IDENTIFICATION OF MIMOTOPES OF HUMAN ENTEROVIRUS 71

YEE SIEW FUNG

A thesis submitted
in fulfillment of the requirements for the degree of
Master of Science

Institute of Health and Community Medicine
UNIVERSITI MALAYSIA SARAWAK
2007
DEDICATION

To my family and friends for their constant support.
ACKNOWLEDGEMENTS

My deepest gratitude and thanks to my supervisor, Professor Dr. Mary Jane Cardose, whose guidance, support and encouragement has helped me to complete my MSc. Thank you Phaik Hooi, Dr. Sim and Dr. David for all the valuable assistance and advice. To all my friends at IHCM, thank you for your help, useful discussion and friendship.
ABSTRACT

A random phage-displayed peptide library was used to screen a raised rabbit serum antibodies against complete recombinant viral protein (VP)1 of B4 strain of human enterovirus (HEV)71 (R410 serum) for mimotopes of VP1 protein of HEV71. One hundred and fifteen different peptide sequences were identified from sequencing 133 phage plaques isolated from four rounds of R410 panning. Of the 115 different peptide sequences identified, 74 different peptide sequences were classified into eight different motif groups (I to VIII). The largest group, group I consisted of peptide sequences with the D/ERPA/D/E motif.

Two peptide sequences from two different motif groups were then chosen for synthesis. The chosen peptide sequences were KLERPAD of group I with the D/ERPA/D/E motif and PQFLSKH of group VII with the QFXSXH motif. Both were synthesised in linear and constrained forms. However, only constrained-KLERPAD peptide was reactive with raised rabbit sera antibodies against complete VP1 recombinant protein of different strains of HEV71. It was also found to mimic an epitope of VP1 protein of B4 strain of HEV71 when superimposed on constructed predictive VP1 structures of B4 strain of HEV71 B4.

These findings show the potential of phage technology in identifying important mimotopes of HEV71 to facilitate the development of diagnostic assays and drugs- or vaccines-based HEV71 mimotopes.
ABSTRAK

Kajian ini telah dijalankan untuk mengenalpasti mimotop yang menyamari epitop pada protein kapsid (VP)1 daripada human enterovirus (HEV)71 dengan menyaring anti-serum daripada arnab terhadap protein rekombinan VP1 daripada strain B4 HEV71 (serum R410) dengan perpustakaan faj yang mempersembahkan peptida rawak. Seratus lima belas jenis jujuan peptida telah diperolehi daripada penjujuan 133 plak faj yang telah dipencilkkan daripada empat pusingan penyaringan. Tujuh puluh empat jenis jujuan peptida daripada jumlah jujuan peptida yang diperolehi telah dikelaskan ke dalam lapan kumpulan (I ke VIII). Kumpulan I dengan jujuan peptida yang bermotif D_ERPA_{D/E} merupakan kumpulan dengan paling banyak jenis jujuan peptida di dalamnya.

Dua jenis jujuan peptida, KLERPAD dan PQFLSKH dalam bentuk linear dan terangkai juga telah disintesiskan. KLERPAD telah dipilih daripada kumpulan I dengan jujuan peptida yang bermotif D_ERPA_{D/E} manakala PQFLSKH telah dipilih daripada kumpulan VII dengan jujuan peptida yang bermotif QF_XSX_H. Namun demikian, hanya KLERPAD yang terangkai yang bertindak balas dengan anti-serum daripada arnab terhadap protein rekombinan VP1 daripada strain HEV71 yang berlainan. Selain daripada itu, peptida sintetik ini juga didapati menyamari salah satu epitop pada protein VP1 daripada strain B4 HEV71 apabila dilokasikan pada model struktur protein VP1 daripada strain B4 HEV71.

Keputusan-keputusan yang diperolehi daripada kajian ini menunjukkan potensi teknologi faj dalam mengenalpasti mimotop penting daripada HEV71 dalam usaha untuk mencari kaedah terbaik mendiagnoskan jangkitan HEV71 mahupun penawar ataupun vaksin terhadap HEV71.
TABLE OF CONTENTS

DEDICATION .. ii
ACKNOWLEDGEMENTS .. iii
ABSTRACT .. iv

ABSTRAK .. v

TABLE OF CONTENTS .. vi
LIST OF FIGURES .. x
LIST OF TABLES .. xi
ABBREVIATIONS .. xii

CHAPTER 1: INTRODUCTION ... 1
1.1. Picornaviruses .. 1
1.1.1. Human enteroviruses ... 1
1.2. Properties of enteroviruses ... 2
1.2.1. Genome organisation ... 3
1.2.2. Viral proteins ... 7
1.2.2.1. Non-structural proteins .. 7
1.2.2.2. Structural proteins ... 8
1.3. Enterovirus infections .. 9
1.3.1. Transmission and pathogenesis ... 9
1.3.2. Clinical manifestations of enterovirus infections 10
1.4. Diagnosis of enterovirus infections ... 10
1.4.1. Detection of viable viruses .. 11
1.4.2. Detection of anti-enterovirus sera ... 13
1.4.3. Detection of viral genome ... 14
1.5. Prevention and treatment ... 16
1.6. Identification of mimotopes through phage display 17
1.6.1. Filamentous phages ... 17
1.6.2. Phage-displayed peptides .. 17
1.6.3. Mimotopes .. 20
1.7. Statement of problem .. 21

CHAPTER 2: MATERIALS AND METHODS ... 26
2.1. Experimental strategies ... 26
2.2. Preparation of HEV71 VP1 recombinant proteins 26
2.2.1. Bacterial clones .. 26
2.2.2. Expression of HEV71 recombinant proteins 29
 2.2.2.1. Extraction of plasmid DNA ... 29
 2.2.2.2. Transformation .. 30
 2.2.2.3. Confirmation of protein expression 31
 2.2.2.3.1. Induction of protein expression 31
 2.2.2.3.2. Preparation of the target proteins for analysis 31
 2.2.2.3.3. SDS-PAGE AND Western blotting 32
 2.2.3. Purification of HEV71 recombinant proteins 33
 2.2.3.1. Preparation of large volume culture 33
 2.2.3.2. Preparation of cell extracts ... 34
 2.2.3.3. Preparation of the His-Bind® column 35
 2.2.3.4. Nickel-chelated affinity column chromatography 36
 2.2.3.5. Processing of purified recombinant proteins 36
 2.2.3.6. Confirmation of the antigenicity of the purified recombinant proteins .. 37
 2.3. Preparation of HEV71 virus stocks .. 38
 2.3.1 Host cell line and viruses .. 38
 2.3.2. Maintenance of cells ... 38
 2.3.3. Propagation of virus ... 39
 2.3.4. Virus titration ... 41
 2.4. Production of anti-HEV71 VP1 sera .. 42
 2.4.1. Animal immunisation .. 42
 2.4.2. Evaluating the antibodies responses 45
 2.4.2.1. Western blot analysis of HEV71 VP1 sera reactivity with recombinant proteins and viruses .. 45
 2.4.2.2. ELISA .. 45
 2.4.2.3. Neutralisation test ... 46
 2.5. Preparation of rabbit polyclonal IgG antibodies against HEV71 B4 VP1 recombinant protein (purified R410 serum) 47
 2.6. Identification of mimotopes of HEV71 B4 VP1 recombinant protein through phage-displayed peptide library .. 48
 2.6.1. Phage-displayed peptide library .. 48
 2.6.2. Biopanning ... 48
 2.6.3. Characterisation of selected phage-displayed peptides 51
 2.6.3.1. Amplification of phage plaques .. 51
2.6.3.2 Extraction of M13 phage DNA................................. 51
2.6.3.3. Nucleotide sequence analysis................................ 52

2.6.4. Selection of peptide sequences for synthesis............... 54
 2.6.4.1. Preparation of phages for selection...................... 54
 2.6.4.2. Phage ELISA.. 54
 2.6.4.3. Peptide synthesis... 55

2.6.5. Confirmation of the synthesised peptides mimicry........ 55
 2.6.5.1. ELISA... 55
 2.6.5.2. Molecular display.. 56

CHAPTER 3: RESULTS... 57

3.1. Assessment of expressed HEV71 recombinant proteins....... 57
3.2. Reactivity of the anti-HEV71 sera generated.................... 58
 3.2.1. Reactivity against recombinant proteins..................... 60
 3.2.2. Reactivity against authentic viruses............................ 67
 3.2.3. Biological reactivity... 70
 3.2.4. Summary... 71
3.3. Mimotopes of HEV71 B4 VP1 recombinant protein identified through panning of purified R410 serum with phage-displayed peptide library... 76
 3.3.1. System verification.. 76
 3.3.2. Amino acid sequence of displayed peptides isolated from panning of phages against purified R410 serum (R410 panning)......................... 78
 3.3.3. Selection of KLERPAD and PQFLSKH sequences for peptide synthesis... 86
 3.3.4. KLERPAD is a mimotope of HEV71 B4 VP1 recombinant protein...... 91
 3.3.4.1. Synthetic peptides reactivity................................ 91
 3.3.4.2. Location of epitope of VP1 of B4 strain of HEV71 mimicked by KLERPAD... 95

CHAPTER 4: DISCUSSION.. 99

CHAPTER 5: CONCLUSION.. 103
5.1. Summary... 103
5.2. Further directions.. 103

REFERENCES... 105

APPENDIX A: Preparation of media, antibiotics, reagents and solutions 124
A.1. Media for cell growth... 124
A.2. Stock solutions, reagents and buffers.................................. 125

viii
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1.</td>
<td>The structural organisation of an enterovirus</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1.2.</td>
<td>Organisation and expression of an enterovirus genome</td>
<td>6</td>
</tr>
<tr>
<td>Figure 1.3.</td>
<td>A schematic diagram showing (a) wild type filamentous phage with major (pVIII) and minor (pIII, pVI, pVII, and pIX) coat proteins (b) pIII-based phage display (c) pVIII-based phage display</td>
<td>19</td>
</tr>
<tr>
<td>Figure 1.4.</td>
<td>HFMD associated vesicles</td>
<td>24</td>
</tr>
<tr>
<td>Figure 1.5.</td>
<td>Pathogenesis of a severe HEV71 infection</td>
<td>25</td>
</tr>
<tr>
<td>Figure 2.1.</td>
<td>A flowchart of experimental strategies used in identifying mimotopes of VP1 of HEV71</td>
<td>27</td>
</tr>
<tr>
<td>Figure 3.1.</td>
<td>SDS-PAGE and Western blot analysis of HEV71 recombinant proteins</td>
<td>59</td>
</tr>
<tr>
<td>Figure 3.2.</td>
<td>Western blot analysis of mouse anti-HEV71 VP1 serum with HEV71 B4 and B3 VP1 recombinant proteins</td>
<td>61</td>
</tr>
<tr>
<td>Figure 3.3.</td>
<td>Western blot analysis of rabbit anti-HEV71 VP1 sera with HEV71 VP1 recombinant proteins</td>
<td>62</td>
</tr>
<tr>
<td>Figure 3.4.</td>
<td>Mouse anti-HEV71 VP1 serum reactivity with HEV71 VP1 recombinant proteins</td>
<td>64</td>
</tr>
<tr>
<td>Figure 3.5.</td>
<td>Graphs of optical density (OD) against different HEV71 VP1 recombinant proteins</td>
<td>66</td>
</tr>
<tr>
<td>Figure 3.6.</td>
<td>Western blot analysis of anti-HEV71 VP1 sera reactivity with HEV71 of genogroup B4</td>
<td>68</td>
</tr>
<tr>
<td>Figure 3.7.</td>
<td>Western blot analysis of anti-HEV71 VP1 sera reactivity with HEV71 of genogroup B3</td>
<td>69</td>
</tr>
<tr>
<td>Figure 3.8.</td>
<td>Analysis of randomly picked peptide sequences reactivity with rabbit anti-HEV71 B3 VP1 sera</td>
<td>90</td>
</tr>
<tr>
<td>Figure 3.9.</td>
<td>Synthetic peptides reactivity with R410 serum</td>
<td>93</td>
</tr>
<tr>
<td>Figure 3.10.</td>
<td>Constrained-KLERPAD peptide reactivity with rabbit anti-HEV71 B3 VP1 sera.</td>
<td>94</td>
</tr>
<tr>
<td>Figure 3.11.</td>
<td>Location of KLERPAD superimposed onto the predicted VP1 structures of B4 strain of HEV71</td>
<td>97</td>
</tr>
<tr>
<td>Figure 3.12.</td>
<td>Alignment of the amino acid sequence of KLERPAD with the amino acid sequence of VP1 of B4 strain of HEV71 used in constructing the predictive VP1 structures of B4 strain of HEV71 using the program Deepview/ Swiss-PbdViewer v.3.7</td>
<td>98</td>
</tr>
<tr>
<td>Figure B.1.</td>
<td>Map of the pCR*-blunt vector with restriction sites</td>
<td>132</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Classification of 74 serotypes of human enteroviruses</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>HEV71 VP1 recombinant proteins used in this study</td>
<td>28</td>
</tr>
<tr>
<td>2.2</td>
<td>Source of HEV71 strains used in the study</td>
<td>40</td>
</tr>
<tr>
<td>2.3</td>
<td>Rabbit immunisation schedule</td>
<td>44</td>
</tr>
<tr>
<td>3.1</td>
<td>Mouse anti-HEV71 VP1 serum neutralisation result</td>
<td>73</td>
</tr>
<tr>
<td>3.2</td>
<td>Rabbit sera neutralisation result</td>
<td>74</td>
</tr>
<tr>
<td>3.3</td>
<td>Summary of reactivity of sera obtained tested using different assays</td>
<td>75</td>
</tr>
<tr>
<td>3.4</td>
<td>List of displayed peptide sequences selected from three rounds of streptavidin panning</td>
<td>77</td>
</tr>
<tr>
<td>3.5</td>
<td>Frequency of phage-displayed peptides selected with R410 panning</td>
<td>79</td>
</tr>
<tr>
<td>3.6</td>
<td>Distribution of 74 different peptide sequences into eight motif groups</td>
<td>84</td>
</tr>
<tr>
<td>3.7</td>
<td>Result of randomly selected phage-displayed peptides from R410 panning reactivity with R410 serum</td>
<td>89</td>
</tr>
<tr>
<td>B.1</td>
<td>Number of plaques formed per sample in mouse anti-HEV71 serum neutralisation test</td>
<td>133</td>
</tr>
<tr>
<td>B.2</td>
<td>Optical density values obtained from optimising mouse anti-HEV71 serum dilution and coating antigen (HEV71 B4 recombinant protein) concentration by indirect ELISA</td>
<td>134</td>
</tr>
<tr>
<td>B.3</td>
<td>Number of plaques formed per sample in rabbit anti-HEV71 sera neutralization test</td>
<td>135</td>
</tr>
<tr>
<td>B.4</td>
<td>Optical density of randomly selected phage-displayed peptides from panning of purified R410 serum</td>
<td>136</td>
</tr>
<tr>
<td>B.5</td>
<td>Percentage similarity and divergence between VP1 of HEV71 B4, PV1s, CAV9 and BEV1 generated from amino acid sequence alignment using ClusterW method in MegAlign (Lasergene v. 5.00 DNAStar Inc., Madison, Wi, USA)</td>
<td>138</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

BEV bovine enterovirus
BGM buffalo green monkey kidney cells
BSA bovine serum albumin
BEV bovine enterovirus
CAV coxsackievirus A
CBV coxsackievirus B
cDNA complementary DNA
CMC carboxymethyl-cellulose
CNS central nervous system
CO₂ carbon dioxide
C-PBS casein-PBS
CPE cytopathic effect
CSF cerebrospinal fluid
DMEM Dulbecco’s Modified Eagle Medium
DNA deoxyribonucleic acid
E. coli Escherichia coli
EDTA ethylene diamine tetraacetate
ELISA enzyme-linked immunosorbant assay
FBS foetal bovine serum
FCA Freund complete adjuvant
FIA Freund incomplete adjuvant
HCl hydrochloric acid
HEV Human enterovirus
HFMD hand, foot and mouth disease
HRP horseradish peroxidase
HPLC high performance liquid chromatography
H₂SO₄ sulphuric acid
IFA immunofluorescence assay
IgG immunoglobulin G
IgM immunoglobulin M
IMR Institute for Medical Research
IPTG isopropyl-β-D-thiogalactosidase
kb kilobase
kDa kiloDalton
LB Luria-Bertani
M protein membrane protein
Mab5-D8/1 mouse monoclonal antibody clone 5-D8/1
MK Rhesus monkey kidney
MNS mouse negative serum
MPS mouse anti-HEV71 VP1 serum
MRC-5 human diploid fibroblast cells
ND not done
NaCl sodium chloride
NaOH sodium hydroxide
NPEV non-poliovirus enterovirus
UTR untranslated region
OD optical density
OPD o-phenylenediamine
PAGE polyacrylamide gel electrophoresis
PBS phosphate buffer saline
PCR polymerase chain reaction
PEG polyethylene glycol
pre-R410 pre-immunisation blood collected from rabbit selected for immunisation with HEV71 B4 recombinant protein
pfu plaque forming unit
PV Poliovirus
R410 rabbit anti-HEV71 B4 VP1 recombinant protein serum
R401 rabbit anti-HEV71 B3 VP1 recombinant protein serum
R402 rabbit anti-N-terminal HEV71 B3 VP1 recombinant protein serum
R403 rabbit anti-C-terminal HEV71 B3 VP1 recombinant protein serum
R404 pooled pre-immunisation blood collected from rabbits selected for immunisation with HEV71 B3 recombinant proteins
RD rhabdomyosarcoma cells
RNA ribonucleic acid
RO reverse osmosis
rpm rotation per minute
RT-PCR reverse transcription-polymerase chain reaction
S protein spike glycoprotein
SARS-CoV Severe Acute Respiratory Syndrome coronavirus
SM (non-fat) skimmed milk
SDS sodium dodecyl sulphate
TBS Tris-buffered saline
TBST TBS-Tween-20
TMTC too many to count
UHQ ultra high quality
Unimas Universiti Malaysia Sarawak
VP viral coat protein
v/v volume/volume
w/v weight/volume
CHAPTER 1: INTRODUCTION

1.1. Picornaviruses

Picornaviruses are small, non-enveloped viruses with a single positive strand RNA genome. They are divided into nine genera: *Rhinovirus, Enterovirus, Aphthovirus, Cardiovirus, Hepatovirus, Parechovirus, Teschovirus, Erbovirus* and *Kobuvirus* (Mayo & Pringle, 1998; Institute of Animal Health, 2002). Each genus is then divided into species which consist of different virus serotypes. The picornaviruses are originally classified into their respective genera based on their physical and antigenic properties such as particle density, pH sensitivity and by neutralisation with specific anti-sera (Committee on Enteroviruses, 1962; Melnick, 1997). Recently, they are classified based on their molecular properties because some picornaviruses are misidentified or untypable when they were classified based on their antigenic properties (Muir *et al.*, 1998; Oberste *et al.*, 1999a & b; Kubo *et al.*, 2002; Brown *et al.*, 2003; Bendig & Earl, 2005).

1.1.1. Human enteroviruses

Enteroviruses are so-named because they are usually found inhabiting the gastrointestinal tract of their hosts (Rueckert, 1996). They also cause the greatest hazards to human health among all known picornaviruses (Shimizu *et al.*, 1999; Chaves *et al.*, 2001). To date, there are 74 serotypes of human enteroviruses identified and they are classified into five species, namely *Poliovirus* (PV), *Human enterovirus A* (HEV-A), *Human enterovirus B* (HEV-B),
Human enterovirus C (HEV-C) and Human enterovirus D (HEV-D) (King et al., 2000; Norder et al., 2003; Oberste et al. 2005) (Table 1.1).

1.2. Properties of enteroviruses

Like all piconarviruses, enteroviruses are non-enveloped spherical ribonucleotide acid (RNA) viruses with sizes ranging from 22 to 30 nm in diameter. PVs, the most studied enteroviruses, were the first in having their atomic structures characterised by x-ray crystallography. Atomic structures of coxsackievirus A (CAV) 9 (Hendry et al., 1999), CAV21 (Xiao et al., 2001), coxsackievirus B (CBV) 3 (Muckelbauer et al., 1995), bovine enterovirus (BEV) (Smyth et al., 1995) were also characterised using the same method. Each of the enteroviruses has a buoyant density of 1.34 g/cm³ in cesium chloride and carries a single-stranded, positive sense RNA genome (Melnick, 1997). Their icosahedral capsids are constructed from 60 identical blocks or protomers (Figure 1.1). A protomer consists of four types of structural proteins, namely viral protein 1 (VP1), viral protein 2 (VP2), viral protein 3 (VP3) and viral protein 4 (VP4) (Rueckert, 1996).

The viruses can be inactivated by exposure to ultraviolet light, formalin, chlorine solution and temperature above 50°C (Rueckert, 1996; Nuanualsuwan & Cliver, 2003). However, they are stable against treatments with detergents and organic solvents. Enteroviruses are also able to withstand extreme acidic environments. This acid stability property enables enteroviruses to replicate in their native habitat, the gastrointestinal tract (Rueckert, 1996). The viruses remained viable when left for days at room temperature in moist conditions but
they become highly viable at any temperature once stabilised by magnesium chloride (Melnick, 1997).

1.2.1. Genome organisation

The single-stranded positive sense RNA genome of enteroviruses consists of approximately 7.5 kilobases (kb) as shown in Figure 1.2. The genome has a single open reading frame and can directly be translated once it enters a host cell.

The 3' and 5' ends of the viral RNA contain untranslated regions (UTRs). The two UTRs are conserved in all enteroviruses and contain elements important for RNA replication and translation. The 3' end of the genome carries a poly-A sequence while a small viral protein called VPg protein is attached to the 5' end of the genome (Andino et al., 1999).

The protein-coding region is organised into P1, P2 and P3 regions. The P1 region encodes four types of viral structural proteins (VP1 to VP4), which make up an enterovirus capsid. The nucleotide sequences in P1 coding region are highly variable because the viral capsid is constantly subjected to pressure caused by host antibodies. Meanwhile, the P2 and P3 regions contain genes that encode seven types of non-structural proteins and several forms of intermediate cleavage products. The products formed from these regions act as important viral enzymes required in the propagation of enteroviruses. Therefore, the nucleotide sequences in P2 and P3 coding regions are more conserved than those in P1 coding region (Rueckert, 1996).
Table 1.1. Classification of 74 serotypes of human enteroviruses.

<table>
<thead>
<tr>
<th>Species</th>
<th>Serotypes within the species</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV (3 wild serotypes)</td>
<td>Poliovirus 1-3</td>
</tr>
<tr>
<td>HEV-A (16 serotypes)</td>
<td>Coxsackievirus A2, 8, 10, 12, 14, 16, Enterovirus 71, 76#, 89#, 90#, 91#</td>
</tr>
<tr>
<td>HEV-B (42 serotypes)</td>
<td>Coxsackievirus A9, Coxsackievirus B1-6, Echovirus 1-9, 11-21, 24-27, 29-33, Enterovirus 69, 73*, 74*, 75*, 77*, 78*</td>
</tr>
<tr>
<td>HEV-C (11 serotypes)</td>
<td>Coxsackievirus A1, 11, 13, 15, 17-22, 24</td>
</tr>
<tr>
<td>HEV-D (2 serotypes)</td>
<td>Enterovirus 68, 70</td>
</tr>
</tbody>
</table>

Recently identified HEV-A (Oberste et al., 2005).
*Recently identified HEV-B (Norder et al., 2003).
This classification was modified according to King et al. (2000), Norder et al. (2003) and Oberste et al. (2005).
Figure 1.1. The structural organisation of an enterovirus. (A) A protomer is formed by the proteolytic cleavage products of the P1 polyprotein to capsid proteins VP1 to VP4. The surface of the virion is formed by VP1, VP2 and VP3, while VP4 is found internally. (B) Five protomers assemble into a pentamer. The fivefold axis of the pentamer is shown. (C) An icosahedral capsid is formed by twelve pentamers. One of the twenty threefold axes is marked. (Reproduced from Rueckert, 1996).
Figure 1.2. Organisation and expression of an enterovirus genome. The top box represents the enterovirus genome organisation: VPg protein, 5'-UTR, coding region for structural and non-structural proteins, 3'-UTR and a poly-A tail. The box below indicates the end products obtained from cleavage of P1, P2 and P3 precursor proteins by viral-coded proteinases. (Adapted from Reuckert, 1996 and Andino et al., 1999).
1.2.2. Viral proteins

1.2.2.1. Non-structural proteins

Non-structural proteins and their intermediates coded from P2 and P3 regions of enterovirus RNA genome take part in enterovirus RNA replication and protein processing. The P2 region encodes proteins 2A, 2B and 2C while the P3 region encodes proteins 3A, 3B, 3C and 3D. Uncompleted cleavage of both regions forms functional intermediates known as proteins 2BC, 3AB and 3CD (Rueckert, 1996; Andino et al., 1999).

Protein 2A cleaves translated long polypeptide between VP1 and itself to release capsid protein precursor P1 from the rest of the polyproteins (Toyoda et al., 1986). Proteins 2B, 3A and their respective precursor proteins (intermediates 2BC and 3AB) increase host cell plasma membrane and organelles membranes permeability to create the required environment for viral RNA replication (Lama & Carrasco, 1992; Aldabe et al., 1996; Towner et al., 1996; Dodd et al., 2001; de Jong et al., 2002 & 2004). Meanwhile, protein 2C is a helicase (Klein et al., 2000) involved in the encapsidation of viral RNA (Vance et al., 1997). Protein 3B or Vpg protein initiates RNA synthesis by protein 3D which is also known as viral RNA-dependent RNA polymerase (Paul et al., 2003). Two important proteinases coded from P3 region are protein 3C and the intermediate 3CD. They are mostly involved in the cleavage of viral proteins (Ansardi & Morrow, 1995; Parsley et al., 1999; Patick et al., 1999).
1.2.2.2. Structural proteins

The capsid protein precursor P1 is cleaved into individual capsid proteins, VP1 to VP4 by enzymes coded from P2 and P3 regions. VP1, VP2 and VP3 capsid proteins are the main structural components of an enterovirus and each of them consists of approximately 240 to 290 amino acids residues folded into eight-stranded anti-parallel β-sheets with a ‘jelly-roll’ topology to form the outer surface capsid. Meanwhile, VP4, which is smaller in size, about 70 amino acids residues, is located in the inner surface of the VP1, VP2 and VP3 (Symth & Martin, 2002). Of the four types of viral structural proteins, VP1 plays the major role in determining the antigenicity of enteroviruses.

An enterovirus infection may become severe or enteroviruses may become more virulent when changes occurred to certain antigenic sites. This is because changes in the antigenic sites alter the mechanisms of immune system in hosts towards enteroviruses (Ramsingh et al., 1997; Halim & Ramsingh, 2000). Variation of amino acids in the VP1 protein within or close to one of the important β-sheets, the BC loop is observed in different enterovirus serotypes (Norder et al., 2003). This may explained why the gene that expresses VP1 has the most variable nucleotide sequences compared to the other viral structural proteins (Mulder et al., 2000; Oberste et al., 1999a,b & 2000). Monoclonal antibodies against enterovirus capsid proteins (Emini et al., 1982; Blondel et al., 1983) or synthetic peptides based on certain regions of VP1 (Hovi & Roivanen, 1993; Airaksinen et al., 2001; Shin et al., 2003) have been generated to identify the epitopes of VP1. Some of these epitopes are conserved among enteroviruses and can be used for diagnosing enterovirus infections. Mouse monoclonal antibody clone 5-D8/1 (Mab5-D8/1) from DAKO A/S, Copenhagen, Denmark is an
example of a commercially available monoclonal antibody derived from a conserved epitope (mapped from residues 40 to 48) of the VP1 of a majority of enterovirus serotypes (Samuelson et al., 1995). Mab5-D8/1 cross-reacts with most of enterovirus serotypes and is useful for rapid diagnosis of enterovirus infections (Trabelsi et al., 1995; Zhang et al., 2000).

In addition, VP1 is also involved in viral attachment to host cell receptor and uncoating during infection (Fricks & Holge, 1990; Couderc et al., 1996; Ward et al., 1999; Airaksinen et al., 2001). Mapping of epitopes of the capsid proteins of enteroviruses especially VP1 is crucial in the development of vaccines against enterovirus infections. A vaccine is considered to be effective when it induces host humoral immune response to produce neutralising antibodies (Herremans et al., 2000). Thus, sequences obtained from the mapping of epitopes of VP1 can be used in developing drugs to treat enterovirus infections. The potential drugs should inhibit viral uncoating and/or attachment to the receptors of host cell (Barnard et al., 2004).

1.3. Enterovirus infections

1.3.1. Transmission and pathogenesis

Enteroviruses enter the human body via the oral and respiratory routes in the form of eye, nose or throat discharges and fluid from blisters or stool of infected persons. Once inside the host, they replicate in the gastrointestinal and upper respiratory tracts. In some cases, viremia may occur on the third day after the infection (Melnick, 1997). Enteroviruses then spread during the viremic phase to secondary target organs such as the central nervous system (CNS),
heart and muscles for further replication. Most complications arise from the infection of these target organs (Alexander et al., 1994; Kandolf et al., 1999; Chaves et al. 2001).

1.3.2. Clinical manifestations of enterovirus infections

Infection with human enteroviruses are usually asymptomatic, but they can cause a wide spectrum of clinical manifestations, which range from conjunctivitis, hand, foot and mouth disease (HFMD), herpangina, encephalitis, myocarditis, neonatal systemic enteroviral disease and paralytic poliomyelitis. Certain clinical manifestations are associated with specific enterovirus serotypes. HFMD, for example is usually caused by infection with CAV16 and HEV71 (Melnick, 1997). Meanwhile, CBV is well recognised as the causative agent of myocarditis (Gauntt et al., 1995; Kandolf et al., 1999). Enterovirus-associated diseases occur throughout the year in the tropics but in countries with temperate climates, enteroviruses are associated with epidemics during the summer.

1.4. Diagnosis of enterovirus infections

There are three main methods to detect an enterovirus infection. Traditional diagnosis of enterovirus infection is based on the detection of viable viruses or anti-enterovirus antibodies. When no result is obtained from these approaches, molecular techniques are used to detect the presence of viral genome.
1.4.1. Detection of viable viruses

The classical laboratory approach to diagnose enterovirus infection is to first isolate the virus and then identify its serotype by neutralisation assay. Enteroviruses can be isolated from cerebrospinal fluid (CSF), vesicular fluid, serum, urine, faeces and throat or rectal specimens taken from patients. The viruses are identified by the cytopathic effect (CPE) shown by cells that they are grown in. Buffalo green monkey kidney (BGM) cells, human diploid fibroblast (MRC-5) cells, primary Rhesus monkey kidney (MK) cells, rhabdomyosarcoma (RD) cells and Vero cells are the commonly used cell lines for the isolation of enteroviruses (Hamparian et al., 1985; Chonmaitree et al., 1988; Ho et al., 1999).

A few cell lines are usually used at the same time to increase isolation speed and sensitivity. This is because the infectivity of enteroviruses varies in different cell lines. The RD cell line is especially sensitive for the isolation of echoviruses (Hamparian et al., 1985) although most enteroviruses can be isolated from the same cell line (Pe'rez-Ruiz et al., 2003). Meanwhile, BGM cell line is more sensitive for isolating CBVs (Menegus & Hollick, 1982). Some enteroviruses such as CAVs do not grow in cell cultures. CAVs are more successfully isolated if they are infected into suckling mice (Lipson et al., 1988). Therefore, the practice of using several cell lines does increase the sensitivity in isolating enteroviruses but it requires massive labour and cost (Chonmaitree et al., 1988). Sometimes, certain virus cultures need to be sub-passaged due to low initial titer of virus inoculated or to rule out false CPE. The condition and quality of collected clinical specimens also affect the efficiency in isolating enteroviruses (Melnick, 1997).

Detection of enteroviruses by cell culture usually takes a longer period of time than other diagnosis methods. Confirmation of enterovirus infections (or