TAKLIMAT KURIKULUM
TERSEDIA MASA HADAPAN
HOTEL BANGI PUTRAJAYA
6 DESEMBER 2018, KHAMIS

ELEMENT 1 : FLUID & ORGANIC CURRICULUM STRUCTURE

PM DR. NAZIHA BINTI AHMAD AZLI
UNIVERSITI TEKNOLOGI MALAYSIA
CURRICULUM 4.0: FUTURE READY CURRICULUM

ELEMENT

FLUID & ORGANIC CURRICULUM STRUCTURE
TRANSFORMATIONAL LEARNING & TEACHING DELIVERY
ALTERNATIVE ASSESSMENTS
* EXAMPLES

SUB-ELEMENT

CONVERGENT, MULTI/INTER/TRANS DISCIPLINES
FUTURISTIC LEARNING SPACES & TECHNOLOGIES
IMMERSIVE EXPERIENTIAL LEARNING

FLEXIBLE & NON-CONVENTIONAL
21ST CENTURY PEDAGOGIES
(HEUTOGOGY, PARAGOGY, CYBERGOGY)

INDUSTRY PARTNERSHIP
AUTHENTIC PERFORMANCE-BASED
PERSONALISED
INTEGRATED
CONTEMPORARY
REAL-TIME
CHALLENGED-BASED
PROFILING

GLOBAL
Convergence of Disciplines
Multi/Inter/Trans

Flexible & Non-Conventional

Global

Industry Partnership

ORGANIC & FLUID CURRICULUM STRUCTURE

ELEMENT 1: FLUID & ORGANIC CURRICULUM STRUCTURE
SINGLE vs CONVERGENT DISCIPLINES
CURRICULUM CONTENT

Multidisciplinary

- Expansion of the main field by adding knowledge from a different field (stay within boundaries) - additive

Interdisciplinary

- Combination of knowledge from two or more different fields, without changing the knowledge within the fields (harmonizes links between disciplines into a coordinated and coherent whole) – interactive

Transdisciplinary

- Full interaction of two or more disciplines in the perspective of solution of real-world problems. It is a combination of field of knowledge across disciplines that eventually develops into a new knowledge field - holistic
CONVERGENT DISCIPLINES EXAMPLES

- Bachelor of Psychology with Human Resource Development
- Master of Chemical Engineering with Entrepreneurship

- Bachelor of Arts in Interdisciplinary Studies
- Bachelor of General Studies
- Bachelor of Arts in Interdisciplinary Social Science

- Bachelor of Mechatronics Engineering
- Master of Bioinformatics
- Bachelor of Computer Science (Bioinformatics)
Designing courses that are cross-disciplinary, where one discipline learns from the perspective of another, or interdisciplinary, where the disciplines are integrated, allows for more context-specific programmes that better suit industry and prepare students for jobs, opening doors rather than closing them.

It benefits academics too, since research councils now rarely fund research in a single discipline. They’re looking for the broader view and sharper insights that come from the intersection between multiple disciplines that defines new territory - and so should universities.
CONCEPT OF FLUID & ORGANIC CURRICULUM

Element 1: Fluid & Organic Curriculum Structure
CONCEPT OF FLUID & ORGANIC CURRICULUM

A curriculum designed with a flexible structure, updated and shaped as and when necessary in order to respond to the changing needs of the industry and students’ educational experiences.

A curriculum that contains the component of contemporary (includes knowledge, skills or values) on the aspect of the content of a course or the course as a whole. The contemporary component is flexible in nature and in accordance to the current/latest development and needs of knowledge and skills.
Concept of Fluid & Organic Curriculum

Model A
1. Compulsory general courses - contemporary
2. Faculty courses
3. Core courses
4. Elective courses - contemporary

Model B
Certain percentage of the courses in a curriculum is contemporary

Model C
Certain percentage of the content of all/certain courses is contemporary

Model D
Certain percentage of the courses in a curriculum is contemporary with emphasis on the elective courses

*30% of the curriculum (for 120 credits, maximum of 36 credits)
BACHELOR OF GENERAL STUDIES
PROGRAM SARJANA MUDA PENGAJIAN AM

• Pembelajaran fleksibel, memenuhi kriteria Kurikulum Tersedia Masa Hadapan
• Berorientasikan keperluan pelajar
• Merentas bidang
• Atribut SMPA :
 • Sesuai dengan keperluan individu
 • Pelbagai kursus
 • Kurikulum bolehubah dan organik - Pelajar bebas memilih kursus dalam bidang pengkhususan mengikut keperluan kontemporari
 • Memperoleh bidang ilmu dan kemahiran yang luas
BACHELOR OF GENERAL STUDIES
PROGRAM SARJANA MUDA PENGAJIAN AM

KERANGKA PELAKSANAAN PROGRAM

<table>
<thead>
<tr>
<th>TAHUN 1</th>
<th>TAHUN 2</th>
<th>TAHUN 3</th>
<th>TAHUN 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>KURSUS ULMUM UNIVERSITI</td>
<td>KURSUS ULMUM UNIVERSITI</td>
<td>KURSUS ULMUM UNIVERSITI</td>
<td>KURSUS WAJIB PROGRAM</td>
</tr>
<tr>
<td>KURSUS WAJIB PROGRAM</td>
<td>KURSUS WAJIB PROGRAM</td>
<td>KURSUS WAJIB PROGRAM</td>
<td>KURSUS ELEKTIF PENGAYAAN AM</td>
</tr>
<tr>
<td>KURSUS ELEKTIF PENGAYAAN AM</td>
<td>KURSUS ELEKTIF PENGAYAAN AM</td>
<td>KURSUS ELEKTIF PENGAYAAN AM</td>
<td>KURSUS ELEKTIF PENGAYAAN AM</td>
</tr>
<tr>
<td>KURSUS ELEKTIF LANJUTAN</td>
<td>KURSUS ELEKTIF LANJUTAN</td>
<td>KURSUS ELEKTIF LANJUTAN</td>
<td>KURSUS ELEKTIF LANJUTAN</td>
</tr>
<tr>
<td>33 kredit</td>
<td>33 kredit</td>
<td>34 kredit</td>
<td>24 kredit</td>
</tr>
</tbody>
</table>

ELEMENT 1: FLUID & ORGANIC CURRICULUM STRUCTURE
KURSUS WAJIB PROGRAM

Memberi penekanan kepada pengetahuan dan kemahiran asas bagi tujuan pembangunan kerjaya

<table>
<thead>
<tr>
<th>BIL</th>
<th>KOD KURSUS</th>
<th>NAMA KURSUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SSPG 1133</td>
<td>Computer Literacy</td>
</tr>
<tr>
<td>2</td>
<td>SSPG 1143</td>
<td>Philosophy of Knowledge</td>
</tr>
<tr>
<td>3</td>
<td>SSPG 1253</td>
<td>Principle of Management</td>
</tr>
<tr>
<td>4</td>
<td>SSPG 1613 or SSPG 1623</td>
<td>Physics or Chemistry</td>
</tr>
<tr>
<td>5</td>
<td>SSPG 2113</td>
<td>Creativity & Innovation</td>
</tr>
<tr>
<td>6</td>
<td>SSPG 2143</td>
<td>Research Methodology</td>
</tr>
<tr>
<td>7</td>
<td>SSPG 2223</td>
<td>National Integrity</td>
</tr>
<tr>
<td>8</td>
<td>SSPG 2233</td>
<td>Mathematic & Statistics</td>
</tr>
<tr>
<td>9</td>
<td>SSPG 4112</td>
<td>Final Year Project I</td>
</tr>
<tr>
<td>10</td>
<td>SSPG 4214</td>
<td>Final Year Project II</td>
</tr>
</tbody>
</table>
KERANGKA PELAKSANAAN PEMILIHAN KURSUS BAGI ELEKTIF PROGRAM

<table>
<thead>
<tr>
<th>BIDANG</th>
<th>MANAGEMENT</th>
<th>SCIENCE</th>
<th>COMPUTING</th>
<th>TECHNOLOGY</th>
<th>HUMANITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEKTIF PENGAJIAN AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(45 kredit, 15 kursus)</td>
<td>KURSUS TAHUN 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KURSUS TAHUN 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KURSUS TAHUN 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KURSUS TAHUN 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIDANG</td>
<td>MANAGEMENT</td>
<td>SCIENCE</td>
<td>COMPUTING</td>
<td>TECHNOLOGY</td>
<td>HUMANITIES</td>
</tr>
<tr>
<td>ELEKTIF LANJUTAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(27 kredit, 9 kursus)</td>
<td>KURSUS TAHUN 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KURSUS TAHUN 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KURSUS TAHUN 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KURSUS TAHUN 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Penasihat Akademik & Kerjaya akan memberikan bantuan dan bimbingan dalam usaha pelajar mencapai matlamat pendidikan dan kerjaya melalui program SMPA ini.
- Struktur kurikulum SPMA telah dibentangkan kepada MQA (Lampiran 10 - Minit mesyuarat bersama MQA)

ELEMENT 1: FLUID & ORGANIC CURRICULUM STRUCTURE
<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kod</td>
<td>Nama Kursus</td>
</tr>
<tr>
<td>UICI 1012/ULAM 1012</td>
<td>Islamic and Asia Civilizations (TITAS)/ Malay Language for Communication 2</td>
</tr>
<tr>
<td>SSPG 1133</td>
<td>Computer Literacy</td>
</tr>
<tr>
<td>SSPG 1143</td>
<td>Philosophy of Knowledge</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Jumlah

Pentunjuk:

- **KURSUS UMUM UNIVERSITI**
- **KURSUS WAJIB PROGRAM**
- **KURSUS ELEKTIF PENGAJIAN AM**
- **KURSUS ELEKTIF LANJUTAN**
Bachelor of General Studies
Program Sarjana Muda Pengajian AM

Table: Course Structure

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kod</td>
<td>Nama Kursus</td>
</tr>
<tr>
<td>ULAB 2122</td>
<td>Advanced Academic English Skills</td>
</tr>
<tr>
<td>UICL 2302</td>
<td>Science and Technology Thinking</td>
</tr>
<tr>
<td>SSPG 2133</td>
<td>Creativity & Innovation</td>
</tr>
<tr>
<td>SSPG 2233</td>
<td>Mathematics & Statistics</td>
</tr>
</tbody>
</table>

Jumlah

Penting:
- **KURSUS UMUM UNIVERSITI**
- **KURSUS WAJIB PROGRAM**
- **KURSUS ELEKTIF PENGAJIAN AM**
- **KURSUS ELEKTIF LANJUTAN**

6 Dec 2018 TAKLIMAT KURIKULUM TERSEDIA MASA HADAPAN UNIVERSITI AWAM, HOTEL BANGI PUTRAJAYA

Example of program
Bachelor of General Studies

Program Sarjana Muda Pengajian AM

Year 3

<table>
<thead>
<tr>
<th>Semester 1</th>
<th></th>
<th>Semester 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kod</td>
<td>Nama Kursus</td>
<td>Kredit</td>
<td>Kod</td>
</tr>
<tr>
<td>ULAB 3162</td>
<td>English for Professional Purposes</td>
<td>2</td>
<td>ULAX 1112</td>
</tr>
<tr>
<td>UHAK 1032</td>
<td>Introduction to Entrepreneurship</td>
<td>2</td>
<td>SSPG 2223</td>
</tr>
<tr>
<td>UIICL 2XX2</td>
<td>Generic Skills/ Knowledge Enhancement Elective</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jumlah</th>
<th>Jumlah</th>
</tr>
</thead>
</table>

Pemunjk:

- **KURSUS UMUM UNIVERSITI**
- **KURSUS WAJIB PROGRAM**
- **KURSUS ELEKTIF PENGAJIAN AM**
- **KURSUS ELEKTIF LANJUTAN**

Example of program

Element 1: Fluid & Organic Curriculum Structure
BACHELOR OF GENERAL STUDIES
PROGRAM SARJANA MUDA PENGAJIAN AM

TAHUN 3
SEMESTER 1

<table>
<thead>
<tr>
<th>Kod</th>
<th>Nama Kursus</th>
<th>Kredit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPPG 3006</td>
<td>Industrial Training</td>
<td>6</td>
</tr>
</tbody>
</table>

Jumlah 6

TAHUN 4
SEMESTER 1

<table>
<thead>
<tr>
<th>Kod</th>
<th>Nama Kursus</th>
<th>Kredit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSPG 4112</td>
<td>Final Year Project I</td>
<td>2</td>
</tr>
</tbody>
</table>

SEMESTER 2

<table>
<thead>
<tr>
<th>Kod</th>
<th>Nama Kursus</th>
<th>Kredit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSPG 4214</td>
<td>Final Year Project II</td>
<td>4</td>
</tr>
</tbody>
</table>

Jumlah

Pentunjk :
- **KURSUS WAJIB PROGRAM**
- **KURSUS ELEKTIF PENGAJIAN AM**
- **KURSUS ELEKTIF LANJUTAN**
FLEXIBLE & NON-CONVENTIONAL

DIMENSIONS OF FLEXIBLE CURRICULUM

- Promotes access to education at any time and any place
- Learning model, personalisation and learner engagement
- Relations and partnership with external parties
- Entry, transition, progression and exit
FLEXIBLE & NON-CONVENTIONAL

- ODL
- MOBILITY
- INTER UNIVERSITY
- APEL RPEL
- MOOC
- GAP YEAR

ELEMENT 1: FLUID & ORGANIC CURRICULUM STRUCTURE
FLEXIBLE & NON-CONVENTIONAL

Innovative Curriculum Examples

- POPBL (Aalborg Model)
- Integrated EP (Univ. College London)
- Innovation & Design Centric Program iDCP (NUS)
- Interdisciplinary EP (Purdue University)
- PBL
- CDIO (Singapore Poly)
POPBL (Aalborg Model)

<table>
<thead>
<tr>
<th>Bachelor programmes</th>
<th>Master programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. Semester</td>
<td>Master’s thesis</td>
</tr>
<tr>
<td>9. semester</td>
<td>Specialisation</td>
</tr>
<tr>
<td>8. semester</td>
<td></td>
</tr>
<tr>
<td>Bachelor project</td>
<td>7. semester</td>
</tr>
<tr>
<td>Specialisation</td>
<td>6. semester</td>
</tr>
<tr>
<td>Bachelor education</td>
<td>5. semester</td>
</tr>
<tr>
<td></td>
<td>4. Semester</td>
</tr>
<tr>
<td></td>
<td>3. semester</td>
</tr>
<tr>
<td>Basic education</td>
<td>2. semester</td>
</tr>
<tr>
<td></td>
<td>1. semester</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
POPBL (Aalborg Model)

Semester Structure

- **Project courses (P)** - supporting project work - min. 25% (7-8 ECTS)
- **Study courses (S)** - general knowledge - max. 25% (7-8 ECTS)
- Project work - groups of 2 - 7 students - min. 50% (15 ECTS)
- P-courses and project examined together

1 semester = 15 weeks + 5 weeks = 30 ECTS = 900 hours student work

ECTS: European Credit Transfer System
POPBL (Aalborg Model)

<table>
<thead>
<tr>
<th>Mm. 1</th>
<th>S-course 1</th>
<th>S-course 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mm. 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mm. 3</td>
<td>P-course 1</td>
<td></td>
</tr>
<tr>
<td>Mm. 4</td>
<td></td>
<td>P-course 2</td>
</tr>
<tr>
<td>Mm. 5</td>
<td>P-course 2</td>
<td></td>
</tr>
<tr>
<td>Mm. 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mm. 7</td>
<td>P-course 1</td>
<td></td>
</tr>
<tr>
<td>Mm. 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mm. 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mm. 10</td>
<td>Free study act.</td>
<td>Free study act.</td>
</tr>
</tbody>
</table>

- 5 weeks
- 5 weeks
- 5 weeks

10 Mm/week – 1 Mm = 4 hours = ½ day

KMY, 2017
INTEGRATED ENGR. PROGRAM (IEP)

- A connected curriculum, punctuated with problem-based and research-based activities
- Inter-disciplinary approach (7 undergraduate departments - >700 students)
- Year 1 foundations, upper year projects and minor streams
- Minors - topical and inter-disciplinary
- Review the balance of assessment & delivery styles
- Review of discipline specific curriculum
INTEGRATED ENGR. PROGRAM (IEP)

Term 1
- Challenges
- Design & Professional Skills
- Core Modules

Term 2
- Core Modules
- Scenarios
- Core Modules
- Scenarios

Term 3
- Exams
- UCL Global Citizenship

Year 1
- D & PS
- Core Modules
- Scenarios

Year 2
- D & PS
- Core Modules
- Scenarios
- Minors

Year 3
- Projects
- Professional Skills
- Core Modules
- Minors

Key:
- Core Modules
- Projects
- Specialism
- Professional Skills
- Optional Projects

N.B. This diagram is only indicative and does not represent the weighting of marks or accurate module times.

Mitchell, J., 2016
INNOVATION & DESIGN CENTRIC PROGRAM (iDCP)

- 20 out of 160 Modular Credits, MCs (12.5%) are open for electives
- 100 students per intake – total 400 students in the whole program at a time
- Real world problems & industry based problems
- iDCP projects accepted as Capstone Design Project and Final Year Projects
INNOVATION & DESIGN CENTRIC PROGRAM (iDCP)

- **Intake 1**
 - Sem 1: Apply to iDCP
 - Sem 2: Explore design
 - Sem 3: Understand design context
 - Sem 4: Acquire design skills Conceptual design Proof-of-concept
 - Sem 5: SEP (optional)

- **Intake 2**
 - Sem 6: Final design Implementation and evaluation

VIP (6 MCs)
- 8 MCs counted as pathway requirement
- 4 MCs counted as UEM

Innovation & Enterprise electives (12 MCs)

Courses:
- EG2201A (4 MCs) Counted as UEM
- EG2301 (4 MCs) Counted as UEM
- EG3301R (12 MCs) Mapped to design project
- EG4301 (12 MCs) Mapped to FYP
INTERDISCIPLINARY ENGINEERING PROGRAM

Interdisciplinary Engineering Studies (IDES)

- Designed for students who do not plan to practice as an engineer
- Offers a customized, student-designed option

Multidisciplinary Engineering (MDE)

- Designed to prepare graduates to practice engineering
- Offers a variety of plans of study at the cutting edge of new and emerging areas of engineering
- Offers a customized, student-designed option
INTERDISCIPLINARY ENGINEERING PROGRAM

Interdisciplinary Engineering Studies (IDES)

- Flexible plan of study that can be tailored to include its own title and selection of courses
 - Develop own individual plan of study or select one of the established concentrations such as Visual Design Engineering Studies, Pre-Medical Engineering Studies, Pre-Law Engineering Studies etc.
- Limited enrolment (fewer than 100 total students), so the program remains counselling-intensive
- Bachelor of Science in Engineering (BSE) or Bachelor of Science (BS) degree
INTERDISCIPLINARY ENGINEERING PROGRAM

Multidisciplinary Engineering (MDE)

- Flexible plan of study that can be tailored to include its own title and selection of courses
 - Develop own individual plan of study or select one of the established focused concentrations i.e. Acoustical Engineering, Engineering Management, General Engineering, Visual Design Engineering, Lighting Engineering, Nano-Engineering
- Limited enrolment (fewer than 100 total students), so the program remains counselling-intensive
- Bachelor of Science in Engineering (BSE) or Bachelor of Science (BS) degree
PROBLEM-BASED LEARNING

Conventional Curriculum-content as an organizational structure

- Nursing
- Philosophy
- Anatomy
- Law Simple
- Content Area 1
- Content Area 2
- Content Area 3
- Content Area 4
- Complex

Conway & Little, 1999 (U. New Castle)
PROBLEM-BASED LEARNING

PBL Curriculum-concepts as an organizational structure

Conway & Little, 1999 (U.New Castle)
CDIO (CONCEIVE-DESIGN-IMPLEMENT-OPERATE)

- Conceiving-Designing-Implementing-Operating should be the context, but not the content, of engineering education
 - Closely aligned to engineering practice
 - Communicates the rationale and relevance of what students are learning
 - Interconnects concepts and knowledge that builds on each other
 - Increase retention of new knowledge and skills
CDIO (CONCEIVE-DESIGN-IMPLEMENT- OPERATE)

- Adopted by 6 academic schools, 15 programs
 - Architecture and the Built Environment
 - Chemical and Life Sciences
 - Electrical and Electronic Engineering
 - Mechanical and Aeronautical Engineering
 - Digital Media and Info-Comm Technology
 - Singapore Maritime Academy
CDIO (CONCEIVE-DESIGN-IMPLEMENT-OPERATE)

1. Disciplinary Knowledge & Reasoning (Learning to Know)
 - Knowledge of underlying mathematics and sciences
 - Core engineering fundamental knowledge
 - Advanced engineering fundamental knowledge, methods and tools

2. Personal and Professional Skills & Attributes (Learning to Be)
 - Analytical reasoning and problem solving
 - Experimentation, investigation and knowledge discovery
 - System thinking
 - Attitudes, thoughts and learning
 - Ethics, equity and other responsibilities

3. Interpersonal Skills: Teamwork & Communication (Learning to Live Together)
 - Teamwork
 - Communications
 - Communication in a foreign language

4. Conceiving, Designing, Implementing & Operating Systems in the Enterprise & Environmental Context (Learning to Do)
 - External, societal and environmental context
 - Enterprise and business context
 - Conceiving, systems engineering and management
 - Designing
 - Implementing
 - Operating

Can be customized
CDIO (CONCEIVE-DESIGN-IMPLEMENT-OPERATE)

Integration of CDIO Skills across 3 years of Study

<table>
<thead>
<tr>
<th>SEMESTER 1</th>
<th>SEMESTER 2</th>
<th>SEMESTER 3</th>
<th>SEMESTER 4</th>
<th>SEMESTER 5</th>
<th>SEMESTER 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Module 1A-1</td>
<td>Core Module 1B-1</td>
<td>Core Module 2A-1</td>
<td>Core Module 2B-1</td>
<td>Core Module 3A-1</td>
<td>Core Module 3B-1</td>
</tr>
<tr>
<td>Core Module 1A-2</td>
<td>Core Module 1B-2</td>
<td>Core Module 2A-2</td>
<td>Core Module 2B-2</td>
<td>Core Module 3A-2</td>
<td>Core Module 3B-2</td>
</tr>
<tr>
<td>Core Module 1A-3</td>
<td>Core Module 1B-3</td>
<td>Core Module 2A-3</td>
<td>Core Module 2B-3</td>
<td>Core Module 3A-3</td>
<td>Core Module 3B-3</td>
</tr>
<tr>
<td>Core Module 1A-4</td>
<td>Core Module 1B-4</td>
<td>Core Module 2A-4</td>
<td>Core Module 2B-4</td>
<td>Core Module 3A-4</td>
<td>Core Module 3B-4</td>
</tr>
<tr>
<td>Core Module 1A-5</td>
<td>Core Module 1B-5</td>
<td>Core Module 2A-5</td>
<td>Core Module 2B-5</td>
<td>Core Module 3A-5</td>
<td>Core Module 3B-5</td>
</tr>
<tr>
<td>Core Module 1A-6</td>
<td>Core Module 1B-6</td>
<td>Core Module 2A-6</td>
<td>Core Module 2B-6</td>
<td>Core Module 3A-6</td>
<td>Core Module 3B-6</td>
</tr>
</tbody>
</table>

- **Year 1:** Exposure to CDIO skills
- **Year 2:** Reinforcement of CDIO skills
- **Year 3:** Practice and Apply of CDIO skills

Program Structure

Teamwork

Integration of CDIO Skills across 3 years of Study
NEW PROGRAM

Bachelor of Creative Intelligence and Innovation (BCII)

- Unique combined degree that encompasses high-level critical and creative thinking, invention, complexity, innovation, future scenario building and entrepreneurship; leading-edge capabilities that are highly valued in the globalised world.
- Students are selected from 17 disciplines, from all faculties.
- Integrates a range of industry experiences, real-world projects and self-initiated proposals – equipping students to address the complex challenges and untapped opportunities of our times.
NEW PROGRAM

Bachelor of Creative Intelligence and Innovation (BCII)

- By focusing in teams on high-level conceptual thinking and problem-solving practices, students learn to work across and between disciplines, discovering rare skills and mind-sets.
- During the process students becoming lifelong innovators, entrepreneurs, creative practitioners and change-makers.
INDUSTRY PARTNERSHIP

1. INDUSTRY COLLABORATION
To ensure students are equipped with future-proof skills & competencies

2. INDUSTRY INPUT
Beneficial for expanding knowledge & experience of future-proof talents

3. FEATURES
Industry involvement on the aspect of curriculum design, L&T implementation and assessment
Students immersed in real workplace scenario
E.g. 2u2i programs

ELEMENT 1: FLUID & ORGANIC CURRICULUM STRUCTURE
ADVOCATE GLOBAL COOPERATION WITH INTERNATIONAL UNIVERSITIES

GLOBAL

TRANSNATIONAL EDUCATION (TNE) (DOUBLE, DUAL JOINT)

Promotes students’ adaptability skills

ELEMENT 1: FLUID & ORGANIC CURRICULUM STRUCTURE
KEY CHALLENGES

01 Changing the mind set of the masses towards innovative curriculum

02 Setting the infrastructure that supports innovation in curriculum and T&L method

03 Getting the acceptance/approval from the accreditation bodies

04 Getting the commitment from industry as partners in developing innovative curriculum

05 Developing the talent that can fully implement innovative T&L method
THANK YOU