Investor Sentiment, Risk Factors and Asset Pricing: Evidence from Malaysia

Gunathilaka, Ambagahawatte Gedara Chandana

Doctor of Philosophy

2016
Investor Sentiment, Risk Factors and Asset Pricing:
Evidence from Malaysia

Gunathilaka, Ambagahawatte Gedara Chandana

A thesis submitted
In fulfilment of the requirements for the degree of Doctor of Philosophy (Finance)

Faculty of Economics and Business
UNIVERSITI MALAYSIA SARAWAK
2016
DECLARATION

Name : Ambagahawatte Gedara Chandana GUNATHILAKA

Matric Number : 13010125

I declare that this Ph.D thesis is my original work except for quotations and citations which have been referenced and properly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Ambagahawatte Gedara Chandana GUNATHILAKA

August 2016.
ACKNOWLEDGEMENTS

I gracefully acknowledge the technical, administrative, management and personal support extended by Associate Professor Dr. Mohamad Jais, Faculty of Business and Economics, Universiti Malaysia Sarawak. It gives me an honour to value his vision explicitly at its most academic level. The classic supervisory relationship made it a completely far from PhD horror stories. Most importantly, he has lightened up the way in Darkest times, and maintained my enthusiasm. I am grateful to my research co-supervisor, Professor Dr. Abu Hassan Mid Isa who made this endeavour a success, through supervisory and administrative support. He has guided me with his invaluable suggestions throughout this research. I would like to mention my deep gratitude towards Universiti Malaysia Sarawak (UNIMAS) for the support in terms of Zamallah Scholarship under which all my course and examination fees were waived off. I received a great deal of support from academics of the Faculty of Economics and Business, among many, I am grateful to Dr. Daw Tin Hla, AP. Dr. Liew K Sen, AP. Dr. Puah Chin, and AP. Dr. Kartinah Ayup. Special thanks due to my sponsors, University of Sri Jayewardenepura and University Grants Commission’s National Centre for Advanced Studies, for facilitating this Doctoral study by means of financial support and study leave.

Gunathilaka, A. G. C.

August 2016.
ABSTRACT

This study examines pricing implications of aggregate investor sentiment risk for equity returns, in presence of other market wide risk factors. Effects of Size, Book-to-Market, Illiquidity, Momentum, Human capital, and systematic risk of Capital Assets Pricing Model (CAPM) are analyzed using 72 risk-mimicking portfolios under applications of both time series and panel methods for 14 years up to 2013. It devises a unique seven-variable (7-V) index in capturing the investor sentiment risk based up on the methodology of Baker and Wurgler (2007). Risk factors and test portfolios construction follows Fama French approach. Time series and panel dynamic models are tested in a multifactor APT setting. CAPM poorly performs in explaining average stock returns. An asset’s exposure to size, value, momentum, and illiquidity characteristics subordinates CAPM’s explanatory power. Results demonstrate the significance of choice of sentiment-adjusted pricing in Malaysia. The 7-V index shows its efficiency in capturing Malaysian sentiment and power of explaining stock returns by improving efficiency of multifactor pricing models significantly. Evidence leans at describing the investor sentiment as a source of systemic risk. Negative Illiquidity factor indicates significance followed by Size and Value factors. Size and Value effects are significant in pricing models, and Fama-French (1993) model together with investor sentiment risk factor achieves a substantial pricing efficiency. Results indicate a subsuming power of illiquidity over size and value factors. Results reveal the existence of illiquidity discount. Size and value effects explain illiquid than liquid stocks, and signify importance of liquidity adjustment in explaining returns in cross section. Human capital is negatively associated to returns in cross section, however, but is an insignificant risk factor in pricing equity in Malaysia. Evidence dismisses application of a risk factor to the effect of momentum anomaly. Momentum trading
strategy is profitable in short to intermediate horizons, yet momentum risk factor is unable to improve the efficiency of pricing models. The study proposes choice of a five-factor pricing model, an augmented Fama-French three-factor model with sentiment risk and illiquidity. This 5-Factor Model is apparently persuasive for investments and related decisions in Malaysia. These results may provide investors, managers, and policy makers with concrete empirical evidence on impact of market sentiment, and other risk factors’ exposure of stock returns. On one hand, it highlights role of investor sentiment in investment management and related decisions and draws attention of corporate finance decision makers for behavioural finance. On the other hand, draws attention of policy makers on capital market administration, especially controlling misallocation of resources and bubbles.

Keywords: Investor sentiment, risk factors, pricing, Malaysia
Sentimen Pelabur, Faktor-Faktor Risiko, dan Penentuan Harga Aset: Bukti Dari Malaysia

ABSTRAK

Kata kunci: Sentimen pelabur, faktor risiko, harga, Malaysia.
TABLE OF CONTENTS

DECLARATION ii
ACKNOWLEDGEMENTS iii
ABSTRACT iv
ABSTRAK vi
TABLE OF CONTENTS viii
LIST OF TABLES xiv
LIST OF FIGURES xvi
LIST OF ABBREVIATIONS xviii

CHAPTER 1: INTRODUCTION 1

1.1 Preamble 1
1.2 Background of the study 1
 1.2.1 Role of Investor Sentiment 2
 1.2.2 Unpredictability 4
 1.2.3 Predictability 5
 1.2.4 Risk factors capturing different effects 7
1.3 Problem statement 10
1.4 Research Questions and Hypotheses 13
1.5 Research Objectives 16
1.6 Strategy used 16
1.7 Organization of Thesis 17

CHAPTER 2: LITERATURE REVIEW 18

2.1 Preamble 18
2.2 Asset pricing theory and empirical evidence 18
 2.2.1 Capital Asset Pricing Model (CAPM) 21
 2.2.1.1 Capital market line (CML) 22
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1.2</td>
<td>The risk-free rate of return</td>
<td>23</td>
</tr>
<tr>
<td>2.2.1.3</td>
<td>Return on the market</td>
<td>23</td>
</tr>
<tr>
<td>2.2.1.4</td>
<td>Securities Market Line (SML)</td>
<td>24</td>
</tr>
<tr>
<td>2.2.1.5</td>
<td>Beta: the slope of the characteristic line</td>
<td>24</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Intertemporal Capital Asset Pricing Model</td>
<td>25</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Arbitrage Pricing Theory (APT)</td>
<td>25</td>
</tr>
<tr>
<td>2.2.4</td>
<td>CAPM and Anomalies: Empirical Evidence</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>Investors’ Sentiment</td>
<td>30</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Measurement approaches: Explicit method</td>
<td>35</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Implicit method and proxies</td>
<td>37</td>
</tr>
<tr>
<td>2.3.2.1</td>
<td>Perceived loss index</td>
<td>39</td>
</tr>
<tr>
<td>2.3.2.2</td>
<td>Search volume index</td>
<td>40</td>
</tr>
<tr>
<td>2.3.2.3</td>
<td>Bull-bear spread</td>
<td>40</td>
</tr>
<tr>
<td>2.3.2.4</td>
<td>Systematic liquidity</td>
<td>40</td>
</tr>
<tr>
<td>2.3.2.5</td>
<td>Closed-end fund discount</td>
<td>41</td>
</tr>
<tr>
<td>2.3.2.6</td>
<td>Trading volume</td>
<td>41</td>
</tr>
<tr>
<td>2.3.2.7</td>
<td>Turnover velocity</td>
<td>42</td>
</tr>
<tr>
<td>2.3.2.8</td>
<td>Buy-Sell imbalance ratio (BSI)</td>
<td>42</td>
</tr>
<tr>
<td>2.3.2.9</td>
<td>Put/call ratio</td>
<td>43</td>
</tr>
<tr>
<td>2.3.2.10</td>
<td>Advance-to-Decline ratio (ADR)</td>
<td>43</td>
</tr>
<tr>
<td>2.3.2.11</td>
<td>Change in margin finance (CMF)</td>
<td>44</td>
</tr>
<tr>
<td>2.3.2.12</td>
<td>IPO market indicators</td>
<td>44</td>
</tr>
<tr>
<td>2.3.2.13</td>
<td>New issues of equity</td>
<td>45</td>
</tr>
<tr>
<td>2.3.2.14</td>
<td>Dividend-payers and non-payers: the premium</td>
<td>46</td>
</tr>
<tr>
<td>2.3.2.15</td>
<td>Change in open interest (COI)</td>
<td>46</td>
</tr>
<tr>
<td>2.3.2.16</td>
<td>Cash flow for equity funds (CFEF)</td>
<td>47</td>
</tr>
</tbody>
</table>
Institutional churn 47

Other proxies 47

Empirical findings on Risk Factors 48

Three Factor Model 48

Size effect 51

Value effect 53

Alternative 3 Factor model: Chen and Zhang (2009) 55

Four factor model to account Momentum effect 57

Liquidity/ Illiquidity effect 60

Proxy 63

Effect of human capital 63

Price earnings (PE) ratio 66

Other risk factors 66

Malaysian capital market 68

Summary 72

CHAPTER 3: METHODOLOGY 75

Preamble 75

Research framework 75

Investor Sentiment Index 77

The proposed Sentiment index 79

ADR: Advanced-to-Decline Ratio 81

TURN: Turnover Ratio 82

DivP: Dividend Premium to proxy future potentiality 84

NIPO: Number of Initial Public Offers in each month 86

RIPO: first-day Return of Initial Public Offers in each month 86
3.3.1.6 CMF: Change in margin financing
3.3.1.7 EITI: aggregate equity issues to equity and debt issues
3.3.1.8 COI: Change in Open Interest
3.3.1.9 What should the ‘index’ capture? Rational Vs Irrational sentiment
3.3.1.10 Significance of CCI
3.3.1.11 Orthogonal sentiment proxies
3.3.1.12 The Principal Component Analysis and sentiment index
3.4 ICAPM and APT-motivated Asset pricing models
 3.4.1 Fama and French (1993) Three-Factor model
 3.4.1.1 Size premium-SMB
 3.4.1.2 The value premium-HML
 3.4.1.3 Momentum effect
 3.4.1.4 Illiquidity effect in the model
 3.4.1.5 Illiquidity
 3.4.1.6 Illiq factor: method -1
 3.4.1.7 Alternative method: method-2
 3.4.1.8 The effect of Human Capital
 3.4.1.9 Labour income growth in Malaysia
 3.4.1.10 Equity return sensitivity to growth in labour income
 3.4.1.11 Human Capital risk factor
 3.4.1.12 Construction of test portfolios
3.5 Data, sampling and econometric methods
 3.5.1 Data
 3.5.2 Sampling period
 3.5.3 Econometric methods
CHAPTER 4: DATA ANALYSIS AND DISCUSSION

4.1 Preamble

4.2 Sentiment index

4.2.1 Economic variables for Orthogonalizing

4.2.2 Sentiment proxy 1-ADR

4.2.3 Sentiment proxy 2-TURN

4.2.4 Sentiment proxy 3-DivP

4.2.5 Sentiment proxies 4 & 5-NIPO and RIPO

4.2.6 Sentiment proxy 6-CMF

4.2.7 Sentiment proxy 7-EITI

4.2.8 Sentiment proxy 8-COI

4.2.9 Orthogonalised sentiment proxies

4.3 Other risk factors

4.3.1 Market risk premium: CAPM

4.3.2 FF factors

4.3.2.1 The size effect, SMB

4.3.2.2 The value effect, HML

4.3.2.3 The SMB and HML

4.3.3 Momentum effect

4.3.4 Illiquidity effect

4.3.5 Effect of Human Capital

4.4 Test portfolios

4.5 Empirical results of model estimations

4.5.1 Time series estimations-FF 3 factors

4.5.2 Time series estimations-Carhart (1997) Model

4.5.3 Illiquidity effect in the FF 3 factor model
4.5.4 Time series estimations-Carhart with Illiquidity 168
4.5.5 Human Capital and Investor Sentiment 173
4.5.6 Dynamic OLS – Estimations without IS 190
4.5.7 Dynamic OLS- with sentiment risk factor 195

CHAPTER 5: CONCLUSIONS 202
5.1 Preamble 202
5.2 Empirical findings 203
 5.2.1 The link between investor sentiment and asset pricing in Malaysian market 203
 5.2.2 Pricing implications, does IS influence growth stocks than value stocks? 205
 5.2.3 Illiquidity effect in pricing 205
 5.2.4 Momentum effect in pricing 206
 5.2.5 Modelling human capital as a component of wealth in assets pricing 206
 5.2.6 A persuasive five factor pricing model 207
5.3 Managerial and Policy implications 207
5.4 Theoretical contribution 208
5.5 Limitations and further research directions 210
5.6 Conclusion 210

REFERENCES 211

APPENDIX 235
LIST OF TABLES

Table 3.1: Investor Sentiment Proxies, Rational, and Definitions 77
Table 3.2: J by K Momentum Portfolio Strategies 105
Table 3.3: Test Portfolios 115
Table 3.4: Data Descriptions 118
Table 4.1: Descriptive Statistics of Economic Fundamentals 123
Table 4.2: Summary Statistics of Capital Market Information 126
Table 4.3 Descriptive Statistics & Correlations of IS Proxies 134
Table 4.4: Principal Components of Orthogonalized Proxies 135
Table 4.5: Testing Joint Influence of Proxies in PCA 136
Table 4.6: Principal Components of Proxies Adjusted for Joint Influence 136
Table 4.7: Factor loadings of Sentiment Index 137
Table 4.8: Granger causality of IS and CSI 139
Table 4.9: Implications of IS on Sectors: Results of GARCH analysis 142
Table 4.10: Impact of IS on Market Excess Returns 143
Table 4.11: Mean Difference of Small & Big Returns 146
Table 4.12: Mean Difference of Returns of High and Low BME Stocks 147
Table 4.13: Momentum in Stock Returns 149
Table 4.14: Descriptive Statistics of Malaysian Labour Data 155
Table 4.15: Summary Statistics of Risk Factors 158
Table 4.16: Number of stocks in 6-Test portfolios from 2000 -2012 159
Table 4.17: Number of Stocks in 18-Test Portfolios from 2000 -2012 160
Table 4.18: Descriptive Statistics of the Test portfolios: 161
Table 4.19: Mean Returns of Portfolios 163
Table 4.20: Time Series Regressions-FF 165
Table 4.21: Time Series Regressions - Carhart

Table 4.22: Time series Regressions – Illiquidity in FF

Table 4.23: Time series regressions-Illiquidity in Carhart (1997)

Table 4.24: Time series regression of excess portfolio returns

Table 4.25: Human Capital & Investor Sentiment

Table 4.26: IS Alternatively Measured

Table 4.27: 6 Factor Model in Mom-BME-SZ portfolios

Table 4.28: HC and IS in Mom-BME-SZ Portfolios

Table 4.29: WML and HC Eliminated

Table 4.30: IS measured with pre-orthogonal proxies

Table 4.31: Introducing Investor Sentiment

Table 4.32: Introducing Investor Sentiment: case of 12 test portfolios.

Table 4.33: DOLS estimations: Size (2)-BME (3) portfolios

Table 4.34: Size (2)-BME (3)-Momentum (3): 18 portfolios

Table 4.35: Size (2)-BME (3)-Illiquidity (2): 12 portfolios

Table 4.36: Size (2)-BME (3)-Momentum (3)-Illiquidity (2): 36 portfolios

Table 4.37: DOLS Estimations of APT-Motivated Models

Table 4.38: DOLS Estimations of APT-Motivated Models

Table 4.39: DOLS Estimations of APT-Motivated Models

Table 4.40: DOLS Estimations of APT-Motivated Models

Table 4.41: Selected statistics from regression results
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Markowitz Efficient Frontier</td>
<td>20</td>
</tr>
<tr>
<td>2.2</td>
<td>Capital Market Line and Efficient Frontier</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>Focus of Asset Pricing Research</td>
<td>29</td>
</tr>
<tr>
<td>2.4</td>
<td>Composite Index & Consumer Sentiment Index</td>
<td>33</td>
</tr>
<tr>
<td>2.5</td>
<td>Behaviour of Treasury returns & risk premium</td>
<td>70</td>
</tr>
<tr>
<td>2.6</td>
<td>Size of the capital market of Malaysia</td>
<td>71</td>
</tr>
<tr>
<td>3.1</td>
<td>Research Framework</td>
<td>76</td>
</tr>
<tr>
<td>3.2</td>
<td>ADR over the sample period</td>
<td>82</td>
</tr>
<tr>
<td>3.3</td>
<td>Market Turnover Ratios</td>
<td>83</td>
</tr>
<tr>
<td>3.4</td>
<td>Dividend Premium</td>
<td>85</td>
</tr>
<tr>
<td>3.5</td>
<td>Initial public offers in Bursa Malaysia</td>
<td>86</td>
</tr>
<tr>
<td>3.6</td>
<td>Change in margin finance position</td>
<td>88</td>
</tr>
<tr>
<td>3.7</td>
<td>Equity issues to total issues</td>
<td>89</td>
</tr>
<tr>
<td>3.8</td>
<td>COI and De-trended KLCI</td>
<td>90</td>
</tr>
<tr>
<td>3.9</td>
<td>Coincident Composite Index and De-Trended KLCI</td>
<td>92</td>
</tr>
<tr>
<td>3.10</td>
<td>SMB Risk Factor, Small & Big portfolios</td>
<td>99</td>
</tr>
<tr>
<td>3.11</td>
<td>HML Risk Factor</td>
<td>101</td>
</tr>
<tr>
<td>3.12</td>
<td>WML Risk Factor</td>
<td>104</td>
</tr>
<tr>
<td>3.13</td>
<td>Procedure for WML factor calculation</td>
<td>104</td>
</tr>
<tr>
<td>3.14</td>
<td>Illiquidity Risk Factor</td>
<td>109</td>
</tr>
<tr>
<td>3.15</td>
<td>Portfolio P1111</td>
<td>116</td>
</tr>
<tr>
<td>4.1</td>
<td>Behaviour of economic fundamentals</td>
<td>124</td>
</tr>
<tr>
<td>4.2</td>
<td>Orthogonalized ADR</td>
<td>125</td>
</tr>
<tr>
<td>4.3</td>
<td>Behaviour of orthogonalized turnover ratio</td>
<td>127</td>
</tr>
</tbody>
</table>
Figure 4.4: Orthogonalized dividend premium 128
Figure 4.5: Price to book value of dividend payers and non-payers 128
Figure 4.6: IPOs in Bursa Malaysia 129
Figure 4.7: Malaysia’s margin finance position 130
Figure 4.8: Orthogonalized-change in margin finance 130
Figure 4.9: New debt & equity issues 131
Figure 4.10: Orthogonalized EITI 132
Figure 4.11: Open interest 132
Figure 4.12: Investor Sentiment Vs Consumer Sentiment Index 138
Figure 4.13: KLCI and De-trended KLCI 140
Figure 4.14: Bullish, Bearish IS Vs Growth in KLCI (De-trended) 141
Figure 4.15: Risk free return & market risk premium 144
Figure 4.16: Returns of Small & Big Stocks 145
Figure 4.17: Returns of High and Low BME stocks 146
Figure 4.18: Behaviour of SMB and HML 147
Figure 4.19: Winner Vs Loser in 12-K and 9-K momentum strategies 150
Figure 4.20: Winner Vs Loser in 6-K & 3-K momentum strategies 152
Figure 4.21: Illiquidity alternative measures 153
Figure 4.22: Returns of liquid and illiquid stocks 154
Figure 4.23: Employee Compensations 156
Figure 4.24: Human Capital Risk Factor 157
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADR</td>
<td>Advance/Decline Ratio</td>
</tr>
<tr>
<td>APT</td>
<td>Arbitrage Pricing Theory</td>
</tr>
<tr>
<td>BME</td>
<td>Book to Market Equity</td>
</tr>
<tr>
<td>CAPM</td>
<td>Capital Assets Pricing Model</td>
</tr>
<tr>
<td>CMF</td>
<td>Change in Margin Financing</td>
</tr>
<tr>
<td>CML</td>
<td>Capital Market Line</td>
</tr>
<tr>
<td>CSI</td>
<td>Consumer Sentiment Index</td>
</tr>
<tr>
<td>DOLS</td>
<td>Dynamic Ordinary Least Squares</td>
</tr>
<tr>
<td>EMH</td>
<td>Efficient Market Hypothesis</td>
</tr>
<tr>
<td>FF</td>
<td>Fama and French</td>
</tr>
<tr>
<td>HML</td>
<td>High Minus Low</td>
</tr>
<tr>
<td>HC</td>
<td>Human Capital</td>
</tr>
<tr>
<td>ICAPM</td>
<td>Intertemporal CAPM</td>
</tr>
<tr>
<td>Illiq</td>
<td>Illiquidity risk factor</td>
</tr>
<tr>
<td>IMF</td>
<td>International Monitory Fund</td>
</tr>
<tr>
<td>IPO</td>
<td>Initial Public Offer</td>
</tr>
<tr>
<td>IS</td>
<td>Investor Sentiment</td>
</tr>
<tr>
<td>KLCI</td>
<td>Kuala Lumpur Composite Index</td>
</tr>
<tr>
<td>MIER</td>
<td>Malaysian Institute of Economic Research</td>
</tr>
<tr>
<td>PCA</td>
<td>Principle Component Analysis</td>
</tr>
<tr>
<td>RIPO</td>
<td>Initial Returns of IPO</td>
</tr>
<tr>
<td>SMB</td>
<td>Small Minus Big</td>
</tr>
<tr>
<td>WML</td>
<td>Winner Minus Loser</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Preamble

Providing an overview to the thesis, this chapter discusses background to asset pricing puzzle and the role of investor sentiment. It presents the statement of research problem, specific research questions, hypothesis, and objectives of the study. Additionally, this chapter briefs overall research method, and identifies the significance and contribution of the study. The chapter identifies the need of empirical evidence on asset pricing and provides an insight in to the research performed.

1.2 Background of the study

The behaviour of market prices of assets is essentially a key element of decision-making process of not only for investment and finance managers, but also for many day-to-day decisions of most people. The choice on how to save, deposits or real estate investments, is dependent on an individual’s assessment on risk and return associated with available choices. Estimations of return possibility and level of risk, the required return, are often the essential, but difficult-to-assess ingredients for investment decisions. These investments include financial securities like stocks, bonds and treasury securities or savings in form of cash, bank deposits, or real estate property investments. Therefore, such return estimations necessarily involve and are not different from pricing of these assets. Nevertheless, a perfect measure of required return ‘how much of a return the investment should generate’ is not available.
Accordingly, ‘asset pricing’ has become an active area of research in financial economics over decades. The resultant empirical evidence however, contradicts with central explanations of mainstream asset pricing models available such as Capital Asset Pricing Model (Sharpe, 1964), Intertemporal Capital Asset Pricing Model (Merton, 1973), and dividend discount models. Among many, a potential reason acclaimed for the inconsistency is ‘investor heterogeneity’ and irrationality rather than rationality in decisions of market participants.

1.2.1 Role of Investor Sentiment

Pricing of assets are also significant at macroeconomic viewpoint because it influences the consumption and investment in physical assets like property, plant and equipments. Under the hypothesis that there are fully rational participants in the market (Fama, 1976), an asset’s price is often should continue at its fundamental value. Price is a function of future cash flows and expected return. However, reported market failures like sub-prime crisis in the United States, economic bubbles, and crashes indicate a mispricing issue then existed. On one hand, economic crisis and collapses are the possible consequences of mispricing in asset markets. On the other hand, if the markets are often mispriced, the rational expectations hypothesis collapses. As long as investors are rational and markets are perfect, there can be less possibility of mispricing (Hirshleifer, 2001) and the prices should stay at equilibrium. Fama (1998) discusses the argument that overreactions to past information could be a prediction of a behavioural finance alternative to market efficiency. It supports the argument on psychological mechanisms in explaining the price deviations from fundamental values. However, Fama (1998) also mentions that anomalies literature has not accepted such an alternative.
The behavioural biasness limits arbitrage opportunities (Brown & Cliff, 2005) in the market and creates a sentiment risk. Baker and Wurgler (2007) describe this condition in the language of modern behavioural finance as ‘limits to arbitrage’. Biasness makes irrational speculations and induces demand shifts generating sentiment risk (Mahakud, 2012). It happens because not all the investors can hold the same opinion about the ‘correct’ fundamental price due to inherent behavioural biasness. This interpretation challenges fully rational investor hypothesis and market efficiency, and supports the view that there is a role of investor sentiment in asset pricing.

Investor psychology biasness (Kahneman & Tversky, 1979) and limited arbitrage in determining stock prices (Shleifer & Vishny, 1997; Brown & Cliff, 2005; Finter et al., 2011; Mahakud, 2012) are the two fundamental arguments in behavioural asset pricing. The first uses cognitive bias in individual investor psychology to explain how individual investors under or over react to past returns or fundamentals (Daniel et al., 1998) and this is a ‘bottom-up’ approach (Baker & Wurgler, 2007). In this approach, individual investor psychology, such as overconfidence, representativeness, and conservatism, explains how individual investors under-react or over-react to past returns or fundamentals. Conversely, the ‘top-bottom’ approach uses market indicators to capture the impact of sentiment, and is a reduced form of aggregate investor sentiment to trace its impact on aggregate market and individual stocks return (Baker & Wurgler, 2007). Current study therefore, takes a top-down approach, and it follows the limited arbitrage argument.
1.2.2 Unpredictability

Stock markets play a key role in market economies. They channel savings of so-called ‘surplus units’ to businesses who need capital for their investments in projects. The firms borrow capital from the market to finance their investment projects. These investments generate returns and make rewards for the investors. Therefore, efficiency of market would create growth opportunities in an economy. The efficient market hypothesis (Fama, 1976) holds that, equilibrium prices prevail in markets incorporating all relevant information due to competition. An implication of this hypothesis is that simple strategies cannot outperform stock markets. The efficiency in the market has different dimensions, efficiency in its operations, and informational efficiency. Efficient wealth allocation is a primary characteristic of an efficient capital market. Furthermore, market participants should have equal opportunities, this happens through best estimates of true value of assets. Investors, who believe that the markets are inefficient, seek abnormal returns by market timing and are prepared to bear additional risk. According to Fama (1976), the founder of the efficient market theory, an efficient capital market is a market that is efficient in processing information. In an efficient market, prices “fully reflect” available information and thus successive price changes are independent. These prices are adjusted to new information showing consecutive price independence which is defined as ‘Random Walk’; one of the conditions required for random walk is that the time series of returns should show non-stationary characteristics at level (i.e., contain a unit root) (Gahlot & Datta, 2012).

EMH consists of three types of market efficiency. The first is the Weak Form efficiency, the information set that the market index reflects only the history of prices or returns themselves. The second, Semi-Strong Form efficiency, explains that the information set includes the most
information known to all market participants. The third is *Strong Form* efficiency, the information set includes all information known to any market participant. EMH argues that competition among investors makes the returns for information commensurate with the cost of such information. Hence, prices should correctly reflect all relevant information if costs are zero. If investors could expect that the prices will rise tomorrow, they all buy today pushing the price upward today adjusting to reflect today’s information. Due to this news-adjustment process in the market, short-run returns are unpredictable in an efficient market.

1.2.3 Predictability

Shiller (1981) shows that although stock prices are responsive to new information in the market, and there are other reasons that affect prices. Shiller (1981) interprets this excessive volatility arguing that it has roots to investor sentiment. Following this argument, later empirical findings on sentiment impact (Black, 1986; Lee, Shleifer & Thaler, 1991; Brown & Cliff, 2004, 2005; Baker & Wurgler, 2006, 2007) have created a serious challenge to the EMH. Thus, identification of sentiment based predictable variation in returns is a considerable debate in modern financial economics (Brown et al., 2005).

However, Fama (1998) disagrees with these challenges, accordingly market efficiency survives the challenge from the literature on long-term return anomalies. He observes that these reported anomalies are due to methodology issues, and most long-term return anomalies tend to disappear with reasonable changes in techniques. Nevertheless, continuous evidence on anomalies across the markets has diverted the research attention further. The link between *asset valuation and investor sentiment* has been of interest for large number of recent studies, they focus on investor heterogeneity in contrast to the ‘homo-economicus’ assumption in