NANOMATERIALS FOR CARBON DIOXIDE CAPTURE AND CONVERSION TECHNOLOGIES

Edited by
Shaukat Ali Mazari
Nabisab Mujawar Mubarak
Manoj Tripathi

Micro & Nano Technologies Series
Nanomaterials for Carbon Dioxide Capture and Conversion Technologies
Nanomaterials for Carbon Dioxide Capture and Conversion Technologies

Edited by

SHAUKAT ALI MAZARI
Department of Chemical Engineering, Dawood University of Engineering and Technology Karachi, Pakistan

NABISAB MUJAWAR MUBARAK
Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam

MANOJ TRIPATHI
Department of Physics and Material Science and Engineering, JIIT, Noida, Uttar Pradesh, India
Dedication

This book would not have been possible without sacrifices from the family. I dedicate this book to my loving wife and my lovely daughter Aysha.

—Dr. Shaukat Ali Mazari

In the name of Allah, the Most Gracious and the Most Merciful. First of all, I would like to raise my heartfelt gratitude and appreciation to Allah SWT for the permission, guidance, wisdom, and blessing for all these years till now, when I have reached this important destination of my journey in life to accomplish my goal. Finally, I would like to present my most heartfelt and warmest appreciation to the great parents and parents-in-law (may Allah SWT bless and reward them), brothers and sisters who always encouraged and supported me during the completion of the book. Special and heartiest gratitude to my dearest wife, Muna Tasnim Mukhtaruddin, and kids, Muhammad Fayyad, Muhammad Fawwaz, and Mulaika Faleeha, for their invariable encouragement endless sacrifices, patience, understanding, ideas, and inspiration from time to time in finishing the book smoothly and timely.

—Dr. Nabisab Mujawar Mubarak

I offer my sincere gratitude and thanks to The Almighty for providing me energy, inspiration, and thoughtfulness within me to complete this book. Without His permission and blessings, I would not have been able to complete this book. I would like to dedicate this book to my family. From the first day, their encouragement, support, and motivation were instrumental. I appreciate their continuous efforts and sacrifices which helped me to focus on the book and complete it.

—Dr. Manoj Tripathi
Contents

<table>
<thead>
<tr>
<th>List of contributors</th>
<th>xv</th>
</tr>
</thead>
<tbody>
<tr>
<td>About the editors</td>
<td>xix</td>
</tr>
<tr>
<td>Preface</td>
<td>xxiii</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>xxvii</td>
</tr>
</tbody>
</table>

1. Impact of presence of CO\textsubscript{2} in natural gas streams

Lubna Ghalib

1.1 Introduction 1
1.2 Natural gas and their pipelines networking system 2
1.3 Effect of carbon dioxide on energy transmission 4
1.4 Pipeline corrosion due to CO\textsubscript{2}
 1.4.1 Nature of corrosion 7
 1.4.2 Types of natural gas pipeline CO\textsubscript{2} corrosion 9
 1.4.3 Experimental procedures for corrosion determination 11
 1.4.4 Predictive models for CO\textsubscript{2} induced corrosion 14
 1.4.5 Failure analyses of pipelines due to CO\textsubscript{2} corrosion 16
 1.4.6 CO\textsubscript{2} corrosion mitigation strategies 18
1.5 Outlook and future challenges 20

References 21

2. Basic principles of CO\textsubscript{2} capture and conversion technologies

Yee Ho Chai, Nor Adilla Rashidi, Mustakimah Mohamed, Bridgid Lai Fui Chin and Suzana Yusup

2.1 Introduction 25
2.2 Basic principles in CO\textsubscript{2} capture process
 2.2.1 Postcombustion carbon capture 27
 2.2.2 Precombustion carbon capture 31
 2.2.3 Oxy-fuel combustion carbon capture 34
 2.2.4 Cryogenic separation 38
2.3 Novel CO\textsubscript{2} conversion technologies
 2.3.1 Electrocatalysis 41
 2.3.2 Photocatalysis 43
 2.3.3 Biohybrid 45
 2.3.4 Electroreduction of CO+ in metal–organic framework 49
 2.3.5 CO\textsubscript{2}-based polymer synthesis via chain insertion 50
2.4 Prospects in CO\textsubscript{2} conversion to fuels and building blocks 51
2.5 Conclusions 52
3. **Chemical, physical, and morphological characteristics of nanomaterials for CO₂ capture and conversion** 63
 R.J. Lee, Z.A. Jawad, A.L. Ahmad and H.B. Chua

 3.1 Introduction 63
 3.2 Nanomaterials fabrication 65
 3.2.1 Nanomaterials characterizations 65
 3.2.2 Nanofluids 66
 3.2.3 Nanocrystalline 73
 3.2.4 Nanocomposites 73
 3.2.5 Graphene-based nanocomposites 74
 3.2.6 Nanomaterials in membrane technology 76
 3.2.7 Polymers and nanoclay mixture 80
 3.2.8 Metal—organic frameworks 81
 3.3 Conclusions and future perspective 82

Declaration of competing interest 83
Acknowledgments 83
References 83

4. **Nanofluids for CO₂ capture** 89
 Farihahusnah Hussin, Mohamed Kheireddine Aroua, R. Saidur and Zaim Nor Rashid Zainol Nor Rashid

 4.1 Introduction 89
 4.1.1 Status of CO₂ emissions 89
 4.1.2 Nanofluids 91
 4.1.3 Application of nanofluids 92
 4.1.4 Motivation of the study 94
 4.2 Methods of preparation of nanofluids 95
 4.2.1 Single-step method 95
 4.2.2 Two-step method 96
 4.2.3 Other novel methods 97
 4.2.4 Stability of nanofluids 98
 4.3 Effect of nanoparticles on CO₂ capture 99
 4.3.1 Aluminum oxide 99
 4.3.2 Limitation 103
 4.3.3 Silica and silica oxide 103
 4.3.4 Metallic Nanoparticle (Fe₃O₄) 106
5. Waste and biomass-based nanomaterials for CO₂ capture
Satish Kumar Verma, Abhimanyu Kumar Prajapati, Manoj Tripathi and Ashish Bhatnagar

5.1 Introduction
5.2 Synthesis of porous carbon from waste and biomass
 5.2.1 Pyrolytic transformation
 5.2.2 Conversion using chemical vapor deposition technique
 5.2.3 Mechanical activation
5.3 Chemical activation
5.4 Waste and biomass-derived porous carbon for CO₂ capturing application
5.5 Nonfunctionalized activated porous carbons for CO₂ capture
5.6 Heteroatom doped activated porous carbons for CO₂ capture
5.7 Metal functionalized activated porous carbons for CO₂ capture
5.8 Activated porous carbon-based composites for CO₂ capture
 5.8.1 Mechanism of CO₂ capture
5.9 Prospects for commercialization
5.10 Conclusions and future research directions
References

6. Titanium-based nanophotocatalysts for CO₂ conversion
Afsanehsadat Larimi

6.1 Introduction
6.2 Fundamentals and mechanism of CO₂ photocatalytic conversion over TiO₂ nanophotocatalysts 153
6.3 Thermodynamics and kinetics of CO₂ photocatalytic conversion over TiO₂ nanophotocatalyst 158
6.4 Modification strategies for enhanced CO₂ photoreduction over TiO₂ nanophotocatalysts 160
6.4.1 Metals and metal oxides 160
6.4.2 Nonmetals 168
6.4.3 Dispersion of TiO₂-based photocatalysts on supports 171
6.5 Summary and future perspective 171
References 172

7. Perovskite-based nanomaterials for CO₂ conversion 181
Yahaya Muhammad Sani, Nadeem Hussein Solangi, Tajudeen Kolawole Bello and Muhammed Tijani Isa
7.1 Introduction 181
7.2 Discovery and history of perovskite photovoltaics 185
7.3 Sources, effects and uses of CO₂ 187
7.3.1 Greenhouse effect 187
7.3.2 Climate change 188
7.3.3 Acid rain 188
7.3.4 Effect on human health 188
7.3.5 Uses of CO₂ 188
7.4 Products from CO₂ conversion and their applications 189
7.5 Perovskite materials for CO₂ conversion 189
7.6 State-of-the-art methods for synthesizing perovskite nanomaterials 190
7.6.1 Procedures for engineering bandgaps on perovskite nanomaterials 193
7.6.2 Morphologies, defect distribution, crystal structures, and electronic properties perovskite, and their effects on CO₂ conversion performances 194
7.7 Mechanism and pathways for both reduction and counter oxidation during CO₂ reduction 195
7.7.1 CO₂ reduction using catalysts 195
7.7.2 Mechanism and pathways of CO₂ reduction 196
7.8 Challenges hindering the successes of perovskite nanomaterials in converting CO₂ 197
7.8.1 Toxicity, moisture instability, and phase sensitivity in polar medium 198
7.8.2 Effects of nanocrystal facets in promoting reactants adsorption and products desorption 200
7.8.3 Low catalytic reaction efficiency and catalyst stability 200
7.8.4 Products misinterpretation due to organic chemicals present during perovskite synthesis 201
7.9 Successes of perovskites nanomaterial in converting CO₂ 202
7.10 Future expectation on advanced perovskite nanomaterials for converting CO₂ with improved yields
7.11 Conclusions and future prospects
References

8. Graphene-based nanomaterials for CO₂ capture and conversion
Bridgid Lai Fui Chin, Adrian Chun Minh Loy, Kin Wai Cheah, Yi Herng Chan, Serene Sow Mun Lock and Chung Loong Yiin
8.1 Introduction
8.2 Synthesis method and characterization of graphene nanomaterials
 8.2.1 Mechanical exfoliation
 8.2.2 Hummer’s method
 8.2.3 Electrochemical method
 8.2.4 Chemical vapor deposition (CVD) method
8.3 Applications of graphene-based nanomaterial
 8.3.1 Graphene-based nanomaterials for CO₂ adsorption
 8.3.2 Graphene-based nanomaterials membranes for CO₂ reduction
8.4 Future prospect and challenges
8.5 Conclusions
References

9. Carbon nanotubes for CO₂ capture and conversion
Satish Kumar Verma, Prashant Tripathi and Ashish Bhatnagar
9.1 Introduction
9.2 Synthesis of carbon nanotubes
 9.2.1 Arc discharge
 9.2.2 Laser ablation
 9.2.3 Chemical vapor deposition
 9.2.4 Plasma-enhanced chemical vapor deposition
 9.2.5 Liquid electrolysis method
9.3 Properties of carbon nanotubes
9.4 Carbon nanotubes for carbon capture
 9.4.1 Single-walled carbon nanotubes and multiwalled carbon nanotubes for carbon capture
 9.4.2 Functionalized carbon nanotubes for carbon capture
 9.4.3 Carbon nanotubes composites for carbon capture
9.5 Conclusions and future prospects
References
10. Metal–organic frameworks embedded with nanoparticles for CO₂ capture and conversion 261
Haiqing Wang, Junjun Li and Zhicheng Zhang

10.1 Introduction 261
10.2 CO₂ capture 263
10.3 CO₂ conversion 264
 10.3.1 Electrocatalysis 264
 10.3.2 Photocatalysis 265
 10.3.3 Thermal catalysis 269
 10.3.4 Elucidation of structure–activity relationship 271
10.4 Opportunities and challenges 271
References 272

11. Nanosized zeolites for CO₂ capture 277
Supak Tontisirin

11.1 Introduction 277
11.2 Zeolite materials 278
11.3 Zeolites adsorbents in CO₂ capture 280
 11.3.1 Modes of operation for CO₂ adsorption by separation 280
 11.3.2 Adsorption mechanisms by zeolite 282
11.4 Zeolites for CO₂ adsorption at low temperature 284
 11.4.1 Metal cation exchanged zeolites for CO₂ capture 287
 11.4.2 Hydrophobic zeolites for CO₂ capture 290
 11.4.3 Hierarchical zeolites for CO₂ capture 291
11.5 Zeolites for CO₂ adsorption at high temperature 294
11.6 Zeolite membranes for CO₂ capture 295
11.7 Design of zeolite adsorbents in CO₂ capture 301
11.8 Future challenges and perspectives for the use of zeolites for CO₂ capture technology 301
11.9 Conclusions 302
References 302

12. Dual functional nano zeolites for CO₂ capture and conversion 309
Unalome Wewatana Hartley and Praveen Kumar Murugesan

12.1 Introduction 309
12.2 Synthesis methods of zeolites and metal/metal oxides containing zeolites 312
12.3 CO₂ conversion on zeolites-based catalysts 313
 12.3.1 Dual functional materials for CO₂ conversion to methane 314
 12.3.2 Dual functional materials for CO₂ conversion to methanol 314
 12.3.3 Dual functional materials for CO₂ conversion to ethanol 315
 12.3.4 Dual functional materials for CO₂ conversion to olefins 315
 12.3.5 Dual functional materials for CO₂ conversion to gasoline/diesel fuels 316
12.3.6 Dual functional materials for CO₂ conversion to aromatics 316
12.3.7 Dual functional materials for CO₂ conversion to other chemicals 317
12.4 Design of dual functional materials for CO₂ conversion 318
12.4.1 Nickel (Ni) and zeolites-based dual functional materials 318
12.4.2 Ruthenium and zeolites-based dual functional materials 319
12.4.3 Rhodium and zeolites-based dual functional materials 319
12.5 Effect of zeolite topology in the dual functional materials 320
12.6 Environmental impact of use of zeolites in the dual function materials for CO₂ capture and conversion technologies 320
12.7 Future challenges and prospects for the use of zeolites as dual function materials catalysts for CO₂ capture and conversion technologies 321
12.8 Conclusions 323
References 324

13. Mesoporous silica nanoparticles for CO₂ capture and conversion 333
M.A.A. Aziz and C.N.C. Hitam
13.1 Introduction 333
13.1.1 Synthesis of mesoporous silica nanoparticles 335
13.2 Mesoporous silica nanoparticles in CO₂ capture application 340
13.3 Mesoporous silica nanoparticles in CO₂ conversion application 344
13.4 Conclusions 353
References 354

14. Ionic liquid functionalized nanomaterials for CO₂ capture and conversion 361
Mohd Lokman Ibrahim, Salma Izati Sinar Mashuri, Izzaiddah Riman, Muhammad Irfan Amiruddin, Nor Fadilah Chayed, Aunie Affiah Abdul Mutalib, Yie Hua Tan, Nur Haida Mohd Kaus, Aminul Islam, Asikin Mijan, Nik Ahmad Nizam Nik Malek and Umer Rashid
14.1 Introduction 361
14.2 Ionic liquid functionalized nanomaterials 362
14.2.1 Common preparation methods and applications 363
14.2.2 Advantages and weaknesses ionic liquid functionalized nanomaterials 363
14.3 CO₂ capture and conversion 365
14.3.1 Impact of high CO₂ level 365
14.3.2 Techniques for CO₂ capture 366
14.3.3 CO₂ utilization and conversion to useful products 367
14.4 Application of ionic liquid functionalized nanomaterials for CO₂ capture and conversion 370
14.4.1 Concept/background study/scientific knowledge 370
14.4.2 Application of ionic liquid for hydrogenation process 372
14.5 Ionic liquids functionalized nanomaterials for the production of value-added products from carbon dioxide 374
14.5.1 Electrochemical fixation of CO₂ in ionic liquids 374
14.5.2 Electrochemical conversion of CO₂ to CO 376
14.5.3 Electrochemical conversion of CO₂ to formic acid/formate 377
14.5.4 Electrochemical conversion of CO₂ to methanol (CH₃OH) 378

14.6 Future direction and summary 378
Acknowledgments 379
References 379

15. Techno-economic analysis of nanomaterials in CO₂ capture and conversion technologies 385
Puttiporn Thiamsinsangwon and Unalome Wetwatana Hartley

15.1 Introduction 385
15.2 CO₂ capture techniques 386
 15.2.1 CO₂ capture designs 386
 15.2.2 CO₂ conversion and utilization 387
 15.2.3 Nanosized zeolites for CO₂ capture and conversion 388
15.3 The role of nanoparticles and nanomaterials in CO₂ capture 389
15.4 Technoeconomic analysis of CO₂ capture and conversion technologies 391
 15.4.1 Process economic analysis of CO₂ capture 391
 15.4.2 Process economic analysis of CO₂ conversion to useful fuels 391
 15.4.3 Cost-effective synthesis process of nanomaterials 392
 15.4.4 Technoeconomic analysis of CO₂ electrolysis systems 393
15.5 Conclusions and future challenges 396
References 397

16. Environmental impact of the use of nanomaterials for CO₂ capture and conversion technologies 401
Esfand Yar Ali

16.1 Introduction 401
16.2 Potential nanomaterials for CO₂ sequestration 402
 16.2.1 CO₂ sequestration through liquid-based nanomaterials 403
 16.2.2 Metal-based nanomaterials for CO₂ capture 405
 16.2.3 Carbon-based nanomaterials for CO₂ capture 406
16.3 Toxicities of nanomaterials 407
 16.3.1 Toxicity of carbon-based nanomaterials 410
 16.3.2 Environmental adulteration due to nanomaterials 410
 16.3.3 Nanoparticles effects on water bodies and aquatic life 412
 16.3.4 Impact of nanoparticles on atmosphere 414
 16.3.5 Impact of nanomaterials on land 416
16.4 Conclusions 417
References 417

Index 423
List of contributors

A.L. Ahmad
School of Chemical Engineering, Universities Sains Malaysia, Nibong Tebal, Pulau Penang, Malaysia

Esfand Yar Ali
Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, Pakistan

Muhammad Irfan Amiruddin
School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia; Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia

Mohamed Kheireddine Aroua
Research Centre for Carbon Dioxide Capture and Utilisation (CCDCU), School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia; Sunway Materials Smart Science & Engineering Research Cluster (SMS2E), Sunway University, Petaling Jaya, Selangor, Malaysia; Department of Engineering, Lancaster University, Lancaster, United Kingdom

M.A.A. Aziz
School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia (UTM), Johor Bahru, Johor, Malaysia

Tajudeen Kolawole Bello
Department of Chemical Engineering, Ahmadu Bello University, Zaria, Nigeria

Ashish Bhatnagar
Department of Physics and Material Science and Engineering, JIIT, Noida, Uttar Pradesh, India

Yee Ho Chai
HICoE-Centre for Biofuel and Biochemical Research, Institute of Self Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia

Yi Herng Chan
PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, Kajang, Selangor, Malaysia

Nor Fadilah Chayed
School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia; Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia

Kin Wai Cheah
School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, United Kingdom
Bridgid Lai Fui Chin
Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri Sarawak, Malaysia

H.B. Chua
School of Engineering and Science, Department of Chemical Engineering, Curtin University Malaysia, Miri, Sarawak, Malaysia

Lubna Ghalib
Department of Materials Engineering, Mustansiriya University, Baghdad, Iraq

Unalome Wetwatana Hartley
Chemical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok, Thailand

C.N.C. Hitam
School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia

Farihahusnah Hussin
Research Centre for Carbon Dioxide Capture and Utilisation (CCDCU), School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia

Mohd Lokman Ibrahim
School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia; Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia

Muhammed Tijani Isa
Department of Chemical Engineering, Ahmadu Bello University, Zaria, Nigeria

Aminul Islam
Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, Bangladesh

Z.A. Jawad
Department of Chemical Engineering, College of Engineering, Qatar University, Doha, Qatar

Nur Haida Mohd Kaus
Nano Hybrid Materials Research Group, School of Chemical Sciences, Universiti Sains Malaysia, Gelugor, Penang, Malaysia

Afsanehsadat Larimi
Department of Chemical and Process Engineering, Niroo Research Institute, Tehran, Iran

R.J. Lee
School of Engineering and Science, Department of Chemical Engineering, Curtin University Malaysia, Miri, Sarawak, Malaysia

Junjun Li
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
Serene Sow Mun Lock
CO₂ Research Centre (CO₂RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia

Adrian Chun Minh Loy
Department of Chemical Engineering, Monash University, Clayton, VIC, Australia

Nik Ahmad Nizam Nik Malek
Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research (ISI-ISIR), Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia

Salma Izati Sinar Mashuri
School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia; Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia

Asikin Mijan
Faculty of Science and Technology, Department of Chemical Sciences, Universiti Kebangsaan Malaysia, Bangi, Selangor Darul Ehsan, Malaysia

Mustakimah Mohamed
HICoE-Centre for Biofuel and Biochemical Research, Institute of Self Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia

Praveen Kumar Murugesan
Chemical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok, Thailand

Aunie Afifah Abdul Mutalib
School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia; Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia

Abhimanyu Kumar Prajapati
Department of Physics and Material Science and Engineering, JIIT, Noida, Uttar Pradesh, India

Umer Rashid
Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

Nor Adilla Rashidi
HICoE-Centre for Biofuel and Biochemical Research, Institute of Self Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia

Izzaidah Riman
School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia; Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
R. Saidur
Department of Engineering, Lancaster University, Lancaster, United Kingdom; Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia

Yahaya Muhammad Sani
Department of Chemical Engineering, Ahmadu Bello University, Zaria, Nigeria

Nadeem Hussein Solangi
Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, Pakistan

Yie Hua Tan
Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia

Puttiporn Thiamsinsangwon
Chemical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok, Thailand; Faculty of Engineering, Department of Chemical and Materials Engineering, Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathumtani, Thailand

Supak Tontisirin
Department of Chemical Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand

Manoj Tripathi
Department of Physics and Material Science and Engineering, JIIT, Noida, Uttar Pradesh, India

Prashant Tripathi
CSIR-National Physical Laboratory, New Delhi, India

Satish Kumar Verma
Department of Physics, I.Sc., Banaras Hindu University, Varanasi, India; Hydrogen Energy Centre, Department of Physics, Banaras Hindu University, Varanasi, Uttar Pradesh, India

Haiqing Wang
Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, China

Chung Loong Yiin
Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), Sarawak, Malaysia

Suzana Yusup
Generation Unit, Fuel and Combustion Section, TNB Research Sdn. Bhd., Selangor, Malaysia

Zaim Nor Rashid Zainol Nor Rashid
Research Centre for Carbon Dioxide Capture and Utilisation (CCDCU), School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia

Zhicheng Zhang
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
About the editors

Dr. Shaukat Ali Mazari is an assistant professor in the Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, Pakistan. He also held the positions of Director Quality Enhancement Cell and Director Postgraduate Studies for 2 years. Dr. Mazari holds a PhD degree from University of Malaya, Kuala Lumpur, Malaysia. He has coauthored more than 65 SCI articles and has an H-Index of 21. He is the coauthor of 10 book chapters and coeditor of 3 ongoing books. His research focuses on chemical environmental engineering. He is a reviewer for several high-quality journals in chemical and environmental engineering and also serves as a referee for several funding agencies.

Dr. Mazari specializes in carbon capture, conversion, and storage, application of nanomaterials, thermodynamic modeling, and application of artificial intelligence in chemical engineering.

Address: Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, Pakistan. E-mail: shaukat.mazari@duet.edu.pk

Research interests: Carbon dioxide capture, conversion and storage, material synthesis and characterization, environmental impact of nanomaterials, process modeling and simulation, and application of machine learning and deep learning models.

Dr. Nabisab Mujawar Mubarak is an associate professor in the Faculty of Engineering, Universiti Teknologi Brunei, Brunei Darussalam. He serves as a scientific reviewer for numerous journals in chemical engineering and nanotechnology. In research, Dr. Mubarak has published more than 230 journal papers, 30 conference proceedings, and authored 30 book chapters, and HIS H-index is 50. His interest areas are carbon nanomaterials synthesis, magnetic biochar production using microwave, and wastewater treatment using advanced materials. He is a recipient of the Curtin Malaysia Most Productive Research award, outstanding faculty of Chemical Engineering award, Best Scientific Research Award London, and exceptional scientist in publication and citation by i-Proclaim, Malaysia. He also has the distinction of being listed in the top 2% of the world’s most influential scientists in chemicals and energy. The List of the Top
2% Scientists in the World compiled and published by Stanford University is based on their international scientific publications, a number of scientific citations for research, and participation in the review and editing of scientific research. Dr. Mubarak is a fellow member of the Institution of Engineers Australia, a chartered professional engineer (CPEng) of the Institution of Engineers Australia, and a chartered chemical engineer of the Institute of Chemical Engineering (IChemE) UK. He has published four books and is the coeditor for four ongoing Elsevier books: (1) Nanomaterials for Carbon Capture and Conversion Technologies, (2) Advanced Nanomaterials and Nanocomposites for Bioelectrochemical Systems, (3) Water Treatment Using Engineered Carbon Nanotubes, and (4) Emerging Water Pollutants: Concerns and Remediation Technologies.

Address: Faculty of Engineering, Universiti Teknologi Brunei, Gadong, Brunei Darussalam. E-mail: mubararak.yaseen@gmail.com

Research interests: Advanced carbon nanomaterials synthesis via microwave technology, MXene synthesis and its application in wastewater treatment and energy storage, graphene/CNT buckypaper for strain sensor application, biofuels, magnetic buckypaper, immobilization of enzymes, protein purification, magnetic biochar production using a microwave, and wastewater treatment using advanced materials

Dr. Manoj Tripathi completed his MTech in cryogenic engineering from IIT Kharagpur. Dr. Tripathi secured a fellowship under the “High Impact Research Grant-Scheme” and completed his PhD at University of Malaya, Kuala Lumpur, Malaysia in the field of energy storage materials. He has served as a visiting researcher at the Integrated Biotechnological Research Institute, Lucknow. Dr. Manoj Tripathi joined the Department of Physics and Materials Science and Engineering at Jaypee Institute of Information Technology Noida in 2018 as an assistant professor.

Dr. Tripathi has published more than 25 research articles in highly reputed international journals. He has authored around 10 book chapters in different edited books published by eminent publishers such as Elsevier and Springer Nature. Citation of his authored papers also explains his contribution to the research community. His overall citation in Google Scholar is more than 1300 and that of SCOPUS is around 1000, which of course is a significant number. Dr. Tripathi also has a patent under his name.

Dr. Manoj Tripathi is working on polymer composites and energy storage materials. His area of interest is biomass-based supercapacitor electrode, thermal energy storage systems, thermochemical conversion techniques, microwave pyrolysis of biomass, production of bio-oil from agricultural wastes, and solid waste management. His work
includes the study of thermophysical, dielectric, thermal, and mechanical properties of highly carbonaceous materials.

He has research collaborations with researchers at national and international level. He has jointly developed research labs in universities and is a member of various committees to promote academic and research activities. Moreover, Dr. Tripathi is member of many scientific and professional societies working in the field of science and technology and member of various research societies and communities as well. He is the advisor to the Optical Society of America (OSA) student chapter in JIIT-Noida.
CO₂-induced climate change has the characteristics of a gradually progressive disorder of the delicately balanced environment of the planet with an overwhelming concern over profuse CO₂ emissions from industries and the locomotives (transportation sector), making way for concerted efforts to arrest the debilitating effects of the phenomenon. Apart from CO₂ emissions, particulates of impurity have to be removed from natural gas streams. Nanomaterials—due to their excellent chemical, structural, and morphological characteristics—are being widely investigated for CO₂ capture and conversion processes. These materials are being applied to absorption, adsorption, membranes, and catalytic conversion processes of CO₂, given that the enhanced and tailormade properties of nanomaterials make them attractive for a wide range of CO₂ capture and conversion processes. Especially, nanomaterials have shown excellent catalytic characteristics for CO₂ conversion into fuels and chemicals. This book has the following aims: first, to focus on the applications of nanomaterials for CO₂ capture and conversion processes; secondly, to highlight the need for CO₂ mitigation, where carbon dioxide emissions can be regulated with knowledge from the basic principle for CO₂ capture and conversion processes using different nanomaterials, and to face the environmental challenges and perspectives for using nanomaterials for CO₂ mitigation technologies; and lastly, to act as a reference material helpful to both academicians and professionals, alike, with a need to know the basic principles for CO₂ capture and conversion techniques using nanomaterials and their synthesis. Given its alignment with pedagogical principles for teaching graduate students or using in lab-scale experiments or prototype design applications, and as a ready reckoner for professionals, especially engineers, scientists, policymakers, and environmentalists, the book makes for an excellent guide to develop nanotechnology for CO₂ capture and conversion. The book consists of 16 chapters.

Chapter 1 provides an extensive review of the presence of CO₂ in natural gas streams and their impact on the process equipment, especially corrosion. The chapter further explores types of CO₂ corrosion, their kinetics, and prevention techniques.

Chapter 2 discusses the basic principles of CO₂ capture and conversion technologies. The principles of absorption, adsorption, membrane separation, oxy-fuel combustion, chemical looping combustion, cryogenic separation, electrocatalysis, photocatalysis, CO₂-based polymer synthesis via chain insertion, etc. are well amplified from the point of view of giving an initial grip to the reader on the technologies which will be further developed later in the book.
Chapter 3 reports the chemical, physical, and morphological characteristics of nanomaterials. The chapter introduces nanomaterial fabrication and their characterization techniques, followed by detailed coverage of applications of nanomaterials in different CO$_2$ capture and conversion processes depending on their characteristics.

Chapter 4 begins with a discussion on the status of CO$_2$ emissions and introduces nanofluids. Detailed methods of preparation of nanofluids are provided for various nanofluids. Applications of different nanoparticles as nanofluids such as aluminum oxide, silica and silica oxide, iron oxide, titanium oxide, carbon nanotubes, nanocomposites, and MXene for CO$_2$ capture are described in detail. The chapter ends with a look at effective parameters for CO$_2$ absorption and the mechanism of CO$_2$ interaction with nanofluids.

Chapter 5 introduces waste and biomass sources and the synthesis methods for porous carbon materials from waste and biomass, followed by a discussion of nanomaterials with waste and biomass-derived adsorbents. The chapter provides details on the mechanism of CO$_2$ capture and ends with prospects for the commercialization of waste and biomass-based nano adsorbents.

Chapter 6 introduces various nanomaterials and focuses on titanium-based nanomaterials. It provides details on the fundamentals, mechanism, thermodynamics, and kinetics of CO$_2$ photocatalytic conversion over TiO$_2$ nanophotocatalysts, their modification strategies for enhanced CO$_2$ photoreduction, and ends with an overview of future research perspectives.

Chapter 7 begins with the discovery and history of perovskite photovoltaics and introduces products from CO$_2$ conversion and their applications. A detailed brief of perovskite materials for CO$_2$ conversion is provided in the chapter, along with a look at the synthesis and characterization methods followed by a sounding out of the challenges in the efficacy and application of perovskite nanomaterials for CO$_2$ conversion.

Chapter 8 introduces synthesis methods and characterization of graphene nanomaterials. The chapter's primary focus is on applying graphene-based nanomaterials for various CO$_2$ capture and conversion processes such as photocatalytic reduction, electrochemical CO$_2$ reduction, CO$_2$ hydrogenation, and membranes for CO$_2$ capture, CO$_2$ cycloaddition, and CO$_2$ adsorption. The chapter ends with foreshadowing the prospects and technological challenges in utilizing graphene-based nanomaterials for CO$_2$ capture and conversion.

Chapter 9 launches straightforward into a discussion of the synthesis methods and properties of carbon nanotubes for CO$_2$ capture and conversion. Focus has been given to the various types of carbon nanotubes, such as single-wall carbon nanotubes, multi-wall carbon nanotubes, functionalized carbon nanotubes, and carbon nanotube composites for CO$_2$ capture.

Chapter 10 introduces metal–organic frameworks as efficient CO$_2$ capture and conversion materials. A detailed view of applications of metal–organic frameworks for
CO$_2$ capture and conversion processes such as electrocatalysis, photocatalysis, and thermal catalysis is provided with an elucidation of the structure—activity relationship closing the chapter.

Chapter 11 introduces zeolite materials and their characteristics. A detailed account of zeolites as adsorbents in CO$_2$ capture is provided, along with the adsorption mechanisms effect of various parameters on CO$_2$ adsorption. The chapter also provides status on the development and application of multiple zeolites such as metal cation—exchanged zeolites, hydrophobic zeolites, hierarchical zeolites, zeolite membranes, and zeolites catalysts. The chapter ends with a presage of future challenges and perspectives on using zeolites for CO$_2$ capture technologies.

Chapter 12 describes the synthesis of dual-functional nano zeolites and highlights their properties and characteristics for CO$_2$ capture. The chapter's primary focus is on the conversion processes of CO$_2$ into value-added products such as methane, methanol, ethanol, gasoline, olefins, aromatics, and fine chemicals. The design of dual-functional materials and the effect of zeolite topology in the dual-functional materials for CO$_2$ conversion are drawn out in detail. The chapter wraps up with an insight into the environmental impact of dual-functional nano zeolites and their future challenges and prospects for transformation.

Chapter 13 details the synthesis of mesoporous silica nanoparticles, their characterization, and desired properties for CO$_2$ capture. A detailed review of the applications of mesoporous silica nanoparticles for CO$_2$ capture and conversion is provided, along with reaction mechanisms.

Chapter 14 delves into the synthesis and characterization of ionic liquid functionalized nanomaterials and their description for CO$_2$ capture. Applications of ionic liquid-based nanomaterials have been described for CO$_2$ hydrogenation, electrochemical fixation, electrochemical conversion, etc.

Chapter 15 enlightens with a techno-economic analysis of nanomaterials in CO$_2$ capture and conversion technologies. More specifically, process economic analysis using nanomaterials, the cost involved in the synthesis of nanomaterials, and the techno-economic aspect of CO$_2$ conversion processes using nanomaterials are clarified.

Chapter 16 gives the finishing touches to an exegesis on nanomaterials by digressing into the environmental impact of nanomaterials. The chapter introduces the application of various nanomaterials for CO$_2$ capture and conversion processes. Focus has been given to the toxicities of nanomaterials, the pathways to the environment and water bodies, and the impact of exposure to nanomaterials on animals, humans, food chains, etc.

Shaukat Ali Mazari
Nabisab Mujawar Mubarak
Manoj Tripathi
Acknowledgment

I would like to take the opportunity to express my sincere gratitude to the management of the Dawood University of Engineering and Technology, Karachi for their support. I am thankful to my student Mazhar Ali, who helped me a lot on resolving several online formatting issues. I am also thankful to Dr. Mubarak and Dr. Manoj for their support. Nonetheless, this book would not have been possible without contributions from the book chapter authors, a big thanks goes to them.

—Dr. Shaukat Ali Mazari

I thank Prof. Zohrah, Vice-Chancellor and higher management of Universiti Teknologi Brunei, and colleagues in the Department of Petroleum and Chemical Engineering for the continuous support and encouragement. My special thanks go to all my coeditors and authors for their valuable contributions.

—Dr. Nabisab Mujawar Mubarak

I would like to take the opportunity to express my sincere gratitude to the management of the Jaypee Institute of Information Technology, Noida and the Department of Physics and Materials Science and Engineering for their continuous help, support, and cooperation.

I would take this opportunity to express special thanks to Dr. Mubarak and Dr. Shaukat, the coeditors of this book, for their inputs and guidance throughout the process. I would like to offer thanks to all the authors for contributing their respective book chapters.

—Dr. Manoj Tripathi
CHAPTER 8
Graphene-based nanomaterials for CO₂ capture and conversion

Bridgid Lai Fui Chin¹, Adrian Chun Minh Loy², Kin Wai Cheah³, Yi Herng Chan⁴, Serene Sow Mun Lock⁵ and Chung Loong Yiin⁶

¹Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri Sarawak, Malaysia
²Department of Chemical Engineering, Monash University, Clayton, VIC, Australia
³School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, United Kingdom
⁴PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, Kajang, Selangor, Malaysia
⁵CO₂ Research Centre (CO₂RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia
⁶Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), Sarawak, Malaysia

8.1 Introduction

The ever-increasing human population and growth in urbanization around the world has resulted in the excessive emission of greenhouse gases (GHGs), particularly carbon dioxide (CO₂), to the environment, which contributes to both environmental and health issues (Lu et al., 2021). This is because we are still heavily dependent on the use of fossil fuels for energy supply and most renewable source technologies are still not practiced commercially due to their uncompetitiveness when compared to the conventional fossil fuels as an energy source (Chin et al., 2016). It was evidently reported that the CO₂ emission increased drastically from 20.5 Gt to 31.5 Gt from 1990 to 2020 (IEA, 2020). According to Global Climate Change (2021), the CO₂ concentration was documented at the value of 410 ppm and this value indicates the global warming concerns which need to be taken seriously. There is an urgent need to find effective approaches to reduce and control the emission of the CO₂ to the environment for resolving this issue (Global Climate Change, 2021). A few strategies such as solar energy utilization (Li et al., 2019), green plants cultivation (Wang et al., 2016), and coal desulfurization (Liu et al., 2020) are alternatives for CO₂ reduction. However, these methods are said to be time consuming or involve complicated equipment with low efficiency (Lu et al., 2021). Recently, there is an increasing interest in the development of graphene-based nanomaterials for CO₂ capture and conversion by researchers and scientists (Balasubramanian & Chowdhury, 2015; Kudahi et al., 2017; Wang et al., 2014).
Graphene is a carbon allotrope that displays the properties of a semiconductor and it is grouped as a quasi-metal (Si et al., 2021). Furthermore, the existence of carbon in graphene allows the flexibility in different nanostructures such as zero-, one-, two-, or three-dimensional elemental structure (Le et al., 2021). Additionally, the graphene has a flat single layer of two-dimensional sheets a single-atom-thick derived from crystalline graphite (Balandin et al., 2008; Dragoman & Dragoman, 2009; Du et al., 2008; Ganganboina & Doong, 2020; Lee et al., 2008; Miao et al., 2007; Murali et al., 2009; Nair et al., 2008; Novoselov et al., 2004; Shen et al., 2009; Si et al., 2021; Stoller et al., 2008; Yu et al., 2010; Tombros et al., 2007) (Table 8.1).

In this chapter, the recent advances and development progress of graphene-derived nanomaterials particularly in CO2 capture and conversion are critically examined. Furthermore, the various synthesis methods of graphene nanomaterials such as Hummer’s method, mechanical exfoliation, electrochemical method, and chemical vapor deposition (CVD) method are presented. The different types of graphene-based nanomaterials (photocatalytic reduction, electrochemical CO2 reduction, graphene-based nanomaterials for CO2 hydrogenation, graphene-based nanomaterials membranes for CO2 capture, and graphene-based nanomaterials for CO2 cycloaddition) are compiled based on recent literature. Lastly, the future prospects and technological challenges for the utilization of graphene-based nanomaterials for CO2 capture and conversion are discussed.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Values</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young’s modulus</td>
<td>1 TPa</td>
<td>Lee et al. (2008)</td>
</tr>
<tr>
<td>Fermi velocity</td>
<td>300–500 nm</td>
<td>Dragoman and Dragoman (2009)</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>5000 Wm(^{-1}) K(^{-1})</td>
<td>Balandin et al. (2008)</td>
</tr>
<tr>
<td>Current density</td>
<td>1,000,000 ms(^{-1})</td>
<td>Dragoman and Dragoman (2009)</td>
</tr>
<tr>
<td>Fracture strength</td>
<td>130 GPa</td>
<td>Lee et al. (2008)</td>
</tr>
<tr>
<td>Specific surface area</td>
<td>2630 m(^2) g(^{-1})</td>
<td>Stoller et al. (2008)</td>
</tr>
<tr>
<td>Elaxation length</td>
<td>15,000 cm(^2) V(^{-1}) s(^{-1})</td>
<td>Novoselov et al. (2004)</td>
</tr>
<tr>
<td>Sheet resistance</td>
<td>(1.3 \times 10^{4} - 5.1 \times 10^{4}) Ω sq(^{-1})</td>
<td>Nair et al. (2008)</td>
</tr>
<tr>
<td>Mobility (Intrinsic)</td>
<td>(10^{8}) A cm(^{-2})</td>
<td>Murali et al. (2009), Yu et al. (2010)</td>
</tr>
<tr>
<td>Spin R</td>
<td>(1.5–2) μm</td>
<td>Tombros et al. (2007)</td>
</tr>
<tr>
<td>Optical transmittance</td>
<td>97.7%</td>
<td>Nair et al. (2008)</td>
</tr>
<tr>
<td>Phase coherence length</td>
<td>(3–5) μm</td>
<td>Miao et al. (2007)</td>
</tr>
<tr>
<td>Mobility (typical)</td>
<td>200,000 cm(^2) V(^{-1}) s(^{-1})</td>
<td>Du et al. (2008)</td>
</tr>
<tr>
<td>Thermal resistance (interface)</td>
<td>(4 \times 10^{-8}) km(^2) W(^{-1})</td>
<td>Shen et al. (2009)</td>
</tr>
</tbody>
</table>
8.2 Synthesis method and characterization of graphene nanomaterials

It is well-acknowledged in the literature that the rational design of graphene-based nanomaterials with well-defined morphology and structures plays a vital role in steering the selectivity and performance of graphene nanomaterials toward CO₂ capture and conversion. To date, a significant number of graphene synthesis methods have been developed to search for the most efficient and economical approach to produce high-quality graphene nanomaterials for the application of CO₂ capture and conversion. Generally, the graphene synthesis methods can be grouped into two main types, i.e., bottom-up and top-down. The former method typically used a carbonaceous gas source as the reactant to form a covalently linked two-dimensional (2D) carbon network, while the latter technique depends on exfoliation of graphite to break down the powder graphite materials into graphite sheets. Some of the graphene synthesis approaches include mechanical exfoliation, Hummers’ method, electrochemical method, and CVD (Ahmed et al., 2020; Bhuyan et al., 2016; Shams & Zhang, 2015; Taheri Najafabadi, 2015; Toh et al., 2014; Warner et al., 2013) (Table 8.2).

8.2.1 Mechanical exfoliation

Mechanical exfoliation, also known as adhesive tape technique is a top-down approach that requires mechanical energy to exfoliate graphite. Within the top–bottom concept, the graphene material is mechanically isolated from the bulk graphite layer by layer. Normal force or lateral force is applied to overcome the van der Waals attraction forces between the graphene flakes. In 2004, graphene sheet was successfully synthesized by Andre Geim and Kostantin Novoselov via a micromechanical cleaving method, also known as the “Scotch Tape Exfoliation” method (Novoselov et al., 2004). Novoselov et al. (2004) and his coworkers used an adhesive tape to extract a single layer of defect-free graphene atoms (1 mm thickness) from a three-dimensional (3D) highly ordered pyrolytic graphite (HOPG) (Novoselov et al., 2004). In a typical mechanical exfoliation procedure, a fresh piece of Scotch tape with a length of about 6 inches was pressed onto the HOPG and exerted normal force on it for about 10 seconds. After approximately 10 seconds, the tape was gently removed from the graphite and a thick layer of shiny graphite layer was attached to the adhesive side of the tape. Next, the tape with the graphite layer was refolded onto a clean adhesive part of the tape before it was unfolded. The same steps were repeated several times until the end of the tape turned into a dark color. Following, the graphite layers on the tape were transferred onto the surface of the silicate or silica oxide wafers by gently pressing them on the tape before peeling it off.

Although the micromechanical exfoliation approach can yield high-quality single-layer or bi-layer graphene nanomaterials with the lateral dimensions on the order of
<table>
<thead>
<tr>
<th>Synthesis method</th>
<th>Strengths</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical exfoliation</td>
<td>Safe and simple sample preparation</td>
<td>Poor graphene yield</td>
</tr>
<tr>
<td></td>
<td>Graphite layer in nanoscale can be easily obtained</td>
<td>Requires skilled manual labor or mechanical energy</td>
</tr>
<tr>
<td></td>
<td>High graphene purity</td>
<td>Despite the tape residue does not affect the quality of the graphene nanomaterials significantly, however it does make those samples more difficult to find on the substrate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High production cost</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uneven thickness of graphene nanomaterials</td>
</tr>
<tr>
<td>Hummer method</td>
<td>High graphene yield</td>
<td>Tedious, time-consuming, and labor-intensive procedures</td>
</tr>
<tr>
<td></td>
<td>Highly scalable</td>
<td>Longer preparation time</td>
</tr>
<tr>
<td></td>
<td>Excellent dispersibility in various solvents</td>
<td>Higher reaction temperature</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inevitable defects on graphene sheets</td>
</tr>
<tr>
<td>Electrochemical</td>
<td>Easy to operate</td>
<td>Environment-unfriendly due to production of corrosive and toxic gaseous such as NO₂ and N₂O₄</td>
</tr>
<tr>
<td>method</td>
<td>Relatively faster approach</td>
<td>Presence of impurities (electrolyte salts) between the graphene sheets</td>
</tr>
<tr>
<td></td>
<td>High graphene yield</td>
<td>Poor thickness control</td>
</tr>
<tr>
<td></td>
<td>Scalable to industrial level</td>
<td>Presence of impurities (electrolyte salts) between the graphene sheets</td>
</tr>
<tr>
<td></td>
<td>Environmental-friendly</td>
<td>Poor thickness control</td>
</tr>
<tr>
<td></td>
<td>Allows functionalization of graphene sheet with different types of electrolyte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Well-suited with organic compounds or polymers materials</td>
<td></td>
</tr>
<tr>
<td>Chemical vapor</td>
<td>Production of high-quality, impervious, and hard graphene sheets</td>
<td>Presence of wrinkled graphene nanomaterials at high temperatures over 900°C</td>
</tr>
<tr>
<td>deposition (CVD)</td>
<td>Allows mass production of graphene nanomaterials</td>
<td>Environment-unfriendly due to production of corrosive and toxic gaseous such as NO₂ and N₂O₄</td>
</tr>
<tr>
<td></td>
<td>High growth rates</td>
<td>Difficulty in locating a proper substrate to grow graphene layers</td>
</tr>
<tr>
<td></td>
<td>Excellent reproducibility</td>
<td>Difficulty in transferring and removing the film from the substrate to other surfaces without affecting the structure of the graphene</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Difficulty in controlling the thickness and achieving uniform deposition of the carbon materials</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Further purification needed to remove residue catalyst</td>
</tr>
</tbody>
</table>
tens to hundreds of micrometers, this method has been condemned by many previous researchers for its extremely labor-intensive and time-consuming procedures (Yi & Shen, 2015). From the perspective of industrial practicability, it may be easy to isolate small amounts of this one-atom-thick carbon material, but it is technically impossible to produce large graphene sheets by using the tape exfoliation method for commercial applications like CO₂ capture and conversion. Thus, this technique is limited to laboratory scale and does not appear to be scalable for industrial production. Also, a major drawback of this technique is its inherent complexity in identifying and finding a proper substrate to grow graphene layers on as well as the difficulty in transferring and removing the film from the substrate to other surfaces without affecting the structure of the graphene. Recently, several researchers have been attempting to improve the scalability and efficiency of the mechanical exfoliation technique by using an advanced operational setup such as ultrasharp single-crystal diamond wedge and a three-roll mill machine with a polymer adhesive (Chen et al., 2012; Jayasena & Subbiah, 2011). These novel methods have reduced the labor cost and eliminated the need for manual operation. However, all of these new approaches still suffer from additional machinery complexity, high production cost, and high energy consumption, which limit their scalability for mass production (Lee et al., 2020).

8.2.2 Hummer’s method

Of all the chemical exfoliation approaches, Hummers’ method is one of the most commonly used techniques to synthesize graphene nanomaterials. Unlike the mechanical exfoliation technique, graphite substrates are chemically oxidized to graphite oxide (GO) by treatment with a mixture of concentrated oxidizing reagents such as sulfuric acid (H₂SO₄), sodium nitrate (NaNO₃), and potassium permanganate (KMnO₄). As reported by Hummers (Hummers & Offeman, 1958), the graphite powders were added into a solution mixture of NaNO₃ and H₂SO₄ in an ice bath. Moreover, KMnO₄ was also added to keep the suspension temperature at 20°C. As the suspension became concentrated, hot water was subsequently added to dilute the suspension and the diluted suspension was further treated with the addition of hydrogen peroxide (H₂O₂) to reduce the residual permanganate to soluble manganese ions. Lastly, the mixture was subsequently filtered and washed with warm water several times to remove the soluble salt of mellitic acid. The resulting GO solids were then dried under an air-free environment over phosphorus pentoxide (P₄O₁₀) at 40°C.

Due to the release of harmful and explosive gases like nitrogen dioxide (NO₂), dinitrogen tetroxide (N₂O₄), and chlorine dioxide (ClO₂) during the synthesis, the Hummers’ method has undergone several modifications over the years, mainly focused on eliminating the use of NaNO₃ and avoiding the release of toxic nitrous gases.
(Lee et al., 2019; Marcano et al., 2010). Thus most of the modified Hummer’s methods have introduced a greener and cheaper approach in producing a more stable GO colloidal suspension at a much shorter time frame and milder reaction conditions. Typically, it is carried out in the following three major steps: oxidation, reduction, and posttreatment. In oxidation, the natural graphite flakes are added into a solution mixture of H₂SO₄ and HNO₃ under continuous stirring in an ice bath, followed by the addition of KMnO₄ under room temperature. Next, warm water is added to the solution until the pH is about 7 before it is centrifuged and filtered. Lastly, a monolayer GO product is obtained from the ultrasonication process.

Instead of applying the conventional thermal reduction, a known volume of reducing agents such as hydrazine and sodium borohydride (NaBH₄) are added to the measured solution to further reduce the resulting GO product. This helps to remove the attached functional group on the GO. Furthermore, polar aprotic solvents can be added to improve the exfoliation performance. Lastly, the solution is filtered and washed with water until neutrality is achieved before the solid is dried and ground for further use. Despite the distinct advantages of Hummers’ methods for the synthesis of graphene oxide, the major drawbacks of this top-down approach are its inherent tedious preparation procedures, use of strong oxidizing agents, and high reaction temperatures.

8.2.3 Electrochemical method

In recent years, electrochemical exfoliation of graphite has emerged as an eco-friendly and efficient preparation technique potentially capable of synthesizing high-quality few-layer graphene (FLG) in mass amounts. Unlike other methods, the production of graphene nanomaterial via electrochemical technique involves a single hybridization step without the use of any volatile solvents or strong oxidizing agents. In this method, a fixed potential or electrical voltage is usually applied to drive the ionic species in the electrolyte solution into the graphite electrode before weakening the van der Waals forces between the graphite layers. The evolution of locally formed gaseous species intercalate the adjacent sheets of graphene and cause the graphene sheet to expand. As a result, the graphene sheets disintegrate during the intercalation and the interlayer distance of graphene layers increases.

To date, electrochemical exfoliation of graphite has been conducted in ionic liquids (Lei et al., 2017; Liu et al., 2008; Yan et al., 2017) and conventional inorganic electrolytes such as HCl, HF, H₂SO₄, HNO₃, H₃PO₄, NaClO₄, and others (Lee et al., 2020; Lin et al., 2016; Lowe et al., 2019). It has been well-reported in the literature that both ionic liquids and inorganic electrolytes have their respective strengths and limitations for use in electrochemical exfoliation. For example, electrochemical exfoliation of graphene materials in acidic electrolytes can yield a higher
quality of graphene flakes with a larger lateral size. However, the resulting graphene flakes will still possess a significant amount of oxygen-containing functional groups due to the fact that the graphite is being oxidized by the products of the acid electrolysis (Li et al., 2020). In contrast, the usage of ionic liquid as an electrolyte solution in electrochemical exfoliation of graphene can promote a better functionalization performance at the expanse of the graphene yield and lateral size (Li et al., 2020).

As a whole, electrochemical exfoliation has several advantages over the traditional mechanical and chemical methods. The single-step technique is versatile in terms of chemical functionalization and allows the potential of mass production of graphene. This environment-friendly method is easy to operate and able to operate at ambient conditions. Furthermore, this synthesis method also encourages the facile production of graphene flakes within several minutes or hours. On the other hand, this electrochemical method also suffers a number of major downfalls that are required to be addressed promptly in the future before it can be applied at a larger manufacturing scale. For example, loose graphite powder may not be applicable as the electrode needs to be continuous and electrically conductive (Achee et al., 2018). Thus, only graphite monoliths are suitable to be used as the carbon source for electrochemical exfoliation. Secondly, the electrochemical exfoliation process tends to halt when the graphite electrodes disintegrate and interrupt the entire circuit, which leads to the need for further intercalation of unexfoliated materials (Achee et al., 2018).

8.2.4 Chemical vapor deposition (CVD) method

Chemical vapor deposition (CVD) is a bottom-up technique that decomposes, combines, and deposits volatile carbon-containing gases (methane, acetylene, ethylene, hexane, and other biomass materials) onto a substrate in a reaction chamber in the presence of a metallic catalyst (copper or nickel film). By heating up the carbonaceous material at elevated temperatures (650°C—1000°C), the carbon precursor decomposes into volatile gas molecules and it dissociates into individual carbon and hydrogen atoms upon contacting the surface of the metal catalysts (Lee et al., 2019). Afterwards, the carbon atom diffuses through the surface and bulk of metal catalysts before forming the graphene sheets. At the same times, the by-product gases are pumped out from the chamber. In short, the graphene films can be produced from CVD in merely two steps. The first step involves thermal pyrolysis of a precursor materials at high temperature to form carbon atoms on a substrate materials. In the second step, the dissociated carbon atoms are assembled onto a substrate in the presence of a metal catalyst before forming a monolayer or multilayer graphene film. In CVD, reaction temperature plays an important role as it has a significant effect on the type of reaction that
occurs and the properties of the resulting products. Although CVD can produce high-quality and high-purity graphene films with low defects and high surface area, the by-products produced from the reactions can be very toxic due to the volatile nature of the precursor gases. Furthermore, the resulting graphene needs to be transferred from the metal surface to the target substrate, which makes the production process difficult to control and further hinders its potential industrial applications in CO$_2$ capture and conversion (Li et al., 2020).

8.3 Applications of graphene-based nanomaterial

8.3.1 Graphene-based nanomaterials for CO$_2$ adsorption

Graphene-based nanomaterials have emerged as promising solid sorbents for CO$_2$ separation and capture, owing to their high specific surface area, lower production cost, superior structural, chemical, mechanical, thermal, and electrical characteristics (Abergel et al., 2010; Wang et al., 2014). Studies on graphene-derived materials on adsorption of CO$_2$ have been reported by several researchers. Generally, the adsorption of CO$_2$ by sorbents is controlled by five stages of mass transport mechanism, namely CO$_2$ external diffusion, film diffusion, pore diffusion, intraparticle diffusion, and surface adhesion (Kudahi et al., 2017).

To enhance the CO$_2$ adsorption capacity, selectivity, and kinetics for industrial applications, several techniques such as heat/electric/chemical treatment, surface functionalization and modification, nanoparticles doping, development of hybrid graphene or graphene oxide nanocomposites have been proposed and attempted. These treatments aim to enhance the surface area, porosity, available active sites, and surface chemistry of the sorbents, hence facilitating better diffusion and binding (adsorption) of CO$_2$ molecules on the surface of the sorbents. Stanly et al. (2019) synthesized polyphosphoric acid and amino-modified montmorillonite clays (PMMT and AMMT) and hybridized them with reduced graphene oxide (rGO) to study the performance of the developed sorbents (Stanly et al., 2019). The BET surface area of PMMT/rGO hybrid was increased tremendously to 50.77 m2 g$^{-1}$ as compared to that of pristine MMT (14.90 m2 g$^{-1}$) and GO (1.14 m2 g$^{-1}$), leading to its improved CO$_2$ adsorption capacity of 0.49 mmol g$^{-1}$ at low pressure (900 mmHg) (Stanly et al., 2019). Ning et al. (2021) developed a graphene-based semicoke porous carbon and found it boosted the CO$_2$ adsorption capacity (7.11 mmol g$^{-1}$ at 25°C and 30 bar) and selectivity (CO$_2$/N$_2$ = 28.24, at 25°C) (Ning et al., 2021). This was attributed to the nitrogen-rich layered sandwich-like structure of the materials, which greatly improved the CO$_2$ mass transport (Ning et al., 2021).

While isotherms and equilibrium studies of CO$_2$ adsorption have been widely reported, the kinetics of CO$_2$ adsorption on various sorbents is also equally important. Kudahi et al. (2017) investigated the kinetics of CO$_2$ adsorption on various novel
Graphene-based nanomaterials for CO₂ capture and conversion

Graphene-based sorbents, namely mesoporous graphene oxide/TiO₂ nanocomposite, thermally treated graphene nanosheets, holey graphene frameworks, and 3-D graphene-based porous adsorbent (Kudahi et al., 2017). Several kinetic correlations (pseudo-first order model, pseudo-second order model, Avrami model, and fractal-like exponential kinetic model) were used to describe the CO₂ adsorption kinetics, in addition to the investigation of interparticle diffusion model, intraparticle diffusion model, and Boyd’s film diffusion model in determining the rate-limiting mechanism of adsorption (Kudahi et al., 2017). Pajdak et al. (2019) compared the equilibrium isotherms and kinetics of CO₂ adsorption in rGO, multi-walled carbon nanotubes (MWCNT) and coals, and reported that the sorption equilibrium was attained almost instantaneously by rGO and MWCNT following a pressure change in the reactor (Pajdak et al., 2019) (Figs. 8.1 and 8.2).

Other than that, several computational modeling studies have also been reported on CO₂ adsorption by graphene-based nanomaterials to complement the empirical studies. Sathishkumar et al. (2020) explored the (reversible) effect of charge-induced density

![Figure 8.1 CO₂ adsorption isotherms (Langmuir) on different types of sorbents: (A) Multi-walled carbon nanotube (MWCNT), (B) rGO, (C) Sobieski coal, and (D) Budryk coal. From Pajdak, A., Skoczylas, N., Dębski, A., Grzegorek, J., Maziarz, W., & Kudasik, M. (2019). CO₂ and CH₄ sorption on carbon nanomaterials and coals — Comparative characteristics. Journal of Natural Gas Science and Engineering, 72, 103003. https://doi.org/10.1016/j.jngse.2019.103003 (Original work published 2019).](image-url)
and external electric field on the stronger adsorption of CO₂ by N-doped penta-graphene sheet (chemisorption) through density functional theory (DFT) computations (Sathishkumar et al., 2020). Another study by Osouleddini and Rastegar (2019) also applied DFT calculations to study and compare the adsorption energies of CO₂ on the surface of intrinsic graphene and tetracyanoethylene (TCNE)-modified graphene and found stronger interaction of CO₂ on the surface of TCNE-modified graphene due to the reduction of electron accumulation on the graphene by TCNE molecule (Osouleddini & Rastegar, 2019). These computational studies have paved the way toward fundamental understanding and insights of the chemistry between graphene-based adsorbents and CO₂ (and other gas mixtures), which are beneficial for the selection and synthesis of novel adsorbents (Chowdhury & Balasubramanian, 2016a,b,c; Chowdhury et al., 2015; Kudahi et al., 2017; Li et al., 2016; Liu et al., 2021; Ning et al., 2021; Stanly et al., 2019) (Table 8.3).

<table>
<thead>
<tr>
<th>References</th>
<th>Adsorbent material</th>
<th>Surface area/pore volume of adsorbent</th>
<th>Adsorption temperature and pressure</th>
<th>CO₂ equilibrium adsorption capacity (qₑ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kudahi et al.</td>
<td>Graphene oxide/TiO₂ nanocomposite</td>
<td>- BET surface area: 83.12—99.54 m² g⁻¹ (Chowdhury et al., 2015)</td>
<td>- Temperature: 0°C—50°C</td>
<td>1.091—2.389 mmol g⁻¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Pore volume: 0.269—0.382 cm³ g⁻¹ (Chowdhury et al., 2015)</td>
<td>- Pressure: 0—1 bar</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- BET surface area: 185—484 m² g⁻¹ (Chowdhury & Balasubramanian, 2016a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermally treated graphene nanosheets</td>
<td>- Pore volume: 0.268—0.682 cm³ g⁻¹ (Chowdhury & Balasubramanian, 2016a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Holey graphene frameworks</td>
<td>- BET surface area: 439.11—524.18 m² g⁻¹ (Chowdhury & Balasubramanian, 2016b)</td>
<td>- Temperature: 0°C—50°C</td>
<td>0.974—2.109 mmol g⁻¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Pore volume: 1.06—1.27 cm³ g⁻¹ (Chowdhury & Balasubramanian, 2016b)</td>
<td>- Pressure: 0—1 bar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-D graphene-based porous adsorbent</td>
<td>- BET surface area: 885.34—1315.98 m² g⁻¹ (Chowdhury & Balasubramanian, 2016c)</td>
<td>- Temperature: 0°C—50°C</td>
<td>1.588—3.412 mmol g⁻¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Pore volume: 0.71—1.07 cm³ g⁻¹ (Chowdhury & Balasubramanian, 2016c)</td>
<td>- Pressure: 0—1 bar</td>
<td></td>
</tr>
<tr>
<td>Stanly et al.</td>
<td>Polyphosphoric acid modified montmorillonite clay/reduced</td>
<td>- BET surface area: 50.77 m² g⁻¹</td>
<td>- Temperature: 25°C</td>
<td>0.49 mmol g⁻¹</td>
</tr>
<tr>
<td>(2019)</td>
<td>graphene oxide hybrids</td>
<td>- Pore volume: 0.0788 cm³ g⁻¹</td>
<td>- Pressure: 0—900 mmHg</td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>References</th>
<th>Adsorbent material</th>
<th>Surface area/pore volume of adsorbent</th>
<th>Adsorption temperature and pressure</th>
<th>CO$_2$ equilibrium adsorption capacity (q_e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ning et al.</td>
<td>N-rich layered sandwich-structure of graphene-based semi coke porous carbon</td>
<td>BET surface area: 467.96–701.53 m2 g$^{-1}$</td>
<td>Temperature: 25°C</td>
<td>3.99–7.11 mmol g$^{-1}$</td>
</tr>
<tr>
<td>(2021)</td>
<td></td>
<td>Pore volume: 0.23–0.37 cm3 g$^{-1}$</td>
<td>Pressure: 0.1–30 bar</td>
<td></td>
</tr>
<tr>
<td>Liu et al.</td>
<td>Graphene oxide/core shell ZIF-8@ZIF-67 nanocomposite hybrid</td>
<td>BET surface area: 532–1490 m2 g$^{-1}$</td>
<td>Temperature: 0°C</td>
<td>0.90–2.15 mmol g$^{-1}$</td>
</tr>
<tr>
<td>(2021)</td>
<td></td>
<td>Pore volume: 0.29–1.60 cm3 g$^{-1}$</td>
<td>Pressure: 0–1 bar</td>
<td></td>
</tr>
<tr>
<td>Li et al.</td>
<td>ZnO based N-doped rGO porous nanomaterial</td>
<td>BET surface area: 1122 m2 g$^{-1}$</td>
<td>Temperature: 25°C</td>
<td>3.55 mmol g$^{-1}$</td>
</tr>
<tr>
<td>(2016)</td>
<td></td>
<td>Pore volume: 0.60 cm3 g$^{-1}$</td>
<td>Pressure: 0–1 atm</td>
<td></td>
</tr>
</tbody>
</table>
8.3.2 Graphene-based nanomaterials membranes for CO₂ reduction

8.3.2.1 Photocatalytic reduction of CO₂ using graphene-based materials

To date, graphene-based materials have been hailed to have an immense potential for large range of industrial applications including semiconductors, optoelectronics, CO₂ capture, hydrogen (H₂) storage, catalysts, and sensors to name a few (Bardi et al., 2020; Loy et al., 2019; Stoller et al., 2008; Yamamoto et al., 2020). On this ground, large interests have been dedicated to photocatalytic activities owing to their unique characteristics such as large surface area, high adsorption capacity, high stability, and flexible tuning physiochemical characteristics, as well as high carrier mobility (Bonaccorso et al., 2015; Purkait et al., 2017; Szcześniak et al., 2017). For example, graphene oxide (GO) has been elucidated as a semiconductor photocatalyst due to an apparent bandgap of 2.4–4.3 eV, which is suitable for generating H₂ through H₂O splitting under a wide range of solar energy from UV to near infrared light (Giovannetti et al., 2017; Gusain et al., 2016; Kuang et al., 2020) (Fig. 8.3).

Figure 8.3 (A) Photocatalyst scheme of TiO₂-assisted graphene-based nanocomposite (copyright from Giovannetti et al., 2017); (B) graphene nanoparticles simulated using crystal maker software; (C) SEM image of TiO₂-RGO 0.5% (copyright from Leal et al., 2020); (D) TEM images of the RGO/Pt4 nanocomposite with (E) high resolution image, the insets of Fig. 8.3D. Data from Kasturi, S., Torati, S. R., Eom, Y. J., Ahmad, S., Lee, B.-J., Yu, J.-S., & Kim, C. (2020). Real-time monitored photocatalytic activity and electrochemical performance of an rGO/Pt nanocomposite synthesized via a green approach. RSC Advance, 10(23), 13722–13731. https://doi.org/10.1039/D0RA00541Ja.
Lately, nanocomposites of TiO$_2$ with graphene-family materials have been reported as very efficient photocatalysts (Jin et al., 2020; Kandulna et al., 2020; Phukan & Sahu, 2020). Graphene is a two-dimensional carbon nanomaterial with a honeycomb structure made of SP2 carbons (see AlShammari et al., 2020; Chen et al., 2020; He et al., 2020; Leal et al., 2020).

Besides using TiO$_2$ as cocatalyst, some researchers incorporated Pt ions on GO via a cheap reducing agent to form RGO/Pt nanocomposites. Kasturi et al. (2020) have reported honey as a reducing agent which plays a role in the in situ functionalization of the Pt ions on the surface of RGO via a reduction method (Kasturi et al., 2020). Interestingly, the increase of Pt precursor concentration will lead to a highly efficient photocatalytic rate, implying that the Pt could induce a better electron transfer property with higher current and conductivity as compared to the pure RGO. Based on the TEM images (Kasturi et al., 2020; Neppolian et al., 2012), a well uniform and good distribution of Pt nanoparticles with an average size of 2.5 nm on the surface of rGO can be observed, suggesting that no agglomeration of Pt nanocluster was formed. Owing to the remarkable high electron transfer property, the optimized photocatalyst (20 wt% Pt precursor) exhibited a remarkable photocatalytic activity and degraded 98% of methylene blue in the presence of sunlight at an ambient temperature under 180 minutes. Neppolian et al. also synthesized a TiO$_2$ doped Pt-GO nanomaterial through ultrasound-assisted method (Neppolian et al., 2012). They tested the catalyst using an anionic surfactant, dodecylbenzenesulfonate (DBS) in an aqueous solution was carried out using Pt—GO—TiO$_2$ nanoparticles in order to evaluate the photocatalytic efficiency. As expected, the Pt doped GO—TiO$_2$ exhibited an enhanced rate of mineralization of DBS under visible light irradiation.

8.3.2.2 Electrochemical CO$_2$ reduction using graphene-based materials

By exploiting the presence of carboxylic groups (—COOH) on GO nanosheets, GO tends to be an ideal platform for covalent immobilization of ions (Rowley-Neale et al., 2018; Shaban et al., 2019; Smith et al., 2017). Apart from the —COOH functional groups, GO also exhibits high electron mobility at room temperature, high thermal conductivity, and strong mechanical properties (high Young’s modulus) (Hasani et al., 2019). On this ground, GO can be classified as a relatively simple, economic, fast, and environmentally benign electrochemical CO$_2$ reduction method. In 2019 the first graphene-based single-atom catalyst for CO$_2$ reduction reaction (CO2RR) was revealed (Cheng et al., 2019). The authors doped the Ni single atom on the highly porous defect-rich microwave exfoliated GO support via the impregnation method. Interestingly, the exfoliated GO provides a large surface area and abundant defects on the pore edge as anchoring sites for Ni, yielding a 3D structure connected with a nanotube shape with a diameter of 30 nm, as observed in the TEM image (see Fig. 8.4).
In 2020, Hwang’s group reported that RGO layers can effectively alter the Faradaic efficiency for CO production in electrocatalysis (Nguyen et al., 2020). They have synthesized a the R-ZnO/rGO electrode that exhibited both of the diffraction peaks associated with Zn metal and Zn cations (See Fig. 8.4).

Figure 8.4 (A) TEM image of Ni single atom/microwave exfoliated GO nanosheet (copyright from Cheng et al., 2019); (B) DFT study of Ni-N species on the graphene plane (copyright from Cheng et al., 2019), (C) Structure of R-ZnO/rGO electrodes (copyright from Nguyen et al., 2020); (D) Raman Spectra of R-ZnO/RGO and ZnO/GO. GO, graphite oxide; DFT, density functional theory. Data from Cheng, Y., Zhao, S., Li, H., He, S., Veder, J.-P., Johannessen, B., Xiao, J., Lu, S., Pan, J., Chisholm, M. F., Yang, S.-Z., Liu, C., Chen, J. G., & Jiang, S. P. (2019). Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO₂. Applied Catalysis B: Environmental, 243, 294–303. https://doi.org/10.1016/j.apcatb.2018.10.046.

In 2020, Hwang’s group reported that RGO layers can effectively alter the Faradaic efficiency for CO production in electrocatalysis (Nguyen et al., 2020). They have synthesized a the R–ZnO/rGO electrode that exhibited both of the diffraction peaks associated with Zn metal and Zn cations (See Fig. 8.4).

8.3.2.3 Graphene-based nanomaterials for CO₂ hydrogenation

The motivation underlying CO₂ hydrogenation process is to convert CO₂ to useful products (Van-Dal & Bouallou, 2013). This not only creates a window for profitable business but also minimizes CO₂ emission, which is the root cause of global
warming (Van-Dal & Bouallou, 2013). Nonetheless, the challenge arises because CO$_2$ is considered to be an inert molecule that is relatively difficult to be activated for the hydrogenation process (Liu et al., 2019). In this context, the utilization of an appropriate and well-distributed catalyst is substantially important to ensure a sufficient conversion, yield, and reaction rate of the hydrogenation process (Liu et al., 2019). In this context, graphene-based nanomaterials have been proposed to be a strong support to be utilized in CO$_2$ hydrogenation owing to their favorable characteristics, which include a large effective surface area, outstanding stability with respect to thermal and chemical interaction, ease in surface alteration, and existence of various active sites for catalytic activity (Tang et al., 2016). In this context, the graphene serves as a bridge between different catalysts, which allows the uniform distribution of catalysts and enhances the catalytic activity by strengthening the hydrogen spillover phenomenon. During this process, activated H$_2$ species migrate from the catalyst particle that binds them to the carbon species of graphene nanomaterial. Subsequently, the graphene works as a binding platform that enhances the absorption of hydrogen species to the other catalysts that preferentially bind CO$_2$, which forms a platform for the hydrogenation process to occur. The mechanism of graphene oxide as a catalyst support and bridging agent is shown in Witoon et al. (2018) (Fig. 8.5).

Summary of utilization of graphene-based nanomaterials for different applications of CO$_2$ hydrogenation is provided in Table 8.4 (Deerattrakul et al., 2016; Fan & Wu, 2016; Jurca et al., 2019; Liu et al., 2019; Ma et al., 2019; 2019; Mohd Ridzuan et al., 2020; Nguyen et al., 2015; Primo et al., 2019; Witoon et al., 2018).

8.3.2.4 Graphene-based nanomaterials membranes for CO$_2$ capture

Membrane is an emerging separation process for CO$_2$ separation due to its many benefits, such as flexible operating conditions, effective energy utilization and operating cost, its chemical free process, as well as the smaller footprint (Bernardo & Drioli, 2010). Polymeric membranes dominate membrane separation technology in industry at present since they have huge reproducibility for large-scale production and low fabrication cost (Hwang et al., 2012). However, the performance of polymeric membranes is limited by the trade-off between permeability (high gas transport to cater for large feed flux and high CO$_2$ concentration) and selectivity (preference of membrane to allow transport of CO$_2$ while retaining the product gas to constitute two concentrated streams) (Jusoh et al., 2016). To overcome the limitations, the incorporation of inorganic fillers into polymer matrix to constitute mixed matrix membranes (MMMs) has been proposed as a viable solution. Over recent years, graphene-based nanomaterial has been studied extensively since it inherits active functional groups such as epoxy, hydroxyl, and carboxyl groups that can enhance dispersion within polymeric material while serving as active sorption sites for CO$_2$ separation. In this context, the uniformly distributed nanomaterial disrupts
efficient polymer, which further contributes to the formation of bigger void spaces that act as channels to enhance CO$_2$ gas transport property. In addition, the higher affinity for CO$_2$ as compared to its counterpart also enhances the membrane selectivity that increases product purity. The enhancement in the separation mechanism of membranes using graphene-based nanomaterial is illustrated in Fig. 8.6 (Goh et al., 2019).

Realizing the benefits of graphene-based nanomaterial, research groups have begun to incorporate it within MMM, as summarized in Table 8.5 (Casadei et al., 2019; Dai et al., 2016; Dong et al., 2016, 2018; Ebrahimi et al., 2016; He et al., 2019; Karunakaran et al., 2015; Li, Cheng, et al., 2015; Li, Ma, et al., 2015; Pazani & Aroujalian, 2020; Prasad & Mandal, 2018; Raouf et al., 2020; Rea et al., 2018; Sarfraz & Ba-Shammakh, 2016a,b; Shen et al., 2015; Wong et al., 2019; Xin et al., 2015; Xue et al., 2017; Yang et al., 2020; Ying et al., 2018; Zahri et al., 2016; Zhao, Cheng, et al., 2015; Zhao, Ren, et al., 2015).
<table>
<thead>
<tr>
<th>References</th>
<th>Catalyst nanocomposite</th>
<th>Synthesis method</th>
<th>Product</th>
<th>Catalytic activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liu et al. (2014)</td>
<td>CuO-ZnO-Al2O3/graphene-modified support</td>
<td>High energy ball milling</td>
<td>Methanol</td>
<td>CO\textsubscript{2} conversion = 14.6% Yield = 12.6% Product selectivity = 62.3% (10 wt% graphene, 3 MPa, 250°C)</td>
</tr>
<tr>
<td>Nguyen et al. (2015)</td>
<td>PdNi alloy/carbon nanotube/graphene support</td>
<td>Wet impregnation and reduction</td>
<td>Formic Acid</td>
<td>Yield = 1.92 mmol/1 mmol (Pd + Ni) catalysts (Pd/Ni = 3/7, 5 MPa, 40°C)</td>
</tr>
<tr>
<td>Fan & Wu (2016)</td>
<td>CuO-ZnO-ZrO\textsubscript{2}-Al2O\textsubscript{3}/reduced graphene oxide (rGO)</td>
<td>Coprecipitation</td>
<td>Methanol</td>
<td>CO\textsubscript{2} conversion = 14.7% Yield = 18.4% Product selectivity = 78.0% (80 wt% rGO, 2 MPa, 240°C)</td>
</tr>
<tr>
<td>Deerattrakul et al. (2016)</td>
<td>Cu-Zn/rGO</td>
<td>Incipient wetness impregnation</td>
<td>Methanol</td>
<td>CO\textsubscript{2} conversion = 20.0% Yield = 424 mg g-1 h-1 Product selectivity = 15.6% (90 wt% rGO, 1.5 MPa, 250°C)</td>
</tr>
<tr>
<td>Witoon et al. (2018)</td>
<td>CuO-ZnO-ZrO\textsubscript{2}/GO</td>
<td>Reverse coprecipitation</td>
<td>Methanol</td>
<td>CO\textsubscript{2} conversion = 63.5% Yield = 275 mg g-1 h-1 Product selectivity = 55.0% (1 wt% GO, 2 MPa, 250°C)</td>
</tr>
<tr>
<td>Ma et al. (2019)</td>
<td>Cu-ZnO-Al2O\textsubscript{3}/N-doped graphene (NG)</td>
<td>Coprecipitation</td>
<td>Methanol</td>
<td>CO\textsubscript{2} conversion = 8.2% Yield = 6.9% Product selectivity = 84.0% (10 wt% GO, 3 MPa, 200°C)</td>
</tr>
<tr>
<td>Ma et al. (2019)</td>
<td>Ni-SiO\textsubscript{2}/GO-Ni-foam</td>
<td>Hydrothermal</td>
<td>Methane</td>
<td>CO\textsubscript{2} conversion = 84.0% Yield = 82.0% Product selectivity = 98.0% (500 h-1 Gas hourly space velocity, 0.1 MPa, 470°C)</td>
</tr>
<tr>
<td>Jurca et al. (2019)</td>
<td>N-doped defective graphene from biomass</td>
<td>Pyrolysis</td>
<td>Methane</td>
<td>CO\textsubscript{2} conversion = 52.3% Product selectivity = 99.2% (2.5 MPa, 500°C)</td>
</tr>
<tr>
<td>Primo et al. (2019)</td>
<td>MoS\textsubscript{2}/Defective flat layer graphene MoO\textsubscript{3}/Defective flat layer graphene</td>
<td>Pyrolysis</td>
<td>Methane</td>
<td>MoS\textsubscript{2}/Defective flat layer graphene CO\textsubscript{2} conversion = 67.0% Product selectivity = 98.0% (95.8 wt% graphene, 1 MPa, 600°C)</td>
</tr>
<tr>
<td>Mohd Ridzuan et al. (2020)</td>
<td>Ni/rGO</td>
<td>Incipient wetness impregnation</td>
<td>Methane</td>
<td>CO\textsubscript{2} conversion = 55.3% Yield = 24.9 mg g-1 h-1 Product selectivity = 100% (85 wt% rGO, 1 MPa, 240°C)</td>
</tr>
</tbody>
</table>

Graphene oxide (GO) consists of sp²-hybridized carbon atom basic building blocks that consist of various oxygen functional groups. The oxygen functional groups could be either hydroxyl, epoxide, carbonyl, or carboxyl, which allows the material to be changed easily (Dreyer et al., 2010). It is evidently proven that GO is a great adsorbent for CO₂ capture (Kim et al., 2014; Shen et al., 2015) and acts as a good CO₂ conversion catalyst (Lan et al., 2014; Luo et al., 2014). Furthermore, the GO has been reported to be an outstanding performance catalyst specifically for cycloaddition reactions (Lan et al., 2014; Luo et al., 2014; Qu et al., 2012). The presence of homogenous nucleophiles (e.g., quaternary ammonium salt) is said to be important. It is proven that the catalytic activity improves when the hydrogen bonding donor and nucleophilic anion interact with each other (Lan et al., 2014; Ma et al., 2012; Qu et al., 2012; Song et al., 2008; Sun et al., 2014). Hence, this indicates that the GO multifunctionalized with silanol group, salt derived from quaternary ammonium, and amine provides a good catalytic activity for the cycloaddition of CO₂ to epoxides when the effects of amine on CO₂ adsorption and activation are observed (Pinto et al., 2011; Srivastava et al., 2005).

Carboxylic acid is considered a prospective chemical for building blocks as a fundamental material for pharmaceutical and conjugated functional materials (Garg & Ling, 2013). Carboxylic acid is known for its stable chemical properties, and it is derived from the by-products of the decarboxylative coupling reaction, and considered as a natural benign CO₂ (Feng & Loh, 2010; Kolarović et al., 2011; Moon et al., 2008). Kim et al. (2012) investigated the Ag-decorated graphene oxide catalyst (GOSH-Ag) for the application into the decarboxylative cycloaddition reaction (J. D. Kim et al., 2012). The chemical reactions involved in this study are shown in Fig. 8.7 (Garg & Ling, 2013; Kim et al., 2012).

8.3.2.5 Graphene-based Nanomaterials for CO₂ cycloaddition

Graphene-based nanomaterials offer a more sustainable future for fossil-fuel-based economies in CO₂ capture and conversion through the development of new adsorbents with...
<table>
<thead>
<tr>
<th>References</th>
<th>Membrane</th>
<th>Application</th>
<th>Permeability CO₂ (barrer)</th>
<th>Selectivity</th>
<th>Test condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhao, Ren, et al. (2015)</td>
<td>GO/Polyimide MMM</td>
<td>CO₂/N₂</td>
<td>15.94</td>
<td>84.36</td>
<td>1 wt.% GO, 1 MPa, 35°C</td>
</tr>
<tr>
<td>Shen et al. (2015)</td>
<td>GO/Pebax MMM</td>
<td>CO₂/N₂</td>
<td>100</td>
<td>91</td>
<td>0.1 wt.% GO, 0.3 MPa, 25°C</td>
</tr>
<tr>
<td>Karunakaran et al. (2015)</td>
<td>GO/copolymer PEO—PBT (PolyActive) composite</td>
<td>CO₂/N₂</td>
<td>143</td>
<td>73</td>
<td>0.065 wt.% GO, 0.05 MPa, 25°C</td>
</tr>
<tr>
<td>Zhao, Cheng, et al. (2015)</td>
<td>GO/Pebax MMM</td>
<td>CO₂/CH₄CO₂/N₂</td>
<td>108</td>
<td>16.7, 48.5, 8.9</td>
<td>0.99 wt.% GO, 0.7 MPa, 25°C</td>
</tr>
<tr>
<td>Li, Ma, et al. (2015)</td>
<td>GO–CNT/ Matrimid³ MMM</td>
<td>CO₂/CH₄CO₂/N₂</td>
<td>38.07</td>
<td>84.6, 81</td>
<td>5 wt.% GO, 5 wt.% CNT, 0.2 MPa, 30°C</td>
</tr>
<tr>
<td>Li, Ma, et al. (2015)</td>
<td>Polyethylene glycol- and polyethylenimine-functionalized (PEG–PEI)–GO nanosheets/Pebax MMM</td>
<td>CO₂/CH₄CO₂/N₂</td>
<td>1330</td>
<td>45, 120</td>
<td>10 wt % PEG – PEI – GO, 0.2 MPa, 30°C</td>
</tr>
<tr>
<td>Xin et al. (2015)</td>
<td>Amino acid functionalization (A-) GO/SPEEK composite</td>
<td>CO₂/CH₄CO₂/N₂</td>
<td>1247</td>
<td>82, 115</td>
<td>8 wt.% AGO, 0.1 MPa, 25°C</td>
</tr>
<tr>
<td>Dong et al. (2016)</td>
<td>Porous RGO/Pebax MMM</td>
<td>CO₂/N₂</td>
<td>119</td>
<td>104</td>
<td>5 wt.% Porous RGO, 0.2 MPa, 30°C</td>
</tr>
<tr>
<td>Sarfarz and Bas-Shammakh (2016a)</td>
<td>GO-ZIF-301/PSF MMM</td>
<td>CO₂/N₂</td>
<td>25</td>
<td>63</td>
<td>1 wt.% GO & 30 wt.% ZIF-301, 25°C</td>
</tr>
<tr>
<td>Authors (Year)</td>
<td>MMM Composition</td>
<td>Gas System</td>
<td>CO₂/N₂</td>
<td>GPU</td>
<td>Notes</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td>------------</td>
<td>--------</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>Dong et al. (2016)</td>
<td>GO-ZIF-8/Pebax MMM</td>
<td>CO₂/N₂</td>
<td>249</td>
<td>47.6</td>
<td>6 wt.% GO-ZIF-8, 0.1 MPa, 25°C</td>
</tr>
<tr>
<td>Dai et al. (2016)</td>
<td>Imidazole functionalized (Im) GO/Pebax MMM</td>
<td>CO₂/N₂</td>
<td>76.2</td>
<td>105.5</td>
<td>0.8 wt.% Im-GO, 0.8 MPa, 25°C</td>
</tr>
<tr>
<td>Zahri et al. (2016)</td>
<td>GO/PSF Hollow Fiber MMM</td>
<td>CO₂/CH₄</td>
<td>21.54</td>
<td>32.14</td>
<td>0.25 wt.% GO, 0.5 MPa, 25°C</td>
</tr>
<tr>
<td>Ebrahimi et al. (2016)</td>
<td>AGO/PVA-PES</td>
<td>CO₂/CH₄</td>
<td>13</td>
<td>52</td>
<td>10 wt.% AGO, 0.5 MPa, 30°C</td>
</tr>
<tr>
<td>Sarfraz and Ba-Shammakh (2016b)</td>
<td>GO-ZIF-302/PSF MMM</td>
<td>CO₂/N₂</td>
<td>123.5</td>
<td>118</td>
<td>1 wt.% GO & 30 wt.% ZIF-302, 25°C</td>
</tr>
<tr>
<td>Xue et al. (2017)</td>
<td>MWCNT/GO nanoribbons/Polyimide MMM</td>
<td>CO₂/CH₄</td>
<td>17</td>
<td>25</td>
<td>1 wt.% MWCNT/GO nanoribbons, 0.1 MPa, 35°C</td>
</tr>
<tr>
<td>Dong et al. (2018)</td>
<td>Porous RGO-modified halloysite nanotube (mHNT)/Pebax MMM</td>
<td>CO₂/N₂</td>
<td>159 (GPU)</td>
<td>93</td>
<td>mHNT/Porous RGO ratio of 7.5, 0.3 MPa, 30°C</td>
</tr>
<tr>
<td>Prasad and Mandal (2018)</td>
<td>Graphene (G)/Chitosan-silk fibroin nanocomposite</td>
<td>CO₂/N₂</td>
<td>71.93</td>
<td>234, 382, 24</td>
<td>0.5 wt.% G/54.5 wt.% Chitosan-45 wt.% silk fibroin, 0.2 MPa, 90°C</td>
</tr>
<tr>
<td>Ying et al. (2018)</td>
<td>GO-[BMIM][BF₄] ionic liquid</td>
<td>CO₂/CH₄</td>
<td>66.3</td>
<td>26.5, 47.1</td>
<td>ACNT/AGO ratio of 1:1, 0.6 MPa, 30°C</td>
</tr>
<tr>
<td>Wong et al. (2019)</td>
<td>ACNT-AGO/Polysulfone thin film nanocomposite</td>
<td>CO₂/CH₄</td>
<td>247.5</td>
<td>107.5</td>
<td>ACNT/AGO ratio of 1:1, 0.6 MPa, 30°C</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>References</th>
<th>Membrane</th>
<th>Application</th>
<th>Permeability CO_2 (barrer)</th>
<th>Selectivity</th>
<th>Test condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casadei et al. (2019)</td>
<td>Few-layer G/ PVAm-HG Few-layer GO/PVAm-HG Few-layer GO/PVAm-LG composites</td>
<td>CO_2/N_2</td>
<td>23.1, 25.1, 71.0</td>
<td>45.2, 80.6, 59.0</td>
<td>3 wt.% G, 92% RH, 35°C 3 wt.% GO, 93% RH, 35°C 3 wt.% GO, 93% RH, 35°C</td>
</tr>
<tr>
<td>Rea (2018)</td>
<td>G/PPO MMM</td>
<td>CO_2/N_2</td>
<td>62</td>
<td>17.7</td>
<td>0.3 wt.% G, 0.14 MPa, 35°C</td>
</tr>
<tr>
<td>He et al. (2019)</td>
<td>Porous GO/o-hydroxyazo-hierarchical porous organic polymers (o-POPs-) functionalized Pebax MMM</td>
<td>O_2/N_2</td>
<td>232.7</td>
<td>80.7</td>
<td>POP/PGO ratio of 10:2, 30°C</td>
</tr>
<tr>
<td>Zhang (2019)</td>
<td>AGO/Pebax MMM</td>
<td>$\text{CO}_2/\text{CH}_4\text{CO}_2/\text{N}_2$</td>
<td>934.3</td>
<td>40.9, 71.1</td>
<td>0.9 wt.% AGO, 0.2 MPa, 35°C</td>
</tr>
<tr>
<td>Raouf et al. (2020)</td>
<td>Graphene hydroxyl (GOH)/PSF-PEG</td>
<td>CO_2/CH_4</td>
<td>36.50</td>
<td>22.4</td>
<td>4 wt.% GOH, PSF/10 wt.% PEG, 0.8 MPa, 35°C</td>
</tr>
<tr>
<td>Pazani and Aroujalian (2020)</td>
<td>G/Pebax MMM</td>
<td>CO_2/N_2</td>
<td>44.78, 55.87</td>
<td>111.95, 120.72</td>
<td>0.7 wt.% G, 0.4 MPa, 25°C 1 wt.% G, 0.4 MPa, 25°C</td>
</tr>
<tr>
<td>Yang et al. (2020)</td>
<td>N-doped G nanosheets/ Matrimid MMM</td>
<td>CO_2/N_2</td>
<td>2.365</td>
<td>42.23</td>
<td>0.10 wt.% N-G, 0.1 MPa, 35°C</td>
</tr>
</tbody>
</table>
high capacity and high selectivity for reducing energy-related CO₂ emissions. The advantages of graphene, such as good surface area, high solubility, conductive, and cheap source of material are some of the key merits of the application of graphene in CO₂ capture and conversion. A broad range of graphene materials have been experimentally and theoretically explored to control CO₂ emissions from fossil fuel combustion. However, this field of investigation is still at its early stage of development for translation into real-world CO₂ capture applications. Some challenges associated with graphene-based nanomaterials, such as conductivity must critically be addressed with a thorough understanding of the flow of electrons. Intensive research also needs to be conducted investigating the potential toxicity of nanomaterials and chemistry involved in the applications before they can be available commercially, with economical evaluation of nanomaterials as the next vital step for the estimation of their feasibility to be applied in industries (Mazari et al., 2021). In this sense, the approach and design in the manufacturing of graphene-based nanomaterials is crucial in the future advancement of this material.

The origin of CO₂ should also be evaluated comprehensively in terms of power plant exhausts and direct air capture, whereby integration of CO₂ capture with electrochemical conversion may further increase the efficiency and reduce the costs (Hoang et al., 2020). DFT calculations have been widely used to investigate the mechanistic understanding of the selective electrochemical reactions according to the binding energies of intermediate species with metallic nanostructured catalysts. Research involving operando and in situ approaches are the main areas that should be explored in order to gain extensive knowledge into the mechanism of relevant systems (Heidary et al., 2019; Li et al., 2020; Zhu et al., 2020). In this context, infrared and Raman are the vibrational spectroscopy that should be used to illuminate the double-layer structure, catalyst composition, identity of bound intermediates, etc. In addition, the information on local chemical environment of specific elements of interest and electronic structure should also be obtained through X-ray absorption and X-ray photoelectron spectroscopies. In situ electron microscopy and X-ray diffraction are the essential analyses which can be used to determine structural information at a single particle and combination of particles. All these analyses not only can help to close the current research gaps in the field but also can discover techniques that are time saving as well as revealing promising and uncommon catalyst formations (Zhong et al., 2020).
The following recommendations should be taken into consideration in future research for the generation of next-generation graphene-based nanomaterials for CO₂ capture and conversion (Balasubramanian & Chowdhury, 2015).

1. The maximum working capacity of graphene-based nanomaterials should be explored in order to deploy these adsorbents in industries.

2. The issues in intrinsic constraints of process advancement of graphene-based CO₂ adsorbents need to be encountered before they can be applied in a real-world CO₂ capture system.

3. The orientation of CO₂ molecules in the molecular structure of the graphene-based nanomaterials should be investigated through in situ characterization techniques for examining the correlation between the structural and chemical characteristics of an adsorbent as well as its capability of adsorption, which further help to gain the elementary perspective of the gas adsorption mechanism in designing state-of-the-art graphene-based CO₂ adsorbents.

4. A better understanding of the impact of water vapor on carbon capture would eventually assist in the rational design of more advanced water-repellent graphene-based CO₂ adsorbents.

5. Advancement of molecular models and force fields based on actual flue gas conditions is essential for screening and accessing novel graphene-based CO₂ adsorbents.

6. Evaluation of engineering economics and environmental impacts associated with graphene-based CO₂ adsorbents needs to be performed using a cradle-to-grave life cycle assessment (LCA) before the adsorbents can be applied in industries for CO₂ separation from flue gases.

8.5 Conclusions

Graphene-based nanomaterials have demonstrated a potential alternative technology for CO₂ capture and conversion, and also have been considered as an emerging adsorptive separation carbon material during recent years. This is due to the fact that graphene-based nanomaterials possess high specific surface area and robust surface chemical activity. Hence, the unique properties of graphene in nanomaterials have opened up new possibilities to advance in this area and allow a wide spectrum of graphene nanostructure development for the application for CO₂ capture and conversion. Although much research has been studied on graphene-based nanomaterials, there is still urgent attention required to address the maximum working capacity and large-scale production, the highly ordered structures of graphene for technology advancement in nanomaterials for industrial applications, as well as to evaluate the aspects of economics and environmental impacts that are linked for the commercial production of the graphene-based nanomaterials. Hence, this review focuses on the recent advances and development progress of graphene-based nanomaterials specifically in CO₂ conversion and conversion. Various
synthesis methods of graphene nanomaterials are also illustrated here. Additionally, an overview of different categories of graphene-based nanomaterials is presented in this chapter. Future prospects and challenges of utilizing graphene-based nanomaterials for CO₂ capture and conversion are also explored.

References

Graphene synthesis via electrochemical exfoliation of graphite nanoplatelets in aqueous sulfuric acid (pp. 1–6). Pennsylvania State University; Carbon. Available from https://eprints.whiterose.ac.uk/102051/3/WestwoodGRAPHENE%20SYNTHESIS%20VIA%20ELECTROCHEMICAL%20.pdf.

Graphene-based nanomaterials for CO₂ capture and conversion

Nanomaterials for Carbon Dioxide Capture and Conversion Technologies

Index

Note: Page numbers followed by “f” and “t” refer to figures and tables, respectively.

A
Absorption, 28
 postcombustion carbon capture, 27–28
 precombustion carbon capture, 31–32
Acetylene, 251
Acid rain, 188
Acid-treated MWCNT (aMWCNTs), 110–112
Activated carbon (AC), 137, 170
Activated porous carbon (APC), 143–145
 activated porous carbon-based composites for CO₂ capture, 143–146
 mechanism of CO₂ capture, 145–146
Adhesive tape technique. See Mechanical exfoliation
Adsorbents, 309
Adsorption, 277, 284–286, 309–310
 mechanisms by zeolite, 282–284
 postcombustion carbon capture, 29–30
 precombustion carbon capture, 32–33
Advanced supercritical steam (ASC), 36
Aerogels, 137
Air pollution, 361
Air separation unit (ASU), 34–35
Airborne engineered nanomaterials, 415–416
All-silica deca-dodecasil 3R, 299
Alloy nanoparticles, 311
Aluminum oxide, 99–102
 Al₂O₃-based nanofluids for CO₂ absorption, 100r
Amine, 391
 amine technology, 49
 amine-based fluids effect on CO₂ capture, 118–119
 amine-functionalized composite CNTs, 257
 amine-functionalized MWCNT, 110–112
2-amino-2-methyl-1-propanol (AMP), 370–371
 (3-aminopropyl) triethoxysilane (APTES), 254–255, 342–343, 387–388
 (3-aminopropyl)trimethoxysilane (APTMs), 342–343
Anderson–Schulz–Flory (ASF), 316–317
Anode, 41–43
Anodic reaction, 8
Appropriate prevention techniques, 2
Aquatic life, nanoparticles effects on, 412–414
Aquatic microorganisms, 412–414
Arc discharge, 246–247
Aromatics, dual functional materials for CO₂ conversion to, 316–317
Arundo donax, 142
Atmosphere, nanoparticles impact on, 414–416
Atomic force microscopy (AFM), 65–66
Atomic layer deposition (ALD), 249–250
Average corrosion rate, 13

B
Ball-milling technique, 97
Bandgap, 190–193
Basic principles of CO₂, 26–40
Bi₂S₃ heterostructured TiO₂ nanotubes, 164
Bidoping, 163
Binary adsorption, 286–287
Bio-based feedstock, 385
Biohybrid systems, 45–49, 51–52
Biomass
 biomass-based nanomaterials, 137
 chemical activation, 141
 prospects for commercialization, 146
 synthesis of porous carbon from, 138–141
 waste and biomass-derived porous carbon for CO₂ capturing application, 141–142
Bismuth (Bi), 163–164
Blast furnace slag (BFS), 340
Blend mixed matrix membrane, 79–80
Block copolymers, 335
Bottom-up approach, 64
Bottom-up growth methods, 249–250
Buckytubes, 407
Bulk separation, 281
Bulk solution, 41–43
1-butyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)amide ([BMIM][TFSI]), 372
Cadmium sulfide (CdS), 48–49
Calcium chabazite (CaCHA), 294–295
Camellia japonica (CJ), 142
Carbon capture, carbon nanotubes for, 254–257
Carbon capture and sequestration (CCS), 309, 402–403
Carbon dioxide (CO₂), 63, 137, 211, 277, 309, 361
CO₂ conversion on zeolites-based catalysts, 313–318
corrosion mitigation strategies, 18–20
design of zeolite adsorbents in CO₂ capture, 301
effect on energy transmission, 4–5
graphene-based nanomaterials for CO₂ adsorption, 218–222
electrochemical CO₂ reduction using graphene-based materials, 224–225
graphene-based nanomaterials for CO₂ cycloaddition, 229
graphene-based nanomaterials for CO₂ hydrogenation, 225–226, 228t
graphene-based nanomaterials membranes for CO₂ reduction, 223–229
graphene-based nanomaterials membranes for CO₂ capture, 226–228, 230t
ionic liquids functionalized nanomaterials for value-added products production from, 374–378
pipeline corrosion due to, 5–20
process, 1–2
types of natural gas pipeline CO₂ corrosion, 9–11
zeolite membranes for CO₂ capture, 295–301
zeolites adsorbents in CO₂ capture, 280–284
zeolites for CO₂ adsorption
at high temperature, 294–295
at low temperature, 284–293
Carbon dioxide capture and storage (CCS), 26, 74–75, 365
basic principles in, 26–40
oxy-fuel combustion carbon capture, 34–38
postcombustion carbon capture, 27–31
precombustion carbon capture, 31–34
novel CO₂ conversion technologies, 41–51
biohybrid systems, 45–49
CO₂-based polymer synthesis via chain insertion, 50–51
electrocatalysis, 41–43
electroreduction of CO + in metal—organic framework, 49–50
photocatalysis, 43–45
prospects in CO₂ conversion to fuels and building blocks, 51–52
Carbon monoxide (CO), 4, 164, 251, 372–373
Carbon nanofibers (CNFs), 252–253
Carbon nanotubes (CNTs), 64–65, 110–113, 245
for carbon capture, 254–257
carbon nanotubes composites, 257
functionalized carbon nanotubes, 255–256
SWCNT and MWCNT, 255
for CO₂ absorption, 111t
DWCNT, 246f
functionalization of, 79
in mixed matrix membrane fabrication, 78–79
MWCNT, 246f
properties of, 253–254
SWCNT, 246f
types of, 247f
synthesis of, 246–253, 248t
arc discharge, 246–247
CVD, 249–252
laser ablation, 247–249
liquid electrolysis method, 253
plasma-enhanced chemical vapor deposition, 252–253
Carbon neutral fuels, 52
Carbon-based NPs (CBNs), 410
toxicity of, 410
Carbonaceous materials, 170–171
Carbons, 334–335
carbon-based materials, 309
carbon-based nanomaterials for CO₂ capture, 406–407
sources, 251
Carboxylic acid, 229
Catalysis, 65, 74–75, 82
Catalysts, 140, 182
CO₂ reduction using, 195–196
stability, 200–201
Catalytic conversion of CO₂, 313–314
via hydrogenation pathway, 269–270
Cathode, 41–43
Cathodic protection, 19
Cathodic reactions, 8
CB. See Conduction band (CB)
CBMC. See Configurational-Bias Monte Carlo (CBMC)
Cetyltrimethylammonium bromide (CTAB), 335
CFD. See Computational fluid dynamics (CFD)
CHA. See Chabazite (CHA); Chabazite zeolite (CHA)
Chabazite (CHA), 300
Chabazite zeolite (CHA), 288
Chain insertion, CO2-based polymer synthesis via, 50–51
Chemical absorption, 366, 386–387
Chemical inhibition, 18
Chemical looping combustion (CLC), 36–38
Chemical supersaturation, 65
Chemical vapor deposition (CVD), 65, 67f, 140, 141f, 212, 217–218, 246, 249–252
conversion using, 140
Chemical vapor transport (CVT), 249–250
Chemisorption, 310
Chemoenzymatic synthesis, 369
Chen’s soft-cutting technique, 79
Chiral indices, 245
Chitosan, 343–344
Clean and renewable energy, 182
Climate change, 188, 361, 385
CO2 effect on human health, 188
perovskite materials for CO2 conversion, 189–190, 191t
products from CO2 conversion and applications, 189
sources, 187–189
acid rain, 188
climate change, 188
greenhouse effect, 187–188
uses of, 188–189
CO2 capture, 263–264
application
activated porous carbon-based composites for, 143–146
heteroatom doped activated porous carbons for, 142–143
metal functionalized activated porous carbons for, 143
nonfunctionalized activated porous carbons for, 142
waste and biomass-derived porous carbon for, 141–142
CO2 capture, utilization, and storage (CCUS), 318, 385
CO2 capture and conversion, 365–369
application of ionic liquid functionalized nanomaterials for, 370–374
CO2 utilization and conversion to useful products, 367–369, 370t
impact of high CO2 level, 365
techniques for CO2 capture, 366–367
CO2 capture and storage (CCS), 334
CO2 capture and utilization (CCU), 334, 370
CO2 conversion, 264–271
electrocatalysis, 264–265
elucidation of structure–activity relationship, 271
photocatalysis, 265–269
thermal catalysis, 269–270
CO2 corrosion mitigation strategies, 18–20
cathodic protection, 19
chemical inhibition, 18
other techniques, 19–20
protective coatings, 19
selection of materials, 19
CO2 electrolysis systems, technoeconomic analysis of, 393–396
CO2 emissions, status of, 89–90
CO2 photocatalytic conversion over TiO2 nanophotocatalysts, 153–157
thermodynamics and kinetics of, 158–160
CO2 reduction reaction (CO2RR), 264–265
CO2 sequestration, potential nanomaterials for, 402–407
CO2RR. See Electrocatalytic CO2 reduction reaction (CO2RR)
Cocatalyst, 160–161, 267f, 377
Combination/hybrid nanoparticle, 116
for CO2 absorption, 117f
Commercialization, 181–182
Composition engineering, 199
Compression and purification unit (CPU), 34–35
Computational fluid dynamics (CFD), 102
Concomitant simulation models, 403
Conduction band (CB), 155
Configurational-Bias Monte Carlo (CBMC), 298
Conventional MEA-based absorption process, 28
Conventional sol–gel method, 338
Copper (Cu), 161–163
Copper silicate nanospheres (CSNSs), 403–405
Coprecipitation, 67

Correction factors, 15–16

Corrosion, 2

experimental procedures for corrosion determination, 11–14
in natural gas industries, 4
nature of, 7–8
rate, 13
average corrosion rate, 13
electrochemical evaluation method, 13–14
local corrosion rate, 13
methods for evaluating properties of corrosion products, 14
Cost-effective synthesis process of nanomaterials, 392
Cryo cell system, 39
Cryo pur system, 39
Cryogenic distillation, 39
Cryogenic packed bed, 39
Cryogenic separation, 38–40, 367
CTAB. See Cetyltrimethylammonium bromide (CTAB)
CVD. See Chemical vapor deposition (CVD)
CVT. See Chemical vapor transport (CVT)

D

DDR-type zeolite film, 299
Density functional theory (DFT), 194, 219–220
4-diethylamino-2-butanol (DEAB), 110–112
Diffuse layer, 41–43
Diffusion PECVD (DPECVD), 252–253
Dimethyl carbonate, 371
Direct bandgap semiconductor, 155
Direct current PECVD (DC-PECVD), 252–253
Double 6-ring (D6R), 288
Double-walled CNTs (DWCNTs), 64–65, 245, 246f
Dry reforming of methane (DRM), 348
Dual function materials (DFMs), 310
for CO₂ conversion
to aromatics, 316–317
to ethanol, 315
to gasoline/diesel fuels, 316
to methane, 314
to methanol, 314–315
to olefins, 315–316
to other chemicals, 317–318
Dual functional nano zeolites
CO₂ conversion on zeolites-based catalysts, 313–318
to aromatics, 316–317
to ethanol, 315
to gasoline/diesel fuels, 316
to methane, 314
to methanol, 314–315
to olefins, 315–316
to other chemicals, 317–318
design of dual functional materials for CO₂ conversion, 318–320
nickel and zeolites-based dual functional materials, 318–319
rhodium and zeolites-based dual functional materials, 319–320
ruthenium and zeolites-based dual functional materials, 319
environmental impact of zeolites use in dual function materials, 320–321
future challenges and prospects for use of zeolites, 321–323
synthesis methods of zeolites and metal/metal oxides containing zeolites, 312–313
effect of zeolite topology in dual functional materials, 320

E

Electric arc deposition, 67f
Electrification, 385
Electrocatalysis, 41–43, 264–265
Electrocatalytic CO₂ reduction reaction (CO₂RR), 43, 264–265
Electrocatalytic reaction, 369
Electrochemical CO₂ reduction using graphene-based materials, 224–225
Electrochemical conversion of CO₂
to CO, 376
to CO₂, 349
to formic acid/formate, 377
Electrochemical evaluation method, 13–14
Electrochemical fixation of CO₂ in ionic liquids, 374–376
Electrochemical method, 2, 212, 216–217
Electrochemical reactions, 8
Electrochemistry, 41–43
Electrode surface, 41–43
Electrodeposition, 65
Electrolytes for CO₂ conversion, 50
Electron-hole pairs (EHPs), 200
Electroreduction of CO + in metal–organic framework, 49–50
Elucidation of structure–activity relationship, 271
Energy transmission, carbon dioxide effect on, 4–5
Energy-intensive regeneration process, 28
Engineered nanomaterials (ENMs), 401, 408–409
Engineered nanoparticles, 410–412
Engineering bandgaps on perovskite nanomaterials, 193–194
Enhanced CO₂ photoreduction, modification strategies for, 160–171
carbonaceous materials, 170–171
dispersion of TiO₂-based photocatalysts on supports, 171
metals and metal oxides, 160–161
nitrogen, 170
noble metals, 165–168
nonmetals, 168–169
non-noble metals and metal oxides, 161–165
oxygen, 169
Environmental adulteration due to nanomaterials, 410–412
Environmental impact of zeolites, 320–321
EPA. See US Environmental Protection Agency (EPA)
Epoxy functional group, 416
Ethanol, dual functional materials for CO₂ conversion to, 315
Ethylene, 251
Ethylene carbonate, 371
Ethylenediamine (EDA), 342
Experimental procedures for corrosion determination, 11–14
corrosion rate, 13

F
Fabrication of nanomaterials, 64
Failure analyses of pipelines due to CO₂ corrosion, 16–18
Ferromagnetic rutheniumiron (RuFe), 373–374
Fertilizers, 182
Few-layer graphene (FLG), 216
Field emission scanning electron microscopy (FESEM), 65–66
Fisher—Tropsch synthesis (FTS), 184, 316–317
Flame spray pyrolysis, 67t
Flow-induced corrosion, 11, 12f
Flow-induced corrosion model, 14–15
Flue gas cleaning system (FGCD), 34–35
Fluid nanomaterials, 73
Flux growth method, 186
Formic acid (HCOOH), 394–395
Formic acid/formate, electrochemical conversion of CO₂ to, 377
Fourier transform infrared spectroscopy (FTIR), 65–66, 201
Free-air CO₂ enrichment experiments (FACE experiments), 365
Functional graphene nanomaterials (FGNs), 74–75
Functionalization of carbon nanotubes, 79
Functionalized carbon nanotubes for carbon capture, 255–256

G
Gas chromatography spectrometry (GC-Ms), 201
Gas flow rate effect on CO₂ absorption, 121
Gas purification, 281
Gasoline/diesel fuels, dual functional materials for CO₂ conversion to, 316
Global carbon emissions, 25
Global warming, 320–321, 361, 385
Gold (Au), 165–166
Gold nanoparticles (Au NPs), 346, 409–410
Graphene, 113–115
graphene-based aerogels, 74–75
graphene-based nanocomposites, 74–75
nanomaterials, 64–65, 212
Graphene oxide (GO), 113–115, 229
for CO₂ absorption, 114t
Graphene-based nanomaterials, 212
applications, 218–229
graphene-based nanomaterials for CO₂ adsorption, 218–222, 221t
challenges, 229–234
graphene properties, 212t
synthesis method and characterization of, 213–218, 214t
chemical vapor deposition method, 217–218
electrochemical method, 216–217
Hummer’s method, 215–216
mechanical exfoliation, 213–215
Graphitic carbon nitride nanosheets (NS-g-C₃N₄), 372
Gravimetric methods, 13
Greenhouse effect, 187–188
Greenhouse gases (GHGs), 63, 89–90, 137, 181–182, 211, 277, 333, 361, 401

H
Hard-templating technique, 336
Heat-trapping gases, 137
Heteroatom doped activated porous carbons for CO2 capture, 142–143
Heterostructure, Z-scheme, 163
Hierarchical zeolites for CO2 capture, 291–293
High corrosive agents, 5–7
Hummer’s method, 212, 215–216
Hybrid nanoparticles, 91–92
Hydrocarbon gases, 140
Hydrocarbons (HC), 4, 311, 373–374
Hydrogen, 2, 385
Hydrogen-bond donor (HBD), 346
Hydrogenation process, ionic liquid application for, 372–374
Hydrophobic zeolites for CO2 capture, 290–291
Hydrothermal method, 67
Hydroxyl functional group, 416

I
Inert gas condensation, 67
Inner Helmholtz plane (IHP), 41–43
Inorganic membranes, 76–77
Inorganic metal oxides, 185–186
Integrated gasification, 31
Integrated Gasification and Combined Cycle (IGCC), 294–295
Intergovernmental Panel on Climate Change (IPCC), 89–90, 184, 309, 333, 385
Internal piping system, 3–4
International Energy Agency (IEA), 277, 294, 401
Ionic liquid functionalized nanomaterials, 362–365
advantages and weaknesses, 363–365
application for CO2 capture and conversion, 370–374
concept/background study/scientific knowledge, 370–372
ionic liquid application for hydrogenation process, 372–374
CO2 capture and conversion, 365–369
CO2 utilization and conversion to useful products, 367–369, 370
impact of high CO2 level, 365
techniques for CO2 capture, 366–367
common preparation methods and applications, 363
for value-added products production, 374–378
electrochemical conversion of CO2 to CO, 376
electrochemical conversion of CO2 to formic acid/formate, 377
electrochemical conversion of CO2 to methanol, 377
electrochemical fixation of CO2 in ionic liquids, 374–376
Ionic liquids (ILs), 344, 370–371
application for hydrogenation process, 372–374

J
Jujun grass (JG), 142

K
Kinetic models, 73
Kinetics of CO2 photocatalytic conversion over TiO2 nanophotocatalyst, 158–160
Kyoto Protocol, 89–90

L
Lab-based toxicity studies, 410–412
Laboratory test methods, 11–13
Land, nanomaterials impact on, 416–417
Laser ablation, 67, 246–249
Lead, 198–199
Levelized cost of electricity (LCOE), 36
Liquefied natural gas (LNG), 5
Liquid electrolysis method, 253
Liquid-based nanomaterials, CO2 sequestration through, 403–405
Local corrosion rate, 13
Localized CO2 corrosion, 9–11
Localized surface plasmon resonance (LSPR), 200
Low catalytic reaction efficiency, 200–201
Low-emission fossil fuel technologies, 74–75
Lower heating value (LHV), 36

M
Material chemistry, 146
Material synthesis, 33–34
Mauna Loa Observatory, 181
MCM-41. See MOBIL Composition of Matter No. 41 (MCM-41)
Measuring techniques, 11–13
Mechanical exfoliation, 212–215
Mechanical milling process, 67t
Membrane contactor, 403
Membrane separation, 277
postcombustion carbon capture, 30–31
precombustion carbon capture, 33–34
Membrane technology, 74–75, 366–367, 386
nanomaterials in, 76–80
blend mixed matrix membrane, 79–80
inorganic membrane, 77
MMMs, 78–79
polymeric membrane, 76
Robeson’s chart, 76–77
MES. See Microbial electrosynthesis (MES)
Mesa type attack, 10, 11f
on L485 natural gas pipeline, 12f
Mesoporous silica nanoparticles
in CO2 capture application, 340–344, 345t
in CO2 conversion application, 344–353, 352t
synthesis of mesoporous silica nanoparticles, 335–340
Mesoporous siliceous (MS), 334–335
Mesostructured silica nanoparticles (MSN), 334–337, 343
Metal cation exchanged zeolites for CO2 capture, 287–290
Metal chalcogenides, 48–49
Metal functionalized activated porous carbons for CO2 capture, 143
Metal oxides, 334–335
metals and, 160–161
non-noble metals and, 161–165
Metal-based nanomaterials for CO2 capture, 405–406
Metal/ metal oxides containing zeolites, 312–313
Metallic nanoparticle, 106–108
Fe3O4-based nanofluids for CO2 absorption, 107t
Metal–organic framework (MOF), 49, 64–65, 81–82, 137, 153, 261–262, 309, 334–335
electroreduction of CO + in, 49–50
embedded with nanoparticles
CO2 capture, 263–264
CO2 conversion, 264–271
opportunities and challenges, 271–272
Metals, 160–161
Methane, 251
dual functional materials for CO2 conversion to, 314
Methanol (CH3OH), 99–102, 164, 347, 378
dual functional materials for CO2 conversion to, 314–315
Methanol-to-hydrocarbons mechanism (MTH mechanism), 316–317
Methodology, 11–13
Methyl diethanolamine (MDEA), 19–20, 370–371, 391
Microbial electrosynthesis (MES), 46
Microemulsion, 67t
Micromechanical cleaving method, 213
Microorganisms, 412–414
Microstructural characterization, 253–254
Microwave PECVD (MWPECVD), 252–253
Microwave-assisted process (MW process), 338
Mixed matrix membranes (MMMs), 76, 78–79
carbon nanotubes in mixed matrix membrane fabrication, 78–79
functionalization of carbon nanotubes, 79
MOBIL Composition of Matter No. 41 (MCM-41), 334–335
Modification strategies for enhanced CO2 photoreduction, 160–171
carbonaceous materials, 170–171
dispersion of TiO2-based photocatalysts on supports, 171
metals and metal oxides, 160–161
nitrogen, 170
noble metals, 165–168
nonmetals, 168–169
non-noble metals and metal oxides, 161–165
oxygen, 169
Moisture instability in polar medium, 198–199
Molecular assembly, 249–250
Molecular Dynamic simulation (MD simulation), 298
Molybdenum (Mo), 164
Mono-nanofluids, 91–92
Monoethanolamine (MEA), 36, 370–371, 391
Moorella thermoacetica, 48
MPS-R. See Rod-shaped MS particles (MPS-R)
MPS-S. See Spherical MS particles (MPS-S)
MS. See Mesoporous siliceous (MS)
MS submicron particles (MSP), 339
MSNPs. See Mesostructured silica nanoparticles (MSN)
Multifarious metal oxides, 183–184
Multiwall carbon nanotube (MWCNT), 64–65, 98, 110, 170, 245, 246
for carbon capture, 255
MXene material, 116–118

N
N-[3 (trimethoxysilyl)propyl]ethylenediamine (PEDA), 342
Nanoabsorbents, 386–387
Nanoclay composites, 64–65
Nanoclay, polymers and, 80–81
Nanocomposites, 73–74
Nanocrystal, 185
facets effects in promoting reactants adsorption and products desorption, 200
Nanocrystalline, 73
Nanofluids, 66–73, 91–92, 403
application, 92–94, 95
challenges, 123–124
methods of preparation of, 95–99
other novel methods, 97
single-step method, 95–96
stability, 98–99
two-step method, 96–97
motivation of study, 94
nanoparticles effect on CO2 capture, 99–123
Nanomaterials, 63–64, 401–402
characterizations, 65–66, 66
cost-effective synthesis process of, 392
fabrication, 65–82
graphene-based nanocomposites, 74–75
in membrane technology, 76–80
nanocomposites, 73–74
nanocrystalline, 73
nanofluids, 66–73
polymers and nanoclay mixture, 80–81
potential nanomaterials for CO2 sequestration, 402–407
carbon-based nanomaterials for CO2 capture, 406–407
CO2 sequestration through liquid-based nanomaterials, 403–405
metal-based nanomaterials for CO2 capture, 405–406
role in CO2 capture, 389–391
synthesis methods for, 67
xicities of, 407–417
environmental adulteration due to nanomaterials, 410–412
nanomaterials impact on land, 416–417
nanoparticles effects on water bodies and aquatic life, 412–414
nanoparticles impact on atmosphere, 414–416
toxicity of carbon-based nanomaterials, 410
Nanoparticles, 91–92, 403
effect on CO2 capture, 99–123
aluminum oxide, 99–102
effect of amine-based fluids, 118–119
carbon nanotubes, 110–113
combination/hybrid nanoparticle, 116
effective parameters on CO2 absorption and interaction mechanism with nanofluids, 119
gas flow rate effect on CO2 absorption, 121
graphene and graphene oxide, 113–115
limitation, 103, 113
metallic nanoparticle, 106–108
nanoparticle concentration effect on CO2 absorption, 120–121
novel MXene material, 116–118
regeneration performance, 122–123
silica and silica oxide, 103–106
temperature effect on CO2 absorption, 121–122
titanium oxide, 108–110
effects on water bodies and aquatic life, 412–414
impact on atmosphere, 414–416
role in CO2 capture, 389–391
Nanopolymer Thin Film, 64–65
Nanoporous-graphitic CN (gNPCN), 387–388
Nanosience, 407
Nanosilica powder, 73
Nanosized zeolites, 310–311
for CO2 capture and conversion, 388–389
design of zeolite adsorbents in CO2 capture, 301
future challenges and perspectives for zeolites use for CO2 capture technology, 301–302
zeolite materials, 278–279
zeolite membranes for CO2 capture, 295–301
zeolites adsorbents in CO2 capture, 280–284
zeolites for CO2 adsorption at high temperature, 294–295
zeolites for CO₂ adsorption at low temperature, 284–293
hierarchical zeolites for CO₂ capture, 291–293
hydrophobic zeolites for CO₂ capture, 290–291
metal cation exchanged zeolites for CO₂ capture, 287–290
Nanotechnology, 63–64, 387–388, 392
National Oceanic and Atmospheric Administration (NOAA), 188
Natural gas, 1
carbon dioxide effect on energy transmission, 4–5
challenges, 20–21
pipeline corrosion due to CO₂, 5–20
and pipelines networking system, 2–4
Net present value (NPV), 36, 395–396
Net-zero emissions by 2050 (NZE2050), 277
Nickel (Ni), 164, 318–319
and zeolites-based dual functional materials, 318–319
Nitrogen, 170
Nitrogen oxides (nox), 4
Noble metals, 165–168
Ag, 167
Au, 165–166
Pd, 167
Pt, 167–168
Nonfunctionalized activated porous carbons for CO₂ capture, 142
Nonmetals, 168–169
Non-noble metals and metal oxides, 161–165
Bi, 163–164
Cu, 161–163
Ni, Co, Mo, 164
other nonnoble metal-containing compounds, 164–165
Noxious pollutants, 4
Nuclear magnetic resonance (NMR), 201

O
Oil-to-water ratio microemulsion (O/W microemulsion), 336–337
Olefins, dual functional materials for CO₂ conversion to, 315–316
Operando techniques, 271
Organic acids, 7
Organic compounds, 18
Outer Helmholtz plane (OHP), 41–43
Oxide perovskites, 186–187
Oxy-combustion capture, 277
Oxy-fuel combustion, 25–26, 34–36, 334
carbon capture, 34–38
chemical looping combustion, 36–38
cryogenic separation, 38–40
Oxygen, 169
Oxygen vacancies (Vox), 183–184

P
PA/CNT. See Polyamide-6/carbon nanotubes (PA/CNT)
Palladium (Pd), 167
PC. See Propylene carbonate (PC)
PDADA. See Polydiallyldimethyl ammonium chloride (PDADA)
PECVD. See Plasma-enhanced chemical vapor deposition (PECVD)
PEDA. See N-[3 (trimethoxysilyl)propyl] ethylenediamine (PEDA)
PEI. See Polyethyleneimine (PEI)
Pentaethylenehexamine, 342–343
Perovskite oxides, 183
“Perovskite solar cell”, 185–186
Perovskite-based catalysts, 185
Perovskite-based nanomaterials
challenges hindering successes of perovskite nanomaterials in converting CO₂, 197–202
low catalytic reaction efficiency and catalyst stability, 200–201
nanocrystal facets effects in promoting reactants adsorption and products desorption, 200
products misinterpretation due to organic chemicals present, 201–202
toxicity, moisture instability, and phase sensitivity in polar medium, 198–199
discovery and history of perovskite photovoltaics, 185–187
future expectation on advanced perovskite nanomaterials for converting CO₂, 202
mechanism and pathways for both reduction and counter oxidation during CO₂ reduction, 195–197
CO₂ reduction using catalysts, 195–196
Perovskite-based nanomaterials (Continued)
mechanism and pathways of CO₂ reduction, 196–197
perovskite materials for CO₂ conversion, 189–190, 191
products from CO₂ conversion and applications, 189
sources, effects and uses of CO₂, 187–189
state-of-the-art methods for synthesizing, 190–195
successes of perovskites nanomaterial in converting CO₂, 202
Petrochemistry, 181
PFAs. See Polymeric fugitive agents (PFAs)
Pharmaceuticals, 182
Phase sensitivity in polar medium, 198–199
Photocatalysis, 43–45, 155, 182–183, 265–269
Photocatalysts, 155
Photocatalytic CO₂ reduction, 156
Photocatalytic reaction, 369
Photocatalytic reduction of CO₂ using graphene-based materials, 223–224
Photochemistry, 184
Photosynthetic semiconductor biohybrid systems (PSBS), 48
Photothermochemical method (PTC method), 183–184
Physical deposition, 65
Physical vapor deposition (PVDD), 67, 249–250
Physisorption, 310
Pipeline corrosion due to CO₂, 5–20
CO₂ corrosion mitigation strategies, 18–20
cathodic protection, 19
chemical inhibition, 18
other techniques, 19–20
protective coatings, 19
selection of materials, 19
experimental procedures for corrosion determination, 11–14
failure analyses of pipelines due to CO₂ corrosion, 16–18
nature of corrosion, 7–8
predictive models for CO₂ induced corrosion, 14–16
types of natural gas pipeline CO₂ corrosion, 9–11
localized, 9–11
uniform, 9
Pipelines failure analysis, 16–17
Pipelines networking system, 2–4
Pitting corrosion, 9–10, 10f
on L485 natural gas pipeline, 12f
Plasma-enhanced chemical vapor deposition (PECVD), 252–253
Plastics, 182
Platinum (Pt), 167–168
nanoparticles embedded in Zr-Uio-67, 269–270
Polarization resistance method, 2
Pollution, 361
Polyamide-6/carbon nanotubes (PA/CNT), 257
Polydiallyldimethyl ammonium chloride (PDDA), 292
Polyethyleneimine (PEI), 113–115, 257, 342–343
Polymeric membranes, 76
Polymers, 403–405
and nanoclay mixture, 80–81
Polyoxometalate–metalloporphyrin organic frameworks, 265
Porous carbon synthesis from waste and biomass, 138–141
conversion using chemical vapor deposition technique, 140
mechanical activation, 140–141
pyrolytic transformation, 138–140
Postcombustion, 25–26, 334
capture, 277
carbon capture, 27–31
absorption, 27–28
adsorption, 29–30
membrane separation, 30–31
Power to methane (PtM), 38
Precombustion, 25–26, 334
capture, 277
carbon capture, 31–34
absorption, 31–32
absorption, 32–33
membrane separation, 33–34
Predictive models for CO₂ induced corrosion, 14–16
Pressure swing adsorption (PSA), 280, 294
Pressure vacuum swing adsorption (PVSA), 295
Prevention through Design (PtD), 416
Process economic analysis of CO₂ capture, 391
of CO₂ conversion to useful fuels, 391–392
Process engineering, 30–31
Process gas, 140
Products desorption, nanocrystal facets effects in, 200
Propylene, 251
Propylene carbonate (PC), 371
Protective coatings, 19
PSBS. See Photosynthetic semiconductor biohybrid systems (PSBS)
PTC method. See Photothermochemical method (PTC method)
PtM. See Power to methane (PtM)
PVDD. See Physical vapor deposition (PVDD)
Pyrolysis, 138–140
with variety of biomass products, 139
Q
Quantum dots (QDs), 170–171
R
Radio frequency PECVD (RF-PECVD), 252–253
Raman spectroscopy, 65–66
Rate-determining step (RDS), 14
Reactants adsorption, nanocrystal facets effects in, 200
Reactive absorption. See Chemical absorption
Reactive oxygen species (ROS), 402
Reduced graphene oxide (rGO), 74, 170
Reduction reaction process, 36–37
Regeneration performance, 122–123
Reserves to production ratio (R/P), 2
Retrofitting method, 401
Reverse water–gas shift process (RWGS process), 316, 369, 372–373
Rhodium (Rh), 319–320
and zeolites-based dual functional materials, 319–320
Robeson’s chart, 76–77
Rod-shaped MS particles (MPS-R), 342
Ruthenium (Ru), 310–311, 319
and zeolites-based dual functional materials, 319
S
Santa Barbara Amorphous-15 (SBA-15), 334–335
Scanning electron microscopy, 253–254
“Scotch Tape Exfoliation” method.
See Micromechanical cleaving method
Scotch-tape-based mechanical exfoliation method, 249–250
Secondary building units (SBUs), 278
Semiconductor, 155
semiconductor-based photocatalysts, 153, 184–185
Separation method, 25–26
Silica, 103–106, 171
for CO2 absorption, 104t nanoparticles, 97
Silica chabazite (Si-CHA), 291
Silica oxide, 103–106
for CO2 absorption, 104t
Silver (Ag), 167
Single-step method, 95–96
Single-wall carbon nanotube (SWCNT), 64–65, 110, 170, 245, 246f
for carbon capture, 255
Sodium hydroxide (NaOH), 19–20
Soft-templating approach, 335–336
Sol-gel method, 67t
Solar energy, 51–52, 183–184, 195, 211, 393
Solar thermochemical conversion (STC), 184
Solar-derived fuel cells, 181–182
Solar-powered chemistry, 181
Solid amine-based materials, 334–335
Spherical MS particles (MPS-S), 342
Sputtering method, 67t
State-of-the-art methods for synthesizing perovskite nanomaterials, 190–195
...
Index

Surface plasmon resonance, 162
Surfactants, 335
Sustainable development goals (SDGs), 277

T
Tafel extrapolation, 2
Tandem catalytic system, 317
Techno-economic analysis, 385—386
of CO₂ capture and conversion technologies, 391—396
cost-effective synthesis process of nanomaterials, 392
process economic analysis of CO₂ capture, 391
process economic analysis of CO₂ conversion to useful fuels, 391—392
technoeconomic analysis of CO₂ electrolysis systems, 393—396
CO₂ capture techniques, 386—389
CO₂ capture designs, 386—387
CO₂ conversion and utilization, 387—388
nanosized zeolites for CO₂ capture and conversion, 388—389
role of nanoparticles and nanomaterials in CO₂ capture, 389—391
Technology of nanomaterials, 401
Technology Readiness Level (TRL), 28
Temperature effect on CO₂ absorption, 121—122
Temperature swing adsorption (TSA), 280, 294
Tetracyanoethylene (TCNE), 219—220
Tetraethyl orthosilicate (TEOS), 336—337
Tetraethylenepentamine (TEPA), 342, 407
Thermal catalysis, 269—270
Thermal swing sorption method, 309—310
Thermochemistry, 184
Thermodynamics of CO₂ photocatalytic conversion over TiO₂ nanophotocatalyst, 158—160
Titanium oxide (TiO₂), 108—110 for CO₂ absorption, 109
nanophotocatalysts
fundamentals and mechanism of CO₂ photocatalytic conversion over, 153—157
modification strategies for enhanced CO₂ photoreduction over, 160—171
thermodynamics and kinetics of CO₂ photocatalytic conversion over, 158—160
TiO₂-based photocatalysts dispersion on supports, 171
Titanium-based nanomaterials, 153
CO₂ photocatalytic conversion over TiO₂ nanophotocatalysts
fundamentals and mechanism of, 153—157
modification strategies for enhanced, 160—171
thermodynamics and kinetics of, 158—160
Top-down approach, 64
Top-down exfoliation methods, 249—250
Top-down regulatory approach, 416
Toxicities of nanomaterials, 407—417
Toxicity in polar medium, 198—199
Toxicity in water, 412—414
Toxicity of nanomaterials, 229—233
Toxicology, 408—409
Transmission electron microscopy (TEM), 65—66
Transmission electron microscopy, 253—254
Two-dimension (2D)
2-D Bi₂WO₆-TiO₂ nanosheets, 164
materials, 249—250
two-dimensional conductive Cu-based MOF, 265
Two-step method, 96—97

U
Ultra-sound method, 67
Ultrasoundation, 193—194
Ultraviolet—visible spectroscopy (UVS), 65—66
Uniform CO₂ corrosion, 9
United Nations Framework Convention on Climate Change (UNFCCC), 89—90
US Environmental Protection Agency (EPA), 89—90

V
Vacuum swing adsorption (VSA), 280
Valence band (VB), 155
Value-added products, 264—265 production, 374—378
van der Waals forces, 310

W
Waste
chemical activation, 141
nanoparticles effects on water bodies, 412—414
prospects for commercialization, 146
synthesis of porous carbon from, 138—141
waste and biomass-derived porous carbon for
CO₂ capturing application, 141—142
Water vapor (H₂O), 29—30
Water—gas shift reaction (WGS reaction), 37—38
Weight loss method, 2
“Wet gas”, 7
Wet-chemical bottom-up synthesis
methods, 141
WGS reaction. See Water—gas shift reaction (WGS
reaction)
World energy transportation network, 3—4

X
X-ray diffraction (XRD), 65—66
X-ray photoelectron spectroscopy (XPS), 65—66

Z
Zeolites, 171, 277, 309, 334—335
adsorbents in CO₂ capture, 280—284
adsorption mechanisms by zeolite, 282—284
modes of operation, 280—282
for CO₂ adsorption
at high temperature, 294—295
at low temperature, 284—293
future challenges and perspectives for, 301—302
materials, 278—279
pore size showing with oxygen packing
model, 279f
topology effect in dual functional materials, 320
Zeolite 13X, 294—295
zeolites-based dual functional materials
nickel and, 318—319
ruthenium and, 319
Zinc-bis(dihydroxy) complex (ZnO₄), 50
ZSM-5 type zeolite, 312—313
NANOMATERIALS FOR CARBON DIOXIDE CAPTURE AND CONVERSION TECHNOLOGIES

Edited by Shaukat Ali Mazari, Nabisab Mujawar Mubarak and Manoj Tripathi

Key features
• Explores the theories behind CO2 capture and conversion using nanomaterials and suggests alternatives to replace traditional energy-intensive CO2 capture technologies
• Provides information on the development of a wide range of nanomaterials used for CO2 capture and conversion processes
• Assesses the major challenges for integrating nanotechnology into carbon dioxide capture and conversion systems

Currently, abundant CO2 emissions from industries and the transportation sector threaten the planet by causing climate change. Nanomaterials for Carbon Dioxide Capture and Conversion Technologies investigates development and application of nanomaterials for CO2 capture and conversion.

Nanomaterials have shown amazing catalytic and adsorption characteristics for CO2. Using nanomaterials CO2 can be converted into fuels and chemicals and can be stored. This book explores the catalytic processes, involving electro and photoreduction of CO2, hydrogenation of CO2, etc. that produce a variety of fine products and intermediates and CO2 adsorption. The book highlights synthesis, chemical, physical, and morphological characteristics of nanomaterials. Development and application of various nanomaterials such as nanofluids, waste and biomass-based nanomaterials, titanium-based nanomaterials, perovskite-based nanomaterials, graphene-based nanomaterials, carbon nanotubes, metal organic frameworks embedded with nanoparticles, nanosized zeolites, mesoporous silica nanoparticles, and ionic liquid functionalized nanomaterials are described in detail. This book also highlights environmental impact of use of nanomaterials and their techno-economic analysis for CO2 capture and conversion.

The book explores the basic principles and challenges of nanomaterials in CO2 mitigation technologies and shall be an important resource of knowledge for academicians, researchers, professionals, policymakers, and students on CO2 capture and conversion processes.

Shaukat Ali Mazari is an assistant professor in the Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, Pakistan.

Nabisab Mujawar Mubarak is an associate professor in the Department of Petroleum and Chemical Engineering, Universiti Teknologi Brunei, Jalan Tungku Link, Mukim Gadong A, Brunei.

Manoj Tripathi is an assistant professor in the Department of Physics, Material Science & Engineering at Jaypee Institute of Information Technology, Noida, India.