MODIFIED CEMENT SYSTEM: DURABILITY AND AESTHETIC

Siti Zarini Binti Mohamed Jizi

Bachelor of Engineering with Honours
(Civil Engineering)
2009
Saya SITI ZARINI BINTI MOHAMED JIZI (HURUF BESAR) mengaku membenarkan tesis ini disimpan di Pusat Khidmat Maklumat Akademik, Universiti Malaysia Sarawak dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hak milik Universiti Malaysia Sarawak.
2. Pusat Khidmat Maklumat Akademik, Universiti Malaysia Sarawak dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Membuat pendigitalan untuk membangunkan Pangkalan Data Kandungan Tempatan.
4. Pusat Khidmat Maklumat Akademik, Universiti Malaysia Sarawak dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
5. ** Sila tandakan ( √ ) di kotak yang berkenaan

☐ SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972).

☐ TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan).

√ TIDAK TERHAD

Disahkan oleh

(TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

P. NORSUZAILINA MOHAMED SUTAN (Nama Penyelia)

Tarikh: 14 Mei 2009 Tarikh: ____________________

Catatan: * Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah, Sarjana dan Sarjana Muda.
** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.
This project report attached here to, entitle “MODIFIED CEMENT SYSTEM: DURABILITY AND AESTHETIC” prepared and submitted by SITI ZARINI BINTI MOHAMED JIZI (15312) as a partial fulfillment of the requirement for degree of Bachelor of Engineering with Honors in Civil Engineering is hereby read and approve by:

_____________________________  Date: ___________________
(Puan Norsuzailina Mohamed Sutan)
Project Supervisor
Faculty of Engineering
Universiti Malaysia Sarawak
For my beloved family, special friends and my friends

Thanks for everything.
ACKNOWLEDGEMENT

First of all, I would like to thank Allah SWT, the Al-Mighty, with His guidance and wishes that this final year project can be completed successfully. I would like to express my greatest appreciation to my supervisor, Mdm Norsuzailina Bt Mohamed Sutan, for her generous guidance, advice and motivation throughout this research.

My sincere appreciation also extends to all my friends, my special friend and the structural laboratory personnel, Mr Adha Abd Wahab, who was directly or indirectly involved in the process of producing this research report, for his generous assistance, useful views and tips. Without his support and contribution, this research project would not have been possible.

Finally, I would never finish this project without the encouragement and prayers from my mom and my beloved family members. Special thanks dedicated to my beloved parents and family, for their continuing financial and morale supports throughout my studies. All the hard works and perseverance that I put in this project is not easy without their motivations and endless supports.
ABSTRACT

Efflorescence is a type of discoloration. It is a deposit salt, usually white in color that occasionally develops on the surface of concrete. Although unattractive, efflorescence is usually harmless to the structure such as concrete bridge. In rare cases excessive efflorescence, within the pores of the material, can cause expansion that may disrupt the surface. Efflorescence is caused when soluble salts and other water dispersible materials come to the surface of concrete and mortars. It is induced by low temperatures, moist conditions, condensation, rain, and water added to the surface of concrete. The modified cement system can reduce the efflorescence but cannot avoid it because of the reaction of cement hydration itself. This study proved that by using the modified cement system such as Pulverized Fly Ash (PFA) and Polymers (water based latex grade 29Y46), the efflorescence can be reduced. The mix proportion with and without PFA and Polymers are tested with various properties such as strength test, water absorption and efflorescence in order to understand the effect against the performance of the mortar. The results from this study showed that the modified mortar which is the sample with PFA and Polymers has higher strength, durability, and less efflorescence compared with non-modified cement system.
ABSTRAK

# TABLE OF CONTENT

<table>
<thead>
<tr>
<th>CONTENT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLE</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURE</td>
<td>xii</td>
</tr>
</tbody>
</table>

## CHAPTER 1 INTRODUCTION

1.1 Project Overview 1

1.2 Objectives of Study 2

1.3 Scope of Study 2

1.4 Outline of the Project 4

## CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 6

2.2 Ordinary Portland Cement (OPC) 7

   2.2.1 Process of Production 8
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.2 Chemical Composition of Portland Cement</td>
<td>8</td>
</tr>
<tr>
<td>2.2.3 Hydration Process</td>
<td>9</td>
</tr>
<tr>
<td>2.3 Polymers</td>
<td>10</td>
</tr>
<tr>
<td>2.3.1 Polymer Modified Concrete</td>
<td>11</td>
</tr>
<tr>
<td>2.3.2 Polymer Concrete</td>
<td>13</td>
</tr>
<tr>
<td>2.4 Pozzolans (PFA)</td>
<td>15</td>
</tr>
<tr>
<td>2.5 Concrete Durability</td>
<td>17</td>
</tr>
<tr>
<td>2.5.1 Main Durability Problems and Causes of Deterioration</td>
<td>18</td>
</tr>
<tr>
<td>2.5.2 Effect of Chemical Attack</td>
<td>19</td>
</tr>
<tr>
<td>2.5.2.1 Effect of Alkali Aggregate Reaction</td>
<td>21</td>
</tr>
<tr>
<td>2.5.2.2 Effect of Sulphate Attack</td>
<td>23</td>
</tr>
<tr>
<td>2.5.2.3 Effect of Efflorescence</td>
<td>18</td>
</tr>
<tr>
<td>2.6 Pore Structure</td>
<td>25</td>
</tr>
<tr>
<td>2.6.1 Definition of Porosity</td>
<td>25</td>
</tr>
<tr>
<td>2.6.2 Capillary of Pores</td>
<td>25</td>
</tr>
<tr>
<td>2.6.3 Gel Pores</td>
<td>25</td>
</tr>
<tr>
<td>2.7 Permeability and Water Absorption</td>
<td>26</td>
</tr>
<tr>
<td>2.8 Relationship Between Permeability and Porosity</td>
<td>28</td>
</tr>
<tr>
<td>2.9 Factors Influencing the Strength and Durability of Concrete</td>
<td>30</td>
</tr>
<tr>
<td>2.9.1 Water Binder Ratio</td>
<td>30</td>
</tr>
<tr>
<td>2.9.2 Curing Process</td>
<td>30</td>
</tr>
<tr>
<td>2.10 Conclusions</td>
<td>31</td>
</tr>
</tbody>
</table>
CHAPTER 3  METHODOLOGY

3.1 Introduction 32
3.2 Experimental Procedure 33
3.3 Materials Used 34
  3.3.1 Ordinary Portland Cement 35
  3.3.2 Sand 35
  3.3.3 Water 35
  3.3.4 Pozzolan (PFA) 36
  3.3.5 Polymer (Water Based Polymer Latex) 36
3.4 Specimens Preparation 38
  3.4.1 Preparation of Moulds and Casting 38
  3.4.2 Mix Design 39
  3.4.3 Design Mix Specification 39
  3.4.4 Mixing Process 42
  3.4.4 Water Cement : Ratio 43
  3.4.5 Curing 43
3.5 Test Methods 44
  3.5.1 Absorption Test 44
  3.5.2 Compression 45
  3.5.3 Puddle Test & Electrical Reflectance 46
     Photometer
  3.5.4 Humidity and Temperature 47

CHAPTER 4  RESULTS, ANALYSIS AND DISCUSSIONS 48

4.1 Introduction 48
4.2 Compressive Strength Test

4.2.1 PFA Replacement

4.2.1.1 10% and 20% Replacement of PFA

4.2.1.2 50% Replacement of PFA

4.2.2 Polymers as Additives in Cement System

4.2.2.1 1% Admixtures of Polymers

4.2.2.2 2% and 3% Admixtures of Polymers

4.3 Water Absorption

4.3.1 Water Absorption for PFA as Admixtures

4.3.1.1 Water Absorption 0% and 10% PFA Replacement

4.3.1.2 Water Absorption 0% and 20% PFA Replacement

4.3.1.3 Water Absorption 0% and 50% PFA Replacement

4.3.2 Water Absorption for Polymer as Admixtures

4.3.2.1 Water Absorption 0% and 1% Polymers as Admixtures

4.3.2.2 Absorption 0%, 2% and 3% Polymers as Admixtures

4.4 Puddle Test & Electrical Reflectance Photometer

CHAPTER 5 CONCLUSION & RECOMMENDATION

5.1 Conclusion
5.2 Recommendation

REFERENCES 78
APPENDIX 81
# LIST OF TABLE

<table>
<thead>
<tr>
<th>Table</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Major Compounds of Portland Cement (Neville, 1986)</td>
</tr>
<tr>
<td>2.2</td>
<td>Typical Properties of Polymer-Containing Concrete Composites And Portland Cement Concrete (Ohama, Y.)</td>
</tr>
<tr>
<td>2.3</td>
<td>Typical Range of Properties of Common PC Products and Portland Cement Concrete (Ohama, Y.)</td>
</tr>
<tr>
<td>3.1</td>
<td>Mix Design for PFA (w/c: 0.5)</td>
</tr>
<tr>
<td>3.2</td>
<td>Mix Design for Polymer (Water Based Latex, w/c: 0.5)</td>
</tr>
<tr>
<td>4.1</td>
<td>Strength Test Result for PFA Sample</td>
</tr>
<tr>
<td>4.2</td>
<td>Strength Test Result for Polymer Sample</td>
</tr>
<tr>
<td>4.3</td>
<td>Water Absorption Result for PFA Sample</td>
</tr>
<tr>
<td>4.4</td>
<td>Water Absorption Result for Polymer Sample</td>
</tr>
<tr>
<td>4.5</td>
<td>The puddle test result for PFA sample and Polymer sample</td>
</tr>
</tbody>
</table>
# LIST OF FIGURE

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Thesis Organization</td>
</tr>
<tr>
<td>2.1</td>
<td>The Micrograph of PFA</td>
</tr>
<tr>
<td>2.2</td>
<td>Efflorescence Occurred at Civil Engineering Laboratory, UNIMAS</td>
</tr>
<tr>
<td>2.3</td>
<td>The Relation Between The Transport Properties of Cement Paste and The Compressive Strength As A Function of The W/C Ratio and Degree of Hydration.</td>
</tr>
<tr>
<td>3.1</td>
<td>A Flowchart of Research Methodology</td>
</tr>
<tr>
<td>3.2</td>
<td>Flow Chart of The Experimental Program</td>
</tr>
<tr>
<td>3.3</td>
<td>The Pulverized Fly Ash</td>
</tr>
<tr>
<td>3.4</td>
<td>Polymer (Water Based Polymer Latex)</td>
</tr>
<tr>
<td>3.5</td>
<td>Two Types of Mould (100 X 100 X 100 Mm And 300 X 300 X 60 Mm)</td>
</tr>
<tr>
<td>3.6</td>
<td>Concrete Mixing Machine</td>
</tr>
<tr>
<td>3.7</td>
<td>Curing Processes In Tank</td>
</tr>
<tr>
<td>3.8</td>
<td>Absorption Testing</td>
</tr>
</tbody>
</table>
3.9 Compression Machine
3.10 Puddle Testing Processes
3.11 Humidity and Temperature Equipment
4.1 Comparison Strength Between 0%, 10%, 20% and 50% PFA
4.2 Comparison Strength Between 0%, 10% and 20% Replacement of PFA
4.3 Comparison Strength Between 0%, and 50% Replacement of PFA
4.4 Comparison Strength Between 1%, 2% and 3% Polymer
4.5 Comparison Strength Between 0% and 1% Polymer
4.6 Comparison Strength Between 2%, 3% and Non-Modified Mortar
4.7 Comparison Water Absorption for PFA Replacement
4.8 Comparison Water Absorption for 0% and 10% PFA Replacement
4.9 Comparison Water Absorption for 0% and 20% PFA Replacement
4.10 Comparison Water Absorption for 0% and 50% PFA Replacement
4.11 Comparison Water Absorption for Polymer As Admixtures
4.12 Comparison Water Absorption for 0% and 1% Polymer as Admixtures
4.13 Comparison Water Absorption for 0%, 2% and 3% Polymer as Admixtures
4.14 Comparison Color Measurement Between PFA and Polymer

4.15 Modified Cement System Versus Days After Demoulding
With Fixed Water Content (230 Kg/M$^3$) and Cement Content (460 Kg/M$^3$)
CHAPTER 1

INTRODUCTION

1.1 PROJECT OVERVIEW

Concrete is a very durable material as exhibited by the number of Roman concrete construction. Durability is achieved by the correct selection of materials, good design and strict quality control when mixing, placing and curing the concrete is essential. The materials and mix proportions used should be such as to maintain its reliability, protect the reinforcement from corrosion and maintain the durability of the concrete. One of the main characteristics influencing the durability of concrete is its permeability. The ingress of water, oxygen, carbon dioxide, chloride and others are the most of the durability problems in the concrete that can be attributed to the changes in the concrete. Volume changes in the concrete can caused by many factors such as hydration process, pozzolonic action, sulphate attack, carbonation, moisture movement, and others. A crack can decrease the durability of the concrete that occurs by interactions involving the materials of concrete and its surroundings environment.

Colours changes of concrete can arise due to a well known yet not well understood phenomenon called efflorescence. Efflorescence occurs when water
percolates through poorly compacted concrete or through cracks when evaporation can take place at the surface of the concrete. It will form white deposits which can decrease the aesthetic values of the concrete.

Efflorescence, which used to be ignored due to its negligible structural effect, is now viewed as a major problem in colored concrete products. To date there are no economical and effective methods to guarantee the prevention of efflorescence. (P.Kresse, 1991)

1.2 OBJECTIVES OF STUDY

The objectives of this study are as follows:

a. To correlate between compressive strength, water absorption and efflorescence at different ages and different percentage of PFA and Polymers.

b. To determine the effects of polymer and PFA addition on to efflorescence.

1.3 SCOPE OF STUDY

The scopes of this project are to investigate the durability and aesthetic of non- modified cement system and modified cement system. There are three main scope of the project are:

i. To study the strength development of the modified mortar and non-modified mortar with addition of pozzolans.
ii. To investigate the absorption factor of mortars that is one of the important properties that determine the durability of mortars.

iii. To study the relationship between water absorption, strength development and efflorescence

Below are the limitations of this project:

1. Water-cement-ratio of 0.5 was used.

2. The size of samples was 100 x 100 x 100mm and 300 x 300 x 60mm,

3. The size of aggregates used is sand aggregates.

4. Cubes and slab were tested at the age 7, 14, 21 and 28 days.

5. For hardened concrete, compressive strength (destructive test), water absorption test, and puddle test were tested.

6. The desired characteristic strength of 30 N/mm² at 28 days was used in this study.

1.4 OUTLINE OF THE PROJECT

This report is divided into 5 Chapters. The first chapter is the introduction of this project. Chapter 2 is the literature review of OPC, pozzolans (fly ash) and polymer, and detailed explanation of the durability of concrete due to the several effecting factors.
Chapter 3 is the methodologies which consist of method are used in experimental program.

Chapter 4 is an analysis of result. Analyses that were done are being reported in this chapter.

In the last chapter, Chapter 5 is the discussion and conclusion for this project. This chapter wraps up this project with some suggestions for improving the production of good quality concrete. Figure 1.1 shows the thesis organization for this project.
Figure 1.1: Thesis Organization

CHAPTER 1 (INTRODUCTION)
Introduction of the study, objectives, scope of study and outline of the project

CHAPTER 2 (LITERATURE REVIEW)
Concrete Durability  Ordinary Portland Cement  Pozzolan (Pulverized Fuel Ash)  Polymer (Synthomer grade 29Y46)  Absorption  Effect of Efflorescence

CHAPTER 3 (METHODOLOGY)
Material Used  Testing Methods  Casting the Specimens  Mix Proportions/Water-Cement-Ratio  Curing Methods

CHAPTER 4 (RESULT AND ANALYSIS)

CHAPTER 5 (CONCLUSIONS & RECOMMENDATIONS)
CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

Cement is a well known building material and has occupied in construction works. There are a variety of cements available in market. A mixture of cement and sand when mixed with water to form a paste is known as cement mortar. The cement commonly used is ordinary Portland cement (OPC). In order to obtain a strong, durable and economical concrete mix, it is necessary to understand the characteristics and the effect of durability of concrete.

In order to understand the durability of concrete which consist the ordinary Portland cement, a review on the properties of concrete will be covered in this section. These include the factors affecting the durability of concrete. The influence of OPC on permeability and porosity to the concrete also will be discussed in this chapter.
2.2 ORDINARY PORTLAND CEMENT (OPC)

Portland cement is most often used in concrete and mortar. Concrete is made by combining water, sand, gravel, and cement, whereas mortars are made by combining cement with water and sand only. Concrete is much stronger than mortar, and is used in most modern buildings as a durable and strong construction material capable of bearing great loads. Mortar is used to bind other substances together, such as the bricks in a house.

Portland cement usually takes several hours to set, and will harden in a matter of weeks. Cement is a somewhat curious material in that it continues to harden over time as long as there is water available for the components of the cement to form bonds with. One week old Portland cement has strength of around 23 MPa, whereas three month old cement has strength of 41 MPa. These numbers apply to standard Portland cement which has not had any additives added to it. Various treatments and additives can make cement set and harden at different rates, and various types of Portland cement also possess different properties which affect the rate of setting and hardening. (Neville, 1996)

The term cement in the construction can be defined as a material with adhesive and cohesive properties that make it possible to bond together mineral fragments into a compact mass. For structure that carry loads, hydraulic cement is used which exhibits the character of setting and hardening under water from the results of a chemical reaction. (Neville, 1996)
2.2.1  Process of Production

Cement is produced by pulverizing raw materials, which consists of calcareous material and argillaceous materials like limestone or chalk, alumina and silica found as clay or shale. It is then mixed in certain proportions and followed by the burning process is crushed into fine powder named cement. The mixing and grinding process takes place.

There are two methods of producing cement. It is categorized by the condition where the mixing and grinding process takes place. If the process is done in water, it is named the wet process. Normally, wet process is meant for softer raw materials like clay and lime. Harder raw materials like shale and limestone is process by the dry process where the raw materials are mixed without the presence of water (Neville, 1996)

2.2.2  Chemical Composition of Portland Cement

Constituents of Portland cement vary and result in several numbers of compounds that may develop in the clinker. However, there are four major compounds obtained from appropriate combinations of the raw constituents as listed below. A slight change in the proportions will result in different properties of concrete (Neville, 1996).

It should also note that in the clinking process, impurities such as Mn₂O₃, P₂O₅, and TiO₂ would also be formed (G.D. Taylor, 2002). These