TRICKLING FILTER WITH HEXAGONAL CLOSE - PACKED MEDIA FOR THE TREATMENT OF DOMESTIC WASTEWATERS

JOAN DOLLY CHUNG ZIE WEI

A thesis submitted in fulfillment of the requirements for the award of the degree of Doctor of Philosophy

Faculty of Engineering
UNIVERSITI MALAYSIA SARAWAK
November 2013
<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTENTS</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xxi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>xxiii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>xxiv</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Problem Statement</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Specific Aim</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>Research Objectives</td>
<td>7</td>
</tr>
<tr>
<td>1.4</td>
<td>Methodology</td>
<td>8</td>
</tr>
<tr>
<td>1.5</td>
<td>Hypothesis</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>Introduction</td>
<td>16</td>
</tr>
<tr>
<td>2.1</td>
<td>Microbiology in Wastewater</td>
<td>16</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Brief Introduction to Cells</td>
<td>16</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Microbial Growth Kinetics</td>
<td>19</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Life Cycle of Bacteria</td>
<td>19</td>
</tr>
</tbody>
</table>
2.1.3.1 Batch Culture 20
2.1.3.2 Lag Phase 20
2.1.3.3 Exponential Growth Phase
(Log Phase) 21
2.1.3.4 Stationary Phase 22
2.1.3.5 Death Phase 23

2.1.4 Organisms in Wastewater 23

2.1.5 Microbiology in Wastewater Summary 25

2.2 Nitrification 26

2.2.1 Nitrogen Cycle 26
 2.2.1.1 Fixation 27
 2.2.1.2 Ammonification 28
 2.2.1.3 Assimilation 30
 2.2.1.4 Nitrification Process 31
 2.2.1.5 Denitrification 32

2.2.2 Nitrification Kinetics 33

2.2.3 Factors Affecting Nitrification 36
 2.2.3.1 Ammonia or Nitrite Concentration 36
 2.2.3.2 Oxygen Level 36
 2.2.3.3 Temperature 37
 2.2.3.4 pH 38
 2.2.3.5 BOD₅ / TKN Ratio 39
 2.2.3.6 Toxic Inhibition 39
2.2.4 Nitrification Summary 39

2.3 Trickling Filter 40
 2.3.1 Trickling Filter Background 40
 2.3.2 Biofilm 53
 2.3.3 Trickling Filter General Design and Construction Considerations 55
 2.3.4 Process Control Considerations 58
 2.3.5 Trickling Filter Summary 60

2.4 Conceptual Design of Trickling Filter Media 60
 2.4.1 Crystallography 60
 2.4.1.1 Crystal 62
 2.4.1.2 Hexagonal Close - Packed System 63

2.5 Composition in Wastewater 68
 2.5.1 Domestic Wastewater 68
 2.5.2 Strength of Wastewater 70
 2.5.3 Nitrogen in Wastewater 72
 2.5.4 Composition in Wastewater Summary 74

3 METHODOLOGY

3.0 Introduction 75

3.1 Trickling Filter Design and Calculations 76
 3.1.1 Trickling Filter Media Calculations 79
 3.1.2 Trickling Filter Calculations 80
3.1.3 Flowrate 82
3.1.4 Inflow Flowrate Calculations 83
3.1.5 Recirculation Flowrate Calculations 86
3.1.6 Recirculation Ratio 89
3.2 Experimental Set – up 90
3.3 Design of Experiment 96
 3.3.1 Design of Experiment for Intermittent Process TF System 96
 3.3.2 Design of Experiment for Continuous Process TF System 99
3.4 Experimental Start Up 100
 3.4.1 Experimental Start Up for Intermittent Process TF System 100
 3.4.2 Experimental Start Up for Continuous Process TF System 100
 3.4.3 Agar Preparation 101
3.5 Isolation of Ammonia – Oxidizing Bacteria 103
3.6 Preparation of Sample 104
3.7 Wastewater Parameters 104

4 RESULTS AND DISCUSSION

4.0 Introduction 105
4.1 Results 105
 4.1.1 Results for Post Experimental Start – ups 105
4.1.1.1 Nitrifying Bacteria Isolation Test 105
4.1.1.2 Varying Loading Rates and BOD removal 107
4.1.2 Experimental Results for Intermittent
 Process TF System 107
4.1.3 Experimental Results for Continuous
 Process TF System 128
4.2 Flux of Substrate into the Biofilm 157
4.3 Flow Pattern of the Wastewater onto the Surface
 Media and Biofilm Development 164
4.4 Summary 173

5 CONCLUSION
5.0 Introduction 174
5.1 Accomplishment 174
5.2 Future Recommendations for This Study 180

REFERENCES 182

APPENDICES
 Appendix – A 188
 Appendix – B 196
 Appendix – B1 196
 Appendix – B2 207
 Appendix – B3 217
Appendix – C 222
Appendix – C1 222
Appendix – D 223
List of Tables

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Public wastewater treatment plants in Malaysia (2005)</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Previous studies pertaining to TF system and nitrogenous compounds</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Differences between prokaryotic and eukaryotic cells</td>
<td>18</td>
</tr>
<tr>
<td>2.2</td>
<td>General description of wastewater organisms</td>
<td>23</td>
</tr>
<tr>
<td>2.3</td>
<td>K_a values at different temperature</td>
<td>30</td>
</tr>
<tr>
<td>2.4</td>
<td>Typical design criteria for trickling filters</td>
<td>44</td>
</tr>
<tr>
<td>2.5</td>
<td>Typical features in trickling filter system</td>
<td>44</td>
</tr>
<tr>
<td>2.6</td>
<td>Properties of trickling filter media</td>
<td>45</td>
</tr>
</tbody>
</table>
2.7 Components in feces and urine 69
2.8 Analysis of municipal wastewater 70
2.9 Estimated composition of nitrogen in wastewater 72
2.10 Fate of nitrogen in conventional municipal wastewater treatment 73
3.1 Checklist for design features in TF system 78
3.2 Detailed design specifications of TF 78
3.3 Media calculations 79
3.4 HCP medium material 80
3.5 TF calculations 81
3.6 Calculation of TF media specific surface area 81
3.7 Specific surface area of TF media 82
3.8 Varying flowrate and loading rate for TF system 82
3.9 Raw data collection of inflow flowrate

3.10 Calculations of inflow flowrate

3.11 Calculations of mean inflow flowrate

3.12 Raw data collection of recirculation flowrate

3.13 Calculations of recirculation flowrate

3.14 Calculations of mean recirculation flowrate

3.15 Experimental run for the TF system

3.16 Experimental run for the TF system

3.17 Composition for Drews’ isolation of ammonia oxidizing bacteria solution

4.1 Results of bacteria isolation

4.2 Varying loading rates and BOD removal
4.3 Intermittent process TF system: suspended solids final effluent discharge

4.4 Intermittent process TF system: biological oxygen demand final effluent discharge

4.5 Intermittent process TF system: chemical oxygen demand final effluent discharge

4.6 Intermittent process TF system: ammonia – nitrogen final effluent discharge

4.7 Intermittent process TF system: nitrate – nitrogen final effluent discharge

4.8 Intermittent process TF system: calculation of percentage removal for pollutants

4.9 Continuous process TF system: biological oxygen demand final effluent discharge

4.10 Continuous process TF system: chemical oxygen demand final effluent discharge
4.11 Continuous process TF system: ammonia – nitrogen final effluent discharge 144

4.12 Continuous process TF system: nitrate – nitrogen final effluent discharge 147

4.13 Continuous process TF system: phosphorus final effluent discharge 150

4.14 Continuous process TF system: calculation of percentage removal for pollutants 154

4.15 Percentage removal of various trickling filters 156

4.16 Percentage removal of HCP media TF system 156

4.17 Intermittent process TF system: calculation for flux of substrate into the biofilm 158

4.18 Continuous process TF system: calculation for flux of substrate into the biofilm 159

4.19 Tabulated parameters for the calculation of Reynolds number 166
4.20 Hydraulic loading for different types of packing for TF system 171

4.21 Hydraulic loading for perforated spherical hollow HCP media in TF system 172

5.1 Rejection of pollutants in domestic wastewater using TF system employing both intermittent and continuous processes 175

5.2 Removal of pollutants by TF system used in this research 176

5.3 Feed and final effluent concentration of pollutants by TF system used in this research 177

5.4 Environmental Quality Act 1974 for sewage treatment plant effluent discharge 177

5.5 Acceptable conditions of sewage discharge of standards A and B in accordance to Environmental Quality (Sewage) Regulations 2009 178

5.6 Percentage reduction of pollutants by various trickling filters 179
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>World population</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Wastewater treatment system</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>TF system with HCP arrangement</td>
<td>9</td>
</tr>
<tr>
<td>1.4</td>
<td>Conventional TF system</td>
<td>10</td>
</tr>
<tr>
<td>1.5</td>
<td>Fluid flow patterns in a conventional TF system utilizing gravel</td>
<td>11</td>
</tr>
<tr>
<td>1.6</td>
<td>Fluid flow behavior on the surface of gravels</td>
<td>12</td>
</tr>
<tr>
<td>1.7</td>
<td>Hypothetical flow patterns for HCP arrangement media</td>
<td>13</td>
</tr>
<tr>
<td>1.8</td>
<td>Perforated spherical hollow plastic media in HCP arrangement</td>
<td>14</td>
</tr>
</tbody>
</table>
2.1 Microbial growth curve
2.2 The nitrogen cycle
2.3 Trickling filter system
2.4 Trickling filter
2.5 Schematic diagram of attached growth process
2.6 Typical hexagonal axes
2.7 Hexagonal axes on the HCP medium
2.8 Side faces of a hexagonal crystal
2.9 Side faces of HCP medium
2.10 Schematic diagram of HCP medium
3.1 Flow chart of general methodology
3.2 Proposed TF with trickling medium consisting of 40 mm diameter perforated spherical hollow plastic balls
3.3 Bar graphs depicting flowrate of wastewater feed into TF system at a specific range of time, with 3 runs for a particular duration 84

3.4 Bar graphs depicting recirculation flowrate of wastewater into TF system at a specific range of time, with 3 runs for a particular duration 87

3.5: Schematic diagram of experimental set up 90

3.6: TF with 40 mm spherical hollow perforated media in HCP arrangement 92

3.7: Actual in – situ TF system 93

3.8 Various views of 40 mm perforated spherical hollow celluloid medium in HCP arrangement 94

3.9 Various angle views of actual perforated spherical hollow celluloid medium in HCP arrangement 95

3.10 Dissolved Oxygen (DO) in preliminary experimental runs 98

3.11 Preparation of yeast agar inoculation 102
3.12 Prepared yeast agar broth spiked with wastewater 103

4.1 Colour change of ammonia – oxidizing bacteria solution 106

4.2 Dissolved oxygen for the experimental run in intermittent process TF system 108

4.3 pH for the experimental run in intermittent process TF system 110

4.4 Turbidity for the experimental run in intermittent process TF system 111

4.5 Suspended solids for the experimental run intermittent process TF system 113

4.6 Biological oxygen demand for the experimental run in intermittent process TF system 115

4.7 Chemical oxygen demand for the experimental run in intermittent process TF system 117

4.8 Ammonia – nitrogen for the experimental run in intermittent process TF system 119
4.9 Nitrate – nitrogen for the experimental run in intermittent process TF system

4.10 Final results for parameters examined in intermittent process TF system

4.11 Percentage removal for parameters examined in intermittent process TF system

4.12 Dissolved oxygen for the experimental run in continuous process TF system

4.13 pH for the experimental run in continuous process TF system

4.14 Biological oxygen demand for the experimental run in continuous process TF system

4.15 Chemical oxygen demand for the experimental run in continuous process TF system

4.16 Total suspended solids in logarithm scale for the experimental run in continuous process TF system
4.17 Total suspended solids in bar graph for the experimental run in continuous process TF system

4.18 Ammonia – nitrogen in logarithm scale for the experimental run in continuous process TF system

4.19 Ammonia – nitrogen in bar graph for the experimental run in continuous process TF system

4.20 Nitrate – nitrogen for the experimental run in continuous process TF system

4.21 Phosphorus for the experimental run in continuous process TF system

4.22 Final results (I) for parameters examined in continuous process TF system

4.23 Final results (II) for parameters examined in continuous process TF system

4.24 Percentage removal for parameters examined in continuous process TF system
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.25</td>
<td>Flux of substrate into the biofilm for intermittent process TF system</td>
<td>160</td>
</tr>
<tr>
<td>4.26</td>
<td>Flux of substrate into the biofilm for continuous process TF system</td>
<td>161</td>
</tr>
<tr>
<td>4.27</td>
<td>Flux of substrate profile in a biofilm</td>
<td>163</td>
</tr>
<tr>
<td>4.28</td>
<td>Flow profile for laminar flow past a spherical surface</td>
<td>167</td>
</tr>
<tr>
<td>4.29</td>
<td>Illustration of flow profile for laminar flow past a HCP medium</td>
<td>168</td>
</tr>
<tr>
<td>4.30</td>
<td>Curvilinear flow of a fluid particle</td>
<td>169</td>
</tr>
<tr>
<td>4.31</td>
<td>In – situ HCP medium</td>
<td>170</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>Specific growth rate (hr$^{-1}$)</td>
</tr>
<tr>
<td>X_t</td>
<td>Cell biomass after time t</td>
</tr>
<tr>
<td>X_0</td>
<td>Initial number of biomass cells</td>
</tr>
<tr>
<td>K_a</td>
<td>Ionization constant</td>
</tr>
<tr>
<td>μ_{max}</td>
<td>Maximum specific growth rate (days$^{-1}$)</td>
</tr>
<tr>
<td>$[\text{NH}_4^+]$</td>
<td>Ammonium concentration (mg/L)</td>
</tr>
<tr>
<td>K_s</td>
<td>Half saturation constant (ammonium substrate) (mg/L)</td>
</tr>
<tr>
<td>Y</td>
<td>Yield coefficient</td>
</tr>
<tr>
<td>$[\text{DO}]$</td>
<td>Dissolved oxygen concentration (mg/L)</td>
</tr>
<tr>
<td>K_o</td>
<td>Half – saturation constant (oxygen) (mg/L)</td>
</tr>
<tr>
<td>μ_n</td>
<td>μ of nitrifiers</td>
</tr>
<tr>
<td>T</td>
<td>Temperature (°C)</td>
</tr>
<tr>
<td>pH_{opt}</td>
<td>Optimum pH = 7.2</td>
</tr>
<tr>
<td>S_e</td>
<td>Effluent BOD (mg/L)</td>
</tr>
<tr>
<td>S_i</td>
<td>Influent BOD (mg/L)</td>
</tr>
</tbody>
</table>
k_{20} - Reaction constant at 20°C (day^{-1})

D - Filter depth (m)

Q_v - Flow rate per unit cross-sectional area (m^3/day per m^2)

T - Liquid contact time

C - Constant for packing used

q - Hydraulic loading

n - Hydraulic constant for the packing material used, unitless

Q - Influent flowrate (L/min)

A - Filter cross section area (m^2)

R - Recirculation ratio

Q_r - Recycling flowrate of effluent (L/hr)

[BOD] - Concentration of Biological Oxygen Demand (BOD₃) in mg/L

[COD] - Concentration of Chemical Oxygen Demand (COD) in mg/L

[NH₃ - N] - Concentration of Ammonia - Nitrogen in mg/L

[NO₃ - N] - Concentration of Nitrate - Nitrogen in mg/L

R_1 - Removal of pollutant (%)

[TSS] - Concentration of Total Suspended Solids (TSS) in mg/L

[P] - Concentration of Phosphorus, P in mg/L

J - Flux of substrate into biofilm (mg/cm²/d)

R_e - Reynolds number

ρ - Density of the wastewater

V - Flow velocity

L - Trickling filter height
ACKNOWLEDGEMENT

First and foremost, I would like to take this great opportunity to express my warmest gratitude to my supervisor, Professor Dr. Ir. Law Puong Ling and co – supervisor, Professor Dr. F.J. Putuhena for their guidance, concern and strong backing throughout the duration of this research. Their enthusiasms have been a great source of inspiration and also, this gives me a great sense of honour to be under their wings.

I owe my deepest gratitude to Universiti Malaysia Sarawak (UNIMAS) for giving me the opportunity to be awarded the position of research assistant under the Science Fund 06-01-09-SF0036 from 15th of June 2008 to 14th of June 2009 and thereafter, Ministry of Science, Technology and Innovation (MOSTI) for the offering of this prestigious scholarship: MOSTI/BMI/TAJ/1-2 Jld 6 (27)). The financial support had indeed helped me immensely during the course of this research. Also, I wish to extend many thanks to laboratory technician, Encik Mohammad Sapian for keeping me company in the laboratory and gladly offering me help when I was struggling with the fabrication of the wastewater treatment system.

Finally, I would like to extend my love to my immediate family members and close friends, Dr Genchev Dimitrov and Dr Leonard Ng for the moral support and care throughout the duration of this study and stood me through good times and bad.
Trickling filter (TF) has been one of the pioneers in wastewater treatment system. Due to its low power consumption and the global concern for sustainable development, the cleaner technology is trending towards more eco–friendly treatment system. In this TF system, it is an attached growth process, meaning, the system employs the microorganisms that grow on media to remove pollutants once the wastewater is in contact with the media which contains populated microorganisms. The media contained in the TF system used in this research is termed as spherical hollow celluloid in hexagonal close – packed (HCP) arrangement. Light – weight and with aplenty voids, the media serve as a durable and low maintenance mean for the microorganisms to propagate. Several types of pollutants were studied during the course of this research but the main emphasis was on nitrogenous compounds and the ability of the TF system to remove these pollutants. Prior to experimental runs, the TF system underwent start – up process, a duration which the microorganisms started to grow on the exterior and interior of the media. Under controlled dissolved oxygen (DO) level and at favorable pH during the commencement of the experimental works, the TF system was able to reject the pollutants satisfactorily, even surpassing the performance that of conventional TF systems.