Lecture Notes in Civil Engineering (LNCE) publishes the latest developments in Civil Engineering—quickly, informally and in top quality. Though original research reported in proceedings and post-proceedings represents the core of LNCE, edited volumes of exceptionally high quality and interest may also be considered for publication. Volumes published in LNCE embrace all aspects and subfields of, as well as new challenges in, Civil Engineering. Topics in the series include:

- Construction and Structural Mechanics
- Building Materials
- Concrete, Steel and Timber Structures
- Geotechnical Engineering
- Earthquake Engineering
- Coastal Engineering
- Ocean and Offshore Engineering; Ships and Floating Structures
- Hydraulics, Hydrology and Water Resources Engineering
- Environmental Engineering and Sustainability
- Structural Health and Monitoring
- Surveying and Geographical Information Systems
- Indoor Environments
- Transportation and Traffic
- Risk Analysis
- Safety and Security

To submit a proposal or request further information, please contact the appropriate Springer Editor:

- Pierpaolo Riva at pierpaolo.riva@springer.com (Europe and Americas);
- Swati Meherishi at swati.meherishi@springer.com (Asia—except China, and Australia, New Zealand);
- Wayne Hu at wayne.hu@springer.com (China).

All books in the series now indexed by Scopus and EI Compendex database!
International Conference on Water Resources (ICWR) – Volume 1

Current Research in Water Resources, Coastal and Environment

Editors
Sobri Harun
School of Civil Engineering
Universiti Teknologi Malaysia
Johor, Malaysia

Ilya Khairanis Othman
School of Civil Engineering
Universiti Teknologi Malaysia
Johor, Malaysia

Mohamad Hidayat Jamal
School of Civil Engineering
Universiti Teknologi Malaysia
Johor, Malaysia
Acknowledgment

The 5th International Conference on Water Resources (ICWR2021), held virtually in November 2021, has attracted over 70 abstract submissions and over 100 participants both locally and internationally. We would like to thank all the people involved in organising and sponsoring the conference. Special thanks go to the conference committee and UTM SPACE for their time and efforts in communicating with authors and reviewers. The peer-review processes have narrowed the selected papers to 36, presented in three chapters. Our sincere appreciation goes to more than 30 reviewers for their expertise demonstrated and commitment to reviewing the selected papers. All authors have cooperated in response to reviewers’ comments and the editorial needs.
Contents

Integrated River Basin Management
Statistical and Trend Analysis of Annual Maximum Daily Rainfall

(AMDR) for Kuching City, Sarawak, Malaysia 3

Development of Depth-Area-Duration (DAD) Curves for Kuantan
River Basin ... 15
Norasman Othman, Nurul Farhana Abu Manshor, and Shairul Rohaziawati Samat

A Feasibility Study of Fitting the Normal Distribution and Gamma
Distribution to Rainfall Data at Kuantan River Basin 27
Nadiatul Adilah Ahmad Abdul Ghani, Azlyn Senawi, and Roshan Subramaniam

Bibliometric Analysis of Global Research on Probable Maximum
Precipitation Estimation Using Scopus Database 37
Rasnavi Paramasivam, Nor Eliza Alias, Sitti Asmah Hassan, and Fara Aiza Md. Sanin

Multivariate Statistical Analysis of Morphometric Parameters
in Watersheds of Peru .. 51
M. López-Silva, D. Carmenates-Hernandez, I. Sao-Cancio,
A. Valderrama-Romero, and P. Huamaní-Navarrete

Hydrological Drought Evaluation on Streamflow Drought Index
(SDI) in Upstream and Downstream Area of Lampao Reservoir,
Northeast of Thailand .. 63
Kowit Boonrawd, Jirawat Supakosol, and Haris Prasanchum
Trend Analysis of Terrestrial Water Availability in the Amu River Basin Under Climate Change ... 73
Obaidullah Salehie, Tarmizi bin Ismail, and Shamsuddin Shahid

Characteristic of Stormwater Quality Using BIOECODS in JKR Pilot Projects ... 83
Sanisah Sulaiman, Noor Ezlyn Othman, Atikah Abdul Hamid, Nor Azazi Zakaria, and Chun Kiat Chang

Reducing Uncertainties in Infiltration Model Using SCS-CN for Mixed Land Use Catchment .. 97
A. J. Hassan, S. Harun, T. Ismail, and H. Zulkarnain

A Review on Heavy Duty Mobile Flood Wall Barrier: Way Forward for Malaysia .. 111
Woon Yang Tan, Mohamad Nazif Daud, Norlida Mohd Dom, Cha Yao Tan, Xin Yi Chong, Chow Hock Lim, Chung Lim Law, and Fang Yenn Teo

Investigating SWAT Model Efficiency to Determine Water Balance Components (Case Study: Sungai Muda Watershed) 123
Mohd Syazwan Faisal bin Mohd, Mohamad Hidayat bin Jamal, Khairul Anuar bin Mohamad, and Liew Juneng

Development of the National Water Balance Management System (NAWABS) for the Perak, Kurau and Kerian River Basins 137
A. M. Ishak, A. Ahmad, N. A. Abdullah, U. A. Abdul Karim, M. M. Mohammad Husni, J. Lau, and N. G. Md. Nor

Managing Disputes in Water Management Contracts: The DID Perspective ... 149
Sr Ruaidah binti Idris

Hydro-Environment
The Influence of Vegetated Alternate Bar on Flow Resistance in an Alluvial Straight Channel ... 167
M. Z. M. Salleh, Z. Ibrahim, R. Saari, M. E. Mohd Shariff, and M. Jumain

A Mathematical Study of the Relation Between Discharges, Froude Number, Bed Width in Dividing Open Channel Flows 177
Contents

Laboratory Investigations on Porous Concrete Drainage Systems
Performance .. 187

Feroz Hanif Mohamed Ahmad, Mohamad Hidayat Jamal,
Abdul Rahman Mohd Sam, Nuryazmeen Farhan Haron,
and Canarisa Nipi Ah Lian

Permeability and Mechanical Properties of Pervious Concrete
Curb with Different Aggregate Sizes .. 195
C. N. A. Lian, M. H. Jamal, and Z. Ibrahim

Application of Building Information Modelling (BIM) Technology
in Drainage System Using Autodesk InfraWorks 360 Software 209
King Kuok Kuok, Kia Wee Kingston Tan,
Po Chan Chiu, Mei Yun Chin, Md. Rezaur Rahman,
and Muhammad Khusairy Bin Bakri

Comparison of Drag Models in Shallow Flow for Spherical Particle
Trajectory .. 225

Lavine Wong, Mohamad Hidayat Jamal, and Erwan Hafizi Kasiman

The Relationship Between Flow and Pressure Head of Partially
Submerged Orifice Through CFD Modelling Using Flow-3D 235
Anas S. Ghamam, Mohammed A. Abohatem,
Mohd Ridza Bin Mohd Haniffah, and Ilya K. Othman

Prediction of Flow Structure in Axial Flow Submersible Pumps
During Intake by Numerical Simulation .. 251
T. A. Norizan, H. Ghazali, R. Abu Seman, and Z. Harun

Numerical Analysis of Flow Characteristics for Idealised Y-Shaped
Channels ... 261

Zi Xin Foh, Cha Yao Tan, Mohd Ridza Mohd Haniffah,
Erwan Hafizi Kasiman, and Fang Yenn Teo

Modelling of an Embankment Failure Using Flow-3D 273
M. Y. Zainab, A. L. S. Zebedee, A. W. Ahmad Khairi, I. Zulhilmi, and A.
Shahabuddin

Water Distribution System Modelling in Pasir Gudang, Johor
with EPANET ... 283

J. H. Lee, P. Jeevaragagam, N. K. Max Mulwan, A. Aris, and M. Anjang
Ahmad

Removal of Ammoniacal Nitrogen from Aqueous Solution Using
Clinoptilolite as Adsorbent
Najihasuhada Abi Jihat and Mohd. Hafiz Puteh

Determination of the Relationship Between River Ecosystems and Benthic Macroinvertebrate Ecological Indices as a Basis for River Health Assessment
Aweng Eh Rak, Sharifah Aisyah Syed Omar, Muhammad Abdul Salam, and Mior Izuddin Baharuddin

A Holistic Approach for Establishing Resilient Dams for Malaysia
Lariyah Mohd Sidek, Hidayah Basri, Mohammad Marufuzzaman, Norziana Jamil, Zeittey Karmilla Kaman, Muhammad Izzat Azhar Khebir, Siti Mariam Allias Omar, and Mohd Hazri bin Moh Khambali

Sentiment Analysis and Topic Modeling for Identifying Key Public Concerns of Water Quality/Issues
Dwijendra Nath Dwivedi, Ghanshyama Mahanty, and Anilkumar Vemareddy

Islamic Institutional Arrangements of the Aflaj Systems Maintenance in Sultanate of Oman: Operation of the Different Aflaj Type Case Study
Ahmed S. Al-Marshoudi and Jasni Sulong

Coastal Engineering and Management
Salinity Behavior and Intrusion in Kelantan River Estuary
N. A. Mohamad, I. K. Othman, M. H. Jamal, R. Sa’ari, K. V. Annamala, and M. F. Ahmad

Physical and Chemical Variability of Mangrove Island: A Case Study of Pulau Kukup, Johor
Abdul Al-Hafiis Abdul Rahman Lim, Mohamad Hidayat Jamal, Daeng Siti Maimunah Ishak, Shamila Azman, Myzairah Hamdzah, and Nor Suhaila Rahim

Potential Development of Coastal Reservoir in Malaysia

Numerical Study of Wave Groups in Wind-Swell Seas
A. M. Mansoor and M. Latheef

Numerical Simulations of Wave Diffraction Around a Low-Crested
Semicircular Breakwater ... 421
Muhammad Nur Aiman Bin Roslan, Hee Min Teh, and Faris Ali Hamood
Al-Towayti

Modelling of Wave Runup and Overtopping Over Accropode II
Breakwater ... 435
V. K. Krishnasamy, M. H. Jamal, and M. R. Haniffah

Marine Debris Assessment and Clean Coast Index of Pantai Navy
Labuan, Wilayah Persekutuan Labuan, Malaysia 445
Diyana Hazierah Abdullah, Norasikin Saman,
Nurfarhain Mohamed Rusli, Mohd Rizalman Mohd Ali,
and Shazwin Mat Taib
About the Editors

Dr. Sobri Harun is a professor in water resources engineering at Universiti Teknologi Malaysia (UTM). He received BSc in Civil Engineering from the University of Salford, a Master’s degree from Imperial College London, and a PhD from UTM. His lectures concern hydrology, hydraulics, hydraulic structures, water resources, and urban stormwater management for undergraduate and postgraduate. His research and publication mostly related to modelling in hydrology, river engineering, water resources, and climate changes. His research works were published in various indexed journals. He is a panel member of the Malaysian Quality Assurance Agency, visiting professor of Universiti Tun Hussein Onn Malaysia, member of IAHR & IAHS, guest editor to Journal of Water and Climate Change, and editorial board to Malaysian Construction Research Journal. He was chairman of the International Conference on Water Resources, which received support from UNESCO Jakarta and the Department of Drainage and Irrigation Malaysia.

Dr. Mohamad Hidayat Jamal is an Associate Professor at Universiti Teknologi Malaysia (UTM). He obtained his PhD in coastal engineering in 2011 from the University of Plymouth, UK. His bachelor’s degree is in Civil Engineering, and his master’s degree is in Hydraulics and Hydrology from UTM. He has experience in academics for nearly 20 years. He serves the Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, UTM. He is also a member of the Center for Coastal and River Engineering (CRCE), Research Institute for Sustainable Environment (RISE), UTM. He is also a Professional Engineer, Board of Engineer Malaysia (BEM), a Chartered Marine Engineer, the Institute of Marine Engineering, Science & Technology, UK (IMarEST), a Chartered Engineer of Engineering Council, UK (EC, UK), a Certified Professional in Erosion and Sediment Control (CPESC), and a professional Technologist, Malaysia Board of Technologist (MBOT).
Dr. Ilya Khairanis Othman is a Senior Lecturer at the Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, UTM Universiti Teknologi Malaysia (UTM). She completed her bachelor’s degree in Civil Engineering from UTM in 2007 and joined UTM after completing her MSc at the University of Plymouth, UK, in 2008/9. She obtained her PhD from the University of Queensland, Australia, in 2014 in the field of coastal engineering. Her teaching and research evolve around fluid and coastal hydraulics and have led to several national research grants. She is currently serving as deputy director for Coastal and River Engineering (CRCE), Research Institute for Sustainable Environment (RISE), UTM. She is a lifetime member of the International Association of Coastal Reservoir Research (IACRR), a professional member of the American Society of Civil Engineers (ASCE), and a registered engineer with the Board of Engineer Malaysia (BEM).
List of Figures

Statistical and Trend Analysis of Annual Maximum Daily Rainfall (AMDR) for Kuching City, Sarawak, Malaysia

Fig. 1 Sarawak River Basin and location of Kuching Airport rainfall station (in red box) [18] 5
Fig. 2 Linear regression plot of AMDR for the period 1975–2017 10
Fig. 3 Frequency curve for AMDR for Kuching city for period 1975–2017 12

Development of Depth-Area-Duration (DAD) Curves for Kuantan River Basin

Fig. 1 Map of Kuantan River Basin .. 18
Fig. 2 The isohyetal map of the 1-day rainfall on 1/1/2018 in KRB using IDW 22
Fig. 3 DAD curve of 1 day rainfall on 1/1/2018 23
Fig. 4 Final DAD curves of Kuantan River Basin 24

Bibliometric Analysis of Global Research on Probable Maximum Precipitation Estimation Using Scopus Database

Fig. 1 Flowchart of gathering data from the Scopus database 39
Fig. 2 The frequency of natural disasters from 1953 to 2020 41
Fig. 3 The annual and cumulative numbers of research articles publication Authors Analysis ... Fig.41
4 The top 15 most productive countries and academic institutions in MFC publications 45
Fig. 5 The bibliometric network map of co-occurrence keywords in PMP research .. 46

xv
<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>The overlay visualization of the bibliometric network map of co-occurrence keywords in PMP research</td>
<td>47</td>
</tr>
<tr>
<td>1</td>
<td>The study watersheds</td>
<td>53</td>
</tr>
<tr>
<td>2</td>
<td>Dendrogram of cluster analysis results in R-mode</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td>Dendrogram obtained by CA</td>
<td>59</td>
</tr>
<tr>
<td>1</td>
<td>Study area</td>
<td>65</td>
</tr>
<tr>
<td>2</td>
<td>The average annual streamflow data from observed stations E65 and E75</td>
<td>67</td>
</tr>
<tr>
<td>3</td>
<td>Time series distribution and drought levels of SDI from station E65</td>
<td>68</td>
</tr>
<tr>
<td>4</td>
<td>Time series distribution and drought levels of SDI from station E75</td>
<td>69</td>
</tr>
<tr>
<td>1</td>
<td>The climate zones of Amu river basin</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>Spatial variability of TWS (cm) in the Amu river basin for JPL product</td>
<td>78</td>
</tr>
<tr>
<td>3</td>
<td>The spatial patterns of change in TWS (cm/year) using the JPL dataset. The colour ramps show the rate of change obtained by applying Sen’s slope, and the black dot inside each cell specifies the trend is significant at a 95% confidence interval obtained by MMK</td>
<td>79</td>
</tr>
<tr>
<td>1</td>
<td>Site layout of District Police Headquarters, Pasir Mas, Kelantan</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>Six sampling points</td>
<td>87</td>
</tr>
<tr>
<td>3</td>
<td>Water quality monitoring at ecological swale (dissolve oxygen)</td>
<td>88</td>
</tr>
</tbody>
</table>
Reducing Uncertainties in Infiltration Model Using SCS-CN for Mixed Land Use Catchment

Fig. 1 Contour and river map of Sg Ketil catchment 99
Fig. 2 Land use of Sg Ketil catchment ... 100
Fig. 3 Typical relationship between CN, S and Ia 102
Fig. 4 Runoff between average and individual (Rainfall 3 in to 5 in) 104
Fig. 5 Runoff between average and individual (Rainfall 6 in and 7 in) 105
Fig. 6 Percentage runoff different (Dominant land use – Urban) 105
Fig. 7 Percentage runoff different (Dominant land use – Forest) 106
Fig. 8 Percentage runoff different (Dominant land use – Agriculture) 106
Fig. 9 Left: Subcatchment for level I; Right: Percentage of dominant land use .. 107
Fig. 10 Left: Subcatchment level II; Right: Percentage of dominant land use for subcatchment Level II 107
Fig. 11 Left: Subcatchment for level III; Right: Percentage of dominant land use for subcatchment Level III 108

A Review on Heavy Duty Mobile Flood Wall Barrier: Way Forward for Malaysia

Fig. 1 Proposed classification of mobile flood protection system. (Source Koppe and Brinkmann [10]) 113
Fig. 2 Manual slot flood wall barrier (Source Delta Technology [6]) ... 117
Fig. 3 Auto-flip flood wall barrier (Source Delta Technology [6]) 117
Fig. 4 Self-closing flood barrier (Source The Flood Company [16]) 118
Fig. 5 Manual swing flood wall barrier (Source Delta Technology [6]) 119
Fig. 6 Auto-stacking flood wall barrier (Source Delta Technology [6])
List of Figures

[6]) ...119

Fig. 7 The Allegro® interlocking concrete block *(Source JP Concrete [8]) .. 120

Investigating SWAT Model Efficiency to Determine Water Balance Components (Case Study: Sungai Muda Watershed)

Fig. 1 Sungai Muda Watershed tributary *(Source After NWRS [9]) 125
Fig. 2 Mean temperature: annual (left); DJF (middle); JJA (right)
in 1976–2006 (°C) *(Source Wong et al. 2007) 128
Fig. 3 Mean precipitation: annual (left); DJF (middle); JJA (right)
in 1976–2006 (mm/year) *(Source Wong et al. 2007) 128
Fig. 4 Hydrograph of observed and simulated flow
during calibration period (1981–1990) .. 129
Fig. 5 Coefficient of determination (R2) value for calibration period 130
Fig. 6 Hydrograph of observed and simulated flow during validation
period (1997–2006) ... 130
Fig. 7 Coefficient of determination (R2) value for the validation
period .. 131
Fig. 8 a-h Different components of water balance showing
the variation on the monthly basis for the year 1981–2006 132
Fig. 9 Diagram showing the comparison of the element of water
budget on a monthly basis for the year 1981–2006 133

Development of the National Water Balance Management System (NAWABS) for the Perak, Kurau and Kerian River Basins

Fig. 1 Overview of NAWABS Perak, Kurau and Kerian (JPS 2021) 138
Fig. 2 Sungai Perak, Kurau and Kerian River Basin (JPS 2021) 140
Fig. 3 Drivers of change in the context of competing stakeholders’
interests and finite resource base [1] .. 144
Fig. 4 Interlinkages between sectors (WEF Nexus) 145
Fig. 5 Water resource schemating for the Perak, Kurau, and Kerian
Basins .. 148

Managing Disputes in Water Management Contracts: The DID Perspective

Fig. 1 BQ Sample for Project No. 1: Bill No. 9: Method-Related
Charges Rancangan Tebatan Banjir Sungai Rampayan
Lembangan Sunggai Menggatal, Kota Kinabalu, Sabah
(Tawaran Semula) ... 153
Fig. 2 BQ Sample for Project No. 2 (a) Bill No. 1: General
Items—Kerja Mencegah Hakisan Pantai Mek Mas, Kota
List of Figures

Bharu, Kelantan (Tawaran Semula) .. 154

Fig. 3 BQ Sample for Project No. 2 (b): Bill No. 4: Method-Related Charges—
Kerja Mencegah Hakisan Pantai Mek Mas, Kota Bharu, Kelantan (Tawaran Semula) .. 155

Fig. 4 BQ Sample for Project No. 3: Bill No. 1: Preliminaries and
General Items—Membina Pintasan Banjir, Pintu Kawalan Pasur Dan Kerja-Kerja Berkaitan Bagi
Rancangan Tebatan Banjir (RTB) Lembangan Sungai Kesang 156

The Influence of Vegetated Alternate Bar on Flow Resistance in
an Alluvial Straight Channel

Fig. 1 Final condition of bed topography after the experiment
was completed. a Non-vegetated bar, b full vegetation bar 170
Fig. 2 Location of measurement stations along the flume channel 170
Fig. 3 Formation of an alternate bar in all experiments with and
without vegetation, a experiment 1, b experiment
2, and c experiment 3 .. 172
Fig. 4 The relationship of friction factor with alternate bar formation at
each measured cross-section. a experiment 1, b
experiment 2, c experiment 3 ... 173
Fig. 5 The relationship of Manning’s n with alternate bar formation at
each measured cross-section. a experiment 1, b experiment
2, c experiment 3 .. 174

A Mathematical Study of the Relation Between Discharges, Froude
Number, Bed Width in Dividing Open Channel Flows

Fig. 1 The schematic layout of open channel
dividing flow 180 θ = 0°
Fig. 2 The relationship between q_r and Fr when 1
θ = 0° 182
Fig. 3 The relationship between q_r and Fr when 1
θ = 15° 182
Fig. 4 The relationship between q_r and B1 when 1
θ = 0° 183
Fig. 5 The relationship between q_r and B1 when 1
θ = 15° 184

Laboratory Investigations on Porous Concrete Drainage Systems
Performance

Fig. 1 Samples of cube (left) and drain cover (right) with different sizes of
aggregates 188 Fig. 2 Permeability
test for a cube and b drain cover samples 190
Fig. 3 Compressive strength test for cube samples with different sizes of aggregates .. 191

Fig. 4 Porous concrete drainage system performance for cube sample tests ... 192

Fig. 5 Porous concrete drainage system performance for drain cover tests .. 192

Permeability and Mechanical Properties of Pervious Concrete Curb with Different Aggregate Sizes

Fig. 1 Particle size distribution curve of aggregate ... 198
Fig. 2 Pervious concrete cube sample A CA20 mm B CA16 mm C CA8 mm D CA4 mm ... 199
Fig. 3 Porosity of pervious concrete with different coarse aggregate sizes .. 202
Fig. 4 Compressive strength of pervious concrete with different coarse aggregate sizes 203
Fig. 5 Relationship between porosity and compressive strength of pervious concrete 203
Fig. 6 Permeability of pervious concrete with different coarse aggregate sizes ... 204
Fig. 7 Relationship between porosity and permeability of pervious concrete .. 205

Application of Building Information Modelling (BIM) Technology in Drainage System Using Autodesk InfraWorks 360 Software

Fig. 1 Satellite view of Taman Uni-Central, Kota Samarahan 212
Fig. 2 Overview of research methodology ... 213
Fig. 3 Terrain theme of Autodesk InfraWorks model 214
Fig. 4 Plotting of drainage network ... 215
Fig. 5 Imported sub-basin areas into SSA extension 216
Fig. 6 Import of Autodesk InfraWorks model into SSA 216
Fig. 7 Completed drainage layout of Taman Uni-Central 217
Fig. 8 Locations of highlighted inadequate drainage network 1 218
Fig. 9 Locations of highlighted inadequate drainage network 2 219
Fig. 10 Locations of highlighted inadequate drainage network 3 220
Fig. 11 Locations of highlighted inadequate drainage network 5 221
Fig. 12 Locations of highlighted inadequate drainage network 6 222
Fig. 13 Locations of highlighted inadequate drainage network 7 222

Comparison of Drag Models in Shallow Flow for Spherical Particle Trajectory

Fig. 1 Notations and forces of a sphere rolling over the water surface 228
Fig. 2 Constant water depth (left) and constant velocity (right) of flume setup 230

Fig. 3 Comparison of different C_D formulas on floating spherical particle movement 231

The Relationship Between Flow and Pressure Head of Partially Submerged Orifice Through CFD Modelling Using Flow-3D

Fig. 1 Boundary, and initial conditions 239
Fig. 2 Probes and flux devices 239
Fig. 3 Free flow condition 240
Fig. 4 Partially submergence condition—weir flow 241
Fig. 5 Partially submergence condition—orifice flow 242
Fig. 6 Graph of flow rate vs mesh cell size 243
Fig. 7 Coefficient of discharge for case A 244
Fig. 8 Flow rate of case A 245
Fig. 9 Coefficient of discharge for case B 246
Fig. 10 Flow rate of case B 246
Fig. 11 Coefficient of discharge for case C 247
Fig. 12 Flow rate of case C 248
Fig. 13 Wide downstream channel 248
Fig. 14 Power trend line for Q modelling 249

Prediction of Flow Structure in Axial Flow Submersible Pumps During Intake by Numerical Simulation

Fig. 1 Experimental pump sump model 253
Fig. 2 Numerical pump sump model 253
Fig. 3 Boundary conditions for the numerical model 254
Fig. 4 Meshed numerical models; a the entire pump sump domain, b domain without floor splitter, c domain with floor splitter 255
Fig. 5 Vortex core at the inlet 256
Fig. 6 Streamlines indicating the flow structure; a without floor splitter, b with floor splitter ... 256

Fig. 7 Vorticity plot of the flow structure through the vortex core on x–y plane; left side a without floor splitter, right side b with floor splitter ... 257

Fig. 8 Vorticity plot of the flow structure through the vortex core on the y–z plane; left side a without floor splitter, right side b with floor splitter ... 257

Fig. 9 Vorticity plot of the flow structure at the sump floor on the x–z plane; left side a without floor splitter, right side b with floor splitter ... 258

Fig. 10 Vorticity plot of the flow structure at the swirl angle measurement level; right side a without floor splitter, left side b with floor splitter ... 258

Fig. 11 Velocity diagram for intake flow at swirl angle measurement level; left side a without floor splitter, right side b with floor splitter ... 259

Numerical Analysis of Flow Characteristics for Idealised Y-Shaped Channels

Fig. 1 Model setup (not to scale; U/S: upstream; D/S: downstream) 264

Fig. 2 Types of cross section for rectangular and trapezoidal section (not to scale and all value are in metre) ... 266

Fig. 3 Velocity profile of main channel with various manning’s coefficient (Rectangular cross-section and Scenario 1) 266

Fig. 4 Velocity profile of channel 1 with various manning’s coefficient (Rectangular cross-section and Scenario 1) 267

Fig. 5 Velocity profile of channel 2 with various manning’s coefficient (Rectangular cross-section and Scenario 1) 267

Fig. 6 Velocity profile of main channel with various scenario (Rectangular cross-section and n = 0.06) 269

Fig. 7 Velocity profile of channel 1 with various scenario (Rectangular cross-section and n = 0.06) 269

Fig. 8 Velocity profile of channel 2 with various scenario
List of Figures

(Rectangular cross-section and n = 0.06) .. 270

Modelling of an Embankment Failure Using Flow-3D

Fig. 1 Model setup a Embankment geometry, and b Meshing size 276
Fig. 2 Boundary conditions of the model setup 276
Fig. 3 Breach outflow hydrograph for different sediment sizes 277
Fig. 4 a Breach width and b breach depth against time 278
Fig. 5 Breach growth for a t = 60, b t = 80 and c t = 100 s 278
Fig. 6 Progression of breaching profiles at various time intervals 279
Fig. 7 Changes of free surface elevation with hydrostatic pressure variation during the embankment failure 279
Fig. 8 Shear stress changes of an embankment breaching 280
Fig. 9 Shear stress against a breach depth and b breach width 281

Water Distribution System Modelling in Pasir Gudang, Johor with EPANET

Fig. 1 The sketch of water distribution layout 285
Fig. 2 Water distribution network in EPANET 286
Fig. 3 Pipe flow rate and flow direction in EPANET 290
Fig. 4 Comparison of water demand for the Pasir Gudang area 292
Fig. 5 Comparison of demand before and demand after the tank of Kampung Kopok 2 is not function 293

Removal of Ammoniacal Nitrogen from Aqueous Solution Using Clinoptilolite as Adsorbent

Fig. 1 Effect of particle size on removal efficiencies and adsorption capacity ... 298
Fig. 2 Effect of initial concentration on removal efficiencies and adsorption capacity ... 299
Fig. 3 Effect of contact time on removal efficiencies and adsorption capacity .. 299
Fig. 4 Effect of adsorbent dosage on removal efficiencies and adsorption capacity .. 301
Fig. 5 Linear line plotting a 1/qₑ vs. 1/Cₑ and b ln qₑ vs. ln Cₑ for adsorption of ammoniacal nitrogen onto clinoptilolite
List of Figures

from aqueous solution .. 302
Fig. 6 Linear line plotting a ln (qe-qt) versus ti and b ti/qt versus ti for adsorption of ammoniacal nitrogen onto clinoptilolite from aqueous solution .. 303

Determination of the Relationship Between River Ecosystems and Benthic Macroinvertebrate Ecological Indices as a Basis for River Health Assessment
Fig. 1 Sampling stations at Sungai Mengkibol 309
Fig. 2 Sampling stations at Sungai Madek 309
Fig. 3 Sampling stations at Sungai Dengar 310
Fig. 4 Sampling stations at Sungai Hulu Dengar 310
Fig. 5 Sampling stations at Sungai Gunung 310
Fig. 6 Correlation between benthic macroinvertebrate with substrate compositions, riparian composition, physicochemical water quality, river discharge, LWD and canopy cover 314

A Holistic Approach for Establishing Resilient Dams for Malaysia
Fig. 1 The overall framework of the proposed research 325
Fig. 2 Data sharing architecture of the proposed research 326
Fig. 3 Example of risk model architecture (2 failure modes) (iPresas, 2017) .. 328
Fig. 4 Isohyets map for the highest recorded rainfall 329
Fig. 5 Model setup on HEC-HMS 4.8 software 330
Fig. 6 Example of a screenshot of the iPresas Calc software 337
Fig. 7 Temengor inflow forecasting system 338

Sentiment Analysis and Topic Modeling for Identifying Key Public Concerns of Water Quality/Issues
Fig. 1 Process flow for topic modeling 345
Fig. 2 Pre-processing process for sentiment analysis 347
Fig. 3 Word cloud before sentiment analysis and topic modeling . 347
Fig. 4 Sentiments segmentations 348
Fig. 5 Word cloud for positive sentiments 349
Islamic Institutional Arrangements of the Aflaj Systems
Maintenance in Sultanate of Oman: Operation of the Different Aflaj
Type Case Study

Fig. 1 Location of the studied aflaj over the Northern part of Oman 361

Fig. 2 Field survey constructed daudi identified components. The picture (left side) indicated a man-waking tunnel for falaj al-khatmeen in the district of burkat al-mouz (approximately 2,450 m long with a two-meter width and one meter height), as indicated above. The second picture (right side) shows author viewing, along with falaj al-malki wakeel (administrative agent), a one ventilation shaft which deeply is attached to the tunnel forming a horizontal tunnel attached with serial of these shafts. The main function of these is to allow air inside the tunnel and also as a means to get rid of the dirt from the tunnel construction, and later used as access for maintenance . 362

Fig. 3 The first picture (left) shows how the water is coming from the volcanic limestone rocks and is highly protected (by the government) due to its high temperature from the locals and tourists to enter. As can be seen, there is strong metal fence along with warning signs so any visitor only can view it from above. The second picture (middle) is an old hole which was constructed at the top-edge of the main spring to convey flow through an open channel (left side) constructed (strong cement dam) with the aim of conveying water continuously day and night to the irrigation area 362

Fig. 4 Water extraction process of the wadis (oasis) surface source: falaj al-samdi. The first picture (left) shows how the water is collected from the main source in the middle of the oasis (wadi). Since it is difficult to be protected from the heavy rain (flood), monitoring and maintenance must be there. The second picture (middle) which is an open water-flow conveying channel was constructed at the top-edge of the main water source to convey flow through an open channel (left side) with strong cement dam) with the aim of conveying water continuously day and night
Salinity Behavior and Intrusion in Kelantan River Estuary

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Maps of Kelantan River estuary (Google earth 2021)</td>
</tr>
<tr>
<td>2</td>
<td>Location of salinity sampling points and water level stations</td>
</tr>
<tr>
<td>3</td>
<td>Salinity measurements equipment and process. a YSI Water Quality Sensors tools fastened on cement blocks c YSI water quality sensors immersed into water</td>
</tr>
<tr>
<td>4</td>
<td>Installation of water level data logger (CTD diver)</td>
</tr>
<tr>
<td>5</td>
<td>Water level at three different locations along the Kelantan River from 23 October 2015 to 22 November 2015</td>
</tr>
<tr>
<td>6</td>
<td>Average salinity along the downstream of Kelantan River at different sampling points on 24 and 25 October 2015. a Salinity at left (P1), b Salinity at the middle (P2), c Salinity at right (P3)</td>
</tr>
<tr>
<td>7</td>
<td>Average salinity from the river mouth to downstream (C1 to C7) in ascending depths at three different points left, P1 (a and d), middle, P2 (b and e), and right P3 (c and f) on 24 October 2015 (a–c) and 25 October 2015 (d–f)</td>
</tr>
<tr>
<td>8</td>
<td>Longitudinal salinity structure along Kelantan River estuary, 24 October 2015 (blue line) and 25 October 2015 (red line)</td>
</tr>
</tbody>
</table>

Physical and Chemical Variability of Mangrove Island: A Case Study of Pulau Kukup, Johor

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Location of Pulau Kukup, Johor, Malaysia</td>
</tr>
<tr>
<td>2</td>
<td>40 plots that were randomly marked on the Pulau Kukup map. Location of Pulau Kukup, Johor, Malaysia</td>
</tr>
<tr>
<td>3</td>
<td>Reading of salinity, pH and conductivity using YSI Dissolved Oxygen Meter</td>
</tr>
<tr>
<td>4</td>
<td>Percentage of mangrove sapling species from 14 plot</td>
</tr>
<tr>
<td>5</td>
<td>IDW interpolation mangrove sapling species distribution at Pulau Kukup</td>
</tr>
</tbody>
</table>
List of Figures

Fig. 6 IDW spatial analysis on salinity from 14 points. a for sediment surface, b for 50 to 100 cm depth 390
Fig. 7 IDW spatial analysis on pH from 14 points. a for sediment surface, b for 50 cm to 100 cm depth 390
Fig. 8 IDW spatial analysis on conductivity from 14 points. a for sediment surface, b for 50 to 100 cm depth 391
Fig. 9 IDW spatial analysis on nitrate from 14 points. a for sediment surface, b for 50 to 100 cm depth 392
Fig. 10 IDW spatial analysis on phosphorus from 14 points. a for sediment surface, b for 50 to 100 cm depth 392
Fig. 11 IDW spatial analysis on potassium from 14 points. a for sediment surface, b for 50 to 100 cm depth 393

Potential Development of Coastal Reservoir in Malaysia

Fig. 1 Typical monthly rainfall distribution of Malaysia, [13] 400
Fig. 2 Annual rainfall distribution in Malaysia (The Malaysian National Water Resources study 2010) 402
Fig. 3 Coastal reservoir concept [16] .. 403
Fig. 4 Illustration of buffer zone created by primary and secondary barriers (Yang et al. 2005) 404
Fig. 5 Typical features of sea dike [17] 405
Fig. 6 A typical impermeable sea dike for the coastal reservoir [17] 405

Numerical Study of Wave Groups in Wind-Swell Seas

Fig. 1 Illustration of a pure wind and pure swell wave (Why Douglas Sea State 3 Should Be Eliminated from Good Weather Clauses, 2021) [8] 410
Fig. 2 Spectrum model representations for wind and swell sea states ... 412
Fig. 3 Comparison of surface elevation between numerical and experimental data (Batemen et al. 2003) 413
Fig. 4 Comparison of the spatial profiles of the case V1 produced by the HOS model (black solid line) with the second-order contributions extracted using second-order random wave theory (grey stars) .. 414
Fig. 5 Comparison of the amplitude wavenumber spectrums of the Second Order case produced by the HOS model (black solid line) with the second-order contributions extracted
using second-order random wave theory (grey stars) 414

Fig. 6 Mixed Sea, double-peaked spectra (black solid line) consisting of
the wind component (black dotted line) and the swell component (black dashed line) 415

Fig. 7 Comparison of a focused wave group’s wave propagation
in a unidirectional sea state with infinite depth; comparison
of the amplitude wavenumber spectrum at its maximum
elevation (black solid line) and at its beginning (grey solid line) .. 416

Fig. 8 Amplification in the space of all deep-water cases plotted
and overlapped on top of each other for case DW0 (black solid line), case DM.67 (black dashed line), case DM.5 (black dotted line), case DM.33 (grey solid line), case DS1 (grey dashed line) .. 416

Fig. 9 Steepness vs wind-swell ratio of the 5 deep-water cases 417
Fig. 10 Amplification vs the bandwidth of the 5 deep-water cases 417
Fig. 11 Surface profile of linear input amplitude (solid black line),
inverted wave profile (black dashed line), odd-order contributions (solid grey line), even order contributions (grey dashed line) .. 418

Fig. 12 Amplitude-wavenumber spectra of linear input amplitude
(solid black line), inverted wave profile (black dashed line), odd-order contributions (solid grey line), even order contributions (grey dashed line) .. 418

Numerical Simulations of Wave Diffraction Around a Low-Crested
Semicircular Breakwater
Fig. 1 Semicircular breakwater model .. 427
Fig. 2 Setup of the model in the simulation .. 427
Fig. 3 Graph B/L against Kd value .. 430
Fig. 4 Wave diffraction contour .. 431

Modelling of Wave Runup and Overtopping Over Accropode II
Breakwater
Fig. 1 2D Flume physical model test .. 437
<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Workflow chart</td>
<td>439</td>
</tr>
<tr>
<td>3</td>
<td>3D rubble mound breakwater</td>
<td>440</td>
</tr>
<tr>
<td>4</td>
<td>Five (5) mesh blocks</td>
<td>441</td>
</tr>
<tr>
<td>5</td>
<td>Boundary conditions and initial conditions</td>
<td>441</td>
</tr>
<tr>
<td>6</td>
<td>Wave run-up results</td>
<td>442</td>
</tr>
<tr>
<td>7</td>
<td>Individual overtopping discharge (Hs = 5.4 m)</td>
<td>443</td>
</tr>
</tbody>
</table>

Marine Debris Assessment and Clean Coast Index of Pantai Navy Labuan, Wilayah Persekutuan Labuan, Malaysia

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Transect survey area for debris collection in navy beach, Labuan</td>
<td>448</td>
</tr>
<tr>
<td></td>
<td>Example of debris collected at navy beach, Labuan</td>
<td>450</td>
</tr>
<tr>
<td>3</td>
<td>Percentage of debris items collected from survey sites according to categories for two days of collection</td>
<td>450</td>
</tr>
</tbody>
</table>
List of Tables

Statistical and Trend Analysis of Annual Maximum Daily Rainfall (AMDR) for Kuching City, Sarawak, Malaysia

Table 1 Annual maximum daily rainfall (AMDR) events for Kuching Airport rainfall station (1975–2017) with month of occurrence, the total annual rainfall and percentage of AMDR to the total annual rainfall ... 6
Table 2 Plotting positions and return periods ... 11
Table 3 Exceedance probability of flood event ($X \geq 180$ mm) 12

Development of Depth-Area-Duration (DAD) Curves for Kuantan River Basin

Table 1 List of rainfall stations in KRB .. 18
Table 2 The amount of 1-day rainfall for different areas 20
Table 3 The amount of 2-days rainfall for different areas 21
Table 4 The amount of 3-days rainfall for different areas 21
Table 5 Calculation of 1 day rainfall event on 1/1/2018 22
Table 6 The maximum rainfall (mm) for different areas and durations 23

A Feasibility Study of Fitting the Normal Distribution and Gamma Distribution to Rainfall Data at Kuantan River Basin

Table 1 Location details of the 10 hydrological stations 29
Table 2 Probability distributions being considered 29
Table 3 Skewness, excess kurtosis and p-value of the Shapiro–Wilk test for normal distribution fitting of the annual daily maximum rainfall data .. 32

xxix
Bibliometric Analysis of Global Research on Probable Maximum Precipitation Estimation Using Scopus Database

Table 1 The top ten most prolific authors in PMP research
Table 2 The top 10 most productive journals on MFC research with their most cited article

Multivariate Statistical Analysis of Morphometric Parameters in Watersheds of Peru

Table 1 Formulas of the morphometric parameters of the watersheds
Table 2 Factor loading matrix of reduced morphometric variables

Hydrological Drought Evaluation on Streamflow Drought Index (SDI) in Upstream and Downstream Area of Lampao Reservoir, Northeast of Thailand

Table 1 The hydrological conditions in the watershed area covering the Lampao Reservoir: http://hydro-3.rid.go.th/, Hydrology Irrigation Center for Upper North-eastern Region (Khon Kaen province, Thailand)
Table 2 Drought classification for SDI
Table 3 Number of months (M) in drought conditions at E65 station
Table 4 Number of months (M) in drought conditions at E75 station

Characteristic of Stormwater Quality Using BIOECODS in JKR Pilot Projects

Table 1 Stormwater quality result (15 June 2020)
Table 2 Range of water quality for each parameter (August 2020–August 2021)

Reducing Uncertainties in Infiltration Model Using SCS-CN for Mixed Land Use Catchment

Table 1 Land use distribution with urban as dominant land use
Table 2 Land use distribution with Forest as dominant land use
Table 3	Land use distribution with agriculture as dominant land use	103
Table 4	Summary of land use distribution for subcatchment (Level I); existing condition with all land use < 60% dominant land use	108
Table 5	Summary of land use distribution for subcatchment (Level II); with only 23% dominant land use < 80% area	108
Table 6	Summary of land use distribution for subcatchment (Level III) with more dominant land use capture as 50% categorise as > 80% dominant land use	109

A Review on Heavy Duty Mobile Flood Wall Barrier: Way Forward for Malaysia

| Table 1 | A Summary of Heavy Duty MFWB with Technical Details [6][8][16] (Source Delta Technology, The Flood Company, and JP Concrete) | 115 |
| Table 2 | A Summary of commercial products for the heavy duty MFWB [6][8][16] (Source Delta Technology, The Flood Company, and JP Concrete) | 120 |

Investigating SWAT Model Efficiency to Determine Water Balance Components (Case Study: Sungai Muda Watershed)

| Table 1 | Sources of spatial and weather dataset | 126 |
| Table 2 | Annual water balance/budget component for basin | 131 |

Development of the National Water Balance Management System (NAWABS) for the Perak, Kurau and Kerian River Basins

| Table 1 | Interlinkages between sectors (with quantities/values) | 145 |

The Influence of Vegetated Alternate Bar on Flow Resistance in an Alluvial Straight Channel

<p>| Table 1 | Details of the parameters used in the experiment | 171 |
| Table 2 | Results of (q_r) when (Fr < 1) and (\theta_1 = 0^\circ) | 181 |
| Table 3 | The value of (q_r) when (\theta_1 = 15^\circ) | 183 |</p>
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>The value of q, when r</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>Laboratory Investigations on Porous Concrete Drainage Systems Performance</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Porous concrete mix design proportion for cube samples</td>
<td>189</td>
</tr>
<tr>
<td>2</td>
<td>Hardened density of cube sample (kg/m3)</td>
<td>191</td>
</tr>
<tr>
<td>3</td>
<td>Porosity of cube sample</td>
<td>191</td>
</tr>
<tr>
<td>4</td>
<td>Porous concrete drainage system performance for 8 and 16 mm aggregate sizes of the cube and drain cover sample</td>
<td>192</td>
</tr>
<tr>
<td>5</td>
<td>Porous concrete drainage system performance for different aggregate sizes of cube and drain cover sample</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Permeability and Mechanical Properties of Pervious Concrete Curb with Different Aggregate Sizes</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Physical properties of aggregate</td>
<td>197</td>
</tr>
<tr>
<td>2</td>
<td>Pervious concrete mix design proportion</td>
<td>198</td>
</tr>
<tr>
<td>3</td>
<td>Summary of the test value</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>Application of Building Information Modelling (BIM) Technology in Drainage System Using Autodesk InfraWorks 360 Software</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>IDF polynomial coefficients for different ARI (MSMA, 2000)</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>Comparison of Drag Models in Shallow Flow for Spherical Particle Trajectory</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Previous drag coefficient formula applicable for the subcritical region</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>The Relationship Between Flow and Pressure Head of Partially Submerged Orifice Through CFD Modelling Using Flow-3D</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Data case A</td>
<td>240</td>
</tr>
<tr>
<td>2</td>
<td>Data case B</td>
<td>241</td>
</tr>
<tr>
<td>3</td>
<td>Data sample case C</td>
<td>242</td>
</tr>
<tr>
<td>4</td>
<td>Results of convergence study</td>
<td>243</td>
</tr>
<tr>
<td>5</td>
<td>Results of case A</td>
<td>244</td>
</tr>
<tr>
<td>6</td>
<td>Results of case B</td>
<td>245</td>
</tr>
</tbody>
</table>
Table 7 Results of case C ... 247

Prediction of Flow Structure in Axial Flow Submersible Pumps During Intake by Numerical Simulation
Table 1 Dimensions of the pump sump model 254

Numerical Analysis of Flow Characteristics for Idealised Y-Shaped Channels
Table 1 List of variable factors .. 265

Modelling of an Embankment Failure Using Flow-3D
Table 1 Summary of maximum shear stress, breach depth, and top breach width ... 281

Water Distribution System Modelling in Pasir Gudang, Johor with EPANET
Table 1 The water demand and elevation of the tank 288
Table 2 Flow rate in pipes .. 289
Table 3 Pressure head in nodes ... 291

Removal of Ammoniacal Nitrogen from Aqueous Solution Using Clinoptilolite as Adsorbent
Table 1 Langmuir and Freundlich isotherm constants 302
Table 2 Kinetic parameters for the adsorption of ammoniacal nitrogen .. 304

Determination of the Relationship Between River Ecosystems and Benthic Macroinvertebrate Ecological Indices as a Basis for River Health Assessment
Table 1 Sampling site descriptions .. 311

A Holistic Approach for Establishing Resilient Dams for Malaysia
Table 1 Highest recorded point of rainfall 329
Table 2 Highest recorded point of rainfall 331
Table 3 Summary on information gathering 331
Table 4 Summary on the threats for water sector and its
countermeasures .. 336

Sentiment Analysis and Topic Modeling for Identifying Key Public Concerns of Water Quality/Issues
Table 1 Cluster: negative sentiments segmentations 351
Table 2 Cluster: positive sentiments segmentations 351

Islamic Institutional Arrangements of the Aflaj Systems
Maintenance in Sultanate of Oman: Operation of the Different Aflaj Type Case Study
Table 1 The identified tradition water market within the studied sample .. 365

Salinity Behavior and Intrusion in Kelantan River Estuary
Table 1 The list of the geographical coordinate of salinity sampling points .. 374
Table 2 Summary of tidal pattern at observation stations 376

Potential Development of Coastal Reservoir in Malaysia
Table 1 Existing sea-based reservoirs around the world with their usage (Yang et al. 2015) ... 398
Table 2 Comparison of sea-based reservoir vs land-based reservoir [19, 23, 24] ... 401
Table 3 The advantages of coastal reservoirs against conventional dams [23] ... 401

Numerical Study of Wave Groups in Wind-Swell Seas
Table 1 Details of wave spectra investigated for deep-water cases and a maximum linear input amplitude of 6.3 m 415

Numerical Simulations of Wave Diffraction Around a Low-Crested Semicircular Breakwater
Table 1 Test matrix ... 428
Table 2 Mean wave height and mean wave period 429

Modelling of Wave Runup and Overtopping Over Accropode II Breakwater
Table 1 Mean overtopping discharges recorded 437
Table 2 Numerical model mean overtopping discharges 440
<table>
<thead>
<tr>
<th>Table 3</th>
<th>Test series 1 to 4 results</th>
<th>440</th>
</tr>
</thead>
</table>

Marine Debris Assessment and Clean Coast Index of Pantai Navy Labuan, Wilayah Persekutuan Labuan, Malaysia

<table>
<thead>
<tr>
<th>Table 1</th>
<th>CCI index categories</th>
<th>449</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2</td>
<td>Types and number of marine debris collected at navy beach, Labuan</td>
<td>451</td>
</tr>
<tr>
<td>Table 3</td>
<td>Sub-categories of plastic debris collected at navy beach</td>
<td>451</td>
</tr>
<tr>
<td>Table 4</td>
<td>Other man-made debris collected at navy beach</td>
<td>452</td>
</tr>
<tr>
<td>Table 5</td>
<td>Value of parameters used for CCI calculation</td>
<td>453</td>
</tr>
<tr>
<td>Table 6</td>
<td>Clean Coast Index (CCI) and status of Malaysian beaches</td>
<td>454</td>
</tr>
</tbody>
</table>
The Integrated River Basin Management (IRBM) chapter presents papers related to precipitation or rainfall analysis, watershed morphology, water availability under climate change, drought index analysis, stormwater quality, flood modelling and infrastructure, water balance and management issues beneficial to practising engineers and researchers. The hydrometeorological data represent the selected catchment or watershed is utilised. These issues were investigated using multiple types of software and statistical method. The first few papers dealt with design rainfall analysis based on statistical methods. Papers on rainfall analysis in various areas in Malaysia present the trend results, depth-area-duration curves, fitting gamma and normal distribution and probable maximum precipitation. The multivariate analysis of morphometric parameters in the watershed of Peru is also presented. The following paper is the hydrological drought evaluation on streamflow in Thailand’s upstream and downstream reservoir areas and the terrestrial research on water availability under climate change in the Amu River basin. The stormwater quality aspect is presented using Bio-Ecological Drainage System (BIOECOD) in JKR Malaysia pilot projects. Papers on the flood issues discuss the uncertainties in the infiltration model and heavy-duty mobile flood wall infrastructure. The last three papers address water balance management and water disputes in Malaysia.
Application of Building Information Modelling (BIM) Technology in Drainage System Using Autodesk InfraWorks 360 Software

King Kuok Kuok, Kia Wee Kingston Tan, Po Chan Chiu, Mei Yun Chin, Md. Rezaur Rahman, and Muhammad Khusairy Bin Bakri

Abstract The increased number of physical drainage drawings at Samarahan district, Sarawak for new development areas is difficult to manage and handle by relevant authorities. Hence, this research is conducted to determine the feasibility of Building Information Technology (BIM) to create a proper drainage inventory system to accurately list and record current drainage information using Autodesk Infraworks 360 software. This inventory system will be employed to examine and validate corresponding drainage parameters based on the recorded information. Taman UniCentral, a residential neighbourhood in Kota Samarahan, has been chosen for this case study. Drainage data, such as drainage size, length, invert level, are entered into GIS-integrated Model Builder in Autodesk InfraWorks 360. Autodesk InfraWorks 360 will conduct a preliminary analysis, including watershed analysis, to delineate the catchment area and drainage performance inspections at rainfall intensities of 2, 5, 10, 20, and 50 years (ARI). Thereafter, the InfraWorks model will be exported into Autodesk Civil3D to conduct a more extensive hydraulic analysis. The results show

K. K. Kuok (✉) · K. W. Kingston Tan · M. Y. Chin
Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, 93350 Kuching, Sarawak, Malaysia e-mail: kkuok@swinburne.edu.my

K. W. Kingston Tan e-mail: 100077279@students.swinburne.edu.my

M. Y. Chin e-mail: mychin@swinburne.edu.my

P. C. Chiu
Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia e-mail: pcchiu@unimas.my

Md. R. Rahman
Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia e-mail: rmrezaur@unimas.my

M. K. Bin Bakri
Composites Materials and Engineering Center, Washington State University, 2001 East Grimes Way, Pullman, Washington State 99164, USA e-mail: m.khusairymbakri@wsu.edu

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
that full integration of these two Autodesk software packages had created a proper inventory system of existing drainage information and simulated its sufficiency in catering surcharge runoff from the new development area at the upper catchment.

Keywords Building Information Modelling (BIM) · Inventory management · Autodesk InfraWorks 360 · Autodesk Civil3D

1 Introduction

Referring to the 2010 Census (Department of Statistics Malaysia, 2010), the total population of Sarawak has experienced a high population growth of 19.3% since the previous Census conducted in 2000. Based on the data obtained, the Samarahan division holds the highest population growth percentage at 27.1%. The Sibu division follows this at 21.8% and the Kuching division at 21.5% [22].

The high population growth rate of Samarahan can be attributed to the rising position of the division as an education hub with its multitude of higher learning institutions and other educational facilities such as Universiti Malaysia Sarawak (UNIMAS), two campuses of University Teknologi MARA Kota Samarahan Campus (UiTM) and Institute of Teacher Education Tun Abdul Razak Campus. According to [20], with the Samarahan District reaching the criteria to be upgraded as a municipal council with a population of over 250,622 people in 2010 [6], the district is undergoing active property development, which will attract even more investors and therefore will bring an increase in construction works and work opportunities.

The current proposed drainage approval process involves submitting all drainage drawings in physical blueprints to the Department of Irrigation and Drainage (DID) Sarawak. The submission of physical blueprints would mean that submitted drawings may scatter around and are difficult to locate when required. The difficulty in retrieving physical drawings of existing drainage plans would delay the planning and approval process. This would cause great hassle when looking for past drawings as a reference before constructing new drainages discharged into the existing drainage system. Additionally, there is a lack of a proper systematic recording system to store the essential drainage information, including flow direction, drain and culvert size, and catchment areas in a master plan. Moreover, there is no system or software available to check and verify the capacity of the existing drainage system after receiving a surcharge from the nearby drainage system. There is a need to revamp our urban drainage management plans by adopting Autodesk InfraWorks,
a Building Information Modelling (BIM) infrastructure software, to create an inventory system to record existing drainage information and integrate AutoCAD Civil 3D for water level forecasting within the drainage system [1, 2, 4, 14].

Autodesk InfraWorks is preliminary conceptual design software that allows users to visualize and render infrastructure models in real-world and real-time environments. It uses cloud-based 3D modelling technology where data can be obtained from integrated Autodesk sources or manual input [3, 23]. Autodesk InfraWorks provides four main features: generating conceptual design models, contextual modelling, analysis and simulation, and live visualization of models (News [18]. Autodesk InfraWorks can integrate with GIS data for early-stage project planning, and it is interoperability with other BIM-oriented software such as Civil 3D, Navisworks and Revit [8, 9].

Autodesk InfraWorks was utilized in the SmiSto Hydropower Project, Norway, to combine GIS information of topographical information, areal imagery, and available map web services to create a detailed model [19]. Autodesk InfraWorks was also utilized for the rail track rehabilitation project in Portugal due to its accuracy terrain modelling and geolocation of the study site [16]. Autodesk InfraWorks also provided a brief overview of site conditions for the remodelling of the Ebro River bridge project in Spain [5]. Besides, [21] had utilized Autodesk Infraworks to simulate the stormwater runoff depth of the designed space based on the Low Impact Development (LID) principle in Bangkok, Thailand. However, Autodesk InfraWorks has yet to see practicable use within Malaysia.

In this study, Autodesk InfraWorks will be utilized to create an inventory system to systematically store and organize existing drainage information, including drainage size, invert level, flow direction and catchment area. The interoperability of Autodesk InfraWorks and Civil 3D will be demonstrated by importing the created Autodesk InfraWorks model into Civil 3D to check the adequacy of the existing drainage system to receive runoff from new developments at upper catchments. The selected study region is Taman Uni-Central, a mixed development area located at Kota Samarahan, Samarahan.

2 Study Area

Kota Samarahan is located about 30 km southeast of Kuching city. It is a fast-growing suburb in Sarawak, with an area of approximately 508.1 Km² [10, 11]. For decades, the main economic activity in Kota Samarahan has been agriculture with thousands of hectares of coconut, oil palm, and pineapples plantations. However, the Sarawak state government had successfully transformed Kota Samarahan into an educational hub in Sarawak that housed Universiti Malaysia Sarawak, two campuses of Universiti Teknologi MARA Kota Samarahan Campus, Tun Abdul Razak Teacher Training Institute, ILP KS Industrial Training Institute and INTAN Training College [12, 13]. With this transformation, the population in Kota
Samarahan has grown significantly for the past twenty years. Many new mixed developments were built to accommodate the rapidly increasing population. One rapidly grown mix development is Taman Uni-Central, located at the NorthWestern of the Kuching-Samarahan Expressway (refer to Fig. 1). According to [17], the surrounding Uni-Vista and Uni-Garden have been facing rising flash flood occurrences. Residents have commented that this occurrence was attributed to the existing drainage not being improved despite the rapid development of the areas. Additionally, the increase of impervious surfaces due to rapid urbanization also contributed to flash flooding occurrences in the Uni-Central area [7]. The study further showed that the earth drain is insufficient for discharge capacity, which could not cater to the generated peak discharge flow, thus causing the stormwater overflow. Residents also claimed that the floods were also caused by the undersize of the existing drainage system despite the ongoing rapid development.

3 Methodology

Figure 2 shows the research project methodology divided into three main stages. The first stage is data collection, which involves procuring data relevant to the drainage system at Taman Uni-Central. The second stage is plotting the drainage system and conducting initial hydraulics analysis using the Autodesk InfraWorks Drainage Design feature. The third stage is importing the model into Autocad Civil 3D for hydrologic and hydraulic analysis.

Stage 1: Data Collection
The initial site investigation was carried out to understand the general layout of Taman Uni Central. The first stage involves data collection of drainage flow direction, catchment areas, drainage layout, and invert levels through site investigation and application of Google Earth Pro. The catchment areas are then
suitably delineated into different sub-basin for hydrology and hydraulic analysis. The coefficients of rainfall intensity duration frequency (IDF) curves with different average recurrence interval (ARI) was also obtained from the Urban Storm Water Management Manual (MSMA) published by the Department of Irrigation and Drainage Sarawak [15].

Stage 2: Autodesk InfraWorks
Autodesk InfraWorks is used to plot the layout of the drainage system of Taman Uni-Central, Kota Samarahan. The modelling procedures of Autodesk InfraWorks are:

a) Determination of Model Extents using Model Builder—The Model Builder feature integrates within InfraWorks is a GIS data source by inputting available data layers from cloud data for model creation. The extent of the model is determined by drawing a rectangle on the model location. Additionally, a coordinate system will be selected to increase the model accuracy. Since Taman Uni-Central is located within the island of Borneo, the coordinate system with code “BORNEO” for East Malaysia is selected.
b) Creation of Site Model—The site model for Taman Uni-Central can be downloaded from Autodesk Cloud. Figure 3 presents the integrated model builder that already incorporated data layers from OpenStreetMaps and Bing Maps. This integrated Model Builder function is used to obtain the terrain of the site. The red colouration denotes the low areas of the site terrain, whereas the navy-blue colouration denotes the highest areas of the site terrain. The obtained terrain is vital for the delineation of sub-catchments.

c) The input of coefficients of rainfall Intensity Density Frequency (IDF) Curves – The coefficient of rainfall IDF curves obtained from MSMA, as presented in Table 1 are inputted into Autodesk InfraWorks. The polynomial equation for fitted IDF curves for 5, 10, 20, 50 years ARI is presented in Eq. 1.

\[
\ln(RI_t) = a + b\ln(t) + c(ln(t))^2 + d(ln(t))^3
\]

where \(RI_t\) is average rainfall intensity (mm/hr) for ARI and duration \(t\), \(R\) is average return interval (years) and \(t\) is duration in minutes.

d) Plotting of Drainage Layout - The drainage layout can be inputted into the InfraWorks model by inputting the drain sizes, invert levels, bed slope, drainage networks as presented in Fig. 4.
e) Watershed Analysis - Autodesk InfraWorks is able to generate the hydraulic and energy grade lines for each drain. Hydraulic grade line (HGL) will help determine probable elevations to which the water would rise under atmospheric pressure occur during a storm event. The energy grade line (EGL) is an imaginary line to measure the total energy including the elevation head, velocity head, and pressure head, along the open channel carrying water.

Stage 3: Autocad Civil 3D (Storm and Sanitary Analysis)

The Autodesk InfraWorks model is imported into Autocad Civil 3D to carry out the Storm Analysis by Storm and Sanitary Analysis (SSA) extension. SSA is typically used to analyze gravity flow-based urban drainage systems. The sub-basins were drawn manually in Autodesk Civil 3D using polylines and converted into parcels after that. The created parcels are then imported into SSA in LandXML files. Figure 5 presents the imported sub-basins into the SSA model.

As SSA focuses primarily on stormwater and urban drainage analysis, all the drainage inventories, including the drainage networks, dimensions, invert levels created in Autodesk InfraWorks, were imported into SSA as Hydroflow Storm Sewers file. The imported drainage networks are imported into SSA is presented in Fig. 6.

The previously created IDF rainfall in Autodesk InfraWorks is also imported into the SSA. The runoff peak is analyzed using the rational method by utilizing the IDF polynomial coefficients for different ARI obtained from the MSMA. The time of concentration (ToC) is determined with the Kirpich method and the flow routing is calculated with the Kinematic Wave method. The analysis options are defined and
the analysis is conducted for a duration of one day. Based on the results, the undersized drainage system will then be reanalyzed.

![Figure 5](image.png)

Fig. 5 Imported sub-basin areas into SSA extension

![Figure 6](image.png)

Fig. 6 Import of Autodesk InfraWorks model into SSA

4 Results and Discussion

4.1 Autodesk InfraWorks Analysis

The initial stage of this research project involves modelling the Taman Uni-Central drainage network in Autodesk InfraWorks. Figure 7 shows the successful mapping of the drainage system in Taman Uni-Central. Each drainage network is indicated using different colours and labels systematically according to exact coordinates onsite. Additionally, the existing GIS data sources integrated into Autodesk InfraWorks
Fig. 7 Completed drainage layout of Taman Uni-Central

are able to provide users with a preliminary base map without carrying the on-site topographic or contour survey. The created model is an inventory system to display, record, and list existing drainage information.

It was found that a thriving watershed was generated for Taman UniCentral. Autodesk InfraWorks is also able to detect and identify the culvert locations if the drain is cutting through the roads. Autodesk InfraWorks also designed the culverts’ dimensions after imputing the required hydrology data into the models. As a purely conceptual-based modelling software, the analysis features for drainage design using Autodesk InfraWorks are limited. Thus, hydrology and hydraulic analysis are conducted using SSA extension in Autodesk Civil 3D.

Autocad Civil 3D—Storm and Sanitary Analysis (SSA) Extension

Due to the constraints of Autodesk InfraWorks as a conceptual design software with limited analysis options, Autocad Civil 3D in SSA extension will be used to conduct hydrology and hydraulic analysis of stormwater systems.

The first result obtained from the SSA is in the form of a visual plan view of the overall drainage layout plotted from Autodesk InfraWorks. The flooded drainage area will be highlighted in red colour. The flow direction of the drainage networks will be determined by the drain invert levels provided into the SSA extension. Results show that the map plotted in Autocad Civil 3D is successfully imported from Autodesk InfraWorks for model simulation. The properties of nodes, links, sub-catchments, ground level, drain sizes were successfully imported into Autocad Civil 3D and matched the information inputted in Autodesk InfraWorks. By importing the data of the drainage details directly into Autocad Civil 3D, users will not have to key in the required information one by one. This method is extremely effective and efficient when checking existing drainage capacity after connecting with new development areas. Figures 8, 9, 10, 11, 12 and 13 show the drainage network 1, 2, 3, 5, 6 and 7, respectively, with the extreme rainfall intensity of 30 and 50-year ARI with 30, 60, 120 and 360 min duration.
From the simulation results, drainage network 1, network 2, network 3, network 4, network 5, network 6 and network 7 were found to be sufficient to cater for most of the

Fig. 8 Locations of highlighted inadequate drainage network 1
rainfall events at different ARIs and durations. However, it was found that drainage network 1 is inadequate to cater for the water flow resulting from the rainfall event of 50 years ARI with 30, 60, 120 and 360 min duration ($50I_{30mins}$, $50I_{60mins}$, $50I_{120mins}$, $50I_{360mins}$) at links 20 and 21. The water level has also overflown the drainage network 2 at links 38 and 39 for rainfall intensity of 50 years ARI with 60, 120 and 360 min.
Fig. 10 Locations of highlighted inadequate drainage network 3 duration (50I_{60mins}, 50I_{120mins}, 50I_{360mins}). Drainage network 3 was flooded as well at link 43 when simulated with rainfall intensity of 50 years ARI with 60 and 120 min duration (50I_{60mins} and 50I_{120mins}). Drainage network 4 was found to be sufficient to cater to all investigated rainfall intensities at different ARIs and durations. Therefore, no improvement work is required for the Drainage network 4.
The results show that drainage network 5 is able to cater the rainfall intensity at different ARIs and durations except for 50 years ARI at 30, 120, 360 min duration (50I₃₀mins, 50I₆₀mins, 50I₁₂₀mins, 50I₃₆₀mins) at links 58, 59, 60 and 61. Drainage network 6 is overflowed at links 74, 75, 76 and 77 with the rainfall intensity of 20 and 50 years ARI at 120 and 360 min duration (20I₁₂₀mins, 20I₃₆₀mins, 50I₁₂₀mins, 50I₃₆₀mins). Simulation results also revealed that drainage network 7 is unable to cater for the rainfall intensity of 20 and 50 years ARI with 30, 60, 120 and 360 min duration at links 83, 84, 85 and 86.
5 Conclusion

This research project has shown that the drainage layout of Taman Uni-Central was successfully modelled using Autodesk InfraWorks software, detailing all recorded drainage information. This will help record all the existing drainage neatly and correctly, thus simplifying the process’s recording. Whenever drainage from a new
development area connects to the existing drainage system, Autodesk InfraWorks will perform as a visual inventory system where all drainage information can be inspected and checked in detail. Autodesk InfraWorks will export the model into Autocad Civil3D under SSA extension to perform hydrology and hydraulics analysis of the drainage networks. This indicates that Autodesk InfraWorks software that performs as BIM for infrastructure works is highly feasible and can be integrated with Autocad Civil3D for performing drainage design processes. Under SSA extension, Autocad Civil3D is able to conduct hydrology and hydraulics analysis with different ARIs and durations to check the adequacy of the existing drainage network in catering the rainfall events.

References

7. Hauzi E, Lim L, Bong C (2017) A hydrology and hydraulic case study on January 2015 flash flood in UniGarden, Kota Samarahan, Sarawak’. In: 37th IAHR World Congress, Department of Civil Engineering, Universiti Malaysia Sarawak, Sarawak

9. Huang J (2017) BIM evolution for wet infrastructure: what if we started Panama Canal expansion today? Autodesk University, Las Vegas

15. MSMA–Urban Storm Water Management (2001) Department of Irrigation and Drainage Malaysia, Ministry of Environment and Water, Malaysia
Application of Building Information Modelling (BIM) Technology in Drainage System Using Autodesk Infra Works 360 Software

King Kuok Kuok, Kia Wee Kingston Tan, Po Chan Chiu, Mei Yun Chin, Md. Rezaur Rahman, and Muhammad Khusairy Bin Bakri

Abstract The increased number of physical drainage drawings at Samarahan district, Sarawak for new development areas is difficult to manage and handle by relevant authorities. Hence, this research is conducted to determine the feasibility of Building Information Technology (BIM) to create a proper drainage inventory system to accurately list and record current drainage information using Autodesk InfraWorks 360 software. This inventory system will be employed to examine and validate corresponding drainage parameters based on the recorded information. Taman Uni-Central, a residential neighbourhood in Kota Samarahan, has been chosen for this case study. Drainage data, such as drainage size, length, invert level, are entered into GIS-integrated Model Builder in Autodesk InfraWorks 360. Autodesk InfraWorks 360 will conduct a preliminary analysis, including watershed analysis, to delineate the catchment area and drainage performance inspections at rainfall intensities of 2, 5, 10, 20, and 50 years (ARI). Thereafter, the InfraWorks model will be exported into Autodesk Civil3D to conduct a more extensive hydraulic analysis. The results show...
that full integration of these two Autodesk software packages had created a proper inventory system of existing drainage information and simulated its sufficiency in catering surcharge runoff from the new development area at the upper catchment.

Keywords Building Information Modelling (BIM) · Inventory management system · Autodesk InfraWorks 360 · Autodesk Civil3D · Average recurrence interval

1 **Introduction**

Referring to the 2010 Census (Department of Statistics Malaysia, 2010), the total population of Sarawak has experienced a high population growth of 19.3% since the previous Census conducted in 2000. Based on the data obtained, the Samarahan division holds the highest population growth percentage at 27.1%. The Sibu division follows this at 21.8% and the Kuching division at 21.5% [22].

The high population growth rate of Samarahan can be attributed to the rising position of the division as an education hub with its multitude of higher learning institutions and other educational facilities such as Universiti Malaysia Sarawak (UNIMAS), two campuses of University Teknologi MARA Kota Samarahan Campus (UiTM) and Institute of Teacher Education Tun Abdul Razak Campus. According to [20], with the Samarahan District reaching the criteria to be upgraded as a municipal council with a population of over 250,622 people in 2010 [6], the district is undergoing active property development, which will attract even more investors and therefore will bring an increase in construction works and work opportunities.

The current proposed drainage approval process involves submitting all drainage drawings in physical blueprints to the Department of Irrigation and Drainage (DID) Sarawak. The submission of physical blueprints would mean that submitted drawings may scatter around and are difficult to locate when required. The difficulty in retrieving physical drawings of existing drainage plans would delay the planning and approval process. This would cause great hassle when looking for past drawings as a reference before constructing new drainages discharged into the existing drainage system. Additionally, there is a lack of a proper systematic recording system to store the essential drainage information, including flow direction, drain and culvert size, and catchment areas in a master plan. Moreover, there is no system or software available to check and verify the capacity of the existing drainage system after receiving a surcharge from the nearby drainage system. There is a need to revamp our urban drainage management plans by adopting Autodesk InfraWorks, a Building Information Modelling (BIM) infrastructure software, to create an inventory system to record existing drainage information and integrate AutoCAD Civil 3D for water level forecasting within the drainage system [1, 2, 4, 14].

Autodesk InfraWorks is preliminary conceptual design software that allows users to visualize and render infrastructure models in real-world and real-time environments. It uses cloud-based 3D modelling technology where data can be obtained from
Application of Building Information Modelling (BIM) Technology … 211

integrated Autodesk sources or manual input [3, 23]. Autodesk InfraWorks provides four main features: generating conceptual design models, contextual modelling, analysis and simulation, and live visualization of models (News [18]. Autodesk InfraWorks can integrate with GIS data for early-stage project planning, and it is interoperability with other BIM-oriented software such as Civil 3D, Navisworks and Revit [8, 9].

Autodesk InfraWorks was utilized in the SmiSto Hydropower Project, Norway, to combine GIS information of topographical information, areal imagery, and available map web services to create a detailed model [19]. Autodesk InfraWorks was also utilized for the rail track rehabilitation project in Portugal due to its accuracy terrain modelling and geolocation of the study site [16]. Autodesk InfraWorks also provided a brief overview of site conditions for the remodelling of the Ebro River bridge project in Spain [5]. Besides, [21] had utilized Autodesk InfraWorks to simulate the stormwater runoff depth of the designed space based on the Low Impact Development (LID) principle in Bangkok, Thailand. However, Autodesk InfraWorks has yet to see practicable use within Malaysia.

In this study, Autodesk InfraWorks will be utilized to create an inventory system to systematically store and organize existing drainage information, including drainage size, invert level, flow direction and catchment area. The interoperability of Autodesk InfraWorks and Civil 3D will be demonstrated by importing the created Autodesk InfraWorks model into Civil 3D to check the adequacy of the existing drainage system to receive runoff from new developments at upper catchments. The selected study region is Taman Uni-Central, a mixed development area located at Kota Samarahan, Samarahan.

2 Study Area

Kota Samarahan is located about 30 km southeast of Kuching city. It is a fast-growing suburb in Sarawak, with an area of approximately 508.1 Km² [10, 11]. For decades, the main economic activity in Kota Samarahan has been agriculture with thousands of hectares of coconut, oil palm, and pineapples plantations. However, the Sarawak state government had successfully transformed Kota Samarahan into an educational hub in Sarawak that housed Universiti Malaysia Sarawak, two campuses of Universiti Teknologi MARA Kota Samarahan Campus, Tun Abdul Razak Teacher Training Institute, ILPKS Industrial Training Institute and INTAN Training College [12, 13]. With this transformation, the population in Kota Samarahan has grown significantly for the past twenty years. Many new mixed developments were built to accommodate the rapidly increasing population.

One rapidly grown mix development is Taman Uni-Central, located at the North-Western of the Kuching-Samarahan Expressway (refer to Fig. 1). According to [17], the surrounding Uni-Vista and Uni-Garden have been facing rising flash flood occurrences. Residents have commented that this occurrence was attributed to the existing
drainage not being improved despite the rapid development of the areas. Additionally, the increase of impervious surfaces due to rapid urbanization also contributed to flash flooding occurrences in the Uni-Central area [7]. The study further showed that the earth drain is insufficient for discharge capacity, which could not cater to the generated peak discharge flow, thus causing the stormwater overflow. Residents also claimed that the floods were also caused by the undersize of the existing drainage system despite the ongoing rapid development.

3 Methodology

Figure 2 shows the research project methodology divided into three main stages. The first stage is data collection, which involves procuring data relevant to the drainage system at Taman Uni-Central. The second stage is plotting the drainage system and conducting initial hydraulics analysis using the Autodesk InfraWorks Drainage Design feature. The third stage is importing the model into Autocad Civil 3D for hydrologic and hydraulic analysis.

Stage 1: Data Collection
The initial site investigation was carried out to understand the general layout of Taman Uni Central. The first stage involves data collection of drainage flow direction, catchment areas, drainage layout, and invert levels through site investigation and application of Google Earth Pro. The catchment areas are then suitably delineated into different sub-basin for hydrology and hydraulic analysis. The coefficients of rainfall intensity duration frequency (IDF) curves with different average recurrence interval (ARI) was also obtained from the Urban Storm Water Management Manual (MSMA) published by the Department of Irrigation and Drainage Sarawak [15].
Stage 2: Autodesk InfraWorks

Autodesk InfraWorks is used to plot the layout of the drainage system of Taman Uni-Central, Kota Samarahan. The modelling procedures of Autodesk InfraWorks are:

a) Determination of Model Extents using Model Builder—The Model Builder feature integrates within InfraWorks is a GIS data source by inputting available data layers from cloud data for model creation. The extent of the model is determined by drawing a rectangle on the model location. Additionally, a coordinate system will be selected to increase the model accuracy. Since Taman Uni-Central is located within the island of Borneo, the coordinate system with code “BORNEO” for East Malaysia is selected.

b) Creation of Site Model—The site model for Taman Uni-Central can be downloaded from Autodesk Cloud. Figure 3 presents the integrated model builder that already incorporated data layers from OpenStreetMaps and Bing Maps. This
integrated Model Builder function is used to obtain the terrain of the site. The red colouration denotes the low areas of the site terrain, whereas the navy-blue colouration denotes the highest areas of the site terrain. The obtained terrain is vital for the delineation of sub-catchments.

c) The input of coefficients of rainfall Intensity Density Frequency (IDF) Curves – The coefficient of rainfall IDF curves obtained from MSMA, as presented in Table 1 are inputted into Autodesk InfraWorks. The polynomial equation for fitted IDF curves for 5, 10, 20, 50 years ARI is presented in Eq. 1.

\[
\ln(RIt) = a + b\ln(t) + c(\ln(t))^2 + d(\ln(t))^3
\]

where R_I, is average rainfall intensity (mm/hr) for ARI and duration t, R is average return interval (years) and t is duration in minutes.

d) Plotting of Drainage Layout - The drainage layout can be inputted into the InfraWorks model by inputting the drain sizes, invert levels, bed slope, drainage networks as presented in Fig. 4.

Table 1 IDF polynomial coefficients for different ARI (MSMA, 2000)

<table>
<thead>
<tr>
<th>Location</th>
<th>ARI parameter (year)</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kota Samarahan</td>
<td>2</td>
<td>5.1719</td>
<td>0.1558</td>
<td>0.1093</td>
<td>0.0043</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.8825</td>
<td>0.3871</td>
<td>0.1455</td>
<td>0.0068</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5.1635</td>
<td>0.2268</td>
<td>0.1039</td>
<td>0.0039</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>5.2479</td>
<td>0.2107</td>
<td>0.0968</td>
<td>0.0035</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>5.278</td>
<td>0.224</td>
<td>0.0932</td>
<td></td>
</tr>
</tbody>
</table>
e) Watershed Analysis - Autodesk InfraWorks is able to generate the hydraulic and energy grade lines for each drain. Hydraulic grade line (HGL) will help determine probable elevations to which the water would rise under atmospheric pressure occur during a storm event. The energy grade line (EGL) is an imaginary line to measure the total energy including the elevation head, velocity head, and pressure head, along the open channel carrying water.

Stage 3: Autocad Civil 3D (Storm and Sanitary Analysis)
The Autodesk InfraWorks model is imported into Autocad Civil 3D to carry out the Storm Analysis by Storm and Sanitary Analysis (SSA) extension. SSA is typically used to analyze gravity flow-based urban drainage systems. The sub-basins were drawn manually in Autodesk Civil 3D using polylines and converted into parcels after that. The created parcels are then imported into SSA in LandXML files. Figure 5 presents the imported sub-basins into the SSA model.

As SSA focuses primarily on stormwater and urban drainage analysis, all the drainage inventories, including the drainage networks, dimensions, invert levels created in Autodesk InfraWorks, were imported into SSA as Hydroflow Storm Sewers file. The imported drainage networks are imported into SSA is presented in Fig. 6.

The previously created IDF rainfall in Autodesk InfraWorks is also imported into the SSA. The runoff peak is analyzed using the rational method by utilizing the IDF polynomial coefficients for different ARI obtained from the MSMA. The time of concentration (ToC) is determined with the Kirpich method and the flow routing is calculated with the Kinematic Wave method. The analysis options are defined and the analysis is conducted for a duration of one day. Based on the results, the undersized drainage system will then be reanalyzed.
4 Results and Discussion

4.1 Autodesk InfraWorks Analysis

The initial stage of this research project involves modelling the Taman Uni-Central drainage network in Autodesk InfraWorks. Figure 7 shows the successful mapping of the drainage system in Taman Uni-Central. Each drainage network is indicated using different colours and labels systematically according to exact coordinates on-site. Additionally, the existing GIS data sources integrated into Autodesk InfraWorks
are able to provide users with a preliminary base map without carrying the on-site topographic or contour survey. The created model is an inventory system to display, record, and list existing drainage information.

It was found that a thriving watershed was generated for Taman UniCentral. Autodesk InfraWorks is also able to detect and identify the culvert locations if the drain is cutting through the roads. Autodesk InfraWorks also designed the culverts’ dimensions after imputing the required hydrology data into the models. As a purely conceptual-based modelling software, the analysis features for drainage design using Autodesk InfraWorks are limited. Thus, hydrology and hydraulic analysis are conducted using SSA extension in Autodesk Civil 3D.

Autocad Civil 3D—Storm and Sanitary Analysis (SSA) Extension

Due to the constraints of Autodesk InfraWorks as a conceptual design software with limited analysis options, Autocad Civil 3D in SSA extension will be used to conduct hydrology and hydraulic analysis of stormwater systems.
The first result obtained from the SSA is in the form of a visual plan view of the overall drainage layout plotted from Autodesk InfraWorks. The flooded drainage area will be highlighted in red colour. The flow direction of the drainage networks will be determined by the drain invert levels provided into the SSA extension. Results show that the map plotted in Autocad Civil 3D is successfully imported from Autodesk InfraWorks for model simulation. The properties of nodes, links, sub-catchments, ground level, drain sizes were successfully imported into Autocad Civil 3D and matched the information inputted in Autodesk InfraWorks. By importing the data of the drainage details directly into Autocad Civil 3D, users will not have to key in the required information one by one. This method is extremely effective and efficient when checking existing drainage capacity after connecting with new development areas. Figures 8, 9, 10, 11, 12 and 13 show the drainage network 1, 2, 3, 5, 6 and 7, respectively, with the extreme rainfall intensity of 30 and 50-year ARI with 30, 60, 120 and 360 min duration.

From the simulation results, drainage network 1, network 2, network 3, network 4, network 5, network 6 and network 7 were found to be sufficient to cater for most of the

Fig. 8 Locations of highlighted inadequate drainage network 1
rainfall events at different ARIs and durations. However, it was found that drainage network 1 is inadequate to cater for the water flow resulting from the rainfall event of 50 years ARI with 30, 60, 120 and 360 min duration ($^{50}I_{30\text{mins}}$, $^{50}I_{60\text{mins}}$, $^{50}I_{120\text{mins}}$, $^{50}I_{360\text{mins}}$) at links 20 and 21. The water level has also overflown the drainage network 2 at links 38 and 39 for rainfall intensity of 50 years ARI with 60, 120 and 360 min
duration ($I_{60\text{mins}}$, $I_{120\text{mins}}$, $I_{360\text{mins}}$). Drainage network 3 was flooded as well at link 43 when simulated with rainfall intensity of 50 years ARI with 60 and 120 min duration ($I_{60\text{mins}}$ and $I_{120\text{mins}}$). Drainage network 4 was found to be sufficient to cater to all investigated rainfall intensities at different ARIs and durations. Therefore, no improvement work is required for the Drainage network 4.
The results show that drainage network 5 is able to cater the rainfall intensity at different ARIs and durations except for 50 years ARI at 30, 120, 360 min duration ($^{50I}_{30mins}$, $^{50I}_{60mins}$, $^{50I}_{120mins}$, $^{50I}_{360mins}$) at links 58, 59, 60 and 61. Drainage network 6 is overflowed at links 74, 75, 76 and 77 with the rainfall intensity of 20 and 50 years ARI at 120 and 360 min duration ($^{20I}_{120mins}$, $^{20I}_{360mins}$, $^{50I}_{120mins}$, $^{50I}_{360mins}$). Simulation results also revealed that drainage network 7 is unable to cater for the rainfall intensity of 20 and 50 years ARI with 30, 60, 120 and 360 min duration at links 83, 84, 85 and 86.
Fig. 12 Locations of highlighted inadequate drainage network 6

Fig. 13 Locations of highlighted inadequate drainage network 7
5 Conclusion

This research project has shown that the drainage layout of Taman Uni-Central was successfully modelled using Autodesk InfraWorks software, detailing all recorded drainage information. This will help record all the existing drainage neatly and correctly, thus simplifying the process’s recording. Whenever drainage from a new development area connects to the existing drainage system, Autodesk InfraWorks will perform as a visual inventory system where all drainage information can be inspected and checked in detail. Autodesk InfraWorks will export the model into AutoCAD Civil3D under SSA extension to perform hydrology and hydraulics analysis of the drainage networks. This indicates that Autodesk InfraWorks software that performs as BIM for infrastructure works is highly feasible and can be integrated with AutoCAD Civil3D for performing drainage design processes. Under SSA extension, AutoCAD Civil3D is able to conduct hydrology and hydraulics analysis with different ARIs and durations to check the adequacy of the existing drainage network in catering the rainfall events.

References

7. Hauzi E, Lim L, Bong C (2017) A hydrology and hydraulic case study on January 2015 flash flood in UniGarden, Kota Samarahan, Sarawak’. In: 37th IAHR World Congress, Department of Civil Engineering, Universiti Malaysia Sarawak, Sarawak
9. Huang J (2017) BIM evolution for wet infrastructure: what if we started Panama Canal expansion today? Autodesk University, Las Vegas
15. MSMA–Urban Storm Water Management (2001) Department of Irrigation and Drainage Malaysia, Ministry of Environment and Water, Malaysia