3. *Plasmodium knowlesi* detection methods for human infections—Diagnosis and surveillance
Matthew J. Grigg, Inke N. Lubis, Kevin K.A. Tetteh, Bridget E. Barber,
Timothy William, Giri S. Rajahram, Angelica F. Tan, Colin J. Sutherland,
Rintis Noviyanti, Chris J. Drakeley, Sumudu Britton, and Nicholas M. Anstey
1. Introduction 78
2. Point-of-care diagnosis 81
3. Molecular detection 94
4. Serology 110
5. Conclusion 117
Acknowledgements 117
References 117

4. The vectors of *Plasmodium knowlesi* and other simian malarias
Southeast Asia: challenges in malaria elimination 131
Indra Vythilingam, Tock Hing Chua, Jonathan Wee Kent Liew,
Benny O. Manin, and Heather M. Ferguson
1. Introduction 132
2. Simian malaria parasites in natural vector mosquitoes 134
3. Vectors of *Plasmodium knowlesi*—Leucosphyrus Group of *Anopheles* 139
4. Bionomics of natural vectors of *Plasmodium kowlesi* in the Leucosphyrus
 Group of *Anopheles* 144
5. Suspected vectors of knowlesi malaria in other *Anopheles* Groups 148
6. Experimental transmissions of *Plasmodium knowlesi* and other simian
 malaria parasites in mosquitoes 149
7. Control of vectors of *P. knowlesi* and other simian malarias 167
8. Challenges 172
9. Conclusions and the way forward 174
Acknowledgement 174
References 174

5. Molecular epidemiology and population genomics
of *Plasmodium knowlesi* 191
Paul C.S. Divis, Balbir Singh, and David J. Conway
1. Molecular detection in discovery of *Plasmodium knowlesi* as a significant
 zoonosis 192
2. Molecular surveys of the distribution of *P. knowlesi* infections in humans 193
3. Early utility of a few genetic loci for analysis of *P. knowlesi* polymorphism 198
4. Multi-locus microsatellite analyses of *P. knowlesi* uncovers population structure 205
5. Whole-genome sequence analysis of *P. knowlesi* subpopulation divergence 208
6. Loci under positive natural selection in the *P. knowlesi* genome 211
7. Assays for efficient surveillance of different *P. knowlesi* subpopulations 213
8. Adaptation and the future of *P. knowlesi* emerging from local zoonoses 215
References 217

6. Epidemiology of the zoonotic malaria *Plasmodium knowlesi* in changing landscapes 225

Pablo Ruiz Cuenca, Stephanie Key, Amaziasizamoria Jumail, Henry Surendra, Heather M. Ferguson, Chris J. Drakeley, and Kimberly Fornace

1. Introduction 226
2. Ecological change and mechanisms of disease emergence and transmission 228
3. Distribution and burden of *Plasmodium knowlesi* 236
4. Landscape impacts on *P. knowlesi* disease dynamics 244
5. Transmission dynamics and potential for human to human transmission 257
6. Designing surveillance and control measures for changing environments 259
7. Conclusions and future research priorities 266
References 267
Molecular epidemiology and population genomics of *Plasmodium knowlesi*

Paul C.S. Divis\(^a\), Balbir Singh\(^a\), and David J. Conway\(^{a,b,}\,*

\(^a\)Malaria Research Centre, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
\(^b\)Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
\(*\)Corresponding author: e-mail address: david.conway@lshtm.ac.uk

Contents

1. Molecular detection in discovery of *Plasmodium knowlesi* as a significant zoonosis 192
2. Molecular surveys of the distribution of *P. knowlesi* infections in humans 193
 2.1 *P. knowlesi* in humans 193
 2.2 *P. knowlesi* in primate reservoir hosts 195
 2.3 *P. knowlesi* in mosquito vectors 195
3. Early utility of a few genetic loci for analysis of *P. knowlesi* polymorphism 198
 3.1 Initial informative studies involving sequencing of individual genes 198
 3.2 Mitochondrial genome sequencing and haplotype relationships 203
4. Multi-locus microsatellite analyses of *P. knowlesi* uncovers population structure 205
5. Whole-genome sequence analysis of *P. knowlesi* subpopulation divergence 208
6. Loci under positive natural selection in the *P. knowlesi* genome 211
7. Assays for efficient surveillance of different *P. knowlesi* subpopulations 213
8. Adaptation and the future of *P. knowlesi* emerging from local zoonoses 215
References 217

Abstract

Molecular epidemiology has been central to uncovering *P. knowlesi* as an important cause of human malaria in Southeast Asia, and to understanding the complex nature of this zoonosis. Species-specific parasite detection and characterization of sequences were vital to show that *P. knowlesi* was distinct from the human parasite species that had been presumed to cause all malaria. With established sensitive and specific molecular detection tools, surveys subsequently indicated the distribution of *P. knowlesi* infections in humans, wild primate reservoir host species, and mosquito vector species. The importance of studying *P. knowlesi* genetic polymorphism was indicated initially by analysing a few nuclear gene loci as well as the mitochondrial genome, and subsequently by multi-locus microsatellite analyses and whole-genome sequencing. Different human infections generally have unrelated *P. knowlesi* genotypes, acquired from the diverse