan nabawi dalam membentuk remaja Muslim sejati. Jurnal Hadis, 1(1), 31-45. Ismail, N. H., & Yusoff, M. F. M. (2016). Karya Indie: Revolusi penulis generasi baru. International Consortium of Education and Culture Research Studies, 13(2), 565-570. Ismail, N. H., Jabar, N. A., Rawian, R. M., & Mansor, M. (2018). Karya Indie: Konflik remaja perempuan. Journal of Islamic, Social, Economics and Development, 11(3), 106-116. Jaafar, M. F. (2016). Gaya ujaran dalam teks kesusasteraan Melayu. Jurnal Komunikasi: Malaysian Journal of Communication, 32(2), 341-361. Jalaluddin, N. H., & Rashidin, R. (2008). Rasuah dalam karya sastera Melayu klasik: Satu analisis semantik kognitif. Jurnal e-Bangi, 3(1), 1-32. Jamin, A. (2018, September 23). Realisme: Aliran sastera yang semakin jernih. Mingguan Malaysia, pp. 12-13. Jamin, A., & Subet, M. F. (2018). Menghapus prejudis perkauman melalui karya Indie: Analisis terhadap novel Kunang Pesisir Morten. MALTESAS Multi-Disciplinary Research Journal, 3(3), 53-68. Jasmi, K. A. (2012). Metodologi pengumpulan data dalam penyelidikan kualitatitif: Kursus penyelidikan kualitatif. Penerbit Institut Pendidikan Guru Malaysia Kampus Temenggong Ibrahim. Jusoh, I. (2016, April 15). Pelan tindakan keusahawanan IPT lahir graduan unggul. Berita Harian Online. https://www.bharian.com.my/node/144039/amp Kamaruddin, E. N., & Rani, A. Z. A. (2017). Wanita menurut taklif: Satu analisis terhadap watak Fatimah dalam cerpen “Perempuan Gusti” dan “Fatimah Kahwin” karya Hamzah Hussin. MANU: Jurnal Pusat Penataran Ilmu dan Bahasa, 25(1), 23-47. Kamarudin, K. (2009). Antara komersialisme dengan intelektualisme dalam novel Getaran Rindu. Jurnal Pengajian Melayu, 20(1), 99-118. Kamilah, N. (2017, May 24). Sebaik-baiknya wanita adalah yang paling murah maharnya, sebaik-baiknya lelaki adalah yang memberi mahar paling banyak. humairoh.com. https://humairoh.com/sebaik-baiknya-wanita-adalah-yang- paling-murah-maharnya-sebaik-baiknya-lelaki-adalah-yang-memberi-mahar-palin g-banyak/ Kamis M. H., & Ismail, I. (2014). Kontroversi sekitar karya-karya Nawal el Saadawi di Mesir. Jurnal Sultan Alauddin Sulaiman Shah, 1(1), 1-16. Kamus Dewan (4th ed.). (2010). Dewan Bahasa dan Pustaka. Karyanto, I. (1997). Realisme sosialis Georg Lukacs. PT Gramedia Pustaka Utama. Kernig, C. D. (1972). A comparative encyclopaedia: Marxism, communism and western society. Herder and Herder Publisher. Koentjaraningrat. (1991). Metode-metode penelitian masyarakat. Pustaka Utama Gramedia. Kurniawan, H. (2012). Teori, metode, dan aplikasi sosiologi sastra. Graha Ilmu. Leh, H. A. (2016). Masyarakat Iban dan alam sekitar dalam fiksyen terpilih Jong Chian Lai: Satu kritikan keadilan ekologi [Unpublished doctoral dissertation]. Universiti Sains Malaysia. Lukacs, G. (1963). The theory of the novel. The Merlin Press. Lukacs, G. (1978). Marxism and human liberation. Delta Publishing. Lukacs, G. (1989). Studies in European realism. Merlin Press. Lukacs, G. (1990). History and class consciousness. Merlin Press. Mansor, M. (2013). Surat-surat untuk Kaherah. Merpati Jingga. Mansor, M., Ibrahim, N.H., & Hassan, H. (2016). Pemikiran Dalam Novel Sebalik Yamashita Dan Percivel. Proceeding of International Seminar on Generating Knowledge Through Research 1, 101-112. Maulina, Y. (2013). Realisme dalam cerita pendek "Bulan Gendut Di Tepi Gangsal" karya Wa Ode Wulan Ratna. Journal Madah, 4(1), 94-102. Mclntosh, C. (2013). Cambridge advanced learner’s dictionary (4th ed.).Cambridge University Press. Mega, P. P. (2017). Realitas sosial dalam novel Kelomang karya Qizink La Aziva (Kajian realisme sosialis Georg Lukacs). Bapala, 4(1), 1-11. Melindungi masa instruksional. (2013). Kementerian Pendidikan Malaysia. https://www. moe.gov.my/menumedia/media-cetak/penerbitan/melindungi-masa-instruksional/13 40-melindungi-masa-instruksional-2-pengurusan-final/file Minda Pengarang. (2019, November 9). Minda pengarang: Masih wujud sekolah daif. BH Online. https://www.bharian.com.my/rencana/muka10/2018/11/496161/minda-pen garang-masih-wujud-sekolah-daif/amp Muslim, N., Hassan, Z., & Samian, A. L. (2011). Bahasa Melayu dalam perlembagaan persekutuan: Kedudukan dan peranannya dalam konteks komunikasi perpaduan. SARI: Jurnal Alam dan Tamadun Melayu, 29(1), 103-120. Nalim, R. (2016). Menyoal realisme sosial dalam novel Gadis Pantai karya Pramoedya Ananta Teor dengan analisis strategi naratif. Jurnal Publikasi Pendidikan, 5(1), 14-23. Nor, E. M. (2018). Budak kelas belakang. Komrad Buku. Nor, I. (2016, November 15). Usah terikut trend hantaran tinggi. Kosmo Online. http://ww1.kosmo.com.my/kosmo/content.asp?y=2016&dt =0403& pub=K osmo&sec=Rencana_Utama&pg=ru_05.htm Nordin, M., & Hussin, H. (2014). Pengajian Malaysia. Oxford Fajar. Othman, M. K., & Suhid, A. (2010). Peranan sekolah dan guru dalam pembangunan nilai pelajar menerusi penerapan nilai murni: Satu sorotan. MALIM: Jurnal Pengajian Umum Asia Tenggara, 11(1), 117-130. Panduan pengurusan pentaksiran berasaskan sekolah. (2014). Lembaga Peperiksaan Malaysia. Pawi, A. A. A. (2011). Kritikan teater di Sarawak: Suatu penelitian kritis. MANU Jurnal Pusat Penataran Ilmu dan Bahasa, 17(1), 189-224. Pelan pembangunan pendidikan Malaysia 2013-2025. (2013). Kementerian Pendidikan Malaysia. Perlembagaan persekutuan peraturan-peraturan pegawai awam (kelakuan dan tatatertib). (1993). Kementerian Pendidikan Malaysia. Rachman, O. H. (2011). The science of shalat. Qultum Media. Rahim, Z, A. (2016, October 14). Bahaya politik ampu dan bodek di Sarawak. Suara Sarawak. https://sarawakvoice.com/2016/10/14/bahaya-politik-ampu-dan-bodek-di -sarawak/ Rahman, A.A. (2014, December 16). Kedudukan Amalan Khurafat Di Pulau Besar, Melaka Menurut Syarak. Jabatan Mufti Negeri Melaka. http://www.muftimelaka.gov.my/jmm/index.php/en/wacana-pendidikan-dan-kefaha man-fatwa-negeri-melaka-2014m-1436h/157-kedudukan-amalan-khurafat-di-pulau-besar-melaka-menurut-syarak Rani, M. Z. A. (2008). Sastera sebagai wadah intelektual: Satu analisis teks terhadap novel Sutan Baginda karya Shahnon Ahmad. Jurnal Dialog Peradaban, 1(1), 43-66. Rashidi, M., & Nur, S. H. (2016, May 11). Laporan awal: Sorotan fenomena buku Indie di Malaysia. http://www.jais.gov.my/sites/default/filesLaporan%20awal_Fenomena% 2 0Buku%20Indie.pdf Rawi, M. K. (2012). Pengajaran dan pembelajaran muhawarah di sekolah rendah kebangsaan [Unpublished master's thesis]. Universiti Malaya. Rogan, J. (1992). Introduction: The guinness who's who of Indie and new wave music. Guiness Publishing. Saari, N. H. (2014, February 21). Implikasi kenaikan kos sara hidup gugat kebahagiaan. Utusan Malaysia. Sabki, A. (2009, July 17). Memahami isu murtad. Berita Harian, p. 14. Sabran, M. S. (2003). Pengenalan kepada masalah sosial. Penerbit Universiti Putra Malaysia. Sabtu, J. (2014). Kenaikan kos sara hidup, kesan kepada rakyat. Penerbit Institut Koperasi Malaysia. Saidin, F., & Ahmad, J. (2015). Kesan pembacaan novel kepada remaja di Malaysia. Malaysian Journal of Youth Studies, 13(1), 217-233. Selden, R. (1991). Panduan membaca teori sastra masa kini (R. D. Pradopo, Trans.). Gadjah Mada University Press. Services, I. L. (2007). Malaysia kita: Panduan dan rujukan untuk peperiksaan am kerajaan. International Law Book Services. Sew, J. W. (2016). Analisis kajian sastera: Semiotik dalam novel Anwar Ridhwan. Akademika, 86(2), 53-63. Shafiq, W. (2012). Aku rindu 90’s. Lejen Press Sdb. Bhd. Sharma, N. (1985). Political socialization and its impact on attitudinal change towards social and political system: A case study of Harijan women of Delhi. M.C. Mittal Publisher. Sikana, M. (2015). Penulisan akademik sastera. Dewan Bahasa Dan Pustaka. Smith, C., Denton, M. L., Faris, R., & Regnerus, M. (2002). Mapping American adolescent religious participation. Journal for the Scientific Study of Religion, 41(4), 597- 612. https://doi.org/10.1111/1468-5906.00148 Standard kualiti pendidikan Malaysia gelombang 2 (SKPMg2). (2017). Kementerian Pendidikan Malaysia. Suara Perak. (2017, July 4). Ahli akademik bimbang ancaman karya Indie terhadap pemikiran anak muda. https://www. suaraperak.com/ahli-akademik-bimbang- ancaman-karya-indie-terhadap-pemikiran-anak-muda/ Sukmawan, S. (2015). Menyemai benih cinta sastra. Universitas Brawijaya Press. Suliman, M. S. (2016). Penerapan teori stilistik dan teksdealisme bagi menganalisis puisi dalam Tri-V Abdul Ghafar Ibrahim [Unpublished doctoral dissertation]. Universiti Pendidikan Sultan Idris. Suyanto, S. (2016). Corak realisme sosialis dalam Hikayat Kadiroen karya Semaoen. Jurnal Ilmiah Kajian Sastra, 19(1), 75-87. Tahir, U. M. M. (2011). Novel Putera Gunung Tahan oleh Ishak Haji Muhammad Sebagai wacana balikan pascakolonial. Akademika, 81(3), 65-74. Teor, P. A. (2003). Realisme sosialis dan sastra Indonesia. Lentera Dipantara. Tham, J. V. (2018, April 10). BN flags were spotted in a Chinese cemetery in Melaka. SAYS. https://says.com/my/news/bn-party-flags-were-spotted-in-a-chinese- cemetery-and-people-are-not-having-it Theng, Y. C. (2015). Realisme dalam cerpen-cerpen dua penulis Mahua di Malaysia [Unpublished master's thesis]. Universiti Pendidikan Sultan Idris. Tobi, S. U. M. (2017). Kajian kualitatif dan analisis temu bual. Aras Publisher. Tori, K. (2004, January 3). Indie. http://www.urbandictiona ry.com/define.php? term=indie Ya, C. A. C. (2015). Bayangan wacana politik dalam karya sastera: Analisis novel Kawin- Kawin. Malaysian Journal of Communication, 31(2), 461-476. Yahya, S. A., & Masrun, S. (2016). Tahap penghayatan agama dalam kalangan remaja hamil tanpa nikah. Jurnal Sains Sosial, 1(1), 17-35. Zainol, M. J. (2018, October 22). Reformasi parlimen, tugas wakil rakyat. BH Online. https://www.bharian.com.my/kolumnis/2018/10/488888/reformasi-parlime n-tugas-wakil-rakyat Zakir, S. M. (2018, April). Konteks “Gedebe” dalam Pok Ya Cong Codei. Dewan Masyarakat, 38-41. Zulkifli, Z. (2016, December 31). KSSM, KSSR baharu dilaksana 2017. BH Online. https://www.bharian.com.my/node/228986
(1)
Abadzi, H. (2003). Improving Adult Literacy Outcomes: Lessons from Cognitive Research for Developing Countries. Washington, DC: World Bank Publications. Abdul Ghani K. A., Moh H. Y., & Ying-Leh L. (2016) Teachers' Morale and School Effectiveness in Secondary Schools of Sibu, Sarawak. International Journal of Education, Culture and Society, 1(2), 52-57. doi: 10.11648/j.ijecs.20160102.14 Aguilar, S. J. (2018). Learning analytics: At the Nexus of Big Data, Digital Innovation, And Social Justice in Education. TechTrends, 62(1), 37-45. Ahmad, R. H. (1998). Educational development and reformation in Malaysia: past, present and future. Journal of Educational Administration, 36(5), 462-475. Ahmad, R., & Usop, H. (2011). Conducting Research in Social Sciences, Humanities Economics and Management Studies-A Practical Guide. Sarawak: RS Group Publishing House. Alavi, M., & Leidner, D. E. (2001). Knowledge Management and Knowledge Management Systems: Conceptual Foundations and Research Issues. MIS Quarterly, 25(1), 107-136. Al-Dubai, S. A. R., Al-Naggar, R. A., AlShagga, M. A., & Rampal, K. G. (2011). Stress and coping strategies of students in a medical faculty in Malaysia. The Malaysian Journal of Medical Sciences: MJMS, 18(3), 57-64. Ali, N. L., Hamid, M. O., & Moni, K. (2013). English in primary education in Malaysia: Policies, outcomes and stakeholders' lived experiences. In Language planning in primary schools in Asia (pp. 53-72). London: Routledge. Anderson, T. H., & Armbruster, B. B. (1984). Content Area Textbooks. Learning to Read in American Schools: Basal Readers and Content Texts, 193-226. Anfara Jr, V. A., Brown, K. M., & Mangione, T. L. (2002). Qualitative Analysis on Stage: Making the Research Process More Public. Educational Researcher, 31(7), 28-38. Ansari, D., & Coch, D. (2006). Bridges Over Troubled Waters: Education and Cognitive Neuroscience. Trends in Cognitive Sciences, 10(4), 146-151. Ardichvili, A., Page, V., & Wentling, T. (2003). Motivation and Barriers to Participation in Virtual Knowledge-Sharing Communities of Practice. Journal of Knowledge Management, 7(1), 64-77. Arfan, N. F., & Kiflee, D. N. A. (2018). Instructional Leadership, School Effectiveness and Organizational Culture in Inner Rural of Sarawak. Malaysian Journal of Social Sciences and Humanities, 3(2), 127-136. Arksey, H., & Knight, P. T. (1999). Interviewing for Social Scientists: An Introductory Resource with Examples. SAGE. August, D., & Shanahan, T. (2017). Developing Literacy in Second-language Learners: Report of the National Literacy Panel on Language Minority Children and Youth. New York: Routledge. Austin, E. K. (1981). Guidelines for the Development of Continuing Education Offerings for Nurses. New York: Appleton-Century-Crofts. Avella, J. T., Kebritchi, M., Nunn, S. G., & Kanai, T. (2016). Learning Analytics Methods, Benefits, and Challenges in Higher Education: A Systematic Literature Review. Online Learning, 20(2), 13-29. Azevedo, R., & Cromley, J. G. (2004). Does training on self-regulated learning facilitate students' learning with hypermedia? Journal of Educational Psychology, 96(3), 523-535. Azevedo, R., Cromley, J. G., & Siebert, D. (2004). Does adaptive scaffolding facilitate studentsábility to regulate their learning with hypermedia? Contemporary Educational Psychology, 29(3), 344-370. Bailey K.D. (1987) Methods of Social Research (3rd Ed). New York: The Free Press. Baker, C. (2011). Foundations of Bilingual Education and Bilingualism (3rd Ed). Clevdon, UK: Multilingual Matters. Baker, L., & Brown, A. L. (1984). Metacognitive skills and reading. Handbook of Reading Research, 1(353), 353-394. New York: Longman. Baker, R. S., & Inventado, P. S. (2014). Educational Data Mining and Learning Analytics. Learning Analytics, 61-75. New York: Springer New York. Baker, W., & Boonkit, K. (2004). Learning Strategies in Reading and Writing: EAP Contexts. RELC Journal, 35(3), 299-328. Bandura, A. (1977). Social Learning Theory (Vol. 1). Englewood Cliffs, NJ: Prentice-Hall. Bandura, A. (1982). Self-efficacy Mechanism in Human Agency. American Psychologist, 37(2), 122-147. Barabási, A. L. (2003). Linked: The New Science of Networks. Cambridge, MA: Perseus Publishing. Barnes, D., & Todd, F. (1977). Communication and Learning in Small Groups. Oxford, England: Routledge & Kegan Paul. Barnett, W. S. (1995). Long-term effects of early childhood programs on cognitive and school outcomes. The Future of Children, 5(3), 25-50. Basit, T. N. (2010). Conducting Research in Educational Contexts. New York: Continuum International Publishing Group. Bauer, S., Loomis, C., & Akkari, A. (2013). Intercultural immigrant youth identities in contexts of family, friends, and school. Journal of Youth Studies, 16(1), 54-69. Bednar, A. K., Cunningham, D. Duffy, T. M. & Perry, J. D. (1998). Theory into practice: How do we link? Constructivism and Technology of Instruction: A Conversation, 17-35. Behlol, M. G., & Dad, H. (2010). Concept of Learning. International Journal of Psychological Studies, 2(2), 231-239. Bell, F. (2009). Connectivism: A Network Theory for Teaching and Learning in A Connected World. Educational Developments, The Magazine of the Staff and Educational Development Association, 10(3), 14-16. Bencze, J. L. (2000). Democratic Constructivist Science Education: Enabling Egalitarian Literacy and Self-Actualization. Journal of Curriculum Studies, 32(6), 847-865. Bereiter, C. (1997). Situated Cognition and How to Overcome It. In D. Kirshner & J. A. Whitson (Eds.), Situated Cognition: Social, Semiotic, and Psychological Perspectives (pp. 281-300). NJ: Erlbaum. Berlin, L. J., Brooks-Gunn, J., & Aber, J. L. (2001). Promoting Early Childhood Development Through Comprehensive Community Initiatives. Children's Services: Social Policy, Research, and Practice, 4(1), 1-24. Berma, M., Shahadan, F., & Gapor, S. A. (2006). Alleviating Bumiputera Poverty in Sarawak: Reflections and Proposal. In Malaysian Research Conference 4th International Conference (pp. 19-21). Bessenyei, I. (2008). Learning and teaching in the information society. Elearning 2.0 and Connectivism. Journal of Social Informatics, 5(9), 5-14. Biggs, J. (1979). Individual Differences in Study Processes and the Quality of Learning Outcomes. Higher Education, 8(4), 381-394. Biggs, J. B. (1987a). Study Process Questionnaire Manual. Student Approaches to Learning and Studying. Australian Council for Educational Research Ltd., Radford House, Frederick St., Hawthorn 3122, Australia. Biggs, J. B. (1987b). Student Approaches to Learning and Studying. Research Monograph. Australian Council for Educational Research Ltd., Radford House, Frederick St., Hawthorn 3122, Australia. Biggs, J. B. (1987c). Learning Process Questionnaire Manual. Student Approaches to Learning and Studying. Australian Council for Educational Research Ltd., Radford House, Frederick St., Hawthorn 3122, Australia. Biggs, J. B. (1996). Enhancing teaching through constructive alignment. Higher Education, 32(3), 347-364. Biggs, J. B. (2003). Aligning Teaching for Constructing Learning. Retrieved from https://www.heacademy.ac.uk/knowledge-hub/aligning-teaching-constructing-learning Bjorn-Anderson, N. (1980). Human Side of Information Processing. New York, NY: Elsevier Science Inc. Bloch, C. (2006). Theory and strategy of early literacy in contemporary Africa with special reference to South Africa. PRAESA Occasional Paper No.25. Cape Town: PRAESA. Bock, G. W., Zmud, R. W., Kim, Y. G., & Lee, J. N. (2005). Behavioral intention formation in knowledge sharing: Examining the roles of extrinsic motivators, social-psychological forces, and organizational climate. MIS Quarterly, 29(1), 87-111. Bogenschneider, K., Johnson, C. (2004). Family Involvement in Education: How Important Is It What Can Legislators Do? Wisconsin Family Impact Seminars. Bong, M., & Skaalvik, E. M. (2003). Academic Self-Concept and Self-Efficacy: How Different Are They Really? Educational Psychology Review, 15(1), 1-40. Bonomo, V. (2017). Brain-Based Learning Theory. Journal of Education and Human Development, 6(1), 27-43. Booth, A., & Crouter, A. C. (Eds.). (2001). Does It Take A Village?: Community Effects on Children, Adolescents, and Families. London: Psychology Press. Boyd, R., & Richerson, P. J. (1985). Culture and the Evolutionary Process. Chicago: The University of Chicago Press 1985. Bradley, R. H. (2002). Environment and parenting. Handbook of Parenting, 2, 281-314. Bradley, R. H., & Corwyn, R. F. (2002). Socioeconomic Status and Child Development. Annual Review of Psychology, 53(1), 371-399. Bradley, R. H., Corwyn, R. F., McAdoo, H. P., & García Coll, C. (2001). The Home Environments of Children in The United States Part I: Variations by Age, Ethnicity, and Poverty Status. Child Development, 72(6), 1844-1867. Braun, V., Clarke, V., & Terry, G. (2012). Thematic Analysis. APA Handbook of Research Methods in Psychology, 2, 57-71. Bredo, E. (1994). Reconstructing Educational Psychology: Situated Cognition and Deweyian Pragmatism. Educational Psychologist, 29(1), 23-35. Brooks-Gunn, J., & Duncan, G. J. (1997). The Effects of Poverty on Children. The Future of Children, 7(2), 55-71. Brooks-Gunn, J., Duncan, G., & Aber, J. L. (Eds.). (1997). Neighborhood Poverty, Volume 2: Policy Implications in Studying Neighborhoods. New York: Russell Sage Foundation. Brown, G. K. (2007). Making ethnic citizens: The Politics and Practice of Education in Malaysia. International Journal of Educational Development, 27(3), 318-330. Brown, J. S., Collins, A., & Duguid, P. (1989). Situated Cognition and The Culture of Learning. Educational Researcher, 18(1), 32-42. Bruer, J. T. (1997). Education and The Brain: A Bridge Too Far. Educational Researcher, 26(8), 4 16. Bruner, J. S., Olver, R. R., & Greenfield, P. M. (1966). Studies in Cognitive Growth: A Collaboration at The Center for Cognitive Studies. Oxford, England: John Wiley & Sons. Bryman, A. (2008). Why Do Researchers Integrate/Combine/Mesh/Blend/Mix/Merge/Fuse Quantitative and Qualitative Research? Advances in Mixed Methods Research, 6, 87-100. Buchanan, M. (2003). Nexus: Small Worlds and The Groundbreaking Theory of Networks. New York: WW Norton & Company. Buhrmester, D., & Furman, W. D. (1986). The Changing Functions of Friends in Childhood: A Neo Sullivanian Perspective. In Friendship and Social Interaction (pp. 41-62). New York, NY: Springer. Burleson, W. (2005). Developing Creativity, Motivation, And Self-Actualization with Learning Systems. International Journal of Human-Computer Studies, 63(4-5), 436-451. Caine, R. N., & Caine, G. (1990). Understanding a Brain-Based Approach to Learning and Teaching. Educational Leadership, 48(2), 66-70. Caine, R. N., & Caine, G. (1995). Reinventing Schools Through Brain-Based Learning. Educational Leadership, 52, 43-43. Calitz, M. G. (2009). Pilot study. A Cultural Sensitive Therapeutic Approach to Enhance Emotional Intelligence in Primary School Children. (Doctoral dissertation). Retrieved from http://uir.unisa.ac.za/handle/10500/1648 Campbell, E. Q., Coleman, J. S., Hobson, C. J., McPartland, J., Mood, A. M., Weinfeld, F. D., & York, R. L. (1966). Equality of Educational Opportunity. Washington DC: US Government Printing Office. Campbell, J. P., DeBlois, P. B., & Oblinger, D. G. (2007). Academic Analytics: A New Tool for A New Era. EDUCAUSE Review, 42(4), 40. Canedo, M. D. M. F., Rodríguez, C. F., Fernández, B. R., & Arias, A. V. (2018). Defensive Pessimism, Self-Esteem and Achievement Goals: A Person-Centered Approach. Psicothema, 30(1), 53-58. Cangemi, J. P. (1987). Education and Self-Actualization. Journal of Instructional Psychology, 14(4), 164. Carey, K. (2004). The Real Value of Teachers: Using New Information about Teacher Effectiveness to Close the Achievement Gap. Thinking K-16, 8(1), 3-42. Carver, C. S. (1997). You Want to Measure Coping but Your Protocol's Too Long: Consider the Brief COPE. International Journal of Behavioral Medicine, 4(1), 92-100. Chandran, V. V., & Geetha, C. (2009). Does Poverty Influence the Performance of Students? A Case in Universiti Malaysia Sabah. Prosiding PERKEM, 5(1), 361-369. Channa, M. A., & Nordin, Z. S. (2014). Identifying Metacognitive Strategies Through Learners' Reading Comprehension: A Review of Related Studies. Science International, 26(5), 2457- 2460. Channa, M. A., & Nordin, Z. S. (2015). Social Cognitive Theory and the Zone of Proximal Development in the Learning of Reading Comprehension. Science International, 27(1), 581- 585. Channa, M. A., Nordin, Z. S., Siming, I. A., Chandio, A. A., & Koondher, M. A. (2015). Developing Reading Comprehension through Metacognitive Strategies: A Review of Previous Studies. English Language Teaching, 8(8), 181-186. Cheng, Y. C. (1999). Recent Education Developments in South East Asia: An Introduction. School Effectiveness and School Improvement, 10(1), 3-9. Chi, M. T. H., Glaser, R., & Rees, E. (1982). Expertise in Problem Solving. Advances in Psychology of Human Intelligence. Hillsdale, Erlbaum. Chi, M. T., Feltovich, P. J., & Glaser, R. (1981). Categorization and Representation of Physics Problems by Experts and Novices. Cognitive Science, 5(2), 121-152. Choi, S., Hutchison, B., Lemberger, M. E., & Pope, M. (2012). A longitudinal study of the developmental trajectories of parental attachment and career maturity of South Korean adolescents. The Career Development Quarterly, 60(2), 163-177. Chua, L. C. (2001). Relationship Between Burnout and Intention to Quit Among Technical School Teachers Within Kuching District. Jurnal Penyelidikan Maktab Perguruan Batu Lintang, 3, 107-115. Chuan, L. C. (2005). A Critical Review of Commitment Studies: A Call for Research in Sarawak School Settings. Journal Penyelidikan, 6, 75-76. Chumbow, B. S. (2013). Mother tongue-Based Multilingual Education: Empirical Foundations, Implementation Strategies and Recommendations for New Nations. In Multilingual Education in Africa: Lessons from The Juba Language-In-Education Conference (pp. 37- 56). CIA Central Intelligence Agency. (2017). The World Factbook 2017. Washington, DC: CIA. Cobb, P. (1994). Constructivism in Mathematics and Science education. Educational Researcher, 23(7), 4-4. Cohen, A. D. (2014). Strategies in Learning and Using A Second Language. Routledge. Cohen, A. D., & Macaro, E. (2007). Language Learner Strategies: Thirty Years of Research and Practice. Oxford: Oxford University Press. Colvin, S. S. (1911). The Learning Process. New York: Macmillan. Condelli, L., & Wrigley, H. S. (2004). Real World Research: Combining Qualitative and Quantitative Research for Adult ESL. Paper presented in Second International Conference for Adult Literacy and Numeracy, Loughborough, England March 25-27, 2004. 1-34 Côté, L., & Turgeon, J. (2005). Appraising Qualitative Research Articles in Medicine and Medical Education. Medical Teacher, 27(1), 71-75. Cotterall, S., & Murray, G. (2009). Enhancing Metacognitive Knowledge: Structure, Affordances and Self. System, 37(1), 34-45. Cowan, J., & George, J. (2016). A handbook of techniques for formative evaluation: Mapping the students' learning experience. Routledge. Cresswell, J. W. (1998) Qualitative Inquiry and Research Design: Choosing among the Five Traditions. Thousand Oaks, CA: Sage. Crone, E. A., & Dahl, R. E. (2012). Understanding Adolescence as A Period of Social-Affective Engagement and Goal Flexibility. Nature Reviews Neuroscience, 13(9), 636-650. Cummins, J., Bismilla, V., Chow, P., Cohen, S., Giampapa, F., Leoni, L., & Sastri, P. (2005). Affirming Identity in Multilingual Classrooms. Educational Leadership, 63(1), 38-43. Curşeu, P. L., & Schruijer, S. G. (2010). Does Conflict Shatter Trust or Does Trust Obliterate Conflict? Revisiting the Relationships Between Team Diversity, Conflict, And Trust. Group Dynamics: Theory, Research, and Practice, 14(1), 66-79. Darling-Hammond, L. (2003). Keeping Good Teachers: Why It Matters, What Leaders Can Do. Educational Leadership, 60(8), 6-13. Daud, S. N. M., Ali, J. K., & Shahrinaz, I. (2017) The Study of Parent's Satisfaction Towards Kindergarten Center. Empirical Evidence Among Muslim Parents in Kuching, Sarawak. Paper presented in Konferensi Antarabangsa Islam Borneo Ke-10 2017, 25 - 26 September 2017, Samarinda, Indonesia. Davie, R., Butler, N., & Goldstein, H. (1972). From Birth to Seven: The Second Report of The National Child Development Study. (1958 Cohort). London: Longman. Dealwis, C., & David, M. K. (2009). Sensitivity to code selected for discourse: Focus on the Bidayuhs in Kampong Bogag, Bau District, Sarawak. Foundation for Endangered Languages: Working Together for Endangered Languages: Research Challenges and Social Impacts, 11, 56-63. Deci, E. L., & Ryan, R. M. (1985). The General Causality Orientations Scale: Self-Determination in Personality. Journal of Research in Personality, 19(2), 109-134. Desforges, C., & Abouchaar, A. (2003). The Impact of Parental Involvement, Parental Support and Family Education on Pupil Achievement and Adjustment: A Literature Review (Vol. 433). Nottingham: DfES Publications. Dey I. (1993) Qualitative Data Analysis. A User-Friendly Guide for Social Scientists. London: Routledge. Dhooper, S. S. (1983). Family Coping with the Crisis of Heart Attack. Social Work in Health Care, 9(1), 15-31. Dignath, C., & Büttner, G. (2008). Components of Fostering Self-Regulated Learning Among Students. A Meta-Analysis on Intervention Studies at Primary and Secondary School Level. Metacognition and Learning, 3(3), 231-264. Dikko, M. (2016). Establishing Construct Validity and Reliability: Pilot Testing of a Qualitative Interview for Research in Takaful (Islamic Insurance). The Qualitative Report, 21(3), 521- 528. Dodds, A. (2018, November 27) Asean human rights rep says Malaysia regarded as ‘new beacon of hope and democracy'. Southeast Asia Globe. Retrieved from http://sea-globe.com/aseanhuman-rights-rep-says-malaysia-regarded-as-new-beacon-of-hope-and-democracy/ Downes, S. (2012). Connectivism and Connective Knowledge. Essays on Meaning and Learning Networks. National Research Council Canada. Retrieved from http://www.downes. ca/files/books/Connective_Knowledge-19May2012.pdf Driver, R. (1978). When Is A Stage Not A Stage? A Critique of Piaget's Theory of Cognitive Development and Its Application to Science Education. Educational Research, 21(1), 54- 61. Duncan, G. J., Yeung, W. J., Brooks-Gunn, J., & Smith, J. R. (1998). How Much Does Childhood Poverty Affect the Life Chances of Children?. American Sociological Review, 63(3) 406- 423. Duval, E. (2011, February). Attention Please!: Learning Analytics for Visualization and Recommendation. In Proceedings of the 1st International Conference on Learning Analytics and Knowledge (pp. 9-17). Educational Planning and Research Division. (2017). Quick Facts 2012 Malaysia Educational Statistics. Putrajaya. Retrieved from https://www.moe.gov.my/images/Terbitan/Bukuinformasi/QUICKFACTS2017/20170809_QUICKFACTS_2017_FINAL5_interactive.pdf Edward, C. (2017, June 1) Centralized Schools Hold the Key. The Borneo Post Online. Retrieved from: http://www.theborneopost.com/2017/06/01/centralised-schools-hold-the-key/ Elias, H., Noordin, N., & Mahyuddin, R. H. (2010). Achievement Motivation and Self-Efficacy in Relation to Adjustment Among University Students. Journal of Social Sciences, 6(3), 333- 339. Elias, T. (2011). Learning analytics. Retrieved from https://pdfs.semanticscholar.org/732e/452659685fe3950b0e515a28ce89d9c5592a.pdf Elliot, A. J., McGregor, H. A., & Gable, S. (1999). Achievement Goals, Study Strategies, and Exam Performance: A Mediational Analysis. Journal of Educational Psychology, 91(3), 549-563. Elliott, R., & Timulak, L. (2005). Descriptive and Interpretive Approaches to Qualitative Research. A Handbook of Research Methods for Clinical and Health Psychology, 1(7), 147-159. Elo, S., & Kyngäs, H. (2008). The Qualitative Content Analysis Process. Journal of Advanced Nursing, 62(1), 107-115. Emerson, R. M. (1976). Social exchange theory. Annual Review of Sociology, 2(1), 335-362. Entwistle, N., & Ramsden, P. (2015). Understanding Student Learning (Routledge Revivals). Routledge. Ernest, P. (1998). Social Constructivism as A Philosophy of Mathematics. Albany, NY: State University of New York Press. Ertmer, P. A., & Newby, T. J. (1996). The Expert Learner: Strategic, Self-Regulated, and Reflective. Instructional Science, 24(1), 1-24. Evans, D., Gruba, P., & Zobel, J. (2011). How to Write a Better Thesis. Melbourne: Melbourne University Publishing. Evans, G. W. (2004). The Environment of Childhood Poverty. American Psychologist, 59(2), 77-92. Faugier, J., & Sargeant, M. (1997). Sampling Hard to Reach Populations. Journal of Advanced Nursing, 26(4), 790-797. Feinstein, L. (2003). Inequality in the Early Cognitive Development of British Children in the 1970 Cohort. Economica, 70(277), 73-97. Fereday, J., & Muir-Cochrane, E. (2006). Demonstrating Rigor Using Thematic Analysis: A Hybrid Approach of Inductive and Deductive Coding and Theme Development. International Journal of Qualitative Methods, 5(1), 80-92. Ferguson, R. (2012). Learning Analytics: Drivers, Developments and Challenges. International Journal of Technology Enhanced Learning, 4(5-6), 304-317. Fischer, F., & Järvelä, S. (2014). Methodological Advances in Research on Learning and Instruction and In the Learning Sciences. Frontline Learning Research, 2(4), 1-6. Flower, L., & Hayes, J. R. (1981). A Cognitive Process Theory of Writing. College Composition and Communication, 32(4), 365-387. Flutter, J. (2007). Teacher development and pupil voice. The Curriculum Journal, 18(3), 343-354. Fossey, E., Harvey, C., McDermott, F., & Davidson, L. (2002). Understanding and Evaluating Qualitative Research. Australian and New Zealand Journal of Psychiatry, 36(6), 717-732. Fryer Jr, R. G. (2011). Financial Incentives and Student Achievement: Evidence from Randomized Trials. The Quarterly Journal of Economics, 126(4), 1755-1798. Furnham, A. (1989). Friendship and personal development. The Dialectics of Friendship, 92-110. London: Routledge. Gardner, H. E. (2008). Multiple Intelligences: New Horizons in Theory and Practice. Basic Books. Geake, J. (2008). Neuromythologies in education. Educational Research, 50(2), 123-133. Ghauri, P. N., & Grønhaug, K. (2005). Research Methods in Business Studies: A Practical Guide. Pearson Education. Gillette, B. (1994). The Role of Learner Goals in L2 success. Vygotskian Approaches to Second Language Research, 195-213. Norwood, NJ: Ablex. Goffman, E. (1963). Stigma: Notes on the management of spoiled status. New York, NY: Prentice Hall. Goldstone, R. L., Wisdom, T. N., Roberts, M. E., & Frey, S. (2013). Learning Along with Others. Psychology of Learning and Motivation, 58, 1-45. Gordon R.L. (1975) Interviewing: Strategy, Techniques and Tactics. Illinois: Dorsey Press. Goswami, U. (2006). Neuroscience and Education: From Research to Practice? Nature Reviews Neuroscience, 7(5), 406-413. Gove, A., & Cvelich, P. (2011). Early reading: Igniting Education for All. A Report by The Early Grade Learning Community of Practice. Research Triangle Park, NC: Research Triangle Institute. Retrieved from https://files.eric.ed.gov/fulltext/ED520290.pdf Grabe, W. (1991). Current Developments in Second Language Reading Research. TESOL Quarterly, 25(3), 375-406. Granovetter, M. S. (1977). The Strength of Weak Ties. In Social networks (pp. 347-367). Grapragasem, S., Krishnan, A., & Mansor, A. N. (2014). Current Trends in Malaysian Higher Education and the Effect on Education Policy and Practice: An Overview. International Journal of Higher Education, 3(1), 85-93. Green, J., Willis, K., Hughes, E., Small, R., Welch, N., Gibbs, L., & Daly, J. (2007). Generating Best Evidence from Qualitative Research: The Role of Data Analysis. Australian and New Zealand Journal of Public Health, 31(6), 545-550. Greenfield, P. M., & Bruner, J. S. (1969). Culture and Cognitive Growth. Handbook of Socialization Theory and Research (DA Goslin, ed.). Chicago: Rand McNally. Greeno, J. G. (1989). A Perspective on Thinking. American Psychologist, 44(2), 134-41. Greeno, J. G. (1998). The Situativity Of Knowing, Learning, and Research. American Psychologist, 53(1), 5-26. Greeno, J. G., Collins, A. M., & Resnick, L. B. (1996). Cognition and learning. Handbook of Educational Psychology, 77, 15-46. Greenwald, A. G., Carnot, C. G., Beach, R., & Young, B. (1987). Increasing voting behavior by asking people if they expect to vote. Journal of Applied Psychology, 72(2), 315-318. Greller, W., & Drachsler, H. (2012). Translating learning into numbers: A generic framework for learning analytics. Journal of Educational Technology & Society, 15(3), 42-57. Griffiths, C., & Parr, J. M. (2001). Language-learning strategies: Theory and perception. ELT Journal, 55(3), 247-254. Guba, E. G. (1990). The Alternative Paradigm Dialog. In. EG Guba (ed.) The Paradigm Dialogue (p. 17-27). Gunderson, J. G., Kolb, J. E., & Austin, V. (1981). The diagnostic interview for borderline patients. The American Journal of Psychiatry, 138(7), 896-903. Hacking, E. B., Barratt, R., & Scott, W. (2007). Engaging Children: Research Issues around Participation and Environmental Learning. Environmental Education Research, 13(4), 529- 544. Haji Ahmad, R. (1998). Educational development and reformation in Malaysia: past, present and future. Journal of Educational Administration, 36(5), 462-475. Hallinger, P., & Heck, R. H. (2002). What do you call people with visions? The role of vision, mission and goals in school leadership and improvement. In Second International Handbook of Educational Leadership and Administration, 8, 9-40. Dordrecht: Springer. Hamid, R. A. (2002). Educational Reform to Meet the Challenges of a K-Economy: The Malaysian Perspective. In Proceedings of International Conference on the Challenge of Learning and Teaching in A Brave New World. 92-103. Hampf, F., Wiederhold, S., & Woessmann, L. (2017). Skills, Earnings, and Employment: Exploring Causality in The Estimation of Returns to Skills. Large-scale Assessments in Education, 5(1), 12. Hanushek, E. A. (1979). Conceptual and Empirical Issues in the Estimation of Educational Production Functions. Journal of Human Resources, 14 (3), 351-388. Hanushek, E. A. (1986). The Economics of Schooling: Production and Efficiency in Public Schools. Journal of Economic Literature, 24(3), 1141-1177. Hanushek, E. A. (2009). The Economic Value of Education and Cognitive Skills. Handbook of Education Policy Research, 39-56. Hanushek, E. A., & Kimko, D. D. (2000). Schooling, Labor-Force Quality, and the Growth of Nations. American Economic Review, 90(5), 1184-1208. Hanushek, E. A., Schwerdt, G., Wiederhold, S., & Woessmann, L. (2015). Returns to skills around the world: Evidence from PIAAC. European Economic Review, 73, 103-130. Harris, A., & Goodall, J. (2007). Engaging parents in raising achievement: Do parents know they matter? Retrieved from http://dera.ioe.ac.uk/6639/1/DCSF-RW004.pdf Hartup, W. (1994). Having Friends, Making Friends & Keeping Friends: Relationships as Educational Contexts. Emergency Librarian, 21(3), 30-31. Hassan, O. R., & Rasiah, R. (2017). Poverty and Student Performance in Malaysia. Institutions and Economies, 3(1), 61-76. Haukås, Å. (2016). Teachers' Beliefs About Multilingualism and A Multilingual Pedagogical Approach. International Journal of Multilingualism, 13(1), 1-18. Hawk, T. F., & Shah, A. J. (2007). Using Learning Style Instruments to Enhance Student Learning. Decision Sciences Journal of Innovative Education, 5(1), 1-19. Henning, E., Van Rensburg, W., & Smit, B. (2004). Finding Your Way in Qualitative Research (pp. 19-22). Pretoria: van Schaik. Henrich, J. (2001). Cultural Transmission and The Diffusion of Innovations: Adoption Dynamics Indicate That Biased Cultural Transmission is The Predominate Force in Behavioral Change. American Anthropologist, 103(4), 992-1013. Heylighen, F. (1992). A Cognitive‐Systemic Reconstruction of Maslow's Theory of Self‐ Actualization. Behavioral Science, 37(1), 39-58. Hidi, S., & Harackiewicz, J. M. (2000). Motivating the academically Unmotivated: A Critical Issue for the 21st Century. Review of Educational Research, 70(2), 151-179. Hirschman, C. (1972). Educational patterns in Colonial Malaya. Comparative Education Review, 16(3), 486-502. Ho, J. T., Ang, C. E., Loh, J., & Ng, I. (1998). A Preliminary Study of Behaviour—Is It Unique to Singapore?. Journal of Managerial Psychology, 13(5/6), 359-370. Hoadley, C., & Van Haneghan, J. (2011). The Learning Sciences: Where They Came from And What It Means for Instructional Designers. Trends and Issues in Instructional Design and Technology, 3, 53-63. Hollway, W., & Jefferson, T. (2000). Doing Qualitative Research Differently: Free Association, Narrative and The Interview Method. SAGE. Honey, P., & Mumford, A. (1992). The manual of learning styles, 3rd. Maidenhead: Peter Honey. Hong, K. S., & Koh, C. K. (2002). Computer Anxiety and Attitudes Toward Computers Among Rural Secondary School Teachers: A Malaysian Perspective. Journal of Research on Technology in Education, 35(1), 27-48. Hornberger, N. H. (2004). The Continua of Biliteracy and The Bilingual Educator: Educational Linguistics in Practice. International Journal of Bilingual Education and Bilingualism, 7(2- 3), 155-171. Huda, M., Maseleno, A., Shahrill, M., Jasmi, K. A., Mustari, I., & Basiron, B. (2017). Exploring Adaptive Teaching Competencies in Big Data Era. International Journal of Emerging Technologies in Learning (iJET), 12(03), 68-83. Hurd, S. (2006). Towards a Better Understanding of The Dynamic Role of The Distance Language Learner: Learner Perceptions of Personality, Motivation, Roles, and Approaches. Distance Education, 27(3), 303-329. Hussin, S., & Waheed, Z. (2016) Rising to Prominence and Excellence: A Conceptual Model of School Transformation. Proceedings of INTED2016 Conference 7th-9th March 2016, Valencia, Spain. Hwang, A. (2003). Adventure learning: competitive (Kiasu) attitudes and teamwork. Journal of Management Development, 22(7), 562-578. Hwang, A., Ang, S., & Francesco, A. M. (2002). The Silent Chinese: The Influence of Face and Kiasuism On Student Feedback-Seeking Behaviors. Journal of Management Education, 26(1), 70-98. Hwang, G. J., Spikol, D., & Li, K. C. (2018). Guest Editorial: Trends and Research Issues of Learning Analytics and Educational Big Data. Journal of Educational Technology & Society, 21(2), 134-136. Idris, N. D. M., Siwar, C., Talib, B. A., & Berma, M. (2012). Socioeconomic impact on farmers in Malaysia: A case study on Integrated Agricultural Development Project. American Journal of Applied Sciences, 9(4), 579-583. Ismail, A., & Abdullah, A. G. K. (2012). A journey to excellence: a case of Ulu Lubai national primary school in Limbang Sarawak, Malaysia. Procedia Social and Behavioral Sciences, 69, 1309-1313. Ismail, A., & Khairani, A. Z. (2018). Transformational Leaders of ‘Zero to Hero' Schools in Malaysia. The Social Sciences, 13(3), 643-649. Jala, I (2015, May 18) The measure of poverty. The Borneo Post Online. Retrieved at http://www.theborneopost.com/2015/05/18/the-measure-of-poverty/ Jang, H., Reeve, J., Ryan, R. M., & Kim, A. (2009). Can self-determination theory explain what underlies the productive, satisfying learning experiences of collectivistically oriented Korean students?. Journal of Educational Psychology, 101(3), 644. Jaques, D., & Salmon, G. (2007). Learning in Groups: A Handbook for Face-To-Face and Online Environments. Routledge. Jarvenpaa, S. L., & Leidner, D. E. (1999). Communication and Trust in Global Virtual Team. Organization Science, 10(6), 791-815. Jehom, W. J. (1999). Ethnicity and ethnic identity in Sarawak. Akademika, 55(1), 83-98. Jensen, E. (1995). Brain-based Learning & Teaching. California: Brain Store Incorporated. Jeruto, T.B. & Kipbop, C.J. (2011) Extent of student participation in decision making in secondary schools in Kenya, International Journal of Humanities and Social Science, 1(21), 92-99 [Special Issue]. Johnson, R. B., & Onwuegbuzie, A. J. (2004). Mixed Methods Research: A Research Paradigm Whose Time Has Come. Educational Researcher, 33(7), 14-26. Jordaan, S., & Pillay, R. (2009). Beginning My Journey of Professional Development: The Language Teacher and The Teaching Profession. Teaching Language, 1-10. Northlands: Macmillan South Africa, Junni, P. (2007). Students Seeking Information for Their Masters' Theses: The Effect of the Internet. Information Research: An International Electronic Journal, 12(2), 12-2. Kankanhalli, A., Tan, B. C., & Wei, K. K. (2005). Contributing knowledge to electronic knowledge repositories: an empirical investigation. MIS Quarterly, 29(1), 113-143. Karim, A. A., Puteh, S. N., Din, R., & Rahamat, R. (2010). Women's Way of Learning Information Skills in Malaysian Higher Education. Procedia-Social and Behavioral Sciences, 7, 621- 628. Kaur, R., & Sidhu, G. K. (2010). Learner Autonomy via Asynchronous Online Interactions: A Malaysian Perspective. International Journal of Education and Development using Information and Communication Technology, 6(3), 88-100. Keefe, J. W. (1979). Learning Style: An Overview. Student Learning Styles: Diagnosing and Prescribing Programs, 1, 1-17. Keefe, J. W., & Ferrell, B. G. (1990). Developing a Defensible Learning Style Paradigm. Educational Leadership, 48(2), 57-61. King, E. M., & Lillard, L. A. (1987). Education Policy and Schooling Attainment in Malaysia And the Philippines. Economics of Education Review, 6(2), 167-181. Kirby, E. G., & Ross, J. K. (2007). Kiasu Tendency and Tactics: A Study of their Impact on Task Performance. Journal of Behavioral and Applied Management, 8(2), 108-121. Kirshner, D. (2007). The Math Wars and the Reading Wars, siblings or distant cousins? A Cross disciplinary perspective. Paper presented at Annual Meeting of the American Educational Research Association Annual Meeting, Chicago, April 9-13. Kirshner, D. (2011). Claiming the Cultural Space of the Classroom: Issues of Ethics and Social Justice. Online Submission. Paper presented at the Annual Meeting of the American Educational Research Association New Orleans, LA, Apr 8-12, 2011. Klopfenstein, B. J. (2003). Empowering learners: Strategies for fostering self-directed learning and implications for online learning. (Unpublished Master of Education thesis) University of Alberta, Canada. Kolb, A. Y., & Kolb, D. A. (2005). Learning Styles and Learning Spaces: Enhancing Experiential Learning in Higher Education. Academy of Management Learning & Education, 4(2), 193- 212. Kolb, D. A. (1976). Learning Style Inventory Technical Manual. Boston, MA: McBer. Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. Englewood Cliffs, NJ: FT press. Kolb, D.A. (1999), The Kolb Learning Styles Inventory, Version 3. Boston: Hay Group. Kop, R. (2011). The Challenges to Connectivist Learning on Open Online Networks: Learning Experiences During a Massive Open Online Course. The International Review of Research in Open and Distributed Learning, 12(3), 19-38. Kop, R., & Hill, A. (2008). Connectivism: Learning theory of the future or vestige of the past?. The International Review of Research in Open and Distributed Learning, 9(3), 1-13. Krashen, S. (1977). The Monitor Model for Adult Second Language Performance. Viewpoints on English as a Second Language, 152-161. New York: Regents. Krashen, S. D. (1976). Formal and informal linguistic environments in language acquisition and language learning. Tesol Quarterly, 10(2), 157-168. Krathwohl, D. R. (1998). Methods of educational and social science research. IL: Long Grove. Kvale, S. (1996). The 1,000-page question. Qualitative Inquiry, 2(3), 275-284. Kvale, S. (2008). Doing Interviews. Thousand Oaks: SAGE. Laland, K. N. (2004). Social Learning Strategies. Animal Learning & Behavior, 32(1), 4-14. Landsheer, J. A., & Boeije, H. R. (2010). In search of content validity: facet analysis as a qualitative method to improve questionnaire design. Quality & Quantity, 44(1), 59-69. Langer, J. A. (1986). Children Reading and Writing: Structures and Strategies. Westport, CT, US: Ablex Publishing. Langer, J. A. (1989). The Process of Understanding Literature. Center for the Learning and Teaching of Literature, University at Albany, State University of New York. Lave, J. (1988). Cognition in Practice: Mind, Mathematics, and Culture in Everyday Life. Cambridge, UK: Cambridge University Press. Lave, J. (1998). Communities of Practice. New York: Cambridge University Press. Lave, J., & Wenger, E. (1990). Situated Learning: Legitimate Peripheral Participation. Cambridge, UK: Cambridge University Press. Le Ha, P., Kho, J., & Chng, B. (2013). Nation building, English as an international language, medium of instruction, and language debate: Malaysia and possible ways forward. Journal of International and Comparative Education (JICE), 2(2), 58-71. Learning Experience (2013). In S. Abbott (ed.) The Glossary of Education Reform. Retrieved from https://www.edglossary.org/learning-experience Lee, J., & Shute, V. J. (2010). Personal and social-contextual factors in K-12 academic performance: An integrative perspective on student learning. Educational Psychologist, 45(3), 185-202. Lee, M. N. (1999). Education in Malaysia: Towards Vision 2020. School Effectiveness and School Improvement, 10(1), 86-98. Lee, M. N. (2004). Malaysian Teacher Education into The New Century. In Reform of teacher education in the Asia-Pacific in the new millennium. 3, 81-91. Dordrecht: Springer. Legg, S., & Hutter, M. (2007). A collection of definitions of intelligence. Frontiers in Artificial Intelligence and Applications, 157, 17-24. Leonard, K. E., & Blane, H. T. (Eds.). (1999). Psychological Theories of Drinking and Alcoholism. New York: Guilford Press. Liang, T. P., Liu, C. C., & Wu, C. H. (2008). Can social exchange theory explain individual knowledge-sharing behavior? A meta-analysis. ICIS 2008 Proceedings, 171, 1-18. Liaw, F. R., & Brooks-Gunn, J. (1994). Cumulative familial risks and low-birthweight children's cognitive and behavioral development. Journal of Clinical Child Psychology, 23(4), 360- 272. Lin, H. F. (2007). Effects of extrinsic and intrinsic motivation on employee knowledge sharing intentions. Journal of Information Science, 33(2), 135-149. Ling, S. L. M., & Ibrahim, M. S. (2013). Transformational leadership and teacher commitment in secondary schools of Sarawak. International Journal of Independent Research and Studies, 2(2), 51-65. Louise Barriball, K., & While, A. (1994). Collecting Data using a semi‐structured interview: a discussion paper. Journal of Advanced Nursing, 19(2), 328-335. Lu, C. J., & Shulman, S. W. (2008). Rigor and flexibility in computer-based qualitative research: Introducing the Coding Analysis Toolkit. International Journal of Multiple Research Approaches, 2(1), 105-117. Luria, A. K. (1971). Towards the problem of the historical nature of psychological processes. International Journal of Psychology, 6(4), 259-272. Mack, N., Woodsong, C., MacQueen, K. M., Guest, G., & Namey, E. (2005). Qualitative research methods: a data collectors field guide. Research Triangle Park, NC: Family Health International. Madden, T. J., Ellen, P. S., & Ajzen, I. (1992). A comparison of the theory of planned behavior and the theory of reasoned action. Personality and Social Psychology Bulletin, 18(1), 3-9. Madge, C., Meek, J., Wellens, J., & Hooley, T. (2009). Facebook, social integration and informal learning at university:‘It is more for socializing and talking to friends about work than for actually doing work'. Learning, Media and Technology, 34(2), 141-155. Mafora, P. (2013). Learnersánd teachers' perceptions of principals' leadership in Soweto secondary schools: a social justice analysis. South African Journal of Education, 33(3), 1-15. Malhoit, G. C. (2005). Providing Rural Students with a High-Quality Education: The Rural Perspective on the Concept of Educational Adequacy. Arlington: Rural Education and Community Trust. Malmberg, L. E., Mwaura, P., & Sylva, K. (2011). Effects of a preschool intervention on cognitive development among East-African preschool children: A flexibly time-coded growth model. Early Childhood Research Quarterly, 26(1), 124-133. Marjanovič Umek, L., Kranjc, S., Fekonja, U., & Bajc, K. (2008). The effect of preschool on children's school readiness. Early Child Development and Care, 178(6), 569-588. Marks, A., Maytha, A. A., & Rietsema, K. (2016). Learning Management Systems: A Shift Toward Learning and Academic Analytics. International Journal of Emerging Technologies in Learning, 11(04), 77-82. Marshall, C., & Rossman, G. B. (1999). The “what” of the study: Building the conceptual framework. Designing Qualitative Research, 3, 21-54. Martin, P. (2005). Safe language practices in two rural schools in Malaysia. Tensions between policy and practice. In A.M. Lin and P.W. Martin (Eds.), Decolonisation, Globalization: Language-In-Education Policy and Practice (pp. 74-97), Clevedon, UK: Multilingual Matters. Marton, F., & Saljo, R. (1976b). On qualitative differences in learning: II. Outcome as a function of the learner's conception of the task. British Journal of Educational Psychology, 46, 115- 127. Marton, F., & Saljo, R. (1984). Approaches to learning. In F. Marton, D. Hounsell, & N. Entwistle (Eds.), The Experience of Learning (pp. 36-55). Edinburgh: Scottish Academic Press. Marton, F., & Saljo. R. (1976a). On qualitative differences in learning: I. Outcome and process. British Journal of Educational Psychology, 46, 4-11. Marton, F., DallíAlba, G., & Beaty, E. (1993). Conceptions of learning. International Journal of Educational Research, 19, 227-300. Marwan, A., Sumintono, B., & Mislan, N. (2012). Revitalizing Rural Schools: A Challenge for Malaysia. Educational Issues, Research and Policies. Skudai, Johor Bahru: UTM Press. 172-188. Maslow, A. H. (1958). Emotional blocks to creativity. Humanist, 18, 325-332. Mathieson, K. (1991). Predicting user intentions: comparing the technology acceptance model with the theory of planned behavior. Information Systems Research, 2(3), 173-191. Mayer-Schönberger, V., & Cukier, K. (2014). Learning with Big Data: The Future of Education. Houghton Mifflin Harcourt. McConnell, D. (2002). The experience of collaborative assessment in e-learning. Studies in Continuing Education, 24(1), 73-92. McGinn, C. (1975). " A Prioriänd" A Posteriori" Knowledge. In Proceedings of the Aristotelian Society (Vol. 76, pp. 195-208). Aristotelian Society: Wiley. McKenna, R., & Fitzpatrick, L. (2005). Integrated Approaches to Teaching Adult Literacy in Australia: A Snapshot of Practice in Community Services. An Adult Literacy National Project Report. Australia: National Centre for Vocational Education Research Ltd. McLaughlin, B. (1978). The monitor model: Some methodological considerations. Language Learning, 28(2), 309-332. McLoyd, V. C. (1998). Socioeconomic disadvantage and child development. American Psychologist, 53(2), 185-204. Meho, L. I. (2006). E‐mail interviewing in qualitative research: A methodological discussion. Journal of the Association for Information Science and Technology, 57(10), 1284-1295. Melhuish, E. C., Phan, M. B., Sylva, K., Sammons, P., Siraj‐Blatchford, I., & Taggart, B. (2008). Effects of the home learning environment and preschool center experience upon literacy and numeracy development in early primary school. Journal of Social Issues, 64(1), 95- 114. Merriam, S. B. (1998). Qualitative Research and Case Study Applications in Education. Revised and Expanded from" Case Study Research in Education". San Francisco, CA: Jossey-Bass Publishers. Miles, M. B., Huberman, A. M., & Saldana, J. (2013). Qualitative Data Analysis. Thousand Oaks: SAGE. Miles, M. B., Huberman, A. M., Huberman, M. A., & Huberman, M. (1994). Qualitative Data Analysis: An Expanded Sourcebook. Thousand Oaks: SAGE. Ministry of Education Malaysia (2008). Malaysia Education for All: MidDecade Assessment Report 2007 2012. Putrajaya, Malaysia: Ministry of Education. Ministry of Education Malaysia. (2012). Preliminary Report Malaysia Education Blueprint 2013 2025. Putrajaya, Malaysia: Ministry of Education. Ministry of Education Malaysia. (2013). Malaysia Education Blueprint 2013-2025. Retrieved from https://www.moe.gov.my/images/dasar-kpm/articlefile_file_003108.pdf Mohd Zahidi, A. (2012). Self-regulation in English language learning: Case studies of six Malaysian undergraduates. (Doctoral dissertation) Retrieved from https://core.ac.uk/download/pdf/41337755.pdf Mohd, S. N. H., Goh, G. G. G., & Fathi, N. M. (2012). Factors affecting motivations to share knowledge among university students. Proceeding of the International Conference on Management, Economics and Finance. 693-703. Sarawak, Malaysia: Global Research Agency. Mokshein, S. E., Ahmad, H. H., & Vongalis-Macrow, A. (2009). Towards Providing Quality Secondary Education: Training and Retaining Quality Teachers in Malaysia. Bangkok: UNESCO, Asia and Pacific Regional Bureau for Education. Morgan, T. J. H., Rendell, L. E., Ehn, M., Hoppitt, W., & Laland, K. N. (2012). The evolutionary basis of human social learning. Proceedings of the Royal Society of London B: Biological Sciences, 279(1729), 653-662. Moris, Z. (2007). 50 Years of Higher Education Development in Malaysia (1957-2007). Pulau Pinang: Universiti Sains Malaysia. Morrow, S. L. (2005). Quality and trustworthiness in qualitative research in counseling psychology. Journal of Counseling Psychology, 52(2), 250-260. Morse, J. M., Barnett, N., Mayan, M., Olson, K., & Spiers, J. (2002). Verification strategies for establishing reliability and validity in qualitative research. International Journal of Qualitative Methods, 1(2), 13-22. Müller-Merbach, H. (2007). Kant's two paths of knowledge creation: a priori vs a posteriori. Knowledge Management Research & Practice, 5(1), 64-65. Mullis, I. V., Martin, M. O., Gonzalez, E. J., & Chrostowski, S. J. (2004). TIMSS 2003 International Mathematics Report: Findings from IEA's Trends in International Mathematics and Science Study at the Fourth and Eighth Grades. TIMSS & PIRLS International Study Center. Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467. Nayak, N., Hansen, N., Krueger, N., & McLaughlin, B. (1990). Language‐learning strategies in monolingual and multilingual adults. Language Learning, 40(2), 221-244. Neo, J. L. (2018). The particular in the universal: Negotiating the right to education and culturallinguistic rights of minority children in East Malaysia. Law and Society in Malaysia. 96- 122. London: Routledge. Ngussa, B. M., & Makewa, L. N. (2014). Student voice in curriculum change: A theoretical reasoning. International Journal of Academic Research in Progressive Education and Development, 3(3), 23-37. Nolen, S. B. (1988). Reasons for studying: Motivational orientations and study strategies. Cognition and Instruction, 5(4), 269-287. Noor, M. A. M., & Symaco, L. P. (2017). Education Policies and Practices in Malaysia. Education in Malaysia. 67-83. Springer, Singapore. Norsarihan A., & Hamzah, O. (n.d). The Dilemmas of a Future ESL Teacher: An Ethnographic Case Study of Sarawak Malay ESL Teacher Trainee in Sarawak. Retrieved from http://www.academia.edu/download/33837406/The_Dilemmas_of_NonNative_ESL_Teac her_Trainee.doc Nowak, A., Szamrej, J., & Latané, B. (1990). From private attitude to public opinion: A dynamic theory of social impact. Psychological Review, 97(3), 362-376. Nthontho, M. (2017). Children as stakeholders in education: Does their voice matter? South African Journal of Childhood Education, 7(1), 1-7. Nurul-Awanis, A. H.-M. (2011). Malaysian Education System Reform: Educationists' Perspectives. Proceeding of the International Conference on Social Science, Economics and Art 2011 107-111. Putrajaya, Malaysia: ISC SEA 2011. O'Brien, B. C., Harris, I. B., Beckman, T. J., Reed, D. A., & Cook, D. A. (2014). Standards for reporting qualitative research: a synthesis of recommendations. Academic Medicine, 89(9), 1245-1251. O'donnell, A. M., Dansereau, D. F., Hall, R. H., & Rocklin, T. R. (1987). Cognitive, social/affective, and metacognitive outcomes of scripted cooperative learning. Journal of Educational Psychology, 79(4), 431-437. O'malley, J. M., O'Malley, M. J., & Chamot, A. U. (1990). Learning Strategies in Second Language Acquisition. Cambridge: Cambridge University Press. Omidinia, S., Masrom, M., & Selamat, H. (2012a). Smart School System Issues and Challenges (Primary Finding of Interviews). Retrieved from https://www.academia.edu/3158453/SMART_SCHOOL_SYSTEM_ISSUES_AND_CHA LLENGES Omidinia, S., Masrom, M., & Selamat, H. (2012b). Determinants of Smart School System Success: A Case Study of Malaysia. International Journal of Academic Research, 4(1), 29-36. Ong, K. M. (2016, April 28) Complex causes of poor education levels in Sarawak. Malaysiakini. Retrieved from: https://www.malaysiakini.com/news/339487 Paris, S. G., & Myers, M. (1981). Comprehension monitoring, memory, and study strategies of good and poor readers. Journal of Reading Behavior, 13(1), 5-22. Paris, S. G., Lipson, M. Y., & Wixson, K. K. (1983). Becoming a strategic reader. Contemporary educational psychology, 8(3), 293-316. Paris, S. G., Wasik, B. A., Turner, J. C., Barr, R., Kamil, M. L., Mosenthal, P. B., & Pearson, P. D. (1991). Handbook of Reading Research: The Development of Strategic Readers. 2, 609- 640. White Plains, NY: Longman. Parsaye, K. (1988). Acquiring & verifying knowledge. AI Expert, 3(5), 48-63. Parsaye, K., & Chignell, M. (1988). Expert Systems for Experts. New York: Wiley. Patton, M. Q. (1990). Qualitative Evaluation and Research Methods (2nd Ed.). Thousand Oaks, CA, US: Sage Publications, Inc. Perera, N. (2011). Constructivism, social constructivism and situated cognition: A sliding scale? [Web log post]. Retrieved from https://nishancperera.com/2011/01/31/constructivismsocial-constructivism-and-situated-cognition-a-sliding-scale-by-nishan-perera/ Perry, R. P., Hladkyj, S., Pekrun, R. H., & Pelletier, S. T. (2001). Academic control and action control in the achievement of college students: a longitudinal field study. Journal of Educational Psychology, 93(4), 776-789. Peters, L., & Karren, R. J. (2009). An examination of the roles of trust and functional diversity on virtual team performance ratings. Group & Organization Management, 34(4), 479-504. Petersen, I. H., Louw, J., & Dumont, K. (2009). Adjustment to university and academic performance among disadvantaged students in South Africa. Educational Psychology, 29(1), 99-115. Piaget, J. (1966a). Time perception in children. The Voices of Time, 202-209. New York: Braziller. Piaget, J. (1966b). Response to Brian Sutton-Smith. Psychological Review, 73(1), 111-112. Picciano, A. G. (2012). The evolution of big data and learning analytics in American higher education. Journal of Asynchronous Learning Networks, 16(3), 9-20. Pintner, R. (1931). Intelligence testing: Methods and results. Oxford, England: Holt. Pintrich, P. R., & Zusho, A. (2002). The development of academic self-regulation: The role of cognitive and motivational factors. Development of Achievement Motivation (pp. 249-284) Pope, C., & Mays, N. (Eds.). (1999). Qualitative Research in Health Care. 75-88. London, UK: BMJ books. Pressley, M. (2000). What should comprehension instruction be the instruction of? In M. Kamil, P. Mosenthal, P. Pearson, & R. Barr (Eds.), Handbook of Reading Research, 3, 545-561. Mahwah, NJ: Erlbaum. Prosper, A., & Nomlomo, V. (2016). Literacy for All? Using multilingual reading stories for literacy development in a Grade One classroom in the Western Cape. Per Linguam, 32(3), 79-94. Provost, F., & Fawcett, T. (2013). Data science and its relationship to big data and data-driven decision making. Big Data, 1(1), 51-59. Purdie, N. M., & Hattie, J. (2002). Assessing students' conceptions of learning. Australian Journal of Educational and Developmental Psychology, 2, 17-32. Qin Qintashia Binti Joji (2013). Knowledge sharing practices among expatriates in higher learning institution. (Final Year Report). Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia. Rajendran, N. (2005). Teachers teaching students from a multicultural background: the case of Malaysia. Higher Education Policy, 18(4), 361-374. Ramli, S. S., Ibrahim, I., & Abd Rani, H. (2008). Sarawak Committee on Information Literacy Skills (SCILS): Collaboration Towards a Common Standard of Information Literacy for Sarawak. Paper presented at International Conference on Libraries, Information and Society 2008, Petaling Jaya, Malaysia. Retrieved at Universiti of Malaya, Malaysia http://repository.um.edu.my/966/ Rao, R. R., & Jani, R. (2017). Teacher allocation and equity in Malaysian schools. Institutions and Economies, 3(1), 103-112. Rees-Miller, J. (1993). A critical appraisal of learner training: Theoretical bases and teaching implications. TESOL Quarterly, 27(4), 679-689. Reeve, J., Deci, E. L., & Ryan, R. M. (2004). Self-determination theory: A dialectical framework for understanding socio-cultural influences on student motivation. Big Theories Revisited, 4, 31-60. Reeve, J., Nix, G., & Hamm, D. (2003). Testing models of the experience of self-determination in intrinsic motivation and the conundrum of choice. Journal of Educational Psychology, 95(2), 375-392. Reid, J. M. (1987). The learning style preferences of ESL students. TESOL Quarterly, 21(1), 87-111. Reid, M., Landesman, S., Treder, R., & Jaccard, J. (1989). " My Family and Friends": Six-to Twelve Year-Old Children's Perceptions of Social Support. Child Development, 896-910. Reyes, J. A. (2015). The skinny on big data in education: Learning analytics simplified. TechTrends, 59(2), 75-80. Richardson, S. A., Dohrenwend, B. S., & Klein, D. (1965). Expectations and premises: The so called” leading question”. Interviewing: Its Forms and Functions. New York: Basic Books. Riege, A. (2005). Three-dozen knowledge-sharing barriers managers must consider. Journal of Knowledge Management, 9(3), 18-35. Riveiro, J. M. S. (2014). Optimistic and defensive-pessimist students: differences in their academic motivation and learning strategies. The Spanish Journal of Psychology, 17,1-8. Rizk, R., Marx, D., Schrepfer, M., Zimmerman, J., & Guenther, O. (2009). Media coverage of online social network privacy issues in Germany: A thematic analysis. AMCIS 2009 Proceedings, 342, 1-9. Robson, F. (2002). ‘Yes! - A chance to tell my side of the story': A case study of a male partner of a woman undergoing termination of pregnancy for foetal abnormality. Journal of Health Psychology, 7, 183-194. Rogers, C. R. (1983). Freedom to learn for the 80's (No. 371.39 R724f). Ohio, US: Merrill Publishing, 1983. Rudner, M. (1977). Education, development and change in Malaysia. Japanese Journal of Southeast Asian Studies, 15(1), 23-62. Ryan, G. W., & Bernard, H. R. (2003). Techniques to identify themes. Field Methods, 15(1), 85-109. Ryan, R. M., & Deci, E. L. (2000a). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1), 54-67. Ryan, R. M., & Deci, E. L. (2000b). The" whatänd" whyöf goal pursuits: Human needs and the self-determination of behavior. Psychological Inquiry, 11(4), 227-268. Saldaña, J. (2003). Dramatizing data: A primer. Qualitative Inquiry, 9(2), 218-236. Saldaña, J. (2009). An introduction to codes and coding. The Coding Manual for Qualitative Researchers, 3. SAGE Saldaña, J. (2015). The coding manual for qualitative researchers. SAGE. Saljo, R. (1979). Learning in the Learner's Perspective. I. Some Common-Sense Conceptions. No. 76. Götemborg: Institute of Education, University of Götemborg. Säljö, R. (1987). The educational construction of learning. Student Learning: Research in Education and Cognitive Psychology, 101-108. Salomon, G. (Ed.). (1997). Distributed Cognitions: Psychological and Educational Considerations. Cambridge: Cambridge University Press. Salonen, P., Lehtinen, E., & Olkinuora, E. (1998). Expectations and beyond: The development of motivation and learning in a classroom context. Advances in Research on Teaching, 7, 111- 150. Sampson, K. M. (2018). African-American Female Students and STEM: Principals' Leadership Perspectives (Doctoral dissertation) Retrieved from https://search.proquest.com/openview/7c0b6894866629a80c7d765b0262fe75/1?pqorigsite=gscholar&cbl=18750&diss=y Samuel, M., Tee, M. Y., & Symaco, L. P. (2017). The Educational Landscape of Malaysia. Education in Malaysia. 1-16. Singapore: Springer. Sato, M. (2005). Education, ethnicity and economics: Higher education reforms in Malaysia 1957 2003. NUCB Journal of Language Culture and Communication, 7(1), 73-88. Saunders, G. E. (1971). Education in Sarawak. Critical Studies in Education, 13(1), 44-88. Saunders, M. N., & Lewis, P. (2012). Doing Research in Business & Management: An Essential Guide to Planning Your Project. Harlow: Pearson. Sawyer, R. K. (2006). Introduction: The new science of learning. In. R. K. Sawyer (Ed.) The Cambridge Handbook of The Learning Sciences (pp. 1-16). New York: Cambridge University Press. Sawyer, R. K. (Ed.). (2005). The Cambridge Handbook of the Learning Sciences. Cambridge: Cambridge University Press. Schneider, M. (2002). Do school facilities affect academic outcomes? Washington, DC: National Clearing House for Educational Facilities. Schraw, G., & Moshman, D. (1995). Metacognitive theories. Educational Psychology Review, 7(4), 351-371. Schuell, T. J. (1986). Cognitive conceptions of learning. Review of Education Research, 56, 411 436. Schunk, D. H. (1991). Self-efficacy and academic motivation. Educational Psychologist, 26(3-4), 207-231. Schunk, D. H. (2012). Learning Theories: An Educational Perspective (6th Ed). Boston, MA: Pearson. Schunk, D. H., & Zimmerman, B. J. (2007). Influencing children's self-efficacy and self-regulation of reading and writing through modeling. Reading & Writing Quarterly, 23(1), 7-25. Schwandt, T. A. (1994). Constructivist, interpretivist approaches to human inquiry. Handbook of Qualitative Research, 1, 118-137. Sekaran, U. (2003). Research Methods for Business (4th ed.). Hoboken, NJ: John Wiley & Sons. Seymour, J. M. (1972). Contrasts between formal and informal education among the Iban of Sarawak, Malaysia. Review of Educational Research, 42(4), 477-491. Sfard, A. (1998). On two metaphors for learning and the dangers of choosing just one. Educational Researcher, 27(2), 4-13. Shahren Ahmad Zaidi Adruce (2013). How to Do Content Analysis: A Step-By-Step Guide. (Unpublished manuscript) Shavelson, R. J., Hubner, J. J., & Stanton, G. C. (1976). Self-concept: Validation of construct interpretations. Review of Educational Research, 46(3), 407-441. Shuell, T. J. (1987). Cognitive psychology and conceptual change: Implications for teaching science. Science Education, 71(2), 239-250. Shuell, T. J. (1990). Phases of meaningful learning. Review of Educational Research, 60(4), 531 547. Shure, M. B., & Spivack, G. (1980). Interpersonal problem solving as a mediator of behavioral adjustment in preschool and kindergarten children. Journal of Applied Developmental Psychology, 1(1), 29-44. Shure, M. B., & Spivack, G. (1982). Interpersonal problem-solving in young children: A cognitive approach to prevention. American Journal of Community Psychology, 10(3), 341-356. Siemens, G. (2005). Connectivism: A learning theory for the digital age. International Journal of Instructional Technology and Distance Learning, 2(1), 3-10. Siemens, G. (2005). Connectivism: A learning theory for the digital age. Retrieved from http://www.elearnspace.org/Articles/connectivism.htm Siemens, G. (2013). Learning analytics: The emergence of a discipline. American Behavioral Scientist, 57(10), 1380-1400. Siemens, G., & d Baker, R. S. (2012, April). Learning analytics and educational data mining: towards communication and collaboration. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge. 252-254. ACM. Siemens, G., & Long, P. (2011). Penetrating the fog: Analytics in learning and education. EDUCAUSE Review, 46(5), 30-40. Simmons, J., & Alexander, L. (1978). The determinants of school achievement in developing countries: A review of the research. Economic Development and Cultural Change, 26(2), 341-357. Smith, H. W. (1981). Strategies of Social Research: The Methodological Imagination. New Jersey: Prentice Hall. Smith, K. J. (2003). Minority Language Education in Malaysia: Four Ethnic Communities' Experiences. International Journal of Bilingual Education and Bilingualism, 6(1), 52-65. Soda, R. (2000). Living strategies of the urban poor in a local town in Sarawak, Malaysia: population mobility of the Iban between urban and rural areas. Geographical Review of Japan, Series B., 73(2), 139-164. Soda, R. (2007). People on The Move: Rural-Urban Interactions in Sarawak (Vol. 13). Kyoto: Kyoto Universiti Press. Staudinger, U. M., & Pasupathi, M. (2003). Correlates of wisdom‐related performance in adolescence and adulthood: Age‐graded differences in “paths” toward desirable development. Journal of Research on Adolescence, 13(3), 239-268. Sticht, T. (1997) Functional Context Education: Making Learning Relevant. San Diego: Consortium for Workforce Education and Lifelong Learning. Sticht, T. (Ed.). (1975). Reading for Working: A Functional Literacy Anthology. Alexandria, VA: Human Resources Research Organization. Sticht, T. G. (1987). Functional Context Education: Workshop Resource Notebook. San Diego, CA: Applied Behavioral and Cognitive Sciences. Sticht, T. G. (1988). Adult literacy education. Review of Research in Education,15, 59-96. Street, B. (2001). Literacy events and literacy practices: Theory and practice in the New Literacy Studies. In M. Martin-Jones and K. Jones (eds) Multilingual Literacies: Reading and writing different worlds. 17-30. Philadelphia: John Benjamins. Street, B. V. (1995). Social Literacies: Critical Approaches to Literacy in Development, Ethnography and Education. London: Longman. Sutton, R. S., & Barto, A. G. (1998). Introduction to reinforcement learning (Vol. 135). Cambridge: MIT Press. Symonds, J., Schoon, I., Eccles, J., & Salmela-Aro, K. (2019). The Development of Motivation and Amotivation to Study and Work across Age-Graded Transitions in Adolescence and Young Adulthood. Journal of Youth and Adolescence, 1-15. Tee, O. P., Liu, O. P., Selvadurai, S., Hoon, O. P. H. P., & Radzi, M. M. (2017). Education and Social Mobility: Perspectives of Students in Selected National Schools in Four States in Malaysia. e-Bangi, 12(1), 75-89. Tesch, R. (1990). Qualitative Analysis: Analysis Types and Software Tools. London: Falmer. Then, D. C. O., & Ting, S. H. (2011). Code-switching in English and science classrooms: more than translation. International Journal of Multilingualism, 8(4), 299-323. Thomas, J., & Harden, A. (2008). Methods for the thematic synthesis of qualitative research in systematic reviews. BMC Medical Research Methodology, 8(1), 45-45. Thomas, L. (2002). Student retention in higher education: the role of institutional habitus. Journal of Education Policy, 17(4), 423-442. Thung, Y. I. (1999). Factors Affecting Occupational Stress Among Teachers of a Secondary School in Sarawak. (Master's thesis). Universiti Putra Malaysia, Malaysia. Retrieved from https://core.ac.uk/download/pdf/42998305.pdf Tierney, R. J. (1985). Reading strategies and practices. A compendium. Allyn and Bacon Order Dept., 200 Old Tappan Rd., Old Tappan, NJ 07675. Tierney, R. J., & Pearson, P. D. (1983). Toward a composing model of reading. Language Arts, 60(5), 568-580. Tinto, V., & Pusser, B. (2006). Moving from theory to action: Building a model of institutional action for student success. National Postsecondary Education Cooperative. Retrieved from https://nces.ed.gov/npec/pdf/Tinto_Pusser_Report.pdf Tomasevski, K. (2006). The state of the right to education worldwide. Free or Fee: 2006 Global Report. 523-536. Copenhagen: Wolf Legal Publishers. Topping, K. (2011). Primary-secondary transition: Differences between teachersánd children's perceptions. Improving scho
(1)
Abang, F. (2006). Butterflies of Malaysian Borneo: A pocket guide. Kota Samarahan, Sarawak, Malaysia: Universiti Malaysia Sarawak. Arun, P.R. (2008). Seasonality of swallowtail butterfly community (Lepidoptera: Papilionidae) of Siruvani forest, Western Ghats, Southern India. Proceedings of the Seminar on Wonderful World of Insects, 3 December 2008, Mumbai, India. Pp. 66- 71. Bhusal, D.R. & Khanal, B. (2008). Seasonal and altitudinal diversity of butterflies in eastern Siwalik of Nepal. Journal of Natural History Museum, 23: 82-87. Brower, L.P. (2009). Monarchs. In Resh, V.H. & Cardé, R.T. (Eds.), Encyclopedia of insects. Second Edition. California: Academic Press. Pp. 739-743. Christharina, G. & Abang, F. (2014). Overall diversity of fruit-feeding butterflies (Lepidoptera: Nymphalidae) along vertical gradient in a peat swamp forest, Kota Samarahan, Sarawak. Borneo Journal of Resource Science and Technology, 4(2): 50-61. DeVries, P.J. & Walla, T.R. (2001). Species diversity and community structure in neotropical fruitfeeding butterflies. Biological Journal of the Linnean Society, 74(1): 1-15. Fermon, H., Waltert, M., Vane-Wright, R.I. & Mühlenberg, M. (2005). Forest use and vertical stratification in fruit-feeding butterflies of Sulawesi, Indonesia: impacts for conservation. Biodiversity and Conservation, 14(2): 333-350. Fermon, H., Waltert, M., Larsen, T.B., Dall’Asta, U. & Mühlenberg, M. (2000). Effects of forest management on diversity and abundance of fruitfeeding nymphalid butterflies in south-eastern Côte d’Ivoire. Journal of Insect Conservation, 4(3): 173- 189. Freitas, A.V. L., Iserhard, C.A., Santos, J.P., Carreira, J.Y.O., Ribeiro, D.B., Melo, D.H.A., Rosa, A.H.B., Marini-Filho, O.J., Accacio, G.M. & Uehara-Prado, M. (2014). Studies with butterfly bait traps: an overview. Revista Colombiana de Entomología, 40(2): 203-212. Ghazanfar, M., Malik, M.F., Hussain, M., Iqbal, R. & Younas, M. (2016). Butterflies and their contribution in ecosystem: a review. Journal of Entomology and Zoology Studies, 4(2): 115-118. Hamer, K.C., Hills, J.K., Benedick, S., Mustaffa, N., Sherratt, T.N., Maryati, M. & Chey, V.K. (2003). Ecology of butterflies in natural and selectively logged forests of northern Borneo: the importance of habitat heterogeneity. Journal of Applied Ecology, 40(1): 150-162. Hammer, Ø., Harper, D.A.T. & Ryan, P.D. (2001). PAST: Paleontological Statistics software package for education and data analysis (Version 3.17). Palaentologia Electronica, 4(1): 1-9. Kumar, P., Ramarajan, S. & Murugesan, A.G. (2017). Diversity of butterflies in relation to climatic factors in environmental centre campus of Manonmaniam Sundaranar University, Tamil Nadu India. Journal of Entomology and Zoology Studies, 5(2): 1125-1134. Menéndez, R., González-Megías, A., Collingham, Y., Fox, R., Roy, D.B., Ohlemüller, R. & Thomas, C.D. (2007). Direct and indirect effects of climate and habitat factors on butterfly diversity. Ecology, 88(3): 605-611. Nobre, C.E.B., Iannuzzi, L. & Schlindwein, C. (2012). Seasonality of fruit-feeding butterflies (Lepidoptera, Nymphalidae) in a Brazillian semiarid area. International Scholarly Research Network, 2012: 1- 8. Otsuka, K. (1988). Butterflies of Borneo. Vol. 1. Tokyo: Tobishima Corporation. Pandit, S., Chwdhury, A., Mondal, S., Sinha, A.K. & Bhakat, S. (2018). Diversity and abundance of butterfly (Insecta: Lepidoptera) fauna in Rampurhat, West Bengal, India. International Journal of Recent Scientific Research, 9(4): 26053-26058. Pang, S.T., Sayok, A.K. & Jenang, M. (2016). Diversity of butterflies in Gunung Serambu, Sarawak, Malaysia. In Das, I. & Tuen, A.A. (Eds.), Naturalists, explorers and field scientists in SouthEast Asia and Australasia. Topics in biodiversity and conservation, Vol. 15. Springer, Cham. Pp. 197-213. Patel, A.P., & Pandya, N.R. (2014). Assessment of temporal & spatial variation in species richness and diversity of butterfly host plants. International Journal of Plant, Animal and Environmental Sciences, 4(3): 235-245. Pawar, P.A. & Deshpande, V.Y. (2016). Butterfly diversity of Satara Tehsil, District Satara Maharashtra. IRA-International Journal of Applied Sciences, 4(1): 133-144. Pereira, G.C.N., Coelho, M.S., Beirão, M., Braga, R.F. & Fernandes, G.W. (2017). Diversity of fruitfeeding butterflies in a mountaintop archipelago of rainforest. PLoS ONE, 12(6): e0180007. Rajagopal, T., Sekar, M., Manimozhi, A., Baskar, N. & Archunan, G. (2011). Diversity and community structure of butterfly of Arignar Anna Zoological Park, Chennai, Tamil Nadu. Journal of Environmental Biology, 32(2): 201-207. Schulze, C.H., Linsenmair, K.E. & Fiedler, K. (2001). Understorey versus canopy: patterns of vertical stratification and diversity among Lepidoptera in a Bornean rain forest. Plant Ecology, 153: 133-152. Subba Reddi, C., Atluri, J.B., Venkata Ramana, S.P. & Meera Bai, G. (2003). The butterfly fauna of Visakhapatnam in South India. Tigerpaper, 30(1): 29-32. Uehara-Prado, M., Brown, Jr., K.S. & Freitas, A.V.L. (2007). Species richness, composition and abundance of fruit-feeding butterflies in the Brazilian Atlantic Forest: comparison between a fragmented and a continuous landscape. Global Ecology and Biogeography, 16(1): 43-54. Widhiono, I. (2015). Diversity of butterflies in four different forest types in Mount Slamet, Central Java, Indonesia. Biodiversitas, 16(2): 196-204. Wolfe, J.M., Oliver, J.C. & Monteiro, A. (2011). Evolutionary reduction of the first thoracic limb in butterflies. Journal of Insect Science, 11(66): 1-9.
(1)
Abang, F. (2006). Butterflies of Malaysian Borneo: A pocket guide. Kota Samarahan: Universiti Malaysia Sarawak. Axmacher, J. C., Brehm, G., Hemp, A., Tünte, H., Lyaruu, H. V., Müller-Hohenstein, K., Fiedler, K. (2009). Determinants of diversity in Afrotropical Herbivorous Insects (Lepidoptera: Geometridae): Plant diversity, vegetation structure or abiotic factors? Journal of Biogeography, 36(2), 337-349. Brown Jr, K. S. (1991). Conservation of neotropical environments: Insects as indicators. The Conservation of Insects and Their Habitats, 349, 404. Brehm, G., Colwell, R. K., Kluge, J. (2007). The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Global Ecology and Biogeography, 16(2), 205-219. Catherine, L. S. H. (2007). Faunistic Composition of Butterflies (Lepidoptera: Rhopalocera) on Pulau Satang Besar and Kubah National Park, Sarawak. (Unpublished bachelor’s dissertation). Universiti Malaysia Sarawak, Malaysia. Chen, X., Feng, Y., Chen, Z. (2009). Common edible insects and their utilization in China. Entomological Research, 39(5), 299-303 Christianus, I. (2012). Diversity, Stratification and Temporal Dynamics of Geometrid Moths (Lepidoptera: Geometridae) in Kubah Lowland Mixed Dipterocarp Forest, Sarawak (Unpublished master’s dissertation). Universiti Malaysia Sarawak, Malaysia. Christharina, S. G., Abang, F. (2014a). Taxonomic diversity of the fruit-feeding butterflies (Lepidoptera: Nymphalidae) in Kubah National Park, Sarawak, Southwest Borneo. Tropical Natural History, 14(1), 7-20. Christharina, S. G., Abang, F. (2014b). Composition of fruit-feeding butterflies (Lepidoptera: Nymphalidae) in a Peat Swamp Forest, Kota Samarahan, Sarawak. Serangga, 19(1), 1-17. DeVries, P. J., Walla, T. R. (2001). Species diversity and community structure in neotropical fruit feeding butterflies. Biological Journal of the Linnean Society, 74,1-15. Hammer, O., Harper, D. A. T., Ryan, P. D. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Paleontologia Electronica, 4(1), 1-9. Hamer, K. C., Hills, J. K., Benedick, S., Mustaffa, N., Sherratt, T. N., Maryati, M., Chey, V. K. (2003). Ecology of butterflies in natural and selectively logged forests of Northern Borneo: The importance of habitat heterogeneity. Journal of Applied Ecology, 40, 150-162. Hazebroek, H. P., Abang Kashim, A. M. (2000). Sarawak’s forest: Forest types, biological diversity and life history. In K. M. Wong & R. C. K. Chung (Eds.), National Parks of Sarawak (pp. 35-71). Kota Kinabalu: Natural History Publications. Hazebroek, H. P., Abang Morshidi, A. K. (2000). National Parks of Sarawak. Kota Kinabalu, Sabah: Natural History Publication (Borneo). Hill, J. K., Hamer, K. C., Tangah, J., Dawood, M. (2001). Ecology of tropical butterflies in Rainforest gaps. Oecologia, 128, 294-302. Hodkinson, I. D. (2005). Terrestrial insects along elevation gradients: Species and community responses to altitude. Biological Reviews, 80(3), 489-513. Kalesh, S., Prakash, S. K. (2009). Early stages of the Travancore Evening Brown Parantirrhoea marshalli Wood-Mason (Satyrinae, Nymphalidae, Lepidoptera), an endemic butterfly from the Southern Western Ghats, India. Journal of the Bombay Natural History Society, 106(2), 142. Kier, G., Kreft, H., Tien, M. L., Jetz, W., Ibisch, P. L., Nowicki, C., Mutke, J., Barthlott, W. (2009). A global assessment of endemism and species richeness across island and mainland regions. Proceedings of the National Academy of Sciences of the United States of America, 106(23) 9322-9327. Koh, L. P. (2007). Impacts of land use change on South-East Asian Forest Butterflies: A review. Journal of Applied Ecology, 44(4), 703-713. Kremen, C. (1992). Assessing the indicator properties of species assemblages for natural areas monitoring. Ecological Applications, 2(2), 203-217. Kremen, C., Colwell, R. K., Erwin, T. L., Murphy, D. D., Noss, R. A., Sanjayan, M. A. (1993). Terrestrial Arthropod Assemblages: Their use in conservation planning. Conservation Biology, 7(4), 796-808. Kunte, K. (2012). Butterflies of Peninsular India. Hyderabad, India: Universities Press. Larsen, T. B. (2005). Butterflies of West Africa: Text volume. Vester Skerninge: Apollo Books. Lee, B. (1987). Report on Vegetation Survey and Botanical Collection at Proposed Matang N. P. Internal report to Director of Forest, Sarawak Forest Department, Kuching McGeoch, M. A. (1998). The selection, testing and application of terrestrial insects as bioindicators. Biological Reviews, 73(2), 181-201. Molleman, F., Kop, A., Brakefield, P. M., Zwaan, B. J. (2006). Vertical and temporal patterns of biodiversity of fruit-feeding butterflies in a Tropical Forest in Uganda. Biodiversity & Conservation, 15(1), 107-121. New, T. R. (1997). Are Lepidoptera an effective ‘Umbrella Group’ for biodiversity conservation? Journal of Insect Conservation, 1(1), 5-12. New, T. R., Pyle, R. M., Thomas, J. A., Thomas, C. D., Hammond, P. C. (1995). Butterfly conservation management. Annual Review of Entomology, 40(1), 57-83. Nidup, T., Dorji, T., Tshering, U. (2014). Taxon diversity of butterflies in different habitat types in Royal Manas National Park. Journal of Entomology and Zoology Studies, 2(6), 292-298. Otsuka, K. (2001). A field guide to the butterflies of Borneo & South East Asia. Sabah: Hornbill Books. Pearce, K. G. (1994). The palms of Kubah National Park, Kuching Division, Sarawak. Malayan Nature Journal, 48(1), 1-36. Richards, O. W., Davies, R. G. (1997). Imms’ General Textbook of Entomology, volume i: Structure, physiology and development. London: Chapman and Hall. Rosenzweig, M. L. (1968). Net primary productivity of terrestrial communities: Prediction from climatological data. The American Naturalist, 102(923), 67-74. Schulze, C. H., Linsenmair, K. E., Fiedler, K. (2001). Understorey versus CanopyPatterns of vertical stratification and diversity among Lepidoptera in Bornean Rainforest. Plant Ecology, 153, 133-152. Sparrow, H. R., Sisk, T. D., Ehrlich, P. R., Murphy, D. D. (1994). Techniques and guidelines for monitoring neotropical butterflies. Conservation Biology, 8, 800- 809. Stork, N. E., Didham, R. K., Adis, J. (2003). Canopy Arthropod Studies for the future. In N. E. Stork, Adis & R. K. Didham (Eds.), Canopy Arthropods (pp. 551-561) London: Chapman and Hall. Sutton, S. L., Collins, N. M. (1991). Insects and tropical forest conservation. The Conservation of insects and their habitats (405-424). Cambridge, England: World Conservation Monitoring Centre. Wilson, R. A., Barker, M. J., Brigandt, I. (2007). When traditional essentialism fails: Biological natural kinds. Philosophical Topics, 35(1/2), 189-215.
(1)
Abang, F. and Karim, C. (1999). Moth diversity in a secondary peat swamp forest in Kota Samarahan, Sarawak, Borneo. In Proceeding of the Malaysian Science and Technology Congress, 1999: Environmental and Renewable Resource, pp. 282-289. Abang, F. and Karim, C. A. (2002). The larger moth (Lepidoptera:Heterocera) of the Crocker, Range National Park, Sabah: A preliminary checklist. ASEAN Review and Biodiversity and Environmental Conservation (ARBEC). Retrieved September 28, 2015, from http://www.arbec.com.my/pdf/art18julysep02.pdf Abang, F. (2006). Butterflies of Malaysian Borneo – A pocket guide. Sarawak, Malaysia: Universiti Malaysia Sarawak. Ashton, L. A.; Nakamura, A.; Basset, Y.; Burwell, C. J.; Cao, M.; Eastwood, R.; … Kitching, R. L. (2016). Vertical stratification of moths across elevation and altitude. Journal of Biogeography, 43, 59-69. Aslam, M. (2013). Checklist of moth fauna of Peshawar, Pakistan. Arthropods, 2(4), 237-241. Barlow, H. S. (1982). An Introduction to the Moths of South East Asia. Kuala Lumpur: Malayan Nature Society, pp. 305. Butterfly Conservation. (2012). Moths recorders handbook. Retrieved October 4, 2015, from http://www.mothscount.org/uploads/Moth%20Recorders%20Handbook%202012(1).pdf Carter, D. (2000). Butterlies and moths. London, UK: Dorling Kindersley Limited. Cerny, K. and Pinratana, A. (2009). Moths of Thailand volume 6: Arctiidae. Thailand: Brothers of St. Gabriel. Chey, V. K. (2007). Research on the diversity of moths and butterflies in Malaysia and their use as biodiversity indicators. In L. S. L. Chua,; L. G. Kirton,; and L. G. Saw, (Eds.), Proceedings of the Seminar and Workshop Status of Biological Diversity in Malaysia and Threat Assessment of Plant Species in Malaysia, 28-30 June 2005 (pp. 129-136). Kuala Lumpur, Malaysia: Perpustakaan Negara Malaysia. Chey, V. K. (2010). Moth diversity in Tropical Rain Forest of Maliau Basin, Malaysia, with special reference to Ginseng Camp. Journal of Tropical Biology and Conservation, 6, 61-77. Collwell, R. K. (2013). EstimateS version 9.1.0. User’s Guide. University of Connecticut. Storrs. Common, I. F. B. (1990). Moths of Australia. Victoria: Melbourne University Press, pp. 535. Corbet, A. S. and Pendlebury, H. (1992). The butterflies of the Malay Peninsula. Kuala Lumpur: United Selangor Press Sdn. Bhd. Fauzi, N.; Hambali, K.; Ean, F. K.; Subki, N. S.; Nawawi, S. A. and Jamaludin, M. H. (2013). A preliminary checklist of macromoths (Lepidoptera: Heterocera) of Jeli, Kelantan, Malaysia. Malayan Nature Journal, 65(4), 280-287. Forestry Department/DANIDA. (2005). Pelan pengurusan Taman Negeri Perlis 2004-2008 (Laporan Akhir). Kangar: Jabatan Perhutanan Negeri Perlis. Hammer, Ø. (2016). PAST: PAleontological STatistics version 3.11: Referance manual. Retrieved March, 2016, from http://folk.uio.no/ohammer/past/past3manual.pdf Hill, D.S. and Abang, F. (2005). Order (27) Lepidoptera (Moths and Butterflies ) (97: 120000+), The Insects of Borneo (including South-east and East Asia) (pp. 266-332). Kota Samarahan, Malaysia: Universiti Malaysia Sarawak. Holloway, J.D. (1983). The moths of Borneo: Part 4: Family Notodontidae. Kuala Lumpur, Malaysia: Southdene Sdn.Bhd. Holloway, J.D. (1985). The moths of Borneo: Part 14: Family Noctuidae: Subfamilies Euteliinae, Stictopterinae, Plusiinae, Pantheinae. Kuala Lumpur, Malaysia: Southdene Sdn.Bhd. Holloway, J.D. (1986). The moths of Borneo: Part 1: Families Cossidae, Metarbelidae, Ratardidae, Dudgeoneidae, Epipyropidae, and Limacodidae. Kuala Lumpur, Malaysia: Southdene Sdn.Bhd. Holloway, J.D. (1987). The moths of Borneo: Part 3: Families Lasiocampidae, Eupterotidae, Bombycidae, Brahmaeidae, Saturniidae and Sphingidae. Kuala Lumpur, Malaysia: Southdene Sdn.Bhd. Holloway, J.D. (1988). The moths of Borneo: Part 6: Family Arctiidae, Subfamilies Syntominae, Euchromiinae, Arctiinae, Noctuidae. Kuala Lumpur, Malaysia: Southdene Sdn.Bhd. Holloway, J.D. (1989). The moths of Borneo: Part 12: Family Noctuidae, Trifine Subfamilies: Noctuinae, Heliothinae, Hadeninae, Acronictinae, Amphypyrinae, Agaristinae. Kuala Lumpur, Malaysia: Southdene Sdn.Bhd. Holloway, J. D. (1993). The moths of Borneo part 11: Family Geometridae, subfamily Ennominae. Kuala Lumpur, Malaysia: Southdene Sdn. Bhd. Holloway, J.D. (1996). The moths of Borneo: Part 9: Family Geometridae, Subfamilies Oenochrominae, Desmobahrinae and Geometrinae. Kuala Lumpur, Malaysia: Southdene Sdn.Bhd. Holloway, J.D. (1997). The moths of Borneo: Part 10: Family Geometridae, Subfamilies Sterrhinae and Larentiinae. Kuala Lumpur, KL: Southdene Sdn.Bhd. Holloway, J.D. (1998). The moths of Borneo: Part 8: Families Castniidae, Callidulidae, Drepanidae and Uraniidae. Kuala Lumpur, KL: Southdene Sdn.Bhd. Holloway, J.D. (1999). The moths of Borneo: Part 18: Family Nolidae. Kuala Lumpur, Malaysia: Southdene Sdn.Bhd. Holloway, J.D. (2001). The moths of Borneo: Part 7: Family Arctiidae, Subfamily Lithosiinae. Kuala Lumpur, Malaysia: Southdene Sdn.Bhd. Holloway, J.D. (2003). The moths of Borneo: Part 18: Family Nolidae. Kuala Lumpur, Malaysia: Southdene Sdn.Bhd. Holloway, J.D. (2005). The moths of Borneo: Part 15 & 16: Family Noctuidae, Subfamily Catocalinae. Kuala Lumpur, Malaysia: Southdene Sdn.Bhd. Holloway, J.D. (2008). The moths of Borneo: Part 17: Family Noctuidae, Subfamilies Rivulinae, Phytometrinae, Herminiinae, Hypeninae and Hypenodinae. Kuala Lumpur, Malaysia: Southdene Sdn.Bhd. Holloway, J.D. (2009). The moths of Borneo: Family Noctuidae, Subfamilies Pantheinae (part), Bagisarinae, Acontiinae, Aediinae, Eustroriinae, Bryophilinae, Araeopteroninae, Aventiinae, Eublemminae and further miscellaneous genera. Kuala Lumpur, Malaysia: Southdene Sdn.Bhd. Holloway, J.D. (2011). The moths of Borneo 2: Family Phaudidae, Himantopteridae & Zygaenidae. Kuala Lumpur, Malaysia: Southdene Sdn.Bhd. Idris, M. I. (2011). Diversity of moths (Lepidoptera: Heterocera) in selected localities on selected offshore islands and forest island habitats in Malaysia. (Unpublished master’s thesis). Universiti Malaysia Sarawak, Sarawak, Malaysia. Idris, M. I. and Abang, F. (2011a). First record of Cyclosiella spiralis (Arctiidae: Lithosiinae) from Peninsular Malaysia. Malayan Nature Journal, 63(3), 591-193. Idris, M. I. and Abang, F. (2011b). New distributional record of Hypochrosis crytopyrrhata Walker, 1862 (Geometridae: Ennominae) from Peninsular Malaysia. Tropical Natural History, 11(1), 71-73. Intachat, I. and Holloway, J. D. (2000). Is there stratification in diversity or preferred flight height of geometroid moths in Malaysian lowland tropical forest?. Biodiversity and Conservation, 9, 1417-1439. Jaroensutasinee, M.; Pheera, W.; Ninlaeard, R.; Jaroensutasinee, K. and Choldumrongkul, S. (2011). Weather affecting macro-moth diversity at Khao Nan National Park, Thailand. Walailak Journal, 8(1), 21-31. Kitching, I. J. (1984). An historical review of the higher classification of the Noctuidae (Lepidoptera). Bulletin of the British Museum (Natural History), 49, 153-234. McGavin, G. C. (2007). Expedition field techniques insects and other terrestrial arthropods. London, UK: Geography Outdoors Miller, J. F. and Hammond, P. C. (2003). Lepidoptera of the Pacific Northwest: Caterpillars and adults. U.S: Forest Health Technology Enterprise Team (FHTET). Miller, J. F. and Hammond, P. C. (2007). Butterflies and moths of Pacific Northwest Forests and Woodlands: rare, endangered, and management-sensitive species. U.S: Forest Health Technology Enterprise Team (FHTET). Pretorius, E. (2011). Determining the diversity of nocturnal flying insects of the Grassland in the Krugersdorp Nature Reserve. Retrieved August 10, from http://hdl.handle.net/10210/4685 Pohl, G. R.; Anweiler, G. G.; Schmidt, B. C. and Kondla, N. G. (2010). An annotated list of the Lepidoptera of Alberta, Canada. ZooKeys, 38, 1-549. QGIS Project. (2015). QGIS: Quantum Geographic Information System version 2.6: QGIS User Guide. Retrieved April 30, 2016, from docs.qgis.org/2.6/pdf/en/QGIS-2.6-UserGuide-en.pdf Schulze, C. and Fiedler, K. (1997). Patterns of diversity and vertical stratification in hawkmoths of a Bornean rain forest. Entomologie, 11, 1-6. Schulze, C. H.; Linsenmair, K. E. and Fiedler, K. (2001). Understorey versus canopy: patterns of vertical stratification and diversity among Lepidoptera in a Bornean rain forest. Plant Ecology, 153, 133-152. Stojanović, D. V. and Ćurčić, S. B. (2011). The diversity of Noctuid moths (Lepidoptera: Noctuidae) in Serbia. Acta Zoologica Bulgarica, 63(1), 47-60. Sulaiman, N.; Bakri, M. M. A.; Kahar, K. M.; Yaacob, M. Z. and Boler, I. (2014). Moth fauna (Lepidoptera: Heterocera) of Gunung Tebu Forest Reserve, Terengganu, Malaysia. Malayan Nature Journal, 66(4), 376-389. The Plant List. (2010).Version 1. Retrieved April 29, 2016, from http://www.theplantlist.org/ Truxa, C. (2012). Community ecology of moths in floodplain forests of Eastern Austria. Retrieved October 4, 2015, from https://www.wien.gv.at/umweltschutz/nachhaltigkeit/pdf/truxa-2013.pdf World Wide Fund for Nature, Malaysia WWFM. (1998). Biodiversity conservation gap analysis activity: Perlis and Kedah. Report of Project MYS 403/98. Malaysia. Yela, J. L. and Holyoak, M. (1997). Effects of moonlight and meteorological factors on light and bait trap catches of Noctuid moths (Lepidoptera: Noctuidae). Entomological Society of America, 26(6), 1283-1290.
(1)
Abang Yusuf Puteh. (2005). A Profile of Sarawak Malays. Tanjung Malim: Universiti Pendidikan Sultan Idris. Affidah Morni, Aiza Johari, Johny Ahmad, & Kamaruzaman Jusoff. (2009). The linguistic taboo between Malays and Ibans of Sarawak, Malaysia. Canadian Social Science, 5(3), 141-158. Allan, K., & Burridge, K. (1991). Euphemism & dysphemism: Language used as shield and weapon. Oxford: Oxford University Press. Asmah Haji Omar. (2008). Ensiklopedia Bahasa Melayu. Kuala Lumpur, Malaysia: Dewan Bahasa dan Pustaka. Hamidah Abdul Wahab, Imran Ho Abdullah, Mohammed Azlan Mis, & Khazriyati Salehuddin. (2016). Analisis eufemisme kematian masyarakat Melayu Sarawak dari perspektif Semantik Kognitif. GEMA Online® Journal of Language Studies, 16(2), 53-71. Hamidah Abdul Wahab, Siti Marina Kamil & Remmy Gedat. (2020). Bentuk dan penggunaan bahasa halus dalam masyarakat Melayu dan Iban di Sarawak. Issues in Language Studies, 9(1), 15-27. Maimunah Daud. (1999). Glimpses of Malay Life in Sarawak. Kuching: Yayasan Budaya Melayu Sarawak. Mohammed Azlan Mis. (2010). Lingua franca suku kaum di Sarawak. Jurnal Bahasa, 20, 131-151. Mohammed Azlan Mis. (2012). Medium perantara pelbagai suku kaum di Sarawak: Kajian lingua franca. GEMA OnlineTM Journal of Language Studies, 12(3), 903-922. Nirwana Sudirman, Zulkifley Hamid, Masitah Mad Daud & Nik Zulaiha Zakaria.(2017). Metafora Konsepsi Dan Skema Imej Sebagai Cerminan Pemikiran Dan Kehidupan Orang Melayu. Journal of Social Science and Humanities, 12 (3), 1-17 Noriah Mohamed, & Jamilah Bebe Mohamad. (2016). Eufemisme leksikal dan metafora kematian dalam dialek Melayu Kedah. Journal of Education dan Social Sciences, 4, 331-342. Teo Kok Seong. (1995). Tahu Bahasa/ Tak Tahu Bahasa: Persoalan Bahasa, Budaya dan Komunikasi. Dlm Hanapi Dolllah & Lokman Mohd. Saidatul Nornis Haji Mahali. (2007). Unsur Bahasa dan Budaya. Kota Kinabalu: Penerbit Universiti Malaysia Sabah.
(1)
Abang Yusuf Puteh. (2005). A Profile of Sarawak Malays. Universiti Pendidikan Sultan Idris. Abang Yusuf Puteh. (2008). Adat perkahwinan orang Melayu Sarawak (2nd ed.). Dewan Bahasa dan Pustaka. Abdul Wahid, N. (2014). The Performance Development and Changes of the Structure in Traditional Gendang Melayu Sarawak. Jurnal Antarabangsa Dunia Melayu, 7(2), 137–151. Ali, J. K. (1994). Gendang Melayu Sarawak: Perbandingan Dulu dan Kini. Collins, J. T. (2002). The study of Sarawak Malay in context. In K. A. and B. R. Adelaar (Ed.), Between Worlds: Linguistic papers in memory of David John Prentice. (pp. 65–76). Pacific Linguistics, The Australian National University. https://doi.org/10.15144/PL-529.65 Daud, M. (1999). Glimpses of Malay Life in Sarawak. Yayasan Budaya Melayu Sarawak. Hassan, S. (2012). Gendang Melayu Sarawak: Satu kajian Atas Proses Pembuatan, Fungsi dan Konteks Bergendang. 18, 131–150. Hillier, B., & Hanson, J. (1984). The Social Logic of Space. https://doi.org/10.1017/cbo9780511597237 Kechot, A. S., Aman, R., & A.H. Shahidi. (2017). Komunikasi Sosial dalam Kalangan Etnik di Lembangan Sadong: Gendang Melayu Sarawak. Jurnal Komunikasi Malaysian Journal of Communication Jilid, 33(1), 158–172. Langlois, S. (2001). Traditions: Social. In International Encyclopedia of the Social & Behavioral Sciences (pp. 15829–15833). Elsevier. https://doi.org/10.1016/B0-08- 043076-7/02028-3 Lucas, R. (2020). Anthropology for Architects. Bloomsbury Publishing Plc. Ong Liang Bin, E. (1983). Malay Houses of Kuching, Sarawak. The Sarawak Museum Journal, 32(53), 97–132. Rapoport, A. (1969). House Form and Culture. Prentice-Hall. Rapoport, A. (2005). Culture, Architecture, and Design. In Architectural and planning research book series. Razali Haji Yu. (2010). Kajian Budaya Bergendang di Kalangan Orang Melayu Sarawak. Institut Perguruan Batu Lintang, Kuching. Ting, J. H. S., & Pertubuhan Akitek Malaysia. (2018). The History of Architecture in Sarawak before Malaysia. Sarawak: Pertubuhan Akitek Malaysia. Walker, J. H. (2010). Culture, power and the meaning of built forms in Sarawak, 1841-1868. Review of Indonesian and Malaysian Affairs, 44(2), 89–128. Waterson, R. (1990). The Living House: An Anthropology of Architecture in South-East Asia. Oxford University Press. Yusuf, A. (2015). Identiti dan Reka Bentuk Fizikal Rumah Tradisional Melayu Sarawak. Universiti Malaysia Sarawak. Yusuf, A., Abd Rahman, K. A. A., & Mohd Rafee, Y. (2012). Identity for Traditional Sarawak Malay House-Preliminary Research Findings in the Roof Design. 1st InternationalConference on Design and Innovation. Yusuf, A., Aidil, K., Rahman, A. A., & Mohammed, A. A. (2018). Analysis of Design Character and Typology of Sarawak Traditional Malay House. International Journal of Academic Research in Business and Social Sciences, 8(12), 2478–2497. https://doi.org/10.6007/IJARBSS/v8-i12/7347
(1)