Molecular phylogeny and insular biogeography of the lowland tailorbirds of Southeast Asia (Cisticolidae: Orthotomus)

Frederick H. Sheldon a,⁎, Carl H. Oliveros b, Sabrina S. Taylor c, Bailey McKay d, Haw Chuan Lim a, Mustafa Abdul Rahman e, Herman Mays f, Robert G. Moyle b

a Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
b Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
c School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
d Department of Ecology, Evolution, and Behavior, The Bell Museum of Natural History, University of Minnesota, Saint Paul, MN 55108, USA
e Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
f Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

1. Introduction

Tailorbirds are Old World warblers of gardens, thickets, woodlands, and forests of tropical and subtropical east Africa and southern Asia. Their name derives from the practice in most species of stitching leaves together to hold their nests. These birds are very well known not only because they are common and easy to view, but also because of the prominent role of Darzee the tailorbird in Kipling’s famous story of “Rikki-Tikki-Tavi” (Kipling, 1894). Tailorbirds have distinctive morphology, which includes greenish or grayish backs; yellowish, grayish or whitish underparts; rufous (sometimes black) on the head; long bills; and cocked tails. Despite common characteristics of plumage and posture, however, tailorbirds are polyphyletic and consist of three distinct groups (Alström et al., 2006, 2011; Nguembock et al., 2007): the two African tailorbirds (Artisornis moreaei and A. metopias), which stitch their nests (Urban et al., 1997); the two mountain tailorbirds of Southeast Asia (Phyllergates cucullatus and P. heterolaemus), of which the first (at least) does not stitch its nest (Wells, 2007); and the 11 generally lower elevation tailorbirds of southern and Southeast Asia, which do stitch their nests (Madge, 2006). This paper concerns the phylogeny and biogeography of the last group, the genus Orthotomus, which we refer to as the lowland tailorbirds. They can be divided into three distributional groups (Fig. 1): (1) those restricted to the Sunda continental shelf (Sundaland), i.e., the Malay Peninsula and the region of the Greater Sunda Islands; (2) those widespread on the southern Asian mainland and reaching the Greater Sunda Islands; (3) those endemic to the Philippines. Because they comprise both widespread and restricted-range species, the lowland tailorbirds offer an opportunity to compare