Diurnal to interannual rainfall 18O variations in northern Borneo driven by regional hydrology

Jessica W. Moerman a,*, Kim M. Cobb a, Jess F. Adkins b, Harald Sodemann c, Brian Clark d, Andrew A. Tuen e

a School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 First Drive, Atlanta, GA 30332, United States
b Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, United States
c Institute for Atmospheric and Climate Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
d Gunung Mulu National Park, Sarawak, Malaysia
e Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Malaysia

Abstract

The relationship between climate variability and rainfall oxygen isotopic (18O) variability is poorly constrained, especially in the tropics, where many key paleoclimate records rely on past rainfall isotopes as proxies for hydroclimate. Here we present a daily-resolved, 5-yr-long timeseries of rainfall 18O from Gunung Mulu National Park, located in northern Borneo (4$^\circ$N, 114$^\circ$E) in the heart of the West Pacific Warm Pool, and compare it to local and regional climatic variables. Daily rainfall 18O values range from $-0.7%$ to $-18.5%$ and exhibit a weak but significant inverse relationship with daily local precipitation amount ($R = -0.19, p < 0.05$), consistent with the tropical amount effect. Day-to-day 18O variability at Mulu is best correlated to regional precipitation amount averaged over the preceding week ($R = -0.64, p < 0.01$). The inverse relationship between Mulu rainfall 18O and local (regional) precipitation amount increases with increased temporal averaging, reaching $R = -0.56$ ($R = -0.72$) on monthly timescales. Large, negative, multi-day rainfall 18O anomalies of up to 16% occur every 30–90 days and are closely associated with wet phases of the intraseasonal Madden-Julian Oscillation. A weak, semi-annual seasonal cycle in rainfall 18O of 2–3% bears little resemblance to seasonal precipitation variability, pointing to a complex sequence of moisture sources and/or trajectories over the course of the year. Intermittent rainfall 18O variations of 6–8% are significantly correlated with indices of the El Niño–Southern Oscillation, with increased rainfall 18O during relatively dry El Niño conditions, and vice versa during La Nina events. We find that Mulu rainfall 18O outperforms Mulu precipitation amount as a tracer of basin-scale climate variability, highlighting the time- and space-integrative nature of rainfall 18O. Taken together, our results suggest that rainfall 18O variability at Mulu is significantly influenced by the strength of regional convective activity. As such, our study provides further empirical support for the interpretation of 18O-based paleo-reconstructions from northern Borneo stalagmites as robust indicators of regional-scale hydroclimate variability, where higher 18O reflects regional drying.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The inverse relationship between tropical precipitation amount and rainfall isotopic values, known as the ‘amount effect’ (Dansgaard, 1964; Rozanski et al., 1993; Araguas-Araguas et al., 1998), has provided the basis for numerous reconstructions of tropical paleohydrology from lake deposits (e.g. Sachs et al., 2009; Tierney et al., 2010), alpine ice cores (e.g. Hoffmann et al., 2003; Vimeux et al., 2009) and stalagmite calcite (e.g. Bar-Matthews et al., 1997; Burns et al., 1998; Wang et al., 2001). Such reconstructions play a key role in resolving past tropical climate changes, as continuous, high-resolution paleoclimate archives are relatively rare in the tropics. Stalagmite 18O records, in particular, have been used to probe hydroclimate variability over the last hundred years (Treble et al., 2005; Frappier et al., 2007), the last glacial cycle (Dykoski et al., 2005; Partin et al., 2007; Griffiths et al., 2009), and the last million years (Wang et al., 2001; Meckler et al., 2012).

Despite robust observations of the amount effect across tropical latitudes, the climatic controls on rainfall 18O at any given site remain highly uncertain as numerous processes contribute to rainfall 18O variability. Rayleigh distillation, whereby cumulative fractionation during condensation and rainout leaves the residual...
atmospheric vapor depleted in δ¹⁸O, has long been recognized as a first-order mechanism driving the amount effect and rainfall δ¹⁸O variability (Dansgaard, 1964; Rozanski et al., 1993). The Rayleigh mechanism operates both locally, in the case of rainfall δ¹⁸O fractionation across a single rainfall event (e.g. Celle-Jeanton et al., 2004) and regionally, when considering the progressive vapor depletion of air parcels transiting through a region of enhanced precipitation (e.g. Cobb et al., 2007; Vimeux et al., 2011).

Several post-condensation processes also likely contribute to the observed amount effect relationship. For one, the evaporation of falling raindrops causes the residual rainfall to be relatively enriched—a process that is maximized in arid regions and during dry seasons (Dansgaard, 1964; Stewart, 1975; Gat, 1996; Lee and Fung, 2008; Risi et al., 2008a). In regions characterized by strong convection, the recycling of water vapor within the convective cell drives rainfall δ¹⁸O lower during episodes of intense convection (Lawrence and Gedzelman, 1996; Lawrence et al., 2004; Risi et al., 2008a, 2008b). Numerous studies have identified additional processes, such as atmospheric mixing and/or changes in moisture sources and trajectories, that contribute to rainfall δ¹⁸O variability at tropical and subtropical sites (Aggarwal et al., 2004; Cobb et al., 2007; Tian et al., 2007; Breitenbach et al., 2010, Gao et al., 2011).

Previous studies have referred to the amount effect in describing fractionation processes that act strictly locally (e.g. Vuille et al., 2005; Lee et al., 2009; LeGrande and Schmidt, 2009) as well as fractionation processes that integrate across larger spatial scales and longer time periods (e.g. Cobb et al., 2007; Risi et al., 2008b; Kurita et al., 2009, 2011; Tremoy et al., 2012). For the sake of clarity, we will differentiate between a "local" versus "regional" amount effect in our study, based on the inferred spatial scale of the fractionation mechanism in question.

Isotope-equipped general circulation models (GCMs) allow for the systematic investigation of the various dynamics regulating rainfall isotopic composition (Joussaume et al., 1984; Jouzel et al., 1987; Hoffmann et al., 1998; Noone and Simmonds, 2002; Schmidt et al., 2007; Tindall et al., 2009; Risi et al., 2010). Agreement between observations and model output has improved as models incorporate processes such as post-condensation raindrop re-evaporation and convective mixing (Field et al., 2010) and as higher spatial resolution affords more realistic model topographies and better representations of weather systems (Vimeux et al., 2011; Gao et al., 2011). Recent studies using isotope-equipped GCMs find that the dominant drivers of rainfall isotopic variability vary from region to region (Lee et al., 2007; Lewis et al., 2010; Conroy et al., in press), with modeled δ¹⁸O values reflecting the net sum of often competing processes (Field et al., 2010). Models also reveal that the relationship between climate and rainfall δ¹⁸O at a given site may vary with time period (e.g. LeGrande and Schmidt, 2009).

The dearth of high-resolution rainfall δ¹⁸O isotope timeseries throughout the tropics makes it difficult to assess the accuracy of fractionation mechanisms that emerge in isotope-equipped model simulations. Most rainfall δ¹⁸O studies rely on the International Atomic Energy Agency–Global Network of Isotopes in Precipitation database (IAEA–GNIP; International Atomic Energy Agency, 2006). As this network is comprised almost exclusively of monthly averaged rainfall δ¹⁸O data, such studies are limited to investigating seasonal and longer timescales. As a result, relatively little is known about rainfall δ¹⁸O variability on daily to intraseasonal (30–90 day) timescales and its connection to dominant intraseasonal climate modes, such as the Madden–Julian Oscillation (MJO; Madden and Julian, 1972; Zhang, 2005). Furthermore, the relatively sparse spatial coverage of the GNIP database in the deep tropics means that the relationship between intrannual rainfall δ¹⁸O variability and the El Niño Southern Oscillation (ENSO) is poorly constrained. Additional rainfall isotope timeseries from the tropics help to constrain the modern-day dynamical controls on rainfall δ¹⁸O variability in the tropics, while providing much-needed interpretive frameworks for tropical rainfall δ¹⁸O paleo-reconstructions.

Here we present a 5-yr quasi-continuous collection of cumulative daily rainfall δ¹⁸O from Gunung Mulu National Park (4°N, 114°E), located in northwestern Borneo, in the heart of the West Pacific Warm Pool (WPWP). We investigate the variability of northern Borneo rainfall δ¹⁸O and its response to local and regional climate variations on synoptic to interannual timescales. We also investigate the evolution of rainfall δ¹⁸O across a single rainfall event in order to constrain the sub-diurnal influences on rainfall δ¹⁸O at our site. By comparing these rainfall δ¹⁸O timeseries to local and regional climate variables as well as to indices of large-scale climate variability, we investigate the relationship of rainfall δ¹⁸O in northern Borneo to both local and large-scale climate controls across a range of timescales. We also briefly present rainfall δd data from Gunung Mulu in order to plot meteoric water lines and compute values of deuterium-excess, a parameter derived from δ¹⁸O and δd (deuterium-excess=δD–8×δ¹⁸O (Dansgaard, 1964)) and hereafter referred to as ‘δ-excess.’ There is no GNIP station on Borneo, so our study represents an important addition to the rainfall δ¹⁸O data archive, while informing the climatic interpretation of numerous stalagmite δ¹⁸O-based paleoclimate records from our site (Partin et al., 2007; Meckler et al., 2012; Carolin et al., under review).

2. Methods

2.1. Site description

Gunung Mulu National Park receives over 5 m of precipitation annually, which exhibits significant intraseasonal (30–90 days) and interannual variability. The vast majority of this precipitation is delivered by discrete convective events that typically occur in the afternoon. Since northern Borneo lies within the migration path of the Intertropical Convergence Zone (ITCZ) year-round, seasonal variations in precipitation at Mulu are weak. As a result, the climate of northern Borneo is primarily controlled by intra-seasonal and interannual precipitation variability associated with the MJO and ENSO respectively, with strong ENSO phases producing annual precipitation anomalies of up to ±50% (Bell and Halpert, 1998). During El Nino events, anomalously warm sea surface temperatures (SST) in the eastern and central tropical Pacific pull the center of deep atmospheric convection east of the Maritime continent (Rasmussen and Wallace, 1983), decreasing convection across the WPWP (Fig. S1). Conversely, convective activity in the WPWP increases during La Niña events. Comprehensive descriptions of the climatic and geologic setting of Gunung Mulu National Park are presented in Cobb et al. (2007).

2.2. Rainfall δ¹⁸O sampling procedure and analysis

Two distinct rainfall sampling campaigns were conducted for this study: (1) a daily collection of rainfall δ¹⁸O at the Gunung Mulu airport from July 2006 to May 2011, and (2) a high-resolution sampling of an individual precipitation event at a remote field camp at Gunung Mulu on March 7, 2010. For the daily rainfall δ¹⁸O collection (N=1203), rainfall was collected in a splayed-bottom rain gauge (Casella model M114003; 254 mm diameter; ~1 m above ground level) at the Mulu Meteorological Station head-quartered at Mulu Airport (4.05°N, 114.81°E) and transferred to glass vials, leaving no headspace when precipitation amounts allowed, each morning at 8:00AM MYT. Precipitation amounts were logged at the same time—we refer to this timeseries as ‘local Mulu precipitation’ hereafter. Rainfall aliquots collected between
July 2006 and February 2010 were stored in 4 mL glass vials with polyseal screw caps and sealed with parafilm. Aliquots collected from March 2010 onwards were stored in 3 mL glass serum vials and sealed with rubber stoppers and crimped aluminum closures, which provided a superior seal than the screw caps.

The use of an open-air rain gauge raises the possibility of isotopic enrichment of the rainfall samples by evaporation over the course of the day. To assess the impact of evaporative enrichment on rainfall isotopic values and to develop guidelines for identifying potentially affected samples, several quality control assessments were performed (see Supplemental Section for details). Based on the findings of these assessments, rainfall samples associated with precipitation amounts less than 1.6 mm were excluded from the final dataset. Evaporation within a vial with headspace represents another source of post-deposition enrichment. As a result, samples stored in vials that were less than 4/5 full were also excluded from the final dataset. Together, this resulted in the exclusion of 176 samples. An additional 23 samples collected in December 2006 were excluded due to documented sampling errors by Mulu personnel. In total, 199 rainfall \(\delta^{18}O \) samples were excluded from the final dataset tally \((N=1004)\). The exclusion of these samples did not significantly alter the variability of the 5-yr timeseries (Fig. S5).

We also conducted detailed rainfall sampling across a single precipitation event on March 7, 2010 at Camp 5 (4.14\(^{\circ}\)N, 114.89\(^{\circ}\)E), located approximately 12 km NE of Gunung Mulu National Park headquarters. Rainfall \(\delta^{18}O \) samples were collected manually at one to four minute intervals (depending on rainfall intensity) throughout the event, for a total of 19 samples. The event lasted for approximately one hour, including a 20-min break in rainfall. Lacking any way to quantitatively measure rainfall rates at the remote field camp, we recorded relative rainfall intensity at the time of each sample collection, where ‘1’ represented a light drizzle and ‘10’ represented the heaviest of downpours. Samples were stored in 3 mL glass serum vials sealed with rubber stoppers and crimped aluminum closures.

Rainfall \(\delta^{18}O \) and \(\delta^{2}D \) were measured at the Georgia Institute of Technology via cavity ring-down spectroscopy (Picarro L1102-i water isotope analyzer). To calibrate the isotopic composition of the rainfall samples, three internal water standards, each calibrated against NIST-VSMOW, NIST-GISP, and NIST-SLAP, were analyzed at the beginning and end of each analysis. An internal water standard was analyzed after every nine rainfall samples to monitor instrument drift. Memory corrections were applied to each measurement based on empirical, instrument-specific memory coefficients. The long-term reproducibility of this technique is better than \(\pm 0.1\% \) for \(\delta^{18}O \) and \(\pm 0.8\% \) for \(\delta^{2}D \). In the case of the screw-top vials, sampling and storage contributed an additional uncertainty of \(\pm 0.1\% \) (1\(\sigma \)) for \(\delta^{18}O \) and \(\pm 0.7\% \) (1\(\sigma \)) for \(\delta^{2}D \), as determined by measuring 34 pairs of duplicate rainfall samples. Crimp-top vial duplicates provided indistinguishable \(\delta^{18}O \) and \(\delta^{2}D \) values. As such, a conservative estimate of uncertainty of \(\pm 0.2\% \) (1\(\sigma \)) is attributed to each rainfall \(\delta^{18}O \) measurement and \(\pm 1.5\% \) (1\(\sigma \)) to each \(\delta^{2}D \) measurement. We report an uncertainty of \(\pm 1.5\% \) for d-excess values, calculated from the quadratic combination of the uncertainties for \(\delta^{18}O \) and \(\delta^{2}D \).

2.3. Gridded climate datasets

We use daily and monthly values of both the Tropical Rainfall Measuring Mission (TRMM 3B42 V6 and 3B43 V6 respectively; \(0.25^\circ \times 0.25^\circ \)) precipitation data (Huffman et al., 2007) and NOAA Interpolated Outgoing Longwave Radiation dataset (OLR; \(2.5^\circ \times 2.5^\circ \); Liebmann and Smith, 1996) to investigate regional convective activity, following Arkin and Ardunay (1989). SST-derived indices of ENSO variability (i.e. Ni\(\text{NO}3, \) Ni\(\text{NO}3\)4, and Ni\(\text{NO}4\)4) are derived from monthly NOAA Optimum Interpolation Sea Surface Temperature (OISST V2; Reynolds et al., 2002). The significance of correlations between Mulu rainfall \(\delta^{18}O \), local Mulu precipitation amount, and the gridded climate datasets listed above is assessed via the Student's t-test using effective degrees of freedom, following Bretherton et al. (1999).

3. Results

3.1. Rainfall isotope timeseries across a single convective event

The timeseries of rainfall \(\delta^{18}O \) and d-excess across the March 7, 2010 rainfall event are shown in Fig. 1A. Over a 1-h period, rainfall \(\delta^{18}O \) ranges from \(-1.5\% \) to \(+0.8\% \), and \(\delta^{2}D \) ranges from \(+1.8\% \) to \(+10\% \) (not shown), with the highest isotopic values observed in the first minutes of the event. Rainfall isotope values reach their lowest values after fifteen minutes and then gradually increase thereafter, following a “V-shaped” progression documented at higher latitude sites (Rindsberger et al., 1990; Celle-Jeanton et al., 2004).

Fig. 1B illustrates the strong inverse relationship between rainfall \(\delta^{18}O \) and relative rainfall intensity \((R=-0.82)\) across the March 7th precipitation event, consistent with the amount effect. The strong correlations between d-excess, which is an indicator of

Fig. 1. (A) Mulu rainfall \(\delta^{18}O \) (black circles) and d-excess (red circles) during the March 7, 2010 convective event, plotted with error bars of \(\pm 0.2\% \) (1\(\sigma \)) for Mulu rainfall \(\delta^{18}O \) and \(\pm 1.5\% \) (1\(\sigma \)) for d-excess. Note that axes for \(\delta^{18}O \) and d-excess are inverted. (B) Relationship between rainfall \(\delta^{18}O \) and relative precipitation intensity during the March 7th convective event, where ‘1’ represents a light drizzle and ‘10’ represents the most intense downpour based on qualitative assessment of relative precipitation intensities. Error bars represent \(\pm 0.2\% \) (1\(\sigma \)). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
kinetic fractionation (Dansgaard, 1964; Gat, 1996; Risi et al., 2010),
and both rainfall δ18O (R = −0.98) and rainfall intensity (R = 0.80)
suggest that the partial re-evaporation of falling raindrops likely
drives the amount effect during this event. When raindrops
undergo evaporation in low relative humidity conditions, the
d-excess value of the evaporate increases, leaving the raindrops with
lower d-excess, as seen mostly in the beginning of the March 7th
event (Fig. 1A). Further support for post-condensation evaporation
is provided by the relatively low slope (∼4) for rainfall δD vs. δ18O
variations for this event (Fig. 2), which is typical of evaporation
and differs appreciably from the equilibrium δD/δ18O slope of
8 associated with the global meteoric water line (GMWL; Dansgaard,
1964). These data support a central role for post-
condensation evaporation during the March 7th convective event,
whereby a raindrop is isotopically enriched during its transit from
cloud to ground. Such a mechanism also explains the occurrence
of several positive rainfall δ18O values during this event. Together,
these results strongly suggest that post-condensation evaporative
processes drive the observed “local” amount effect, and rainfall
δ18O variability in general, during this convective event. Our
results provide further observational support for recent studies
of an idealized microphysical model (Lee and Fung, 2008) and a
single column model (Risi et al., 2008a), both of which suggest
that post-condensation evaporation is an important contributor to
the amount effect within individual rainfall events. Additional high-
resolution sampling of water isotopes across discrete convective
events is needed, however, to confirm whether these results are
representative of precipitation events at our site.

3.2. Multi-year timeseries of daily rainfall δ18O

Daily rainfall δ18O values vary considerably throughout the 5-yr
timeseries, ranging from +0.7‰ to −18.5‰ (Fig. 3). Daily rainfall
δ18O values average −7.8 ± 3.6‰ (1σ, N = 1004), and δD values
average −51.7 ± 28.9‰ (1σ, N = 1004, not shown). The precipita-
tion amount-weighted δ18O timeseries is nearly identical to the
raw δ18O timeseries (Fig. S5), except that its mean δ18O value is
shifted lower by roughly −0.5‰ because higher precipitation days
are also, on average, lower rainfall δ18O days. Several daily rainfall
δ18O values fall to the right of the local meteoric water line
(LMWL; Fig. 2), providing evidence for a role, albeit limited, of
evaporative forcing on daily rainfall δ18O at the site (Dansgaard,
1964). Overall, however, the Mulu LMWL is indistinguishable from
the GMWL, indicating that local post-condensation evaporation
has minimal impact on cumulative daily rainfall δ18O (Fig. 2).
This finding is further supported by a near-zero correlation between
daily rainfall δ18O and d-excess (R = −0.01).

3.2.1. The amount effect at daily and longer timescales

As shown in Fig. 4A, the inverse correlation between daily
rainfall δ18O and daily precipitation amount at Mulu is significant
but relatively weak (R = −0.19, p < 0.05). Correlations between
rainfall δ18O and local Mulu precipitation amount are higher on
monthly timescales (R = −0.56, p < 0.01; Fig. 4B). Indeed, Fig. 4C
further illustrates that the correlation between rainfall δ18O and
Mulu precipitation increases with increased temporal averaging.
Correlations with Mulu rainfall δ18O are even higher for TRMM
precipitation and OLR integrated across a 2.5° × 2.5° gridbox
centered at 5°N, 115°E containing Gunung Mulu, indicating that
regional convective activity explains a larger fraction of Mulu
rainfall δ18O variability at daily and longer timescales than local
precipitation. Basin-wide correlations between daily Mulu rainfall
δ18O and gridded TRMM precipitation amount further demonstrate
that daily variations in Mulu rainfall δ18O are closely tied to
regional-scale processes (Fig. 5A). This spatial map can be con-
trasted to the map of correlations between Mulu precipitation
amount and gridded TRMM precipitation amount, in which high
correlations are confined to the immediate vicinity of the site
(Fig. 5B).

While daily Mulu rainfall δ18O variations are weakly correlated
to daily Mulu precipitation amount, they are highly correlated to
Mulu precipitation averaged over the previous 8 days (R = −0.46;
Fig. 4D). Similar results are found using TRMM precipitation and
OLR but with correlations peaking with ~5 days of averaging
(Fig. 4D). This result reflects the time-integrative nature of rainfall
δ18O that previous studies have observed (Risi et al., 2008b;
Vimeux et al., 2011) and modeled (Sturm et al., 2007; Risi et al.,
2008a). It should be noted that a simple 8-day lag of local Mulu
precipitation (as opposed to an 8-day integration of Mulu pre-
cipitation) is not correlated to daily Mulu rainfall δ18O values
(R = −0.07), indicating that a simple lag relationship is not responsible
for these observations. The time-integrative nature of Mulu rainfall
δ18O is also illustrated by high auto-correlation of the δ18O time-
series (RAC = 0.45) compared with that for local Mulu precipitation
(RAC = 0.23). We hypothesize that the week-long ‘memory’ of
rainfall δ18O may reflect an approximately week-long atmospheric
residence time of water vapor at Mulu.

3.2.2. Intraseasonal variability of rainfall δ18O

The daily rainfall δ18O timeseries is characterized by several
exceptionally large (~10‰) negative excursions that occur every
30–90 days and last for several days to one week (Fig. 3). In order
to characterize the evolution of these dramatic excursions and
investigate their dynamical origins, we isolated eighteen of the
largest excursions, hereafter referred to as ‘depletion events’, by
applying a statistical filter that selected excursions based on their
amplitude and abruptness (Table S1; see Supplemental Section
for selection criteria). The resulting ‘depletion events’ are marked
by triangles along the upper x-axis of Fig. 3.

A composite of the eighteen rainfall δ18O ‘depletion events’ reveals
consistent relationships between rainfall δ18O, local Mulu precipitation

Fig. 2. Mulu rainfall δ18O versus δD for the daily 5-yr timeseries (black circles) and
the March 7, 2010 convective event (blue circles). The dashed red line represents a
linear fit for the 5-yr timeseries of daily Mulu rainfall samples. The dotted blue line
represents a linear fit for the March 7, 2010 event samples. The global meteoric
water line (solid gray line) is plotted for reference (Craig, 1961). (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)
amount, and OLR across the duration of these events (Fig. 6). Rainfall $\delta^{18}O$ becomes gradually more depleted in the three days leading up to the minimum $\delta^{18}O$ value of $-15.4 \pm 2.4\%e$ (1σ) on ‘Day 0’ in Fig. 6, and gradually returns to average values three days after peak $\delta^{18}O$ depletion. Local Mulu precipitation amount, however, is characterized by a more abrupt transition to above average precipitation rates, with a near doubling of the long-term average precipitation amount four days prior to the minimum rainfall $\delta^{18}O$ value. Precipitation rates remain anomalously high until ‘Day 0’, after which they abruptly drop to below average rates for 6 days. The temporal evolution of OLR across a rainfall $\delta^{18}O$ depletion event falls somewhere between that of rainfall $\delta^{18}O$ and local Mulu precipitation.
The systematic relationships between Mulu rainfall $\delta^{18}O$, local Mulu precipitation, and OLR across the large rainfall $\delta^{18}O$ depletion events imply that they share a common origin. Indeed, a Hovmöller diagram of OLR con- tination events imply that they share a common origin. Indeed, a Hovmöller diagram of OLR con- tination events occur during or immediately after the passage of organized regional convective activity from west to east (Fig. 7). The spatio-temporal signature of these OLR anomalies strongly resembles that of the MJO. Indeed, the majority of rainfall $\delta^{18}O$ depletion events do coincide with defined active (i.e., wet) phases of the MJO (Table S1). We conclude that the MJO strongly influences the intraseasonal variability of Mulu rainfall $\delta^{18}O$ and contributes to a “regional” amount effect relationship at intraseasonal timescales, as inferred by Cobb et al. (2007). In this case, the “regional” amount effect derives from the advection of depleted water vapor from regions to the west (upstream) of Mulu.

3.2.3. Seasonal variability of rainfall $\delta^{18}O$

Long-term monthly mean rainfall $\delta^{18}O$ values reveal a weak semi-annual seasonal cycle with an amplitude of $\sim 2\%$ that accounts for roughly 20% of the total variance in monthly rainfall $\delta^{18}O$ (Fig. 8). Two relative rainfall $\delta^{18}O$ minima occur in June–July and November–January, and two relative maxima occur in February–April and August–October. It is important to note that removing potential ENSO influences from the 5-yr rainfall $\delta^{18}O$ timeseries does not alter the rainfall $\delta^{18}O$ seasonal cycle (Fig. 8). Mulu rainfall $\delta^{18}O$ bears little resemblance to either local or regional precipitation on seasonal timescales, suggesting that seasonal variations in Mulu rainfall $\delta^{18}O$ are driven by a combination of more remote effects.

3.2.4. Interannual variability of rainfall $\delta^{18}O$

The semi-annual seasonal rainfall $\delta^{18}O$ composite presented here represents a significant revision to the annual seasonal cycle of rainfall $\delta^{18}O$ inferred by Cobb et al. (2007) from a much smaller sample size. Cobb et al. (2007) invoked seasonal changes in the degree of orographic fractionation to explain a relative $\delta^{18}O$ maximum (minimum) in boreal summer (winter). Such a mechanism may contribute to the complexity of seasonal rainfall $\delta^{18}O$ at Mulu, but our new results require a mechanism that leads to relatively high rainfall $\delta^{18}O$ values during the shoulder seasons of February/March/April and August/September/October (Fig. 8). Regional winds are relatively weak during these times, as the ITCZ transits directly over northern Borneo. We hypothesize that during these seasons, the adjoining sea surface is the dominant source of water vapor to Mulu, providing for shorter water vapor trajectories and therefore less cumulative isotopic fractionation. A detailed investigation of the causes of seasonal variations in Mulu rainfall $\delta^{18}O$, however, is beyond the scope of the present manuscript.
to Mulu precipitation, Mulu rainfall δ^{18}O is a better tracer of ENSO variability, owing to its time- and space-integrative properties.

Regression maps of Mulu rainfall δ^{18}O and basin-scale precipitation (Fig. 10A) and OLR (Fig. 10B) reveal significant correlations that extend from the western to central Pacific. The spatial pattern of these correlations strongly resembles the first EOF of global precipitation, which is attributed to ENSO variability (e.g. Fig. 1 of Furtado et al., 2009). These results support the existence of a strong “regional” amount effect associated with ENSO variability, whereby regionally suppressed convection in the western Pacific leads to higher rainfall isotopes during El Niño conditions, and vice versa during La Niña events. It is worth noting that these statistically robust relationships were extracted from a time series that contained only one “strong” ENSO event (i.e. the 2010/2011 La Niña), thus underscoring the sensitivity of rainfall δ^{18}O at our site to small/moderate changes in the ENSO state.

In contrast to Mulu rainfall δ^{18}O, which closely tracks basin-scale ocean–atmosphere interactions associated with ENSO, Mulu precipitation amount is correlated to regional precipitation in a much smaller area (Figs. 10C, D). The fact that Mulu rainfall δ^{18}O is more sensitive than Mulu precipitation amount to basin-scale ENSO variability indicates that the rainfall δ^{18}O–ENSO relationship is primarily transmitted through regional-scale, rather than local, convective activity. In other words, interannual variations in the overall convective state of the WPWP imprint water vapor with an isotopic ENSO signal prior to the vapor’s arrival at northern Borneo, while ENSO-related changes in convective activity at our site may subsequently serve to amplify the far-field ENSO signal in rainfall δ^{18}O.

4. Discussion

4.1. Spatial and temporal signatures of the amount effect

Across nearly all timescales studied, Mulu rainfall δ^{18}O is inversely related to precipitation variability, consistent with the tropical amount effect. While we find evidence for a “local” amount effect across a single convective event, we demonstrate that rainfall δ^{18}O variability on diurnal to interannual timescales at Mulu is tied to a “regional” amount effect.

Within an individual storm, we find evidence that local processes, specifically below-cloud evaporation of falling raindrops, cause the observed inverse correlation between rainfall δ^{18}O and precipitation rate. This relationship arises because the degree of kinetic fractionation during the evaporation of a raindrop depends on the humidity of the atmosphere through which it falls, with higher humidity suppressing evaporative enrichment (Dansgaard, 1964; Stewart, 1975). The response of rainfall δ^{18}O to changes in the efficiency of below-cloud evaporation is essentially instantaneous at the intra-storm timescale. These findings provide...
Indeed, previous observational and GCM-based studies also indicate that local post-condensation evaporation has relatively little impact on rainfall isotopes during individual precipitation events (Lee and Fung, 2008; Risi et al., 2008a).

At the diurnal timescale, several lines of evidence suggest that isotopic fractionation associated with the "local" amount effect is dwarfed by δ¹⁸O variations that reflect regional convective activity. For one, our results indicate that post-condensation evaporation of falling raindrops, which amounts to fractionations of ∼1–2‰, is relatively small compared to day-to-day rainfall δ¹⁸O variations of ∼2–10‰. Indeed, previous observational and GCM-based studies also find that local post-condensation evaporation has relatively little impact on rainfall δ¹⁸O values on daily and longer timescales in wet tropical regions (Kurita et al., 2009; Breitenbach et al., 2010; Field et al., 2010). Secondly, the weak correlation between daily rainfall δ¹⁸O and daily Mulu precipitation amount further suggests that local rainout has relatively little impact on cumulative Mulu rainfall δ¹⁸O values. Similarly weak correlations between daily rainfall δ¹⁸O and local precipitation amount are also observed at other tropical and subtropical sites (e.g. Yamanaka et al., 2004; Risi et al., 2008b, Kurita et al., 2009, Breitenbach et al., 2010; Vimeux et al., 2011).

The weak daily rainfall δ¹⁸O–precipitation relationship can be attributed to the time- and space-integrative properties of rainfall δ¹⁸O, illustrated by the high correlation between daily rainfall δ¹⁸O and regional precipitation amount averaged over the preceding week (Fig. 4D). The 5–8-day vapor residence time that we observe at Mulu suggests that isotopic signals persist within the atmospheric vapor above Mulu for several days. These findings are consistent with those of studies at other tropical sites, which explain the time-integrative behavior of rainfall δ¹⁸O via a repeated atmospheric vapor recycling process, in which low-level vapor depleted by earlier convective activity is fed into successive convective systems (Risi et al., 2008a, 2008b; Vimeux et al., 2011). In this way, the isotopic composition of the recycled water vapor – and that of the resultant rainfall – reflects the cumulative intensity of the previous days’ convective activity, thus causing daily rainfall δ¹⁸O to be poorly correlated with daily precipitation amount. Taken together, these results suggest that diurnal rainfall δ¹⁸O variability at our site is more dependent on the isotopic composition of the water vapor from which it condenses than the local fractionation processes that occur during individual rainfall events. The space-integrative property of daily Mulu rainfall δ¹⁸O, illustrated by the strong correlations between Mulu rainfall δ¹⁸O and regional precipitation amount in Fig. 4C and D, suggests that Mulu vapor δ¹⁸O is also significantly influenced by regional-scale convective processes. This is further supported by Fig. 5, which shows that correlations between daily gridded TRMM precipitation amount and daily Mulu rainfall δ¹⁸O are far more regionally extensive than they are for daily Mulu precipitation amount.

The large multi-day rainfall δ¹⁸O depletion events observed at Mulu typically coincide with the passage of mesoscale convective systems associated with the MJO (Fig. 7). We infer that these large-scale convective systems deliver anomalously depleted water vapor δ¹⁸O to Mulu, thus resulting in depleted rainfall δ¹⁸O. Indeed, Kurita et al. (2011) and Berkelhammer et al. (2012) observe
The close relationship between regional hydrology and Mulu rainfall $\delta^{18}O$ is most evident on interannual timescales, when weak to moderate El Niño events are associated with significantly higher rainfall $\delta^{18}O$ at Mulu, and vice versa during La Niña events. In this context, it is striking that Mulu rainfall $\delta^{18}O$ is a better indicator than local Mulu precipitation of basin-scale atmospheric circulation on interannual timescales. This reinforces the notion that water vapor $\delta^{18}O$ has an integrating effect, averaging the convective activity experienced during its transport history through both space and time. As such, the ENSO signal captured by Mulu rainfall $\delta^{18}O$ reflects the sensitivity of Mulu rainfall $\delta^{18}O$ to regional climatic conditions on monthly timescales.

4.2. Implications for $\delta^{18}O$—based paleoclimate reconstructions

The present study demonstrates that changes in regional convective activity are reflected in rainfall $\delta^{18}O$ variations at our site, providing further empirical support for the amount effect framework used to interpret $\delta^{18}O$-based paleo-reconstructions from northern Borneo stalagmites (Partin et al., 2007; Meckler et al., 2012). As such, any changes over time in the background state of regional-scale hydrology, such as variability in the strength and/or location of deep convection in the WPWP, would likely impact rainfall $\delta^{18}O$ at Mulu. More generally, the ability of rainfall

Fig. 9. (A) Timeseries of 2-month running mean Mulu rainfall $\delta^{18}O$ and local Mulu precipitation amount. (B–D) Comparisons of 2-month running mean Mulu rainfall $\delta^{18}O$ with (B) NINO3, (C) NINO4, and (D) SOI. (E–G) Same as (B–D) but for 2-month running mean Mulu precipitation amount. Axes for rainfall $\delta^{18}O$ and NIÑO indices are inverted (with the exception of SOI). NIÑO and SOI indices obtained from http://www.cpc.ncep.noaa.gov/data/indices/.

large negative anomalies in water vapor δD as active MJO events pass over the northern Borneo area. However, the most depleted Mulu rainfall $\delta^{18}O$ occurs towards the end of the passage of a regional convective system rather than at the onset (Figs. 6 and 7). Risi et al. (2008b) similarly observe a multi-day delay in maximum rainfall $\delta^{18}O$ depletion with respect to the onset of enhanced convective activity associated with the monsoon in west Africa. In our case, maximum rainfall $\delta^{18}O$ depletion occurs after ~3–4 days of above-average local precipitation. As water vapor residence times are 5–8 days at our site, this relatively rapid depletion suggests that additional vapor fractionation occurs as a result of on-site convective activity. Thus, the largest, sharpest rainfall $\delta^{18}O$ depletions observed in our timeseries can be ascribed to two processes: (1) regionally-enhanced convective activity associated with the MJO allows already depleted water vapor to Gunung Mulu, and (2) intense local convective activity distills the vapor pool over a period of several days, amplifying the advected negative isotopic anomaly. In this way, Mulu rainfall $\delta^{18}O$ variations on intraseasonal timescales reflect contributions from both regional and local convective activity.

The close relationship between regional hydrology and Mulu rainfall $\delta^{18}O$ is most evident on interannual timescales, when weak to moderate El Niño events are associated with significantly higher rainfall $\delta^{18}O$ at Mulu, and vice versa during La Niña events. In this context, it is striking that Mulu rainfall $\delta^{18}O$ is a better indicator than local Mulu precipitation of basin-scale atmospheric circulation on interannual timescales. This reinforces the notion that water vapor $\delta^{18}O$ has an integrating effect, averaging the convective activity experienced during its transport history through both space and time. As such, the ENSO signal captured by Mulu rainfall $\delta^{18}O$ reflects the sensitivity of Mulu rainfall $\delta^{18}O$ to regional climatic conditions on monthly timescales.

4.2. Implications for $\delta^{18}O$—based paleoclimate reconstructions

The present study demonstrates that changes in regional convective activity are reflected in rainfall $\delta^{18}O$ variations at our site, providing further empirical support for the amount effect framework used to interpret $\delta^{18}O$-based paleo-reconstructions from northern Borneo stalagmites (Partin et al., 2007; Meckler et al., 2012). As such, any changes over time in the background state of regional-scale hydrology, such as variability in the strength and/or location of deep convection in the WPWP, would likely impact rainfall $\delta^{18}O$ at Mulu. More generally, the ability of rainfall
δ18O to integrate regional convective activity across space and time makes it a much better indicator of large-scale hydrology than local precipitation amount, which contains much more noise. Therefore, while precipitation variability from nearby sites may be poorly correlated (Dayem et al., 2010), rainfall δ18O variability from nearby sites may indeed be highly correlated due to the integrative properties of rainfall δ18O. This explains why stalagmite δ18O records from caves that are hundreds of kilometers apart reflect the same regional-scale hydroclimate influences (e.g. Yuan et al., 2004; Wang et al., 2001). Likewise, well-reproduced cave stalagmite records from a single site can be interpreted as robust indicators of regional-scale hydroclimate variability (e.g. Partin et al., 2007).

When considering how to relate rainfall δ18O variability to stalagmite calcite δ18O variability, one must keep in mind that several processes mediate the cloud-to-calcite transformation of rainfall δ18O signals. First, the infiltration of rainwaters through the karst environment inevitably leads to some measure of signal attenuation from mixing, as well as signal delay depending on water residence times in the karst. In comparing several Mulu dripwater δ18O timeseries with rainfall δ18O timeseries, Cobb et al. (2007) argue for dripwater residence times of 2–3 months, based on the preservation of a weak seasonal cycle in dripwater δ18O. However, owing to logistical difficulties in collecting timeseries of dripwater δ18O from slow to ultra-slow drips that typically form stalagmites, residence time estimates for the most relevant drips remain poorly constrained. A new 5-yr-long timeseries of dripwater δ18O from both fast and slow Mulu drips will help quantify groundwater transit times across a broad range of drip environments (Moerman et al., 2012). A complementary approach involves pursuing a "calibration" of annual to sub-annual stalagmite δ18O with climatic timeseries over the 20th century. The latter approach requires unusually fast-growing stalagmites and small chronological errors afforded by either annual layer counting and/or many U/Th dates (e.g. Frappier et al., 2002, 2007; Fleitmann et al., 2004; Treble et al., 2005) and, as such, are relatively rare.
Such calibrations generally confirm the interpretation of stalagmite δ¹⁸O reconstructions as hydroclimate reconstructions, but highlight key uncertainties surrounding the cloud-to-calcite transformation of rainfall δ¹⁸O signals.

Our study suggests that as records of paleo-rainfall δ¹⁸O, stalagmite δ¹⁸O records reflect changes in regional convective activity, which in turn is related to a variety of climatic processes operating across a range of timescales. The Mulu rainfall δ¹⁸O timeseries exhibits variability at intraseasonal, seasonal, and interannual timescales, each linked to a distinct climatic phenomenon. Therefore, low-frequency stalagmite δ¹⁸O signals at Mulu could conceivably represent a change in the frequency and/or amplitude of MJO-related variability, a change in the seasonal rainfall cycle (i.e. the ITCZ), and/or a change in the tropical Pacific’s zonal SST gradient (i.e. ENSO). This ambiguity illustrates the need to transition from reliance on single-site stalagmite δ¹⁸O reconstructions to networks of paleoclimate records that span the geographic range of the climatic phenomenon of interest. Indeed, small networks of stalagmite δ¹⁸O records have recently been applied to investigate changes in the ITCZ by Griffiths et al. (2009) with a north-south transect from southeast Asia to Indonesia. Such an approach could be used to investigate changes in the zonal convective gradient across the equatorial tropical Pacific. Networks such as these would provide important benchmarks for newly available paleoclimate simulations of coupled GCMS, some of which are equipped with water isotope modules (e.g. LeGrande et al., 2006; Steurin et al., 2010; Risi et al., 2010). Such data-model comparisons provide an opportunity to advance our understanding of the mechanisms of global climate change on decadal to millennial timescales and how well these processes are represented in state-of-the-art climate models.

5. Conclusions

Our analyses demonstrate that the inverse relationship between rainfall δ¹⁸O and precipitation amount, known as the amount effect, is a strong control on the oxygen isotopic composition of rainfall in northern Borneo over the majority of the timescales examined. Studying a single precipitation event at high temporal resolution, we find evidence for local fractionation processes driving intra-storm rainfall δ¹⁸O variability, whereas the majority of diurnal to interannual rainfall δ¹⁸O variability originates from regional-scale hydrological processes. Daily rainfall δ¹⁸O variations best reflect cumulative regional precipitation occurring over the preceding week. Intra-seasonal rainfall δ¹⁸O variability, which is particularly large at our site with up to ~16% shifts, is closely associated with the MJO – the dominant mode of intraseasonal climatic variability in the tropics – and exhibits influences from both local and far-field fractionation processes. Interannual rainfall δ¹⁸O variability at Mulu is significantly correlated to ENSO, whereby a basin-scale reorganization of atmospheric circulation patterns during El Niño and La Niña events affects regional convective activity and in turn the regional isotopic composition of the atmospheric water vapor. In this context, Mulu rainfall δ¹⁸O is superior to local Mulu precipitation amount as a proxy for ENSO variability.

Our study documents a robust amount effect relationship between regional precipitation and Mulu rainfall δ¹⁸O that is most evident at intraseasonal and interannual timescales. Our results lend strong support to the interpretation of δ¹⁸O-based reconstructions from northern Borneo stalagmites as regional hydroclimate proxies, with significant influences from intraseasonal and interannual variability, and to a lesser extent, seasonal variability. More generally, our study illustrates that the processes governing the climate–rainfall δ¹⁸O relationship are space- and time-dependent. As such, our results support the generation of multi-year, daily-resolved timeseries of rainfall isotopes in order to identify the dynamical controls on rainfall δ¹⁸O variability at sites where accurate interpretations of paleoclimate δ¹⁸O reconstructions are especially critical.

Acknowledgments

The authors gratefully acknowledge the Mulu Meteorological Station staff for overseeing the collection of the daily rainfall samples, as well as Jenny Malang, Syria Lejau, and the staff at Gunung Mulu National Park for their dedicated assistance during fieldtrips. Permits for this work were granted by the Malaysian Economic Planning Unit, the Sarawak State Planning Unit, and the Sarawak Forestry Department. We also thank Aaron van Pelt of Picarro, Inc., Bruce Vaughan of INSTARR at UC Boulder, and Krystle Stewart for their invaluable assistance during sample analysis and Dr. Emanuele Di Lorenzo for his assistance with the TRMM dataset. This research was supported by NSF Grant 0645291 to KMC, and JWM was funded by a NSF Graduate Research Fellowship.

Appendix A. Supporting information

Supplemental Section and full Mulu rainfall δ¹⁸O dataset can be found in the online version at http://dx.doi.org/10.1016/j.epsl.2013.03.014. The full Mulu rainfall δ¹⁸O dataset may also be retrieved from the Global Network of Isotopes in Precipitation (GNIP), available via IAEA’s WISER database at http://www.iaea.org/water.

References
