

BODY POSTURE MONITORING SYSTEM

RHONDA ASHLEY ANAK JABAN

Bachelor of Engineering (Hons) in Electronics (Telecommunications) 2017 This Final Year Project Thesis

Title	:	BODY POSTURE MONITORING SYSTEM
Student Name	:	RHONDA ASHLEY ANAK JABAN
Matric No	:	43820

Has been read and approved by:

NUR ALIA ATHIRAH BINTI HAJI MOHTADZAR (Supervisor) Date

BODY POSTURE MONITORING SYSTEM

RHONDA ASHLEY ANAK JABAN (43820)

This project is submitted in partial fulfillment of the requirement for the degree of Bachelor of Engineering with Honours in Electronics (Telecommunications)

FACULTY OF ENGINEERING UNIVERSITY MALAYSIA SARAWAK

2017

DEDICATION

This thesis is dedicated to my family who have raised me to be a wonderful person I am today. I also dedicated this to my lovely friends for all the encouragement and motivation.

UNIVERSITI MALAYSIA SARAWAK

Grade:		
trade:	C 1	
	irada.	

Please tick (√) Final Year Project Report Masters PhD

	1	1
L	~	1
Г		٦
F	_	4

DECLARATION OF ORIGINAL WORK

Student's Declaration:

I RHONDA ASHLEY ANAX JABAN, 43820, FACULTY OF CNGINEERING (PLEASE INDICATE STUDENT'S NAME, MATRIC NO. AND FACULTY) hereby declare that the work entitled <u>ROOY POSTYRE MONITORING SYSTEM</u> is my original work. I have not copied from any other students' work or from any other sources except where due reference or acknowledgement is made explicitly in the text, nor has any part been written for me by another person.

16/0/2017

Date submitted

RHONDA ASHLEY AK JABAN (438-2)

Name of the student (Matric No.)

Supervisor's Declaration:

Received for examination by:

Date:_ 2019 . 6.16

Nuk ALM ATH IPAH MEHTAP 24 R (Name of the supervisor) I declare that Project/Thesis is classified as (Please tick $(\sqrt{)}$):

CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)*

RESTRICTED (Contains restricted information as specified by the organisation where research was done)*

\square OPEN ACCESS

Validation of Project/Thesis

1 therefore duly affirm with free consent and willingly declare that this said Project/Thesis shall be placed officially in the Centre for Academic Information Services with the abiding interest and rights as follows:

- This Project/Thesis is the sole legal property of Universiti Malaysia Sarawak (UNIMAS).
- The Centre for Academic Information Services has the lawful right to make copies for the purpose of academic and research only and not for other purpose.
- The Centre for Academic Information Services has the lawful right to digitalise the content for the Local Content Database.
- The Centre for Academic Information Services has the lawful right to make copies of the Project/Thesis for academic exchange between Higher Learning Institute.
- No dispute or any claim shall arise from the student itself neither third party on this Project/Thesis once it becomes the sole property of UNIMAS.
- This Project/Thesis or any material, data and information related to it shall not be distributed, published or disclosed to any party by the student except with UNIMAS permission.

Current.	JALAN	DESA	PUJUT	2,	BDR	BARU	PERMYTAYA
	RAWAK			/			,, . ,,

Notes: * If the Project/Thesis is CONFIDENTIAL or **RESTRICTED**, please attach together as annexure a letter from the organisation with the period and reasons of confidentiality and restriction.

[The instrument is duly prepared by The Centre for Academic Information Services]

ACKNOWLEDGEMENT

First and foremost, thanks to God for showering His blessing and grace upon me throughout the completion of this project. I dedicated this page to express my appreciation to several individual that help me through this project. It is almost impossible to complete this thesis alone, but with the support from them it made my thesis successfully done.

My deep appreciation and thank you to my honourable supervisor, Mdm. Nur Alia Athirah binti Haji Mohtadzar for her support, guidance and encouragement. Without her patience on guiding me, her encouragement criticizes toward my task, as well as her useful suggestions and comments, I couldn't end up with a better and quality project.

To my dear colleagues and friends, I would like to thank each one of you for being my motivation model as well as supporting me. Thanks also for always being by my side giving opinion and sharing knowledge.

Last but not least, with lots of love, I would like to thank my parents and siblings for their continuous support in many ways. They are my role inspiration and motivation for me not to ever give up in completing this thesis.

ABSTRAK

Tajuk projek ini ialah *Body Posture Monitoring System*. Projek ini melibatkan kedua-dua pembinaan barang-barang dan juga perisian untuk menjayakan projek ini. Projek ini melibatkan Kejuruteraan Perubatan yang berkaitan dengan kesihatan manusia. Projek ini berhubung-kait dengan alat yang mudah dipakai untuk memberitahu tentang postur badan pengguna ketika mereka berdiri dan duduk. Projek ini terbahagi kepadadua bahagian iaitu modul belakang yang mengandungi *sensor* dan bahagian pergelangan tangan yang mengandungi LED dand LCD. Dengan litar yang direka, alat ini hanya akan memberi isyarat cahay apabila pengguna telah mencapai tahap parameter yang telah disetkan dalam perisian yang telah dibina. Namun, isyarat lampu tidak akan mengganggu rutin harian pengguna kerana ia hanya berlaku dalam jangka masa yang pendek sahaja. Tambahan pula, dengan teknologi Liquid Crystal Display (LCD) yang digunakan di dalm projek ini, pengguna boleh memantau tahap kesihatan postur badan mereka. Secara kesimpulannya, alat ini boleh mengurangkan risiko pengguna daripada menghadapi masalah kesan negatif daripada postur badan yang kurang sihat dan mereka boleh menikmati hidup yang sihat.

ABSTRACT

This project title is Body Posture Monitoring System. It involves both of the hardware and software construction to make this project complete successfully. This project involves Medical in Engineering field which related to the human health. This involves the wearable device to give alertness to user about their posture especially when sitting and standing. This device consists of two part which is the back module that contain sensor and wrist module that contain LED and Liquid Crystal Display (LCD). With the implemented circuit design, this device will produce light only at certain danger parameter which has been set in the software part. Nevertheless, the light will not interrupt the user daily activity because it happens only in a short while. Furthermore, with the implement (LCD) screen technology, the user can monitor his postural rate. In conclusion, user can decrease the risk of having the bad effect of poor body posture and can enjoy their healthy body posture.

TABLE OF CONTENTS

Acknowledge	ement	i		
Abstrak		ii		
Abstract		iii		
Table of Con	tents	iv		
List of Table	S	vii		
List of Figures				
List of Abbre	eviations	xi		
Chapter 1	INTRODUCTION	1		
	1.1 Project Overview	1		
	1.2 Problem Statement	3		
	1.3 Project Motivation	3		

	1.3 Project Motivation	3
	1.4 Project Objectives	3
	1.5 Project Outlines	4
Chapter 2	LITERATURE REVIEW	6
	2.1 Engineering in Medical Field	6
	2.2 Postural Problem	6
	2.2.1 Orthogonal Axis of Human Body	8
	2.2.2 Sitting and Standing Posture	8

9

	2.4 Wireless Body Area Network for Medical Application	10
	(WBAN) 2.5 Hardware	10
	2.5.1 Arduino Uno (R3)	10
	2.5.2 ADXL 345 Accelerometer	13
	2.5.2.1 How Accelerometer Works	17
	2.5.2.2 Accelerometer Sensor Based Approach for Human Activity	17
	2.5.3 Resistor	18
	2.5.4 Liquid Crystal Display (LCD)	19
	2.5.4.1 LCD Working Principle	20
	2.5.4.2 16x2 LCD	21
	2.5.5 Light Emitting Diode (LED)	22
	2.6 Software	25
	2.6.1 Arduino Uno IDE	25
	2.6.2 Fritzing Software	26
Chapter 3	METHODOLOGY	29
	3.1 Project Timeline	29
	3.1.1 Gantt Chart for FYP 1	29
	3.1.2 Gantt chart for FYP 2	30
	3.2 Project Workflow	31
	3.3 Project Flowchart	31
	3.3.1 Overall Project Flow	32
	3.3.2 Flowchart On How The device Work	33

	3.4 System Architecture	34				
	3.5 Soldering Electronic Components	35				
	3.6 Circuit Testing using Breadboard	35				
	3.7 Accelerometer Testing	39				
	3.8 Coding Testing	41				
Chapter 4	RESULTS AND DISCUSSION	43				
	4.1 Programming (Source Code)	43				
	4.2 Troubleshooting	47				
	4.3 Soldering Result	49				
	4.4 LCD Output	50				
	4.5 Circuit Diagram	51				
	4.6 Circuit Testing on Human Replica	53				
	4.7 Discussion	53				
Chapter 5	CONCLUSION AND RECOMMENDATIONS	59				
	5.1 Conclusion	59				
	5.2 Future Work Recommendation	60				
REFERENC	CES	63				
APPENDIX	APPENDIX					
APPENDIX	Α					

APPENDIX B

LIST OF TABLES

Table 2.1	:	Pin Description of Arduino Uno	11
Table 2.2	:	Pin Function of ADXL 345 Description	15
Table 2.3	:	Resistor Colour Code	18
Table 2.4	:	Pin Description of 16x2 LCD	22
Table 2.5	:	Functions of LED	22
Table 2.6	:	Description part of Arduino Software	26
Table 4.1	:	Troubleshooting of Project	47
Table 4.2	:	Result of Angle Testing with User	56
Table 4.3	:	Result of Angle Testing with Walking Condition	58

LIST OF FIGURES

Figure 1.1	:	Bad Sitting Posture	2
Figure 1.2	:	Backbone of Human	2
Figure 2.1	:	Scoliosis	7
Figure 2.2	:	Lumbar Lordosis	7
Figure 2.3	:	Triple Axis in Human Sitting Posture	8
Figure 2.4	:	Triple Axis in Human standing Posture	8
Figure 2.5	:	Poor Standing Posture (a) Poor Sitting Posture (b)	8
Figure 2.6	:	Arduino Uno R3	11
Figure 2.7	:	ADXL345 Accelerometer	14
Figure 2.8	:	ADXL 345 Top View	14
Figure 2.9	:	Internal View of ADXL 345	16
Figure 2.10	:	Axis of Measurement for a Triple Axis Accelerometer	17
Figure 2.11	:	Resistor and its Symbol	18
Figure 2.12	:	Working Principle of LCD	20
Figure 2.13	:	16x2 LCD	21
Figure 2.14	:	16x2 LCD Pin Diagram	21
Figure 2.15	:	Diagram of LED	23
Figure 2.16	:	Schematic Anode and Cathode of an LED	23
Figure 2.17	:	Anode and Cathode of an LED	24
Figure 2.18	:	Arduino Uno Software	25
Figure 2.19	:	Breadboard and Schematic Part in Fritzing Software	27
Figure 2.20	:	Fritzing Software Icon	27
Figure 2.21	:	Fritzing Parts	28
Figure 3.1	:	Gantt Chart for FYP 1	29
Figure 3.2	:	Gantt Chart for FYP 2	30
Figure 3.3	:	Overall Project Flowchart	32
Figure 3.4	:	Device Flowchart	33
Figure 3.5	:	Electronic Components Connected to Arduino Uno	34
Figure 3.6	:	Soldering Connecting pin to the Accelerometer	35
		(ADXL345)	

Figure 3.7	:	Soldering Back Module	36
Figure 3.8	:	Soldering Wrist Module	36
Figure 3.9	:	The Figure Shows how the Full Circuit Connection on	37
		the Breadboard	
Figure 3.10	:	Wrist Module on Breadboard	38
Figure 3.11	:	Back Module on Breadboard	39
Figure 3.12	:	Breadboard Circuit Diagram on Fritzing Software	39
Figure 3.13	:	Testing Accelerometer on Real Breadboard	40
Figure 3.14	:	Schematic diagrams of Figure 3.12	40
Figure 3.15	:	a) Void Setup b) Void Loop c) Void One	42
Figure 4.1	:	Declaration Part	43
Figure 4.2	:	Sensor Declaration	44
Figure 4.3	:	Void Setup Function	44
Figure 4.4	:	Void Loop Function	45
Figure 4.5	:	Body Posture Range Setting	46
Figure 4.6	:	Done Compiled Coding	46
Figure 4.7	:	The Back of PCB (back module) after Soldering	49
Figure 4.8	:	The Back of PCB (wrist module) after Soldering	49
Figure 4.9	:	Green Light Output on LCD Screen	50
Figure 4.10	:	Red Light Output on LCD Screen	50
Figure 4.11	:	Full Circuit Diagram	51
Figure 4.12	:	Wrist Module Diagram	51
Figure 4.13	:	Back Module Diagram	52
Figure 4.14	:	Back Module in a Casing	52
Figure 4.15	:	a) Circuit Testing on Human Replica with Good	53
		Posture (More than 60 Degree) and b) Circuit Testing	
		on Human Replica with Bad Posture (Less than 60	
		Degree	
Figure 4.16	:	The Back Module is Positioned More than 60 Degree	54
Figure 4.17	:	The Back Module is Positioned Less than 60 Degree	54
Figure 4.18	:	a) User A in Good Sitting Posture (Green Light Turns	55
		on) and b) User A in Bad Sitting Posture (Red Light	
		Turns On)	

Figure 4.19	:	a) User B in Good Sitting Posture (Green Light Turns	56
		on) and b) User B in Bad Sitting Posture (Red Light	
		Turns On)	
Figure 4.20	:	a) User in Good Walking Posture (Green Light Turns	57
		on) and b) User in Bad Walking Posture (Red Light	
		Turns On)	
Figure 5.1	:	Transmitter and Receiver Module	60
Figure 5.2	:	Android Operating System Smartphone	61
Figure 5.3	:	IOs Operating System Smartphone	61
Figure 5.4	:	MIT Apps Inventor	62

LIST OF ABBREVIATION

Term	Meaning
DC	Direct Current
BAN	Body Area Network
WBAN	Wireless Body Area Network
IDE	Integrated Development Environment
LCD	Liquid Crystal Display
LED	Light Emitting Diode
FIFO	First In First Out

CHAPTER 1

INTRODUCTION

1.1 Project Overview

Nowadays, ones are too focus on their daily routines makes them forgot on the importance of having a good body posture. In this project, the posture that is mainly concern is sitting and standing. Posture is the position of our bodies adopt in response to the effects of gravity [1]. In a perspective, different postures are required to do different tasks. For example, an office worker needs to sit for a long time in front of the desktop [2]. The back pain occurs in the spinal column which functions for load bearing, permits movement and protects spinal cord [3]. Bad posture leads to degenerates and the space for the nerve roots is reduced that causes the chronic back pain [3].

In this project, body posture alertness and monitoring system is applied. Alertness is necessary to make the user more careful about their posture when doing works. This device will produce light which is command by Arduino Uno when user reached the set parameters of the postural angle. Thus, the user will know when the red light on, they need to adjust their current posture to a normal posture. The light wills not disrupt the user activity.

The monitoring system is using the Liquid Crystal Display (LCD) technology. LCD technology is chosen because it is simple to use, low power consumption, low interference and has standardized protocol.

Figure 1.1: Bad Sitting Posture [2]

Figure 1.2: Backbone of Human [3]

1.2 Problem Statement

Due to the trend of advancement of technology, human nowadays are more attracted to gadget such as I-Pad, smartphone and laptop. Many of the workers and students nowadays spend most of their time doing their work in front of the laptop. After a while, doing their work without a proper posture, they will experience bad implication such as chronic back pain, headache and misalignment in the spine due to the poor siting posture.

In the market today, there are many existing type of wearable device to correct body posture. Mostly exist device is running consequently and consume high power. Nevertheless, there are wearable device that user need to wear for a long time and it takes time to correct body posture.

Hence, the body posture monitoring system demanded to increase user alertness and only trigger if user achieve certain danger angle of posture. This device consumes low power and user can monitor the rate of their postural problem using their smartphone.

1.3 Project Motivation

Emerging medical research on body posture with electronic engineering knowledge is quite challenging to me. But, for a future engineer it is the best to experience some skills and knowledge in a wide range of knowledge not only exposed to engineering knowledge. Thus, doing final year project involving medical research on body posture and electronic engineering knowledge is an interesting opportunity for me to broadening my skills and knowledge.

1.4 **Project Objectives**

- To study the concept and application of triple axis accelerometer (ADXL345).
- To design a system to monitor body posture angle by using accelerometer.
- To develop coding using Arduino Uno for the system.

1.5 Project Outlines

This report is divided into five chapters which are introduction, literature review, methodology, result and discussion and the final part is the conclusion and recommendations.

Chapter 1:

This chapter explains an introduction for the project of Body Posture Monitoring System. This part explains the importance of having good body posture is vital for a healthy life and this project makes one can monitor their body posture in their daily activities. Besides, this chapter also gives information on the statistics of the effect of poor sitting posture that leads to back pain in American. This chapter mainly contain project overview, objectives, problem statement and scope of the project. Overall, this chapter explains briefly on the project progressing. Furthermore, the project outline provides information which is delivered via each chapter.

Chapter 2:

Chapter 2 presents the literature review which emphasize on each components use in this project. The more details about the importance of body posture alertness is explains in this part. This chapter also contains the fundamental and characteristics of both accelerometer and Arduino Uno R3. This part also presents the past review by researchers or engineers based on the related topics to the project.

Chapter 3:

This chapter describes about methodology. The explanations are about both the software and hardware progress. This part relates on how the project progress step by step in order to get analysis and solution for the project.

Chapter 4:

Chapter 4 contains the results and discussion which clearly and precisely present the data and result of the project. Basically, it is a part of result outcomes justification and discussion.

Chapter 5:

This chapter presents the conclusion and recommendations of the project. This part highlights the summary of the project that contains discussion of the objectives. It also contains description of the methods employed within the project, and problem accesses include the resolving, minimizing and alternate solution. Lastly, recommendation provided on how to improve and approach the project.

CHAPTER 2

LITERATURE REVIEW

2.1 Engineering in Medical Field

In advancement of technology, engineering and medical field are now converging and rapidly expanding which known as biomedical engineering. The technical knowledge in engineering which is needed to solve much kind of health problems is vital for patients. The technical knowledge in engineering that lead to development of many devices for monitoring, scanning, treatment and diagnostic disease is among the application of engineering in medical field. This device use sensor to detect the parameter of each disease in a patient.

In this project, accelerometer sensor is selected to monitor and corrected the postural problem of a patient. This device uses the principle of Body Area Network (BAN) a wireless network which attached to the human body. The device is wearable and the postural information can be monitor through the LCD.

2.2 Postural Problem

Currently, there are many cases related to poor body posture especially the back part of human regardless of the human age. When ones are too focus on their daily life they are tends to ignore their postural posture that will lead to poor body posture that may lead to other complications such as back pain, headache and losing focus.

There are some causes of poor body posture such as hereditary, poor fitness, lack of knowledge in health information and bad habits. Among the type of poor postural related to the back part is *scoliosis*. This condition characterized by a curve spine. The next type is *lumbar lordosis* the most common condition occurs in human and characterized by "sway back" posture which results from weak abdominals and short hip flexous. [4]. Thus, in order to get a good posture, body posture monitoring is very important to human.

Figure 2.1: Scoliosis [4]

Figure 2.2: Lumbar Lordosis [4]