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A new generation of designer solvents, low transition temperature mixtures (LTTMs) could be the ideal 

solvent for the separation of the main biopolymers in lignocellulosic biomass such as lignin, cellulose and 

hemicellulose. The separated biopolymers have prospective to be converted into high valuable products. 

LTTMs can be synthesized from two natural high melting point materials through hydrogen bonding 

interactions. The objective of this research was to study the effects of water in the physicochemical 

properties of LTTMs such as hydrogen bonding, thermal stability and lignin solubility. LTTMs were 

prepared in the presence and absence of distilled water with malic acid as the hydrogen bond donor (HBD) 

and sucrose as hydrogen bond acceptor (HBA). The molar ratio of malic acid to sucrose was fixed at 1:1. 

Based on the fourier transform infrared spectroscopy (FTIR) analysis, the FT-IR spectra of all the LTTMs 

shown representative peak of carboxylic acid group of malic acid turned broader at 1,710 cm
-1

 for the C=O 

group. Nevertheless, the peaks involved in the H-bonding due to the formation of LTTMs shifted and 

became broader within 2,500 - 3,600 cm
-1

 for the OH groups of carboxylic acid and alcohols in the 

presence of water. The degradation temperature of LTTM was not affected by the addition of water which 

remained at 400 K. In addition, the LTTM with water had increased the lignin solubility from 6.22 to 6.38 

wt% without affecting the thermal behaviour of LTTMs. 

1. Introduction 

Nowadays, the manufacturing of raw materials resulted from chemicals obtained mainly from fossil 

resources are in the process of exhaustion. Tuck et al. (2012) highlighted the use of renewable raw 

materials as alternatives to fossil resources for the generation of energy and as starting materials for 

industrial chemical processes gain great attention. Biomass is the most abundant renewable resource with 

an estimated global production of around 1.0 x 10
11

 tons per year. Cellulose is the most abundant 

biopolymer on earth, thus it is a valuable source of raw materials for chemical and fuel industries (Mäki-

Arvela et al., 2010).
 
The lignin, cellulose and hemicellulose in lignocellulosic biomass are congregated in a 

complicated three-dimensional structure which causes resistant against chemicals and microbial attack 

that makes it hard to be hydrolysed. An efficacious separation of these components and their subsequent 

separation are the requirement for the production of high value products from lignocellulosic biomass 

(Hamzeh et al., 2013).  

To realize the aim of dissociating the lignocellulosic biomass, the development of ideal green solvents with 

high sustainability which are safe for both human and environment is critical (Moity et al., 2012). Sheldon 

(2005) stated that the most popular green solvents are water which includes aqueous phase, supercritical 

carbon dioxide and ionic liquids. Initially, ionic liquids were classified as new generation of green solvents 

with the properties of negligibly low vapour pressure, good structural tunability, high heat capacity, density 

and conductivity. Somehow, most of the ionic liquids failed to satisfy the sustainability requirement of ideal 

green solvent due to their petroleum-based starting materials and poor bio-compatibility.  
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Protic ionic liquids were used as biomass pretreatment for the production of ethanol (Enio de Azevedo 

Rocha et al., 2014). Ionic liquids show restrictions in terms of recoverability and cost for large scale 

applications in the early stages (Sun et al., 2011).
 
Nonetheless, the recoverability and commercialization 

potential of ionic liquids had been evaluated and improved recently (Chen et al., 2014). Hence, new green 

approaches towards the substitution of volatile organic solvents were taken into consideration. In recent 

years, deep eutectic solvents (DES) have evolved as new substitution of green solvents for ionic liquids as 

they are bio-compatible and easy to prepare in which some bio-based chemicals represented as a major 

part of the final mixtures (Avalos et al., 2006). DES have significant advantages over conventional solvents 

as their structures can be tuned by changing the nature and the ratio of the hydrogen-bonding components. 

Thus, their properties are straightforwardly influenced by the molar composition of the compounds in the 

mixture. Choi et al. (2011) reported the disclosure of 30 combinations with natural carboxylic acids, sugars, 

choline chloride and water which formed viscous liquids known as “natural deep-eutectic solvents” 

(NADESs). NADESs had been utilized in dissociating the metabolites in plants. This technique was applied 

by other authors (Maugeri and Domínguez de María, 2012) for the synthesis of new green solvents.  

Besides, low transition temperature mixtures (LTTMs) and 26 new solvents have been proposed by 

combining choline chloride, amino acids, carboxylic acids and other environmentally benign starting 

materials as most of the DESs show glass transition points instead of eutectic melting points (Francisco et 

al., 2012). LTTMs comprise of at least one hydrogen bond donor (HBD) and one hydrogen bond acceptor 

(HBA) counterpart that result in the formation of liquid mixture showing an unusually low freezing point. The 

hydrogen bonding interaction lead to some of the promising characteristics of ionic liquid as solvents are 

shared by DESs. The HBA can be an amino-acid, a salt, carbohydrates, an organic salt or a natural salt 

whereas urea, an organic acid, an alcohol, a polyol or an aldehyde can be the HBD. Natural carbohydrates 

are the most abundant class of organic compounds found in living organisms. They were considered as 

promising starting materials to sustain the revolution in chemical synthesis. Some attention has been paid to 

the potential applications of carbohydrates due to their ability in value-added conversions (Kubik et al., 

1996) and the growth of research on this field has been noticed in the past few years (James et al., 2010). 

The potentials of LTTMs to dissociate the lignocellulosic biomass structure were evaluated. Preliminary 

experiments were performed to examine the solubility of real wheat straw biomass samples in choline 

chloride-lactic acid (LC 2:1) and malic acid-proline mixtures (MP 1:3) where less biomass particles can be 

noticed after the pretreatment with MP 1:3 mixtures. Therefore, malic acid had been selected as a 

hydrogen bond donor for the synthesis of LTTMs as the malic acid combinations were found to show much 

higher solubility in lignin when comparing with other hydrogen bond donors (Francisco et al., 2012). This 

work focused on the effect of water in the synthesis of LTTMs by using L-malic acid as HBD and sucrose 

as HBA. The physicochemical properties of the LTTMs prepared in the presence of water such as 

hydrogen bonding, degradation temperature and biopolymers solubility were analysed and discussed. 

2. Experimental Section 

2.1 Materials 
Starting materials for the synthesis of LTTMs such as L-malic acid and sucrose were obtained from Wako 

Pure Chemical Industries Ltd. Their molecular structures and melting points are shown in Table 1. 

Table 1:  Molecular structure and melting point of the starting materials 

Raw Material Molecular Structure Melting Point (
o
C) 

Sucrose 

 

186 

L-malic acid 

 

130 

 

Cellulose microcrystalline was obtained from Merck, Germany and starch (corn) was purchased from 

Wako Pure Chemical Industries Ltd for the screening of biopolymers solubility. The lignin (alkaline) was 

bought from Tokyo Kasei Kogyo Co., Ltd with the specification as shown in Table 2. 
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Table 2:  Product Specification of Lignin Sample 

Name Lignin (alkaline) 

Methyl group 10.0 to 12.0 % 

Ignition residue (sulfate) 20.0 to 29.0 % 

Water max. 10.0 % 

pH 8.0 to 10.0 (50 g/L) 

2.2 Synthesis of LTTMs 

Both the starting materials (HBD and HBA) were blended completely at 1:1 molar ratio in a three-neck 

round bottom flask with magnetic stirring to develop contact between the solid crystals. The flask was 

heated up gradually in an oil bath and the heating process was stopped when all the solid particles can no 

longer be observed. The experiment was repeated in the presence of 1 ml of distilled water. 

2.3 Freeze drying of LTTMs 
Freeze-drier (EYELA FDU-1200) was acquired to remove the excessive water content in the LTTMs. The 

vacuum pump operation was started its auto-mode function after the trap temperature was cooled to -45 
o
C. The drying process was stopped once the samples have constant weight. 

2.4 Physicochemical properties tests 
Frontier FT-IR Spectrometer (PerkinElmer) equipped with attenuated total reflectance (ATR) was used to 

analyse the fourier transform infrared spectroscopy (FTIR) spectra of starting materials and LTTMs. The 

existence of hydrogen bond between the starting materials was proven by comparing the data collected. 

Thermogravimetic analysis (TGA) was performed using EXSTAR 6000 TG/DTA6300 from 35 
o
C to 300 

o
C 

with heating rate of 20 K/min to determine the degradation temperature of starting materials and LTTMs. 

The carrier gas used was nitrogen with flow rate of 250 mL/min. 

2.5 Biopolymers solubility tests 

Cloud point method was applied to examine the biopolymers solubility such as lignin, starch and cellulose. 

Vials containing 2 g of LTTMs were placed into an oil bath at constant temperature of 60 
o
C and 0.2 – 1 

mg of sample was added continuously with vigorous stirring. The sample was kept for 24 h after complete 

dissolution of solutes in LTTMs was observed. The solubility (wt %) was recorded if the biopolymers did 

not dissolve into the solvents.  

3. Results and Discussion 

Transparent colour LTTM was obtained in molar ratio of 1:1 for malic acid and sucrose with the presence 

of water (MSW 1:1:1). Introduction of water avoided the caramelisation of sucrose at high temperature and 

yielded clear LTTM which reduced the temperature for synthesis of LTTM from 90 to 60 
o
C while the 

reaction time was reduced from 10 to 5 min. Adding small amount of water to a mixture reduced 

preparation time, temperature and viscosity as the water was strongly bound with the mixture formed (Dai 

et al., 2013). The heating process was terminated once clear mixtures formed and the excessive water 

content in LTTMs was eliminated by using freeze drier. Further analysis such as FTIR, thermal stability 

and biopolymers solubility were performed and discussed to study the effects of water on the 

physicochemical properties of LTTMs. 

 

3.1 FTIR spectra analysis 
Figure 1 shows the broad band with strong intensity in the wavenumber region of 2,500 to 3,700 cm

-1
 as a 

result of the O-H bond stretching vibration of the alcohol groups. In addition, the stretching vibration of 

C=O group resulted in the broaden peak at 1,710 cm
-1

. Based on the works of Francisco et al. (2012), 

these peaks demonstrated the existence of hydrogen bond in the mixtures. The spectra for LTTMs 

synthesized from sucrose as HBA appeared very similar with the presence of water in the synthesis of 

LTTMs. There is a slight difference in terms of band intensities within the wavenumber of 2,500 to 3,700 

cm
-1

 which might be due to the increased ratio of symmetric and asymmetric H2O stretching vibrations. 

The main bands for peak shifts and malic acid peaks were separated by using the dotted red lines. 

Therefore, removal of excessive water content from the LTTMs through freeze drying was critical as 

hydration of compounds will lead to an enormous consequence on the spectrum and generally produces a 

lot of complexity in the form of additional absorption bands and structure to existing band. 
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Figure 1: FT-IR spectra of malic acid, sucrose and LTTMs (MS 1:1, MSW 1:1:1) 

3.2 Thermogravimetric analysis 
The thermal behaviour of LTTMs prepared in the absence and presence of water were analysed to 

determine their degradation temperatures. The comparison of the TGA curves of LTTMs with the presence 

and absence of water is shown in Figure 2. The TGA curves of LTTMs were similar to each other at the 

degradation temperature of 400 K. Besides, the remaining water in LTTMs had formed part of the mixture 

as there was no reduction of mass at 373 K. In addition, the degradation temperature of starting materials 

was higher than the LTTMs which presumably due to the potential scattered structure during the synthesis 

of LTTMs that generated the high amorphous fraction and further decreased the heat-resistivity of LTTMs 

to decompose at lower temperature (Ramesh et al., 2012).  

 

 

Figure 2: TGA curves of malic acid, sucrose and LTTMs (MS 1:1, MSW 1:1:1); the vertical line indicates 

the transition temperature of the constituents 

1710 

2500-3700 
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The high polarity of water makes it be the abundant natural substance that acts both as donor and 

acceptor. Water was assumed to form part of the LTTMs without affecting their properties (Francisco et al., 

2013).
 
It is crucial for LTTMs to have stable degradation temperature after the addition of water as thermal 

properties regulate the range of temperature at which the LTTMs can sustain their liquid state and its 

range of function. In this context, the maximum temperature used for the study of biopolymers solubility 

was based on the degradation temperature of LTTMs. In future works, it will also be used as the 

pretreatment temperature for the delignification of lignocellulosic biomass by using LTTMs. 

3.3 Screening of biopolymers solubility 
This screening is very vital to estimate the capability of LTTMs to extract the lignin from lignocellulosic 

biomass. The most abundant renewable polymers in lignocellulosic biomass are cellulose and lignin while 

starch is used to replace the polysaccharide in our study (Francisco et al., 2012).
 
Table 3 shows LTTMs 

had higher solubility for lignin compared to starch and cellulose. The was no solubility of cellulose was 

found for the synthesized solvents and formed opaque liquid after stirring for 24 h. Solvents with high 

selectivity are preferable for separating lignin from cellulose and starch which indicated the mixtures had a 

high potential to be applied for the delignification of lignocellulosic biomass (Francisco et al., 2012).   

Table 3:  Biopolymers Solubility of the Synthesized LTTMs 

Name Ttest (
o
C) Lignin (wt %) Starch (wt %) Cellulose (wt %) 

MS 1:1 60 6.22 0.14 0.00 

MSW 1:1:1 60 6.38 0.16 0.00 

 

The solubility’s efficiency of LTTMs was improved with the addition of water which shows the trend of MS 

1:1 < MSW 1:1:1. Therefore, the solubility capacity of the solvents was varied accordingly to the amount of 

water added during preparation. Nevertheless, extended dilution would result in the loss of existing 

hydrogen bonds and resulted in the rupture of unique structures in mixtures (Gutiérrez et al., 2010). Thus, 

optimum amount of water should be taken into consideration for the preparation of LTTMs.  

4. Conclusions 

In this work, LTTMs were prepared in the presence and absence of distilled water with malic acid as the 

HBD and sucrose as the HBA. The FT-IR spectra of all the LTTMs shown representative peak of carboxylic 

acid group of malic acid turned broader at 1710 cm
-1

 for the C=O group due to the hydrogen bonding 

between the starting materials. However, the peaks involved in the H-bonding as a result of the formation 

of LTTMs shifted and became broader within 2500-3600 cm
-1

 for the OH groups in the presence of water 

due to the increased ratio of symmetric and asymmetric H2O stretching vibrations. The degradation 

temperature of LTTMs with the absence and presence of water were in vicinity to each other. Besides, the 

addition of water during the synthesis of LTTMs also enhanced the biopolymers solubility capacity without 

affecting the thermal behaviour of LTTMs.  
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