Swift Path Planning : Vehicle Localization by Visual Odometry Trajectory Tracking and Mapping

Dayang Nur Salmi Dharmiza, Binti Awang Salleh and Seignez, Emmanuel (2018) Swift Path Planning : Vehicle Localization by Visual Odometry Trajectory Tracking and Mapping. Unmanned Systems, 6 (4). pp. 1-10. ISSN 2301-3869

[img] PDF
Swift Path Planning ; Vehicle Localization by Visual Odometry - Copy.pdf

Download (1MB)
Official URL: https://www.worldscientific.com/doi/abs/10.1142/S2...


Accurate localization is the key component in intelligent vehicles for navigation. With the rapid development specially in urban area, the increasing high-rise buildings results in urban canyon and road network has become more complex. These affect the vehicle navigation performance particularly in the event of poor Global Positioning System (GPS) signal. Therefore, it is essential to develop a perceptive localization system to overcome this problem. This paper proposes a localization approach that exhibits the advantages of Visual Odometry (VO) in low-cost data fusion to reduce vehicle localization error and improve its response rate in path selection. The data used are sourced from camera as visual sensor, low-cost GPS and free digital map from OpenStreetMap. These data are fused by Particle filter (PF) where our method estimates the curvature similarity score of VO trajectory curve with candidate ways extracted from the map. We evaluate the robustness of our proposed approach with three types of GPS errors such as random noise, biased noise and GPS signal loss in an instance of ambiguous road decision. Our results show that this method is able to detect and select the correct path simultaneously which contributes to a swift path planning.

Item Type: Article
Uncontrolled Keywords: Localization; path planning; data fusion; particle filter, unimas, university, universiti, Borneo, Malaysia, Sarawak, Kuching, Samarahan, ipta, education, research, Universiti Malaysia Sarawak.
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Divisions: Academic Faculties, Institutes and Centres > Faculty of Engineering
Depositing User: Awang Salleh
Date Deposited: 17 Apr 2019 01:10
Last Modified: 17 Apr 2019 01:10
URI: http://ir.unimas.my/id/eprint/24515

Actions (For repository members only: login required)

View Item View Item