Chemically Modified Palm Kernel Shell Biochar for Methylene Blue Removal A Response Surface Methodology Approach

Nur Hanani, Hasana (2021) Chemically Modified Palm Kernel Shell Biochar for Methylene Blue Removal A Response Surface Methodology Approach. Masters thesis, Universiti Malaysia Sarawak.

[img] PDF (Please get the password by email to , or call ext: 3914 / 3942 / 3933)
Restricted to Registered users only

Download (3MB) | Request a copy


Biochar has emerged as a prominent adsorbent in reducing the bioavailability of organic pollutants in water bodies due to its properties such as large surface area, porous structure, enhanced surface functional groups, and inorganic components. However, these properties can be further enriched and improved to increase the removal efficiency of contaminants to develop biochar as a better adsorbent. Further enhancement of biochar properties can be accomplished via chemical modification. This study focuses on the development and characterization of chemically modified palm kernel shell (PKS) biochar using ethanol (EtOH), methanol (MeOH), and magnesium (Mg) for the removal of methylene blue (MB) from aqueous solution. Characterization of chemically modified biochar, such as ultimate analysis, proximate analysis, SEM analysis, BET analysis, and FTIR analysis, were also investigated. Based on the results, both SEM and BET analysis revealed a notable increase in the size and amount of pores on the surface of biochar and its surface area where Mg-treated PKS displayed the highest surface area of 674 m2g-1. Batch adsorption was conducted at different initial concentrations and contact times. Mg-treated PKS biochar was chosen for optimization study via the Response Surface Methodology (RSM) approach since it gave the highest removal efficiency in both batch experiments. RSM was conducted to study the effects of pH of the solution (pH 4-10), contact time (30-90 min), and adsorbent dosage (0.1-0.5 g). The optimal conditions for the adsorption of MB onto Mg-treated PKS biochar were found to be at a pH value of 10 with a contact time of 30 minutes and a dosage of 0.5 gram with a percentage removal of 98.50%. All chemically modified PKS biochar are proven to be successful in removing MB from an aqueous solution compared to untreated PKS biochar.

Item Type: Thesis (Masters)
Additional Information: Thesis (MSc.) - Universiti Malaysia Sarawak , 2021.
Uncontrolled Keywords: Biochar, chemical modification, characterization, methylene blue, response surface methodology.
Subjects: Q Science > QD Chemistry
Divisions: Academic Faculties, Institutes and Centres > Faculty of Resource Science and Technology
Faculties, Institutes, Centres > Faculty of Resource Science and Technology
Date Deposited: 13 Aug 2021 00:57
Last Modified: 04 Apr 2023 07:43

Actions (For repository members only: login required)

View Item View Item