COMPARISON OF WATER QUALITY BETWEEN SITES WITH AND WITHOUT CAGE CULTURE IN BATANG AI RESERVOIR, SARAWAK

Khoo Yen Nee

Bachelor of Science with Honours
(Aquatic Resource Science and Management) 2012
Comparison of Water Quality between Sites with and without Cage Culture at Batang Ai Reservoir, Sarawak

Khoo Yen Nee

This dissertation is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science with Honours

Aquatic Resource Science and Management Programme
Department of Aquatic Science
Faculty of Resource Science and Technology
Universiti Malaysia Sarawak
2012
ACKNOWLEDGEMENT

I dedicated this final year project report to my family, all the lecturers, and all my friends for supporting me since the start of my final year project. Firstly, I would like to thank my supervisors Professor Dr. Lee Nyanti, Associated Professor Dr. Ling Teck Yee, and Dr. Aazani Mujahid who guided me until the accomplishment of my laboratory work and also in writing this final year project report.

Special thanks are also given to Mr. Zaidi Haji Ibrahim, Mr. Mohd Norazlan Bujang Belly, Mr. Mustafa Kamal @ Harris Norman, Mr. Syaifudin Haji Bojeng, Mr. Richard Toh and all the lab assistants. During this final year project, I had faced a lot of difficulties in fixing my cages, preparing for my sampling and running the laboratories analysis. With their help, I had successfully completed my project.

I would like to thank my course mates who had helped me in my final year project. Special thanks to Leong Chui Kit, Ng Chiew Tyiin, Lee Xue Li and Liaw Sze Chieng who are always with me to give support when I have problem writing up my final year project report.

Lastly, I would like to thank my parents and siblings. Throughout the duration of this project, they are always concern with my progress and always reminded me not to give too much stress to myself. The word ‘Thanks’ is not enough for me to say to everyone that had helped me during my study but I still want to say a thousand of thanks to everyone that had helped me. Thanks.
DECLARATION

I, Khoo Yen Nee, final year student of Aquatic Resource Science and Management hereby declare that this thesis is my own work and effort with the guidance of my supervisor, Professor Dr. Lee Nyanti. No part of the thesis has previously been submitted for any other degree, university or institution of higher learning.

..

(Khoo Yen Nee)
Aquatic Resource Science and Management
Faculty of Resource Science and Technology
Universiti Malaysia Sarawak
TABLE OF CONTENTS

Acknowledgement ... I
Declaration ... II
Table of Contents .. III
List of Abbreviations .. IV
List of Tables and Figures V
Abstract ... 1
1.0 Introduction ... 2
2.0 Literature Review .. 4
 2.1 Reservoir ... 4
 2.2 Cage culture ... 5
 2.3 Primary productivity ... 6
 2.4 Water quality ... 6
 2.4.1 Temperature .. 7
 2.4.2 Dissolved oxygen (DO) 7
 2.4.3 pH ... 8
 2.4.4 Chlorophyll-\(a\) .. 8
 2.4.5 Nutrients ... 9
3.0 Materials and Methods .. 9
 3.1 Sampling locations .. 9
 3.2 Experiment procedures .. 11
 3.2.1 Water samples .. 11
 3.2.2 In-situ water quality parameters 12
 3.2.3 Laboratory analysis ... 12
 3.2.3.1 Biochemical oxygen demand (BOD\(_3\)) 12
 3.2.3.2 Total suspended solids (TSS) 13
 3.2.3.3 Chlorophyll-\(a\) 14
 3.2.3.4 Ammonia-nitrogen (NH\(_3\)-N) 15
 3.2.3.5 Nitrate (NO\(_3\)) 15
 3.2.3.6 Nitrite (NO\(_2\)) 15
 3.2.3.7 Orthophosphate (PO\(_4^{3-}\)) 15
 3.2.3.8 Silica (SiO\(_4\)) 15
 3.2.3.9 Chemical oxygen demand (COD) 16
 3.3 Primary productivity .. 16
 3.4 Fish survival exposure test 17
 3.5 Statistical analysis .. 17
4.0 Results ... 18
 4.1 Water quality .. 18
 4.1.1 In-situ parameters ... 18
 4.1.2 Ex-situ parameters .. 33
 4.2 Primary productivity ... 57
 4.3 Fish survival exposure test 59
5.0 Discussion .. 61
 5.1 Water quality ... 61
 5.2 Primary productivity ... 65
 5.3 Fish survival exposure test 66
6.0 Conclusion ... 67
7.0 References ... 68
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>Metre</td>
</tr>
<tr>
<td>hr</td>
<td>Hour</td>
</tr>
<tr>
<td>µg/L</td>
<td>Microgram per litre</td>
</tr>
<tr>
<td>mg/L</td>
<td>Milligram per litre</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved oxygen</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>NH₃-N</td>
<td>Ammonia nitrogen</td>
</tr>
<tr>
<td>NO₃⁻</td>
<td>Nitrate</td>
</tr>
<tr>
<td>NO₂⁻</td>
<td>Nitrite</td>
</tr>
<tr>
<td>PO₄³⁻</td>
<td>Orthophosphate</td>
</tr>
<tr>
<td>SiO₄</td>
<td>Silica</td>
</tr>
<tr>
<td>pH</td>
<td>Potential of hydrogen</td>
</tr>
<tr>
<td>TDS</td>
<td>Total dissolved solids</td>
</tr>
<tr>
<td>TSS</td>
<td>Total suspended solids</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>km²</td>
<td>Kilometre square</td>
</tr>
<tr>
<td>m³</td>
<td>Cubic metre</td>
</tr>
<tr>
<td>ml</td>
<td>Millilitre</td>
</tr>
<tr>
<td>BOD</td>
<td>Biochemical oxygen demand</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical oxygen demand</td>
</tr>
<tr>
<td>GPP</td>
<td>Gross primary productivity</td>
</tr>
<tr>
<td>NPP</td>
<td>Net primary productivity</td>
</tr>
<tr>
<td>H₂S</td>
<td>Hydrogen sulphide</td>
</tr>
<tr>
<td>rpm</td>
<td>Round per minute</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometre</td>
</tr>
<tr>
<td>µS</td>
<td>MicroSiemen</td>
</tr>
<tr>
<td>NTU</td>
<td>Nephelometric Turbidity Unit</td>
</tr>
<tr>
<td>mg/L/hr</td>
<td>Milligram per litre per hour</td>
</tr>
<tr>
<td>GPS</td>
<td>Global positioning system</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Title</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Map showing the three sampling stations at Batang Ai Reservoir</td>
</tr>
<tr>
<td>2</td>
<td>Horizontal and vertical view of sampling stations at Batang Ai Reservoir</td>
</tr>
<tr>
<td>3</td>
<td>Cage for exposure test of juvenile tilapia fishes</td>
</tr>
<tr>
<td>4</td>
<td>Comparison of temperature within and among stations in October 2011</td>
</tr>
<tr>
<td>5</td>
<td>Comparison of temperature within and among stations in November 2011</td>
</tr>
<tr>
<td>6</td>
<td>Comparison of temperature within and among stations in April 2012</td>
</tr>
<tr>
<td>7</td>
<td>Temperature profile of station 1 for 27 November 2011</td>
</tr>
<tr>
<td>8</td>
<td>Temperature profile of station 3 for 26 November 2011</td>
</tr>
<tr>
<td>9</td>
<td>Temperature profile of station 1 for 6 April 2012</td>
</tr>
<tr>
<td>10</td>
<td>Temperature profile of station 3 for 6 April 2012</td>
</tr>
<tr>
<td>11</td>
<td>Comparison of dissolved oxygen within and among stations in October 2011</td>
</tr>
<tr>
<td>12</td>
<td>Comparison of dissolved oxygen within and among stations in November 2011</td>
</tr>
<tr>
<td>13</td>
<td>Comparison of dissolved oxygen within and among stations in April 2012</td>
</tr>
<tr>
<td>14</td>
<td>Comparison of electrical conductivity within and among stations in October 2011</td>
</tr>
<tr>
<td>15</td>
<td>Comparison of electrical conductivity within and among stations in November 2011</td>
</tr>
<tr>
<td>16</td>
<td>Comparison of electrical conductivity within and among stations in April 2012</td>
</tr>
<tr>
<td>17</td>
<td>Comparison of turbidity within and among stations in October 2011</td>
</tr>
<tr>
<td>18</td>
<td>Comparison of turbidity within and among stations in November 2011</td>
</tr>
<tr>
<td>19</td>
<td>Comparison of turbidity within and among stations in April 2012</td>
</tr>
<tr>
<td>20</td>
<td>Comparison of ammonia within and among stations in October 2011</td>
</tr>
<tr>
<td>21</td>
<td>Comparison of ammonia within and among stations in November 2011</td>
</tr>
<tr>
<td>22</td>
<td>Comparison of ammonia within and among stations in April 2012</td>
</tr>
<tr>
<td>23</td>
<td>Comparison of nitrate within and among stations in October 2011</td>
</tr>
<tr>
<td>24</td>
<td>Comparison of nitrate within and among stations in November 2011</td>
</tr>
<tr>
<td>25</td>
<td>Comparison of nitrate within and among stations in April 2012</td>
</tr>
</tbody>
</table>
26 Comparison of nitrite within and among stations in October 2011
27 Comparison of nitrite within and among stations in November 2011
28 Comparison of nitrite within and among stations in April 2012
29 Comparison of orthophosphate within and among stations in October 2011
30 Comparison of orthophosphate within and among stations in November 2011
31 Comparison of orthophosphate within and among stations in April 2012
32 Comparison of silica within and among stations in October 2011
33 Comparison of silica within and among stations in November 2011
34 Comparison of silica within and among stations in April 2012
35 Comparison of total suspended solids within and among stations in October 2011
36 Comparison of total suspended solids within and among stations in November 2011
37 Comparison of total suspended solids within and among stations in April 2012
38 Comparison of chlorophyll-α within and among stations in October 2011
39 Comparison of chlorophyll-α within and among stations in November 2011
40 Comparison of chlorophyll-α within and among stations in April 2012
41 Gross primary productivity at 26 November 2011
42 Gross primary productivity at 6 April 2012
43 Net primary productivity at 26 November 2011
44 Net primary productivity at 6 April 2012
45 Respiration at 26 November 2011
46 Respiration at 6 April 2012
47 Mean primary production for both sampling at area with cage culture
48 Mean primary production for both sampling at area without cage culture
49 Water quality parameter at different depths during exposure
50 Turbidity at different depths during exposure
51 pH at different depths during exposure
52 Temperature at different depths during exposure

VI
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The coordinates of the three sampling stations</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>The coordinates of stations for primary productivity</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>Comparison of depths and transparency for October and November 2011 and April 2012</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>Comparison of pH within and among stations in October 2011</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>Comparison of pH within and among stations in November 2011</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>Comparison of pH within and among stations in April 2012</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>Comparison of total dissolved solids within and among stations in October 2011</td>
<td>29</td>
</tr>
<tr>
<td>8</td>
<td>Comparison of total dissolved solids within and among stations in November 2011</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>Comparison of COD within and among stations in April 2012</td>
<td>49</td>
</tr>
<tr>
<td>10</td>
<td>Comparison of BOD within and among stations in November 2011</td>
<td>50</td>
</tr>
<tr>
<td>11</td>
<td>Comparison of BOD within and among stations in April 2012</td>
<td>51</td>
</tr>
<tr>
<td>12</td>
<td>Survival of juvenile fishes in test cages during exposure test at cage culture</td>
<td>60</td>
</tr>
</tbody>
</table>
Comparison of Water Quality between Sites with and without Cage Culture in Batang Ai Reservoir, Sarawak

Khoo Yen Nee
Aquatic Resource Science and Management
Faculty of Resource Science and Technology
Universiti Malaysia Sarawak

ABSTRACT
This study was carried out in the months of October and November 2011, and April 2012 to assess the impact of cage culture activities on the water quality at Batang Ai Reservoir, Sarawak. Water quality parameters were recorded at 3 sampling stations which are S1 (cage culture area), S2 (area without cage culture), and S3 (unpolluted area of the reservoir) at five different depths (subsurface, 5 m, 10 m, 20 m, and 25 m). For nutrients, the range for ammonia was 0 to 0.83 mg/L, for nitrate 0.4 to 9.6 mg/L, for nitrite 0.004 to 0.115 mg/L, for orthophosphate 0 to 0.43 mg/L, and silica 0.030 to 9.583 mg/L. The concentrations of nutrients in April 2012 were significantly different compared to in October and November 2011 because it was raining season, fishes were harvested, and water level of the reservoir rose in April 2011. The range for BOD₅ was from 1.73 to 19.75 mg/L, COD from 0 to 21 mg/L, TSS from 0.500 to 11.019 mg/L, and chlorophyll-a from 0.192 to 11.706 (µg/L). TSS was highest at station 3 for all three samplings but is still under acceptable level for freshwater aquaculture. Chlorophyll-a was higher in station 1 and station 3 compared to the concentration of chlorophyll-a in station 2. Primary productivity and exposure tests of juvenile fishes were conducted during November 2011 and April 2012. The net primary production was higher at cage culture area compared to area without cage culture. The dissolved nutrients from urea and waste from feed fertilized the water and promote primary productivity. All juvenile fishes survived at depth of 5 m, 6 m, 7 m, and 8 m, but 100% morlity at the depth of 10 m. Dissolved oxygen was found to be the main cause of juveniles' mortality. These results indicated that cage culture activities and water input from upstream affects water quality at the reservoir.

Keywords: Water Quality, primary productivity, fish cage culture, reservoir

ABSTRAK
Kajian ini dijalankan pada bulan Oktober dan November 2011, dan April 2012 untuk menilai kesan aktiviti ternak ikan yang terhadap kualiti air di Tawanan Batang Ai Reservoir, Sarawak. Parameter kualiti air telah direkod di 3 stesen kajian iaitu S1 (kawasan bersangkar ikan), S2 (kawasan yang tiada sangkar ikan), dan S3 (kawasan takungan ikan yang tidak ditempatkan) pada lima kedalaman yang berbeza (permukaan, 5 m, 10 m, 20 m, dan 25 m). Untuk nutrien, kandungan ammonia berjulat diantara 0 sehingga 0.83 mg/L, nitrat diantara 0.4 sehingga 9.6 mg/L, nitrit diantara 0.004 sehingga 0.115 mg/L, ortofosfat diantara 0 sehingga 0.43 mg/L, dan silica diantara 0.030 sehingga 9.583 mg/L. Kandungan nutrien pada bulan April 2012 adalah berbeza secara signifikan berbanding dengan bulan Oktober dan November 2011 kerana pada ketika itu adalah musim hujan, ikan telah dikeluarkan dari sangkar dan paras air juga meningkat. BOD₅ pula berjulat diantara 1.73 sehingga 19.75 mg/L, COD diantara 0 sehingga 21 mg/L, TSS diantara 0.500 sehingga 11.019 mg/L, dan klorofil-a diantara 0.192 sehingga 11.706 (µg/L). TSS paling tinggi di stesen 3 untuk kediga-tiga bulan tetapi masih lagi berada dalam tahap yang sesuai untuk akuakultur air tawar. Klorofil-a adalah lebih tinggi pada stesen 1 dan stesen 3 berbanding dengan stesen 2. Produktiviti primer dan pendedahan ikan pada kedalaman yang berbeza dijalankan pada bulan November 2011 dan April 2012. Pengeluaran utama bersih adalah lebih tinggi di kawasan yang mempunyai sangkar ikan berbanding dengan kawasan tiada sangkar ikan. Nutrien daripada urea dan makanan ikan telah meningkatkan produktiviti primer. Semua ikan juvenil masih hidup pada kedalaman 5 m, 6 m, 7 m, dan 8 m, manakala semua ikan juvenil mati pada kedalaman 10 m. DO merupakan parameter utama yang menentukan kematian ikan tersebut. Berdasarkan keputusan daripada kajian ini, aktiviti ternakan ikan di sangkar dan kemasukan air dari hulu sungai ke empangan akan menpengaruhi kualiti air di empangan ini.

Kata kunci: kualiti air, produktiviti primer, ternakan sangkar ikan, takungan
1.0 Introduction

Aquaculture started in China around 2000 years BC and has been practiced for millennia (Stickney, 2009). According to statistic published by FAO (2010), world fisheries and aquaculture production in 2009 was 145.1 million tonnes. Of that, 55.1 million tonnes was from inland aquaculture and marine sources excluding plants. In Malaysia, aquaculture began only in the early 1900’s. In 2009, fisheries and aquaculture production in Malaysia was 1.87 million tonnes with a value of RM8683.80 million (DOF, 2009). In Sarawak, aquaculture activities started in Batang Ai Reservoir since 1993 and has provide protein source for human consumption.

Batang Ai Reservoir is located at the district of Lubok Antu, Sri Aman Division in the state of Sarawak. The surface area of the reservoir is 84 km² and the catchment area is 1200 km² (Asian Development Bank, 1999). Construction of Batang Ai Hydroelectric Dam started 1982 with the river diversion work and the last turbine was completed in 1985. Batang Ai Reservoir was formed by inundation after the completion of Batang Ai Hydroelectric dam construction. The reservoir is utilized for generating electrical power and for floating fish cage cultures.

Other than cage culture, eco-tourism activities also occur surrounding the reservoir. Eco-tourism is prominent in Batang Ai Reservoir with the existence of Hilton Batang Ai Resort. The Batang Ai National Park and human settlement are located upstream of the lake area. Water quality of the reservoir could be affected by those activities due to nutrient input from urea and waste discharge. It is important to document the water quality of the reservoir as many cage cultures are being set up since 1993.

Waters can be described in terms of the physical, chemical, and biological conditions present (Abdullah & Yasin, 2000). Water quality parameters such as the amount of ammonia, pH, and dissolved oxygen are important to describe the water quality of
reservoir (Maleri, 2011). Monitoring water quality of the reservoir also allows future development and expansion of aquaculture activities. Other than that, parameters of water quality are also important to be analyzed to ensure that fish survival and growth are optimum. During dry season, minimum flow releases also can cause poor water quality for aquatic life to live in the Batang Ai Reservoir. In dry season, very deep ponds are likely to experience low dissolved oxygen and ammonia or nitrite build up problems.

The success in introducing floating cage aquaculture brings production of 2,696 fish cages and the main cultured species is red tilapia (DOA, 2007). In Batang Ai Reservoir cage culture, the main species cultured is *Oreochromis* sp. (Red tilapia). Red tilapia is known as a very hardy species. It is able to tolerate high range of temperature and salinity compared to other species. Fishes are prone to get diseases when water temperatures dropped below 22°C and death occur when temperature drop below 16°C (Watanabe et al., 1997). The ideal temperature to ensure optimal growth of red tilapia is 27°C to 32°C, at salinity of 0 PSU and 32°C at salinity of 18 to 30 PSU (Watanabe et al., 2006). The overall growth and health of red tilapia will be affected when exposed to long period of low DO although the species is known to be able to withstand low DO (Shelton & Popma, 2006). Low DO concentrations for long period can markedly affect fish growth, feeding and assimilation efficiencies. Ammonia toxicity of tilapia is dependent on the content of DO, CO₂ and pH in the water bodies (Shelton & Popma, 2006).

All life form depend on primary production, a biochemical synthesis of organic substances from inorganic substances in certain space per unit time by autotrophs which form the base of the trophic chain (Kumar & Dubey, 2006). Primary productivity through photosynthesis assimilates carbon in the biosphere and made oxygen available. The production of oxygen through photosynthesis can be used to monitor the primary productivity of an aquatic ecosystem. In reservoir system, the primary productivity is
heterogeneous and not well understood. The resultant primary productivity is influenced by
abiotic and biotic characteristics of the reservoir system, often due to diel or seasonal
characteristic (Prabhakar et al., n.d.). The formation of organic substances and oxygen is as
follow:

\[6 \text{H}_2\text{O} + 6 \text{CO}_2(\text{g}) + \text{energy} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2(\text{g}) \]

The changes in water quality of Batang Ai reservoir provides valuable information
on the quality of water, the sources of variations and their impacts on cage culture
activities. The government allocated RM 252 million in recent budget for aquaculture
industry to develop large-scale integrated Aquaculture Zones in Pitas, Sungai Telaga, and
Sungai Padas in Sabah as well as Batang Ai and Tanjung Manis in Sarawak that meet the
standard as well as produce high quality products (Yusof, 2010). It is important for this
study to be conducted as aquaculture is the main protein source for local population and
state agency. The aims of this study were i) to assess water quality at five depths at cage
culture site and outside the cage culture site located at Batang Ai Reservoir, ii) to
determine the gross and net primary productivity of the Batang Ai Reservoir and iii) to
determine the survival rate of juvenile tilapia fishes at six different depths

2.0 Literature review

2.1 Reservoir

Over 70% of the surface of the planet is covered by vast majority of saltwater and
leaving 2.5% of it is freshwater that can be used in production of the largest proportion of
aquaculture products (Stickney, 2009). Reservoirs are managed much like fish ponds in
many countries including China and Israel. In Malaysia, there are 63 large reservoirs with a
total storage of 25 billion m³ (Makhlough, 2008). According to Beveridge (1987),
reservoirs have characteristics that make them less than ideal for aquaculture.
Reservoir’s environmental conditions are intermediate between those in rivers and lakes. Differences between reservoirs compared to rivers and lakes are reflected in the morphology, hydrology, physicochemical and biological conditions and greatly affect fish culture in reservoirs (Li & Xu, 1995). Reservoir can be affected by precipitation, evaporation and ground movement. Runoff waters from rainfall to reservoir are larger than to natural lakes. Water bodies of reservoirs are exposed to extensive loads of dissolved and particulate matters.

Stratification normally happens in reservoir. If reservoir stratification happened, substrate exchange between surface and deep water reduces and eventually leading to anoxic conditions (Friedl & Wuest, 2002). According to Baharim (2011), during the stratification, the development of the thermocline layer prevents the circulation of oxygen from the epilimnion to the hypolimnion layer. Thermocline layer act as a physicochemical barrier to diffusion where organic material can sink through but salts or gases cannot diffuse across it (Meon & Busuiocescu, 1993). Accumulation of organic material in hypolimnion by dying phytoplankton and sinking of detritus through the thermocline can results in oxygen utilization which cannot be replaced from the epilimnion. Besides that, drawdown also occurs in reservoirs. In hypolimnion, drawdown may cause upwelling of deoxygenated water that is rich in hydrogen sulphide, H₂S (Beveridge, 1987).

2.2 Cage culture

Cage culture is commonly developed in reservoirs and lakes as an independent process parallel to the enhancement of capture fisheries. Cages can be in various shapes and sizes such as square, rectangular, or cylindrical in shape. Cages used in freshwater are usually small with volume of less than one to a few cubic meter. Floatation materials used such as styrofoam and sealed metal cans such as oil or grease drums can be used to float
cages that are at the surface. Installation of cages in a water body will enhance harvests from the wild stock as nutrients and excess food become available for the fish. In other reservoirs, nutrient loading and sedimentation are caused by cage culture operations due to large inputs of nutrients (Abery et al., 2005). Nutrients become sediment and accumulated at the bottom of the reservoir under cages and can create considerable oxygen demand in the already low oxygen conditions.

2.3 Primary productivity

The method of measuring the production of oxygen is the light and dark bottle method. This method is used to determine the major components of primary production that can be estimated from measurements in closed systems. The major components to be measured are gross primary productivity (GPP), net primary productivity (NPP) and respiration (Cullen, 2001). GPP is the rate of photosynthesis which losses through excretion or respiration are not deducted. NPP refers to gross primary production after deducted losses to respiration by phytoplankton.

2.4 Water quality

Water quality is the basic chemical and physical characteristics of water that determine its suitability for aquaculture. During rainy season, the floodplain reservoirs store more water to protect the downstream area from flood damage and the water level increased during this period (Rast & Ryding, 1989). Water level fluctuates much greater in reservoir compared to natural lakes. In reservoirs, water quality deterioration usually comes from excessive nutrient inputs, eutrophication, acidification, heavy metal contamination, organic pollution, and obnoxious fishing practices.
2.4.1 Temperature

When upper and lower layers of reservoir’s water body have great variation in temperature, thermocline usually develops. Each aquatic species has a temperature range within which helps enhance growth to optimal as long as other condition are appropriate and sufficient food of the proper quality is available. Thermocline which normally develops in deep reservoirs occurs at a depth of 8-23 m (Li & Xu, 1995). Thermal stratification occurred in reservoir is an important natural process that can have significant effect on the water resources quality. The potential changes in chemical contents in water resulting from stratifications are the production of ammonia, sulphide and algal nutrients which are important in reservoir cage culture (Baharim et al., 2011). Besides that, vertical distribution and change in water temperature has a great effect on the productivity and habitat of natural organisms in the reservoirs. However, effect varies from reservoir to reservoir.

2.4.2 Dissolved oxygen (DO)

DO is also one of the limiting environmental factors affecting fish feeding, growth and its metabolism. Dissolved oxygen is an important indicator of water quality, ecological status, productivity and health of the reservoir due to its importance as a respiratory gas and its use in biological and chemical reactions (Mustapha, 2008). For deep reservoirs, DO level at surface is usually higher than that in bottom, whereas, shallow reservoirs have similar DO content at the surface and bottom layers of shallow reservoirs (Li & Xu, 1995).

Fluctuation in DO is affected by photosynthesis, respiration and diel fluctuation. Thermal stratification affects DO in deep water bodies as the amount of oxygen that the water can hold at saturation is reduced if temperature, salinity and altitude increase. Reservoirs are unsuitable for aquatic life if stratification happens and lake’s upper zone
(epilimnion) is thermally divided from deeper zone (hypolimnion). The latter becomes stagnant and lacking in dissolved oxygen (anaerobic). According to Baharim (2011), dissolved oxygen reduction in the hypolimnion happened during insufficient wind action which decreases the extent of mixing between hypolimnion and epilimnion.

2.4.3 pH

Changes in pH directly affect utilization and transfer of nutrients and affect the physical condition and survival of fish in water (Li & Xu, 1995). Presence of carbon dioxide at surface water caused pH of the water to range between 6.0 to 6.8. Intense photosynthesis by phytoplankton, periphyton or submerged macrophytes can lead to increase in pH due to consumption of CO₂, perhaps to pH 9 to 10 in shallow reservoirs (Straskraba, 1999). Therefore, lakes that support large algal populations could be expected to show a pH that exceeds the pH of the supply waters prior to the growth of algae, at least near the lake surface and during seasons when the algae are photosynthesizing most rapidly.

2.4.4 Chlorophyll-a

Chlorophyll-a is an important indicator for the presence of algae, and large fluctuations in dissolved oxygen and pH are characteristics of eutrophication (Lee et al., 2006). In freshwater, phosphorus is often use as indicator of eutrophication. However to assist interpretation of the actual phosphorus content, chlorophyll-a levels or biomass of phytoplankton can be used (Wetzel, 2001).
2.4.5 Nutrients

Reservoirs are subject to higher element loading compared to natural lakes because of the greater catchment area and higher inflow rates (Straskraba, 1999). The concentration of nutrients varies from reservoir to reservoir due to differences in soil and vegetation in the catchment area and also hydrological condition of the reservoir (Li & Xu, 1995). According to Li & Xu (1995), nitrates, phosphates, silicate, and iron are important nutrients required by fish and bait organisms in reservoirs. Eutrophication and water quality problems can be cause by nutrient input from watershed. Eutrophication occur in reservoir due to its shallowness and it could affect the water quality of the reservoir by giving rise to unpleasant taste and odour, and affects dissolution of other gases, especially dissolved oxygen (Mustapha, 2008).

Reservoirs also have a higher capacity of retaining phosphorus (Straskraba, 1999). Naturally, phosphorus originates from the weathering of rocks. Phosphorus and nitrogen promote algal growth, which in turn promotes the growth of zooplankton (Stickney, 2005). Fry fish will also benefit from having plankton available upon which they can feed. For example, species such as tilapia, which accept prepared foods when they begin to feed, will also forage on plankton (Stickney, 2005).

3.0 Materials and Methods

3.1 Sampling locations

Batang Ai Hydroelectric Reservoir is a man-made reservoir which located 250 km south-east of Kuching, close to the border between Sarawak and Kalimantan (Figure 1). The reservoir contained average water volume of 750 million m³. The water resources for the reservoir are from Batang Ai, Engkari River and precipitation. Water samples were collected at an area with cage culture and outside the cage culture in the month of October.
and November 2011 and April 2012. Exposure tests of fish in water condition of six different depths were conducted at the same time. Primary productivity was conducted at two area which were area with cage culture activities and area without cage culture activities.

Figure 1: Map showing the three sampling stations at Batang Ai Reservoir (Source: Google Earth)
3.2 Experiment procedures

3.2.1 Water samples

The water samples were taken using Van Dorn water sampler at three stations (Table 1) and at five different depths which are subsurface, 5 m, 10 m, 20 m and 25 m (Figure 2). At each station, three replicates of in-situ parameters and water samples were taken at each depth for laboratory analysis. Water samples were kept in 2 L polyethylene water bottles that had undergo acid wash and were stored in cooler box filled with ice. All samples were taken to laboratory for further analysis.

Table 1: The coordinates of the three sampling stations

<table>
<thead>
<tr>
<th>Stations</th>
<th>GPS</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N 01° 09’ 43.1” E 111° 50’ 09.7”</td>
<td>At the center to the Tiang Laju cage culture</td>
</tr>
<tr>
<td>2</td>
<td>N 01° 09’ 45.8” E 111° 50’ 16.2”</td>
<td>100 m away from Tiang Laju cage culture</td>
</tr>
<tr>
<td>3</td>
<td>N 01° 10’ 43.1” E 111° 55’ 20.0”</td>
<td>8.05 km away from the Tiang Laju cage culture</td>
</tr>
</tbody>
</table>

Figure 2: Horizontal and vertical view of sampling stations at Batang Ai Reservoir
3.2.2 In-situ water quality parameters

Temperature, dissolved oxygen (DO), pH, electrical conductivity, and total dissolved solids (TDS) were taken using Eutech Multiparameter Series 600. Turbidity was measured using Eutech Turbidity Instrument TN-100. The depth of each station was measured using depth finder. Water transparency was measured using secchi disc at each station. All the parameters were recorded in triplicates during each time water samples were collected. TDS was recorded in triplicates for October and November 2011.

3.2.3 Laboratory analysis

Water quality parameters such as biochemical oxygen demand in five days (BOD$_5$), total suspended solids (TSS), chlorophyll-a, ammonia-nitrogen, nitrate, nitrite, orthophosphate, silica and chemical oxygen demand (COD) were carried out in the laboratory.

3.2.3.1 Biochemical oxygen demand in five days (BOD$_5$)

BOD$_5$ was determined for November 2011 and April 2012. To determine the BOD$_5$ values, water samples was filled into 300 ml BOD bottles. Dilution was done on water samples using distilled water with dilution factor of 1:2. Then the water was shaken to aerate it. DO readings of the water samples were measured from the bottles. All BOD bottles were wrapped with aluminium foil to prevent light penetration and were kept in a cooler box for 5 days. The initial DO value is the value for D$_1$. On the 5th day, DO readings were recorded as the value for D$_5$. The formula that was used for measuring BOD$_5$, followed the protocol outlined by APHA (1998):
BOD₅ (mg/L) = \(\frac{D_1 - D_5}{V} \)

Where,

\(D_1 \) = Initial DO of sample immediately after preparation (mg/L)
\(D_5 \) = DO value after 5 days incubation at 25°C (mg/L)
\(V \) = Proportion of dilution used

3.2.3.2 Total suspended solids (TSS)

Total suspended solids were analyzed using standard method APHA (1998). For TSS analysis, there were pre-fieldtrip sampling method and post-fieldtrip method. For pre-fieldtrip method, glass fibre filter paper was soaked in distilled water. Each filter paper was placed on a piece of aluminium foil and was dried in the oven at 103°C-105°C overnight. Filter paper was allowed to cool for at least 10 minutes before weighing using analytical balanced. The initial reading of filter paper was recorded. For post-fieldtrip method, the glass fibre filter paper was placed on the inter-plate of the filter funnel using forcep. A known volume of water samples were filtered using the vacuum pump. After that, filter paper was removed from the filtration funnel and it will be placed back to aluminium foil. Filter paper was dried in the oven at 103°C-105°C overnight. Filter paper was taken out of the oven and allowed to cool until reading room temperature before weighing. Final reading of the filtered glass fibre filter paper was recorded and TSS was calculated using formula:

\[
\text{TSS (mg/L)} = \frac{W_F - W_I}{V}
\]

Where,

\(W_I \) = Initial weight of filter paper
\(W_F \) = Final weight of filter paper
\(V \) = Volume of water samples filtered (L)
3.2.3.3 Chlorophyll-\(a\)

The concentration of chlorophyll-\(a\) in water samples was analyzed using standard method APHA (1998). For chlorophyll-\(a\) analysis, water samples were filtered using vacuum pump. Filter paper containing chlorophyll-\(a\) was taken for analysis. The samples were grinded by using a grinder and 5-6 mL of 90% acetone were added into the mortar. Samples were grinded for about 5 minutes and all materials in the mortar were placed into a capped test tube. Ninety percent acetone was added into test tube to make up the volume to 10 mL. Test tube was folded with aluminium foil and was placed in the refrigerator for 4-18 hours to facilitate complete extraction of the pigments. Then the liquid extracted was transferred into centrifuge tube. The samples was placed into a centrifuge for about 10 minutes under 3000 rpm. Optical density was determined using spectrophotometer at wavelength of 750 nm, 664 nm, 647 nm, and 630 nm. Each extinction for small turbidity blank was corrected by subtracting 750 nm from 664 nm, 647 nm, and 630 nm absorptions.

The concentration of chlorophyll-\(a\) in the extract of the pigment after correction:

\[
C_a = 11.85(E_{664} - E_{750}) - 1.54(E_{647} - E_{750}) - 0.08(E_{630} - E_{750})
\]

Where \(E\) = the absorption in the respective wavelength

After determining the concentration chlorophyll-\(a\) in the extract, the amount of chlorophyll-\(a\) in the pigment per unit volume of water filtered was calculated as follows:

\[
\text{Chlorophyll-\(a\) (\(\mu\)g /L) = } \frac{C_a(v)}{VL}
\]

Where \(C_a\) = Chlorophyll-\(a\) pigment concentration in \(\mu\)g/mL
\(v\) = Volume of acetone in mL
\(V\) = Volume of samples in L
3.2.3.4 Ammonia-nitrogen (NH$_3$–N)

For ammonia-nitrogen (NH$_3$–N), the concentration was determined using standard method 8038, Nessler Method. Polyvinyl Alcohol Dispersing Agent was added. Ammonia concentration was measured using DR 2010 Spectrophotometer (HACH, 2000).

3.2.3.5 Nitrate (NO$_3^-$)

For nitrate analysis, the concentration was determined using standard method 8192, Cadmium Reduction Method. Nitrate in the sample was reduced to nitrite by cadmium metal where nitrite ions reacted with sulfanilic acid in an acidic medium. Nitrate concentration was measured using DR 2010 Spectrophotometer (HACH, 2000).

3.2.3.6 Nitrite (NO$_2^-$)

For nitrite analysis, the concentration was determined using standard method 8507, Diazotization Method. Nitrite in the sample reacted with sulfanilic acid. The amount of nitrite was measured using DR 2010 Spectrophotometer (HACH, 2000).

3.2.3.7 Orthophosphate (PO$_4^{3-}$)

For orthophosphate analysis, the concentration was determined using standard method 8048, Phos Ver3 Method. Concentration of orthophosphate was measured using DR 2010 Spectrophotometer (HACH, 2000).

3.2.3.8 Silica (SiO$_4$)

For silica analysis, the concentration was determined using standard method 8186, Heteropoly Blue Method. Silica reacted with molybdate ion under acidic condition. The concentration of silica was measured using DR 2010 Spectrophotometer (HACH, 2000).