Syntheses and Characterization of Silica Nanoparticles Grafted with Selected Heterocyclic Derivatives

Syed Salman Shafqat

Doctor of Philosophy

2016
Syntheses and Characterization of Silica Nanoparticles Grafted with Selected Heterocyclic Derivatives

Syed Salman Shafqat

A thesis submitted
In fulfilment of the requirement for the award of Degree of
Doctor of Philosophy

Faculty of Engineering
UNIVERSITI MALAYSIA SARAWAK
2016
DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Malaysia Sarawak. It is original and is the result of my work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted at Universiti Malaysia Sarawak or to any other academic institution or non-academic institution for any other degree or qualification.

Name of Student: Syed Salman Shafqat

Student ID No: 13010043

Program Degree: PhD, Mechanical and Manufacturing Engineering

Faculty: Faculty of Engineering

Thesis Title: Syntheses and Characterization of Silica Nanoparticles Grafted with Selected Heterocyclic Derivatives

Signature of Student: ________________________________

Date: November 31, 2016.
DEDICATION

I would like to dedicate my research to my beloved parents; my brother and my sisters whose support always remain as a source of help for me. They are my source of inspiration and will remain my source of inspiration. In all achievements of my life especially in my PhD, I could never oversight their cordial role and support which make me accomplish this research work.
ACKNOWLEDGMENTS

Foremost, I would like to express my sincere gratitude to my supervisor Prof. Dr. Amir Azam Khan for the continuous support of my Ph.D. study and research, for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my Ph.D. study.

Besides my supervisor, I would like to thank my co-supervisors: Prof. Dr. Pang Suh Cem (UNIMAS), Dr. Shanti Faridah Saleh (UNIMAS), and Dr. Nicholas Kuan Hoo Tien (UNIMAS) for their continuous support and encouragement.

My sincere thanks also goes to Prof. Dr. Misbahul Ain Khan (University of the Punjab, Pakistan) for his continuous support and motivation for working on diverse exciting research works.

Last but not the least; I would like to thank my family: my mother Mrs. Wazeer Begum for giving birth to me at the first place and supporting me spiritually throughout my life.

Finally I would like to thank the laboratory staff especially Mr. Sabariman and Mr. Rhyier Juen Abdullah and my friends assisted me with this thesis. Their excitement and willingness to provide practical assistance made the completion of this research an enjoyable experience.
ABSTRACT

Sol-gel process has been used to synthesize amino functionalized silica nanoparticles by using gelator precursor tetraethylorthosilicate (TEOS) as well as tetramethoxyorthosilicate (TMEOS) and surface modifier, 3-Aminopropyltriethoxysilane, 3-Aminopropyltrimethoxysilane, separately. Sol-gel methodology is the best alternative protocol to synthesize mesoporous nanoparticles as the classic ways to obtain silica from natural sources are unable to produce silica with high purity and uniform size distribution. Amino functionalized silica nanoparticles were then grafted with Furfural as well as Coumarin derivatives to produce organic/inorganic hybrid materials. Furfural and its derivatives find applications in cosmetic, color and paint industries. To synthesize furfural derivatives, Meerwein arylation of furfural at 5th position with o-nitroanilin, m-nitroanilin and p-nitroanilin was carried out separately which gave 5-arylfurfurals. These 5-aryl furfural derivatives are bright colored compounds in the visible light. Coumarin, especially Coumarin-3-carboxylic acid and coumarin-3-carboxylic acid ethyl ester find their applications in medicinal chemistry. Coumarin and Furanacrylic acid are usually prepared by Knoevenagel condensation using health hazards organic bases. In another part of this research, green catalysts viz amino acids and aqueous extract of Acacia concinna were investigated in order to synthesize Furanacrylic acid and Coumarin derivatives. Green approach for the syntheses of Triarylimidazols and Biginelli compounds is also a part of this thesis. All of these organic syntheses were carried out in mild conditions with excellent yields using natural and less expensive and environmental benign catalysts. Finally, the syntheses of silica nanoparticles grafted with Furfural and Coumarin derivatives were conducted via co-condensation as well as post grafting methods. These organically modified silica nanoparticles found their eventual applications in cosmetics as well as paint industries, medical fields and as adsorbents in water treatment, respectively.
Characterization of all these synthetic products was carried out at several stages of syntheses, by using Thin Layer Chromatography (TLC), Fourier Transform Infra-Red spectroscopy (FTIR), Gas Chromatography-Mass Spectroscopy (GC-MS), Nuclear Magnetic Resonance Spectroscopy (NMR), Scanning Electron Microscope (SEM), X-Rays Diffraction (X-RD) and Thermogravimetric analysis (TGA) accordingly.

KeyWords: Sol-Gel, Silica Nanoparticles, Heterocyclic Derivatives, Green Approach, Co-condensation
ABSTRAK

Proses Sol-gel telah digunakan untuk mensintesis nanopartikel silika dengan menggunakan tetraetilortosilikat gelator pelopor (TEOS) serta tetrametoksiosilikat (TMEOS) dan pengubahsuai permukaan, 3-aminopropiltrietaksi 3-aminopropiltrimetoksilana, secara berasingan. Proses Sol-gel adalah protokol alternatif terbaik untuk mensintesis nanopartikel mesoporous sebagai cara klasik untuk mendapatkan silika daripada sumber semula jadi tidak dapat menghasilkan silika dengan kesucian yang tinggi dan taburan saiz seragam Nanopartikel silika kemudian dicantumkan dengan furfural serta terbitan koumarin untuk menghasilkan bahan hibrid organik / bukan organik. Furfural dan terbitan koumarin diaplikasikan dalam industri kosmetik, warna dan cat. Untuk mensintesis terbitan furfural, Pengarilan Meerwein pada posisi kelima gelang furfural dengan o-nitroanilina, m-nitroanilina dan p-nitroanilina telah dijalankan secara berasingan yang menghasilkan 5-arilfurfural. terbitan furfural 5-aril adalah sebatian berwarna terang di bawah cahaya yang boleh dilihat. Koumarin, terutamanya asid koumarin-3-karboksilik dan koumarin-3-asid karboksilik etil ester boleh diaplikasi dalam kimia perubatan. Koumarin dan asid furanoakrilik biasanya disediakan secara kaedah Knoevenagel pemeluwapan menggunakan asas organik yang berbahaya kepada kesihatan. Terdapat satu bahagian dalam penyelidikan ini, pemangkin hijau iaitu asid amino dan ekstrak akueus Acacia concinna telah dikaji untuk mensintesis asid furanoakrilik dan terbitan koumarin. Pendekatan hijau untuk sintesis daripada triarilimidazol dan sebatian Biginelli juga merupakan sebahagian daripada kajian tesis ini. Semua sintesis organik telah dijalankan dalam keadaan sederhana dengan hasil yang sangat
baik dengan menggunakan mangkin tidak berbahaya semula jadi, murah dan baik kepada alam
sekitar. Kesimpulannya, sintesis nanopartikel silika yang digabungkan dengan furfural dan
derivatif koumarin telah dijalankan melalui pemeluwapan-bersama serta kaedah cantuman
pos. Nanopartikel silika organik yang diubahsuai berpotensi untuk digunakan dalam bidang
kosmetik, industri cat dan bidang perubatan. Pencirian semua produk-produk sintetik telah
dijalankan di beberapa peringkat sintesis, dengan menggunakan Thin Layer Chromatography
(TLC), Fourier Transform Infra-Red spectroscopy (FTIR), Gas Chromatography-Mass
Spectroscopy(GC-MS), Nuclear Magnetic Resonance Spectroscopy (NMR), Scanning Electron
Microscope (SEM), X-Rays Diffraction (X-RD) dan Thermogravimetric analysis (TGA)
accordingly.

Kata Kunci: Sol-Gel, Silika Nanopartikel, Terbitan Heterocyclic, Pendekatan Green, Co-
pemeluwapan
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>i</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF REACTION SCHEMES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxii</td>
</tr>
</tbody>
</table>

CHAPTER 1

INTRODUCTION 1

1.1 Problem Statement 5

1.2 Research Gap 6

1.3 Research Hypothesis 7

1.4 Research Objectives 7

1.5 Scope of the Thesis 7

CHAPTER 2

LITERATURE REVIEW 9

2.1 Introduction 9

2.1.1 Preparation of Silica Nanoparticles 10

2.1.2 Composite Preparation 14

2.2 Sol-Gel Chemistry 14

2.2.1 Hydrolysis of Precursor 15

2.2.2 Ageing 17

2.2.3 Drying 17
2.3 Factors Affecting the Sol Gel Process

2.3.1 Precursors

2.3.2 Catalyst

2.3.3 Solvent

2.3.4 Stoichiometry

2.3.5 Temperature

2.4 Classification of Products

2.4.1 Type 1

2.4.2 Type 2

2.4.3 Type 3

2.4.4 Type 4

2.5 Furfural

2.6 Uses of Furfural

2.7 Coumarin

2.8 Meerwein Arylation

2.8.1 Mechanism

2.9 Biginelli Protocols (4-Aryl-3,4-dihydropyrimidin-2(1H)-ones)

2.10 Triarylimidazoles

2.11 Characterization of Products

2.11.1 Spectroscopy

2.11.2 Nuclear Magnetic Resonance Spectroscopy (NMR)

2.11.3 Gas Chromatography-Mass Spectrometry (GC-MS)

2.11.4 Infrared Spectroscopy (IR)

2.11.5 Scanning Electron Microscopy (SEM)

2.11.6 X-ray Diffraction (XRD)

2.11.7 Thermogravimetric Analysis (TGA)
3.12.2.2 Method 2: *Accacia Concinna* Catalysed Syntheses

3.12.3 Synthesis of Ethylcoumarin-3-carboxylate

3.12.4 Amino Acid Catalysed Biginelli Protocols

3.12.4.1 General Procedure

3.12.4.2 By using Benzaldehyde

3.12.4.3 By using *p*-Chlorobenzaldehyde

3.12.4.4 By using *p*-Hydroxybenzaldehyde

3.12.4.5 By using *o*-Hydroxybenzaldehyde

3.12.4.6 By using *p*-Nitrobenzaldehyde

3.12.5 Synthesis of 2,4,5-Triaryl-1H-imidazoles

3.13 Syntheses of Heterocyclic Grafted Silica Nanoparticles

3.13.1 Synthesis of Si-APTS- Furanacrylic Acid

3.13.1.1 Method 1

3.13.1.2 Method 2

3.13.2 Synthesis of Si-APTS- 5- *o*-Nitrophenyl-2-furfural

3.13.3 Synthesis of Si-APTS- 5- *m*-Nitrophenyl-2-furfural

3.13.4 Synthesis of Si-APTS- 5- *p*-Nitrophenyl-2-furfural

3.13.5 Synthesis of Si-APTS- 5- *p*-Nitrophenyl-2-furanacrylic acid

3.13.6 Synthesis of Si-APTS-Coumarin-3-carboxylic acid

3.14 Attempted Reactions

3.14.1 Knoevenagel Condensation Reactions

3.14.2 Amino acid Catalysed Biginelli Protocols

3.14.3 Triarylimidazoles
CHAPTER 4

RESULTS AND DISCUSSION

4.1 Synthesis of Amino Functionalised Silica Nanoparticles (Si-APTS)
 4.1.1 Co-Condensation Approach
 4.1.2 Post Grafting Approach

4.2 Syntheses of Heterocyclic Derivatives
 4.2.1 Syntheses of Furfural Derivatives
 4.2.1.1 Furanacrylic Acid
 4.2.1.2 The Knoevenagel Condensation
 4.2.1.3 Meerwein Arylation
 4.2.1.4 5-o-Nitrophenylfurfural
 4.2.1.5 5-m-Nitrophenylfurfural
 4.2.1.6 5-p-Nitrophenylfurfural
 4.2.1.7 1,4-Phenyldifuryl
 4.2.1.8 5-o-Chlorophenylfurfural

4.3 Syntheses and Characterization of Coumarin Derivatives
 4.3.1 Coumarin-3-carboxylic Acid
 4.3.1.1 Method 1
 4.3.1.2 Method 2
 4.3.1.3 Method 3
 4.3.1.4 Method 4
 4.3.2 Ethylcoumarin-3-carboxylate
 4.3.2.1 Method 1
 4.3.2.2 Method 2
4.4 Biginelli Protocol; Syntheses and Characterization 158
 4.4.1. By using Benzaldehyde 158
 4.4.2 By using p-Chlorobenzaldehyde 162
 4.4.3. By using p-Hydroxybenzaldehyde 165
 4.4.4. By using o-Hydroxybenzaldehyde 171
 4.4.5. By using p-Nitrobenzaldehyde 174
4.5 Synthesis and Characterization of 2,4,5-Triphenyl-1H-imidazoles 181
 4.5.1 By using Acacia Concinna 183
4.6 Synthesis and Characterization of Furfural Grafted Silica Nanoparticles 185
 4.6.1 Si-APTS- Furanacrylic Acid (Post Grafting) 185
 4.6.2 Si-APTS-Furanacrylic Acid (Co-Condensation) 191
 4.6.3 Si-APTS o-Nitrophenylfurfural 192
 4.6.4 Si-APTS m-Nitrophenylfurfural 197
 4.6.5 Si-APTS p-Nitrophenylfurfural 202
 4.6.6 Si-APTS p-Nitrophenylfuranacrylic Acid 207
4.7 Syntheses and Characterization Coumarin Grafted Silica Nanoparticles 209
 4.7.1 Si-APTS-Coumarin-3-carboxylic Acid 210
4.8 Summary 216

CHAPTER 5 217

CONCLUSION 217

5.1 Summary of Experimental Work 218

5.2 Key Points 220

5.3 Future Prospects 222

REFERENCES 223

Publications from the Present Work 238
LIST OF TABLES

Table 1: Characteristic Proton NMR Shifts 41
Table 2: Transmittance Frequencies of Various Functional Groups 43
Table 3: List of Chemicals used in the Research Work 49
Table 4: Characteristics of Furfural Derivatives 144
Table 5: Characteristics of 3-Carboxycoumarin 152
Table 6: Characteristics of Ethylcoumarin-3-carboxylate 157
Table 7: Characteristics of 5-Ethoxycarbonylmethylphenylidihydropyrimidinone 162
Table 8: Characteristics of 4-Hydroxyphenylidihydropyrimidinone 165
Table 9: Characteristics of 2-Hydroxydihydropyrimidino 171
Table 10: Characteristics of 4-Nitrophenyldihydropyrimidinone 174
Table 11: Characteristics of 4-Chlorophenyldihydropyrimidinone 180
Table 12: Characteristics of Heterocyclic Grafted Silica Nanoparticles 215
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Types of Products obtained by Sol-Gel Process</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>Chemical Structure of Furfural</td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td>Experimental Scheme</td>
<td>53</td>
</tr>
<tr>
<td>4</td>
<td>SEM Spectrograph of (a) TMOS+APTM</td>
<td>109</td>
</tr>
<tr>
<td>5</td>
<td>FTIR Spectra of Si-APTS</td>
<td>111</td>
</tr>
<tr>
<td>6</td>
<td>SEM Spectrograph of (a) Pure SiO₂ (b) Si-APTS</td>
<td>113</td>
</tr>
<tr>
<td>7</td>
<td>FTIR Spectra of A= SiO₂-Pure and B= Si-APTS</td>
<td>115</td>
</tr>
<tr>
<td>8</td>
<td>XRD of A=Pure SiO₂ and B= Si-APTS</td>
<td>116</td>
</tr>
<tr>
<td>9</td>
<td>TGA and DTGA Curves of Si-APTS</td>
<td>117</td>
</tr>
<tr>
<td>10</td>
<td>FTIR Spectrum of Furanacrylic Acid</td>
<td>119</td>
</tr>
<tr>
<td>11(a)</td>
<td>GC-MS of 2-Furylacrylic Acid</td>
<td>121</td>
</tr>
<tr>
<td>11(b)</td>
<td>Mass Fragmentation Pattern of 2-Furylacrylic Acid</td>
<td>123</td>
</tr>
<tr>
<td>12</td>
<td>IR Spectrum of 5-o-Nitrophenylfurfural</td>
<td>126</td>
</tr>
<tr>
<td>13</td>
<td>FTIR Spectrum of 5-m-Nitrophenylfurfural</td>
<td>127</td>
</tr>
<tr>
<td>14(a)</td>
<td>GC-MS of 5-m-Nitrophenylfurfral</td>
<td>128</td>
</tr>
<tr>
<td>11(b)</td>
<td>Mass Fragmentation Pattern of 5-m-Nitrophenylfurfral</td>
<td>131</td>
</tr>
<tr>
<td>15</td>
<td>FTIR Spectrum of 5-p-Nitrophenylfurfural</td>
<td>130</td>
</tr>
<tr>
<td>16(a)</td>
<td>GC of 5-p-Nitrophenylfurfural</td>
<td>131</td>
</tr>
<tr>
<td>11(b)</td>
<td>Mass Fragmentation Pattern of 5-p-Nitrophenylfurfural</td>
<td>133</td>
</tr>
<tr>
<td>17</td>
<td>H- Environment of 5-p-Nitrophenylfurfural</td>
<td>132</td>
</tr>
<tr>
<td>18</td>
<td>NMR Spectrum of 5-p-Nitrophenylfurfural</td>
<td>133</td>
</tr>
<tr>
<td>19</td>
<td>Mass Fragmentation Pattern of 1,4-Phenyldifuryl</td>
<td>135</td>
</tr>
<tr>
<td>20</td>
<td>H-Environment of 1,4-Phenyldifuryl</td>
<td>136</td>
</tr>
</tbody>
</table>
Figure 21: NMR Spectrum of 1,4-Phenyldifuryl

Figure 22: H-Environment of Phenyl difuryl

Figure 23: IR Spectrum of 5-o-Chlorophenylfurfural

Figure 24 (a): GC of 5-o-Chlorophenylfurfural

Figure 24 (b): Mass Fragmentation Pattern of 5-o-Chlorophenylfurfural

Figure 25: IR Spectrum of 5-p-Nitrophyl-2-furylacrylic Acid

Figure 26: Mass Fragmentation of 5-p-Nitrophyl-2-furylacrylic Acid

Figure 27: IR Spectrum of Coumarin-3-carboxylic acid

Figure 28: H-Environment of Coumarin-3-carboxylic Acid

Figure 29: 1-HNMR Spectrum of Coumarin-3-carboxylic Acid

Figure 30 (a): GC Spectrum of Coumarin-3-carboxylic Acid

Figure 30 (b): Mass Fragmentation Pattern of Coumarin-3-carboxylic Acid

Figure 31: FTIR Spectrum of Ethylcoumarin-3-carboxylate

Figure 32 (a): GC of Ethylcoumarin-3-carboxylate

Figure 32 (b): Mass Fragmentation Pattern of Ethylcoumarin-3-carboxylate

Figure 33: H-Environment of Ethylcoumarin-3-carboxylate

Figure 34: HNMR Spectrum of Ethylcoumarin-3-carboxylate

Figure 35: IR Spectrum of 5-Ethoxycarbonylmethylphenyl dihydropyrimidinone

Figure 36 (a): GC of 5-Ethoxycarbonylmethylphenyl dihydropyrimidinone

Figure 36 (b): MS Fragmentation Pattern of phenyl dihydropyrimidinone

Figure 37: IR Spectrum of p-Chlorophenyl dihydropyrimidinone

Figure 38 (a): GC of p-Hydroxyphenyl dihydropyrimidinone

Figure 38 (b): Mass Fragmentation of p-Hydroxyphenyl dihydropyrimidinone

Figure 39: FTIR Spectrum of p-Hydroxyphenyl dihydropyrimidinone
Figure 40 (a): GC of p-hydroxyphenyldihydropyrimidinon 168
Figure 40 (b): Mass Fragmentation Pattern of $5p$-Hydroxyphenyldihydropyrimidinon 172
Figure 41: H-Environment p-Hydroxyphenyldihydropyrimidinone 169
Figure 42: HNMR of 4-Hydroxyphenyldihydropyrimidinone 170
Figure 43: FTIR Spectrum of o-Hydroxyphenyldihydropyrimidinone 172
Figure 44 (a): GC of o-Hydroxyphenyldihydropyrimidinon 173
Figure 44 (b): Mass Fragmentation Pattern of o-Hydroxyphenyldihydropyrimidinon 177
Figure 45: FTIR Spectrum of p-Nitrophenyldihydropyrimidinone 175
Figure 46 (a): GC of 4-Nitrophenyldihydropyrimidinone 177
Figure 46 (b): Mass Fragmentation Pattern of 4-Nitrophenyldihydropyrimidinone 180
Figure 47: H-Environment of 4-Nitrophenyldihydropyrimidinone 178
Figure 48: HNR of 5-Ethoxycarbonyl-6-methyl-4-Nitrophenyldihydropyrimidinone 179
Figure 49 (a): GC of 2,4,5-Triphenyl-1H-imidazoles 183
Figure 49 (b): Mass Fragmentation Pattern of 2,4,5-Triphenyl-1H-imidazoles 186
Figure 50: SEM Spectrograph of (a) Si-APTS and (b) Si-APTS- Furanacrylic Acid 186
Figure 51: FTIR Spectra of A=Si-APTS and B= Si-APTS-Furanacrylic Acid 188
Figure 52: XRD Spectra of A=Si-APTS and B= Si-APTS-Furanacrylic Acid 189
Figure 53 (a): TG Curves of A=Si-APTS and B= Si-APTS-Furanacrylic Acid 190
Figure 53 (b): DTG Curves of A=Si-APTS and B= Si-APTS-Furanacrylic Acid 193
Figure 54: FTIR Spectra of A=Si-APTS and B= Si-APTS-Furanacrylic Acid 191
Figure 55: SEM Spectrograph of (a) Si-APTS and (b) Si-APTS o-Nitrophenylfurfural 193
Figure 56: FTIR Spectra of A=Si-APTS and B= Si-APTS-o-Nitrophenylfurfural 194
Figure 57: XRD of of A=Si-APTS and B= Si-APTS-o-Nitrophenylfurfural 195
Figure 58: TGA Curves of A=Si-APTS and B=SiAPTS-o-Nitrophenylfurfural 199
Figure 59: SEM Spectrograph of (a)=Si-APTS and (b)= Si-APTS-\textit{m}-Nitrophenylfur 198

Figure 60: FTIR of A=Si-APTS and B= Si-APTS-\textit{m}-Nitrophenylfurfaral 199

Figure 61: XRD of A=Si-APTS and B= Si-APTS-\textit{m}-Nitrophenylfurfaral 200

Figure 62 (a): TG of A=Si-APTS and B= Si-APTS-\textit{m}-Nitrophenylfurfaral 201

Figure 62 (b): DTG Curves of A=Si-APTS and B= Si-APTS-\textit{m}-Nitrophenylfurfaral 204

Figure 63: SEM Spectrograph of (a) Si-APTS and (b) Si-APTS \textit{p}-Nitrophenylfurfaral 203

Figure 64: FTIR of A=Si-APTS and B= Si-APTS-\textit{p}-Nitrophenylfurfaral 204

Figure 65: XRD of A=Si-APTS and B= Si-APTS-\textit{p}-Nitrophenylfurfaral 205

Figure 66: TGA Curves of A=Si-APTS and B= Si-APTS-\textit{p}-Nitrophenylfurfaral 206

Figure 67: FTIR spectra of Si-APTS and Si-APTS- \textit{p}-Nitrofuranacrylic Acid 208

Figure 68: SEM Spectrograph of (A) Si-APTS and (b) Si-APTS-Cou 211

Figure 69: FTIR of A=Si-APTS and B= Si-APTS-Coum 212

Figure 70: XRD of A=Si-APTS and B= Si-APTS-Coum 213

Figure 71(a): TG Curves of A=Si-APTS and B= Si-APTS-Coum 214

Figure 71 (b): DTG Curves of A=Si-APTS and B= Si-APTS-Coum 217
LIST OF REACTION SCHEMES

Scheme 1: Synthesis of Silica Nanoparticles Grafted with BMI 12
Scheme 2: Hydrolysis and Esterification of Precursors 15
Scheme 3: Mechanism (a) 16
Scheme 4: Mechanism (b) 16
Scheme 5: Hydrolysis in Acidic Condition 20
Scheme 6: Polycondensation in Acidic Condition 20
Scheme 7: Hydrolysis in Basic Condition 21
Scheme 8: Polycondensation in Basic Condition 21
Scheme 9: Effect of Water/SiO₂ 23
Scheme 10: Formation of Furfural from Plant 28
Scheme 11: Synthesis of Furanacrylic Acid 30
Scheme 12: General Scheme of Knoevenagel Condensation 31
Scheme 13: Mechanism of Knoevenagel Condensation 31
Scheme 14: Synthesis of Coumarin via Knoevenagel Condensation 33
Scheme 15: General Reaction of Meerwein Arylation 35
Scheme 16: General Reaction of Biginelli Protocol 37
Scheme 17: General Reaction for Synthesis of Triarylimidazol 38
Scheme 18: Ionization in MS 42
Scheme 19: Attempted Knoevenagel Condensations 102
Scheme 20: Attempted Biginelli Protocols 103
Scheme 21: Attempted Syntheses of Triarylimidazoles 104
Scheme 22: Synthesis of Si-APTS by using TMOS and AP-TMS 107
Scheme 23: Synthesis of Si-APTS by using TEOS and AP-TES 108
Scheme 24: Synthesis of Si-APTS by using TMOS and AP-TEOS 108
Scheme 25: Synthesis of Si-APTS by using TEOS and AP-TEOS 109
Scheme 26: Mechanism of Base Catalyzed Sol-Gel Process 112
Scheme 27: Synthesis of Si-APTS by Stober Method 113
Scheme 28: Synthesis of Si-APTS by Post Grafting Method 113
Scheme 29: Synthesis of Furanacrylic Acid 119
Scheme 30: Mechanism of Meerwein Arylation 123
Scheme 31: Meerwein Arylation of Furfural 124
Scheme 32: Mechanism of Meerwein Arylation of Furfural 125
Scheme 33: Synthesis of o-Nitrophenylfurfural by Meerwein Arylation 125
Scheme 34: Synthesis of m-Nitrophenylfurfural 127
Scheme 35: Synthesis of p-Nitrophenylfurfural 129
Scheme 36: Synthesis of 1,4-Phenyldiamine 134
Scheme 37: Synthesis of o-Chlorophenylfurfural 138
Scheme 38: Synthesis of p-Nitrophenylfuranacrylic Acid 141
Scheme 39: Amino Acid Catalyzed Synthesis of Coumarin-3-carboxylic Acid 146
Scheme 40: Accacia concinna Catalyzed Synthesis of Coumarin-3-carboxylic Acid.150
Scheme 41: Accacia concinna Catalyzed Synthesis of Coumarin-3-carboxylic 151
Scheme 42: Amino acid Catalyzed Synthesis of Coumarin-3-carboxylic Acid 151
Scheme 43: Amino acid Catalyzed Synthesis of Ethylcoumarin-3-carboxylate 153
Scheme 44: Accacia Concinna Catalyzed Synthesis of Ethylcoumarin-3-carboxylate 157
Scheme 45: Synthesis of Dihydropyrimidine 159
Scheme 46: General Mechanism of Synthesis of Dihydropyrimidine 159
Scheme 47: Synthesis of 5-Ethoxycarbonylmethylchlorodihydropyriminone 162
<p>| Scheme 48: Synthesis of 5-Ethoxycarbonylmethylhydroxydihydropyriminone | 166 |
| Scheme 49: Synthesis of 5-Ethoxycarbonylmethyl-2-hydroxydihydropyriminone | 171 |
| Scheme 50: Synthesis of 5-Ethoxycarbonylmethylnitrodihydropyriminone | 175 |
| Scheme 51: Synthesis of 2,4,5-Triphenylimidazole | 181 |
| Scheme 52: Possible mechanism of Synthesis of 2,4,5-Triphenylimidazole | 182 |
| Scheme 53: Synthesis of Si-APTS-Furanacrylic Acid | 186 |
| Scheme 54: Synthesis of Si-APTS-o-Nitrophenylfurfural | 192 |
| Scheme 55: Synthesis of Si-APTS m-Nitrophenylfurfural | 197 |
| Scheme 56: Synthesis of Si-APTS p-Nitrophenylfurfural | 202 |
| Scheme 57: Synthesis of Si-APTS-p-Nitrophenylfuranacrylic Acid | 207 |
| Scheme 58: Photodimerization and Photocleavage of Coumarin | 209 |
| Scheme 59: Synthesis of Si-APTS-Coumarin-3-carboxylic Acid | 210 |</p>
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP-TMS</td>
<td>3-Aminopropyltrimethoxysilane</td>
</tr>
<tr>
<td>AEAP-TMS</td>
<td>Aminoethylaminopropyltrimethoxysilane</td>
</tr>
<tr>
<td>APTS</td>
<td>Aminopropyltrimethoxysilane</td>
</tr>
<tr>
<td>APTES</td>
<td>3-Aminopropyltriethoxysilane</td>
</tr>
<tr>
<td>BMI</td>
<td>Bismaleimide</td>
</tr>
<tr>
<td>CNS</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transforms Infrared</td>
</tr>
<tr>
<td>GC</td>
<td>Gas Chromatography</td>
</tr>
<tr>
<td>HIV</td>
<td>Human Immunodeficiency Virus</td>
</tr>
<tr>
<td>MS</td>
<td>Mass Spectroscopy</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>ORMOCERS</td>
<td>Organically Modified Ceramics</td>
</tr>
<tr>
<td>ORMONNAN</td>
<td>Organically Modified Nanocomposite</td>
</tr>
<tr>
<td>MMSS</td>
<td>Monodispersed Mesoporous Silica Spheres</td>
</tr>
<tr>
<td>MPTMS</td>
<td>3-mercaptopropyltrimethoxysilane</td>
</tr>
<tr>
<td>PTMS</td>
<td>Phenytrimethoxysilane</td>
</tr>
</tbody>
</table>

xxii