A generic assay for whole-genome amplification and deep sequencing of enterovirus A71

Le Van Tan a,b,*, Nguyen Thi Kim Tuyen a, Tran Tan Thanh a, Tran Thuy Ngan a, Hoang Minh Tu Van a,b, Saraswathy Sabanathan a,c, Tran Thi My Van d, Le Thi My Thanh d, Lam Anh Nguyet a, Jemma L. Geoghegan e, Kien Chai Ong f, David Perera g, Vu Thi Ty Hang a, Nguyen Thi Han Ny i, Nguyen To Anh a, Do Quang Ha a, Phan Tu Qui a,d, Do Chau Viet b, Ha Manh Tuan b, Kum Thong Wong f, Edward C. Holmes e, Nguyen Van Vinh Chau d, Guy Thwaites a,c, H. Rogier van Doorn a,c

a Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
b Children’s Hospital 2, Ho Chi Minh City, Viet Nam
c Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
d Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
e Mahir Bashir Institute for Infectious Diseases & Biowisecy, Charles Perkins Centre, School of Biological Science and Sydney Medical School, The University of Sydney, Sydney, Australia
f University of Malaya, Kuala Lumpur, Malaysia
i Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Sarawak, Malaysia

A B S T R A C T

Enterovirus A71 (EV-A71) has emerged as the most important cause of large outbreaks of severe and sometimes fatal hand, foot and mouth disease (HFMD) across the Asia-Pacific region. EV-A71 outbreaks have been associated with (sub)genogroup switches, sometimes accompanied by recombination events. Understanding EV-A71 population dynamics is therefore essential for understanding this emerging infection, and may provide pivotal information for vaccine development. Despite the public health burden of EV-A71, relatively few EV-A71 complete-genome sequences are available for analysis and from limited geographical localities. The availability of an efficient procedure for whole-genome sequencing would stimulate effort to generate more viral sequence data. Herein, we report for the first time the development of a next-generation sequencing based protocol for whole-genome sequencing of EV-A71 directly from clinical specimens. We were able to sequence viruses of subgenogroup C4 and B5, while RNA from culture materials of diverse EV-A71 subgenogroups belonging to both genogroup B and C was successfully amplified. The nature of intra-host genetic diversity was explored in 22 clinical samples, revealing 107 positions carrying minor variants (ranging from 0 to 15 variants per sample). Our analysis of EV-A71 strains sampled in 2013 showed that they all belonged to subgenogroup B5, representing the first report of this subgenogroup in Vietnam. In conclusion, we have successfully developed a high-throughput next-generation sequencing-based assay for whole-genome sequencing of EV-A71 from clinical samples.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Enterovirus A71 (EV-A71) belongs to the Enterovirus A species of the family Picornaviridae, and is genetically divided into three genogroups (A, B, and C). The latter two are further divided into subgenogroups, denoted B0 – 5 and C1 – 5, respectively. Since 1997, EV-A71 has emerged as the most important cause of large outbreaks of severe and sometimes fatal hand, foot and mouth disease (HFMD) across the Asia-Pacific region (Solomon et al., 2010; Xing et al., 2014). In Vietnam, EV-A71-related HFMD was first described in 2003, and became a notifiable illness in 2008. Between 2011 and 2012, more than 200,000 hospitalized cases due to HFMD were reported in Vietnam, of which 207 died as a consequence of clinical complications (including cardio-pulmonary compromise with...