Evaluation of Convolutionary Neural Networks Modeling of DNA Sequences using Ordinal versus one-hot Encoding Method

Choong, Allen Chieng Hoon and Lee, Nung Kion (2018) Evaluation of Convolutionary Neural Networks Modeling of DNA Sequences using Ordinal versus one-hot Encoding Method. IEEE Xplore, 1 (2018). pp. 1-6.

[img] PDF
encoding1.pdf

Download (43kB)
Official URL: https://ieeexplore.ieee.org/abstract/document/8270...

Abstract

Convolutionary neural network (CNN) is a popular choice for supervised DNA motif prediction due to its very high performance. To employ CNN, the input DNA sequences are required to be encoded as numerical values and represented as either vectors or multi-dimensional matrices. This paper evaluates a simple and more compact ordinal encoding method versus the popular one-hot encoding for DNA sequences. We compare the performances of both encoding methods using three sets of datasets enriched with DNA motifs. We found that the ordinal encoding performs comparable to the one-hot method but with significant reduction in training time. In addition, the one-hot encoding performances are rather consistent across various datasets but would require suitable CNN configuration to perform well. The ordinal encoding with matrix representation performs best in some of the evaluated datasets. This study implies that the performances of CNN for DNA motif discovery depends on the suitable design of the sequence encoding and representation. The good performances of the ordinal encoding method demonstrates that there are still rooms for improvement for the one-hot encoding method.

Item Type: Article
Uncontrolled Keywords: UNIMAS, University, Borneo, Malaysia, Sarawak, Kuching, Samarahan, IPTA, education, Universiti Malaysia Sarawak
Subjects: Q Science > Q Science (General)
Q Science > QA Mathematics > QA75 Electronic computers. Computer science
T Technology > T Technology (General)
Divisions: Academic Faculties, Institutes and Centres > Faculty of Cognitive Sciences and Human Development
Depositing User: Lee
Date Deposited: 03 Nov 2021 02:26
Last Modified: 03 Nov 2021 02:26
URI: http://ir.unimas.my/id/eprint/19014

Actions (For repository members only: login required)

View Item View Item