Crude oil, coal, and natural gas are the key resources for electricity generation, heating, and transportation. Rapid depletion of these resources coupled with increasing energy demands and transition toward low carbon emissions increased the utilization of renewables in the energy mix. Biofuel is one of the renewables resources that support the sustainable energy agenda by reducing greenhouse gas emission.

The book entitled *Value-Chain of Biofuel—Fundamental, Technology, and Standardization* contains 24 chapters and comprises 3 main sections. The first section highlights the overview of biomass conversion technologies to biofuel and pretreatment methods including lignin extraction and delignification. Further, the second section (Chapters 7–15) covers various pathways of biofuel synthesis to produce biohydrogen/biogas, bio-oil, biojet, bioethanol, biobutanol, as well as value-added products. The third section covers topics related to environmental sustainability and implication of biofuels’ use (Chapter 16, Experimental investigation of the characterization of emissions from waste cooking oil biodiesel), techno-economic assessment of biofuels production (Chapters 17–18), followed by a discussion on the supply chain analysis of biofuel production (Chapters 19–22). Policies related to biofuels’ implementation in Malaysia and neighboring countries such as the Philippines are described in Chapter 23, Renewable Energy Transformation in Malaysia Through Bioenergy Production: Policy Insights From Spatially-explicit Modeling, and Chapter 24, Production, Regulation, and Standardization of Biofuels: A Philippine Perspective.

This book supports readership among students, researchers, scientists, practitioners, and others in the field of biomass conversion to biofuels in particular. It is expected that this book can enrich the knowledge on current and future trends of biofuel and toward future research and energy transition endeavor.

We thank contributing authors for their valuable contributions and cooperation throughout various stages of the publications. Finally, we extend our heartfelt appreciation to Dr. Peter W. Adamson, Acquisitions Editor for *Renewable Energy*; Leticia Lima, the Project Manager; and the entire team at Elsevier for their support and timely effort in publishing this book.

Suzana Yusup and Nor Adilla Rashidi
Contents

List of contributors	xiii
Preface | xxii

1. Overview of biomass conversion to biofuels

Kin Wai Cheah, Martin J. Taylor, Geraint Evans, Abby Samson and Vasiliki Skoulou

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviations</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Lignocellulosic biomass feedstock for biofuels production</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Pretreatments of lignocellulosic biomass waste</td>
<td>12</td>
</tr>
<tr>
<td>1.4 Conversion methods of biomass waste to biofuels</td>
<td>17</td>
</tr>
<tr>
<td>1.5 Challenges, opportunities, and future perspectives</td>
<td>33</td>
</tr>
<tr>
<td>1.6 Conclusion Acknowledgments</td>
<td>35 36</td>
</tr>
<tr>
<td>References</td>
<td>36</td>
</tr>
</tbody>
</table>

2. Conversion of biomass to biofuels

Mohd Azlan Mohd Ishak, Asnida Yanti Ani, Syarifah Nursyimi Azlina Syed Ismail, Muhammad Luqman Md Ali and Razi Ahmad

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviations</td>
<td>49</td>
</tr>
<tr>
<td>2.1 Conversion of biomass to biofuels</td>
<td>49</td>
</tr>
<tr>
<td>2.2 Thermochemical conversion technology of biomass to biofuels</td>
<td>51</td>
</tr>
<tr>
<td>2.3 Biochemical conversion</td>
<td>54</td>
</tr>
<tr>
<td>2.4 Transesterification</td>
<td>59</td>
</tr>
<tr>
<td>2.5 Conclusion Acknowledgments</td>
<td>62 63</td>
</tr>
<tr>
<td>References</td>
<td>63</td>
</tr>
</tbody>
</table>

3. Biomass classification and characterization for conversion to biofuels

Zul Ilham

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviations</td>
<td>69</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>69</td>
</tr>
<tr>
<td>3.2 Biomass composition analysis</td>
<td>70</td>
</tr>
<tr>
<td>3.3 Biomass-derived lipid for biodiesel</td>
<td>73</td>
</tr>
</tbody>
</table>
Contents

3.4 Catalysts for biodiesel production 78
3.5 Conclusion 83
References 83

4. Thermal degradation behavior and kinetic modeling of green solvents-delignified biomass: a sustainable biomass-to-energy approach 89
Andy Law Kai Wen, Jiuan Jing Chew, Chung Loong Yiin and Serene Sow Mun Lock

References 89

4.1 Introduction 89
4.2 Methodology 93
4.3 Results and discussion 95
4.4 Conclusions 100
Acknowledgments 101
References 101

5. Pretreatment of fiber-based biomass material for lignin extraction 105
Syazmi Zul Arif Hakimi Saadon, Noridah Binti Osman and Suzana Yusup

References 105

5.1 Introduction 105
5.2 Pretreatment 106
5.3 Background of lignin 114
5.4 Lignin extraction 118
5.5 Biomass applications in Malaysia 121
5.6 Conclusions 124
Acknowledgments 126
References 126

6. Microalgae cultivation for sustainable biofuel production 137
Sze Yu Chua, Yoke Wang Cheng, Man Kee Lam, Yaleeni Kanna Dasan, Wan Nadiah Amalina Kadir, Siti-Suhailah Rosli, Jun Wei Lim, Inn Shi Tan and Steven Lim

References 137

6.1 Introduction 137
6.2 Suspended cultivation 139
6.3 Attached cultivation 142
6.4 Life cycle assessment of microalgae conversion to biofuels 148
6.5 Other microalgae applications 152
6.6 Conclusions 155
Acknowledgments 155
References 155
7. Hydrothermal liquefaction of algal biomass to bio-oil

Jonas Karl Christopher N. Agutaya, Armando T. Quitain, Yik Lam Kam, Siti Zullaikah, Joseph Auresenia, Raymond R. Tan, Suttichai Assabumrungrat and Tetsuya Kida

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviations</td>
<td>159</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>159</td>
</tr>
<tr>
<td>7.2 Algae as a feedstock</td>
<td>160</td>
</tr>
<tr>
<td>7.3 Harvesting of algae</td>
<td>164</td>
</tr>
<tr>
<td>7.4 Hydrothermal liquefaction</td>
<td>167</td>
</tr>
<tr>
<td>7.5 Conclusions</td>
<td>174</td>
</tr>
<tr>
<td>References</td>
<td>175</td>
</tr>
</tbody>
</table>

8. Alternative jet fuels: biojet fuels’ challenges and opportunities

Rozzeta Dolah, Salman Zafar and Mohamad Zaki Hassan

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviations</td>
<td>181</td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>181</td>
</tr>
<tr>
<td>8.2 Biooil refinement</td>
<td>186</td>
</tr>
<tr>
<td>8.3 Feedstock sustainability/potential biomass feedstock</td>
<td>189</td>
</tr>
<tr>
<td>8.4 Conclusions</td>
<td>192</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>193</td>
</tr>
<tr>
<td>References</td>
<td>193</td>
</tr>
</tbody>
</table>

9. Bioprocessing of sustainable renewable biomass for bioethanol production

Mohd Asyraf Kassim, Tan Kean Meng, Ramizah Kamaladin, Azieyati Hani Hussain and Nurul Adela Bukhari

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>195</td>
</tr>
<tr>
<td>9.1 Introduction</td>
<td>195</td>
</tr>
<tr>
<td>9.2 Bioethanol from renewable biomass</td>
<td>196</td>
</tr>
<tr>
<td>9.3 Pretreatment of the renewable biomass</td>
<td>203</td>
</tr>
<tr>
<td>9.4 Hydrolysis of the renewable biomass</td>
<td>212</td>
</tr>
<tr>
<td>9.5 Bioethanol formation</td>
<td>216</td>
</tr>
<tr>
<td>9.6 Strain improvement</td>
<td>221</td>
</tr>
<tr>
<td>9.7 Conclusions</td>
<td>224</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>225</td>
</tr>
<tr>
<td>References</td>
<td>225</td>
</tr>
</tbody>
</table>
10. Utilization of agricultural biomass for bio-butanol production
Mohamad Faizal Ibrahim, Nur Nabila Talib, Nur Haziqah Alias, Izza Nadira Abu Bakar, Suraini Abd Aziz and Phang Lai Yee

Abbreviations

10.1 Introduction
10.2 Agricultural biomass
10.3 Agricultural biomass for bioenergy
10.4 Bio-butanol from agricultural biomass
10.5 Bio-butanol
10.6 Conclusions
Acknowledgements
References

11. Oil palm biomass zero-waste conversion to bio-succinic acid
Shuhaida Harun, Abdullah Amru Indera Luthfi, Peer Mohamed Abdul, Nurul Adela Bukhari and Jamaliah Md Jahim

Abbreviations

11.1 Introduction
11.2 Oil palm biomass chemical potential
11.3 Reaping the benefits from biomass conversion
11.4 Historical perspective and importance of succinic acid
11.5 Bioconversion of carbon intermediates to bio-succinic acid
11.6 Issues/challenges and way forward
References

12. Iso-conversional kinetic and thermodynamic analysis of catalytic pyrolysis for palm oil wastes
Siaw Weii Hii, Bridgid Lai Fui Chin, Fanthagiro Rossi Stuard Anak Majing, Huei Yeong Lim, Adrian Chun Minh Loy, Chung Loong Yiin, Suzana Yusup, Armando T. Quitain, Menandro N. Acda, Pornkamol Unrean and Elisabeth Rianawati

Abbreviations

12.1 Introduction
12.2 Experiment materials and methods
12.3 Results and discussions
12.4 Conclusions
Acknowledgments
References
13. Recent progress in modeling and simulation of biomass conversion to biohydrogen

Abrar Inayat, Rumaisa Tariq, Ola Alsaidi, Muhammad Shahbaz, Zakir Khan, Chaouki Ghenai and Tareq Al-Ansari

Abbreviations 301
13.1 Introduction 301
13.2 Kinetic modeling for biohydrogen production 303
13.3 Equilibrium modeling and simulation for biohydrogen production 307
13.4 Computational fluid dynamics modeling for biohydrogen production 309
13.5 Future prospective 311
13.6 Conclusions 311
References 311

14. Realizing higher value output from biomass conversion to biogas through the production of biohydrogen, biomethane, and biohythane

Shaliza Ibrahim and Azam Akhbari

Abbreviations 317
14.1 Introduction to biogas production 317
14.2 Oil palm by-products as largely untapped biomass resources 318
14.3 Anaerobic digestion 320
14.4 Operational parameters for anaerobic treatment systems 321
14.5 Anaerobic bioreactor configurations 322
14.6 Revisiting biohydrogen 323
14.7 Biohythane 327
14.8 Bridging the gaps 327
Acknowledgments 331
References 331

15. Technical readiness level of biohydrogen production process and its value chain

Muhammad Shahbaz, Tareq Al-Ansari, Abrar Inayat and Muddasser Inayat

Abbreviations 335
15.1 Introduction 335
15.2 Combustion 338
15.3 Gasification 339
15.4 Pyrolysis 341
15.5 Liquefaction 343
15.6 Challenges and barrier for commercialization 344
15.7 Way forward 346
19. Biomass supply chain management and challenges

Chun Hsiong Lim, Sue Lin Ngan, Wendy Pei Qin Ng, Bing Shen How and Hon Loong Lam

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>429</td>
</tr>
<tr>
<td>19.1 Introduction</td>
<td>429</td>
</tr>
<tr>
<td>19.2 Challenges associated with the biomass supply chain for biofuel production</td>
<td>431</td>
</tr>
<tr>
<td>19.3 Hazard and operability analysis approach</td>
<td>432</td>
</tr>
<tr>
<td>19.4 Critical review of biomass supply chain system challenges: hazard and operability analysis review approach</td>
<td>433</td>
</tr>
<tr>
<td>19.5 Conclusion</td>
<td>441</td>
</tr>
</tbody>
</table>

Acknowledgments

References 442

20. Biomass supply chain synthesis and optimization

Wendy Pei Qin Ng, Bing Shen How, Chun Hsiong Lim, Sue Lin Ngan and Hon Loong Lam

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviations</td>
<td>445</td>
</tr>
<tr>
<td>20.1 Introduction</td>
<td>446</td>
</tr>
<tr>
<td>20.2 Mathematical formulation of biomass supply chain</td>
<td>447</td>
</tr>
<tr>
<td>20.3 Multicriteria optimization of biomass supply chain</td>
<td>450</td>
</tr>
<tr>
<td>20.4 Further reading</td>
<td>475</td>
</tr>
<tr>
<td>20.5 Conclusion</td>
<td>477</td>
</tr>
</tbody>
</table>

Acknowledgment

References 477

21. Oil palm biomass value chain for biofuel development in Malaysia: part I

Soh Kheang Loh, Harrison Lik Nang Lau, Jalil Nursyairah, Daryl Jay Thaddeus and Vijaya Subramaniam

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviations</td>
<td>481</td>
</tr>
<tr>
<td>21.1 Introduction</td>
<td>481</td>
</tr>
<tr>
<td>21.2 First-generation biofuels (palm biodiesel)</td>
<td>483</td>
</tr>
<tr>
<td>21.3 Advanced biofuels</td>
<td>494</td>
</tr>
<tr>
<td>21.4 Supply chain optimization (palm oil and oil palm biomass)</td>
<td>498</td>
</tr>
<tr>
<td>21.5 Conclusion</td>
<td>500</td>
</tr>
</tbody>
</table>

Acknowledgments

References 501
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22. Oil palm biomass value chain for biofuel development in Malaysia: part II</td>
<td>505</td>
</tr>
<tr>
<td>Soh Kheang Loh, Abu Bakar Nasrin, Mohamad Azri Sukiran, Nurul Adela Bukhari and</td>
<td></td>
</tr>
<tr>
<td>Vijaya Subramaniam</td>
<td></td>
</tr>
<tr>
<td>Abbreviations</td>
<td>505</td>
</tr>
<tr>
<td>22.1 Introduction</td>
<td>505</td>
</tr>
<tr>
<td>22.2 Second-generation biofuels</td>
<td>507</td>
</tr>
<tr>
<td>22.3 Policies related to biogas deployment</td>
<td>525</td>
</tr>
<tr>
<td>22.4 Issues and challenges</td>
<td>526</td>
</tr>
<tr>
<td>22.5 Conclusion</td>
<td>528</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>529</td>
</tr>
<tr>
<td>References</td>
<td>530</td>
</tr>
<tr>
<td>23. Renewable energy transformation in Malaysia through bioenergy production:</td>
<td>535</td>
</tr>
<tr>
<td>Policy insights from spatially-explicit modeling</td>
<td></td>
</tr>
<tr>
<td>Muhammad Nurariffudin Mohd Idris and Haslenda Hashim</td>
<td></td>
</tr>
<tr>
<td>Abbreviations</td>
<td>535</td>
</tr>
<tr>
<td>23.1 Introduction</td>
<td>535</td>
</tr>
<tr>
<td>23.2 Policies insights from spatially-explicit modeling</td>
<td>540</td>
</tr>
<tr>
<td>23.3 Conclusions</td>
<td>549</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>551</td>
</tr>
<tr>
<td>References</td>
<td>551</td>
</tr>
<tr>
<td>24. Production, regulation, and standardization of biofuels: a Philippine perspective</td>
<td>553</td>
</tr>
<tr>
<td>Menandro N. Acda</td>
<td></td>
</tr>
<tr>
<td>Abbreviations</td>
<td>553</td>
</tr>
<tr>
<td>24.1 Introduction</td>
<td>553</td>
</tr>
<tr>
<td>24.2 Biofuels standard and regulations</td>
<td>560</td>
</tr>
<tr>
<td>24.3 Biofuel incentives</td>
<td>564</td>
</tr>
<tr>
<td>24.4 Biofuel research and development</td>
<td>565</td>
</tr>
<tr>
<td>24.5 Philippines biofuel roadmap</td>
<td>566</td>
</tr>
<tr>
<td>24.6 Conclusions</td>
<td>566</td>
</tr>
<tr>
<td>References</td>
<td>567</td>
</tr>
</tbody>
</table>

Index

571
Chapter 12

Iso-conversional kinetic and thermodynamic analysis of catalytic pyrolysis for palm oil wastes

Siaw Weii Hii1, Bridgid Lai Fui Chin PhD in Chemical Engineering1,*, Fanthagiro Rossi Stuard Anak Majing1, Huei Yeong Lim2,3, Adrian Chun Minh Loy4, Chung Loong Yiin5, Suzana Yusup2,3, Armando T. Quitain6, Menandro N. Acda7, Pornkamol Unrean8 and Elisabeth Rianawati9

1Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri Sarawak, Malaysia, 2National HiCoE Thermochemical Conversion of Biomass, Centre for Biofuel and Biochemical Research, Institute of Sustainable Building, Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia, 3Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia, 4Chemical Engineering Department, Monash University, Melbourne, VIC, Australia, 5Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Sarawak, Malaysia, 6Division for Multidisciplinary Global Education, Center for International Education, Kumamoto University, Japan, 7College of Forest Products and Paper Science, University of the Philippines Los Baños, College, Laguna, Philippines, 8National Center for Genetic Engineering and Biotechnology (BIOTEC), Klong Luang, Thailand, 9Resilience Development Initiative, Bandung, Indonesia

*bridgidchin@curtin.edu.my; bridgidchin@gmail.com (Bridgid Lai Fui Chin)
e-mail address: bridgidchin@curtin.edu.my

Abbreviations

DTGDerivative thermogravimetric
DTGmaxMaximum derivative thermogravimetric rate
EIAEnergy Information Administration
GHGGreenhouse gases
OPPOil palm frond
OPTOil palm trunk
TGTThermogravimetric
TGAThermogravimetric approach

12.1 Introduction

Renewable energy is one of the important forms of energy in reducing environmental impacts such as air pollution, land pollution, water pollution, climate change, and greenhouse effect, and received great attention around the world. Air pol-
olution has contributed to the dominant part of the environmental impact. The combustion process of fossil fuels attributed to greenhouse gas (GHG) emissions to the environment. It was previously reported by the United States Energy Information Administration (EIA) in 2016 stating that activities conducted by human in the United States leads to a consumption of 301 million British thermal units of energy per person (per capita) and incremental of worldwide energy demand of 2.1% in the year of 2017 [1]. EIA had tabulated the total per capita energy consumption were based on four different major sectors namely industrial, residential, commercial and transportation with respect to the total population of the country. Hence, the highest energy consumption reported comes from the industrial sector (32%) and transportation sector (29%) from the total United States energy consumption in 2016 [1].

Among the different types of renewable energy resources, biomass energy is selected in this research as it is abundantly available, does not rely on climate change, and the topography of the country as compared to wind, solar, and hydroelectric energy. Besides that, biomass does not release carbon dioxide (CO2) into the surroundings as it absorbed the CO2 during the process of electricity generation. And also, biomass is considered as a clean energy and heating source. The production rate of biomass is high and can be easily obtained to form as one of the energy resources compared to other renewable energy resources.

In this research, palm oil wastes such as oil palm frond (OPF) and oil palm trunk (OPT) are selected as the biomass for the pyrolysis process because Malaysia and Indonesia have become the two largest contributors to the palm oil industry around the world. The increment of the palm oil development has increased rapidly in these two countries for both plantation and industry areas. The increment trend in the palm oil production in Indonesia has increased gradually and reached 34.5 million tons approximately in 2016 [2,3]. In Malaysia, the palm oil industry contributed 19.16 million tons of palm oil production with the increment of palm oil development. The production of palm oil has reached 90 million tons, where 43%–45% are the waste generated from the palm oil production [6].

Palm oil wastes are one of the potential biomasses used for biofuel production to replace fossil fuel production. Based on Kurnia et al. [7], palm oil is selected as the highest yield oil production with the most economical source compared to other vegetable oil. There are many industries built that use palm oil wastes as the sources for biofuel production and electricity generation [8]. In this present study, OPF and OPT are selected as the oil palm wastes for biomass pyrolysis. Pyrolysis process is a thermochemical conversion process which converts lignocellulosic biomass into solid residues, liquid fuels, and noncondensable gases [9,10]. Based on Soon et al. [11] and Khan et al. [12], it is reported that palm oil wastes such as OPF and OPT are able to achieve the preexponential factor (A) in the range of 1.2×10^{13}–1.1×10^{17} min^{-1} and activation energy (E_a) in the range of 160 to 199 kJ mol^{-1} for pyrolysis process. The chemical composition for OPF in terms of hemicellulose, cellulose, and lignin content are reported to be 31.93%, 42.12%, and 26.05% respectively [13]. Meanwhile, the hemicellulose, cellulose, and lignin in OPT are 30.36%, 50.78%, and 17.87% respectively [13].

There are many studies found in the literature using palm oil wastes in the pyrolysis process in the presence of a commercial catalyst. Cheah et al. [15] had investigated the catalytic pyrolysis for OPF in the presence of commercial HZSM-5 zeolite and graphite nanofiber. Lim and Andræsen [16] had studied the catalytic effect of boric oxide on empty fruit bunches and OPF in a fixed pyrolysis bed reactor.

To our knowledge, no studies are found focusing on the kinetic (E_A and A parameters) and thermodynamic (enthalpy change (ΔH), Gibb’s free energy (ΔG), and entropy change (ΔS) parameters) analyses for catalytic of OPF and OPT pyrolysis utilizing its ashes as a natural catalyst. Hence, in this work, a comparison study on the kinetic and thermodynamic analyses for pyrolysis of OPF and OPT are investigated with the absence and presence of OPF ash, OPT ash, and OPF/OPT ash using thermogravimetric approach (TGA). OPF ash, OPT ash, and OPF/OPT ash are used as natural catalysts in the pyrolysis process of palm oil wastes for further conversion of biomass to bioenergy. The experiments are conducted at various heating rates of 10–100K min^{-1} from temperature of 323K to 1173K. Coats-Redfern, Vyazovkin, and Miura-Maki model are the selected iso-conversional kinetic models to determine the kinetic parameters.

12.2 Experiment materials and methods

12.2.1 Biomass preparation

Both OPF and OPT were obtained from a local palm oil mill in Woodman, Miri Sarawak. These biomass were dried until the moisture content are less than 10 wt.% and ground into powder form in a particle size of less than 500 µm. The ultimate analysis for OPF are 40.5 wt.% carbon, 6.8 wt.% hydrogen, 3.5 wt.% nitrogen, 0.3 wt.% sulfur, and 48.9 wt.% oxygen. The ultimate analysis for OPT are 42.4 wt.% carbon, 7.3 wt.% hydrogen, 0.3 wt.% nitrogen, 0.7 wt.% sulfur, and 49.3 wt.% oxygen.
12.2.2 Catalyst preparation

The catalysts used for the pyrolysis process are from the ashes produced from the combustion process of OPT and OPF through a continuous heating process with a temperature of 973K for 4 h using the Laboratory Muffle Furnace, Carbolite ELF 11/14B. The ashes of OPT and OPF were ground until the particle sizes were less than 500 μm. Thereafter, the ashes were then sent to the oven for 12 h at 373K for drying purpose and left to cool down to room temperature before sending to the TGA equipment for experiments.

12.2.3 Thermogravimetric analysis

Pyrolysis experiments were conducted using a thermogravimetric analyzer (TGA-DSC 1, Mettler Toledo). An approximate of 10 mg of samples were placed in the ceramic crucible under nonisothermal condition. The samples were pyrolyzed from room temperature to 1,173K at different five heating rates of 10K.min⁻¹, 20K.min⁻¹, 30K.min⁻¹, 50K.min⁻¹, and 100K.min⁻¹. Thereafter, the temperature of 1,173K was maintained for 10 min when it reached 1173K. The biomass was mixed with the ashes in the weight ratio of 1:1, meanwhile the biomass/OPT ash/OPT ash samples were blended in the weight ratio of 1:0.05:0.05. The experiments were repeated 2–3 times to ensure the results are reproducible.

12.2.4 Kinetic theory

The kinetic principles used in pyrolysis process were based on iso-conversion principle. This principle indicates the rate of reaction can be affected by the temperature only with a basis of constant conversion rate [17]. Thus, thermal degradation of the lignocellulose component in biomass occurred simultaneously within a conversion rate of the time, with proposed reaction mechanism of the pyrolysis process as shown as below in Eq. (12.1).

\[
\text{Biomass (palm oil waste)} \xrightarrow{k} \text{Volatile + Char}
\]

(12.1)

where \(k\) refers to pyrolysis conversion rate constant, volatiles are in gas, and tar form and char is in solid form. According to Sadhukhan et al. [18], the conversion rate of the pyrolysis process is assumed as a single step process which follows the Arrhenius, and is as shown in Eq. (12.2) below.

\[
k = A e^{-\frac{E_a}{RT}}
\]

(12.2)

where \(A\) represents preexponential factor (s⁻¹), \(E_a\) represents activation energy (kJ mol⁻¹), \(R\) represents the universal gas constant of 8.314 J K⁻¹ mol⁻¹, and \(T\) represents the absolute temperature in Kelvin (K). The degradation rate of the reaction can be further expressed in Eq. (12.3) by showing the conversion rate of the biomass from solid to volatile state.

\[
\frac{d\alpha}{dt} = k(T) \cdot f(\alpha)
\]

(12.3)

The rate of degradation or conversion, \(\frac{d\alpha}{dt}\) represents the conversion rate that is temperature-dependent and \(\alpha\) is the conversion fraction degree of the sample with respect to time. The degree of conversion fraction is defined as the decomposition rate of the biomass sample at any range of the temperature in TG analysis which is expressed in Eq. (12.4) as shown below.

\[
\alpha = \frac{m_i - m_f}{m_i - m_f}
\]

(12.4)

where \(m_i\) represents the starting mass of biomass sample, \(m_t\) represents the sample mass at the given time, \(t\), and \(m_f\) represents the final mass of sample. By substituting Eq. (12.2) into Eq. (12.3) hence, Eq. (12.5) is obtained as depicted below.

\[
\frac{d\alpha}{dt} = A e^{-\frac{E_a}{RT}} f(\alpha)
\]

(12.5)
Nonisothermal method is normally applied in a solid-state kinetics where the heating rate is remained constant and defined in Eq. (12.6).

\[\beta = \frac{dT}{dt} \]

(12.6)

By combining both Eq. (12.5) and Eq. (12.6), which gives Eq. (12.7) as follows:

\[\frac{d\alpha}{dT} = \frac{A}{\beta} e^{-\frac{E_A}{RT}} \cdot f(\alpha) \]

(12.7)

By integrating Eq. (12.7) above with the function of \(f(\alpha) = \int_0^\alpha \frac{d\alpha}{f(\alpha)} \), simplifies the equation for numerical approximation and gives Eq. (12.8).

\[g(\alpha) = \int_0^\alpha \left(\frac{d\alpha}{f(\alpha)} \right) = \frac{A}{\beta} \int_{T_0}^T e^{\left(\frac{-E_A}{RT}\right)} dT \]

(12.8)

In iso-conversational kinetics, the pyrolysis kinetic order is specified under the first order reaction, which gives Eq. (12.9) as shown below.

\[g(\alpha) = -\ln(1 - \alpha) \]

(12.9)

12.2.5 Kinetic models

Coats-Redfern model, Miura Maki model, and Vyazovkin model were the selected kinetic iso-conversational models to evaluate the kinetic parameters of the biomass pyrolysis in this study.

12.2.5.1 Coats-Redfern

Coats-Redfern model is the method that was used to analyze the kinetic parameters of the reaction. Eq. (12.10) to Eq. (12.14) show the temperature integral from the Arrhenius equation [Eq. (12.2)] [5].

\[\frac{d\alpha}{dT} = \frac{A}{\beta} e^{-\frac{E_A}{RT}} \cdot (1 - \alpha)^n \]

(12.10)

By rearranging,

\[\frac{d\alpha}{(1 - \alpha)^n} = \frac{A}{\beta} \cdot e^{\left(\frac{-E_A}{RT}\right)} \cdot dT \]

(12.11)

Integrating Eq. (12.11) [5]:

\[\frac{1 - (1 - \alpha)^{1-n}}{(1 - \alpha)^n} = \frac{A}{\beta} \int_0^T e^{\left(\frac{-E_A}{RT}\right)} dT \]

(12.12)

Neglecting the higher order terms, the equation is further expressed in Eq. (12.13) [5],

\[\ln \frac{1 - (1 - \alpha)\beta E}{T^2 (1 - \alpha)} = \ln \left\{ \frac{AR}{\beta E} \left(1 - \frac{2RT}{E}\right) \right\} - \frac{E_A}{RT} \]

(12.13)

By assuming first order reaction \((n=1)\) and the term of \(\frac{2RT}{E}\) is less than 1, the equation can be further simplified as in Eq. (12.14) [5].

\[\ln \frac{-\ln(1 - \alpha)}{T^2} = \ln \left\{ \frac{AR}{\beta E} \right\} - \frac{E_A}{RT} \]

(12.14)

where \(n\) represents the order of the reaction, \(T\) represents the absolute temperature (K), \(\beta\) represents the heating rate...
(K.min\(^{-1}\)), \(R\) represents the gas constant (J.mol\(^{-1}\).K\(^{-1}\)), \(A\) represents the preexponential factor (min\(^{-1}\)), and \(E_A\) represents the activation energy (kJ.mol\(^{-1}\)).

12.2.5.2 Vyazovkin

The Vyazovkin (V) method is a model-free method that is used to analyze the iso-conversional kinetic analysis. Linear approximation of Vyazovkin (V) that was selected for this research is based on the Coats-Redfern basis concepts of approximation, which generates an integral of temperature equation in Eq. (12.15) [14] below.

\[
g(\alpha) = \frac{A}{\beta} \frac{RT^2}{E} \exp \left(-\frac{E_A}{RT} \right) \quad (12.15)
\]

By rearranging and introducing \(\ln\) to both sides of the equation, the finalized expression of the equation is presented in Eq. (12.16) [14] below.

\[
\ln \frac{\beta}{T^2} = \ln \left(\frac{AR}{Eg(\alpha)} \right) - \frac{E_A}{RT} \quad (12.16)
\]

Besides, it also provides an alternative method to obtain the results of apparent activation energy. From Eqs. (12.17) to (12.19) [14] below shows a nonlinear approximation of \(p(\alpha)\), which is also known as Senum–Yang approximation for obtaining the minimization of apparent activation energy \(\varnothing(\,E_A\,).

\[
\varnothing(\,E_A\,) = \sum_{i=1}^{n} = \sum_{j=1}^{n} \frac{\left[E_A(\alpha) \times T_i\right]}{[E_A(\alpha) \times T_i]} \beta_i
\]

\[
I_{\left[E_A(\alpha) \times T_i\right]} = P(x)
\]

\[
\beta_i = \exp \left(-\frac{E_A}{RT} \right) dT
\]

where \(p(x) = \int_0^{\infty} e^{\frac{-x}{T^2}} dx\) and \(x = \frac{E_A}{RT}\)

12.2.5.3 Miura-Maki

In Miura-Maki model, the approximation of the temperature integral is developed by combining Eq. (12.9) and Eq. (12.16) and become Eq. (12.20) [19].

\[
1 - \alpha \approx \exp \left[\frac{AR^2}{\beta E} \exp \left(-\frac{E_A}{RT} \right) \right] = \varnothing(\,E_s, T\,)
\]

where \(E=E_s\) as a step function of activation energy at respective temperature, and the equation is simplified to Eq. (12.21) [19] below.

\[
\ln \left(\frac{\beta}{T^2} \right) = \ln \left(\frac{AR}{E_A} \right) - \ln \left[-\ln (1 - \alpha) \right] - \frac{E_A}{RT} \quad (12.21)
\]

Since \(\varnothing(\,E_s,T\,)=0.58\), the \(\varnothing\) finalized equation is expressed as Eq. (12.22) [19] as below.

\[
\ln \left(\frac{\beta}{T^2} \right) = \ln \left(\frac{AR}{E_A} \right) + 0.6075 - \frac{E_A}{RT} \quad (12.22)
\]
12.2.5.4 Kinetic analysis

The equations of the models were linearized and plotted in a linear graph to verify the values of preexponential and the activation energy of the reaction. Fig. 12.1 shows the linear expression of each model with the respective x-axis, y-axis, y-intercept, and slope. By plotting y-axis vs x-axis of each model, the activation energy can be obtained from the slope of the graph while the preexponential can be obtained from the y-intercept of the graph. Hence, there were three sets of activation energies and preexponential values obtained from three different models and the best model that fits the pyrolysis process in this research was evaluated.

12.2.6 Thermodynamic analysis

The thermodynamic parameters [Enthalpy (ΔH), Gibbs free energies (ΔG), and Entropies (ΔS)] were determined by Eqs. (12.23) to (12.25) [4].

$$\Delta H = E_A - RT \quad \text{(12.23)}$$

$$\Delta G = E_A + R \cdot T_m \cdot \ln \left(\frac{K_B T_m}{h \cdot A} \right) \quad \text{(12.24)}$$

$$\Delta S = \frac{\Delta H - \Delta G}{T_m} \quad \text{(12.25)}$$

where k_B is the Boltzmann constant (1.38×10^{-23} J K$^{-1}$), h is the Planck’s constant (6.626×10^{-34} Js), and T_m is the average DTG peak temperature in Kelvin (K).

12.3 Results and discussions

12.3.1 Thermal degradation behavior of oil palm frond and oil palm trunk in pyrolysis process

In the present study, the thermal degradation effect of the OPF and OPT with or without the presence of catalyst was analyzed via TGA equipment. Fig. 12.2 shows the curves of the thermogravimetric (TG) and derivative thermogravimetric (DTG) of OPF and OPT in noncatalytic and catalytic pyrolysis reaction, with five different types of heating rates 10 to 100K min$^{-1}$. The TG curve is used to determine the weight loss of the sample in weight percentage with the increased temperature, meanwhile the DTG curve is used to analyze the initial, maximum, and final biomass degradation temperature. Based on this figure, the trend of the curves can be categorized into three main stages of thermal degradation. The Stage I, Stage II, and Stage III are known as dehydration stage, main devolatilization stage, and decomposition of carbonaceous components stage, respectively.

Stage I of thermal degradation for OPF and OPT pyrolysis started from room temperature to 495K and 500K respectively with a slight reduction of weight fraction of OPF and OPT. This is where the dehydration process takes place to reduce the moisture content and light volatiles of the component [11]. The surface tension tends to cause evaporation to both moisture content and the water bounded of the OPF and OPT biomass surface. When the temperature reached the end of Stage I decomposition, the internal forces such as intermolecular and intramolecular forces start to break the hydrogen bond in lignocellulose component and form water molecules to generate the char. When most of the moisture content in the OPF and OPT have been evaporated, the weight of the OPF and OPT decreases dramatically in all five differ-

<table>
<thead>
<tr>
<th>Model</th>
<th>Equation</th>
<th>y-axis</th>
<th>x-axis</th>
<th>Eq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coats-Redfern</td>
<td>$\ln \left(\frac{-\ln(1 - e)}{T^2} \right) = \ln \left(\frac{AR}{\beta E} \right) - \frac{E}{RT}$</td>
<td>$\ln \left(\frac{-\ln(1 - e)}{T^2} \right)$</td>
<td>$\frac{1}{T}$</td>
<td>(8.14)</td>
</tr>
<tr>
<td>Vyazovkin</td>
<td>$\ln \left(\frac{\beta}{T^2} \right) = \ln \left(\frac{AR}{Eg(a)} \right) - \frac{E}{RT}$</td>
<td>$\ln \left(\frac{\beta}{T^2} \right)$</td>
<td>$\frac{1}{T}$</td>
<td>(8.16)</td>
</tr>
<tr>
<td>Miura-Maki</td>
<td>$\ln \left(\frac{\beta}{T^2} \right) = \ln \left(\frac{AR}{E} \right) + 0.6075 - \frac{E}{RT}$</td>
<td>$\ln \left(\frac{\beta}{T^2} \right)$</td>
<td>$\frac{1}{T}$</td>
<td>(8.22)</td>
</tr>
</tbody>
</table>

FIGURE 12.1 Linear expression of three different models.
ent heating rates. This indicated that the biomass had experienced Stage II decomposition in temperature range from 495K–750K and 500K–710K for OPF and OPT, respectively. This is the phase where the organic compound of OPF and OPT is undergoing main devolatilization process for carbon and volatile component extraction. In this stage, transglucosidation process happened, where the intermediate cellulose component starts to degrade to levoglucosan and oligosaccharides [20]. In stage III, a slight weight loss of OPF and OPT with the temperature range from 750K–1173K and 500K–1173K, respectively due to occurrence of passive devolatilization process. Passive devolatilization process is where the carbonaceous component started to decompose and both carbon monoxide and CO₂ started to form by vaporization of nonvolatile carbon compounds that contained in the solid residue of the biomass [21]. Besides, aromatization and bond cracking happen to convert the cellulose and carbonaceous material to char and volatile matter.

Fig. 12.2 shows that there are two exothermic peaks in between the temperature range from 500K to 820K for both OPF and OPT with and without ash catalyst occurred in this curve for the five different heating rates. The first peak occurred due to the thermal decomposition of protein and carbohydrates component while the decomposition of lignin happened in the second peak. The second peak for both OPF and OPT are relatively higher than the first peak due to high content of lignin content in oil palm wastes. It is where the main decomposition stage happened in the second decomposition stage as mentioned in the description for the TG curve. At the last stage (stage III), a small endothermic peak indicated that the remaining residue undergoes final decomposition stage after the temperature reached 820K. Based on Fig. 12.2, the optimum mass loss was observed to be at stage II where the temperature ranged from 495K to 750K. The mass loss was observed in the average range of the residues weight (%) from the initial temperature, \(T_{\text{initial}} \) until the final temperature of stage II, \(T_{\text{final}} \) for the main pyrolysis stage (stage II). The results of different sets of samples based on heating rates of 10 to 100K min⁻¹ were tabulated in Table 12.1.

The mass loss for pure OPF in stage II was estimated in the range of 64.55% to 69.02%. With the presence of OPF and OPF/OPT ash catalyst, the mass loss was observed in the range of 74.55% to 82.93% and 77.43% and 82.99%. While for pure OPT pyrolysis, the mass loss was observed from the range of 57.38% to 67.75%. With the presence of OPT and OPF/OPT ash catalyst in OPT pyrolysis, the mass loss was estimated from 69.70% to 76.77% and 73.63% to 78.87%. Similar observation found in TG and DTG curves for both OPF and OPT pyrolysis process from literature [11,12].

12.3.2 Effect of heating rates on oil palm frond and oil palm trunk thermal decomposition

Devolatilization is the process where the feedstock started to decompose. In this stage, the degradation of the biomass is highly depended on the heating rate of the samples. The relationship of time and temperature can be known as heating rate. High heating rate of the process favors the depolymerization of hemicellulose and cellulose and volatile cracking in
the secondary reactions. Besides that, the composition of the volatile compound in biomass decreased, as the compounds such as aldehydes, alcohols, acetone, and paraffin reduced due to generation of polyhydroxy aromatics component increased [22]. Fast pyrolysis usually uses high temperature for the process in order to generate high yield of bio-char, oil, and noncondensable gases. From Fig. 12.2, it is observed that both TG and DTG curves increased with heating rates. The trend is in similar behavior as reported by Soon et al. [11], Khan et al. [12], and Fong et al. [14].
Besides that, it is important for the reaction to take account the residence time of the volatile component. The effect of the residence time is corresponding to the carrier gas flow such as nitrogen gas, as high flow of carrier gas enhances the solid entrainment and reduces the efficiency of the biomass conversion inside the reactor. From Table 12.1, the maximum degradation rate, DTGmax for pure OPF pyrolysis can be found to increase from 0.73 to 5.74% min$^{-1}$ with the increment of heating rate from 10 to 100K.min$^{-1}$ as for reference. This is because the residence time of the degradation decreased as the heating rate increased. The efficiency of the heat transfer can be increased at the same time as the heating rate increased and produced higher yield production [23].

12.3.3 Effect of catalyst on oil palm frond and oil palm trunk thermal decomposition

The addition of the catalyst to the process is to lower down the E_A pathway and improve the secondary devolatilization reaction of the pyrolysis of oil palm wastes samples. In this study, the catalyst plays an important role in upgrading the bio-fuel by increasing the efficiency of the devolatilization reaction. Commercial catalyst such as zeolites are widely used in catalytic pyrolysis process, with an overview of different zeolites catalyst such as HZSM-5, USY, and zeolite-β. Apart from that, this study promotes the importance of catalytic pyrolysis process using renewable resources such as OPF and OPT ash catalyst. Chen et al. [20] reported that the E_A of the palm oil pyrolysis decreased significantly using rice husk ash as the natural catalyst in representing CaO catalyst. The main purpose of the study is to enhance the reusability of the oil palm wastes and improved the bio-fuel production [7].

In this present study, the E_A of OPF was reduced from 28.49 kJ mol$^{-1}$ to 23.66 kJ mol$^{-1}$ with the addition of OPF/OPT ash. Furthermore, the DTGmax reduced significantly from 5.74 to 4.43×10$^{-2}$% min$^{-1}$ at heating rate of 100K.min$^{-1}$. A similar behavior is observed for OPT pyrolysis when comparing with literature findings by Chen et al. [20] and Liu et al. [21].

12.3.4 Kinetic and thermodynamic study

Three iso-conversional kinetic models such as Coats-Redfern, Vyazovkin, and Miura-Maki were selected to identify the kinetic mechanism of the OPF and OPT pyrolysis with the presence of OPF ash and OPT ash in this study. Fig. 12.3 shows the kinetic plots of OPF pyrolysis using three models where Coats-Redfern is identified by the effect of the heating rate, and Vyazovkin and Miura-Maki are identified based on the biomass weight fraction. Based on the TG curve, the main devolatilization stage (Stage II) was selected as the main pyrolysis stage for both OPF and OPT at five different heating rates respectively. These three kinetic models were applied to determine the kinetic parameters such as E_A and A for the pyrolysis of OPF and OPT in the absence and presence of catalyst. The role of E_A determines the amount of energy that reactants need to overcome the activation energy barrier, meanwhile A represents the frequency of the collisions of the chemical reactants molecules during the pyrolysis reaction [24]. The values of E_A and A were calculated based on the slope and intercept point of the kinetic plot. It was found that the average of E_A and A for pure OPF were 28.49 kJ mol$^{-1}$ and 1.12×106 min$^{-1}$. With the presence of OPF ash, the values of E_A and A are slightly reduced to 28.02 kJ mol$^{-1}$ and 1.15×106 min$^{-1}$. With the presence of OPF/OPT ash catalyst, the values of E_A and A are reduced even more significantly to 23.66 kJ mol$^{-1}$ and 1.11×106 min$^{-1}$ respectively when compared without catalyst. On the other hand, the average of E_A and A for pure OPT were 44 kJ mol$^{-1}$ and 5.78×106 min$^{-1}$ respectively. With the presence of OPT and OPF/OPT ash, the values of E_A and A reduced to the range of 36.86–38.86 kJ mol$^{-1}$ and 1.14×106–1.16×106 min$^{-1}$. Based on Xu et al. [25], a good catalytic effect reduces the E_A with the increment of rate of reaction for providing an efficient bio-fuel production rate in catalytic pyrolysis process.

Table 12.2 shows the average correlation coefficients (R^2) values for Coats-Redfern model are in the range from 0.9579 to 0.9951 for catalytic and noncatalytic of OPF and OPT for the five different heating rates. This indicated that a good linear curve was plotted between $\ln \left(\frac{\frac{\alpha \ln(2)}{T^2}}{\frac{T}{T^2}} \right)$ and at $\frac{1}{T}$ different heating rates from 10 to 100K.min$^{-1}$ as shown in Fig. 12.3. It was observed that the regression coefficient values were above 95% for all heating rates, and showed that this model was suitable for kinetic analysis with high accuracy of the results. The observation of the results found in this study is in agreement with the literature as reported by Gan et al. [26], where the A were range from 1.1×106 min$^{-1}$ to 189.4×106 min$^{-1}$ using the Coats-Redfern model. It was observed that the pyrolysis of OPF with OPF/OPT ash catalyst gave the lowest E_A and A for all samples using the Coats-Redfern model.

For Vyazovkin and Miura-Maki models, the kinetic parameters were determined by using a linear plot between $\ln \left(\frac{\frac{\alpha \ln(2)}{T^2}}{\frac{T}{T^2}} \right)$ and $\frac{1}{T}$ at various weight fraction of the residues, ranging from 0.2 to 0.6. The kinetic mechanism of main devolatilization (Stage II) can be observed from α = 0.2–0.6 based on the temperature range from 500 to 690K. From Table
12.3, the average values of the E_A for noncatalytic and catalytic pyrolysis of OPF can be observed from 133.26 to 211.69 kJ mol$^{-1}$ respectively while A were observed to be 2.08×10^{19}–2.14×10^{21} min$^{-1}$. Besides that, the average values of the E_A for noncatalytic and catalytic of OPT were 168.06–269.67 kJ mol$^{-1}$ respectively while A were observed to be 1.65×10^{16}–1.04×10^{26} min$^{-1}$. The average values of the E_A and A that were determined by Miura-Maki method can be observed from Table 12.4. The values of A were observed to be 1.22×10^{16}–2.21×10^{21} min$^{-1}$. On the other hand, the average values of the E_A for noncatalytic and catalytic of OPT pyrolysis were within the range of 168.06–269.67 kJ mol$^{-1}$ meanwhile A were in the range of 1.19×10^{16}–1.04×10^{26} min$^{-1}$.

In addition, thermodynamic behavior of the OPF and OPT were studied by calculating the thermodynamic parameters such as the enthalpy change (ΔH), Gibb’s free energy change (ΔG), and entropy change (ΔS). The calculated thermodynamic parameters were tabulated in Tables 12.2, 12.3 and 12.4, according to the respective kinetic models. The positive values of ΔH indicates that the pyrolysis reaction undergoes endothermic reaction, where the heat is absorbed from the
TABLE 12.2 Kinetic and thermodynamic parameters of catalytic and noncatalytic pyrolysis of oil palm frond and oil palm trunk using Coats-Redfern model.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Kinetic analysis</th>
<th>Thermodynamic analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β ($^\circ$C.min$^{-1}$)</td>
<td>E_A (kJ mol$^{-1}$)</td>
</tr>
<tr>
<td>OPF</td>
<td>10</td>
<td>24.27</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>26.79</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>28.81</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>30.22</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>32.36</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>28.49</td>
</tr>
<tr>
<td>OPF—OPF ash</td>
<td>10</td>
<td>24.27</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>28.14</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>26.77</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>31.06</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>29.89</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>28.02</td>
</tr>
<tr>
<td>OPF—OPF/OPT ash</td>
<td>10</td>
<td>18.66</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>22.13</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>26.05</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>24.44</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>27.02</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>23.66</td>
</tr>
<tr>
<td>OPT</td>
<td>10</td>
<td>41.42</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>46.10</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>43.97</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>44.48</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>44</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>OPT—OPT ash</td>
<td>10</td>
<td>38.89</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>34.6</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>33.61</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>43.45</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>33.73</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>36.86</td>
</tr>
</tbody>
</table>
surrounding to the system and formed chemical bonding. In the Coats-Redfern model, the calculated average for noncatalytic and catalytic of OPF pyrolysis were 2.22×10⁴ J mol⁻¹, 2.17×10⁴ J mol⁻¹, and 1.73×10⁴ J mol⁻¹, while the calculated average for noncatalytic and catalytic of OPT pyrolysis were observed to be 3.77×10⁴ J mol⁻¹, 3.05×10⁴ J mol⁻¹, and 3.26×10⁴ J mol⁻¹ respectively. The calculated average using Vyazovkin and Miura-Maki were 2.07×10⁴ J mol⁻¹, 1.68×10⁵ J mol⁻¹, 1.78×10⁵ J mol⁻¹, 1.63×10⁵ J mol⁻¹, 2.64×10⁵ J mol⁻¹, and 2.02×10⁵ J mol⁻¹ accordingly, for noncatalytic and catalytic pyrolysis of both OPF and OPT. The ΔG represents the change of the energy within the thermodynamic system via and based temperature changed during product-reactant approach in activated complex. Meanwhile, the ΔS indicates the disorder of the closed system. The results for both and observed from Table 12.2 showed the best prediction for OPF and OPT system disorder as majority values were in the negative values which can be categorized as in high degree of arrangement, resulting high reactivity of reactant and high product formation in a short residence time. Based on studies by Fong et al. [14], Gan et al. [26], and Wu et al. [27], the calculated ΔS was reported in a similar trend for different types of biomass pyrolysis process when compared to the present study.

Among the three iso-conversional kinetic models, Coats-Redfern gave the best prediction for both kinetic and thermodynamics analysis of OPF and OPT pyrolysis with the presence of OPF and OPT ash catalysts. The catalytic pyrolysis also shows good catalytic effect by reducing the Ea values for both OPF and OPT samples. For OPF pyrolysis, theEa and ∆H reduced from 28.49 kJ mol⁻¹ to 23.66 kJ mol⁻¹ and 2.22×10⁴ J mol⁻¹ to 1.73×10⁴ J mol⁻¹ with the presence of OPF/OPT ash catalyst. While for OPT pyrolysis, theEa and ∆H were observed to be reduced from 44 kJ mol⁻¹ to 36.86 kJ mol⁻¹ and 3.77×10⁴ J mol⁻¹ to 3.05×10⁴ J mol⁻¹ respectively. In overall, the Ea of noncatalytic and catalytic pyrolysis of OPF give lower values compared to noncatalytic and catalytic pyrolysis of OPF which shows that the pyrolysis of OPF requires lower energy for thermochemical reaction for pyrolysis reaction.

12.4 Conclusions

The kinetic and thermodynamic analysis for the pyrolysis of OPF and OPT were successfully investigated with the absence and presence of OPF ash, OPT ash, and OPF/OPT ash using TGA. It is found that the Coats-Redfern model gave the best prediction (regression coefficient >95%) for the noncatalytic and catalytic pyrolysis process using OPT and OPF, compared to Vyazovkin and Miura-Maki models. Based onEa calculated, the degradation results were found with the following conclusion: OPF-OPT/OPT ash > OPF-OPF ash > OPF > OPT-OPT ash > OPT-OPT/OPT ash > OPT. It is proven that OPF/OPT ash was suitable for OPF pyrolysis and OPT ash was suitable for OPT pyrolysis process for an effective energy-efficient bioenergy production.

12.5 Acknowledgments

In addition, the authors would like to thank Curtin University Malaysia and Woodman Miri for the technical and material support. Finally, we would like to acknowledge ASEAN Science Technology and Innovation Fund (ASTIF) on the project grant, which entitled “Sustainable Production of Biofuels in the ASEAN Region from Oil Palm Residues,” and JASTIP-Net 2019 Grant Award under the category of Energy and Environment Joint Laboratory for their financial support.
TABLE 12.3 Kinetic and thermodynamic parameters of oil palm frond pyrolysis and oil palm trunk pyrolysis with and without different catalysts using Vyazovkin model

<table>
<thead>
<tr>
<th>Sample</th>
<th>α</th>
<th>E_A (kJ mol$^{-1}$)</th>
<th>A (s$^{-1}$)</th>
<th>R^2</th>
<th>ΔH (J mol$^{-1}$)</th>
<th>ΔG (J mol$^{-1}$)</th>
<th>ΔS (J mol$^{-1}$ K$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPF</td>
<td>0.2</td>
<td>142.34</td>
<td>5.21×1013</td>
<td>0.9974</td>
<td>1.38×105</td>
<td>1.39×105</td>
<td>−2.34</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>173.29</td>
<td>4.73×1015</td>
<td>0.9968</td>
<td>1.68×105</td>
<td>1.44×105</td>
<td>45.47</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>226.64</td>
<td>3.24×1013</td>
<td>0.994</td>
<td>2.22×105</td>
<td>2.20×105</td>
<td>2.13</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>256.59</td>
<td>2.57×1022</td>
<td>0.998</td>
<td>2.51×105</td>
<td>1.64×105</td>
<td>162.12</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>259.57</td>
<td>9.45×1021</td>
<td>0.9975</td>
<td>2.54×105</td>
<td>1.71×105</td>
<td>154.59</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>211.69</td>
<td>2.14×1021</td>
<td>0.9967</td>
<td>2.07×105</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>OPF—OPF ash</td>
<td>0.2</td>
<td>109.79</td>
<td>7.49×109</td>
<td>0.9829</td>
<td>1.05×105</td>
<td>1.25×105</td>
<td>−69.62</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>148.15</td>
<td>1.45×1013</td>
<td>0.9938</td>
<td>1.43×105</td>
<td>1.48×105</td>
<td>−7.08</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>177.75</td>
<td>2.28×1015</td>
<td>0.9965</td>
<td>1.73×105</td>
<td>1.48×105</td>
<td>34.66</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>185.95</td>
<td>4.48×1015</td>
<td>0.9934</td>
<td>1.81×105</td>
<td>1.51×105</td>
<td>39.97</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>245.48</td>
<td>1.04×1020</td>
<td>0.9459</td>
<td>2.40×105</td>
<td>1.56×105</td>
<td>123.23</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>133.26</td>
<td>2.08×1019</td>
<td>0.9825</td>
<td>1.68×105</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>OPF—OPF/OPT ash</td>
<td>0.2</td>
<td>123.22</td>
<td>1.44×1011</td>
<td>0.9618</td>
<td>1.18×105</td>
<td>1.47×105</td>
<td>−45.02</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>169.96</td>
<td>9.76×1014</td>
<td>0.973</td>
<td>1.65×105</td>
<td>1.48×105</td>
<td>27.83</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>201.04</td>
<td>1.32×1017</td>
<td>0.9671</td>
<td>1.53×105</td>
<td>1.53×105</td>
<td>68.28</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>246.36</td>
<td>1.99×1020</td>
<td>0.8944</td>
<td>1.96×105</td>
<td>1.61×105</td>
<td>128.77</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>173.94</td>
<td>4.27×1022</td>
<td>0.9203</td>
<td>2.41×105</td>
<td>1.48×105</td>
<td>−18.71</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>182.91</td>
<td>3.98×1019</td>
<td>0.9919</td>
<td>1.78×105</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>OPT</td>
<td>0.2</td>
<td>127.45</td>
<td>1.41×1011</td>
<td>0.9948</td>
<td>1.23×105</td>
<td>1.52×105</td>
<td>−45.48</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>147.69</td>
<td>8.31×1012</td>
<td>0.9939</td>
<td>1.43×105</td>
<td>1.50×105</td>
<td>−11.83</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>169.17</td>
<td>3.90×1014</td>
<td>0.9945</td>
<td>1.64×105</td>
<td>1.51×105</td>
<td>19.97</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>197.76</td>
<td>5.31×1016</td>
<td>0.9901</td>
<td>1.92×105</td>
<td>1.53×105</td>
<td>60.6</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>198.25</td>
<td>2.90×1016</td>
<td>0.9864</td>
<td>1.93×105</td>
<td>1.57×105</td>
<td>55.38</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>168.06</td>
<td>1.65×1016</td>
<td>0.9919</td>
<td>1.63×105</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>OPT—OPT ash</td>
<td>0.2</td>
<td>293.62</td>
<td>5.00×1016</td>
<td>0.9759</td>
<td>2.89×105</td>
<td>1.31×106</td>
<td>252.33</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>283.36</td>
<td>7.50×1014</td>
<td>0.9501</td>
<td>2.78×105</td>
<td>1.43×105</td>
<td>217.04</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>268.67</td>
<td>8.67×1022</td>
<td>0.9625</td>
<td>2.63×105</td>
<td>1.52×105</td>
<td>179.72</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>297.98</td>
<td>1.04×1025</td>
<td>0.9535</td>
<td>2.93×105</td>
<td>1.56×105</td>
<td>219.36</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>204.71</td>
<td>1.65×1016</td>
<td>0.9765</td>
<td>2.00×105</td>
<td>1.68×105</td>
<td>50.7</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>269.67</td>
<td>1.04×1026</td>
<td>0.9637</td>
<td>2.64×105</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Sample</td>
<td>α</td>
<td>Kinetic analysis</td>
<td>Thermodynamic analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-----</td>
<td>------------------</td>
<td>------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E_A (kJ mol$^{-1}$)</td>
<td>A (s$^{-1}$)</td>
<td>R^2</td>
<td>ΔH (J mol$^{-1}$)</td>
<td>ΔG (J mol$^{-1}$)</td>
<td>ΔS (J mol$^{-1}$ K$^{-1}$)</td>
</tr>
<tr>
<td>OPT—OPF/OPTash</td>
<td>0.2</td>
<td>157.72</td>
<td>8.88×1013</td>
<td>0.9794</td>
<td>1.53×105</td>
<td>1.48×105</td>
<td>8.13</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>193.77</td>
<td>8.38×1016</td>
<td>0.9842</td>
<td>1.89×105</td>
<td>1.49×105</td>
<td>64.78</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>217.43</td>
<td>4.47×1018</td>
<td>0.9854</td>
<td>2.12×105</td>
<td>1.52×105</td>
<td>97.63</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>235.01</td>
<td>8.46×1019</td>
<td>0.9982</td>
<td>2.30×105</td>
<td>1.54×105</td>
<td>121.91</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>233.88</td>
<td>3.13×1019</td>
<td>0.9468</td>
<td>2.28×105</td>
<td>1.58×105</td>
<td>113.46</td>
</tr>
<tr>
<td>Average</td>
<td>0.56</td>
<td>207.56</td>
<td>2.41×1019</td>
<td>0.9788</td>
<td>2.02×105</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
TABLE 12.4 Kinetic and thermodynamic parameters of OPF pyrolysis and OPT pyrolysis with and without different catalysts using Miura-Maki method.

<table>
<thead>
<tr>
<th>Sample</th>
<th>α</th>
<th>Kinetic analysis</th>
<th>Thermodynamic analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>E_A (kJ mol$^{-1}$)</td>
<td>A (s$^{-1}$)</td>
</tr>
<tr>
<td>OPF</td>
<td>0.2</td>
<td>142.34</td>
<td>7.96×1013</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>173.29</td>
<td>1.20×1016</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>226.64</td>
<td>4.75×1013</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>256.59</td>
<td>8.36×1021</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>259.57</td>
<td>2.66×1021</td>
</tr>
<tr>
<td>OPF—OPF ash</td>
<td>Average</td>
<td>211.69</td>
<td>2.21×1021</td>
</tr>
<tr>
<td>OPF—OPF/OPT ash</td>
<td>0.2</td>
<td>109.79</td>
<td>4.07×1011</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>148.15</td>
<td>1.27×1013</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>177.75</td>
<td>4.37×1014</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>185.95</td>
<td>3.92×1016</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>245.48</td>
<td>2.14×1016</td>
</tr>
<tr>
<td>OPF—OPF/OPT ash</td>
<td>Average</td>
<td>173.42</td>
<td>1.22×1016</td>
</tr>
<tr>
<td>OPT</td>
<td>0.2</td>
<td>123.22</td>
<td>4.84×1011</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>169.96</td>
<td>1.49×1015</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>201.04</td>
<td>1.41×1017</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>246.36</td>
<td>1.56×1020</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>173.94</td>
<td>2.54×1012</td>
</tr>
<tr>
<td>OPT—OPT ash</td>
<td>Average</td>
<td>182.91</td>
<td>3.13×1029</td>
</tr>
<tr>
<td>OPT</td>
<td>0.2</td>
<td>127.45</td>
<td>4.73×1011</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>147.69</td>
<td>1.26×1013</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>169.17</td>
<td>4.16×1014</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>197.76</td>
<td>4.17×1016</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>198.25</td>
<td>1.73×1016</td>
</tr>
<tr>
<td>OPT—OPT ash</td>
<td>Average</td>
<td>168.06</td>
<td>1.19×1016</td>
</tr>
<tr>
<td>OPT</td>
<td>0.2</td>
<td>293.62</td>
<td>1.67×1027</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>283.36</td>
<td>1.14×1025</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>268.67</td>
<td>9.24×1022</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>297.98</td>
<td>8.19×1024</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>204.71</td>
<td>9.81×1015</td>
</tr>
<tr>
<td>Average</td>
<td>269.67</td>
<td>1.04×1026</td>
<td>0.9637</td>
</tr>
</tbody>
</table>
References

List of contributors

Peer Mohamed Abdul
Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia

Menandro N. Acda
Department of Forest Products and Paper Science, University of the Philippines Los Baños, Laguna, Philippines

Jonas Karl Christopher N. Agutaya
Kumamoto University, Kumamoto, Japan

Razi Ahmad
Fossil Fuel and Biomass Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA Perlis Branch, Arau Campus, Perlis, Malaysia; Faculty of Civil Engineering Technology, Universiti Malaysia Perlis, Arau, Perlis, Malaysia; Centre of Excellence, Water Research and Environmental Sustainability Growth (WAREG), Universiti Malaysia Perlis, Arau, Perlis, Malaysia

Azam Akhbari
Faculty of Engineering, Department of Civil Engineering, Universiti Malaya, Kuala Lumpur, Malaysia

Tareq Al-Ansari
Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar

Muhammad Luqman Md Ali
Fossil Fuel and Biomass Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA Perlis Branch, Arau Campus, Perlis, Malaysia

Nur Haziqah Alias
Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia

Ola Alsaidi
Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah, United Arab Emirates

Asnida Yanti Ani
Fossil Fuel and Biomass Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA Perlis Branch, Arau Campus, Perlis, Malaysia

Syazmi Zul Arif Hakimi Saadon
Higher Institution of Centre of Excellence (HICoE) Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
Suttichai Assabumrungrat
Chulalongkorn University, Bangkok, Thailand

Joseph Auresenia
De La Salle University, Manila, Philippines

Suraini Abd Aziz
Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia

Izza Nadira Abu Bakar
Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia

Pritam Bardhan
Department of Molecular Biology & Biotechnology, Tezpur University, Tezpur, India

Satya S. Bhattacharya
Department of Environmental Sciences, Tezpur University, Tezpur, India

Nurul Adela Bukhari
Energy and Environment Unit, Engineering and Processing Research Division, Malaysian Palm Oil Board, Kajang, Malaysia; Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia

Kin Wai Cheah
Energy and Environment Institute (EEI), University of Hull, Kingston Upon Hull, United Kingdom; B³ Challenge Group, Department of Chemical Engineering, University of Hull, Kingston Upon Hull, United Kingdom

Yoke Wang Cheng
HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia; Department of Chemical Engineering, Manipal International University, Putra Nilai, Malaysia

Jiuan Jing Chew
Faculty of Engineering, Computing and Science, Swinburne University of Technology, Sarawak, Malaysia

Bridgid Lai Fui Chin
Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri Sarawak, Malaysia

Sze Yu Chua
Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia

Yaleeni Kanna Dasan
Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia

Anuron Deka
Department of Energy, Tezpur University, Tezpur, India
Rozzeta Dolah
Department of Engineering, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia

Geraint Evans
BeaconTech Limited, Elloughton, United Kingdom

Yi Fang
James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom

Chaouki Ghenai
Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah, United Arab Emirates; Biomass and Bioenergy Research Group, Center for Sustainable Energy and Power Systems Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates

Shuhaida Harun
Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia

Haslenda Hashim
Process Systems Engineering Centre (PROSPECT), School of Chemical and Energy Engineering, Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, Johor, Malaysia

Mohamad Zaki Hassan
Department of Engineering, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia

Siaw Weii Hii
Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri Sarawak, Malaysia

Bing Shen How
Biomass Waste-to-Wealth Special Interest Group, Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Kuching, Malaysia

Azieyati Hani Hussain
Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia (USM), Pulau Pinang, Malaysia

Mohamad Faizal Ibrahim
Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia

Shaliza Ibrahim
Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, Kuala Lumpur, Malaysia

Asad Ibrar
Department of Chemical Engineering, Faculty of Engineering and Informatics, University of Bradford, Bradford, United Kingdom
Muhammad Nurariffudin Mohd Idris
Process Systems Engineering Centre (PROSPECT), School of Chemical and Energy Engineering, Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, Johor, Malaysia

Zul Ilham
Biomass Energy Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia

Abrar Inayat
Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah, United Arab Emirates; Biomass and Bioenergy Research Group, Center for Sustainable Energy and Power Systems Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates

Muddasser Inayat
Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia

Mohd Azlan Mohd Ishak
Faculty of Applied Sciences, Universiti Teknologi MARA Perlis Branch, Arau Campus, Perlis, Malaysia; Fossil Fuel and Biomass Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA Perlis Branch, Arau Campus, Perlis, Malaysia

Jamaliah Md Jahim
Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia

Wan Nadiah Amalina Kadir
Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia; HiCoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia

Yik Lam Kam
Kumamoto University, Kumamoto, Japan

Ramizah Kamaludin
Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia (USM), Pulau Pinang, Malaysia

Mohd Asyraf Kassim
Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia (USM), Pulau Pinang, Malaysia

Rupam Kataki
Department of Energy, Tezpur University, Tezpur, India

Zakir Khan
Department of Chemical Engineering, COMSATS University Islamabad, Lahore, Pakistan

Tetsuya Kida
Kumamoto University, Kumamoto, Japan
Hon Loong Lam
Department of Chemical and Environmental Engineering, University of Nottingham, Semenyih, Malaysia

Man Kee Lam
Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia

Harrison Lik Nang Lau
Energy and Environment Unit, Engineering and Processing Division, Malaysian Palm Oil Board, Kajang, Malaysia

Jian-Ping Li
Department of Mechanical Engineering, Faculty of Engineering and Informatics, University of Bradford, Bradford, United Kingdom

Wangliang Li
CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P.R. China

Chun Hsion Lim
Department of Chemical Engineering, Universiti Tunku Abdul Rahman, Kajang, Malaysia

Huei Yeong Lim
Higher Institution of Centre of Excellence (HICoE) Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia

Jun Wei Lim
HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia; Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia

Steven Lim
Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Malaysia

Serene Sow Mun Lock
CO₂ Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia

Soh Kheang Loh
Energy and Environment Unit, Engineering and Processing Division, Malaysian Palm Oil Board, Kajang, Malaysia

Adrian Chun Minh Loy
Chemical Engineering Department, Monash University, Melbourne, VIC, Australia

Abdullah Amru Indera Luthfi
Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia
Fanthagiro Rossi Stuard Anak Majing
Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri Sarawak, Malaysia

Manabendra Mandal
Department of Molecular Biology & Biotechnology, Tezpur University, Tezpur, India

Tan Kean Meng
Bioproces Technology Division, School of Industrial Technology, Universiti Sains Malaysia (USM), Pulau Pinang, Malaysia

Abu Bakar Nasrin
Energy and Environment Unit, Engineering and Processing Division, Malaysian Palm Oil Board, Kajang, Malaysia

Wendy Pei Qin Ng
Petroleum and Chemical Engineering Programme Area, Universiti Teknologi Brunei, Gadong, Brunei Darussalam; Department of Chemical Engineering, Curtin University Malaysia, Miri, Malaysia

Sue Lin Ngan
UKM-Graduate School of Business, Universiti Kebangsaan Malaysia, Bangi, Malaysia

Jalil Nursyairah
Energy and Environment Unit, Engineering and Processing Division, Malaysian Palm Oil Board, Kajang, Malaysia

Noridah Binti Osman
Higher Institution of Centre of Excellence (HICoE) Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia

Raj Patel
Department of Chemical Engineering, Faculty of Engineering and Informatics, University of Bradford, Bradford, United Kingdom

Sajjad Porgar
Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

Armando T. Quitain
Division for Multidisciplinary Global Education, Center for International Education, Kumamoto University, Kumamoto, Japan

Nejat Rahmanian
Department of Chemical Engineering, Faculty of Engineering and Informatics, University of Bradford, Bradford, United Kingdom

Elisabeth Rianawati
Resilience Development Initiative, Bandung, Indonesia

Siti-Suhailah Rosli
HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia; Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
Abby Samson
Department of Mechanical Engineering, The University of Sheffield, Sheffield, United Kingdom

Muhammad Shahbaz
Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar

Vasiliki Skoulou
Energy and Environment Institute (EEI), University of Hull, Kingston Upon Hull, United Kingdom; B³ Challenge Group, Department of Chemical Engineering, University of Hull, Kingston Upon Hull, United Kingdom

Vijaya Subramaniam
Energy and Environment Unit, Engineering and Processing Division, Malaysian Palm Oil Board, Kajang, Malaysia

Mohamad Azri Sukiran
Energy and Environment Unit, Engineering and Processing Division, Malaysian Palm Oil Board, Kajang, Malaysia

Xiuquan Sun
School of Computing and Engineering, University of Huddersfield, Huddersfield, United Kingdom

Syarifah Nursyimi Azlina Syed Ismail
Faculty of Applied Sciences, Universiti Teknologi MARA Perlis Branch, Arau Campus, Perlis, Malaysia; Fossil Fuel and Biomass Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA Perlis Branch, Arau Campus, Perlis, Malaysia

Nur Nabila Talib
Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia

Inn Shi Tan
Department of Chemical Engineering, Curtin University, Miri, Malaysia

Raymond R. Tan
De La Salle University, Manila, Philippines

Rumaisa Tariq
School of Chemical & Materials Engineering, National University of Sciences & Technology, Islamabad, Pakistan

Martin J. Taylor
Energy and Environment Institute (EEI), University of Hull, Kingston Upon Hull, United Kingdom; B³ Challenge Group, Department of Chemical Engineering, University of Hull, Kingston Upon Hull, United Kingdom

Deryl Jay Thaddeus
Energy and Environment Unit, Engineering and Processing Division, Malaysian Palm Oil Board, Kajang, Malaysia
Pornkamol Unrean
National Center for Genetic Engineering and Biotechnology (BIOTEC), Klong Luang, Thailand

Andy Law Kai Wen
Faculty of Engineering, Computing and Science, Swinburne University of Technology, Sarawak, Malaysia

Phang Lai Yee
Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia

Chung Loong Yiin
Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), Sarawak, Malaysia

Siming You
James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom

Suzana Yusup
Higher Institution of Centre of Excellence (HICoE) Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia

Salman Zafar
BioEnergy ConsultStreet 8, India

Siti Zullaikah
Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
Index

Note: Page numbers followed by “f” and “t” refer to figures and tables, respectively.

A
Acetogenesis, 19, 57
Acid hydrolysis, 119
Acid pretreatment method, 210–211
Acid-based hydrolysis, 58
Acid-catalyzed transesterification, 78–79
Acidogenesis, 19, 57
Acidolysis. See Acid hydrolysis
Actinobacillus succinogenes, 250, 519
Advanced biofuels, 494–497
Agricultural biomass, 235–236, 238–239, 241t
bio-butanol from, 238–239, 241t
for bioenergy, 237–238
categories, 236
chemical composition of, 237t
Agricultural mills, 547–549, 548f
Agriculture, lignin application in, 123–124
Alcogas, 555
Alcohol dehydrogenase gene (ADH), 223
Algae
as feedstock, 160–164, 161f
harvesting of, 164–167
advantages and disadvantages, of various technologies, 168t
enclosure approach, 147–148
biofilm development, 143–144, 143f
enclosure approach, 144–147, 144f
nonenclosure approach, 144–147, 144f, 145f
thickening, 165–167
Auto–flocculation, 165–166
Enclosure approach, 144–147, 144f, 145f
Ash, 72–73
Attenuated cultivation method, 142–148, 142f
biofilm development, 143–144, 143f
challenges of, 147–148
enclosure approach, 144–147, 144f
nonenclosure approach, 144–147, 144f, 145f
biodegradable materials, 165–166
Automatic Price Mechanism scheme, 535–536
Available techniques, scalability and economics of, 412–416
B
B5, B7
and B10 program, implementation of, 486–489
B20 and B30 vehicle trials, 492t
B20/beyond, 489–490
B100 field test, DBKL UD truck used for, 493f
Bacillus firmus K-1, 402–403
Bacillus licheniformis, 325
Ball milling, 12–14, 13f
BeWhere Malaysia model, 540–541, 547–549
“BioActiv BD 100”, 565
Bio-based succinic acid (BSA), 250–251, 264–266, 268–272
Bio-butanol, 239–244
from agricultural biomass, 238–239, 239f
characteristics, 239–240, 240r
fermentation process, 241–244, 242f
microorganisms producing, 240–241, 241r
Biocatalyst transesterification (BT), 82
Biochar experimental kit (BEK), 514–516
Biochemical conversion, of biomass, 54–59
anaerobic digestion, 55–58
fermentation, 58–59
transesterification, 59–62
Biochemical processes, 4
Bio-compressed natural gas (Bio-CNG), 524, 525f, 525r
Biodiesel, 483, 558–560
heat of combustion for, 363t
oxygen emission of, 371
Biodiesel production, catalysts for, 78–83
alkali and acid-catalyzed transesterification, 78–79
biocatalyst transesterification, 82–83
in situ transesterification, 81
microwave-assisted transesterification, 80
supercritical transesterification, 81–82
two-step acid base transesterification, 80
Biodiesel production rig, 360f
Bioenergy production, renewable energy transformation in Malaysia
spatially-explicit modeling, policies insights from, 540–549
achievement of decarbonization target, 549
agricultural mills, 547–549
BeWhere Malaysia model, 540–541
power and heat sectors, power tariff subsidy drives decarbonization in, 542–545
power, heat, and transport sectors, carbon price drives decarbonization in, 545–547
scenario description, 542
Bioethanol (C2H5OH), 20, 195–196, 557–558
and biochemicals, 516–519
formation, 216–221, 217f, 218f
advantages and disadvantages of, 222r
consolidate bioprocessing, 220–221
separate hydrolysis and fermentation process, 218–219
simultaneous saccharification and fermentation process, 219–220
from renewable biomass, 196–203
first-generation, 196–198
second-generation, 199–201
third-generation, 201–203
Bio-flocculation, 165–166
Biofuel feedstock quality, 508f
Biofuel incentives, 564–565
Biofuel Industry Bill 2006, 485
Biofuel production, economical aspect in biomass to available techniques, scalability and economics of, 412–416
biofuel production technologies, 399–412
cleaning and pretreatment, 399–403
enzyme catalytic conversion, 408–409
hydrolysis, 403–404
pyrolysis, 409–412
saccharification and fermentation, 404–406
transesterification, 406–408
biomass selection, 396–399
cellulose, 397
composition, 396–399
energy conversion, 399
hemicellulose, 398
lignin, 398
starch, 398–399
country’s economy-policy formulation and execution, role of, 416–417
Biofuel production technologies, 399–412, 414t
challenges associated with the biomass supply chain for, 431–432
techno-economic studies of, 384t
Biofuel research and development, 565
Biofuel, representation of transformation of biomass to, 401f
Biofuels Act of 2006, 556, 558–559, 564–566
Biofuels Law, 560–561
Biofuels standard and regulations, 560–563
Biofuels, 49
biochemical conversion route for, 34–35
biodiesel, 558–560
bioethanol, 557–558
biomass waste to, conversion methods, 17–33
biochemical routes, 17–22
thermochemical route, 22–31
challenges, opportunities, and future perspectives, 33–35
conversion of biomass to, 49–51
incentives, 564–565
lignocellulosic biomass feedstock for, 5–11
philippines biofuel roadmap, 566
production pathways, 10
research and development, 565
standard and regulations, 560–563
types of, 9–11
Biofuels, techno-economic analysis of biomass
thermochemical conversion to
therno-economic analysis, 383–389
catalytic fast pyrolysis and hydro-processing, 385
fast pyrolysis, 383–385
gasification, 386–387
hydrothermal liquefaction, 387–389
methodology, 383
pyrolysis, 383–386
slow pyrolysis, 385–386
thermochemical conversion pathways, 380–383
gasification, 382
hydrothermal liquefaction, 382–383
pyrolysis, 380–382
thermochemical pathway, challenges
for tea of, 389
Biogas, 330t, 525t, 526–528, 527f
production, 317–318
Biogas deployment, policies related to, 525–526
Biogas Environmental Engineering Sdn. Bhd. (BEE), 520
Biogas systems developed, performance of, 521t
Biogas utilization option, 524–525
Biohydrogen, 318, 324–325
revisiting, 323–327
Biohydrogen production
from biomass, thermochemical conversion
routes of, 336f
computational fluid dynamics modeling for, 309–310
equilibrium modeling and simulation for, 307–309, 308t
kinetic modeling for, 303–307
Biohydrogen production process/value chain, technical readiness level of
combustion, 338–339
commercialization, challenges and barrier for, 344–346
biomass handling and storage, 346
supply chain, 346
technical challenges, 345
gasification, 339–341
liquefaction, 343–344
pyrolysis, 341–343
stakeholder relationship, 347
way forward, 346–347
policy and investment, 346–347
social awareness and marketing, 346
Biohythane, 327
Biological pretreatment method, 209
Biomass, 1–2, 49, 105, 302, 380, 528
to biofuels, conversion technology of, 51
biochemical, 54–59
thermochemical, 51–54
categories, 105
characteristics of, 50
composition analysis, 70–73
conversion to fuels, 3
-derived lipid for biodiesel, 73–78
different organic, inorganic, and fluid matter present in, 397t
different types of, 397t
feedstock compositions for, 71t
first-generation, 2
gasification of, 185
generations of, 49–50
lignocellulosic
availability of, 2
for biofuels production, 5–11
needs for, conversion into biofuels, 182
physiochemical properties of, 5–8
primary components of, 70
ash, 72–73
cellulose, 70–71
hemicellulose, 72
lignin, 72
volatile matter, 72
source of, 2
types of, for biofuel production, 50f
various conversion processes of, 401f
waste conversion pathways to biofuels, 7f
Biomass conversion pathway, 459f
Biomass conversion technology, 256–257, 302f
Biomass-derived lipid, for biodiesel, 73–78
lipid feedstocks, for food security, 75–76
dirty waste and used recycled oil, 76–78
microalgae, 76
Biomass-derived lipid, for biodiesel (Continued)
nonedible oil crops, 75–76, 75t
refined edible clean oil, 74–75
transesterification, 73–74, 73f
Biomass gasification (BG), 386–387
Biomass handling and storage, 346
Biomass integrated gasification and Fisch-Tropsch
(BOIG-FT), 387
Biomass into energy, conversion of, 338
Biomass pellet (PLT), 449
Biomass preparation, 279
Biomass recycling practices, system boundary in
evaluation of, 498f
Biomass reforming (BR), 386–387
Biomass selection, 396–399
Biomass supply chain management and challenges
biofuel production, challenges associated
with the biomass supply chain for, 431–432
biomass supply chain system challenges,
433–441
hazard and operability analysis approach,
432–433
Biomass supply chain synthesis/optimization
mathematical formulation of, 447–450
illustrative case study, 449–450
typical mathematical constraints for, 448–449
multicriteria optimization of, 450–475
multiobjective function formulation,
451–457
sustainability measurement, key indicators for,
451f
optimized illustration model of, 450f
optimum supply chain synthesis, parameters
used for, 450t
typical movement or flow of, 446f
Biomass-to-gaseous fuel, 519–525
Biomass-to-liquid (BTL), 528
Biomass-to-liquid fuel, 514–519
Biomass-to-solid (BTS), 510–511, 528
Biomass-to-solid fuel, 510–514
Biomethane (BioCNG), 537–540
Biooil
vs. petroleum fuel, 187t
refinement, 186–189
upgrading methods, 188–189
chemical, 189, 190t
mapping of, 191t
physical, 188, 188t
property analysis, 189
uses of, 186–187
Bio-oil production
challenges of, 33–34
pyrolysis and hydrothermal liquefaction for,
23–27
Bio-SNG project, 341
Bio-succinic acid, 264–270
advantages and disadvantages of, 268t
Bio-succinic acid, oil palm biomass zero-waste
conversion to
biomass conversion, benefits from, 256–263
ammonia based pretreated biomass, 263
ammonia-based pretreatment, 259–260
biomass conversion technology, 256–257
deep eutectic solvent pretreatment, 260–261,
263
enzymatic and chemical hydrolysis, 261–263
sodium hydroxide (NaOH) pretreated
biomass, 261–263
sodium hydroxide pretreatment, 257–258
bio-succinic acid, carbon intermediates to,
266–272
bio-succinic acid, fermentative production of,
oil palm-derived solid biomass, enhanced bio-
succinic acid production from, 270–272
oil palm biomass chemical potential, 251–255
succinic acid, historical perspective and
importance of, 264–266
bio-succinic acid, importance of, 264–266
historical perspective, 264
Briquettes, pellets/torrefied solid biofuel,
510–513
Bubble washing, 361–362
Bureau of Product Standards (BPS), 560–561

C
Calcium oxide, 78–79
Calophyllum inophyllum oil, 406–408
Cambridge Electric Design Power 1401 Analog to
Digital Converter, 359–360
Capital expenditure (CAPEX), 460
Carbon capture and storage (CCS), 3
Carbon dioxide (CO₂), 271, 278, 286, 339, 341,
358–359, 369, 369f, 370f, 520–522,
535–536, 540–542, 545–547, 549, 550f
Carbon monoxide (CO), 358–359, 367–369,
367f, 368f
Catalyst preparation, 279
Catalysts, 52
homogeneous, 60
heterogeneous, 60
types of, 26
Catalytic fast pyrolysis (CFP), 385
Catalytic fast pyrolysis and hydro-processing, 385
Catalytic fast pyrolysis with hydrogen supply
(CFPHS), 380–381
Catalytic pyrolysis, 26
Catalytic transesterification, 59–60
Cellulase, 408
Cellulignin, 58
Cellulose, 70–71, 251–252, 397, 398f
Cellulose hydrolysis, 215
Centrifugation, 167
Chemical compositions, 508f
Chemical flocculation, 165–166
Chemical pretreatment, 14–16, 110
Chemrez Technologies, Inc., 565
Chlorella, 494–495, 497f
Clean Air Act, 560–561
Cleaned syngas, 28
Cleaning and pretreatment, 399–403, 402f
Clostridium acetobutylicum, solventogenesis
fermentation by, 243, 243f
Clostridium pasteurianum, 325
CO₂ reduction, microalgae in, 152–153
Coagulation, 165–166
Coats-Redfern model, 281–282, 289–298
Coconut methyl ester (CME), 556f, 559–561,
559f, 565
Coconut oil (CNO), 555, 555f, 558–560
Combined heat and power (CHP), 341, 513–514,
513f, 524, 537–540
Combustion and torque, heat of, 362–364
Combustion for diesel, heat of, 363f
Commercialization, challenges and barrier for,
344–346
Composition, 396–399
Computational fluid dynamics (CFD), 309–310,
310f
Consolidate bioprocessing (CBP), 220–221
Continuous stirred tank reactors (CSTR), 322, 325
Conventional process, bioethanol production,
197–198
Country’s economy-policy formulation and
execution, 416–417
Cradle to bioenergy (CTB), 148
Cradle to consumption (CTC), 148
Cradle to grave (CTG), 148
Crude palm oil (CPO), 483–484, 542, 545–547,
549

D
Dark fermentation, biohydrogen production by,
325–326
Dark fermentation process, different continuous
reactors operated under, 326f
Decarbonization target, achievement of, 549
Decision making, 537
Deep eutectic solvent (DES), 120–121, 260–261,
263
Deep eutectic solvent pretreatment, 260–261
Densification, 22–23
Department of Energy (DOE), 556, 560–561, 566
Department of Environment and Natural
Resources (DENR), 555–556, 558,
560–561
Derivative thermogravimetric (DTG), 284–286,
285f, 288
Devolatilization, 288
Dewatering process, 167
Differential thermogravimetric (DTG), 94, 96–99, 98f
Dilemma, 318
Dirty oil-based biodiesels, 77t
Disk milling, 12, 13f
Dispersed air flotation, 166
Dissolved air flotation, 166
Distillation, 188t
Dried long fiber (DLF), 446, 449
Drop-in biofuels, 181–182
feedstock sustainability/potential biomass feedstock, 189–192
lipid-based raw materials for, 192
resource base, and sustainability, 189–192
technology options in, 183–186
biochemical conversion process, 185–186
oleochemical conversion process, 183–184, 184f
production pathways, 183
thermochemical conversion process, 184–185, 184f
Dunaliella salina, 62

E
Economic data, 460
Edible feedstock, biofuel from, 483
Elaeis guineensis, 481–482
Electrolysis, 166
Electrolytic flotation, 166
Electrophoresis, 166
Empty fruit bunches (EFBs), 186, 499, 505–507, 510–518, 512f, 512t, 515t, 517f, 518f, 524
kinetic modeling, 94–95
lignin content, determination of, 93–94
pretreatment of, 93
thermogravimetric analysis, of untreated and delignified, 94
Emulsification, 188t
Energy conversion, 399
Energy Research and Testing Laboratory Services (ERTLS), 561
Energy Utilization Management Bureau (EUMB), 561
Engine Control Unit, 367–368
Engine, characteristics of, 360t
Enterobacter cloacae, 325
Environmental data, 460–463
Environmental Quality Regulations, 524–526
Enzymatic and chemical hydrolysis, 261–263, 262t
Enzymatic hydrolysis process, 55–58, 110, 120, 212–216
Enzyme catalytic conversion, 408–409, 410t
Equivalence ratio (ER), 339–340
EU’s Renewable Energy Directive (EU RED), 498–499
Eucalyptus tail gas reactive fast pyrolysis (ETGRFPH), 383–385
Extracellular polymeric substance (EPS), 142, 143

F
Fast pyrolysis, 380–381, 383–385
Fast pyrolysis with hydro-processing (FPH) technology, 383
Fatty acids, 162–163
Feed-in tariff (FiT), 526–528, 535–536
Feedstock
algae as, 160–164, 161f, 162t
pretreatment of, 106
Fermentation process, 58–59, 302–303
acid/base pretreatment, 58
for bio–butanol, 241–244, 242f
for bioethanol production, 20–22
enzymatic hydrolysis, 58
of LCFA, 19
process, 59
of xylose-rich/pentose sugar, 224
Fiber-based biomass, 105
Filtration, 167
First-generation bioethanol, 196–198
First-generation biofuels, 2, 483–494
First-generation biomass, 50
Fischer–Tropsch synthesis, 28
Five transportation modes, dimension and load limit of, 460t
Flash pyrolysis, 160
Flocculation, 165–166
types of, 165–166
Flotation technique, 166
Fluidized bed (FB), 14
Food and Agriculture Organization (FAO), 482
Food supply, 416
Forest Land Grazing Management Program, 558
Free fatty acids (FFA), 484–485
Fresh fruit bunches (FFB), 250–251, 481–482, 483f, 484, 505–506, 506r, 513
F-T process, 185
Fuel consumption, 365–367, 366f
Fuel industries, lignin application in, 124
Full and partial load profiles, 362
Full load
CO emission, 367f
CO₂ emission, 369f
NOₓ emission, 370f
O₂, 372f
power curve and fuel consumption at, 364f
THC emission, 373f

G

Gaps, bridging, 327–331
Gases composition, 340
catalysis in, 30–31
catalysts, 30–31
vs. pyrolysis, 33
for syngas production, 27–31, 27f, 29f
technology, 413–415
Gauss-Newton algorithm, 307–309
GC-FID test, 362
Geometric mean, 466–467
Global Green Synergy Sdn. Bhd., 511–512
Glycerol-3-phosphate dehydrogenase (GDP), 223–224
Glycolysis, 185–186
Gompertz model, 304, 306–307
Granular starch hydrolysis (GSH) process, 197–198
Gravity sedimentation, 166
Green supply chain management (GSCM), 446
Grinding mills classes, 108f
Gross domestic product (GDP), 559–560, 565
Guidewords and parameters of Node 1, 437f
Gymnosperms’ lignin, 253

H

Hammer milling, 12, 13f
Harvesting, of algae, 164–167
Hazard and Operability Analysis (HAZOP), 429–430, 432–441, 434r, 438r, 441f
Hazard and operability analysis study procedure, 433f
Healthcare, lignin application in, 124
Hemicellulose, 72, 252–253, 398, 398f
Heterogeneous catalysts, 79–80, 171–173, 172f
Higher biodiesel blend exploration, 489–492
Horriba EXSA-1500, 359–360
Hot vapor filtration (HVF), 188f
House Bill (HB), 555–556
Human toxicity potential by either inhalation/dermal exposure (HTPE), 464
Human toxicity potential by ingestion (HTPI), 464
Hydraulic retention time (HRT), 322–323
Hydrocarbon (HC), 358, 371–375
Hydrochloric (HCl) acid, for substrate pretreatment, 210–211
Hydrodeoxygenation upgradation (HDO), 52
Hydrogen deoxygenation and hydro-sulfurization (HDS), 381–382
Hydrogen, 318, 335
Hydrolysis, 19, 403–404
efficiency, 403–404
enzymatic, 55–57
lipid concentration effect on, 56–57, 57f
tlel concentration effect on, 56–57, 57t
particle size and concentration on, effect of, 55–56, 56f
of renewable biomass, 212–216
alkali salts, base, and acid catalysts, 170–171
heterogeneous catalysts, 171–173, 172f
Hythane, 327

I

In situ transesterification (IST), 61–62, 81
Industrial Revolution, 159
Inhalable particulate matter (IPM), 379–380
Integrated anaerobic-aerobic bioreactor, 520–522
Integrated anaerobic-aerobic system, 522
Integrated gasification combined cycle (IGCC), 341
Intensification strategy, for biomass processing, 174
Inter- and intra-polymer hydrogen linkage, structure of cellulose with, 252f
International Energy Agency, 429
Investment priority projects (IPP), 564–565
Ionic liquids, 120
ISO 14040 standards, 499

J
Japanese Automobile Manufacturers Association (JAMA), 489–490
Jatropha curcas, 560
Jet milling, 12–14, 13f
Judgement/final comparison matrix, 467f

K
Kinetic analysis, 283–284, 289–298, 291t, 294t, 296t
modeling, 94–95
models, 281–284, 303–307, 305t
theory, 280–281
Kissinger-Akahira-Sunose (KAS) integral method, 94, 100f
Klason method, 93–94
Kluyveromyces marxianus, 59

L
Lafarge Malaysia Bhd., 339
Large Scale Solar, 535–536
Levenspiel model, 304
Life cycle assessment (LCA), 404–406, 493–494, 498–499
of microalgae conversion to biofuels, 148–152, 149f, 150t
phases, 148–149
system boundaries for, 148t
Life cycle impact analysis (LCIA), 148–149
Lignin, 72, 105–106, 253, 398
application of, 123, 123t
in Malaysia, 123–124
content, 116–117, 117t
extraction methods, 118–121, 118f
acid hydrolysis, 119
advantages and disadvantages of, 122t
alkali hydrolysis, 119
deep eutectic solvents, 120–121
enzymatic hydrolysis, 120
ionic liquids, 120
organosolv, 120
pyrolysis, 121
monolignols/oligomer units, 254f
properties, 114–116, 115f, 116f
relocalization, 112
Lignocellulosic biomass (LCB), 89–90, 186, 250–251, 253–255, 256t, 259, 399–401
agricultural biomass. See Agricultural biomass
empty fruit bunches
kinetic modeling, 94–95
lignin content, determination of, 93–94
pretreatment of, 93
thermogravimetric analysis, of untreated and delignified, 94
feedstock, 5–11
major bonds exist in, 90
pretreatment, 106–114
methods, 90, 91t
types of, 106–110
recalcitrance nature of, 90
results and discussion
delignification process, pretreatment temperature on, 95–96, 95t
pyrolysis kinetic, 99–100
thermogravimetric analysis, 96–99, 97f
sources of, 89–90
types of, 199–200, 199t, 200f
Limited government subsidy, 564–565
Lignocellulosic wastes, 12–17
chemical pretreatments, 14–16
physical pretreatments, 12–14, 13f
physicochemical pretreatments, 16–17
technical problems, gasification of, 28–30
Lipid extraction microalgae (LEA), 387–388
Lipid feedstocks, for food security, 75–76
microalgae, 76
nond edible oil crops, 75–76, 75t
Liquefaction, 53, 343–344
Liquid products, yield of, 343–344
Long-chain fatty acids (LCFA), 19
Low-transition-temperature mixtures (LTTMs), synthesis of, 93

M
Macroalgae, 162t
Malaysia
available biomass-based products in, 125t
BeWhere Malaysia, spatial representation of the bioenergy workflow in, 541f
lignin application in agriculture, 123–124
fuel industries, 124
healthcare, 124
previous research on biomass/energy supply chain for, 538
renewable electricity and biodiesel production in, 536
Malaysia, biofuel development in advanced biofuels, 494–497
biogas deployment, policies related to, 525–526
first-generation biofuels, 483–494
B5, B7
and B10 program, implementation of, 486–489
B20 and beyond, moving forward to, 489
higher biodiesel blend exploration, 489–492
issue and challenges, 492–494
national biodiesel program implementation, 485–492
petroleum depots, biodiesel blending facilities at, 485–486
standards, biofuel policy and development of, 485
technology development and commercialization, 484–485
issues and challenges, 526–528
biogas, 526–528
biomass, 528
second-generation biofuels, 507–525
bioethanol and biochemicals, 516–519
biogas utilization option, 524–525
biomass-to-gaseous fuel, 519–525
biomass-to-liquid fuel, 514–519
biomass-to-solid fuel, 510–514
briquettes, pellets, and torrefied solid biofuel, 510–513
integrated anaerobic-aerobic bioreactor, 520–522
MPOB-BEE biogas technology, 520
oil palm biomass cogeneration, 513–514
pyrolysis—bio-oil and biochar, 514–516
zero discharge palm oil mill effluent treatment, 522–524
supply chain optimization, 498–500
Malaysian oil palm industry, 505–506
Malaysian Palm Oil Board (MPOB), 484–485, 489–495, 511–512, 514–515, 520, 525–526
Material, emission of, 364–375
Mathematical model, 307–309
MATLAB software, 307
Max—min aggregation approach, 453
Mazda CX-5 laboratory engine test, 490, 491
MCM-41
in catalytic pyrolysis, 26–27
Mechanical pretreatment method, of lignocellulose materials, 204–205, 206
Mechanical pretreatment, 106–107
Mesocarp fiber (MF), 505–506, 513
Mesophilic operating temperatures, 19–20
Mesoporous aluminosilicates, 26–27
Methanogenesis, 19, 57–58
Metric tons (MT), 557–558
Michaelis—Menten model, 304
Microalgae, 62, 76, 162, 162f, 202–203
applications, 152–154
CO2 reduction, 152–153
pharmaceutical products, 153–154, 154
wastewater treatment, 152
attached cultivation method, 142–148, 142f
biofilm development, 143–144, 143f
challenges of, 147–148
enclosure approach, 144–147, 144f
nonenclosure approach, 144–147, 144f, 145
biomas, 201
advantage of, 202
bioethanol production from, 201, 202f, 203
capillary-driven system, 144, 145–147
conversion to biofuels, life cycle assessment of, 148–152, 148
intermittent submerged system, 144f, 146–147, 146f
permeated system, 144f, 147
suspended cultivation method, 139–142
closed system (photobioreactors), 141–142
open systems (open ponds), 140–141, 140f
Microalgae-based biodiesels, 77
Microporous zeolite catalysts, 26
Microwave irradiation pretreatment method, 205–206
Microwave-assisted transesterification (MAT), 80
Milled-wood lignin (MWL), 121
Milling equipment classification, 109
Milling, 121
Million metric tons (MMT), 557–559
Minimum fuel selling price (MFSP), 383–388
Miura-Maki model, 283, 293
Mixed-integer linear programming (MILP), 540–541
Mixed-integer nonlinear programming (MINLP), 387
Mixing, 322
Molecular distillation (MD), 188
Monod model, 304
Moringa oleifera, 520–522
MPOB-BEE high efficient biogas fermentation system, 520f
MPOB-BEE biogas technology, 520
MPOB-Tsinghua-Shandong University, 516
Myceliophthora thermophila, 408–409

N
National Biodiesel Program, 486–490
The National Biofuel Policy 2006, 485
National Biofuels Board (NBB), 556, 566
National Biomass Strategy 2020, 510
Nationally Appropriate Mitigation Action, 429–430
Net Energy Metering, 535–536
Net energy ratio (NER), 148–149
Nickel-based catalysts, 30–31
Nitrous oxide (NOx), 358–359, 369–371, 370f, 372f
Noncatalytic fast pyrolysis (NCFP), 381–382, 385
Noncatalytic transesterification, 60–62
Nonedible oil crops, 75–76
Nonisothermal method, 281

O
O2, 369–371, 372f, 373f
Oil Deregulation Law, 561
Oil Industry Management Bureau (OIMB), 561
Oil palm biomass
 distribution of pyrolysis products from various types of, 514t
 and palm oil, energy potential from, 509t
 second-generation biofuels from, 511f
Oil palm biomass chemical potential, 251–255
Oil palm biomass cogeneration, 513–514
Oil palm biomass feedstock, 510
Oil palm biomass in 2019
 potential renewable energy from, 510f
Oil palm by-products, 318–320
Oil palm empty fruit bunches (OPEFB), 251, 260, 263
Oil palm frond (OPF), 124, 251, 261, 278–279, 284–298, 287, 505–506, 512–515, 528
 kinetic plots of pyrolysis of, 290f
Oil palm mesocarp fibers (OPMF), 251, 263
Oil palm solid biomass (OPSB), 250–251, 255–258, 260–261, 268–270
Oil palm trunk (OPT), 251, 278–279, 284–298, 287, 505–506, 510, 514–515, 517–518, 528
Oil palm-derived solid biomass, bio-succinic acid production from, 270–272, 270f
Oil reserves country, 182t
Omnibus Investments Code of 1987, 564–565
Operational expenditure (OPEX), 460
Optimal technology selection obtained via max—min-aggregation approach, 470f, 474f
Optimal technology selection obtained via weighted-sum approach, 470f
Optimal transportation design via weighted-sum approach, 474f
Optimum supply chain synthesis, parameters used for, 450t
Organosolv, 120
Ozonation-dispersed flotation, 166
Ozonolysis, 212

P
Palm biodiesel, 483–494
Palm empty fruit bunch (EFB), 446
Palm fatty acid distillate (PFAD), 484
Palm kernel shells (PKS), 251
Palm methyl ester (PME), 485, 487–489
Palm oil mill effluent (POME), 200, 319, 325–326, 329, 494–495, 496t, 505–506, 519–520, 522–528, 523f, 525t
 biogas potential from, 519t
Performance of integrated anaerobic-aerobic bioreactor for codigestion of, 521t
 treatment stage of zero discharge pilot plant, 522t
Palm oil mills in 2019
 biomass types from, 506t
Palm oil mill, zero-emission from, 331f
Palm oil wastes
 experiment materials and methods, 279–284
 biomass preparation, 279
 catalyst preparation, 279
 Coats–Redfern, 281–282
 kinetic analysis, 283–284
 kinetic models, 281–284
 kinetic theory, 280–281
 Miura-Maki, 283
 thermodynamic analysis, 284
 thermogravimetric analysis, 279–280
 Vyazovkin, 282–283
 pyrolysis process, thermal degradation behavior of oil palm frond and oil palm
Palm shell (PS), 498–499, 505–506, 513–516
Paris Agreement, 535–536
Partial loads
 CO₂ emission, 370f
 NOₓ emission, 370f
 O₂ emission, 373f
 THC emissions, 374f
Particulates, 32–33
Pedestrian fatality, risk of, 466f
Pelletization, 10–11
Petrochemical and bio-based succinic acid production processes, 265f
Petroleum depots, biodiesel blending facilities, 485–486, 486f
Petroleum fuel vs. biooil, 187t
pH, 321, 360–361
Pharmaceutical products, microalgae in, 153–154, 154t
Philippine Energy Plan, 558
Philippine National Standard (PNS), 560–561
Philippines
 biodiesel (CME) refiners and producers in, 559t
 bioethanol producers in, 557t
 biofuels roadmap, 566f
 coconut oil and sugar for the production of biofuels in, 555f
 Ethanol Producers Association of, 558
 gas pumps in, 556f
 Philippine National Standard fuel quality standards, 561f
PNS/DOE QS 004:2017—Technical standard for B2 biodiesel blend in, 564t
Pretreatment methods (Continued)
chemical, 110
mechanical, 106–107
physical, 107
physicochemical, 110, 111t
thermal, 107–110
Primary sources of energy, 159–160, 160f
Principal component analysis-aided optimization approach, 454–457, 456t, 468, 470f, 473, 474f
Principal component analysis (PCA), 454–455
Process and activity emissions rate (g/kg biomass) for, 463t
energy and water consumptions for, 464t
safety index (ISI) score and job creation of, 465t
Propionic acid, 56–57
Proteins, 170
Pruning and replanting activities in 2019 biomass types from, 507t
catalysis role in, 26–27
conditions and product yields, 24–25, 25t vs. gasification, 33
heating rate of, 25
kinetic, 99–100
operating conditions of, 24, 24f
type of, 52f
Pyrolysis—bio-oil and biochar, 514–516
Pyrolyzed palm shell products and yields, 516f

R
Radial Diesel Combustion Engine, 357
Random index (RI) values, 453t
Rasamsonia emersonii, 408–409
Ratkowsky models, 306–307
Refined edible clean oil, 74–75
Renewable biomass, hydrolysis of, 212–216
Renewable energy, 138
conversion technologies of, 138t
Renewable Energy Act, 564–565
Renewable Energy Directives (RED and RED II), 9
Republic Act 9367, 555–557, 559–560
Rhodopseudomonas palustris, 327
Root mean square error (RMS), 307

S
Saccharification and fermentation, 404–406, 405f
Saccharomyces cerevisiae, 58, 516, 519
Scenario description, 542
Scheffersomyces stipitis, 404–406
Second-generation bioethanol, 199–201
Second-generation biofuels, 507–525
Second-generation biomass, 50
Separate hydrolysis and fermentation (SHF), 218–219, 243–244
Simultaneous saccharification and cofermentation (SScF), 404–406
Simultaneous saccharification and fermentation (SSF), 219–220, 243–244
Single-objective model, 447
Slow pyrolysis, 385–386
Sludge retention time (SRT), 321–323
Social awareness and marketing, 346
Social data, 464–466
Sodium carbonate (Na2CO3), 170
catalytic performance of, 170–171
Sodium hydroxide pretreatment, 257–258, 258t
Solvent addition, 188t
Stakeholder relationship, 347
Standards, biofuel policy and development of, 485
Starch, 398–399, 399f, 400f
Starch-rich feedstocks, 197–198
State-of-technology (SOT), 388
Statistical Review of World Energy 2020, 159–160
Strain improvement, 221–224
Subcritical water (subH2O), 174
Succinic acid (SA), 264–266
Succinic acid application/respective market share percentages, 267f
Sugar-rich feedstocks, 197
Sulfuric (H2SO4) acid, for substrate pretreatment, 210–211
Supercritical CO2 (scCO2), 174
Supercritical transesterification (SCT), 81–82
advantages of, 82
Supply chain, 346
optimization, 498–500
Suspended cultivation method, 139–142
closed system (photobioreactors), 141–142
open systems (open ponds), 140–141, 140f
Sustainability evaluation, dimensionality reduction in, 454
Sustainable Development Goal 7—Affordable and Clean Energy, 471
Synthetic natural gas (SNG), 341

Tars, 31–33
Technical Association of the Pulp and Paper Industry (TAPPI), 253–255
oil palm biomass compositions, 255
Technical challenges, 345
thermochemical conversion process, 345
Technical Committee on Petroleum Products and Additives (TCPPA), 560–561
Technical maturity, 337
Technical readiness level (TRL), 337, 341, 344, 347
Techno-economic analysis, 383–389
Technology, capital and operating expenditure of, 461
Technology development and commercialization, 484–485
Technology readiness level assessment process flow, adaptation of, 337
Technology selection, 467–471, 468f, 469t, 471f
Thermal pretreatment, 107–110
Thermochemical conversion pathways, 380–383, 381f
Thermochemical conversion technology, 51–54
gasification, 53–54, 54t
liquefaction, 53
pyrolysis, 51–53
Thermodynamic analysis, 284, 291t, 294t, 296t
Thermodynamic study, 289–298
Thermogravimetric (TG), 284–288, 285f
Thermogravimetric analysis (TGA), 90–93, 96–99, 279–280
Thermogravimetric approach (TGA), 279
Thickening, 165–167
Third-generation bioethanol, 201–203
Third-generation biomass, 50
1000-h endurance test, test vehicle under evaluation for, 490f
Three different models, linear expression of, 284f
Torrefaction, 22–23, 52–53
Total HCs (THC), 358–359, 371–374, 373f, 374f
Total suspended solids (TSS), 165
Transesterification, 59–62, 406–408, 407f, 408f
biocatalyst, 82–83
catalytic, 59–60
in situ, 81
for lipid conversion, 73–74, 73f
microwave-assisted, 80
noncatalytic, 60–62
in situ, 61–62
supercritical, 81–82
two-step acid base, 80
Transportation design, 471–475, 472t, 473t
Transportation sector, B10 implementation in, 488
Transportation-related expenses, 462
Trichoderma reesei, 408–409
Triglycerides, 73–74
Trunk in, 284–288
oil palm frond and oil palm trunk thermal decomposition, effect of heating rates on, 288
catalyst on oil palm frond and oil palm trunk thermal decomposition, effect of, 288–289
kinetic analysis and thermodynamic study, 289–298
Tsinghua University and TUS Deqing Bioenergy Co., Ltd., 492
Two-stage reactors, biohythane production with, 328
Two-step acid base transesterification, 80

Ultrasonication pretreatment method, 207–208, 207f, 208t
Ultrasound, 17
Unit material cost, 461t
United Nations Development Programme, 341
United Nations Framework Convention on Climate Change, 265
United States Department of Energy, 265
United States Energy Information Administration (EIA), 69–70, 277–278
Upward anaerobic sludge blanket (UASB) reactor, 323
Used cooking oil (UCO), 358–362
Various biofuel production technologies, economic feasibility analysis of, 415
Volatile fatty acids (VFAs), 55–56, 320–321, 323–324, 326
Volatile matter (VM), 72
Vyazovkin (V) method, 282–283, 293

Waste cooking oil biodiesel
 procedure, 359
 materials and equipment, 359–362
 results and discussion, 362–375
 combustion and torque, heat of, 362–364
 material, emission of, 364–375

Waste cooking oil, biodiesel production from, 365
Waste Cooking Oil Methyl Ester, 358
Waste Reduction (WAR) Algorithm, 460–462, 464
Wastewater treatment, microalgae in, 152
Water extraction, 188
Weighted-sum approach, 451–453
Wheel to bioenergy (WTB), 148

Xylose-rich/pentose sugar, fermentation of, 224
Zeolites, 26, 173
Zero discharge palm oil mill effluent treatment, 522–524