Effects of Extracts and Fractions of *Gynura procumbens* on Rat Atrial Contraction

Omar Saad Saleh Abrika¹,*, Mun Fei Yam¹, Mohd. Zaini Asmawi¹, Amirin Sadikun¹, Hamady Dieng², Elssanousi Ali Hussain¹

¹School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
²School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia

Available online Feb 12, 2013

Abstract

There is currently a great deal of research interest in utilizing plant compounds against human diseases, including hypertension. The present study investigated the effects of different extracts and fractions from leaves of *Gynura procumbens* Merr. on rat atrial contraction in vitro. Isolated left and right atria, mounted in a 20-ml organ bath, were allowed to equilibrate for 15 min before the application of the extracts or fractions. The extracts (petroleum-ether extract (PE) and methanol extract (ME)) and the fractions (chloroform fraction (CHL), ethyl-acetate fraction (EA), n-butanol fraction (NB) and water fraction (WA) of the methanol extract) were tested at three concentrations (0.25, 0.5 and 1.0 mg/ml), with a β-adrenergic agonist (isoprenaline) as a control. All data on contraction responses were log-transformed and analyzed. When exposed to the different extracts, both atria tended to exhibit greater contractive responses with the NB whereas cardiac contractions had a tendency to be reduced with most other extracts. For a given extract, the contraction responses were particularly greater at 0.5 mg/ml for the right atrium and at 1 mg/ml for the left atrium. Further analysis focusing on the NB fraction revealed that positive inotropism was greater in left atria exposed to highly-concentrated F2 and F3 sub-fractions. Taken together, our results suggest that NB extracts and fractions from the *G. procumbens*-leaf methanol extract have positive inotropic activities and, hence, can be considered as an alternative/traditional medicine against increased blood pressure in humans or can be used in strategies aimed at finding antihypertensive biomolecules from an accessible source.

* Corresponding author. School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
E-mail: edri7@yahoo.com

Copyright © 2013, International Pharmacopuncture Institute
pISSN 2005-2901 eISSN 2093-8152
http://dx.doi.org/10.1016/j.jams.2013.01.020