PREDICTION OF WAVE PROPAGATION, WIND WAVE EFFECTS AND ENERGY DISSIPATION NEARSHORE OF SUNGAI SARAWAK ESTUARY

SITI ZALEHA BINTI KAMALUDDIN

This project is submitted to Faculty of Engineering, University Malaysia Sarawak in partial fulfilment of the requirement for the degree of Bachelor of Engineering with Honours (Civil Engineering) 2009

UNIVERSITI MALAYSIA SARAWAK

		SESI PENGAJIA	AN: <u>2008/2009</u>	
Saya		SITI ZALEHA B	INTI KAMALUI JF BESAR)	DDIN
mengak dengan	tu membenarkan tesis * ini dis syarat-syarat kegunaan seperti	impan di Pusat Khio berikut:	dmat Maklumat A	kademik, Universiti Malaysia Sarawa
1. 2. 3. 4. 5.	Tesis adalah hakmilik Univer Pusat Khidmat Maklumat Al tujuan pengajian sahaja. Membuat pendigitan untuk m Pusat Khidmat Maklumat Ak sebagai bahan pertukaran anta ** Sila tandakan (✓) di kot	siti Malaysia Saraw kademik, Universiti tembangunkan Pang cademik, Universiti ara institusi pengajia tak yang berkenaan	ak. i Malaysia Saraw kalan Data Kandu Malaysia Sarawa an tinggi.	ak dibenarkan membuat salinan untu Ingan Tempatan. k dibenarkan membuat salinan tesis ir
]	SULIT (1 M TERHAD (1	Mengandungi maklu Aalaysia seperti yan Mengandungi maklu	umat yang berdar g termaktub di dal umat TERHAD ya	rjah keselamatan atau kepentingan lam AKTA RAHSIA RASMI 1972). ang telah ditentukan oleh organisasi/
L	b	adan di mana penye	elidikan dijalankar	ı).
[TIDAK TERHAD			
				Disahkan oleh
_	(TANDATANGAN PEN	NULIS)	(TAN	DATANGAN PENYELIA)
Ala	mat tetap: LOT 1097 PIASA	AU JAYA,		
	JALAN 2B, FASA 2,98000, MIRI SARAWAK		NOF	AZLINA BINTI BATENI
_				Nama Penyelia

CATATAN

* ** Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah, Sarjana dan Sarjana Muda. Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD. The Following Final Year Project:

 Title
 : Prediction of Wave Propagation, Wind Wave Effects and Energy

 Dissipation Nearshore of Sungai Sarawak Estuary

Author : Siti Zaleha Binti Kamaluddin

Matrix Number : 15310

Was read and certified by:

Norazlina Binti Bateni

Date

Project Supervisor

ACKNOWLEDGEMENT

The final year project had been very tough and challenging task. Firstly, Alhamdulillah, I have successfully finished the project. Thanks to ALLAH the most gracious and merciful. Very big thanks to my supervisor, Madam Norazlina Binti Hj.Bateni for her help, support, advice and motivation. My thanks also go to my supportive friends and course mate who contribute upon completion of my project. My appreciation also awarded to the following department; Department of Irrigation and Drainage (DID) and Malaysian Meteorological Services (MMS) for their wind and wave data of Sarawak river estuary and also the department of Civil engineering UNIMAS. Lastly, my gratefulness and affection goes to my parents who give priceless support and motivation to me during completion of my project. Thank you so much for the contributions.

ABSTRAK

SWAN (Simulation WAves Near shore) ialah model simulasi ombak generasi ketiga yang digunakan untuk menganalisis parameter fizikal untuk muara Sungai Sarawak. Penyelidikan ini meliputi penyebaran ombak, kesan angin ombak dan pelesapan tenaga di kawasan pantai iaitu muara sungai Sarawak. Muara sungai Sarawak menghadapi masalah iaitu peningkatan dalam kadar pemendakan di kawasan kajian. Terdapat hasil ujian pemendakan pasir yang menunjukkan hasil di mana selepas pembinaan kunci air di hulu Sungai Sarawak, ini menyebabkan paras air yang masuk menurun dan menyebabkan kesan pemendakan di kedua bahagian hulu dan hilir sungai dengan anggaran kadar pemendakan pasir sebanyak 0.3 meter dalam setahun. Projek ini dijalankan dalam tiga (3) senario untuk model ombak iaitu Tahunan, Monsun Timur Laut dan Monsun Barat Daya. Selain itu, model ombak ini juga merangkumi analisis jangka masa panjang dan juga jangka masa pendek. Analisis jangka masa panjang menggunakan taburan ekstrim 30 tahun Gumbel dan Weibull. Hasil kajian yang penting dari kajian ini ialah Hs, Tm01, Dir dan pelesapan tenaga dari sebelas (11) lokasi yang dipilih sepanjang kawasan muara sungai Sarawak.

ABSTRACT

SWAN (Simulation WAves Near shore) is a third generation wave model that is use to investigate the physical parameters of Sungai Sarawak estuary. The investigation includes the prediction of wave propagation, wind wave effects and energy dissipation near shore of Sungai Sarawak estuary. Estuary of Sungai Sarawak faced with the problems of the increments in the sedimentation rate. There have been siltation test result shows that after a sluice construction at the upstream of Sungai Sarawak, it causes the tidal influx decreases and leading to some siltation at both upstream and downstream sides with an average siltation thickness of about 0.3m in a year. For this project, the wave modeling was developed for three (3) scenarios of Annual, Northeast and Southwest monsoon. Other than that, for each of the wave modeling scenarios, both short and long term analysis of waves also have been consider and carried out. The long term wave analysis are using Gumbel and Weibull statistical distribution functions for 30-year of return period. The main results for this project are Hs, Tm01, Dir. and energy dissipation. The results are from the eleven (11) selected area stretches along the Sungai Sarawak estuary.

LIST OF APPENDICES

Appendix A	Wave statistic summaries- wave and swell
Appendix B1	Wind percentage frequency
Appendix B2	Maximum surface wind data
Appendix C	Admiralty tide table
Appendix D	1-D Nonstationary spherical coordinates (*.SPE)

LIST OF FIGURES

FIGURES

PAGE

1.1	Satellite map of the study area	6
2.1	Regular Vs Irregular waves	12
2.2	A schematic diagram of Rayleigh distribution showing the relative	14
2.3	Spatial wave profile	15
2.4	Wave motion	16
2.5	Typical crest pattern	20
3.1	Summary of methodology	36
3.2	Action balance equation	49
3.3	Distributed regions in the computational grid due to erroneous boundary conditions are indicated with shaded areas	52
3.4	SWAN GUI main menu	54
4.1	Marsden square	58
4.2	Shoreline orientation and wave approach direction	60
4.3	Annual wave rose	61
4.4	Southwest wave rose	62
4.5	Northeast wave rose	63
4.6	24 hours April wind rose	65

4.7	24 hours May to September wind rose	65
4.8	24 hours October wind rose	65
4.9	24 hours March wind rose	66
4.10	24 hours Annual wind rose	66
4.11	Bottom or Bathymetry data from	67
4.12	SWAN GUI main menu	69
4.13	SWAN GUI main menu	71
4.14	Bottom menu for 2-D mode	72
4.15	Open bottom data of txt. format	73
4.16	Bottom data	74
4.17	Estuary of Sungai Sarawak bottom	74
4.18	SWAN GUI main menu	77
4.19	Obstacles sub-menu	77
4.20	Compute option sub-menu	78
4.21	Output location (Evenly along transect)	78
4.22	Output locations for individual coordinates	
4.23	SWAN GUI show file	79
4.24	SWAN GUI run in progress	80
5.1	1-D and 2-D spectra results of SWAN GUI from Northeast scenario	81
5.2	1-D computation graph for mean wave direction (Dir) of Annual scenario	83
5.3	1-D computation graph for mean wave period (Tm01) of Annual scenario	84

5.4	1-D computation graph for significant wave height (Hs) of Annual scenario	85
5.5	2-D computation graph for mean wave direction (Dir) of Annual scenario	85
5.6	2-D computation graph for mean wave period (Tm01) of Annual scenario	86
5.7	2-D computation graph for significant wave height (Hs) of Annual scenario	87
5.8	2-D computation graph for depth of Annual scenario	87
5.9	Significant wave height (Hs) graph for each of monsoon scenario	88
5.10	H _{Gumbel} graph for each of monsoon scenario	91
5.11	$H_{Weibull}$ graph for each of monsoon scenario	91
5.12	Mean wave period (Tm01) graph of Hsignificant for each of monsoon scenario	92
5.13	Mean wave period (Tm01) graph of H_{Gumbel} for each of monsoon scenario	95
5.14	Mean wave period (Tm01) graph of $H_{Weibull}$ for each of monsoon scenario	95
5.15	Mean wave direction (Dir) graph of Hsignificant for each of monsoon scenario	96

5.16	Mean wave direction (Dir) graph of H_{Gumbel} for each of monsoon scenario	99
5.17	Mean wave direction (Dir) graph of $H_{Weibull}$ for each of monsoon scenario	99
5.18	Varience densities/energy densities for Annual wave model scenario	100
5.19	Varience densities/energy densities for Northeast wave model scenario	105
5.20	Varience densities/energy densities for Southwest wave model scenario	105

LIST OF TABLES

	TABLE	PAGE
2.1	Probability distribution functions for long-	27
	term statistics	
4.1	Wave conditions for each monsoon	61
5.1	Significant wave heights (Hs) results	90
5.2	Mean wave period results (Tm01)	94
5.3	Mean wave direction results (Dir)	98
5.4	Varience Densities (Vandens) / Energy	102
	Densities (E) for Annual wave model	
	scenarios	
5.5	Varience Densities (Vandens) / Energy	103
	Densities (E) for Annual wave model	
	scenarios	
5.6	Varience Densities (Vandens) / Energy	104
	Densities (E) for Annual wave model	
	scenarios	

LIST OF ABBREVIATION

ANN	-	Annual
DID	-	Drainage Irrigation Department
GUI	-	Graphical User Interface
HAT	-	Highest Astronomical Tide
Hs	-	Significant wave height
MMS	-	Malaysian Meteorological Services
SSMO	-	Summary of synoptic Meteorological
		observations
SWAN	-	Simulating Waves Nearshore
NEM	-	Northeast monsoon
SWM	-	Southwest monsoon

LIST OF SYMBOLS

T_r	-	Return period
σ	-	Standard deviation
P(x)	-	Extreme value distribution
x	-	Wave height parameter
K s	-	Shoaling coefficient
H_s	-	Significant wave height
$H_{1/3}$	-	Average one third of maximum wave height
T_s	-	Significant wave period
d	-	Depth
L	-	Wave length
K r	-	Wave refraction coefficient
С	-	Celerity
Т	-	Wave period

TABLE OF CONTENTS

TITLE	PAGE
Acknowledgement	ii
Abstrak	iii
Abstract	iv
List of Figures	v-viii ix
List of Abbreviation	X
List of Symbols	xi

CHAPTER 1 INTRODUCTION

	1.1	Introduction	1-3
	1.2	Problem statement	3-4
	1.3	Description of study area	5-6
	1.4	Objective of the study	7
	1.5	Scope of the study	7-8
	1.6	Significance of research	9
CHAPTER 2	LIT	ERATURE REVIEW	
	2.1	Introduction	10-11
	2.2	Theory of waves	12
		2.2.1 Irregular waves (Random waves)	13
		2.2.2 Regular wave theory	14-15
		2.2.3 Wave propagation processes	15-16
	2.3	Wind-generated waves	17-18
		2.3.1 Mechanism of generation (waves)	18-19
		2.3.2 Wave characteristics	19-22
	2.4	Wave analysis	22
		2.4.1 Wave prediction	22-23
		2.4.2 Short term statistics	23
		2.4.3 Long term statistics	24-27
	2.5	Simulation Waves Nearshore (SWAN)	28-29

2.5.1 Comparison of SWAN	29-32
with other spectral wave	
process	
2.5.2 Application of SWAN at	32-33
Estuary of Sungai Batu	
Pahat, Johor, Malaysia	

CHAPTER 3 METHODOLOGY

3.1	Introduction	34-36
3.2	Data collection	37
	3.2.1 Wave data	37
	3.2.2 Wind data	38
	3.2.3 Bathymetry data	38
	3.2.4 Water level data	38
3.3	Wave data analysis	39
	3.3.1 Short term analysis	40
	3.3.2 Long term wave data analysis	41
	3.3.2.1 Gumbel extreme value distribution	42-44
	3.3.2.2 Weibull Extreme value distribution	44-46
3.4	SWAN wave modeling	46-47
	3.4.1 Action density spectrum	47-48
	3.4.2 Action Balance equation	48-49

	3.4.3 Numerical implementation	49-52
	3.4.4 SWAN GUI (Graphical User Interface)	53-54
3.5	Result analysis	55

CHAPTER 4 DATA COLLECTION AND ANALYSIS

CHAPTER 5

4.1	Data collection and analysis	56
	4.1.1 Wave data	57-58
	4.1.1.1 Wave data analysis	59-63
	4.1.2 Wind data	64
	4.1.2.1 Wind data analysis	64-67
	4.1.3 Water level	68
	4.1.4 Bathymetry data	68-69
4.2	SWAN GUI overview	70
	4.2.1 SWAN GUI application	71-81
RESU	JLTS AND DISCUSSIONS	
5.1	Introduction	82
5.2	SWAN GUI results	83
	5.2.1 1-D Computation graph results	84-85
	5.2.2 2-D Computation graph results	86-88
	5.3 Significant wave height (Hs)	88-92
5.4	Mean wave pediod (Tm01)	93-96

	5.5	Mean wave direction (Dir)	97-100
	5.6	Energy dissipation	101-106
CHAPTER 6	APTER 6 CONCLUSIONS AND RECCOMENDATIONS		
	6.1	Conclusions	107
	6.2	Reccomendations	108
	REFF	ERENCES	109-110

111-134

APPENDIX A-D

CHAPTER 1

INTRODUCTION

1.1 Introduction

Ocean engineering is the branch of engineering concerned with the design, analysis and operation planning of systems that operate in an oceanic environment. Examples of systems range from oil platforms to submarines, from breakwaters to sailboats. Nowadays, there is growing awareness of coastal problems since the past decade over the world for future research and development needs. Coastal engineering discussed and presented in this research has been limited to only the near shore zone, ranging from water depths that are just within the wave shoaling zone to the shoreline. Nearshore is indefinite zone extending seaward from the shoreline well beyond the breaker zone. The design waves for estuary Sungai Sarawak are generally based on the waves generated by wind. Estuaries are zones where fresh water debouches from river mouths into the sea causing stratification due to the density difference. The principal coastal elements of the coastal zone of Sarawak are tides, winds and monsoon influences, wave action, sediment transport, littoral drift and mangroves. In ocean engineering, this inner coastal zone such as estuaries must given priority to make sure people are to live there in harmony with the environment. Wind generated waves are by far the largest contribution of energy from sea to the beach and near shore physical system. Air currents that caused by differences in air temperature above the oceans blow across the water and returning some energy to the water by generating wind waves. Winds that blow over the surface of oceans will generate waves.

This project stressed on physical and mathematical modeling of coastal processes for the study area, Sungai Sarawak. Simulation Waves Nearshore, SWAN will be used to modeling the design waves near shore of Sungai Sarawak from various return period. In the analysis of the coastal environment, spectral models are useful for determine the spectra in the region of interest, i.e. the region where wave data are needed for a design of a coastal structure or for other purposes. SWAN is a phase averaging wave model designed to obtain realistic estimates of wave parameters in coastal areas, lakes or estuaries from given wind, bottom, and current conditions (Holthuijsen et al., 2004). SWAN represents a water wave

models that significantly improved accuracy in design. SWAN (Booij et al.1999, Ris et al.1999) is one of the most widely applied spectral wave models at present in coastal engineering studies. SWAN is currently being used in about 50 countries, 700 institutes are registered. It is a public domain to the user's worldwide. In Russia, SWAN had been applied for hind casting waves for Barents, Caspian, Baltic, North, Okhotsk, Black, Azov, Mediterranean, Japan seas and Ladoga Lake.

1.2 Problem statement

According to Department of Irrigation and Drainage, Sarawak, 2000, Sungai Sarawak is important for Southwestern Sarawak as source of water, transportation and the inhabitants. The majority of the population lives in coastal areas in Malaysia. There is more than 80% population live along the 800 km coastline in Sarawak. The principal Uses of the Coastal Zone of Sarawak are human settlement, urbanisation, recreation, agriculture, industrial estates, amenity, timber processing and fishery. Sungai Sarawak near shore environments is facing problems with coastal landforms that exist because hydrodynamic of waves, currents, tides and wind processes erode, transport and deposit particles of sediment. Sedimentation is a major problem to Sungai Sarawak near shore. Sedimentary processes are among the most important but least understood aspects of the coastal environment.

specifically, the response of sediment particles to the forces produced by shoaling waves, tides, coastal currents and winds.

According to Xiaodong Zhao et al., 2003, the Sarawak River regulation project has just been built in the year 1997/1998. The project includes a water retaining dam to the constructed upstream of oil terminal and a sluice to be built 1.8km downstream of Ironwoods. The main function of the project is to adjust the upstream water level of Sarawak River, especially to keep a high water level near Kuching City to beautify environment. As the runoff of Sarawak River is rather small, the sluice gates are normally closed. The automatic opening and closing gates are only used to adjust the upstream water level. But when the floodwater comes, the sluice gates must be opened. This river regulation project gives impact to Sungai Sarawak estuary as there are increments in the sedimentation rate. The siltation test result show that after the sluice construction, tidal influx decreases, leading to some siltation at both upstream and downstream sides with an average siltation thickness of about 0.3m in a year.

4

1.3 Description of study area

Sarawak is Malaysia's largest state located on the island of Borneo. It is located between longitude 109°36'E and 115°40' E and latitude 0°50'N and 5°N. The study area is within Sungai Sarawak near shore. Sungai Sarawak is a major river in the Sarawak state in Malaysia with its upper reaches and middle reaches running through a hilly area. Sungai Sarawak has two main tributaries; Sungai Sarawak Kiri and Sungai Sarawak Kanan. Sungai Sarawak (Muara Tebas) length is 38Km or 21miles. The river bed of Sungai Sarawak is almost in the natural state of an alluvial plane river without any man-made embankment.

The cross section of river is mainly in U-shape. The width, depth and area of the estuary are relatively stable during 1978 to 1996 (Xiaodong Zhao et al., 2003). The approach channel of Kuching port is the natural waterway of Sungai Sarawak containing two shoals, namely the Inner Bar and the Outer Bar, with the shallowest depth of 5.1m. The study areas boundaries are within the near shore of Sungai