WEIGHTING THE POSITION & SKILLSET OF PLAYERS IN LEAGUE OF
LEGENDS USING ANALYTIC HIERARCHY PROCESS (AHP)

JEREMIAH ANYI WAN JR

Bachelor of Computer Science with Honours

(Software Engineering)

2020
WEIGHTING THE POSITION & SKILLSET OF PLAYERS IN LEAGUE OF LEGENDS USING ANALYTIC HIERARCHY PROCESS (AHP)

JEREMIAH ANYI WAN JR

This project is submitted in partial fulfillment of the requirements for the degree of

Bachelor of Computer Science with Honours

(Software Engineering)

Faculty of Computer Science and Information Technology

UNIVERSITI MALAYSIA SARAWAK

2020
UNIVERSITI MALAYSIA SARAWAK

THESIS STATUS ENDORSEMENT FORM

TITLE: WEIGHTING THE POSITION & SKILL SET OF PLAYERS IN LEAGUE OF LEGENDS USING ANALYTIC HIERARCHY PROCESS (AHP)

ACADEMIC SESSION: 2019/2020

JEREMIAH ANYI WAN JR
(CAPITAL LETTERS)

I hereby agree that this Thesis shall be kept at the Centre for Academic Information Services, Universiti Malaysia Sarawak, subject to the following terms and conditions:

1. The Thesis is solely owned by Universiti Malaysia Sarawak
2. The Centre for Academic Information Services is given full rights to produce copies for educational purposes only
3. The Centre for Academic Information Services is given full rights to de-accession in order to develop and test new database
4. The Centre for Academic Information Services is given full rights to reproduce copies of this Thesis as part of its exchange item program between Higher Learning Institutions for the purpose of inter-library loan between HILL
5. ** Please tick one)

☐ CONFIDENTIAL (Certain classified information, subject to the Official Secrets Act 1972)
☐ RESTRICTED (Certain restricted information as dictated by the body or organization where the research was conducted)
☐ UNRESTRICTED

JEREMIAH ANYI WAN JR
(AUTHOR'S SIGNATURE)

Permanent Address
No. 866, Jalan Oil Well No...
Canada View Garden,
93000 Miri, Sarawak

Date: 01/08/2020

Note: ^ Thesis refers to PhD, Master, and Bachelor Degree.
* For Confidential or Restricted materials, please contact the relevant documentation office of the organisation. Do not circulate.
Declaration

I hereby declare that this report is my own original work. All my works are based on references stated within this report unless explicitly stated. All the text written in this report is done by me and not by any other person.

..

(Jeremiah Anyi Wan Jr) 15 July 2020
Acknowledgement

First I would like to thank my co-supervisor Sir Ahmad Alif bin Kamal for giving the opportunity to take this Final Year Project that uses mathematical concept and esports. Both of these key points coincide with my personal interests and having the opportunity to dabble in these topics allowed me to learn more about new mathematical concept and also improve my own knowledge on esports. I would also have to give thanks for allowing me to use League of Legends as the esports to research on as it is one of my interests and you were kind enough to accept this minor change to the topic so I can research on things that I am passionate about.

Next I would like to thank my supervisor Dr Shapiee Abdul Rahman for supporting me during the Final Year Project and reviewing my project papers. For both of my supervisor and my co-supervisor, I am thankful for your time spent assisting me in completing my Final Year Project.

To my examiner Dr Phang Piau, I am very happy to see an examiner that is interested with my Final Year Project. I hope that Dr Phang Piau is happy with my project and any criticisms or comments on my Final Year Project will be much appreciated in order to allow me to deliver the best Final Year Project that I am able to create. I would also like to thank Dr Wang Yin Chai for being calm, open and caring toward me even though it might have troubled you. I appreciate all the guidelines and coordination given throughout the semester as the Final Year Project is being conducted.

Finally, to my fellow friends, thank you for being with me as we help each other in completing our Final Year Project together. The opportunity to be together in supporting and guiding each other during these times were very helpful.
Abstract

In this day and age, esports such as League of Legends (LoL) is a popular form of competition using video game, each team consisting of five players. Many researchers have conducted studies in the esports field, however, those that apply quantitative techniques are still scarce. In this project, Analytic Hierarchy Process (AHP) is proposed for weighting position and skillsets of players in LoL. It is hypothesized by the AHP developer that pairwise comparison can be used to derive priority scale through the judgment of experts. A questionnaire is designed to obtain pairwise comparison from players which was then used to develop the priority scale. The empirical results obtained show the weightage of position and skillset of each player which highlights the important criteria based on their judgment. The results can be used to determine the best players for each position and the skillset required by each player. It is proven that human judgment can be quantified to show important information that can be analyzed. As a lack of experts inhibits this research from obtaining high quality data, it is hoped that future research are able to procure experts for more valuable data.
Abstrak

Table of Contents

Declaration ... ii

Acknowledgement .. iii

Abstract .. iv

Abstrak ... v

Table of Contents .. vi

List of Tables .. xi

List of Figures ... xiii

1.0 INTRODUCTION .. 2

1.1 Project Background .. 2

1.2 Problem Statement .. 2

1.3 Objectives ... 3

1.4 Methodology .. 3

1.5 Project Scope ... 4

1.6 Significance of Project .. 5

1.7 Project schedule ... 5

1.8 Expected outcome .. 8

1.9 Project outline ... 8
LITERATURE REVIEW

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Multi-Criteria Decision Making</td>
<td>9</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Introduction</td>
<td>9</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Analytic Hierarchy Process (AHP)</td>
<td>9</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Fuzzy Theory</td>
<td>10</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Multi-Attribute Utility Theory (MAUT)</td>
<td>11</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Simple Multi-Attribute Ranking Technique (SMART)</td>
<td>12</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Advantage and Disadvantages</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Application of AHP in sports</td>
<td>13</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Volleyball sport</td>
<td>14</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Soccer sport</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Applying AHP in League of Legends esports</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>Conclusion</td>
<td>18</td>
</tr>
</tbody>
</table>

METHODOLOGY

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Requirement Analysis</td>
<td>19</td>
</tr>
<tr>
<td>3.2</td>
<td>Analytic Hierarchy Process</td>
<td>20</td>
</tr>
</tbody>
</table>
3.2.1 Pairwise Comparison .. 20
3.2.2 Comparison Matrix .. 22
3.2.3 Priority Vector .. 23
3.2.4 Consistency Index and Consistency Ratio 24
3.3 Basics of League of Legends ... 26
3.4 Position and Skillsets .. 29
3.5 Selected Position and Skillsets ... 33
3.6 Decision Making Hierarchy Tree ... 34
 3.6.1 Hierarchy Tree ... 34
 3.6.2 Questionnaire ... 35
 3.6.3 Cluster Sampling Method ... 36
3.7 Analytical Hierarchy Process in League of Legends 36
 3.7.1 Pairwise Comparison ... 36
 3.7.2 Checking the Consistency ... 41
 3.7.3 Hierarchy Tree ... 42

4.0 DATA COLLECTION AND WEIGHTAGE COMPUTATION 45
 4.1 Data Collection .. 45
LIST OF TABLES

Table 1.1: Project Schedule for FYP 1 ... 6
Table 1.2: Project Schedule for FYP 2 ... 6
Table 2.1: Advantages and Disadvantages of each MCDM Methods 13
Table 3.1: Requirements for FYP 1 .. 19
Table 3.2: Pairwise Comparison among the 3 fruits .. 20
Table 3.3: Number of comparisons using nCr formula 21
Table 3.4: Saaty’s Scale for Pairwise Comparisons (Saaty, 2008) 22
Table 3.5: Comparison Matrix between the 3 fruits .. 23
Table 3.6: Sum of each column of the matrix ... 23
Table 3.7: Normalized relative weight of the matrix and their Priority Vector 24
Table 3.8: Saaty’s Random Consistency Index .. 25
Table 3.9: The 5 position in League of Legends .. 30
Table 3.10: The 8 skillset used by Mobalytics (Agilio, 2019) 32
Table 3.11: Position and skillsets used .. 34
Table 3.12: Matrix of the 5 positions .. 39
Table 3.13: Matrix of the 5 skillset .. 39
Table 3.1: Example of priority vector in percentage (%) ..40

Table 3.15: Full comparison matrix of Level 1 ..43

Table 3.16: Composite weight of the skillsets ..44

Table 4.1: Comparison matrix between 5 positions ..45

Table 4.2: Consistency Index of each respondent corresponding to each level46

Table 4.3: Consistency Ratio of each respondents corresponding to each level47

Table 4.4: Highlighted respondents with Consistency Ratio less than 10%47

Table 4.5: Priority Vector of each respondent ..48

Table 4.6: Most important position and skillset based on each respondent49

Table 4.7: Composite weight of each respondent skillset ..50

Table 4.8: Competitive ranking of every respondent ...51
LIST OF FIGURES

Figure 1.1: Gantt chart of Project Schedule during FYP 1 ...7

Figure 1.2: Gantt chart of Project Schedule during FYP 2 ...7

Figure 2.1: Flow chart of Analytical Hierarchy Process for Volleyball sport15

Figure 3.1: The Summoner’s Rift map ...27

Figure 3.2: League of Legends stat page ..31

Figure 3.3: Excerpt from the questionnaire ...35

Figure 3.4: All 10 pairwise comparisons between each position ...37

Figure 3.5: All 10 pairwise comparisons between each skillset ...38

Figure 4.1: Hierarchy Tree of Respondent 1 ...50
1.0 INTRODUCTION

1.1 Project Background

League of Legends is a competitive multiplayer online battle arena (MOBA) game where a team of 5 fights against another team of 5 in order to destroy opponent’s base called the Nexus as the winning condition in a map called Summoner’s Rift. Cooperation among teammates is important in achieving success. Deciding who plays in a team can determine whether the team wins or loses, therefore this study will use Analytic Hierarchy Process in weighting player roles and skillset which can determine the best players to create a team.

1.2 Problem Statement

In this day and age, esports have a lot of games to compete for worldwide. For each game, tournaments can be held locally or internationally. Some of these esports games are team-based games with differing amount of players in a team for different games. When it comes to League of Legends, the formation of a team of 5 is one of the problems faced by any esports organisation that wants to enter the competitive scene. A case where there is a change of players happens frequently that can demoralise and may possibly even add new complications for the team as a whole.

Using AHP which is a strong multi-criteria element for decision making behaviour, we can find the weightage of player position and the preferred skillset for each position. This is to acquire a better understanding of what is needed to form a good team for a League of Legends game.
1.3 Objectives

1. To propose the mathematical concept of Analytic Hierarchy Process in determining the weight of position and skillset of players when playing League of Legends.
2. To determine quantifiable qualifications for each position and skillsets to increase the chances of winning a game.
3. To identify the weight of position and skillsets needed when playing League of Legends. The problems are decomposed into a hierarchy of small problems which can be analysed independently.

1.4 Methodology

This study will focus on conducting an extensive literature review on Analytic Hierarchy Process (AHP), a powerful tool developed in 1980 by Thomas L. Saaty that manages qualitative and quantitative multi-criteria elements for decision-making process. AHP is often used in many fields such as resource planning and allocation, purchasing and supplying management, warehouse and data collecting system, as well as team formation in a team-based sport. The literature review will also include understanding the game mechanics in League of Legends such as character roles, player positions, skillsets, winning condition, map awareness, map control and many more.

Next, the hierarchical problem involving player position and skillsets needed for position is established. Questionnaires will be designed and distributed to respondents that include experienced players, team managers, coaches, game casters and streamers to obtain their judgement. The data is then sorted into a pairwise matrix for a pairwise matrix comparison.
In the final phase, the consistency ratio is calculated to validate the results obtained from the questionnaire. Using the consistency data, a geometric mean is obtained and normalized which will produce the weights of position and skillset for each position. Some of the 8 skillset that may be studied during the project includes: Aggression, Consistency, Farming, Fighting, Objective Control, Survivability, Versatility and Vision. These skillsets may be changed depending on which skillset can be measured accordingly and whether it meets the requirements of being a suitable skillset to include.

1.5 Project Scope

This project involves using Analytic Hierarchy Process (AHP) to obtain the weight of position and skillset of players when playing League of Legends. The weight can be determined by finding skillsets that can be measured to determine whether a player is good or not in a certain skillset. This allow the user of the obtained data to determine which player with a certain skillset is the most suitable to fill into which role. The data of these skillsets will be obtained by using survey in the form of a questionnaire. It is best to avoid including too many skillset to avoid having a large table that may become unreadable by an average person, and to allow higher consistency of the weightage. AHP is not used to obtain a correct decision; instead it is used as an indicator on what is the best choice depending on the situation and goal.
1.6 Significance of Project

Team formation plays a vital role for a team-based sport especially when different positions are weighted, and each position require certain skillsets for the player in the role to perform well for the team. Assessments are done by the team management in order to pick suitable players in each role to work together as a team and produce the best results to achieve victory and win tournaments. The weightage of positions and skillsets provided through this study will be useful by team managers to decide the best players in each game.

1.7 Project schedule

FYP 1 was done from 9 September 2019 until 12 December 2019. This covers from the brief project description of the Final Year Project until the final submission for FYP1. FYP 2 was done from 11 Feb 2020 until 15 August 2020. FYP 2 was expected to end on 29 May 2020, but the Movement Control Order (MCO) was occurring throughout Malaysia during this time. Therefore, Chapter 4 until Final Report Submission is delayed to 9 Jun 2020 until 15 August 2020. FYP 2 covers from proposal of FYP 2 until final report submission which includes paper.
<table>
<thead>
<tr>
<th>Description</th>
<th>Start</th>
<th>End</th>
<th>Duration(Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Project Description</td>
<td>9-Sep</td>
<td>29-Sep</td>
<td>21</td>
</tr>
<tr>
<td>Full Proposal</td>
<td>29-Sep</td>
<td>19-Oct</td>
<td>21</td>
</tr>
<tr>
<td>Chapter 1 : Introduction</td>
<td>19-Oct</td>
<td>26-Oct</td>
<td>8</td>
</tr>
<tr>
<td>Chapter 2 : Literature Review</td>
<td>26-Oct</td>
<td>16-Nov</td>
<td>22</td>
</tr>
<tr>
<td>Chapter 3 : Methodology</td>
<td>16-Nov</td>
<td>5-Dec</td>
<td>20</td>
</tr>
<tr>
<td>Report Submission</td>
<td>12-Dec</td>
<td>12-Dec</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1.1: Project Schedule for FYP 1

<table>
<thead>
<tr>
<th>Description</th>
<th>Start</th>
<th>End</th>
<th>Duration(Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposal Submission</td>
<td>11-Feb</td>
<td>17-Feb</td>
<td>7</td>
</tr>
<tr>
<td>Chapter 4: Data Collection</td>
<td>17-Feb</td>
<td>21-Mar</td>
<td>34</td>
</tr>
<tr>
<td>Movement Control Order</td>
<td>18-Mar</td>
<td>9-Jun</td>
<td>84</td>
</tr>
<tr>
<td>Chapter 5: Result and Analysis</td>
<td>9-Jun</td>
<td>26-Jun</td>
<td>18</td>
</tr>
<tr>
<td>Chapter 6 : Conclusion and Future Work</td>
<td>26-Jun</td>
<td>5-July</td>
<td>10</td>
</tr>
<tr>
<td>Draft Submission</td>
<td>5-July</td>
<td>15-July</td>
<td>11</td>
</tr>
<tr>
<td>Symposium</td>
<td>21-July</td>
<td>24-July</td>
<td>4</td>
</tr>
<tr>
<td>Final Report Submission</td>
<td>24-July</td>
<td>15-Aug</td>
<td>23</td>
</tr>
</tbody>
</table>

Table 1.2: Project Schedule for FYP 2
Figure 1.1: Gantt chart of Project Schedule during FYP 1

Figure 1.2: Gantt chart of Project Schedule during FYP 2
1.8 Expected outcome

This project will produce a computed and tabulated datasets of weights for different positions in a team. This will show the importance level of all position, and weights for skillsets needed for each position and in the team to show the importance levels of skillsets. The weights obtained can be used by team coaches, players, and anyone else to determine which player will bring out the best results in a team and who to prioritize in a team.

1.9 Project outline

Chapter 1 focuses on introducing the project by giving a background, problem statement, objectives, methodology, project scope, significance of project, project schedule and the expected outcome of the proposed project. Chapter 2 focuses on literature review about Analytic Hierarchy Process (AHP) developed by Thomas L. Saaty. Chapter 3 focuses on discussing the methodology in detail. The steps to achieve the goal of obtaining the weight of position and skillset of player are mentioned here.
2.0 LITERATURE REVIEW

2.1 Introduction

In this chapter, we will introduce the concept of Multi-Criteria Decision Making (MCDM) method in achieving our research objective. The purpose is to find the advantage and disadvantage of one method over another and explain why Analytic Hierarchy Process (AHP) is being used for our paper. After that, we will review other papers that make use of AHP in their research paper and find out what is the advantage and disadvantages of AHP in this research while finding out how using AHP can allow us to achieve our Research Objective.

2.2 Multi-Criteria Decision Making

2.2.1 Introduction

Velasquez and Hester (2013, p. 56) said that Multi-Criteria Decision Making (MCDM) methods have been used for various applications. Here, we will review of some of the common MCDM methods and then analyze the advantages and disadvantages of each method.

2.2.2 Analytic Hierarchy Process (AHP)

According to Saaty (2008) Analytic Hierarchy Process is “a theory of measurement through pair-wise comparisons and relies on the judgments of experts to derive priority scales” (p. 83). Loken (2007) said that one of the major characteristics of Analytic Hierarchy Process is the use of
pairwise comparison where the preferences between two choices or alternative are compared to each other in order to estimate the weightage of criteria (p. 1587).

AHP has seen several uses such as Lee et al. (2012) that evaluated the factors and alternatives of Technology Transfer Adoption to increase revenue using AHP to weight seven factors and rank three alternatives. Bentes et al. (2012) examined a telecommunication company to assess its organizational performance using AHP to prioritize performance perspectives and indicators. The method was used in combination with the Balanced Scorecard (BSC), a framework for performance assessment, in order to rank the alternatives properly. This framework helps show the associated necessary criteria and alternatives while the AHP is responsible for comparisons, weighting, and rankings. With four criteria and three alternatives, AHP was able to handle the multiple measures and perspectives.

Velasquez and Hester (2013, p. 58) written that one of the advantages of AHP is that it is easy for decision makers to use. It is also scalable and can change depending on the number of criteria and alternatives. Also it is mentioned that AHP “has experienced problems of interdependence between criteria and alternatives” (p. 58). Since AHP use the approach of pairwise comparisons, it can be susceptible to inconsistencies in the judgment and ranking criteria (p. 58).

2.2.3 Fuzzy Theory

Balmat et al. (2011) provided a different approach to risk assessment in response to an increase in marine accidents according to the International Maritime Organization. There are three common risk factors identified through a new marine risk assessment system which sought to address decision making by using fuzzy method. This is done because of an increase in the