ETUDE ON MIXED PIECE COMPOSITION WITH VIOLIN AND CSOUND

Elisa Sia Ern Hui

Bachelor of Applied Arts with Honours (Music) 2017
ETUDE ON MIXED PIECE COMPOSITION WITH VIOLIN AND CSOUND

ELISA SIA ERN HUI

This project is submitted in partial fulfillment of the requirements for the degree of Bachelor of Applied Arts with Honors (Music)

Faculty of Applied and Creative Arts
UNIVERSITI MALAYSIA SARAWAK
2017
UNIVERSITI MALAYSIA SARAWAK

Please tick []
Final Year Project Report
Masters
PhD

DECLARATION OF ORIGINAL WORK

This declaration is made on the ____ day of __________ 2017.

Student’s Declaration:

I, ELISA SIA ERN HUI, 46695, FACULTY OF APPLIED AND CREATIVE ARTS hereby declare that the work entitled, ETUDE ON MIXED PIECE COMPOSITION WITH VIOLIN AND CSOUND is my original work. I have not copied from any other students' work or from any other sources except where due reference or acknowledgement is made explicitly in the text, nor has any part been written for me by another person.

Date submitted: 19/6/2017
ELISA SIA ERN HUI (46695)

Supervisor’s Declaration:

I, ASSOC. PROF. DR. HASNIZAM ABDUL WAHID hereby certifies that the work entitled, ETUDE ON MIXED PIECE COMPOSITION WITH VIOLIN AND CSOUND was prepared by the above named student, and was submitted to the "FACULTY" as a * partial/full fulfillment for the conferment of BACHELOR OF APPLIED ARTS WITH HONOURS (MUSIC) and the aforementioned work, to the best of my knowledge, is the said student’s work.

Received for examination by: (Assoc. Prof. Dr. Hasnizam Abdul Wahid)

Date: 19/6/2017
I declare this Project/Thesis is classified as (Please tick (√)):

☐ CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)*
☐ RESTRICTED (Contains restricted information as specified by the organization where research was done)*
☐ OPEN ACCESS

Validation of Project/Thesis

I therefore duly affirmed with free consent and willingness declared that this said Project/Thesis shall be placed officially in the Centre for Academic Information Services with the abide interest and rights as follows:

- This Project/Thesis is the sole legal property of University Malaysia Sarawak (UNIMAS).
- The Centre for Academic Information Services has the lawful right to make copies for the purpose of academic and research only and not for other purpose.
- The Centre for Academic Information Services has the lawful right to digitize the content to for the Local Content Database.
- The Centre for Academic Information Services has the lawful right to make copies of the Project/Thesis for academic exchange between Higher Learning Institute.
- No dispute or any claim shall arise from the student himself/herself neither third party on this Project/Thesis once it becomes sole property of UNIMAS.
- This Project/Thesis or any material, data and information related to it shall not be distributed, published or disclosed to any party by the student except with UNIMAS permission.

Student's signature: (Signature)
(19/11/2017)
Supervisor's signature:

Current Address:
381, Taman Tapak Perdana, Jalan Sibukang, 98700 Limbang, Sarawak.

Notes: *If the Project/Thesis is CONFIDENTIAL or RESTRICTED, please attach together as annexure a letter from the organization with the period and reasons of confidentiality and restriction.

[The instrument was duly prepared by The Centre for Academic Information Services]
The project entitled ‘Etude on Mixed Piece composition with Violin and Csound’ was prepared by Elisa Sia Ern Hui and submitted to the Faculty of Applied and Creative Arts in partial fulfillment of the requirements for a Bachelor of Applied Arts with Honours (Music).
APPROVAL

Writer acknowledges that there is no research, produced or reported in this thesis was used as support material for a qualification or approval which has the same qualification to this university or other education institution.

(ELISA SIA ERN HUI)

Matric No.: 46695
ACKNOWLEDGEMENT

First and foremost, I have to thank my research supervisor, Prof. Madya Dr. Hasnizam Abdul Wahid. Without his assistance and dedicated involvement in every step throughout the process, this paper would have never been accomplished. I would like to thank you very much for your support and understanding over these process of accomplish this research.

Besides my supervisor, I would like to thank the rest of my thesis committee: Drs. Yoesbar Djaelani, Dr. Thia Sock Siang, Ms. Laura Pranti Tutom, Ms. Ng Sie Ai, Mr. Jurgen Frenz, Mr. Iran Amri Musoddiq, Madam Connie Lim Keh Nie, for their encouragement, insightful comments, and hard questions to help me improve my research.

Most importantly, none of this could have happened without my family. To my parents and my brothers, every time I was ready to quit, you did not let me and I am forever grateful. This thesis stands as a testament to your unconditional love and encouragement.
LIST OF CONTENT

Front Cover
Declaration of Original Work Form
Validation and Supervisor's signature i-ii
Acknowledgement iii
List of Content iv-vi
List of Table vii
List of Figures viii-x
Abstract xi
Abstrak xii
Terminology xiii

CHAPTER 1 INTRODUCTION OF THE STUDY

1.1 Background of study 1
1.2 Research Scope 2
1.3 Statement of Problem 2
1.4 Research Objective 2
1.5 Important of Research 2
1.7 Literature Review 3-8

CHAPTER 2 METHODOLOGY

2.0 Introduction 9
2.1 Data Collection 10
2.1.1 Primary data 10
BIBIOGRAPHY AND REFERENCES 44-51

APPENDIX A SCORE FOR VIOLIN 52
CSOUND COMPOSITION IN CSOUNDQT 53-54
GRAPHIC SCORE 55-61

APPENDIX B PANELIST’S RESPONSE 62-67

APPENDIX C QUESTIONNAIRES 68-70

APPENDIX D PANEL 71

APPENDIX E DVD OF THE COMPOSITION 72
<table>
<thead>
<tr>
<th>Table 1</th>
<th>Legend of symbol used in graphic score</th>
</tr>
</thead>
</table>

25
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Bağlama, photo from online magazine – The Bağlama: More Than Just An Instrument by Gilineş (2016)</td>
<td>5</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Tampura, photo adapted from eBook – Teaching Music to Children: A Curriculum Guide for Teachers Without Music Training by Bielawski (2010)</td>
<td>5</td>
</tr>
<tr>
<td>Figure 3</td>
<td>FLTK widget, screenshot from Csound Software by Iain McCurdy (2011)</td>
<td>12</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Figure 4: Example of percussive type “grain” envelope window function, screenshot from Csound Software by Iain McCurdy (2011)</td>
<td>13</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Twelve-tone Matrix</td>
<td>15</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Example of mirror technique of twelve-tone composition</td>
<td>15</td>
</tr>
<tr>
<td>Figure 7</td>
<td>First motive</td>
<td>16</td>
</tr>
</tbody>
</table>
Figure 8 Second motive 16
Figure 9 Third motive 16
Figure 10 Fourth motive 16
Figure 11 Fifth motive 16
Figure 12 -rtaudio flag 17
Figure 13 Header section of orchestra file 17
Figure 14 GEN routines 18
Figure 15 Instrument 1 19
Figure 16 Instrument 2 20
Figure 17 Instrument 3 21
Figure 18 Instrument 4 21
Figure 19 Instrument 5 22
Figure 20 Layout of the presentation 23
Figure 21 Performance at UCSI University, Kuala Lumpur Campus 24
Figure 22 Example of the graphic score of the compose piece 25
Figure 23 Respondents' education in University 30
Figure 24 Respondents music background for formal music training 31
Figure 25 Percentage of respondents who have heard about the genre - electroacoustic music

Figure 26 Percentage of respondents who heard about the mixed piece composition before

Figure 27 Percentage of respondents who heard about the electroacoustic music and mixed piece composition before, like or dislike the “music”

Figure 28 Percentage of respondents who have not heard about the electroacoustic music and mixed piece composition before, like or dislike the “music”

Figure 29 Percentage of respondents who think the sounds have catch their attention

Figure 30 The ability of the respondents to guess the source of the sounds

Figure 31 The answers from the respondents for the source of the sounds

Figure 32 The understanding of the respondents toward the piece composition

Figure 33 The interest of the respondents toward the mixed piece composition
ABSTRACT

This research was inspired on curiosity toward Csound and attempt to explore it by specifically on how to synchronise a real-time processing with a musical instrument. This is a case study research. The researcher also wanted to evaluate audiences’ interest toward the composed piece. The composition explore the use of Csound software, specifically exploring the “grain opcode” examples. In this work, the researcher explores the notion of sound resulted from Csound language programming and the sense artistic curiosity between aesthetic and technical implications. The methodology used was qualitative and quantitative using questionnaires and reviewed by a group of selected expert panels. The composition are presented in stereo format. The Csound score file and orchestra file are synchronised in a real-time performance with the violinist.
ABSTRACK

Melalui penyelidikan ini, pengkaji menghasilkan sebuah karya muzik yang berbentuk sintesis dengan menggunakan perisian Csound, dengan menumpukan khusus kepada penggunaan "grain opcode" yang terdapat di dalam perisian Csound. Di dalam karya ini juga pengkaji turut meneroka penggunaan fail .arc dan .sc iaitu orkestra dan skor yang terdapat di dalam perisian Csound.
a) Etude:
- A study piece designed to help a performer master specific technical difficulty.

b) Mixed piece:
- A Live instruments or human voice composed with digital sound like synthetic or processed sound, processed sound, or both of it.

c) Csound:
- A sound and music computing system which was originally developed by Barry Vercoe.
CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Csound is a very powerful and versatile software synthesis program (Boulanger, 2000). It is widely known as a software and compiled that take the textual instruction in the form of coding instructions and later compiled and converts them into sounds. Mixed piece means live instruments or human voice combines with the digital sounds like a synthetic sound, processed sound, or both of it (Risset, 2003).

Csound considered one of the software tools that can be extensively use to compose computer music. Most of the people are still experimenting on using Csound to compose music. The application of Csound in computer music are quite common in the western country as compare to Malaysia. In the West, we have known lots of the experiment in performing a mixed piece on music instruments with Csound.

At present, according to Boulanger (2000), composers are experimenting on how Csound can emulates modern orchestra instrument so that the sound it produces will be more nature, not flat, dull, and inexpressive when they combine the real music instrument and perform in real-time (Boulanger, 2000). In this research, the researcher will be focusing on producing a mixed piece composition by using Csound and a violin to explore the notion of the sound domain approach in the composition as well as the scoring technique.
1.2 Research Scope

This research will be conducted by adapting a Csound module, study the coding language in the “grain opcode” in Csound and composed a piece with violin as the principle instrument, with present live synthesized sound.

1.3 Statement of the Problem

Combination of synthesized sound and scoring in sound domain are technically and aesthetically subjective.

1.4 Research Objectives

The aim of this research is to explore the Csound score file and orchestra file and synchronize it during real-time performance. As well as to enhance intended composer’s aim to the audience receptions of sound domain composition. The researcher will also investigate awareness and understanding of the composed piece, particularly in a form of a mixed piece composition.

1.5 Importance of Research

The importance of this research is to give an idea to the audience about what is mixed piece. This research can help in test the audiences’ acceptance toward the sound domain composition. It also help in trigger the sensitivity of listening and imagination when the audience listens to the piece and guessing the sources of the sounds.
1.7 Literature Review

Csound

Thompson (2001) stated that for creative computer musicians, Csound is an important tool for them to compose their music. Csound is a sound renderer where it converts a text-based instruction into object code (Boulanger, 2000). According to Hearon (2014), it is also a modular software synthesiser which contains specialised modules, opcodes, and different variable types to operate as input and output variable for opcodes to control instruments (Hearon, 2014). Nowadays, there are people who use Csound to create different kinds of music. According to Vercoe and Ellis (1990), Csound can also be used to perform music in real-time where spectral analysis of live audio and the evolutions of synthesised voices can be controlled by the pitch or spectral content (Vercoe & Ellis, 1990). The outcome of sounds will be based on the score and orchestra files inside the Csound. Covert (2005) stated that Csound has the flexibility and efficiency in audio processing, but it is not completely suited for the higher level of general programming tasks.

In order to work with Csound, the researcher needs to understand the Csound language. Gogins (2006) stated that Csound is extremely capable of high-definition audio because by using floating-point samples, it can transmit to any number of channels, at any sampling rate. Csound not only could work by itself, it also can work with other software like Python, C++, Graphical user interface (GUI), Max/MSP to help the computer music composer more easy to compose music (Gogins, 2006).

According to Boulanger (1991), orchestra file used to create Csound instrument, and a separate score file is written with the list of notes to play. Csound instrument and the notes are created using a standard word processor (Boulanger, 1991). He also stated that, when a
specific orchestra and score run by Csound, the score will drive the orchestra by telling the specific instruments when to start to play and its duration, and during the course of each note event, what parameters are needed.

Boulanger (1991) stated that, in Csound, there are two main parts in the orchestra file which are the header section and instrument section. The header section is where the user can define the sample rate, control rate, and number of output channels. Whereby the instruments are designed in the instrument section.

Federico (2016) demonstrated his work on convolution as can be seen on YouTube\(^1\), using Csound in real-time by playing different instruments. The first example was playing the “Bağlama”, which is a string folk instrument from Turkey. The signal was received by hardware then sends to the Csound and combines with the sound of the Tampura, a string instrument from India. The piece gives the illusion to the audience that there are two instruments playing at the same time. Another video title “Csound from Dr. Boulanger Labs”, on YouTube\(^2\) by Jang (2013) demonstrated, how the sounds of string instrument are being altered by using Csound. In the video, the sounds of the string instrument are being altered by using iPad with the Csound controller. When the audio signal of the string instruments was being received by the Csound controller of the iPad, the composer manipulate the sound in real-time.

1 https://www.youtube.com/watch?v=B8vCLtGxgEk
2 https://www.youtube.com/watch?v=uQCTlodkb-s
Figure 1: Bağlama, photo from online magazine - The Bağlama: More Than Just An Instrument by Güneş (2016)

Figure 2: Tampura, photo adapted from eBook – Teaching Music to Children: A Curriculum Guide for Teachers Without Music Training by Bielawski (2010)
Ervik and Brandsegg (2011) stated that granular synthesis are available as a sound manipulating and sound generating technique. Both of them mentioned that it generates sound based on the additive combination of many very short sonic grains into the larger acoustical event. According to Opie (1999), sonic grain has a very short duration and as a single entity would seem very insignificant, but once the grain becomes part of a granular population, the sound wave and envelope makes a big difference to the sound. Ervik and Brandsegg (2011) also stated that this synthesis has vast expressive possibilities outcome by controlling the time and frequency domain.

Grain rate, grain envelope, grain duration, grain pitch and the waveform inside each grain are some basic examples of granular synthesis parameter (Ervik and Brandsegg, 2011). According to Kholomiov (2016), grain rate is the speed of grain production in Hz. If it is in the audio range, we can no longer perceive the original pitch of the file (Kholomiov, 2016). Then the pitch is determined by grain rate value (Kholomiov, 2016). Grain envelope, which is an envelope which determine the duration, and the amplitude of the grain. “The envelope can be any shape” (Lee, 1995). Grain duration is the time taken for one grain (Smaragdis, 1997). Grain pitch is the frequency of the grain (Smaragdis, 1997).

Ervik and Bradsegg (2011) stated that in a live performance or as a plug-in in a DAW (digital audio workstation), granular synthesis can act as an audio effect in real-time. According to Ervik and Bradsegg (2011), the most common technique of this synthesis is the grain delay effect, which is according to them, it is similar to the classic delay effect in delaying the incoming signal, with the parameters its delay time, feedback amount and dry/wet amount. “Dry”, according to Hass (2013) are the original signals and “wet” are the “effected” signals. However, Ervik and Bradsegg (2011) also mentioned that, there still have some difference between the grain delay and the classic delay effect, this is where it is the
possible to “chop” the delay signal into grains and use granular synthesis parameter such as grain pitch, grain rate and grain duration. Grain delay as described by Sasso (2012), performs simple process, where it took samples from incoming audio in small chunks, called grains, and emits each grain after a delay whose time can be set in milliseconds or sync to tempo (Sasso, 2012). According to Ervik and Bradsegg (2011), it can sound like a reverb effect if the parameters of this kind of delay effects are adjusted correctly.

Ervik and Bradsegg (2011) stated that there are some conceptual problems with the idea of time stretching in real-time, according to them after the instrument is starts, it cannot produce a sound like a reverb effect if the time between the playback position of the original signal and the playback position of the stretched signal is large. According to Ervik and Bradsegg (2011), the solution is to use several buffers for storage and several instances of the time stretch the instrument simultaneously. Buffer is where data are stored for a short amount of time, typically in the computer’s memory (RAM) (Christensson, 2006). Christensson (2006) stated that the purpose of a buffer is to hold data right before it is used. The Csound “Schedkwhen opcode” can help to trigger a Csound instrument to record incoming sound to a buffer which also can be used to start a granulation process of the recorded sound (Ervik and Bradsegg, 2011). “Schedkwhen” mean a new score event was added when generated by a k-rate trigger (Ekman, n.d.). Granulation process is the process of forming grains (Granulation, 2010).
CHAPTER 2

RESEARCH METHODOLOGY

2.0 Introduction

Content analysis is a method used to quantify the qualitative data collected, a researcher normally will “systematically word through each transcript assigning codes, which may be numbers or words, to specific the characteristics within the text” (Ahmad & Usop, 2011). This research is a case study research where the researcher will only focus on the “grain opcode” from the score and orchestra files, from the Csound and both will be analyse through content analysis. Purposive sampling will be carried out by select three pieces from Iain McCurdy, which are “Grain”, “Grain2”, and “Grain3” as the basis for primary data collection.

Qualitative methodology and quantitative methodology are used to collect data for this research. Whereby, the qualitative methodology will be carried out through interviewing two experts4 who has the experience working with Csound to help me to go through the programming in Csound. Three expert panels also will be involved to validate my research. The quantitative methodology will be carried out through questionnaire.

Comments and ideas gathered from the expert panel will be used to validate the piece composed. All the comments received will be compared to the data collected during the audience’s feedback during the concert.

4 The author wish to acknowledge Iain McCurdy for advice and discussion on the orchestra and the score file for the project.