ARTIFICIAL NEURAL NETWORKS
FOR RAINFALL RUNOFF MODELLING
WITH SPECIAL REFERENCE TO
SG. BEDUP CATCHMENT AREA

KUOK KING KUOK

A thesis submitted
in fulfillment of the requirement for the degree of
Master of Engineering

FACULTY OF ENGINEERING
UNIVERSITI MALAYSIA SARAWAK
2004
DECLARATION

No portion of the work referred to in this report has been submitted in support of an application for another degree or qualification of this or any other university or institution of higher learning.

Kuok King Kuok
02-02-0687
6 JUNE 2004
I would like to use this opportunity to give my heartiest thanks to my supervisor, Assoc. Prof. Dr. Nabil Bessaih for all the invaluable excellent guidance, technical support, encouragement, concern and spent a lot of his time and effort in giving constructive advice. Certainly, this thesis will not come true without his guidance. I would also like to thank to Mr. Mohd. Saufee Muhammad for his valuable guidance in my research.

Besides, I would like to thank my boss Mr. Steven Tan and Mr. Alan Tan from Department of Irrigation and Drainage (DID) Sarawak for their support and understanding that made this project success. I would also like to thank to Mr. Lim Hiok Hwa from Hydrological Branch, DID Sarawak for providing relevant raw data for model calibration.

Last but not least, I am deeply grateful to my lovely family for their unconditional supports and encouragements from the beginning of this project until the end. Thanks.
ABSTRACT

The rainfall-runoff relationships are among the most complex hydrologic phenomena to comprehend due to the tremendous spatial and temporal variability of watershed characteristics, precipitation patterns as well as a number of variables involved in modeling the physical processes. Hydrologists have developed conceptual models to provide daily, monthly and seasonal runoff. These are composed of a large number of parameters and the interaction of these is highly complicated.

Artificial Neural Network (ANN) is an information-processing system composed of many nonlinear and densely interconnected processing elements or neurons. ANN is able to extract the relation between the inputs and outputs of a process, without the physics being explicitly provided to them. The natural behavior of hydrological processes is appropriate for the application ANN in hydrology. In the last few years ANNs were used to build rainfall runoff models, estimate pier scour, predict sediment transport, and setup rating curves.

A rainfall runoff model for Sungai Bedup Basin in Sarawak was built using three different ANN architectures namely Multilayer perceptron (MLP), Recurrent (REC) and Radial Basis function (RBF). These networks were used to simulate daily runoff and generate storm hydrograph for a given rainfall event. Antecedent rainfall, antecedent runoff and rainfall for actual event were used as input. The runoff for the actual event was the output. The ANNs were trained using different training algorithms, different learning rates, different length of data and different number of
hidden neurons. All the relevant data was collected from the Department of Irrigation and Drainage, Sarawak. The ANNs were designed to simulate daily runoff and hourly runoff. It was also attempted to simulate runoff for few days ahead, and few hours ahead in the case of hourly simulation. The results were evaluated using the coefficient of correlation R and the Nash-Sutcliffe Coefficient E^2.

The ANNs trained during this investigation have been able to simulate daily runoff with high accuracy of up to $R=0.97$. The storm hydrograph simulated were very close to the observed hydrograph. It was also shown that ANN can simulate runoff with few days ahead or few hours ahead. This makes them useful for flood warning systems. Comparing the three ANNs investigated, it was found that REC performs slightly better than MLP but RBF performance is below expectation.
Hubungan antara kadarair dan hujan adalah antara fenomena hidrologi yang paling kompleks disebabkan sifat watershed yang berubah-ubah, pattern hujan serta bilangan input yang terlibat untuk memodelkan proses fisikal. Pakar-pakar hidrologi telah membina model secara Konseptual untuk medapatkan kadarair pada setiap jam, harian seta semusim. Namun, ia melibatkan parameter yang banyak dan interaksinya adalah amat merumitkan.

Artificial Neural Network (ANN) merupakan sistem yang memproseskan informasi yang mengandungi elemen atau neurons yang banyak, tidak linear dan berhubung-kait antara satu sama lain. ANN berupaya untuk mewujudkan hubungan antara input dan output tanpa diberi sifat-sifat fizik kepadanya. Sifat-sifat semulajadi hidrologi adalah amat bersesuaian untuk menggunakan ANN. Masa kini, ANNs telah digunakan untuk membina model kadarair-hujan, menganggar pier scour dan pemindahan sedimen serta membentuk rating curves.

Model kadarair-hujan di Sungai Bedup, Sarawak telah dibina dengan menggunakan tiga jenis network architectures iaitu Multilayer perceptron (MLP), Recurrent (REC) dan Radial Basis Function (RBF). Ketiga-tiga jenis network architectures telah digunakan untuk simulasi kadarair harian dan menjanakan hidrograf. Hujan antecedent, Kadarair antecedent serta hujan semasa digunakan sebagai input Manakala, outputnya adalah kadarair semasa. ANNs telah dilatih dengan menggunakan pelbagai training algorithms, pelbagai learning rates, panjang data yang berlainan dan bilangan hidden neurons yang berlainan. Semua data yang digunakan diperolehi daripada Jabatan Pengairan
dan Saliran (JPS), Sarawak. ANNs yang direkabentuk untuk simulasi kadaralir harian dan kadaralir sejam. ANNs juga turut mengimulasi kadalir harian pada beberapa hari ke hadapan dan kadaralir sejam pada beberapa jam ke hadapan. Ketepatanya diukur dengan menggunakan coefficient of correlation R dan Nash-Sutcliffe coefficient E^2.

Keputusan ujikaji menunjukkan ANNs berupaya untuk mempamerkan ketepatan yang tinggi untuk kadaralir harian, $R=0.97$. Pada masa yang sama, hidrograf yang disimulasikan hampir serupa dengan hidrograf sebenar. Ini menunjukkan bahawa ANNs berupaya untuk simulasi kadaralir pada beberapa hari ke hadapan dan beberapa jam ke hadapan. Ini amat berguna sebagai flood warning system. Dengan membandingkan ketiga-tiga ANNs yang dikaji, didapati bahawa REC mempersembahkan keputusan yang lebih baik daripada MLP tetapi RBF mempamerkan keputusan di bawah jangkaan.
TABLE OF CONTENTS

Acknowledgements ... i
Abstract ... ii
Abstrak ... iv
Table of Content ... vi
List of Figures ... vi
List of Tables ... ix
List of Appendixes .. xiv
List of Symbols .. xviii

CHAPTER 1 INTRODUCTION

1.1 Introduction ... 1
1.2 Artificial Neural Networks (ANNs) 3
1.3 Objectives of this Thesis ... 5
1.4 Layout of this Thesis .. 6

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction ... 8
2.2 Applications of ANNs in Rainfall-Runoff Modelling 8
2.3 River Flood Prediction of Ungauged Catchments 40
2.4 Real-time Flow Prediction Using Measured Flow Data from Upstream Gauging Stations 42
2.5 Improving the Accuracy of a Hydrodynamic Model 45
2.6 Improving Neural Networks Results 47
2.7 Conclusion .. 54

CHAPTER 3 ARTIFICIAL NEURAL NETWORKS (ANNs)

3.1 Introduction ... 57
3.2 Relationships Between ANNs and Biological Neural System .. 58
3.2.1 The Biological Neuron .. 59
3.2.2 The Artificial Neuron .. 60
3.3 Benefits of Artificial Neural Networks 62
3.4 Model of A Neuron ... 64
3.5 Interactions Between Neurons 67
3.6 Types of Activation Function 69
3.7 Learning Process in ANNs .. 72
3.7.1 Learning Rules .. 74
3.7.1.1 Hebbian Rule .. 74
3.7.1.2 Perceptron Rule .. 75
3.7.1.3 Delta Rule or least mean square (LMS) Rule 77
3.7.1.4 Generalized Delta Rule or Backpropagation Learning Rule .. 78
3.7.1.5 Kohonen Rule ... 80
3.7.1.6 Outstar Rule .. 82
3.7.1.7 Drive Reinforcement Rule 83
3.7.1.8 Boltzmann Rule .. 85
3.7.2 Learning Paradigms .. 86
3.7.2.1 Supervised Learning .. 87
CHAPTER 4 METHODOLOGY
4.1 Introduction
4.2 Study Area
4.3 Collection of Hydrological Data for the Selected Catchment
4.4 Selection of Neural Network and Training Algorithm
4.5 Model Development
4.6 Training and Testing of the Model
4.7 Performance Criteria
4.8 Improving Generalization
4.9 Software Used

CHAPTER 5 RESULTS AND DISCUSSION FOR DAILY RUNOFF SIMULATION
5.1 Introduction
5.2 MLP Network
5.3 REC Network
5.4 RBF Network
5.5 Comparison of the Three ANNs for Daily Runoff
5.6 Simulation for Long Period of Time
5.7 2 and 3-day Ahead Runoff Simulation
5.7.1 Increase of lead-time
5.8 Comparison of the Three ANNs for 2 and 3-day Ahead
5.9 Regularization, Early Stopping and Normalization
 5.9.1 Regularization, Early Stopping and Normalization for REC Network
 5.9.2 Regularization, Early Stopping and Normalization for MLP Network
5.10 Conclusion

CHAPTER 6 RESULTS AND DISCUSSION FOR HOURLY RUNOFF SIMULATION

6.1 Introduction
6.2 MLP Network
 6.2.1 Effect of Different Types of Training Algorithm
 6.2.2 Effect of Length of Training Data
 6.2.3 Effect of Number of Hidden Neurons
 6.2.4 Effect of Learning Rate Value
 6.2.5 Effect of Antecedent Data
 6.2.6 Optimal Configuration of MLP Network
6.3 REC Network
 6.3.1 Effect of Length of Training Data
 6.3.2 Effect of Number of Hidden Neurons
 6.3.3 Effect of Learning Rate Values
 6.3.4 Effect of Antecedent Data
 6.3.5 Optimal Configuration of REC Network
6.4 Comparison of the MLP and REC Networks for Hourly Runoff
6.5 Runoff Simulation with Lead-time
 6.5.1 Increase of lead-time
6.6 Comparison Between Observed Peak and Simulated Peak
6.7 Comparison of the MLP and REC Networks for 3,6,12 and 18-hour ahead
6.8 Regularization, Early Stopping and Normalization
 6.8.1 Regularization, Early Stopping and Normalization for REC Network
 6.8.2 Regularization, Early Stopping and Normalization for MLP Network
6.9 Conclusion

CHAPTER 7 CONCLUSION AND FUTURE WORKS

7.1 Daily Runoff Simulation
7.2 Hourly Runoff Simulation
7.3 Suggestion for Future Research

LIST OF REFERENCES
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>42</td>
</tr>
<tr>
<td>3.1</td>
<td>60</td>
</tr>
<tr>
<td>3.2</td>
<td>61</td>
</tr>
<tr>
<td>3.3</td>
<td>65</td>
</tr>
<tr>
<td>3.4</td>
<td>66</td>
</tr>
<tr>
<td>3.5</td>
<td>67</td>
</tr>
<tr>
<td>3.6</td>
<td>69</td>
</tr>
<tr>
<td>3.7</td>
<td>70</td>
</tr>
<tr>
<td>3.8</td>
<td>71</td>
</tr>
<tr>
<td>3.9</td>
<td>73</td>
</tr>
<tr>
<td>3.10</td>
<td>81</td>
</tr>
<tr>
<td>3.11</td>
<td>87</td>
</tr>
<tr>
<td>3.12</td>
<td>90</td>
</tr>
<tr>
<td>3.13</td>
<td>91</td>
</tr>
<tr>
<td>3.14</td>
<td>93</td>
</tr>
<tr>
<td>3.15</td>
<td>95</td>
</tr>
<tr>
<td>4.1</td>
<td>99</td>
</tr>
<tr>
<td>4.2</td>
<td>100</td>
</tr>
<tr>
<td>4.3</td>
<td>103</td>
</tr>
<tr>
<td>4.4</td>
<td>104</td>
</tr>
</tbody>
</table>

FIGURE 2.1 The Plan of Upper Derwent River Catchment Showing Discharge Stations.

FIGURE 3.1 Simplified Biological Neuron and The Relationship of Its Four Components.

FIGURE 3.2 The Basics of An Artificial Neuron.

FIGURE 3.3 Nonlinear Model of a Neuron.

FIGURE 3.4 Affine Transformation Produced by the Presence of a Threshold.

FIGURE 3.5 Types of Interaction of Neurons within Neural Networks.

FIGURE 3.6 Threshold Function.

FIGURE 3.7 Piecewise-linear Function.

FIGURE 3.8 The Sigmoid Function.

FIGURE 3.9 The Taxonomy of the Learning Process.

FIGURE 3.10 Two-dimensional Unit Vectors in the Unit Circle.

FIGURE 3.11 Block Diagram of Supervised Learning.

FIGURE 3.12 Block Diagram of Unsupervised Learning.

FIGURE 3.13 MLP Network Architecture With Backpropagation Algorithm.

FIGURE 3.14 Radial Basis Function Network Architecture.

FIGURE 3.15 Recurrent Network Architecture.

FIGURE 4.1 The Sadong Basin Main Boundary, Batang Sadong Catchment, Location of Rainfall Gauging Station and River Stage Gauging Station within Sadong Basin.

FIGURE 4.2 Catchment for Sungai Bedup Basin and Location of Rainfall and River Stage Gauging Stations.

FIGURE 4.3 MLP Network Architecture.

FIGURE 4.4 REC Network Architecture.
RBF Network Architecture.

Process for Creating the Optimal MLP and REC Networks for Daily Runoff.

Process for Creating Optimal MLP and REC Networks for Hourly Runoff.

Schematic Diagram for MLP Network with 3-hour Ahead Runoff Forecast.

Schematic Diagram for REC Network with 3-hour Ahead Runoff Forecast.

Schematic Diagram for MLP Network with 6-hour Ahead Runoff Forecast.

Schematic Diagram for REC Network with 6-hour Ahead Runoff Forecast.

Schematic Diagram for MLP Network with 12-hour Ahead Runoff Forecast.

Schematic Diagram for REC Network with 12-hour Ahead Runoff Forecast.

Schematic Diagram for MLP Network with 18-hour Ahead Runoff Forecast.

Schematic Diagram for REC Network with 18-hour Ahead Runoff Forecast.

Plots of Observed Runoff Value versus Predicted Runoff Value.

Comparison between Simulated and Measured Runoff in Testing for MLPD4 Trained with TRAINSCG, TRAINGDX and TRAINCGB.

Comparison between Simulated and Measured Runoff for MLPD4 Trained with Different Length of Training Data.

Comparison between Simulated and Measured Runoff for MLPD4 Trained with Different Number of Hidden Neurons.

Comparison between Simulated and Measured Runoff in Testing for MLP Network with the Increase of Antecedent Days.
5.5 Comparison between Simulated and Measured Runoff for RECD4 Trained with Different Length of Training Data. 131
5.6 Comparison between Simulated and Measured Runoff for RECD4 Trained with Different Number of Hidden Neurons. 133
5.7 Comparison between Simulated and Measured Runoff for RECD4 Trained with Different Number of Antecedent Days. 135
5.8 Performance of RBFD5 Before, At and After Optima Spread Value. 137
5.9 Comparison Between MLPD4, RECD4 and RBFD4 for Daily Runoff. 138
5.10 The Performance of MLPD4, RECD4 and RBFD4. 138
5.11 Performance of MLPD4, RECD4 and RBFD4 Tested with 6 and 12 Months of Data. 140
5.12 Performance of MLPD4 and RECD4 with the Increase of Lead-time. 142
5.13 Comparison Between Observed and Simulated Runoff for MLPD4 at 1, 2 and 3-Day Ahead Runoff Forecast. 143
5.14 Comparison Between Observed and Simulated Runoff for RECD4 at 1, 2 and 3-Day Ahead Runoff Forecast. 144
6.1 Comparison between Simulated and Measured Runoff in Testing for MLPH10 Trained with TRAINSCG, TRAINGDX and TRAINCGB. 149
6.2 Comparison between Simulated and Measured Runoff for MLPH10 Trained with Different Length of Training Data. 150
6.3 Comparison between Simulated and Measured Runoff for MLPH10 Trained with Different Number of Hidden Neurons. 151
6.4 Comparison between Simulated and Measured Runoff for MLPH10 at Different Learning Rate. 152
6.5 Comparison between Simulated and Measured Runoff in Testing for MLP Network with the Increase of Antecedent Data. 154
6.6 Comparison between Simulated and Measured Runoff for RECH10 Trained with Different Length of Training Data. 156
6.7 Comparison between Simulated and Measured Runoff for RECH10 Trained with Different Number of Hidden Neurons.

6.8 Comparison between Simulated and Measured Runoff for MLPH10 at Different Learning Rate.

6.9 Comparison between Simulated and Measured Runoff for RECH10 Trained with Different Number of Antecedent Data.

6.10 Comparison of MLPH10 and RECH10 for Hourly Runoff.

6.11 The Performance of MLPH10 and RECH10 for Hourly Runoff.

6.12 Performance of Storm Hydrograph 1 Trained with MLP Network at 1, 3, 6, 12 and 18-hour Lead-time.

6.13 Performance of Storm Hydrograph 2 Trained with MLPH10 at 1, 3, 6, 12 and 18-hour Lead-time.

6.14 Performance of Storm Hydrograph 3 Trained with MLPH10 at 1, 3, 6, 12 and 18-hour Lead-time.

6.15 Performance of Storm Hydrograph 4 Trained with MLPH10 at 1, 3, 6, 12 and 18-hour Lead-time.

6.16 Performance of Storm Hydrograph 5 Trained with MLPH10 at 1, 3, 6, 12 and 18-hour Lead-time.

6.17 Performance of Storm Hydrograph 6 Trained with MLPH10 at 1, 3, 6, 12 and 18-hour Lead-time.

6.18 Performance of Storm Hydrograph 1 Trained with RECH10 at 1, 3, 6, 12 and 18-hour Lead-time.

6.19 Performance of Storm Hydrograph 2 Trained with RECH10 at 1, 3, 6, 12 and 18-hours Lead-time.

6.20 Performance of Storm Hydrograph 3 Trained with RECH10 at 1, 3, 6, 12 and 18-hour Lead-time.

6.21 Performance of Storm Hydrograph 4 Trained with RECH10 at 1, 3, 6, 12 and 18-hours Lead-time.

6.22 Performance of Storm Hydrograph 5 Trained with RECH10 at 1, 3, 6, 12 and 18-hour Lead-time.

6.23 Performance of Storm Hydrograph 6 Trained with RECH10 at 1, 3, 6, 12 and 18-hour Lead-time.
6.24 Average R and E^2 for MLPH10 with the Increase of Lead-time.

6.25 Average R and E^2 for RECH10 with the Increase of Lead-time.

6.26 Average R and E^2 Values between MLPH10 and RECH10.
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Description</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Nash-Sutcliffe Coefficient of RealTime Flow Forecaster.</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Nash-Sutcliffe Coefficient of Early Warning Flow Forecaster.</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Summary of results of the SLM, the LPM, the NNLPM and the four neural network forms, the N1, the N2, the N3 and the N4.</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>The Effect of Input Rainfall Pattern on the Efficiency of the RBF network.</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Performance of Different Models on Testing Data.</td>
<td>20</td>
</tr>
<tr>
<td>2.6</td>
<td>Performance of Different Models According to PMSE.</td>
<td>20</td>
</tr>
<tr>
<td>2.7</td>
<td>Training and Test Phase Model Efficiency Index (EI).</td>
<td>23</td>
</tr>
<tr>
<td>2.8</td>
<td>Training and Test Phase Model Efficiencies: Sensitivity Analysis with Variations of Input of ANN1 model.</td>
<td>23</td>
</tr>
<tr>
<td>2.9</td>
<td>Runoff Forecast for Station Sajivali.</td>
<td>27</td>
</tr>
<tr>
<td>2.10</td>
<td>One-Day Ahead Forecast for Station Kunta.</td>
<td>27</td>
</tr>
<tr>
<td>2.11</td>
<td>One-Day Ahead Forecast for Station Koida.</td>
<td>27</td>
</tr>
<tr>
<td>2.12</td>
<td>Statistical Indices for Training ANN and WATBAL Models Developed Using Monthly Streamflow in Fraser River, Colorado.</td>
<td>30</td>
</tr>
<tr>
<td>2.13</td>
<td>Statistical Indices for Training Average, Dry and Wet Years Using ANN and SAC-SMA for Middle Raccoon River, IOWA.</td>
<td>30</td>
</tr>
<tr>
<td>2.14</td>
<td>The Statistical Indices for Training and Testing Using ANN and SCRR Models for Little Patuxent River Watershed.</td>
<td>30</td>
</tr>
<tr>
<td>2.15</td>
<td>Short-term Forecast Performance of Each Model on Each Watershed for the Years 1993 and 1994, Based on the RMSE, CC, NASH, and PC criteria.</td>
<td>33</td>
</tr>
<tr>
<td>2.16</td>
<td>Long-term Forecast Performance of Each Model on Each Watershed for the Years 1993 and 1994, Based on the RMSE, CC, NASH, and PC.</td>
<td>34</td>
</tr>
<tr>
<td>2.17</td>
<td>Evaluation of Models for 1-h predictions.</td>
<td>38</td>
</tr>
<tr>
<td>2.18</td>
<td>Result for Prediction Models.</td>
<td>40</td>
</tr>
</tbody>
</table>
2.19 Selected Input Variables for Ungauged Catchment Flood Prediction Network.

2.20 Different Pooling Groups of Catchments and the Values of H_2, mse and R.

2.21 The Values of RMSE and R^2 of the Predicted Flow with Different Type of Neural Networks, Input Data Length and Lead Time in Training and Testing Phases (For Tests 1 to 3).

2.22 Coefficient of Efficiency (R^2) and Root Mean Square Error (RMSE) of the Results Before and After Optimisation.

2.23 Model RMSE (m^3) and NSC (in parentheses) Statistics Averaged Over the Test Period (1993-1995).

2.25 Results Obtained for 12-h Flow Forecasting at Colwick on the River Trent with Different Types of ANN.

2.26 Results Obtained for 4-h Flow Forecasting at Marston on the River Dove with Different Types of ANN.

3.1 Comparison Between Biological Neural System and ANNs.

4.1 Training Data Sets for Daily Runoff Simulation.

4.2 Training Data Sets for Hourly Runoff Simulation.

4.3 Statistics for Model Comparison.

5.1 R Values of MLP Network with Different Training Algorithm. (Note: Trained with 27 months training data, LR=0.8, 1300 epochs, 250 hidden nodes).

5.2 Results for MLPD4 at Different Length of Training Data. (Note: LR=0.8, 4 antecedent data, 1300 epochs, 250 hidden nodes, TRAINSCG.)

5.3 Results of MLPD4 at Different Number of Hidden Nodes. (Note: Trained with 27 months training data, LR=0.8, 1300 epochs, 4 antecedent data, TRAINSCG.)

5.4 Results of MLPD4 at Different Learning Rate Value. (Note: Trained with 27 months training data, 250 hidden nodes, 1300 epochs, 4 antecedent data, TRAINSCG.)

5.5 Results for MLP Network at Different Number of Antecedent Days. (Note: LR=0.8, 1300 epochs, 250 hidden nodes, TRAINSCCG, 27 months of training data.)
5.6 Results for RECD4 at Different Length of Training Data.
(Note: LR=0.8, 4 antecedent data, 1300 epochs, 250 hidden nodes, TRAINGDX.)

5.7 Results of RECD4 at Different Number of Hidden Nodes.
(Note: Trained with 27 months training data, LR=0.8, 1300 epochs, 4 antecedent data, TRAINGDX.)

5.8 Results of RECD4 at Different Learning Rate Value. (Note: Trained with 27 months training data, 250 hidden nodes, 1300 epochs, 4 antecedent data, TRAINSCG.)

5.9 Results for REC network at Different Number of Antecedent Days. (Note: LR=0.8, 1300 epochs, 250 hidden nodes, TRAINSGDX, 27 months of training data.)

5.10 Results for RBFD4 at Different Length of Training Data.

5.11 Results for the Three ANNs Tested with 6 and 12 Months Data.

5.12 Results for the Three ANNs at Different Lead-time.

5.13 Results for RECD4 after Regularization, Early Stopping and Normalization.

5.14 Results for MLPD4 after Being Regularized, Early Stopping and Normalized.

6.1 R Values of MLP Network with Different Training Algorithms. (Note: Trained with 12 months training data, LR=0.8, 1000 epochs, 150 hidden nodes)

6.2 Results for MLPH10 at Different Length of Training Data. (Note: LR=0.8, 10 antecedent data, 1000 epochs, 150 hidden nodes, TRAINSCG.)

6.3 Results of MLPH10 at Different Number of Hidden Nodes. (Note: Trained with 12 months training data, LR=0.8, 1000 epochs, 10 antecedent data, TRAINSCG.)

6.4 Results of MLPH10 at Different Learning Rate Value. (Note: Trained with 12 months training data, 150 hidden nodes, 1000 epochs, 10 antecedent data, TRAINSCG.)

6.5 Results for MLP Network at Different Number of Antecedent Hours. (Note: LR=0.8, 1000 epochs, 150 hidden nodes, TRAINSCCG, 12 months of training data.)

6.6 Results for RECH10 at Different Length of Training Data. (Note: LR=0.8, 10 antecedent data, 1000 epochs, 150 hidden nodes, TRAINSGDX.)
6.7 Results of RECH10 at Different Number of Hidden Nodes. (Note: Trained with 12 months training data, LR=0.8, 1000 epochs, 10 antecedent data, TRAINGDX.)

6.8 Results of RECH10 at Different Learning Rate Value. (Note: Trained with 12 months training data, 150 hidden nodes, 1000 epochs, 10 antecedent data, TRAINSCG.)

6.9 Results for REC network at Different Number of Antecedent Data. (Note: LR=0.8, 1000 epochs, 150 hidden nodes, TRAINSGDX, 12 months of training data.)

6.10 R for MLPH10 at 1, 3, 6, 12 and 18-hour Lead-time.

6.11 E^2 for MLPH10 at 1, 3, 6, 12 and 18-hour Lead-time.

6.12 R for RECH10 at 1, 3, 6, 12 and 18-hour Lead-time.

6.13 E^2 for RECH10 at 1, 3, 6, 12 and 18-hour Lead-time.

6.14 Comparison between Observed and Simulated Peak Flow for MLPH10 at Different Lead-time.

6.15 Error for Observed and Simulated Peak Flow for MLPH10 at Different Lead-time.

6.16 Comparison Between Observed and Simulated Peak Flow for RECH10 at Different Lead-time.

6.17 Error for Observed and Simulated Peak Flow for RECH10 at Different Lead-time.

6.18 Results of MLPH10 for Storm hydrograph 1 after Being Regularized, Early Stopping and Normalized.

6.19 Results of RECH10 for Storm Hydrograph 1 after Being Regularized, Early Stopping and Normalized.
<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Complete Results for Daily Runoff Using MLP Network</td>
<td>192</td>
</tr>
<tr>
<td>II</td>
<td>Complete Results for Daily Runoff Using REC Network</td>
<td>214</td>
</tr>
<tr>
<td>III</td>
<td>Complete Results for Daily Runoff Using RBF Network</td>
<td>222</td>
</tr>
<tr>
<td>IV</td>
<td>Complete Results for Hourly Runoff Using MLP Network</td>
<td>225</td>
</tr>
<tr>
<td>V</td>
<td>Complete Results for Hourly Runoff Using REC Network</td>
<td>250</td>
</tr>
<tr>
<td>VI</td>
<td>Bibliography</td>
<td>259</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

P Rainfall
Q Runoff
u_k Linear combiner output
x_j Input signals
w_{kj} Synaptic weights
θ_k Threshold
ϕ_k Activation function
y_k Output signal of a neuron
ν_k Activation potential
n_i Neurons
t_i Target value
η Learning rate
α Decreasing learning rate
s State of neuron
τ Time constant
f Nonlinear activation function
R Coefficient of Correlation
E^2 Nash-Sutcliffe Coefficient

MLPD1 MLP network for daily runoff simulation with 1 antecedent day
MLPD2 MLP network for daily runoff simulation with 2 antecedent days
MLPD3 MLP network for daily runoff simulation with 3 antecedent days
MLPD4 MLP network for daily runoff simulation with 4 antecedent days
MLPD5 MLP network for daily runoff simulation with 5 antecedent days
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECD1</td>
<td>REC network for daily runoff simulation with 1 antecedent day</td>
</tr>
<tr>
<td>RECD2</td>
<td>REC network for daily runoff simulation with 2 antecedent days</td>
</tr>
<tr>
<td>RECD3</td>
<td>REC network for daily runoff simulation with 3 antecedent days</td>
</tr>
<tr>
<td>RECD4</td>
<td>REC network for daily runoff simulation with 4 antecedent days</td>
</tr>
<tr>
<td>RECD5</td>
<td>REC network for daily runoff simulation with 5 antecedent days</td>
</tr>
<tr>
<td>RBFD1</td>
<td>RBF network for daily runoff simulation with 1 antecedent day</td>
</tr>
<tr>
<td>RBFD2</td>
<td>RBF network for daily runoff simulation with 2 antecedent days</td>
</tr>
<tr>
<td>RBFD3</td>
<td>RBF network for daily runoff simulation with 3 antecedent days</td>
</tr>
<tr>
<td>RBFD4</td>
<td>RBF network for daily runoff simulation with 4 antecedent days</td>
</tr>
<tr>
<td>RBFD5</td>
<td>RBF network for daily runoff simulation with 5 antecedent days</td>
</tr>
<tr>
<td>MLPH1</td>
<td>MLP network for hourly runoff simulation with 1 antecedent hour</td>
</tr>
<tr>
<td>MLPH2</td>
<td>MLP network for hourly runoff simulation with 2 antecedent hours</td>
</tr>
<tr>
<td>MLPH3</td>
<td>MLP network for hourly runoff simulation with 3 antecedent hours</td>
</tr>
<tr>
<td>MLPH4</td>
<td>MLP network for hourly runoff simulation with 4 antecedent hours</td>
</tr>
<tr>
<td>MLPH5</td>
<td>MLP network for hourly runoff simulation with 5 antecedent hours</td>
</tr>
<tr>
<td>MLPH10</td>
<td>MLP network for hourly runoff simulation with 10 antecedent hours</td>
</tr>
<tr>
<td>MLPH15</td>
<td>MLP network for hourly runoff simulation with 15 antecedent hours</td>
</tr>
<tr>
<td>MLPH24</td>
<td>MLP network for hourly runoff simulation with 24 antecedent hours</td>
</tr>
<tr>
<td>MLPH36</td>
<td>MLP network for hourly runoff simulation with 36 antecedent hours</td>
</tr>
<tr>
<td>RECH1</td>
<td>REC network for hourly runoff simulation with 1 antecedent hour</td>
</tr>
<tr>
<td>RECH2</td>
<td>REC network for hourly runoff simulation with 2 antecedent hours</td>
</tr>
<tr>
<td>RECH3</td>
<td>REC network for hourly runoff simulation with 3 antecedent hours</td>
</tr>
<tr>
<td>RECH4</td>
<td>REC network for hourly runoff simulation with 4 antecedent hours</td>
</tr>
</tbody>
</table>

xx
RECH5 REC network for hourly runoff simulation with 5 antecedent hours
RECH10 REC network for hourly runoff simulation with 10 antecedent hours
RECH15 REC network for hourly runoff simulation with 15 antecedent hours
RECH24 REC network for hourly runoff simulation with 24 antecedent hours
RECH36 REC network for hourly runoff simulation with 36 antecedent hours
CHAPTER 1

INTRODUCTION

1.1 Introduction

From early times, human civilization has always been developed along rivers because of the need of irrigation for crops, water supply for communities and latter power generation. For example Bandar Kapit, Bandar Sarikei, Bandar Sibu and Bandar Bintangor along Rejang River, Sarawak. These advantages have been counterbalanced by the danger of floods which will destroy our properties, crops and sometimes even our lives. For civil engineers who are responsible for designing flood protection measures, they are required to plan engineering structures such as storage reservoirs, barrage and tidal control gates. Further as the flood wave passes through a river it is necessary to know how the stage varies with respect to time and distance for the design of river engineering works as well as for establishment and operation of flood warning systems by the civil authorities. For this purpose, predicting flood discharge magnitude accurately is very important.

For the past, conceptual models had provided daily, monthly and seasonal estimates of streamflow for short and long term forecasting in continuous basis. The entire physical process in the hydrologic cycle is mathematically formulated in the conceptual models. Thus, they are composed of a large number of parameters for example the Sacramento soil moisture accounting (SAC-SMA) model is defined by 22 parameters in addition to 12 parameters required by the potential evaporation, the number of water balance