HM-27. A randomized control trial comparing peginterferon-α-2a versus observation after stopping tyrosine kinase inhibitor in chronic myeloid leukaemia patients with deep molecular response for at least two years: Interim analysis

Kuan Jew Win1, Chang Kian Meng2, Phan Chin Lee2, Wong Shu Ping1, Lim Soo Min1, Toh See Guan1, Loh Weng Kean1, Habiba Nazzeerah Begum1, Hon Siong Leng2, Chiang Su Kien1, Guan Yong Khee1, Alvin Chai Jung Mau1, Ng Si Yuan2, Yong Kar Ying1, Gilbert Wilfred3, Lily Wong Lee Lee1, Ho Kim Wah1, Teo Hock Gin1, Andy Tang Sing Ong3, Ko Ching Tiong10

1Department of Medicine, Universiti Malaysia Sarawak, Kota Samarahan; 2Department of Haematology, Hospital Ampang, Ampang; 3Department of Pharmacy, Hospital Ampang, Ampang; 4Department of Medicine, Hospital Sultanah Aminah, Johor Bahru, Johor; 5Department of Medicine, Queen Elizabeth Hospital, Kota Kinabalu, Sabah; 6Department of Medicine, Hospital Pulau Pinang, Penang; 7Department of Haematology, Hospital Melaka, Melaka; 8Department of Medicine, Sibu Hospital, Sibu, Sarawak; 9Department of Medicine, Miri Hospital, Miri, Sarawak; 10Department of Pharmacy, Sarawak General Hospital, Malaysia

Introduction: Treatment free remission (TFR) is a fairly new treatment concept in chronic myeloid leukaemia (CML) that develops after two frontier studies from French and Australia published in 2010. About 40% of CML patients, who have achieved deep molecular response (DMR) with tyrosine kinase inhibitor (TKI), are able to remain in TFR after stopping their TKI. Studies are going to search means to increase TFR rate. Consolidative therapy using interferon (IFN), the standard treatment of CML before era of TKI, is a logical possibility because of data suggesting IFN-induced immunity towards the leukemic clone. We conducted the first randomized controlled trial comparing the use of pegIFN versus observation in CML patients attempting TFR.

Materials & Methods: Adult CML patients from multi-centre in Malaysia with stable DMR for 2 years or more and at least two readings of MR4.5, were stopped TKI and randomized into two arms: (1) subcutaneous pegIFN-α-2a starting at 180µg weekly for a year, followed by observation, or (2) observation. Outcome is relapse, defined as either (i) one reading of loss of major molecular response (≥1 log) in relation to the first analysis point at two successive assessments, (ii) positivity of BCR-ABL1 transcripts, as confirmed by a second analysis point, indicating the increase (≥1 log) in relation to the first analysis point at two successive assessments. Results & Discussion: A total of 30 patients started intervention from July 2015 to October 2018 (pegIFN n=15, observation n=15). Analysis was taken on 13th Mar 2019. A total of 9 patients relapsed (pegIFN n=4, observation n=5). The median time of relapse was 13.1 months (range 9.2 to 25.5) and 1.8 (1.2 to 12.0) after stopping TKI in pegIFN and observation arm, respectively. Dose of tolerable pegIFN was age dependent. Commonest adverse event of pegIFN was transaminitis. Quality of life assessment using EORTC QLQ-C30 showed similar result between the two arms. Conclusion: PegIFN is a potential consolidative therapy to increase TFR.

HM-28. Prevalence of normal population harbouring BCR-ABL1 fusion gene in Southern Sarawak, Borneo Island

Kuan Jew Win1, Anselm Su Ting2, Tay Siow Phing3, Isabel Feng Lim1, Lela Su’ut1, Sho Kubota1, Motomi Osato3, Goro Sashida3

Departments of Medicine, Community Medicine and Public Health, Pathology & Para-Clinical Sciences, Faculty of Medicine & Health Sciences, Universiti Malaysia Sarawak, Sarawak, Malaysia; 2International Research Center for Medical Sciences (IRCMS), Kumamoto University, Japan

Introduction: Level of BCR-ABL1 fusion gene, the driver mutation in chronic myeloid leukaemia (CML), is monitored using quantitative polymerase chain reaction (PCR) (qPCR) reported in International Scale (IS) to guide disease treatment. BCR-ABL1 was also found in asymptomatic normal subject without blood/marrow feature of CML. Previous studies used convenient sampling and qualitative PCR or qPCR but not IS to study normal subjects harbouring BCR-ABL1. Hence, the result could neither infer to normal population nor impact treatment of CML.

Materials & Methods: We conducted the first normal population study to determine population prevalence of normal subject harbouring BCR-ABL1 using qPCR1. It was a cross sectional community-based study studying southern Sarawak population aged ≥18 and using two-stage sampling (stratified followed by cluster) based on Malaysia Department of Statistics population survey procedure. The sampling frame was divided into enumeration block (EB) and subdivided into living quarter (LQ). qPCR1 BCR-ABL1 was done using validated commercial kit.

Results & Discussion: A total of eight EBs, total of 88 LQs and total subject of 190 were studied and analysed. 23 (12.1%) out of 190 samples had poor quality with sum of control gene, ABL1, less than 10,000 copy number, while 102 (53.7%) had good quality with sum of ABL1 more than 100,000. Quality of each run of qPCR1 was satisfactory fulfilling the evaluation criteria. One subject was found positive, i.e. 0.0032%IS. Sequencing confirmed e13a2 transcript.

Conclusions: Prevalence of normal population harbouring BCR-ABL1 in southern Sarawak was 0.5% to 1%. Sum of control gene ABL1 copies number in two replicates should be adequate (>100,000) to enable efficient screening.

HM-29. Genomic landscape of BCR-ABL kinase domain mutation in chronic myeloid leukemia patients with imatinib resistance

Yuslina Mat Yusoff1, Sharifah Zahra Aノor2, Zahidah Abu Seman1, Siti Shahrurn Mohamed Said2, Nor Rizan Kamaluddin1, Julia Abdulllah1, Aliza Mohd Yaacob1, Durar Aqilah Zamri1, Ezalia Esa1, Zabaida Pakaria1

1Haematology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur, Malaysia; 2Haematology Unit, Pathology Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia

Introduction: Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder involving the pluripotent haemopoietic stem cell compartment. It is caused by a reciprocal translocation between chromosomes 9 and 22, t(9;22) (q34;q11) which encodes for the BCR-ABL fusion protein. Discovery of imatinib mesylate (IM) as targeted BCR-ABL protein kinase inhibitor