Weed Diversity, Biomass and Micronutrient Assessments on Peat Land Oil Palm Cultivation by Smallholders

Farah Syamimi Binti Basrol

Master of Science
2017
Weed Diversity, Biomass and Micronutrient Assessments on Peat Land Oil Palm Cultivation by Smallholders

Farah Syamimi Binti Basrol

A thesis submitted
In fulfillment of the requirements for the degree of Master of Science (Soil Science)

Faculty of Resource Science and Technology
UNIVERSITI MALAYSIA SARAWAK
2017
DECLARATION OF ORIGINAL WORK

This declaration is made on the 6th day of June 2017.

Student's Declaration: I, Farah Syamimi Binti Basrol, Student, Faculty of Science & Technology, hereby declare that the work entitled, "Weed diversity, biomass, and macro- and micro-nutrient assessment on pet lamp oil palm cultivation by smallholders" is my original work. I have not copied from any other students' work or from any other sources except where due reference or acknowledgement is made explicitly in the text, nor has any part been written for me by another person.

Date submitted: 6/6/2017
Name of the student (Matric No.): Farah Syamimi Basrol (15G20034)

Supervisor's Declaration: I, Ismail Bin Epah, Supervisor, hereby certify that the work entitled, "Weed diversity, biomass, and macro- and micro-nutrient assessment on pet lamp oil palm cultivation by smallholders" (TITLE) was prepared by the above named student, and was submitted to the "FACULTY" as a partial/full fulfillment for the conferment of MSc. (PLEASE INDICATE THE DEGREE), and the aforementioned work, to the best of my knowledge, is the said student's work.

Received for examination by: Prof. Dr. Zairi Zain Date: 6/6/2017
(Name of the supervisor)
I declare this Project/Thesis is classified as (Please tick (✓)):

☐ CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)*
☐ RESTRICTED (Contains restricted information as specified by the organisation where research was done)*
☐ OPEN ACCESS

Validation of Project/Thesis

I therefore duly affirmed with free consent and willingness declared that this said Project/Thesis shall be placed officially in the Centre for Academic Information Services with the abide interest and rights as follows:

- This Project/Thesis is the sole legal property of Universiti Malaysia Sarawak (UNIMAS).
- The Centre for Academic Information Services has the lawful right to make copies for the purpose of academic and research only and not for other purpose.
- The Centre for Academic Information Services has the lawful right to digitise the content to for the Local Content Database.
- The Centre for Academic Information Services has the lawful right to make copies of the Project/Thesis for academic exchange between Higher Learning Institute.
- No dispute or any claim shall arise from the student itself neither third party on this Project/Thesis once it becomes sole property of UNIMAS.
- This Project/Thesis or any material, data and information related to it shall not be distributed, published or disclosed to any party by the student except with UNIMAS permission.

Student’s signature: ____________________________ (Date) 6/6/2017

Supervisor’s signature: ____________________________ (Date) 6/6/2017

Current Address:
NO. 5880, LORONG 4GU, TMN SOWATANIA INDAH, PETRA JAYA
9300 KUCHING, SARAWAK

Notes: * If the Project/Thesis is CONFIDENTIAL or RESTRICTED, please attach together as annexure a letter from the organisation with the period and reasons of confidentiality and restriction.

[The instrument was duly prepared by The Centre for Academic Information Services]
DECLARATION

It is entirely my own work and where use has been made of the other work of other people, it has been fully acknowledged and fully referenced. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

(Signed)

(FARAH SYAMIMI BINTI BASROL)

Faculty of Resource Science and Technology

Universiti Malaysia Sarawak
ACKNOWLEDGEMENTS

Bismillahirrahmanirrahim.

First and foremost, all praise is to God for giving me the ideas and inspiration to finish up my research writing. I would like to express my greatest appreciation to Prof. Dr. Isa Ipor, my supervisor for his guidance, suggestions, and understanding throughout this study.

Special gratitude is conveyed to my supervisor whom involved in my scope of research, and also for providing transportation, valuable and useful information during sampling activities in selected oil palm cultivated area in Gedong, Samarahan. I would also like to express my appreciation to staff of UNIMAS, Mr. Salim Arip that had shared valuable information with me throughout this study.

Finally, I would like to thank my parents and friends for their continuous supports and prayers during my study. I would like to give special thanks to my fellow colleagues for sharing their knowledge with me towards the completion of the study.

I hope all my experiences gained during this study help to improve my skills and knowledge even after I have completed my study. Thank you.

FARAH SYAMIMI BINTI BASROL
ABSTRACT

The relationship of crops, weed and micronutrients in soil is essentially well understood in order to achieve good management and satisfactory crop production. The nutrients, soil and weeds composition in the two, four, and seven year old oil palm plantation by smallholders were studied at Melur Gemilang Plantation in Gedong, Samarahan area. The diversity index and dominance of weed species were calculated using Shannon-Wiener Diversity Index (H') and Summed Dominance Ratio (SDR) respectively. The biomass and carbon stock estimation of weed species were also being assessed. Inductively coupled plasma mass spectroscopy (ICP-MS) technique was used to obtain the micronutrients status of peat soil and weed samples. A total of 48 weed diversity was recorded in the two year – old planting area, followed by 23 and 13 weed species in the four and seven year – old oil palm cultivated area respectively. The selected species of Asystasia intrusa and Nephrolepis bisserata were analyzed for its micronutrients content while the distribution of micronutrients deficit of oil palm were recorded using GPS device. H' value of 2.34 was recorded with the highest estimated carbon stock amount of 5.00 tons/ha in two years old oil palm planted area. There were no significant differences showed between the variables of micronutrients with different depth of peat soil. Boron, zinc and copper were able to be detected in weed species while none in peat soil samples. The oil palm trees distribution of nutrients deficiency were greater at the younger oil palm than the older oil palm with generally deficient in copper, boron and zinc. Poor maintenance activities, peat soil micronutrient problems and low organic material decomposition rate in which different area of soil samples collected act as barriers for optimum oil palm yield. In order to provide valuable material for smallholder planters of oil palm plantations, efficient alternative is hopefully achieved through this study to supply required micronutrients content for maximizing yield production cultivated on peat land.
proper micronutrients application schedule and awareness of precautions on cultivation on peatland is important to prevent concern over disruption of peatland ecosystem.

Keywords: Oil palm, weed diversity, micronutrient content, micronutrient deficiency distribution
Penilaian Kepelbagaian Rumpai, Biomas dan Mikronutrien di Ladang Kelapa Sawit Peniaga Kecil Dalam Kawasan Tanah Gambut

ABSTRAK

Kebanyakan pokok-pokok kelapa sawit di kawasan tanaman empat tahun mempunyai kekurangan mikronutrien seperti kuprum, boron dan zink berbanding di kawasan tanaman kelapa sawit yang lebih matang. Penyelenggaraan yang tidak memuaskan, masalah mikronutrien dalam tanah gambut dan kadar bahan penguraian organik yang rendah merupakan halangan untuk penghasilan kelapa sawit yang optimum. Untuk penyediaan material yang berkualiti bagi pengusaha kecil ladang kelapa sawit, tindakan alternatif lain yang ingin dicapai melalui kajian ini adalah untuk membekalkan kandungan mikronutrien yang mencukupi untuk memaksimunkan pengeluaran hasil tanaman di kawasan tanah gambut. Penjadualan aplikasi mikronutrien yang berpatutan dan kesedaran mengenai penanaman di kawasan tanah gambut adalah penting untuk mengelakkan masalah dalam gangguan ekosistem tanah gambut.

Kata kunci: Kelapa sawit, kepelbagaian rumpai, kandungan mikronutrien, taburan kekurangan mikronutrien
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiii</td>
</tr>
<tr>
<td>CHAPTER 1: INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Problem Statement</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Objectives of Study</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Background of Study</td>
<td>3</td>
</tr>
<tr>
<td>CHAPTER 2: LITERATURE REVIEW</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Peat land</td>
<td>4</td>
</tr>
<tr>
<td>2.1.1 Peat soil characteristics</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2 Management of peat soil</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Oil palm</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1 Oil palm cultivation</td>
<td>9</td>
</tr>
<tr>
<td>2.2.2 Oil palm nutrition</td>
<td>10</td>
</tr>
<tr>
<td>2.3 Forages and weed diversity in oil palm cultivation area</td>
<td>12</td>
</tr>
<tr>
<td>2.4 Weed management in oil palm cultivation</td>
<td>14</td>
</tr>
</tbody>
</table>
CHAPTER 3: METHODOLOGY

3.1 Study sites

3.2 Herbaceous diversity from different growth stages of oil palm planted on peat land areas.

3.3 Carbon Stock estimation from different growth stages of oil palm planted on peat land areas.

3.4 Micro nutrients assessments of peat soil in different growth stages of oil palm planted on peat land area.

3.5 Micro nutrients in selected weed species (*Nephrolepis bisserata* and *Asystasia intrusa*)

3.6 Distribution of micronutrients deficiency of oil palms in Gedong oil palm planting region by smallholders.

CHAPTER 4: RESULTS AND DISCUSSION

4.1 Herbaceous diversity from different growth stages of oil palm planted on peat land areas.

4.1.1 Species Abundance

4.1.2 Species variation and dominance from different stages in oil palm cultivation area.

4.1.2.1 Species Diversity in two year – old stage of oil palm cultivated area

4.1.2.2 Species Diversity in four year – old stage of oil palm cultivated area
4.1.2.3 Species Diversity in seven year – old stage of oil palm cultivated area

4.2 Carbon Stock estimation from different growth stages of oil palm planted on peat land areas.

4.2.1 Stock Carbon Amount in two year – old stage of oil palm cultivated area

4.2.2 Stock Carbon Amount in four year – old stage of oil palm cultivated area

4.2.3 Stock Carbon Amount in seven year – old stage of oil palm cultivated area

4.3 Micronutrients assessments of peat soil in different growth stages of oil palm planted on peat land areas

4.4 Micronutrients in selected weed species

4.5 Distribution of micronutrients deficiency of oil palms in Gedong oil palm planting region by smallholders.

4.6 Nutrient status, distribution of oil palm deficiency and copper, zinc and boron accumulation in selected weed species.

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS

REFERENCES

APPENDICES
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.1</td>
<td>Shannon – Wiener Diversity Index (H') at different stages in oil palm cultivated area</td>
<td>31</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Dominance ratio of 48 species found in two year old oil palm cultivated area</td>
<td>32</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Dominance ratio of the 23 species found in the four year old oil palm cultivated area</td>
<td>34</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Dominance ratio of the 13 species found in the seven year old oil palm cultivated area</td>
<td>35</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Stock carbon of 48 species from quadrates sample in two year old stage at Maju Gemilang Oil Palm Plantation Gedong, Kota Samarahan, Sarawak</td>
<td>38</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Stock carbon of 23 species in quadrates sample in four year old stage of oil palm planting</td>
<td>40</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Stock carbon of 13 species in quadrates sample in seven year old stage of oil palm planting</td>
<td>41</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Independent sample t-test of major variables by soil depth of two, four and seven year old planting areas</td>
<td>46</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>Mean value of micro nutrients content of weed and soil samples collected in four year old oil palm planted area.</td>
<td>49</td>
</tr>
<tr>
<td>Table 4.10</td>
<td>Micronutrient concentration in leaf associated with deficiency, optimum and excess in young palms, less than six years from</td>
<td>53</td>
</tr>
</tbody>
</table>
planting.

Table 4.11 Nutrient concentration in leaf associated with deficiency, optimum and excess in mature palms, more than six years from planting.

Table 4.12 Micronutrient reference concentrations in plant and oil palm.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 3.1</td>
<td>Schematic Sarawak map of study area located in Gedong, Kota Samarahan</td>
<td>22</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Carbon Stock per hectare (kg/ha) at different stages in oil palm cultivated area</td>
<td>36</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Line chart of mean of iron content (mg/kg) in different sampling sites</td>
<td>43</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Line chart of mean of manganese content (mg/kg) in different sampling sites</td>
<td>43</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Line chart of mean of copper content (mg/kg) in different sampling sites</td>
<td>44</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Line chart of mean of calcium content (mg/kg) in different sampling sites</td>
<td>44</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Line chart of mean of boron content (mg/kg) in different sampling sites</td>
<td>45</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Line chart of mean of zinc content (mg/kg) in different sampling sites</td>
<td>45</td>
</tr>
<tr>
<td>Figure 4.8</td>
<td>Map of overall marked microelements deficit of two and four years of oil palm trees within 100 hectares oil palm cultivated site study. (Google earth referred on 7th November 2016)</td>
<td>51</td>
</tr>
<tr>
<td>Figure 4.9</td>
<td>Map of microelements deficit of seven years of oil palm trees. (Google earth referred on 7th November 2016)</td>
<td>52</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
<td></td>
</tr>
<tr>
<td>CH₄</td>
<td>Methane</td>
<td></td>
</tr>
<tr>
<td>N₂O</td>
<td>Nitrous oxide</td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>Water vapor</td>
<td></td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
<td></td>
</tr>
<tr>
<td>HNO₃</td>
<td>Nitric acid</td>
<td></td>
</tr>
<tr>
<td>ICP-MS</td>
<td>Inductively coupled plasma mass spectroscopy</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Shannon – Weiner Diversity Index</td>
<td></td>
</tr>
<tr>
<td>SDR</td>
<td>Summed Dominance Ratio</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Absolute density</td>
<td></td>
</tr>
<tr>
<td>Rd</td>
<td>Relative density</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Absolute frequency</td>
<td></td>
</tr>
<tr>
<td>Rf</td>
<td>Relative frequency</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Important value</td>
<td></td>
</tr>
<tr>
<td>SDR</td>
<td>Summed dominance ratio</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Mean</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
<td></td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
<td></td>
</tr>
<tr>
<td>ha</td>
<td>Hectare</td>
<td></td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
<td></td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram</td>
<td></td>
</tr>
<tr>
<td>mL</td>
<td>Milliliter</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Study

Oil palm (*Elaeis guineensis* Jacq.) plantation in Sarawak is mostly cultivated on peat land area which is most known for nutrient deficiencies and difficulty in practices management for planting purposes. Nowadays, less sustainable practices on conserving soil condition make land that is practicable for oil palm cultivation become less available. In Malaysia, around 20% of land signifies oil palm cultivation on peatland, while Sarawak recorded practically 19% of peat soil area (Andriesse, 1998). Department of Irrigation and Drainage Sarawak (2013) detailed that peat soil in Sarawak region consists of 1.7 million hectares of fresh water peat and 154,000 hectares of mangrove area.

Nutrient deficiencies have become one of the major problems in oil palm cultivation development in Sarawak. As most of this major crop cultivated on peat land areas, this limitation has cost high application rate of nutrients and severe loss to oil palm yield whereby some of the fertilizers applied is likely to be leached due to peat soil inability to retain nutrients and these can be flushed out of the forest if they are not taken up by the trees or crop vegetation. Oil palm trees will show severe signs and symptoms for macronutrients and micronutrients deficiencies which eventually can lead to death of the trees (Sugandi, 2003).
1.2 Problem Statement

Recently, oil palm industry market competitiveness has become increasing and because of this reason, most countries that established oil palm cultivation on peatland planned to secure and control their own palm oil resources because many of these peatlands are inherently infertile and the application of nutrients is required to ensure the healthy growth and development of plantations on these sites. For example, countries such as Indonesia, Columbia, Thailand and China maintain their resources in order to produce their own desired outcome (Gerendas & Heng, 2010). In Sarawak, oil palm yield produced on mostly peatland area has decrease slightly in the recent year of 2012 (Bo, 2013). In order to increase and maintain optimum oil palm production, smallholders that initiate oil palm cultivation on peatland in Sarawak are trying to establish further improvement on soil and micronutrients management to solve the issue.

Uncontrollable weed infestation will affect the oil palm trees growth and development during early establishment due to the nutrients and plant growth sources competition process. The presence of weeds can reduce the optimum efficiency of soil practice and desirable maintenance for the oil palm planters. Oil palm plantation which is commonly cultivated in large scale area might be having maintenance difficulties if planters did not take early precautions to avoid serious weed infestation in the future.

Undisturbed peat soil can contain numerous micronutrients content but appropriate fertilizer and nutrients management of peat soil also plays an important role to provide desirable nutrition for the crops grown. Peat soils are known for its high composition storage of biomass, dead organisms and carbon which are known as carbon stock. Peat soils are
mainly conserved because of its important source of carbon stock which is related to forestry and usage of land.

The result of this research will be useful to show the effectiveness of oil palm cultivation on peat soil areas. In order to increase yield of oil palm production and ensure optimum percentage of growth development, effective strategy of weed control and management of micronutrients application can be determined by proper techniques. This research can provide additional information on improving the effectiveness of different fertilization schedule for micronutrients and to provide awareness about problem of yield production for oil palm cultivation on peat soil.

1.3 Objectives of Study

The objectives of the research are as follow:

i. To determine species richness and diversity of weeds from different stages of oil palm plantation on peat land areas.

ii. To determine biomass and carbon stock of weeds from different ages of oil palm planting established on peat land areas.

iii. To determine micronutrient status, distribution of oil palm deficiency and copper, zinc and boron accumulation in peat soil and selected weed species.
CHAPTER 2

LITERATURE REVIEW

2.1 Peat land

Sarawak is widely known for its great source of availability of peat soils. Despite its various types and characteristics, peat soils do not guarantee consistent yield production of crops cultivation on it without strict soil managements and maintenance application. According to Wetlands International (2010), Sarawak surmounts 69.1% of total peatland in Malaysia, while the other 26.1% and 4.76% was hold by West Malaysia and Sabah respectively. In a recent report, Abdullah (2012) stated that in Sarawak there are around 1.6 million hectares of peatland and over 1.2 million hectares of arable land area. Peat soils contain high source of carbon, where the incomplete decomposition of vegetable organic matter occur due to low level of oxygen needed for the process to finish.

Oil palm cultivations in Sarawak have used many ways to maintain productive yield of oil palm on peat soil. Peat soils are commonly known for its low bulk density, high deficiency of macro and micronutrients and high acidity and water retention (Lim et al., 2012). Examples of oil palm issues are trunk leaning and lodging due to the structure of peat soil.

Various properties of peat soils does not abstain the increasing cultivation of oil palm on peat land in Sarawak. These constraints need continuous and detailed management in order to produce an optimum level of agricultural production. An adequate amount of fertilizers
need to be applied according to different growth stage of plants to supply sufficient amount of nutrients. In addition, the physical limitation of peat soils such as high water table must be managed with proper actions so that the planting schedules can be proceed without much difficulties. Under oil palm cultivation, waterlogged on peat land can inhibit maintenance activities involving mechanization and transportation (Kheong et al., 2010).

2.1.1 Peat soil characteristics

The three classes of peat taxonomy are shallow peat, moderate deep peat and lastly is deep peat (Lim et al., 2012). The depth measurements are less than one meter deep, one to two meter deep and beyond two meter deep respectively. Peat soil initial development occurs at location of lowland and deprived drainage system, and as the middle part of peat soil area develops thicker over time, it can produce leaching condition. Leaching that takes place on peat soil can reduce oil palm productivity as it losing its nutrients content and become less fertile.

Deep peat or fibric (L. Fibra) has the least decomposition rate of organic materials that is least favorable for oil palm cultivation to produce desirable yield. The soil mostly encompasses woody parts of plants that are slow in their decomposition process, which is also has the highest peat maturity level compared to other types of peat soil. On the other hand, moderately deep peat or hemic (Gk. Hemi) consists of moderately decomposed organic matter and shallow peat or also known as sapric (Gk. Sapros) has the highest compositions of decomposed materials that make sapric one of the preferable types of peat soil for oil palm cultivation compared to fibric peat (Wahyunto et al., 2010).
Leaching process of potassium and phosphorus can happen rigorously on deep peat area which will lead to drawback on growth and development of oil palm trees, especially during rainy season. Besides that, the rate of organic matter decomposition will be slower because of high rainfall amount and poor drainage management that eventually cause a formation of fibric peat. In terms of fertility rate, shallow peat is more fertile compared to other types of peat. On the other hand, moderately deep and deep peat soils have low water retention and this can negatively affect oil palm trees’ growth and development. Schwarzel et al. (2002) stated that among problematic type of peat soils are deep peat and shallow peat that are involved in oil palm cultivation.

2.1.2 Management of peat soil

Large company and smallholders farmers tend to utilize available soil area for crops planting which lead to conversion of peat forest for agricultural purposes. These purposes on the peat forest land will disturb the original ecosystem and the diversity of life within the area (Schrier-Uijl et al., 2013). Effective maintenance and management of peat soils must be seriously being taken care of to produce optimum level of productivity in desired period. Therefore, the characteristics of each type of peat soil are important to provide an operational management process. The main difference between types of peat soil is their morphological structure such as the porosity, woodiness, water retention capacity, chemical properties and hydraulic conductivity (Melling et al., 2011).

One of the great concerns for farmers is to maintain optimum yield of crops planted on peat land, for example managing proper water management system. The most effective way to
produce high yield and uphold healthy growth of crops is by maintaining water level of peat soil for about 50 to 70 centimeters below the soil surface (Lim et al., 2012). Oil palm cultivation on peat land is notably for its high contribution to greenhouse gas emissions. Therefore essential water table management of peat soils can diminish greenhouse gas emissions, soil subsidence and peat ignition (Schrier-Uijl et al., 2013).

Peat soil is highly deficient of nutrients content, fertilizer and nutrients management of peat soil also plays an important role to provide adequate nutrition for the crops grown on it. Due to the structure of the peat soil, leaching of fertilizer must be avoided as the soil has high porosity and infiltration rate. Fertilization schedule need to be done periodically and not to be applied during rainy season because that can lead to high leaching rate of fertilization which will only produce costly management system, especially for boron and potassium fertilizers which are highly leachable. Excessive drainage must be avoided because it can change most of the physical properties of peat soils and eventually result in irreversible drying (Schrier-Uijl et al., 2013).

The peat can also be managed by conserving or rehabilitating the peat area. Peat soil is somewhat susceptible to high temperature because this can develop fire burning the peat soil. Peat deposits ignition can cause smoldering fires that is likely to produce high greenhouse gas emissions and create environment issues. Fire risk of peat will affect soil stability, nutrients loss and development of invasive plant species (Certini, 2005). Therefore, caution must be applied to prevent any fire burning within or near the peat soil region.