Acid-base Modification of Microwave Biochar derived from Sago Bark for Heavy Metals Removal

Nur Fakhirah Qurratu’ain, Zuhaidi (2019) Acid-base Modification of Microwave Biochar derived from Sago Bark for Heavy Metals Removal. Masters thesis, Universiti Malaysia Sarawak.

[img] PDF (Please get the password from TECHNICAL & DIGITIZATION MANAGEMENT UNIT, ext: 082-583913/ 082-583914)
Nur Fakhirah.pdf
Restricted to Registered users only

Download (4MB) | Request a copy


Biochar is well known to be used for environmental purpose especially as an adsorbent for heavy metal removal. However, some properties of biochar in its original form can be further improved to enhance the removal of heavy metal. In this study, biochar production via microwave pyrolysis technology and the enhancement of the physical and chemical properties of biochar through acid-base modification was investigated. The adsorption of heavy metals by M-B and acid-base modified microwave biochar (M-Bab) were studied using batch study at different initial concentration and response surface methodology (RSM). RSM study was conducted using 1.00 - 3.00 mm of adsorbent particles size in heavy metal solution with range from pH 4 to 10 and contact time 30 - 90 min. BET analysis reveals that acid base modification was able to improve surface area of microwave biochar (M-B) by 75.18%, while SEM analysis showed that the porous structure of biochar was further improved after acid-base modification. The potential of M-B and M-Bab for Cd(II), Cr(III), Cu(II), Ni(II) and Pb(II) removal from water were investigated. Batch experiment showed that M-Bab afforded the highest removal of Cr(III), Cu(II), Ni(II) and Pb(II) at low concentration of heavy metal (5 - 25 ppm) compared to M-B. Based on the RSM experiment, pH plays important role in influencing the percentage removal of heavy metal. The pH 10.00 was observed to be the best condition for removal of heavy metals by M-B and M-Bab. Although M-B could not provide better removal of heavy metal at acidic condition, M-Bab is proven to remove heavy metal in acidic condition.

Item Type: Thesis (Masters)
Additional Information: Thesis (MSc.) - Universiti Malaysia Sarawak , 2019.
Uncontrolled Keywords: Microwave pyrolysis, biochar, acid-base modification, heavy metals, unimas, university, universiti, Borneo, Malaysia, Sarawak, Kuching, Samarahan, ipta, education, Postgraduate, research, Universiti Malaysia Sarawak.
Subjects: T Technology > TD Environmental technology. Sanitary engineering
Divisions: Academic Faculties, Institutes and Centres > Faculty of Resource Science and Technology
Date Deposited: 15 Jul 2019 00:30
Last Modified: 24 Nov 2021 08:21

Actions (For repository members only: login required)

View Item View Item