ESTABLISHMENT OF AXENIC CULTURE AND CALLUS INDUCTION OF (Morinda citrifolia L.) BY USING LEAF EXPLANT

Muhammad Fateh Bin Hissham
(47773)

Bachelor of Science with Honours
(Plant Resource Science and Management)
2017
ESTABLISHMENT OF AXENIC CULTURE AND CALLUS INDUCTION OF
(MORINDA CITRIFOLIA L.) USING LEAVES EXPLANT

MUHAMMAD FATEH BIN HISSHAM

(47773)

This report is submitted in partial fulfillment of the requirement for the degree of Bachelor of Science with Honours in Plant Resources Science and Management

Plant Resource Science and Management

FACULTY OF RESOURCES SCIENCE & TECHNOLOGY
UNIVERSITI MALAYSIA SARAWAK
94300 KOTA SAMARAHAN
Borang Pengesahan
Laporan Projek Tahun Akhir (STF3015)

Fakulti Sains dan Teknologi Sumber
Universiti Malaysia Sarawak

Saya __________________________ (nama) no. pelajar

mengaku telah membuat perubahan yang perlu* / tidak ada
perubahan terhadap Laporan Projek Tahun Akhir yang bertajuk:

Establishment of Axenic Culture and Callus Induction of
(Morinda Citrifolia L.) by Using Leaf explant

Bersama ini saya kemukakan 3 salinan Laporan Projek Tahun Akhir dan 1 salinan
'softcopy' Laporan berkenaan.

Tandatangan Pelajar

Tandatangan Penyelia

(Muhammad Fath Bin Hesham)

(Nama & Cop rasmi)

Pengesahan
Tandatangan Penyelaras Program

Dr Freddy Yeo Kaok San
Programme Coordinator
Department of Plant Science & Environmental Ecology
Faculty of Resource Science and Technology
UNIVERSITI MALAYSIA SARAWAK

(Nama & Cop Rasmi)

* = potong yang tidak berkaitan

Borang PTA4
UNIVERSITI MALAYSIA SARAWAK

Grade: __________

Please tick (✓)
Final Year Project Report
Masters
PhD

DECLARATION OF ORIGINAL WORK

This declaration is made on the ___________ day of ___________ year ___________.

Student's Declaration:

I ________________________
Muhammad Faten Bin Hisham (47773)

(PLEASE INDICATE NAME, MATRIC NO. AND FACULTY) hereby declare that the work entitled, Establishment of Ancient Culture and Cultivation of Cinnamon (Cinnamomum zeylanicum) by using heat explant is my original work. I have not copied from any other student's work or from any other sources with the exception where due reference or acknowledgement is made explicitly in the text, nor has any part of the work been written for me by another person.

Date submitted ___________

Name of the student (Matric No.)
Muhammad Faten Bin Hisham 47773

Supervisor's Declaration:

I ________________________ (SUPERVISOR'S NAME), hereby certify that the work entitled, Establishment of Ancient Culture and Cultivation of Cinnamon (Cinnamomum zeylanicum) by using heat explant (TITLE) was prepared by the aforementioned or above mentioned student, and was submitted to the "FACULTY" as a partial/full fulfillment for the conferment of __________________ (PLEASE INDICATE THE DEGREE TITLE), and the aforementioned work, to the best of my knowledge, is the said student's work.

Received for examination by: ________________________
(Name of the supervisor)
Date: ___________
I declare this Project/Thesis is classified as (Please tick (✓)):

- ☐ CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)*
- ☐ RESTRICTED (Contains restricted information as specified by the organisation where research was done)*
- ☑ OPEN ACCESS

I declare this Project/Thesis is to be submitted to the Centre for Academic Information Services (CAIS) and uploaded into UNIMAS Institutional Repository (UNIMAS IR) (Please tick (✓)):

- ☑ YES
- ☐ NO

Validation of Project/Thesis

I hereby duly affirmed with free consent and willingness declared that this said Project/Thesis shall be placed officially in the Centre for Academic Information Services with the abide interest and rights as follows:

- This Project/Thesis is the sole legal property of Universiti Malaysia Sarawak (UNIMAS).
- The Centre for Academic Information Services has the lawful right to make copies of the Project/Thesis for academic and research purposes only and not for other purposes.
- The Centre for Academic Information Services has the lawful right to digitize the content to be uploaded into Local Content Database.
- The Centre for Academic Information Services has the lawful right to make copies of the Project/Thesis if required for use by other parties for academic purposes or by other Higher Learning Institutes.
- No dispute or any claim shall arise from the student himself/herself neither a third party on this Project/Thesis once it becomes the sole property of UNIMAS.
- This Project/Thesis or any material, data and information related to it shall not be distributed, published or disclosed to any party by the student himself/herself without first obtaining approval from UNIMAS.

Student’s signature: ________________________ (Date) 14/6/2017

Supervisor’s signature: ________________________ (Date) 14/6/2017

Current Address:

No. 5, Jalan Tembaga, Taman Kluang Jaya, 86000, Kluang, Johor

Notes: * If the Project/Thesis is CONFIDENTIAL or RESTRICTED, please attach together as annexe a letter from the organisation with the date of restriction indicated, and the reasons for the confidentiality and restriction.

[The instrument was prepared by The Centre for Academic Information Services]
APPROVAL SHEET

Name of candidate : Muhammad Fateh Bin Hissham

Title of dissertation : Establishment of Axenic Culture and Callus Induction of
Morinda citrifolia L. using leaf explants

__

(Dr. Rebecca Edward)

Supervisor

__

(Dr. Freddy Yeo Kuok San)

Programme Coordinator

Plant Resource Science and Management Programme

Department of Plant Science and Environmental Ecology

Faculty of Resource Science and Technology
DECLARATION OF ORIGINAL WORK

I declare that this thesis entitled “Establishment of Axenic Culture and Callus Induction of Morinda citrifolia L.” is based on my original work except for quotations and citations which have been acknowledged. The thesis has not been submitted previously or currently to any other degree at UNIMAS or other institutions.

(Muhammad Fateh Bin Hissham)

Plant Resource Science and Management Programme

Department of Plant Science and Environmental Ecology

Faculty of Resource Science and Technology

Universiti Malaysia Sarawak (UNIMAS)
ACKNOWLEDGEMENTS

First and foremost, I would like to express my humble thanks and grateful to Allah S.W.T for the strength, inspiration and encouragement given to me throughout the completion of this thesis. A lot of experiences and knowledge were gained along the way. I wish to express my sincere appreciation to my supervisors, Dr. Rebicca Edward for accepting me to do my final year project under her supervision. She has guided me a lot in completing my final year project and shared generous knowledge about tissue culture. More, I also would like to thank to others lectures for their critics, advices, motivation and inputs of idea, relentless support, and guidance end endless encouragement throughout my study in plant tissue culture.

I would like to express my appreciation to postgraduate student, Mrs. Rozalia Mohd Geoffery for guiding and assisting me throughout this research. Thank you so much for keep motivating on me during the hard times that I have gone through. My sincere appreciation also extends to all my fellow colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. Thank you for the time sacrificed to accompany me. And last but not least, special thanks to my beloved family, Hissham Bin Hood, Rohaya Binti Masree, Fatin Ainul Mardhiah binti Hissham and Fatin Nabila Binti Hissham for their encouragement, love and prayers from the beginning of my study.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>I</td>
</tr>
<tr>
<td>APPROVAL SHEET</td>
<td>II</td>
</tr>
<tr>
<td>DECLARATION OF ORIGINAL WORK</td>
<td>III</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>IV</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>V</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>VII</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>VIII</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>IX</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>X</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>1</td>
</tr>
<tr>
<td>1.0 INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>1.1 Background study</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Problem statement</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Objectives</td>
<td>3</td>
</tr>
<tr>
<td>2.0 LITERATURE REVIEW</td>
<td>4</td>
</tr>
<tr>
<td>2.1 The plant</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Botanical description</td>
<td>5</td>
</tr>
<tr>
<td>2.3 Medicinal uses of Morinda citrifolia</td>
<td>7</td>
</tr>
<tr>
<td>2.4 Plant Tissue Culture</td>
<td>8</td>
</tr>
<tr>
<td>2.5 Tissue Culture Technique</td>
<td>9</td>
</tr>
<tr>
<td>2.5.1 Surface sterilization</td>
<td>9</td>
</tr>
<tr>
<td>2.5.2 Callus induction</td>
<td>10</td>
</tr>
</tbody>
</table>
3.0 MATERIAL AND METHODS ... 12

3.1 Collection of plant materials ... 12
3.2 Sample Collection ... 12
3.3 Preparation of Murashige & Skoog (MS) Stock Solution 12
3.4 Preparation of Murashige and Skoog (MS) medium ... 13
3.5 Preparation of the disinfectant (Clorox) ... 13
3.6 Establishment of Axenic Culture .. 14
3.6.1 Comparing the effectiveness of different concentration of Clorox at different time exposed .. 14
3.7 Establishment of Callus Induction ... 15
3.7.1 Preparation of 2,4-D (Stock of 1mg/ml)... 15
3.7.2 Preparation of NAA ... 16
3.7.3 Effects of 2, 4-D and NAA on the explants .. 16

4.0 RESULT ... 18

4.1 Effect of different Clorox concentration and time exposure on leaf explant of Morinda Citrifolia ... 18
4.2 Effect of different type and Concentration of Plant Growth Regulator on leaf explant of Morinda Citrifolia ... 24

5.0 DISCUSSION ... 35

5.1 Effect of different Clorox concentration and time exposure on leaf explant of Morinda Citrifolia ... 35
5.2 Effect of different type and concentration of Plant Growth Regulator (PGR) on leaf explant of Morinda Citrifolia ... 38

6.0 CONCLUSION AND RECOMMENDATIONS .. 41

7.0 REFERENCES .. 42

8.0 APPENDICES .. 47
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. citrifolia L.</td>
<td>Morinda citrifolia Linn.</td>
</tr>
<tr>
<td>PGR</td>
<td>Plant Growth Regulator</td>
</tr>
<tr>
<td>MS media</td>
<td>Murashige and Skoog Media</td>
</tr>
<tr>
<td>2, 4-D</td>
<td>2, 4-Dichlorophenoxy acetic acid</td>
</tr>
<tr>
<td>NAA</td>
<td>Naphthaleneacetic acid</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Morinda citrifolia L. plant</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>The fruits of Morinda Citrifolia L.</td>
<td>6</td>
</tr>
<tr>
<td>4.1</td>
<td>Error bar with standard deviation on number of axenic leaf explants between treatments.</td>
<td>22</td>
</tr>
<tr>
<td>4.2</td>
<td>Error bar with standard deviation on number of axenic leaf explants between concentrations of Clorox.</td>
<td>22</td>
</tr>
<tr>
<td>4.3</td>
<td>Explant physical appearances at different Clorox treatments</td>
<td>23</td>
</tr>
<tr>
<td>4.4</td>
<td>Error bar with standard deviation percentage of callus formation on the leaf explants between treatments.</td>
<td>28</td>
</tr>
<tr>
<td>4.5</td>
<td>Friable Callus Formation after two weeks of culture on MS medium supplemented by 2, 4- Dichlorophenoxy acetic acid (2,4 D)</td>
<td>29</td>
</tr>
<tr>
<td>4.6</td>
<td>Friable Callus Formation after three weeks of culture MS medium supplemented by 2, 4- Dichlorophenoxy acetic acid (2,4 D)</td>
<td>30</td>
</tr>
<tr>
<td>4.7</td>
<td>Friable Callus Formation after two 2 month of culture on MS medium supplemented by 2, 4- Dichlorophenoxy acetic acid (2,4 D)</td>
<td>31</td>
</tr>
<tr>
<td>4.8</td>
<td>Friable Callus Formation after three weeks of culture MS Medium supplemented by Napthaleneacetic acid (NAA)</td>
<td>32</td>
</tr>
<tr>
<td>4.9</td>
<td>Friable Callus Formation after three weeks of culture MS Medium supplemented by Napthaleneacetic acid (NAA)</td>
<td>33</td>
</tr>
<tr>
<td>5.0</td>
<td>Friable Callus Formation after three weeks of culture MS Medium supplemented by Napthaleneacetic acid (NAA)</td>
<td>34</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Various combination of concentration of Clorox® (sodium hypochlorite) and time expose of seeds explants</td>
<td>14</td>
</tr>
<tr>
<td>3.2</td>
<td>Various concentration of 2,4D and NAA</td>
<td>16</td>
</tr>
<tr>
<td>4.1</td>
<td>Mean number of axenic percentage of leaf explant of Morinda Citrifolia after surface sterilized in different concentration on Clorox® solution.</td>
<td>20</td>
</tr>
<tr>
<td>4.2</td>
<td>Mean number of axenic percentage of leaf explant of Morinda Citrifolia after surface sterilized in different concentration on Clorox® solution and time exposure.</td>
<td>21</td>
</tr>
<tr>
<td>4.3</td>
<td>Mean number of callus percentage induce from leaf explant of Morinda Citrifolia after treated in different type of Plant Growth Regulator (PGR) solution.</td>
<td>26</td>
</tr>
<tr>
<td>4.4</td>
<td>Mean number of callus percentage induced from leaf explant of Morinda Citrifolia after treated in different type and concentration on Plant Growth Regulator (PGR) solution.</td>
<td>27</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MS (Murashige and Skoog, 1962) medium</td>
<td>47</td>
</tr>
<tr>
<td>B</td>
<td>Raw data based on number and percentage of axenic, contaminated and damaged leaf explants in MS medium after surface sterilization in different percentage of Clorox concentration (5%, 10% and 15%) within different time exposure (5 min, 10 min and 15 min).</td>
<td>48</td>
</tr>
<tr>
<td>C</td>
<td>Tukey test for the effect of different concentration on Clorox® solution on the leaf explant of Morinda Citrifolia.</td>
<td>50</td>
</tr>
<tr>
<td>D</td>
<td>Tukey test for the effect of different concentration on Clorox® solution and time exposure on the leaf explant of Morinda Citrifolia.</td>
<td>52</td>
</tr>
<tr>
<td>E</td>
<td>Tukey test for the effect of different type and concentration of Plant Growth Regulator (PGR) solution on the leaf explant of Morinda Citrifolia.</td>
<td>56</td>
</tr>
</tbody>
</table>
ESTABLISHMENT OF AXENIC CULTURE AND CALLUS INDUCTION OF
(MORINDA CITRIFOLIA L.) USING LEAVES EXPLANT

MUHAMMAD FATEH BIN HISSHAM

Plant Resource and Management Programme

Faculty of science and Technology

Universiti Malaysia Sarawak

ABSTRACT

Morinda citrifolia (Mengkudu) is from the family Rubiaceae which has high demand in medicinal use and has industrial importance. It is used to treat asthma, cough, cold, heartburn, fever, rheumatism and prevent diseases like stroke, cardiovascular disease and cancer. The objective of this study were to determine the best method for axenic culture of young leaf of M. citrifolia and to induce callus of M. citrifolia from leaf explants by using different concentration of 2,4-Dichlorophenoxy acetic acids (2,4-D) and Naphthaleneacetic acid (NAA). Results showed that the best method of surface sterilization of leaf explants M. citrifolia is when pre-treated with 70% of Ethanol (30 Sec) followed by the surface sterilization method from treatment with 5% Clorox® concentration with 5 minutes time of exposure. This method was used to sterilize the leaf explants for callus induction. The leaf explants showed the best response to produce callus when supplemented into MS medium containing 2.0 mg/l and 3.0 mg/l of 2,4-D. Different approach can be developed in further studies for callus induction and shoot regeneration of Morinda citrifolia.

Keywords: Morinda citrifolia (Mengkudu), axenic cultures, callus induction, 2,4-Dichlorophenoxy acetic acids (2,4-D), Naphthaleneacetic acid (NAA), surface sterilization

ABSTRAK

Morinda citrifolia (Mengkudu) adalah dari famili Rubiaceae yang mempunyai permintaan yang tinggi dalam penggunaan ubat-ubatan dan mempunyai kepentingan industry. Ia digunakan untuk merawat asma, batuk, selsema, pedih hulu hati, demam, sakt sendi dan mengelakkan penyakit seperti strok, penyakit kardiovaskular dan kanser. Objektif kajian ini adalah untuk menentukan kaedah yang terbaik untuk menghasilkan daun muda yang bersih dari penyakit dan kulat. Objektif kajian yang seterusnya adalah untuk menghasilkan prosedur yang terbaik untuk induksi kalus daripada daun muda dengan menggunakan konsentrasi 2,4-Dichlorophenoxy acetic acids (2,4-D) dan Naphthaleneacetic acid (NAA) yang berbeza. Keputusan menunjukkan kaedah yang terbaik untuk menghasilkan daun muda yang bersih dari penyakit dan kulat adalah apabila dikulturkan dengan 5% konsentrasi Clorox® selama 5 minit. Kaedah ini juga digunakan untuk menghasilkan daun muda yang bersih untuk pertumbuhan kalus. Daun menunjukkan tindak balas yang terbaik apabila dikulturkan dalam media yang mempunyai 2.0 mg/l and 3.0 mg/l of 2,4 D. Pendekatan yang berbeza boleh dihasilkan dalam kajian lanjut untuk induksi kalus dan pertumbuhan pucuk Morinda citrifolia.

Kata kunci: Morinda citrifolia (Mengkudu), axenic cultures, callus induction, 2,4-Dichlorophenoxy acetic acids (2,4-D), Naphthaleneacetic acid (NAA)
1.0 INTRODUCTION

1.1 Background study

Plant is a natural organism that have been used for traditional medicine and also use for treatment among various diseases since thousands of years (Rao et al., 2004). According to Cragg and Newman (2004), plants are the main sources which highly effective conventional medicine that could be used for treatment of various type of cancer. Nowadays, more than 60% currently used anti-cancer agent are produced from natural resources as reported by Cragg et al., (2005) and Newman et al. (2003). More, 80% of the world’s population depends on traditional medicines and use plant extracts in traditional treatments (WHO, 1993).

Rubiaceae, the family consist of 609 genera and about 31,357 species is a taxon of dicotyledonous flowering plants. This family are tree, shrub and most of them are herbs. According to Morton (1992), Morinda Citrifolia belong to the family Rubiaceae. It is also known as Noni and locally this plant is known Burma phal, pongee phal, lorang, etc. by the tribals of Andaman and Nicobar Islands (Singh et al., 2005a, b). According to the Nelson (2006), the young leaves and fruit of the Morinda citrifolia are evergreen and the surface of both leaves and fruits are waxy and glossy. More, it is widely grow through pacific region and one of the most important sources of traditional medicines (McClatchey, 2002; Nelson, 2001).

Noni also can adapt to extreme environmental conditions and can grows well in acidic, alkaline and even infertile soils. According to Cambie and Ash (1994), this plant can be found in open areas near the shoreline, pastures, coconut plantations, disturbed forest, dry to mesic forests, littoral forest and in waste lands. M. citrifolia var. citrifolia, M. citrifolia var. bracteata and M. citrifolia var. potteri are the commonly grown commercial varieties.
Even these varieties have different morphological aspects but their chemical properties are similar (Wang and Su, 2001; Nelson, 2005). The example of the chemical properties are phenolic compounds, organic acids and alkaloids. There are many findings support that *Morinda citrifolia* have a medicinal values and a broad range of health benefits for cancer, asthma, hypertension, infection, arthritis and pain (Whistler, 1992).

1.2 Problem statement

Morinda citrifolia is mainly propagated by seed but the seed have a problem of seed dormancy or hard seed coat (Kochuthressia & Jaseentha, 2015). Furthermore, seed propagation are very slow which takes longer time in germination process (Kochuthressia & Jaseentha, 2015). Tissue culture technique is the most popular technique and only the way in producing a mass number of mature plants in a short time. Besides, it also increase the rate of propagation of a new cultures. Hence, this project is designed to study and evaluate the establishment of axenic culture and callus induction of (*Morinda citrifolia* L.) by using leaf explant.

1.3 Objectives

The specific objective of this study are:

1. To establish an effective surface sterilization protocol for producing axenic culture of *Morinda citrifolia* by using young leaf explants.

2. To induce callus formation from the young leaf explants of *Morinda citrifolia* by using 2,4-Dichlorophenoxy acetic acids (2,4-D) and Naphthaleneacetic acid (NAA).
2.0 LITERATURE REVIEW

2.1 The plant

Morinda citrifolia is a member of the Rubiaceae family which comprises of 609 plant genera according to the statistic (The Plant List, 2013) and about 31,357 species but only 13,673 species accepted (The Plant List, 2013) and it is also a taxon of dicotyledonous of flowering plants. This family mostly are tree, shrub and most of them are herbs. At family level, they can be easily recognized morphologically by their simple, opposite or whorled, entire leaves, and stipules united and large as leaf blades.

![Flower of Morinda citrifolia](image)

Figure 2.1: Morinda citrifolia L. plant

Flower usually small, bisexual, actinomorphic, sometimes slightly zygomorphic and ovaries inferior. *Morinda citrifolia* has various common names. It is known as Mengkudu (Malaysia), Bengkudu (Indonesia), Noni (Hawai), Ungcoikan (Myanmar), Cheesefruit (Australia), Yor ban (Thailand). The common English name is Great Morinda and Indian Mulberry (Figure 2.1).
Morinda citrifolia has various synonyms, there are *Morinda citrifolia* var. *citrifolia*, *Morinda citrifolia* cv. Potteri and *Morinda citrifolia* var. bracteata (Will.C.McClatchey, 2003). These three species of *Morinda citrifolia* are used traditionally as herbs in Southeast Asia.

2.2 Botanical description

The taxonomic classification and nomenclature of *Morinda citrifolia* (National Plant Database, 2003).

Kingdom: Plantae

Phylum: Magnoliophyta

Class: Magnoliopsida

Subclass: Asteridae

Order: Rubiales

Family: Rubiaceae

Genus: Morinda L.

Species: *Morinda citrifolia*

Scientific name: *Morinda citrifolia* L.

Morinda citrifolia is an evergreen shrub or herbs that can grow up to 3-8(-10) m tall with a deep taproot. The bark are greyish or yellowish-brown. The leaves opposite and simple, elliptic to lanceolate (10)15-50cm x 5-17 cm (Orwa *et al.*, 2009). The leaves have apex acute to shortly acuminate, cuneate at base, and pinnately nerved (Orwa *et al.*, 2009). Petioles of the
species are 0.5-2.5cm long and stipules variable in size shape, broadly triangular (Orwa et al., 2009) (Figure 2.2).

Figure 2.2: The fruits of *Morinda Citrifolia* L.

According to the Johansson (1994) and Wong (1989), the flower of *Morinda citrifolia* grow in a many flowered cluster known as a capitulum. The inflorescence is terminal which develop from the terminal bud not the axillary bud. The peduncle is 4-14 mm long. The capitula is solitary, each 7-20mm long and 7-15 mm wide with about 25-60 flowers. The flower are white and usually have 5 petal each and are bisexual. The corolla tube is 5-10mm long and the petals are 5.5-7mm long, 1.7-2.3mm wide and are ovate to triangular. The stamens are inserted in or just below the corolla throat. The filaments are 2-3 mm long and each of the inferior ovaries has 2 locule. Each locule with a solitary ovule.
2.3 Medicinal uses of *Morinda citrifolia*

M. citrifolia has been used traditionally and is important herbal medicine. Recently, scientific researches have been done to trace the advantages of *M. citrifolia*. However, the evidents are limited to state the effectiveness of the fruit juice to treat complication. Typical *M. citrifolia* products are commonly being used for the treatment of high blood pressure, menstrual cramps, arthritis, gastric ulcers, sprains, injuries, mental depression, senility, poor digestion, atherosclerosis, blood vessel problems, drug addiction, relief of pains (McClatchey, 2002).

According to Wang and his co-workers (2001), the extracts from *M. citrifolia* has been proven that this herb exhibit anti-viral properties to fight with diabetes, gout, cancer, and internal weaknesses. The fruit juice of *M. citrifolia* also contain Gamma aminobutyric acid (GABA) ligands which benefits to lower the blood pressure of numb dog (Davison, 1927; Moorthy and Reddy, 1970; Youngken, 1958; Youngken *et al*., 1960). Deng and his partners (2007) reported that sedative and anxiolytic effects will be generate when the receptors of GABA binding with these ligands in the neurotransmitter of mammals.

Further reports showed that individual who consumed *M. citrifolia* juice, especially among athletes, could generate more energy, faster the recovery time and increase the stamina after intensive physical training (Palu *et al*., 2008a; Wang and Su (2001). This showed that *M. citrifolia* have a good efficacy in short time due to the multiple antioxidants present in the fruit extracts. Besides, the ability of extraction from *M. citrifolia* was reported to possess analgesic and tranquilizing effects. The analgesic efficacy of the fruit juice extract is 75% as strong as morphine, which used in today’s surgical use (Younos *et al*., 1990).

According Hirazumi *et al*., (1994), *Morinda citrifolia* also have an anti-tumor activity because this plant are rich in polysaccharides and an important substance known as noni-ppt. noni-ppt stimulates the release of TNF-α3, IL-1β, IL-10, IL-12 p70 and IFN-γ from the immune
system. From the juice of *Morinda citrifolia*, it was proven to play an important role in modulating immune cells to come about in times of immunosuppression. This statement supported by Hirazumi *et al.*, (1996) in a later research done in the Lewis Lung Carcinoma.

2.4 Plant Tissue Culture

Plant tissue culture is growing pant cells, tissue or organ isolated from the mother plant into and artificial media such as MS media. It includes various technique and methods used in order to achieve the objectives. Plant tissue culture technique is usually performed under aseptic condition which is using laminar flow cabinet. Generally, living plant materials from the environment are contaminated with microorganisms. Thus, sterilization methods are needed for the starting material (explants).

Explants are usually placed on the solid cultured media which made up of inorganic salts, with few organic nutrients, vitamins, and plant hormone. There are two type of media which are solid and liquid media. Solid media are prepared from liquid media with addition of gelling agent, gelrite. Commonly used plat tissue culture media is Murashige and Skoog media (Murashige and Skoog, 1962).

The importance of tissue culture is to produce large quantities of plant and to increase production of new varieties into the market where large amount can be produced in a very short time compared to conventional methods. More, tissue culture importance in establish and maintain the contaminants free among the plant. Nowadays, plant tissue culture have been widely used to produce clones plants in a method which is known as micropropagation. Plant tissue culture plays a vital role in search for alternative to production desirable medicinal compounds from plants (Robert & Dennis, 2005).
Plant tissue culture have more advantage compare to traditional method which a mass number of mature plants can be produced at a short time and also increase the rate of propagations of new cultures. So, more endangered plant such as orchid can be clone safely and genetically identical plant can be produced in large quantity. Furthermore, plant tissue culture can producing plants which free from disease and pathogen. According to Mustafa (2002), plant that have problems or not known to germinate through seed can be easily manipulated to produce a new whole plant.

2.5 Tissue Culture Technique

2.5.1 Surface sterilization

The main important things for a success of establishment and maintenance of plant tissue culture is an axenic explants. The explant that are taken from the outside are usually highly contaminated with microorganisms and this will contaminants outgrow the explants and resulted in death. Thus, sterilization is the best method for make sure the process of making explants free without any contamination before the cultures being establish. Factor that affect the possibility of microorganism includes the explants, culture medium, apparatus and materials, environment of explant transfer area, technicians and tissue culture room (Dodds & Roberts, 1995). So, various sterilization agents can be used to sterilize the tissue. During the sterilization, the living materials should not lose their biological activity and only contaminants should be eliminated. (Oyebanji, 2009).

According to Hartmann et al. (1990), contaminants usually obtained externally such as fungi, molds, bacteria and other microorganism which are present everywhere either in the air or many surface of the plants, tables, hands and so on. So, a rapid production of axenic explant is the main objective in the plant tissue culture. Sodium hypochlorite, calcium hypochlorite,
mercuric chloride ethanol, hydrogen peroxide, bromine water and silver nitrate are sterilizing agents that are widely used.

Based on Elakkuvan and Manivannan (2015), the leaves, nodal segments and the shoot tip of the *Morinda citrifolia* which treat on 2% of sodium hypochlorite within 10 minute time exposure record the highest survival rate in surface sterilization process. More, 5% of calcium hypochlorite within 15 minutes time exposure also record the highest survival rate of explants (Elakkuvan & Manivannan, 2015). For the sterilizing agent such as mercuric chloride, there is an evidence from the previous research of Elakkuvan and Manivannan (2015) which proved that 0.1 % of mercuric chloride within 4 minutes time exposure give the highest survival percentage of the explants.

According to Oyebanji (2009), ethanol is most powerful sterilizing agents but extremely phyto-toxic. Therefore, the explants is typically exposed to it for only a few seconds and minutes. In the research according to Elakkuvan and Manivannan (2015), the best percent of ethanol used in vitro culture of *Morinda citrifolia* is 70% followed by 1 minute’s time exposure. To enhance effectiveness of sterilization procedure, a surfactant like Tween 20 is frequently added to the sterilizing solution. In general, the sterilizing solutions containing the explants are continuously stirred during the sterilization period.

2.5.2 Callus induction

According to Bottino (1981) callus is define as an unorganized tissue mass growing on solid substrate. Callus forms naturally on plants in responses to infestations, wounding, or at graft unions. Callus formation is a desirable prerequisite for plant regeneration because callus offers greatest opportunity for in vitro selection and production of genetic variations (Espinasse & Lay, 1989). Callus is formed through three developmental stage which is induction, cell