Single Nucleotide Polymorphisms in Low-Density Lipoprotein Receptor (LDLR) and Upstream Transcription Factor 1 (USF1) Genes Associated with Familial Hypercholesterolaemia among Iban and Bidayuh Ethnic Groups in Sarawak

Siaw Yun Ted

Master of Science
2019
Single Nucleotide Polymorphisms in *Low-Density Lipoprotein Receptor (LDLR)* and *Upstream Transcription Factor 1 (USF1)* Genes Associated with Familial Hypercholesterolaemia among Iban and Bidayuh Ethnic Groups in Sarawak

Siaw Yun Ted

A thesis submitted

In fulfillment of the requirements for the degree of Master of Science

(Molecular Genetics)

Faculty of Medicine and Health Sciences
UNIVERSITI MALAYSIA SARAWAK
2019
DECLARATION

I declare that the work on this thesis was carried out in accordance with the regulations of Universiti Malaysia Sarawak. It is original and is the result of my work, unless otherwise indicated or acknowledged as referenced work. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Name of Student : Siaw Yun Ted
Student ID No : 15020036
Programme Degree : Master of Science

Signature of Student :

Date :
ACKNOWLEDGEMENT

This research was supported and consumed an amount of work, research and dedication. Therefore, I would like to highlight and thankful for the financial fund: Fundamental Research Grant Scheme granted from the Ministry of Higher Education Malaysia. Foremost, I would like to express my sincere gratitude and appreciation to my principal supervisor Associate Professor Dr. Sim Sai Peng for the continuous support during my Master study and research, for her patience, motivation, enthusiasm, and comments on an earlier version of the thesis.

Besides, I would like to thank the rest of my project committee as a co-supervisor: Mr. Mohd Aminudin Bin Mustapha, Dr. Helmy bin Hazmi, for their selfless contribution to supervise this work, encouragement, insightful comments and guidance toward the completion of my work.

Thanks also to my fellow labmates: Ms. Hafizah Hanis binti Hood, for the stimulating discussions, for the hard work together, and all the fun we have had in the last two years. Also I thank my friends from Gribble Laboratory Sdn Bhd: Bego and Kent; volunteer helpers: Christerlikson ak Mathew and Whilemena

Last but not the least, I would like to thank my family. In particular, to my mother Yiap Su Tan, for supporting me spiritually throughout my life.
ABSTRACT

Familial Hypercholesterolaemia (FH) is a genetic disease caused by defects in a number of genes and variants that regulate plasma LDL-cholesterol concentrations. Insofar no study has been undertaken to determine the frequencies of lipid related gene in Sarawak. We aimed to determine the distribution of LDLR and USF1 gene-associated FH in Iban and Bidayuh ethnic groups in Sarawak, and its associations with lipid profiles. A total of 255 Iban and Bidayuh were recruited. Physical assessments were performed, and two blood tubes were withdrawn. Subjects’ clinical parameters were tested, and DNA was extracted. Allele Specific-PCR of LDLR and USF1 was performed for six single nucleotide polymorphisms (SNPs) and categorised into homozygous wild, heterozygous and homozygous SNP. The data were analysed for genotype-lipid level associations by using the SPSS. FAMHAP with Haploview software was used only for haplotypes analysis and GMDR software used for interpreting the gene-gene interactions towards the LDL risk. Two LDLR gene variants, c.1060+7 T>C variant and c.1706-55A>C variant were detected with majority in homozygous SNP and three genotype stages (homozygote SNP, heterozygote SNP and homozygote wild), respectively. The c.1194C>T variant is not found in this study. Three variants: g.12498165G>A variant, g.7637G>A variant and 306A>G variant in USF1 gene were detected with three genotype stages. The allele and the minor allele frequency (MAF) are different in both studied genes. For c.1060+7 T>C variant and c.1706-55A>C variant, the minor C allele that was found became the major allele with the frequency of 0.996 and 0.535, respectively. There are differences in MAF allele for g.7637G>A variant and 306A>G variant, where the A allele as the wild type and C allele as minor allele, respectively. Result from the current study did not provide any
suggestive evidence of SNP-lipid association in single-SNP model and multi-SNP models to investigate the FH gene of predisposition to hypercholesterolemia. Except, for the two best models of gene-gene interactions of bi-link for g.12498165G>A and 306A>G ($p = 0.003$) and tri-link for c. 1706-55A>C, g.12498165G>A and 306A>G ($p = 0.000$). This study clearly demonstrates that these variants in FH gene have different phenotypes expression, including the candidates with normal LDL level or homozygous. Taken together all the variables into consideration, there is no suggestive significant for the SNP-LDL levels in these two genes. This might be due to the: intronic factor, non-pathogenic factor and linkage equilibrium values are weak in both these genes. More importantly, the peculiar ethnicity of the Iban and Bidayuh could be a major contributing factor of variability (in MAF and association with LDL). In addition, further studies are recommended to replicate this finding of strong interaction in gene-lipid risk model for gene-gene interactions (genotype base of LDL-C). Five SNPs of FH were detected but does not support a significant genetic contribution of desired SNPs and haplotypes to hypercholesterolemia, and the findings are inconclusive regarding their contribution to disease-related traits. Nevertheless, this data is the first to demonstrate the FH variant profile in Iban and Bidayuh ethnic groups and ratified with previous findings of differences due to ethnicity factor and multi-phenotype expressions of FH.

Keywords: Familial Hypercholesterolemia (FH), Single Nucleotide Polymorphisms (SNPs), *Low-Density Lipoprotein Receptor* Gene (*LDLR*) and *Upstream Transcription Factor 1* Gene (*USF1*), Low Density Lipoprotein concentration (LDL-C).
Gen Receptor Lipoprotein Ketumpatan Rendah (LDLR) dan Gen Transkripsi Faktor 1 Upstream (USF1) berkaitan dengan Polimorfisme Nukleotida Tunggal dalam Gen Lipid Hiperkolesterolemia Familial di kalangan Etnik Iban dan Bidayuh di Sarawak

ABSTRAK

Kata kunci: Hiperkolesterololemia Familia (FH), Polimorfisme nukleotida tunggal (SNPs), Gen Reseptor Lipoprotein Ketumpatan Rendah (LDLR) dan Gen Transkripsi Faktor 1 Upstream (USF1), kadar Lipoprotein Ketumpatan Rendah (LDL-C).
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiii</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW

1.1 Lipid Metabolism
1.1.1 Lipid Profiles
1.2 Overview of Familial Hypercholesterolemia
1.2.1 Causes of Familial Hypercholesterolemia
1.2.2 Patent of Inheritance
1.3 Relationship Between the FH & LDL Level
1.3.1 Clinical Features of Familial Hypercholesterolemia
1.3.2 Clinical Features of Lipoprotein of FH
1.4 Diagnosis and Treatment of Familial Hypercholesterolemia
1.4.1 The Dutch Criteria
1.4.2 Treatment of Familial Hypercholesterolemia
1.5 Frequency and Prevalence
1.5.1 Prevalence of Hypercholesterolemia in Malaysia 17

1.6 Low Density Lipoprotein Receptor Gene 19
 1.6.1 LDLR Gene Mutations 21

1.7 Upstream Transcription Factor 1 Gene 23
 1.7.1 USF1 Gene Mutation 24

1.8 Common Versus Rare Allele in FH 24
 1.8.1 Monogenic or Polygenic Familial Hypercholesterolemia 25
 1.8.2 Single or Gene Dose for USF1 Gene 26
 1.8.3 Gene Selection of Hypercholesterolemia Detection 27

1.9 LDLR Gene in Malaysia 28

1.10 USF1 Gene Polymorphism in Malaysia 31

1.11 Distribution of Iban and Bidayuh Ethnic Population 31
 1.11.1 The Iban and Bidayuh 34

1.12 Importance of Study 34

1.13 Research Objective 35

1.14 Hypothesis 36

CHAPTER 2: MATERIALS AND METHODS 37

2.1 Research Lab 37
 2.1.1 Materials 37

2.2 Subject Recruitment 37
 2.2.1 Sample Size Calculation 38
 2.2.2 Equation of Sample Size Calculation 38
 2.2.3 Subject Criteria 39
 2.2.4 Location of Sampling and Registration of Eligible Subjects 39
2.3 Blood Sampling

2.4 Subject Information Data
2.4.1 Socio-demographic and Basic Anthropogenic Measurement
2.4.2 FH Characteristics
2.4.3 Biochemical Parameter and Comment

2.5 Summary of Subject Recruitment

2.6 DNA Extraction
2.6.1 Quantification of Genomic DNA
2.6.2 Working DNA for AS-PCR Mastermix

2.7 SNPs Selection and Primer for AS-PCR
2.7.1 SNPs Locations
2.7.2 Primers Design

2.8 Primer Preparation and Storage

2.9 AS-PCR Optimisation
2.9.1 AS-PCR Reaction Condition (Master-Mix)
2.9.2 AS-PCR Thermo-Cycling Conditions

2.10 Agarose Gel Electrophoresis
2.10.1 Staining AS-PCR Electrophoresis
2.10.2 Interpretation of AS-PCR Electrophoresis

2.11 Validation
2.11.1 Validation of SNPs Variants
2.11.2 Validation of AS-PCR Results
2.11.3 Validation of HWE and LD Parameters

2.12 Data
2.12.1 Data bank Records 56
2.12.2 Phenotype and Socio-Demography Data 56
2.12.3 Genotype Data 56
2.12.4 Biochemistry Test Data 57

2.13 Data analysis Software 57
2.13.1 SPSS 58
2.13.2 FAMHAP and Haplovview 59
2.13.3 Hardy Weinberg Equilibrium 61
2.13.4 Allele frequency and Linkage Disequilibrium 61
2.13.5 Haplotype and Haplotype Association 61
2.13.6 LD Interpretation 63
2.13.7 Generalized Multifactor Dimensionality Reduction (GMDR) 64

2.14 Cut-off Point Parameters 65
2.14.1 Cut-off point for BMI 65
2.14.2 Cut-off Point for Body Fat Percentage and Wrist Circumference 66
2.14.3 Cut-off point for Blood Pressure 67
2.14.4 Cut-off point for Lipid Profiles 67

CHAPTER 3: RESULTS 69

3.1 Introduction 69

3.2 Characteristic of Recruited Subjects 69
 3.2.1 General Demographic Data 69
 3.2.2 Health Status 70
 3.2.3 FH Score Status 72
3.3 Genotype and Allele Frequencies

3.4 \textit{LDLR} Genotypic and Allelic Frequencies
3.4.1 Genotypic and Allelic Frequency for \textit{c. 1060+7 T>C} Variant
3.4.2 Genotypic and Allelic Frequency for \textit{c. 1706-55A>C} Variant
3.4.3 Genotypic and Allelic Frequency for \textit{c.1194C>T} Variant

3.5 \textit{USF1} Genotypic and Allelic Frequencies
3.5.1 Genotypic and Allelic Frequency for \textit{g.12498165G>A} Variant
3.5.2 Genotypic and Allelic Frequency for \textit{g.7637G>A} Variant
3.5.3 Genotypic and Allelic Frequency for \textit{306A>G} Variant

3.6 Associations
3.6.1 Single Variant Associations with Phenotypes
3.6.1.1 Association of Phenotypes with \textit{LDLR} Genotypes
3.6.1.1.1 Genotype Association with Biochemistry Profile for \textit{c. 1706-55A>C} Variant. Based on Co-dominant Model
3.6.1.1.2 Genotype Association with Categorised Lipid Profile for \textit{c. 1706-55A>C} Variant
3.6.1.1.3 Genotype Association with Biochemistry Profile for \textit{c. 1706-55A>C} Variant Based on the Dominant Model
3.6.1.1.4 Genotype Association with Biochemistry Profile for \textit{c. 1706-55A>C} Variant Based on the Recessive Model
3.6.1.1.5 Genotype Association with Biochemistry Profile for \textit{c. 1706-55A>C} Variant Based on the Over-dominant Model
3.6.1.2 Association of Phenotypes with *USF1* Genotypes

3.6.1.2.1 Genotype Association with Biochemistry Profile for g.12498165G>A Variant Based on the Co-dominant Model

3.6.1.2.2 Genotype Association with Biochemistry Profile for g.7637G>A Variant Based on the Co-dominant Model

3.6.1.2.3 Genotype Association with Biochemistry Profile for 306A>G Variant Based on the Co-dominant Model

3.6.1.2.4 Genotype Association with Categorised Lipid for g.12498165G>A Variant

3.6.1.2.5 Genotype Association with Categorised Lipid for g.7637G>A Variant

3.6.1.2.6 Genotype Association with Categorised Lipid for 306A>G Variant

3.6.1.2.7 Genotype Association with Biochemistry Profile for g.12498165G>A Variant Based on the Dominant Model

3.6.1.2.8 Genotype Association with Biochemistry Profile for g.7637G>A Variant Based on the Dominant Model

3.6.1.2.9 Genotype Association with Biochemistry Profile for 306A>G Variant Based on the Dominant Model

3.6.1.2.10 Genotype Association with Biochemistry Profile for g.12498165G>A Variant Based on Recessive Model
3.6.1.2.11 Genotype Association with Biochemistry Profile for g.7637G>A Variant Based on Recessive Model

3.6.1.2.12 Genotype Association with Biochemistry Profile for 306A>G Variant Based on Recessive Model

3.6.1.2.13 Genotype Association with Biochemistry Profile for g.12498165G>A Variant Based on Over-dominant Model

3.6.1.2.14 Genotype Association with Biochemistry Profile for g.7637G>A Variant Based on Over-dominant Model

3.6.1.2.15 Genotype Association with Biochemistry Profile for 306A>G Variant Based on Over-dominant Model

3.6.1.3 Logistic Regression of LDL Level Risk Factors for LDLR Gene

3.6.1.3.1 Logistic Regression of LDL Level Risk Factors for c.1706-55A>C Variant (Co-dominant Model)

3.6.1.3.2 Logistic Regression of LDL Level Risk Factors for c.1706-55A>C Variant (Dominant Model)

3.6.1.3.3 Logistic Regression of LDL Level Risk Factors for c.1706-55A>C Variant (Recessive Model)

3.6.1.3.4 Logistic Regression of LDL Level Risk Factors for c.1706-55A>C Variant (Over-dominant Model)

xiii
3.6.1.3.5 Logistic Regression of LDL Level Risk Factors for c.1706-55A>C variant

3.6.1.4 Logistic Regression of LDL Level Risk Factors for USF1 Gene

3.6.1.4.1 Logistic Regression of LDL Level Risk Factors for 306A>G Variant (Co-dominant Model)

3.6.1.4.2 Logistic Regression of LDL Level Risk Factors for g.12498165G>A Variant (Recessive Model)

3.6.1.4.3 Logistic Regression of LDL Level Risk Factors for g.7637G>A Variant (Recessive Model)

3.6.1.4.4 Logistic Regression of LDL Level Risk Factors for USF1 Variant (Over-dominant Model)

3.7 Interactions

3.7.1 Within Gene interactions

3.7.1.1 LDLR Genes Interactions

3.7.1.2 USF1 Genes Interactions

3.7.2 Haplotype Associations

3.7.2.1 Haplotype Associations in LDLR Gene

3.7.2.2 Haplotype Associations in USF1 Gene

3.7.3 Gene-Gene Interactions

3.7.3.1 Gene-Gene Interaction of High-Risk Genotype Based on LDL-Level Cut-Off Point

3.7.3.2 Interaction Between LDLR Gene and USF1 Gene

CHAPTER 4: DISCUSSION

4.1 Familial Hypercholesterolemia and Respondent Characteristics.
4.2 Genotype and Allele Frequencies

4.2.1 Introduction of *LDLR* Genotype Data

4.2.1.1 c.1060+7 T>C Variant Genotype Characteristic

4.2.1.2 c.1706-55A>C Variant Genotype Characteristic

4.2.1.3 c.1194C>T Variant Genotype Characteristic

4.2.1.4 *LDLR* Allele Characteristic

4.2.2 Introduction of *USF1* Genotype Data

4.2.2.1 g.12498165G>A Variant Genotype Characteristic

4.2.2.2 g.7637G>A Variant and 306A>G Variant Genotype and Allele Characteristic

4.3 Genotype-Lipid or Phenotype Association

4.3.1 *LDLR* Gene-Lipid Association

4.3.2 *USF1* Gene-Lipid Association

4.4 Multi-Gene-Lipid Associations

4.4.1 Haplotype of Lipid Risk

4.4.2 Gene-Gene Interactions of Lipid Risk

4.4.3 Summary of Gene-Lipid Association

4.5 Limitations of Study and Recommendations

4.6 Conclusion

REFERENCES

APPENDICES
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>ATPIII Classification of LDL, Total cholesterol, HDL Cholesterol and Triglyceride.</td>
<td>4</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>Genotype Nomenclature of Familial Hypercholesterolemia.</td>
<td>8</td>
</tr>
<tr>
<td>Table 1.3</td>
<td>Comparison of clinical features between the FH genotypes.</td>
<td>11</td>
</tr>
<tr>
<td>Table 1.4</td>
<td>Classification of clinical feature of FH.</td>
<td>12</td>
</tr>
<tr>
<td>Table 1.5</td>
<td>Dutch lipid clinic network for FH.</td>
<td>14</td>
</tr>
<tr>
<td>Table 1.6</td>
<td>Therapies for FH with the mode of action.</td>
<td>15</td>
</tr>
<tr>
<td>Table 1.7</td>
<td>Prevalence of FH genes.</td>
<td>16</td>
</tr>
<tr>
<td>Table 1.8</td>
<td>Classification of LDLR gene mutations.</td>
<td>22</td>
</tr>
<tr>
<td>Table 1.9</td>
<td>Eight variants mutations detected with frequency (In Malaysia – 2011)</td>
<td>31</td>
</tr>
<tr>
<td>Table 1.10</td>
<td>Categories of mutation (In Malaysia - 2013).</td>
<td>31</td>
</tr>
<tr>
<td>Table 1.11</td>
<td>Total population of Iban and Bidayuh ethnic groups based on the administrative district.</td>
<td>32</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Blood tubes used in this study.</td>
<td>40</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Selected LDLR and USF1 variants for this study.</td>
<td>46</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Primer sequence design with the expected PCR product size.</td>
<td>49</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Recommended final concentration range for PCR.</td>
<td>51</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>AS-PCR thermal condition optimisation.</td>
<td>52</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Confirmed annealing temperature for LDLR variants.</td>
<td>53</td>
</tr>
<tr>
<td>Table 2.7</td>
<td>Confirmed annealing temperature for USF1 variants.</td>
<td>53</td>
</tr>
<tr>
<td>Table 2.8</td>
<td>AS-PCR result predictions based on the PCR product band.</td>
<td>54</td>
</tr>
</tbody>
</table>
Table 2.9 Code used in the PED file.
Table 2.10 Summary of analysis.
Table 2.11 SPSS analysis applications used.
Table 2.12 Genotype models used as variables.
Table 2.13 FAMHAP describing analysis used.
Table 2.14 Linkage disequilibrium interpretation.
Table 2.15 Recommended BMI cut-off points for public health action for Malaysia.
Table 2.16 Classification of BP measurements for hypertension.
Table 2.17 ATPIII Classification of LDL, Total and HDL Cholesterol.
Table 2.18 ATPIII Classification of Serum Triglycerides.
Table 3.1 Demographic data of the Iban (n=115) and Bidayuh (n=140).
Table 3.2 Clinical characteristics of Iban and Bidayuh ethnic groups.
Table 3.3 FH score based on Dutch Lipid Clinic Network Criteria.
Table 3.4 Genotype and allele frequencies of c. 1060+7 T>C (n = 243).
Table 3.5 Genotype and allele frequencies of c. 1706-55A>C (n = 243).
Table 3.6 Genotype and allele frequencies of c.1194C>T analysed (n = 243).
Table 3.7 Genotype and allele frequencies of g.12498165G>A variants (n = 243).
Table 3.8 Genotype and allele frequencies of g.7637G>A variants (n = 243).
Table 3.9 Genotype and allele frequencies of 306A>G variants (n = 243).

Table 3.10 Frequency distribution of Biochemistry profile for c. 1706-55A>C variants. Based on the Co-dominant Model.

Table 3.11 Genotype frequencies of the LDLR variants in the study population and the genotype association analysis with categorised lipid profile.

Table 3.12 Frequency distribution of Biochemistry profile. Based on the dominant model for c. 1706-55A>C variants.

Table 3.13 Frequency distribution of Biochemistry profile based on recessive model for c. 1706-55A>C variants.

Table 3.14 Frequency distribution of Biochemistry profile for c. 1706-55A>C variants. Based on the over-dominant model.

Table 3.15 Frequency distribution of Biochemistry profile for g.12498165G>A variants.

Table 3.16 Frequency distribution of Biochemistry profile for g.7637G>A variants.

Table 3.17 Frequency distribution of Biochemistry profile for 306A>G variants.

Table 3.18 Genotype frequencies of the g.12498165G>A variants and the genotype association analysis with categorised lipid profile.

Table 3.19 Genotype frequencies of the g.7637G>A variants in the study population and the genotype association analysis with categorised lipid profile.

Table 3.20 Genotype frequencies of the 306A>G variants and the genotype association analysis with categorised lipid profile.
Table 3.21 Frequency distribution of Biochemistry profile for g.12498165G>A variants based on the dominant model.

Table 3.22 Frequency distribution of Biochemistry profile for g.7637G>A variants based on the dominant model.

Table 3.23 Frequency distribution of Biochemistry profile for 306A>G variants based on the dominant model.

Table 3.24 Frequency distribution of Biochemistry profile for g.12498165G>A variants based on the recessive model.

Table 3.25 Frequency distribution of Biochemistry profile for g.7637G>A variants based on the recessive model.

Table 3.26 Frequency distribution of Biochemistry profile for 306A>G variants based on the recessive model.

Table 3.27 Frequency distribution of Biochemistry profile for g.12498165G>A variants based on the over-dominant model.

Table 3.28 Frequency distribution of Biochemistry profile for g.7637G>A variants based on the over-dominant model.

Table 3.29 Frequency distribution of Biochemistry profile for 306A>G variants based on the over-dominant model.

Table 3.30 Association of c.1706-55A>C genotypes of co-dominant model with LDL-C (> 4.13 mmol/L and < 4.13 mmol/L) analysis by using logistic regression.

Table 3.31 Association of c.1706-55A>C genotypes of dominant model with LDL-C (> 4.13 mmol/L and < 4.13 mmol/L) analysis by using logistic regression.

Table 3.32 Association of c.1706-55A>C genotypes of recessive model with LDL-C (> 4.13 mmol/L and < 4.13 mmol/L) analysis by using logistic regression.
Table 3.33	Association of c.1706-55A>C genotypes of over-dominant model with LDL-C (>4.13 mmol/L and < 4.13 mmol/L) analysis by using logistic regression.
Table 3.34	Association of c. 1706-55A>C genotypes of co-dominant model with TG-C (> 1.70 mmol/L and < 1.69 mmol/L) analysis by using logistic regression.
Table 3.35	Association of 306A>G genotypes of co-dominant model with LDL-C (> 4.13 mmol/L and < 4.13 mmol/L) analysis by using logistic regression.
Table 3.36	Association of g.12498165G>A genotypes of recessive model with LDL-C (> 4.13 mmol/L and < 4.13 mmol/L) analysis by using logistic regression.
Table 3.37	Association of g.7637G>A genotypes of recessive model with LDL-C (> 4.13 mmol/L and < 4.13 mmol/L) analysis by using logistic regression.
Table 3.38	Association of USF1 genotypes of over-dominant model with LDL-C (> 4.13 mmol/L and < 4.13 mmol/L) analysis by using logistic regression.
Table 3.39	Linkage disequilibrium for LDLR.
Table 3.40	Linkage disequilibrium for USF1.
Table 3.41	Haplotype association with LDL-C levels for LDLR gene.
Table 3.42	Haplotype association with LDL-C levels for USF1 gene.
Table 3.43	Gene-gene interactions models for five variants by GMDR method.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Lipoprotein particle compositions.</td>
<td>2</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Illustration of normal human cholesterol transport pathway.</td>
<td>3</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Heterozygotes inherit a single abnormal gene from one parent.</td>
<td>7</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>Inheritance pattern of Combined Heterozygous of two difference genes.</td>
<td>9</td>
</tr>
<tr>
<td>Figure 1.5</td>
<td>Summary of inheritance pattern in FH.</td>
<td>9</td>
</tr>
<tr>
<td>Figure 1.6</td>
<td>Shows the trend of hypercholesterolemia from 2006 -2011.</td>
<td>18</td>
</tr>
<tr>
<td>Figure 1.7</td>
<td>LDLR structure based on the \textit{LDLR} gene coding.</td>
<td>20</td>
</tr>
<tr>
<td>Figure 1.8</td>
<td>Mutations in \textit{LDLR} gene.</td>
<td>22</td>
</tr>
<tr>
<td>Figure 1.9</td>
<td>Geography Sarawak state of Malaysia.</td>
<td>33</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Flow chart of subject recruitment for target group.</td>
<td>44</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Human \textit{LDLR} gene diagram and SNPs locations.</td>
<td>46</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Human \textit{USF1} gene diagram and SNPs locations.</td>
<td>47</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Concept of mismatch of penultimate base for AS-PCR.</td>
<td>48</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Representative electrophoresis gel for c. 1060+7 T>C variant of \textit{LDLR}.</td>
<td>74</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Representative electrophoresis gel for c. 1706-55A>C variant of \textit{LDLR}.</td>
<td>75</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Representative electrophoresis gel for c.1194C>T variant of \textit{LDLR}.</td>
<td>75</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Representative electrophoresis gel for g.12498165G>A variant of \textit{USF1}.</td>
<td>76</td>
</tr>
</tbody>
</table>
Figure 3.5 Representative electrophoresis gel for g.7637G>A variant of USF1.

Figure 3.6 Representative electrophoresis gel for 306A>G variant of USF1.

Figure 3.7 LDLR linkage disequilibrium map in Iban & Bidayuh population.

Figure 3.8 USF1 linkage disequilibrium map in Iban & Bidayuh population.

Figure 3.9 Gene-gene interactions of high-risk genotypes (best model for two-SNPs).

Figure 3.10 Gene-gene interactions of high-risk genotype (best model for three-SNPs).

Figure 3.11 Interaction Fruchterman-Rheingold model from MDR combined attribute network.