Landing Population and Toxicity Assessment of Common Horseshoe Crabs (Arthropoda: Xiphosura) from South West of Sarawak

Noor Jawahir Binti A.Raman

Doctor of Philosophy
2019
Landing Population and Toxicity Assessment of Common Horseshoe Crabs (Arthropoda: Xiphosura) from South West of Sarawak

Noor Jawahir Binti A.Raman

A thesis submitted
In fulfillment of the requirements for the degree of Doctor of Philosophy
(Aquatic Science)

Faculty of Resource Science and Technology
UNIVERSITI MALAYSIA SARAWAK
2019
DECLARATION

The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

(NOOR JAWAHIR BINTI A.RAMAN)
Date: 17 July 2019
Faculty of Resource Science and Technology
Universiti Malaysia Sarawak
ACKNOWLEDGEMENT

In the name of Allah, Most Gracious, Most Merciful.

Salawat and salam to Prophet Muhammad SAW.

Alhamdulillah, fullest gratitude to the Almighty for His blessings, the faith and courage given, finally I was able to complete my PhD project. Firstly, I would like to express my greatest appreciation to my supervisor, Associate. Prof. Dr. Samsur bin Mohamad for his patience, courage, guidance, and undying support during supervising my PhD project.

Deepest gratitude and fondest love to my soul mate, Hishammudin Afifi, my daughters, Hannah, Aisyah and Alya, ma (Siti binti Musa) and abah (A.Raman bin Mat Adam). Thank you for being patient and supportive given during I finishing my project.

My appreciation goes to staff of the Aquatic Science Department for their kindness in guiding and helping me during laboratory works and sampling trips, and my colleagues for sharing their knowledge and sweet memories with me. Special thanks to all hardworking final year students that involved in this project.

I would like to thank Faculty of Resource Science and Technology, Universiti Malaysia Sarawak for providing the research facilities and Ministry of Higher Education Malaysia for financial support through research grants FRGS/STWN04(01)/986/2013(27). My appreciation goes to Dr. Mohd Nor Azman bin Ayub from Fisheries Research Institute Batu Maung, Penang for the permission, guiding and helpful advices in LC-MS/MS analysis and also to Dr. Bryan Raveen Nelson from Universiti Malaysia Terengganu for the guiding in using software Primer v.6.
ABSTRACT

Tachypleus gigas and _Carcinoscorpius rotundicauda_ are commonly found in Malaysian waters, with both species co-existing in sandy beach, sandy-muddy and mangrove habitats. Although horseshoe crabs have long existed and are frequently consumed actively by Sarawakians, scientific literature on the horseshoe crab still remains inadequate. Therefore, this study covers the documentation for the spatial trend of landing population, morphometrics and toxicity of horseshoe crabs in three habitats in the south west of Sarawak, and the temporal trend of landing horseshoe crabs in a sandy-muddy habitat in Pasir Putih Village (2014-2016). The spatial trend shows that a high density of _T. gigas_ landing population was recorded in sandy-muddy (186.08 individuals/100 m²) and sandy beach (168.18 individuals/100 m²) habitats. Meanwhile, _C. rotundicauda_ dominated the sandy-muddy habitat (11.78 individuals/100 m²). The pH of sediments, sorting coefficient, percentage of silt-clay and percentage of total organic matter affected the density of landing horseshoe crabs in the south west of Sarawak. BEST and Particle Component Analysis performed between the environmental and the individual numbers (using Primer v.6) supported the results of the spatial and temporal trends. Only the carapace width-body weight relationship of female _C. rotundicauda_ from sandy muddy and mangrove habitats experienced isometric growth (b value=3.00). The temporal trend indicated that landing horseshoe crabs numbers on the intertidal area of Pasir Putih Village are influenced by certain environmental parameters (dissolved oxygen, mean of grain and sediment sorting). Pasir Putih Village is considered as non-favourable to the growth and health of both species as shown by the negative allometric growth in their length-weight relationship analysis with ‘b’ value ranging from -2.64 to 2.90. Both species demonstrate monogamous behaviour during spawning activity although _C. rotundicauda_ indicated a male-skewed
landing population. Carapace width measurement study revealed that horseshoe crabs appeared to be species with sexual dimorphism with adult females being larger and heavier compared to males. The tetrodotoxin (TTX) concentrations in tissues of both species were analysed and determined by using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). For spatial trend, only male (n=4) and female (n=1) *C. rotundicauda* from sandy-muddy habitat contain a high TTX concentration in soft tissues ($\delta=48.70$ MU/g, $\varphi=35.91$ MU/g) and eggs ($\varphi=19.33$ MU/g), which is considered toxic for human. *C. rotundicauda* are considered as TTX-bearing organisms and the concentration of TTX in soft tissues of male *C. rotundicauda* is affected by their body mass index. A temporal study showed no TTX concentration was detected in *C. rotundicauda*. However, *T. gigas* from Pasir Putih Village was considered safe to be consumed during other months with caution since high TTX concentration was detected in soft tissues ($\delta=44.27$ MU/g, $\varphi=69.10$ MU/g) in August 2016 exceeded the regulatory limit for seafood (>10 MU/g).

These documentations are important for better management and conservation of horseshoe crabs in Sarawak. In addition, data obtained in this study will act as guidelines for the authorities to create public awareness in avoiding food poisoning due to the consumption of horseshoe crabs in the future. A consistent study and the latest sampling methods are crucial for future research in the distribution of horseshoe crabs in Sarawak.

Keywords: Horseshoe crab, density, morphomeric, tetrodotoxin, Liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS)
ABSTRAK

Belangkas Tachypleus gigas dan Carcinoscorpius rotundicada biasanya ditemui di sepanjang perairan Malaysia, hidup bersama di habitat pantai berpasir, pantai berlumpur dan paya bakau. Walaupun belangkas sudah lama wujud dan dimakan oleh penduduk tempatan Sarawak, dokumentasi saintifik berkaitan belangkas masih terhad. Oleh itu, kajian ini merangkumi dokumentasi pola reruang untuk populasi singgah, morfometrik dan ketoksidan belangkas dari tiga habitat dan pola bermusim belangkas singgah di pantai berlumpur, Kampung Pasir Putih (2014-2016). Untuk pola reruang, kepadatan tinggi populasi singgah T. gigas dari pantai berlumpur (186.08 individu/100 m²) dan pantai berpasir (168.18 individu/100 m²) telah direkodkan. Manakala, C. rotundicada mendominasi pantai berlumpur (11.78 individu/100 m²). pH pasir, pekali pengasingan, peratusan lumpur dan peratusan bahan organik mempengaruhi kepadatan belangkas singgah di pantai barat daya Sarawak. BEST dan komponen utama (PCA) antara persekitaran dan jumlah bilanga digunakan untuk mengesahkan keputusan pola reruang dan bermusim (Primer v.6). Hanya hubungan lebar karapas-berat C. rotundicada betina dari pantai berlumpur dan paya bakau menunjukkan pertumbuhan isometrik (nilai $b=3.00$). Pola bermusim menunjukkan belangkas singgah di kawasan landai dipengaruhi oleh kandungan oksigen terlarut, min butiran dan pengasingan pasir. Kampung Pasir Putih tidak sesuai untuk pertumbuhan kedua spesies berdasarkan pertumbuhan allometrik negatif dari analisis hubungan panjang-berat dengan nilai ‘b’ antara -2.64 hingga 2.90. Kedua-dua spesies menunjukkan kelakuan monogami ketika mengawan walaupun C. rotundicada menunjukkan kecondongan kepada jantina jantan. Kajian pengukuran...
lebar karapas menunjukkan belangkas adalah species mempunyai perbezaan dimorphism seksual melalui saiz betina dewasa lebih besar dan berat berbanding jantan. Kepekatan tetrodotoxin (TTX) dianalisis dan ditentukan dengan menggunakan kromatografi cecair-spektrometri jisim. Kajian pola reruang menunjukkan tisu badan (♂=48.70 MU/g, ♀=35.91 MU/g) dan telur (♀=19.33 MU/g) dari jantan (n=4) dan betina (n=1) C. rotundicauda daripada pantai berlumpur mengandungi kandungan TTX tinggi dan dianggap toksik untuk manusia. C. rotundicauda dikelaskan sebagai organisma pembawa TTX dan kandungannya di dalam tisu badan jantan dipengaruhi oleh indek jisim badan. Kajian bermusim menunjukkan tiada kepekatan TTX dikesan dalam C. rotundicauda. Walaupun T. gigas dari Kg. Pasir Putih dianggap selamat dimakan dengan berhati-hati kerana kehadiran kandungan TTX dalam tisu badan di bulan Ogos 2016 melebihi had kawalselia makanan laut (>10 MU/g). Dokumentasi ini adalah penting untuk pengurusan dan pemuliharaan lebih berkesan, dan sebagai rujukan oleh pihak berkuasa untuk mengelakkan keracunan makanan akibat pemakanan belangkas di masa hadapan. Kajian yang konsisten dan cara persampelan terkini adalah penting untuk kajian taburan belangkas di Sarawak di masa hadapan.

Kata kunci: Belangkas singgah, kepadatan, morfometrik, tetrodotoxin, kromatografi cecair-spektrometri jisim
TABLES OF CONTENTS

<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxii</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.1 General introduction 1
1.2 Problem statement 4
1.3 Objectives 6
1.4 Hypotheses 7

CHAPTER 2: LITERATURE REVIEW

2.1 Horseshoe crab 8
 2.1.1 Systematic classification 9
 2.1.2 General morphology 12
 2.1.3 Ecological and economical functions 16
2.2 Ecology of horseshoe crab 19
2.2.1 Zoogeographic distribution 20
2.2.2 Environmental factors controlling horseshoe crab distribution 23
2.2.3 Spawning habitat 24
2.2.4 Spawning behaviour and life cycle of horseshoe crab 25

2.3 Allometry study 28

2.4 Tetrodotoxin 30
 2.4.1 Mechanism of TTX accumulation in horseshoe crab 32
 2.4.2 Tetrodotoxin poisoning cases due to consumption of horseshoe crab 33
 2.4.3 Symptoms and treatment 35
 2.4.4 Instrumental analysis of tetrodotoxin from horseshoe crab 37
 2.4.4.1 Liquid Chromatography-Mass Spectrometry/Mass 38

CHAPTER 3: SPATIAL TREND OF HORSESHOE CRAB LANDING AND MORPHOMETRIC STUDIES IN THE SOUTH WEST OF SARAWAK 39

3.1 Introduction 39

3.2 Materials and methods 41
 3.2.1 Sampling sites 41
 3.2.2 Field sampling 44
 3.2.2.1 Landing population study of horseshoe crabs in the intertidal areas 44
 3.2.2 Selected environmental parameters 46
 3.2.3 Laboratory analyses 47
3.2.3.1 Species and sexes identification
3.2.3.2 Morphometric measurement

3.2.4 Data analysis
3.2.4.1 Density of landing population
3.2.4.2 Allometry relationship
3.2.4.3 Sex ratio analysis

3.2.5 Total organic matter (TOM)

3.2.6 Grain size distribution

3.2.7 Wet sieve method

3.2.8 Pipette method

3.2.9 Dry sieve method

3.2.10 Statistical analysis

3.3 Results

3.3.1 Landing population study of horseshoe crabs in intertidal area
3.3.1.1 Species density and sex ratio of T. gigas
3.3.1.2 Species density and sex ratio of C. rotundicauda

3.3.2 Environmental parameters

3.3.3 Sediment profile
3.3.3.1 Grain size distribution, particle size analysis (silt-clay) and total organic matter of nine sampling sites

3.3.4 Relationship between landing horseshoe crab population and selected water quality parameters
3.3.4.1 Principle component analysis (PCA)
3.3.4.2 Multivariate analysis (BEST) and Spearman correlation
3.3.5 Width/length-weight relationship of horseshoe crabs 66
 3.3.5.1 T. gigas 66
 3.3.5.2 C. rotundicauda 68

3.4 Discussion 70

3.5 Conclusion 80

CHAPTER 4: TEMPORAL TREND OF LANDING POPULATION, AND MORPHOMETRIC STUDIES OF HORSeshoe CRABS IN PASIR PUTIH VILLAGE, MALAYSIA

4.1 Introduction 81

4.2 Materials and methods 83
 4.2.1 Sampling site 83
 4.2.2 Field sampling 87
 4.2.2.1 Temporal study of landing horseshoe crabs at Pasir Putih Village 87
 4.2.1.1 Horseshoe crab collection 87
 4.2.1.2 Environmental parameters 88
 4.2.3 Laboratory Analyses 89
 4.2.3.1 Species and sexes identification 89
 4.2.3.2 Morphological measurement and morphometric analysis 89
 4.2.3.3 Sediment analysis 89
 4.2.4 Data analysis 90

4.3 Results 91
4.3.1 Temporal trend of landing population of horseshoe crabs in Pasir Putih Village

4.3.1.1 Horseshoe crab density and sex composition

4.3.1.1.1 T. gigas

4.3.1.1.2 C. rotundicauda

4.3.2 Environmental parameters of water

4.3.3 Grain size distribution and total organic matter

4.3.4 Relationship between selected water quality parameters with landing population of horseshoe crabs

4.3.4.1 Principle component analysis (PCA)

4.3.4.2 Multivariate analysis (BEST) and Spearman correlation

4.3.5 Carapace width measurement

4.3.5.1 T. gigas

4.3.5.2 C. rotundicauda

4.3.6 Allometric analysis of landing population

4.3.6.1 T. gigas

4.3.6.2 C. rotundicauda

4.4 Discussion

4.5 Conclusion
CHAPTER 5: TETRODOTOXIN ANALYSIS AMONG HORSESHOE CRABS SPECIES IN THE SOUTH WEST OF SARAWAK

5.1 Introduction

5.2 Materials and methods

5.2.1 Sample collection

5.2.1.1 Spatial study of TTX concentration of horseshoe crabs from south west of Sarawak

5.2.1.2 Temporal study of TTX concentration of horseshoe crabs from Pasir Putih Village, Kuching

5.2.2 Sample preparation and identification

5.2.3 Toxin extraction

5.2.4 Liquid Chromatography- Mass Spectrometry/Mass Spectrometry (LC-MS/MS)

5.2.5 Toxin Standards

5.2.6 Preparation of TTX stock standard, working standard and calibration standards

5.2.6.1 100 µg/ml TTX stock standard

5.2.6.2 1 µg/ml TTX working standard

5.2.6.3 Calibration standards

5.2.7 Statistical analysis of toxicity for LC-MS/MS analysis

5.3 Results

5.3.1 Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)
5.3.2 Spatial study of TTX concentration of horseshoe crabs from southwest of Sarawak

5.3.2.1 Body mass index of horseshoe crabs according to sampling sites

5.3.2.2 Comparison of TTX concentration (MU/g) in different tissues between landing population of \(T. \text{gigas} \) from three habitats

5.3.2.3 Comparison of TTX concentration (MU/g) in different tissues between landing population of \(C. \text{rotundicauda} \) from three habitats

5.3.3 Temporal study of TTX concentration of horseshoe crabs from Pasir Putih Village

5.3.3.1 Body mass index of horseshoe crabs according to different months and years

5.3.3.2 Comparison of TTX concentration in different tissues between landing population of \(T. \text{gigas} \) from Pasir Putih Village

5.3.3.3 Comparison of TTX concentration in different tissues between landing population of \(C. \text{rotundicauda} \) from Pasir Putih Village

5.3.4 Correlation of toxicity level with BMI of horseshoe crabs

5.3.4.1 Principle component analysis (PCA)

5.3.4.2 Multivariate analysis (BEST) and Spearman correlation
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>Discussion</td>
<td>147</td>
</tr>
<tr>
<td>5.5</td>
<td>Conclusion</td>
<td>151</td>
</tr>
</tbody>
</table>

CHAPTER 6: GENERAL DISCUSSION

CHAPTER 7: CONCLUSION AND RECOMMENDATIONS

REFERENCES

APPENDICES
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>List of literature review for horseshoe crab distribution in Malaysia</td>
<td>21</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>List of literature review for horseshoe crab distribution worldwide</td>
<td>22</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>List of literature review for TTX bearing organisms</td>
<td>31</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Recorded poisoning cases in Thailand due to consumption of C. rotundicauda from 1925 to 1965</td>
<td>34</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Symptoms and stages of TTX intoxication based on their onset</td>
<td>36</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>The GPS coordinates, sampling date, habitat description and estimated area of each sampling site in south west of Sarawak</td>
<td>43</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>The number of individuals, density and sex ratio of landing T. gigas on intertidal area in three different habitats of south west of Sarawak</td>
<td>57</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>The number of individuals, density and sex ratio of landing C. rotundicauda on intertidal area in three different habitats of south west of Sarawak</td>
<td>58</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>In-situ water quality parameters for nine sampling sites at south west of Sarawak</td>
<td>60</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Mean of sediment grain size distribution, particle size analysis and total organic matter at nine sampling sites</td>
<td>61</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Summary of PCA for spatial trend of environmental parameters and landing horseshoe crabs from all sampling sites on the first two axes (p<0.05)</td>
<td>62</td>
</tr>
</tbody>
</table>
Table 3.7 Summary of BIO-ENV analysis for number of individuals of horseshoe crabs from south west of Sarawak with selected environmental parameters (spatial trend) 64

Table 3.8 Statistical analysis of body parameters measurement of male and female *T. gigas* from three different habitats in south west of Sarawak 67

Table 3.9 Statistical analysis of body parameters measurement of male and female *C. rotundicauda* from three different habitats in south west of Sarawak 69

Table 4.1 Sampling month/year, lunar cycle and type of monsoon in Pasir Putih Village, Sarawak 85

Table 4.2 Temporal trend of sex ratio, percentage of both sexes and density of *T. gigas* in Pasir Putih Village 92

Table 4.3 Temporal trend of sex ratio, percentage of both sexes and density of *C. rotundicauda* in Pasir Putih Village 94

Table 4.4 Summary of temporal variations of water parameters measured *in-situ* at Pasir Putih Village 96

Table 4.5 Summary of temporal variations of sediment grain size distribution and total organic matter at Pasir Putih Village 99

Table 4.6 Summary of PCA for environmental parameters and landing horseshoe crabs from Pasir Putih Village on the first two axes (p<0.05) 101
Table 4.7 Summary of BIO-ENV for number of individuals of horseshoe crabs from Pasir Putih Village with selected environmental parameters (temporal trend)

Table 4.8 Statistical analysis of body measurement of male T. gigas from Pasir Putih Village

Table 4.9 Statistical analysis of body measurement of female T. gigas from Pasir Putih Village

Table 4.10 Statistical analysis of body measurement of male and female C. rotundicauda from Pasir Putih Village

Table 5.1 The number of analyzed tissues of horseshoe crab according to species, sexes and habitats in south west of Sarawak

Table 5.2 The number of analyzed tissues of horseshoe crab according to species, sexes and months (years) in Pasir Putih Village

Table 5.3 Concentration, retention time, area and LOD (S/N 3:1) for TTX analysis by LC-MS/MS

Table 5.4 Body mass index of landing T. gigas and C. rotundicauda from nine sampling sites

Table 5.5 Mean of TTX concentration (MU/g) in the different tissues of different sexes of T. gigas from three habitats

Table 5.6 Mean of TTX concentration (MU/g) in the different tissues of different sexes of C. rotundicauda from three habitats

Table 5.7 Body mass index of landing T. gigas and C. rotundicauda from Pasir Putih Village
Table 5.8 Mean of TTX concentration (MU/g) in the different tissues of different sexes of *T. gigas* from Pasir Putih Village

Table 5.9 Pearson correlation between body mass index with TTX concentration in different tissues in male and female *T. gigas* from Pasir Putih Village

Table 5.10 Mean of TTX concentration (MU/g) in the different tissues of different sexes of *C. rotundicauda* from Pasir Putih Village

Table 5.11 Summary of PCA for TTX concentration in different tissues and BMI of horseshoe crabs from south west of Sarawak on the first two axes (p<0.05)

Table 5.12 Summary of BIO-ENV analysis for TTX concentration in different tissues of horseshoe crabs from south west of Sarawak with BMI
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Classification of horseshoe crab up to species level</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Morphological characteristics differences between four species of extant horseshoe crab</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>The external morphology of a horseshoe crab (dorsal view)</td>
<td>14</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>The external morphology of a horseshoe crab (ventral view)</td>
<td>15</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Horseshoe crab nesting</td>
<td>27</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>The chemical structure of tetrodotoxin</td>
<td>30</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Proposed mechanism of TTX accumulation in marine organism</td>
<td>33</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Map showing the location of nine sampling sites at south west of Sarawak</td>
<td>42</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Illustration of modified transect method for landing population of horseshoe crabs study in the intertidal area</td>
<td>45</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Illustration of sampling area in intertidal area for landing horseshoe crabs by using modified transect method</td>
<td>46</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Dorsal and ventral morphology of T. gigas and C. rotundicauda based on cross section of telson, marginal spines, color of carapace and genital operculum</td>
<td>48</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>The diagrams and pictures of first appendage of male and female horseshoe crabs</td>
<td>48</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>The picture of underside of genital operculum of two different sexes of horseshoe crabs</td>
<td>49</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Measurement used for morphological analysis; total length, carapace width and telson length</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Principle component analysis (PCA) of spatial trend of environmental parameters super imposed by habitat and monsoon season</td>
<td></td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Map of Malaysia showing the location of Pasir Putih Village, Sarawak</td>
<td></td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Picture of sampling site and its surroundings at Pasir Putih Village</td>
<td></td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Illustration of modified transect method for landing population of horseshoe crabs study in the intertidal area of Pasir Putih Village</td>
<td></td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Rainfall recorded from January 2014 to December 2016</td>
<td></td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Principal Component Analysis (PCA) derived from the mean percentage of grain size fraction at Pasir Putih Village</td>
<td></td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Principal Component Analysis (PCA) showing the water parameters in relation to the total number of horseshoe crabs in Pasir Putih Village super imposed by year and season</td>
<td></td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Range of carapace width-frequency landing of male and female T. gigas collected from Pasir Putih Village</td>
<td></td>
</tr>
<tr>
<td>Figure 4.8</td>
<td>Range of carapace width-frequency landing of male and female C. rotundicauda collected from Pasir Putih Village</td>
<td></td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Calibration curve for TTX obtained from LC-MS/MS</td>
<td></td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>LC-MS/MS chromatogram of TTX</td>
<td></td>
</tr>
</tbody>
</table>
Figure 5.3 Principal Component Analysis (PCA) showing the different tissues of different sexes of two species of horseshoe crabs in relation to the BMI super imposed by habitat
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>BW</td>
<td>Body weight</td>
</tr>
<tr>
<td>CE</td>
<td>Collision energy</td>
</tr>
<tr>
<td>CW</td>
<td>Carapace width</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved oxygen</td>
</tr>
<tr>
<td>ESI</td>
<td>Electrospray ionization</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared spectroscopy</td>
</tr>
<tr>
<td>GPS</td>
<td>Global positioning system</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>IUCN</td>
<td>International Union for Conservation of Nature</td>
</tr>
<tr>
<td>LC-MS/MS</td>
<td>Liquid chromatography-mass spectrometry mass spectrometry</td>
</tr>
<tr>
<td>LOD</td>
<td>Limit of detection</td>
</tr>
<tr>
<td>MU</td>
<td>Mouse unit</td>
</tr>
<tr>
<td>N/D</td>
<td>Not detected</td>
</tr>
<tr>
<td>ppt</td>
<td>Parts per thousands</td>
</tr>
<tr>
<td>PSA</td>
<td>Particle size analysis</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>S.D</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for the Social Sciences</td>
</tr>
<tr>
<td>SRM</td>
<td>Selected reaction monitoring</td>
</tr>
</tbody>
</table>