Adsorption of Zinc Oxide Nanoparticles onto Esterified Carbonize Sago Hampas: Kinetic and Equilibrium Studies

Droepenu, Eric Kwabena and Wee, Boon Siong and Chin, Suk Fun and Kok, Kuan Ying (2020) Adsorption of Zinc Oxide Nanoparticles onto Esterified Carbonize Sago Hampas: Kinetic and Equilibrium Studies. Iranian Journal of Materials Science and Engineering, 17 (4). pp. 152-169. ISSN 1735-0808

[img] PDF
Adsorption of Zinc Oxide Nanoparticles onto Esterified Carbonize Sago Hampas Kinetic and Equilibrium Studies.pdf

Download (3MB)
Official URL: http://ijmse.iust.ac.ir/article-1-1778-en.html

Abstract

Sago hampas was chemically modified through esterification process to adsorb both laboratory and commercial synthesized ZnO nanoparticles from water in a batch adsorption studies. The esterified sago hampas (ECSH) as a biosorbent w:as char:acterized using Energy dispersive X-ray spectroscopy (EDX), Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) technique s. Investigating the effect of pH, contact time, initial sorbate ion concentration, temperature and sorbent mass were carried out where adsorption parameters were analyzed using Langmuir, Freundlich and Temkin models. The correlation between kinetics of adsorption and tgr rate order of ZnO nanoparticles on ECSH were also determined. The adsorption of the ZnO nanoparticles was found to increase with increasing contact time with the attainment of equilibrium at 100th minutes with maximum removal efficiency of 85.5% (0.036 mg/g) and 89.6% (0.106 mg/g) ZnO nanoparticles for laboratory and commercial synthesized ZnO from aqueous solution. An optimum pH of 8 with adsorbent dose of 2.0 g at a temperature of 50 oC gave good results of ZnO nanoparticles removal. The equilibrium data for both sorbate solution fitted well for both Langmuir and Freundlich isotherm models. From the Langmuir model, ECSH recorded greater sorption capacity of 0.2 mg/g and 0.6 mg/g for both laboratory and commercial synthesized ZnO nanoparticles respectively. The kinetic studies showed pseudo-second order model as the best fitted for the sorption of ZnO nanoparticles for both synthesized samples.

Item Type: Article
Uncontrolled Keywords: Esterified Sago hampas, Langmuir isotherm model, Freundlich isotherm model, Temkin isotherm model, Pseudo-first model, Pseudo-second model, unimas, university, universiti, Borneo, Malaysia, Sarawak, Kuching, Samarahan, ipta, education, research, Universiti Malaysia Sarawak
Subjects: Q Science > QD Chemistry
Divisions: Academic Faculties, Institutes and Centres > Faculty of Resource Science and Technology
Faculties, Institutes, Centres > Faculty of Resource Science and Technology
Depositing User: Siong
Date Deposited: 15 Dec 2020 05:48
Last Modified: 15 Dec 2020 05:48
URI: http://ir.unimas.my/id/eprint/33372

Actions (For repository members only: login required)

View Item View Item