JUDUL: OIL PALM TREE CROWNS DELINEATION AND ENUMERATION USING SATELLITE IMAGES

SESU PENGAJIAN : 2000/2001

Saya CHAI SOO SEE
(HURUF BESAR)

mengaku membenarkan tesis ini disimpan di Pusat Khidmat Maklumat Akademik, Universiti Malaysia Sarawak dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Sarawak
2. Pusat Khidmat Maklumat Akademik, Universiti Malaysia Sarawak dibenarkan membuat salinan untuk tujuan pengajian sahaja
3. Membuat pendigunakan untuk membangunkan Pangkalan Data Kandungan Tempatan
4. Pusat Khidmat Maklumat Akademik, Universiti Malaysia Sarawak dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi
5. ** sila tandakan (√)

☐ SULIT (mengandungi maklumat yang berdjarah keselamatan atau kepentingan seperti termaktub di dalam AKTA RAHSIA RASMI 1972)
☐ TERHAD (mengandungi maklumat Terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
☐ TIDAK TERHAD

Disahkan oleh

CHAI SOO SEE
(TANDATANGAN PENULIS)

PROF. MADYA DR. WANG YIN CHAI
(TANDATANGAN PENYELIA)

Alamat Tetap:
349, Lorong 1, Jalan Kepayang,
Rose Garden Off Poh Kwong Park,
93150 Kuching, Sarawak

Tariik: 10 June 2003

Catatan:
* Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah, Sarjana dan Sarjana Muda
** Jika Tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebub dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD
OIL PALM TREE CROWNS DELINEATION AND ENUMERATION USING SATELLITE IMAGES

CHAI SOO SEE

A thesis submitted in fulfillment of the requirement for the degree of Master of Science in Information Technology

FACULTY OF INFORMATION TECHNOLOGY UNIVERSITY MALAYSIA SARAWAK 2003
DECLARATION

No portion of the work referred to in this report has been submitted in support of an application for another degree or qualification of this or any other university or institution of higher learning.

Chai Soo See
00-02-0541
March 2003
ACKNOWLEDGEMENTS

I would like to sincerely thank Assoc. Prof. Dr. Wang Yin Chai for the supervision and encouragement provided throughout the research. His jokes and intelligence had raised the working spirit of every researcher. I would also like to thank the Faculty of Information Technology for the research facility, and also to my fellow researchers for providing a friendly research environment. My special thanks and appreciation to my beloved family, especially my parents, my sister and my brother as with their faith and encouragement, I manage to face and overcome the difficulties I faced. Not forgotten also, I would also like to thank those friends who are always by my side and offering the warmness hands when I encountered difficulties. Finally, I acknowledge the financial support that I received from the Pelan Tindakan Pembangunan Teknologi Perindustrian (PTPTP) and Graduate Studies & Research Support Division, University Malaysia Sarawak.
DEDICATION

To my beloved dad and mum, my dear sister and brother,

your love, faith, support and encouragements

are my greatest inspirations.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xviii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION 1

1.1 Background ... 1
1.1.1 Remote Sensing ... 2
1.2 Image Data ... 3
1.2.1 Satellite Imagery (IKONOS) Vs. Aerial Imagery 3
1.2.2 Image Source .. 4
1.3 Problem Definition 5
1.4 Objectives .. 7
1.5 Scope of Study .. 7
1.6 Significant .. 8
1.6 Proposed Methodology 8
1.7 Thesis Organization 9

CHAPTER 2: LITERATURE REVIEW 10

2.1 Introduction ... 10
2.2 Detection Of Local Intensity Maximum 10
2.2.1 Tree Top Finding Using Gaussian Kernel Smoothing 11
2.2.2 OliCount2000 ... 12
2.3 Contour-based Method 14
2.3.1 Individual Tree Crown Delineation Method 14
2.3.1.1 Level 1 ... 14
2.3.1.2 Level 2 ... 16
4.3.2 Smoothed Curvature .. 61
4.4 Statistical Analysis .. 65
 4.4.1 Calculate Center of Curvature 65
 4.4.2 Calculate Mean Evolute Points 66
 4.4.3 PCA Analysis .. 66
 4.4.3.1 Ellipse Drawing With Principal Axes Of PCA 67
 4.4.4 Visible Tree Crown Segment 69
 4.4.5 Center Of The Visible Tree Crown Segment 70
 4.4.5.1 Data Storing ... 71
 4.4.6 Distance Analysis ... 72
 4.4.7 Circle Drawing .. 75
4.5 Manual Delineation .. 76
4.6 Summary .. 78

CHAPTER 5: RESULTS AND ANALYSIS 79

 5.1 Initial Experiments .. 79
 5.1.1 Optimum Setting For Gaussian Smoothing Sigma, \(\sigma \) 81
 5.1.2 Optimum Settings For Curvature Smoothing 85
 5.1.3 Optimal Settings For The Statistical Analysis Module 88
 5.1.3.1 Ellipse Axes of PCA 89
 5.1.3.2 Optimum Distance Threshold For Distance Measurement .. 92
 5.1.3.3 Optimum Settings For Circle Drawing 95
 5.1.3.3.1 Radius of The Circle 95
 5.1.3.3.2 Minimum Percentage of Area Covered By the Circle .. 97
 5.2 Analysis on Manual Delineation Result 98
 5.2.1 Area .. 98
 5.2.2 Compactness ... 100
 5.2.3 Smoothness, \(R \) .. 101
 5.3 Results and Discussion ... 102
 5.3.1 Analysis On The Errors Of The Detection Of Tree Crown Using Algorithm ... 106
 5.3.1.1 Error Of Omission 106
 5.3.1.2 Error Of Commission 108
 5.4 Discussions .. 109
 5.5 Summary .. 110

CHAPTER 6: SUMMARY AND FUTURE WORKS 111

 6.1 Thesis Findings and Contributions 111
 6.2 Future Work .. 112
 6.3 Conclusions ... 113
2.4 Template-based Matching Method .. 18
2.5 Multi-scale Image Analysis .. 18
2.6 Discussion .. 19
2.7 Summary .. 20

CHAPTER 3 : DESIGN OF OIL PALM TREE CROWNS DELINEATION AND ENUMERATION MODEL ...22

3.1 Introduction ... 22
3.1.1 Local Maximum-based Method For Coniferous Vs. Round Tree Shape .. 22
3.1.2 Suitability of Template Matching Method 24
3.1.3 Contour-based Method – Curvature ... 25
3.1.4 Image Data : Suitability and Availability 25
3.1.5 Discussion .. 26
3.2 Curvature Tree Crown Delineation Method 27
3.2.1 Oil Palm Tree Crowns Extraction Using Curvature 27
3.2.2 Oil Palm Tree Crowns Extraction Using Smoothed Curvature 30
3.2.3 Effect of Smoothed Curvature On Mean Evolute Point 31
3.2.4 Discussion .. 32
3.3 Overall Proposed Model .. 34
3.4 Proposed Model of Extracting Oil Palm Tree Crowns Segment and Enumeration Model .. 34
3.4.1 Input Data Preparation ... 36
3.4.2 Develop the Statistical Analysis Model 37
3.4.2.1 Principal Component Analysis (PCA) 38
3.4.2.1.1 Problems Faced After Applying PCA 40
3.4.2.2 Distance Analysis .. 41
3.4.2.2.1 Problem Faced After Applying Distance Analysis 46
3.4.2.3 Circle Drawing .. 46
3.5 Manual Delineation ... 48
3.5.1 Object Description ... 49
3.5.1.1 Area ... 50
3.5.1.2 Compactness .. 50
3.5.1.3 Smoothness .. 50
3.6 Summary .. 51

CHAPTER 4 : IMPLEMENTATION .. 53

4.1 Introduction ... 53
4.2 Image Pre-processing ... 32
4.2.1 Image Smoothing ... 54
4.3 Feature Detection .. 57
4.3.1 Edge Detection .. 57
4.3.1.1 Non-Maxima Suppression .. 58
4.3.1.2 Hysteresis Thresholding ... 60
APPENDIX A – Object Descriptor Result – Image 1 118
APPENDIX B – Analysis On The Statistic Of Object Descriptors – Image 1 121
APPENDIX C – Related Conference Paper 122
 Postgraduate Research Colloquium in Science and Technology Area
LIST OF FIGURES

Figure 1.1	Typical cases of tree crowns segmentation. For a., it would be easy to delineate isolated tree crown. For b., slightly touching tree crowns with a dark valley in between them. c. Shows that a compact group without any valleys in between them. (Brandtberg, 1999a)	5
Figure 1.2	Overall process of the tree crown delineation system for forestry and agricultural applications.	6
Figure 2.1	Histogram showing the mode of the local maxima value listing from the highest intensity. Using distance, \(d = 0.10 \) pixels with intensity value 0.88, 0.75 and 0.60 are marked as accepted while the other are discarded.	11
Figure 2.2	Internal curves found for 3 different \(d \) values. \(\sigma \) is the smoothing scale and \(N \) is the number of local intensity found.	12
Figure 2.3	The olive tree crown is commonly darker than the background.	13
Figure 2.4	Labeling the identified trees on the target image.	13
Figure 2.5	Direction of the scanning process for valley enlargement during initial labeling. The circle with the dot is the center pixel, the circles are the potential valley pixels and the dots are part of the neighborhood used to evaluate the potential valley pixels. Arrows with two lines shows the order of the scanning directions applied.	15
Figure 2.6	Pictures showing the process in ITC using MEIS-11 image.	17
Figure 2.7	An example of the tree crown envelop developed for template matching method.	18
Figure 3.1	Coniferous tree with its tree crown. The tree top will have a higher intensity at the center of the tree crown.	22
Figure 3.2	Two examples of tropical tree shapes and their correspond tree crowns from the looking direction.	23
Figure 3.3	Enlarged on one of the oil palm tree crowns. It is clear that for oil palm tree crown, the center of the tree crown does not necessary have higher intensity.	23
Figure 3.4 : Zero, concave and convex curvature edge segment. 24

Figure 3.5 : Delimitation of two merged circle using curvature knowledge 24

Figure 3.6 : Summary of tree crown segment delineation of Brandtberg and Walter (1998a) ... 27

Figure 3.7 : a. Sample image of downloaded IKONOS satellite image of oil palm trees.
b. Center of the evolute points obtained using algorithm in Table 3.2. ... 29

Figure 3.8 : One of the edge segment with its non-smoothed curvature value . 30

Figure 3.9 : The same edge segment of Figure 3.7 with its smoothed curvature value. ... 31

Figure 3.10 : Mean evolute points found using smoothed curvature value 32

Figure 3.11 : Block diagram showing the processes in the proposed oil palm delineation ... 33

Figure 3.12 : Proposed extracting the oil palm tree crowns segment and enumeration using the smoothed curvature incorporate with Statistical Analysis Model. ... 34

Figure 3.13 : Semantic diagram showing the architecture design of the proposed oil palm tree crowns segment extraction and enumeration model. ... 35

Figure 3.14 : Data Flow Diagram (Diagram 0) of the proposed oil palm tree crowns extraction and enumeration model. ... 36

Figure 3.15 : Data Flow Diagram of the Data Preparation Module. 37

Figure 3.16 : Data Flow Diagram of the processes involved in the Statistical Analysis Module. ... 38

Figure 3.17 : Ellipse drawn using the mean evolute point as the center of gravity for one of the edge segment. Those evolutes outside the ellipse are ignored. ... 39

Figure 3.18 : a. Ellipse drawn using PCA with the mean evolute as the center of the gravity.
b. The visible tree crown segment detected using PCA.
c. The square label is the new label detected using PCA while the round label is the label detected before applying PCA. ... 40
Figure 3.19: Tree crown segment detected using PCA. It is seen that there might be two areas detected for one tree crown segment.

Figure 3.20: Illustration of the oil palm tree crowns seen on an image. The table shows the coordinates of the labels detected.

Figure 3.21: The maximum allowance distance between two labels so that they are accepted as two labels for two tree crowns.

Figure 3.22: The maximum allowance distance between two labels so that it is assumed that there is a missing label.

Figure 3.23: The maximum allowance distance between two labels so that it is assumed that there are two missing tree crowns.

Figure 3.24: The maximum allowance distance between two labels so that it is assumed that they are within one tree crown.

Figure 3.25: The two labels which detect the two tree crowns but being detected as too near.

Figure 3.26: The result sought after the distance analysis using the assumptions stated.

Figure 3.27: The detected label and the circle being drawn with radius, r = 1 to r = 5.

Figure 3.28: The visually chosen center of tree crown with the circle being drawn (r = 8) covered almost the whole tree crown segment. (area = 230.25).

Figure 3.29: Context diagram of manual delineation and enumeration module.

Figure 3.30: The merged area of two tree crowns with lower intensity at the merged area.

Figure 4.1: Block diagram showing the summary of the pre-processes in the oil palm tree crowns enumeration system.

Figure 4.2: The Gaussian distribution with its width and length.

Figure 4.3: Gaussian distribution of the size, pw = 30. It is clearly seen that there are 4 values which are larger than GaussianDioff = 0.0001.

Figure 4.4: Gaussian distribution for sigma, σ = 1.
Figure 4.5: The partition of the possible gradient orientation into sectors for non-maxima suppression. .. 59

Figure 4.6: Histogram showing the number of pixels for each intensity in one of the testing images. .. 61

Figure 4.7: The testing image and the images after the smoothing and edge detection process with σ range from 1 to 5. 63

Figure 4.8: a. The convex smoothed curvature edge segment.
 b. The concave smoothed curvature edge segment. 64

Figure 4.9: Graph showing the distance between the x coordinate of the sorted points of the tree crowns. .. 73

Figure 5.1: Sample images used for initial parameters setting. Image 1a, 2a and 3a are derived from part of Image 1, Image 2 and Image 3 respectively. ... 80

Figure 5.2: a. The statistical result of the detected points obtained and the actual number of tree crown on the Image 1a with increasing of σ. .. 81

 b. The statistical result of the detected points obtained and the actual number of tree crown on the Image 2a with increasing of σ. .. 82

 c. The statistical result of the detected points obtained and the actual number of tree crown on the Image 3a with increasing of σ. .. 82

Figure 5.3: a. The number of points detected with $\sigma = 1$ to $\sigma = 9$ for Image 1a. .. 83

 b. The number of points detected with $\sigma = 1$ to $\sigma = 9$ for Image 2a. .. 83

 c. The number of points detected with $\sigma = 1$ to $\sigma = 9$ for Image 3a. .. 84
Figure 5.4

a. Curvature values of each of one of the edge segments in Image 1a when each of them are smoothed with constant win = 1 and sig = 1 to 3 using Gaussian Smoothing. 85

b. Curvature values of each of one of the edge segments in Image 1a when each of them are smoothed with constant win = 2 and sig = 1 to 3 using Gaussian Smoothing. 86

c. Curvature values of each of one of the edge segments in Image 1a when each of them are smoothed with constant win = 3 and sig = 1 to 3 using Gaussian Smoothing. 86

Figure 5.5

a. The curvature value of each of the edge point on an edge segment of Image 1a with constant sig = 1 and increasing win = 1 to win = 3. .. 87

b. The curvature value of each of the edge point on an edge segment of Image 2a with constant sig = 1 and increasing win = 1 to win = 3. .. 87

c. The curvature value of each of the edge point on an edge segment of Image 3a with constant sig = 1 and increasing win = 1 to win = 3. .. 88

Figure 5.6

Analysis result of the effect of using different axes length of PCA ellipse drawn. .. 89

Figure 5.7

Image result sought from the experiments of using different axes length. .. 92

Figure 5.8

The x-distance of the points detected for the input images, Image 1a, Image 2a and Image 3a. 93

Figure 5.9

Analysis of the tree crown distance for different column for the three input images. ... 94

Figure 5.10

Area covers by the circle being drawn using increasing radius of circle, r. .. 96

Figure 5.11

Analysis on the detected points of Image 3a. 97

Figure 5.12

Image showing the areas which cannot be determined as tree crown or shadow are ignored. .. 98

Figure 5.13

Graph showing the areas (pixels) for each of the delineation of Image 1. .. 99

Figure 5.14

The 3 delineation which shows extremely large area covered. ... 100
Figure 5.15 : Graph showing the compactness of each of the manually delineated tree contour. .. 101
Figure 5.16 : Graph showing the compactness of each of the manually delineated tree. ... 102
Figure 5.17 : Overlaid of image with the tree contours delineate using manual and algorithm techniques. 104
Figure 5.18 : Overlaid of image with the tree contours delineate using manual delineation and algorithm techniques for input images Image 2 and Image 3. ... 105
Figure 5.19 : Tree crowns circled in white are the tree crowns missed by the algorithm. ... 107
Figure 5.20 : Ellipse drawn using PCA which falls outside the tree crown segment, causing this tree crown segment being missed. 107
Figure 5.21 : Images showing the lost of some edge segment after considering the length of the edge. ... 108
Figure 5.22 : Wrongly spotted tree crowns ... 108
LIST OF TABLES

Table 1.1 : Overview of some satellites ... 3
Table 3.1 : Summary of the three categories of tree crown delineation with their image spatial resolution ... 25
Table 3.2 : Algorithm of calculating the curvature value for the edge pixel. 29
Table 3.3 : Algorithm of calculating the mean evolute using the smoothed curvature value. ... 31
Table 3.4 : Algorithm used for drawing ellipse using PCA knowledge in finding the visible tree crown segment. .. 40
Table 3.5 : Sorted x coordinates of the detected label. 42
Table 3.6 : Labels in each row sorted according to the y value and the distance calculated between the label and the previous label after sorting. .. 45
Table 3.7 : The labels being considered using the assumptions stated and the action taken after considering the assumptions. 45
Table 3.8 : The percentage covered by the circle drawn using the manually picked center. ... 47
Table 3.9 : Algorithm of the Circle Drawing process. 48
Table 4.1 : Matlab script for reading the image data. 53
Table 4.2 : Matlab script on determining the width and length of the Gaussian filter. ... 55
Table 4.3 : Width of the Gaussian kernel with different σ. 56
Table 4.4 : Algorithm of convolution of Gaussian distribution in x-direction with the image. ... 57
Table 4.5 : Matlab script of producing the first derivative Gaussian kernel .. 57
Table 4.6 : Matlab script of producing the gradient image 58
Table 4.7 : Non-maxima suppression algorithm in finding the closet 45°. ... 59
Table 4.8	Comparison between the two neighborhoods and the center pixel of sector value = 2.	60
Table 4.9	Statistical data of one of the testing image.	60
Table 4.10	Matlab script for producing the second derivative array in x and y-direction.	62
Table 4.11	Pseudocode showing the processes in getting the smoothed curvature value.	64
Table 4.12	Matlab script of designing the Gaussian distribution for smoothing of curvature and producing the smoothed curvature.	64
Table 4.13	Pseudocode showing summary of processes involved in Statistical Analysis.	65
Table 4.14	Matlab script of calculating the center of curvature.	65
Table 4.15	Matlab script for calculating the mean evolute point.	66
Table 4.16	Matlab script for finding the covariance matrix.	66
Table 4.17	Matlab script of calculating the eigenvalue and eigenvector.	66
Table 4.18	Explanation of the Matlab script of calculating the eigenvalue and eigenvector for PCA.	67
Table 4.19	Matlab script for drawing ellipse using PCA.	68
Table 4.20	Explanation of the Matlab script in Table 4.19.	69
Table 4.21	PCA ellipse in finding visible tree crown segment.	69
Table 4.22	Explanation of the Matlab script in Table 4.21.	70
Table 4.23	Matlab script for finding the center of the visible tree crown segment detected.	70
Table 4.24	Explanation of the Matlab script in Table 4.23.	71
Table 4.25	Matlab script for inserting the coordinate of the center of the visible tree crown segment into the database.	71
Table 4.26	Explanation of the Matlab script in Table 4.25.	72
Table 4.27	Interactively letting user to select points on the edge of the tree crown to calculate the diameter of the tree crown.	72
Table 4.28: The row sorting and the x distance calculation in Matlab script.

Table 4.29: Euclidean distance between each pairs of points for sorted y value in each row.

Table 4.30: Matlab script for taking an average of two points which are less than meanD.

Table 4.31: Matlab script for adding a new point if the Euclidean distance is more than or equal to 2*meanD and less than 3*meanD.

Table 4.32: Matlab script for adding two news points if the Euclidean distance is more than or equal to 3*meanD and less than 4*meanD.

Table 4.33: Matlab script of circle drawing and calculating the area cover by the circle on the threshold image.

Table 4.34: Explanation of the Matlab script in Table 4.33.

Table 4.35: Summarize of the major functions in the manual delineation.

Table 4.36: Matlab script and its explanation for the object descriptions in manual delineation.

Table 5.1: Pseudocode of calculating the suitable \(\sigma \) for the Gaussian Smoothing purpose.

Table 5.2: Length of ellipse axes used for experiments.

Table 5.3: Analysis on the two points of Image 3a.

Table 5.4: Extremely large tree contour delineation and area.

Table 5.5: R values of the 3 extremely large area values.

Table 5.6: Characteristics of the input images chosen for testing of the proposed prototype.

Table 5.7: Performance of oil palm tree crowns technique after the adjustment of the manual delineation technique.

Table 5.8: Average accuracy of the proposed prototype of the three input images.

Table 5.9: Summary of the counting accuracy of other researchers.
ABSTRACT

Manual interpretation of medium and high spatial resolution aerial imagery for forestry has evolved during the 20th century. For this type of application, manual delineation and enumeration of the tree crowns on the aerial images are the main activities required. At late of that century, a new research branch which aims at fully or partly replace human image interpreter by a “seeing computer” was born. For this new research branch, the application of image processing techniques in delineating the tree crowns on the images is being greatly surveyed and a lot of delineation techniques had emerged. The launching of IKONOS satellite, which provides very high spatial resolution to the user, has opened up another option of the input data, that benefits the users in a lot of aspects, for this type of applications.

This research has utilized the resolution of the IKONOS satellite image for oil palm tree crowns delineation and enumeration purpose in replace of aerial images, which was once a favorite and common input data for this application. With this type of source image, this research has determined the use of smoothed curvature for better delineation of the oil palm tree crowns from the image.

The use of Principal Component Analysis (PCA), which utilizes the eigenvalue and eigenvector, incorporate with the mean evolve point, of the detected points to detect the oil palm tree crowns. For these detected points, the research proposes the use of distance analysis to eliminate the redundant points detected and also to re-detect those points, which are omitted. The determination of the accepted and rejected will be next analyzed using the circle drawing method. This will eliminate points which are too far from the middle of the tree crowns. The whole process is termed as Statistical Analysis method.

A prototype of the proposed model is successfully designed and developed. With human operator being used as the supervision tool incorporate with the supervision of object descriptions, the result of enumeration from the proposed model is compared with the result of the manual delineation. The average enumeration accuracy is 92.10%, with the percentage of correctly spotted tree crowns being 84.08%.

Several recommendations are also suggested for the future work at the end of the thesis.
ABSTRAK

Kajian ini telah memanfaatkan penggunaan imej beresolusi tinggi dari satelit IKONOS untuk tujuan pembatasan dan enumerasi pokok kelapa sawit. Penyelidikan ini telah menggantikan penggunaan foto udara yang merupakan satu jenis data input yang biasa digunakan bagi aplikasi jenis ini. Dengan penggunaan sumber imej jenis ini, kajian ini telah menentukan penggunaan 'smoothed curvature' bagi tujuan pembatasan pokok, terutamanya pokok kelapa sawit dari imej.

Satu prototaip bagi modul yang telah dicadangkan telah berjaya dibangunkan. Dengan penggunaan diskripst objek, keputusan penghitungan secara manual dengan modul cadangan akan dibandingkan. Purata kejaitan penghitungan adalah 92.10% dengan nombor pokok yang didapati betul sebanyak 84.08%.

Beberapa cadangan penyelidikan telah dicadangkan di bahagian terakhir tesis ini.
CHAPTER 1: INTRODUCTION

This chapter serves as the introduction of the overall of the research. The evolution of the technology, which leads to the use of remote sensing techniques in forestry and agriculture applications, will be briefly explained. Furthermore, this chapter will lead to the understanding of the purposes and the significance of the research being carried out. With the scope of the research being stated, this chapter will also explain the methodology being taken in approaching the solution of the research problems. At the end of this chapter, an overview of this thesis organization is presented.

1.1 Background

Manned satellites were launched to certain orbits in the space to measures object properties on the Earth's surface. This information is produced in the form of images termed satellite images. Satellite images capture electromagnetic radiation emitted or reflected by different features visible to the sensor. These features include natural components like lakes, rivers, forest, oceans, mountains, as well as man-made objects like buildings, bridges, roads and agricultural crops.

The usage of satellite images is getting more and more important as a source of information nowadays. These images have been utilized in diverse fields like environmental study, weather forecasting, defense system, image processing and Geographic Information System (GIS). To fully utilize this technology, a lot of studies and researches have been done to identify features on satellite images.

With the increase of availability, affordability and spatial resolution of satellite images, various research activities and studies have been carried out to produce efficient and automatic techniques to identify the features on satellite images. This technique is very useful for human in various fields. For example, in forest planning, forest inventory is one of its essential parts. By forest inventory, it means the process of obtaining information about the forest stands, which includes information like:

- trees age
- stem number
- average height
- average diameter
- species type, etc

This kind of information is normally found by measurements conducted in the forest using a classic method described within the field of forest measurements. However, instead of measuring the information directly, this information can be found by extracting information from satellite images.

Among the five forest stands information mentioned above, getting the stem number from satellite images has been a favorite area of research and the accuracy of this result
Chapter One

is getting better since the spatial resolution of the satellite image is getting higher. Getting the stem number is an important activity especially for plantation owner. For example for oil palm plantation, the oil palm plantation owners will have a genuine interest in knowing the number of trees in their plantation for the fact that they need to monitor the production and assess the value of the plantation. In the buying and selling of oil palm plantation, the interested parties evaluate the plantation not only by the size, but the quantity of palm on the plantation. By knowing the actual number of palm, they can better estimate and assess the production rate of this plantation (Hui, Liew et al., 2000).

1.1.1 Remote Sensing

Remote sensing is broadly defined as collecting and interpreting information about a target without being in physical contact with the object. The two common platforms for remote sensing observations are aircrafts and satellites. The images produced are valuable as they present a repetitive and consistent view of the Earth, which helps human in monitoring the Earth system and also the human activities on the Earth. Some of the applications using this technology are:

- Environment monitoring and assessment (forest fire, earthquake prediction)
- Agriculture (crop condition, species analysis)
- Global change detection and monitoring (global warming, deforestation)
- Mapping (land use, land cover)
- Security (defense system in a country)

Aerial image is the original data of remote sensing application before manned satellite was launched. Aerial photos have been used for surveying and planning operations since the late 1940's. In forestry, the visual interpretation of aerial photos quickly replaced the fieldwork-intensive line method as a tool for forest mapping (Ilvessalo 1950, Nyyssönen 1955, Poso 1965). Since then the main use of aerial photos has been the mapping of forests in connection with forest management planning.

The launching of the first Landsat Multispectral Scanner System (MSS) in 1972 had opened a new era for remote sensing. Subsequently, for different purpose and usage, a lot of satellites have been successfully launched to space to help human in obtaining useful information and the spatial resolution of these satellite images is getting higher.
Table 1.1: Overview of some satellites

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Launch</th>
<th>Optical / Radar</th>
<th>Pan / Multi</th>
<th>Resolution (meters)</th>
<th>Swath (KM)</th>
<th>Revisit (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPOT 1/2/3</td>
<td>1986/90/93</td>
<td>Optical</td>
<td>Panchromatic Multispectral</td>
<td>10 60</td>
<td>20 60</td>
<td>1-4</td>
</tr>
<tr>
<td>SPOT 4</td>
<td>1998</td>
<td>Optical</td>
<td>Panchromatic Multispectral</td>
<td>10 60</td>
<td>20 60</td>
<td>1-4</td>
</tr>
<tr>
<td>Landsat 5</td>
<td>1984</td>
<td>Optical</td>
<td>Multispectral</td>
<td>30 185</td>
<td>80 185</td>
<td>16</td>
</tr>
<tr>
<td>LandSat 7</td>
<td>1999</td>
<td>Optical</td>
<td>Panchromatic Multispectral</td>
<td>15 185</td>
<td>30 185</td>
<td>16</td>
</tr>
<tr>
<td>IRS IC/D</td>
<td>95/97</td>
<td>Optical</td>
<td>Panchromatic Multispectral</td>
<td>5.8 70</td>
<td>23 150</td>
<td>5</td>
</tr>
<tr>
<td>RADARSAT</td>
<td>95</td>
<td>Radar</td>
<td>N/A</td>
<td>8-100</td>
<td>188 810</td>
<td>3-5</td>
</tr>
<tr>
<td>ERS-1/2</td>
<td>91/94</td>
<td>Radar</td>
<td>N/A</td>
<td>30-50</td>
<td>100-500</td>
<td>3-35</td>
</tr>
<tr>
<td>IKONOS</td>
<td>1999</td>
<td>Optical</td>
<td>Panchromatic Multispectral</td>
<td>1 11</td>
<td>4 11</td>
<td>3.5-5</td>
</tr>
<tr>
<td>QuickBird</td>
<td>1999</td>
<td>Optical</td>
<td>Panchromatic Multispectral</td>
<td>0.82 22</td>
<td>3.28 22</td>
<td>1.5-4</td>
</tr>
<tr>
<td>SPIN-2</td>
<td>Periodic</td>
<td>TK-350</td>
<td>Panchromatic</td>
<td>10 200</td>
<td>2 180</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KVR-1000</td>
<td>Panchromatic</td>
<td>2</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Cameras)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OrbView 2</td>
<td>1997</td>
<td>Optical</td>
<td>Multispectral</td>
<td>1.1 km 2800</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>OrbView 3</td>
<td>1999</td>
<td>Optical</td>
<td>Panchromatic Multispectral</td>
<td>1 8</td>
<td>4 8</td>
<td>3</td>
</tr>
</tbody>
</table>

1.2 Image Data

For remote sensing applications, choices of input data range from aerial images to satellite images. In this section, the discussion of the benefits of using satellite imagery, in term of the use of IKONOS satellite images in the oil palm tree enumeration application, versus aerial imagery will be presented. This will continue with presenting the considerations of the suitability of the image to be used for this research purpose.

1.2.1 Satellite Imagery (IKONOS) Vs. Aerial Imagery

Aerial image has been used as a main data source for most of the forestry applications which requires very high spatial resolution. The successful launching of IKONOS has changed this situation as IKONOS satellite can acquire imagery up to 1-meter resolution. The use of IKONOS satellite images provides a lot of advantages to the users compare to aerial images. This advantages are listed as below:
Chapter One

a. Fast
In the time that a pilot needs to take to preflight his aircraft, IKONOS satellite image can map an entire plantation. As satellites are in constant orbits, they revisit the same place after a constant period. So, user of satellite image can get the image of their project area very fast.

b. Inexpensive
If the project area is wide, then satellite image is less expensive compare to aerial images. From Table 1.1 above, it can be seen that the swath of IKONOS satellite is 11km². For oil palm plantation, it can range from 40 hectares to as large as 75,000 hectares (Hui, Liew et al., 2000). So, using IKONOS satellite images will be less expensive compare to aerial images as coverage of the plantation is a requirement.

c. Accurate
Using satellite images, there is no worry whether the cartographer made a mistake when taking the image, as there is no human (pilot) involvement in the creation of raw satellite images.

d. Digital
IKONOS satellite images are digital. This means that there is no need for expensive data conversion, scanning or digitizing. These images are also ortho-rectified, aligned and georeferenced (Childs, 2001). With minimum preparation, the images can be used for the image processing. Moreover, imagery is guaranteed to be 80% cloud-free or better (SpaceImaging, 2000).

e. Up-to-date
IKONOS can collect and process about 600 images of an 11 km² area per day as well as revisit any location every 1.5 to three days. So, the satellite images show up-to-date information. This is a great advantage if information of the health of a huge plantation, which is needed to be taken frequently, is required.

Aerial images offer a suitable data source if the project area is small. If mapping of ground features smaller than 1-meter square is needed, then aerial images are more suitable than satellite images. For oil palm plantation, the object of interest, which is the oil palm tree crown is around 1-meter square, so, IKONOS satellite images, which offers very high spatial resolution images, and with the benefits that are listed above, it is a suitable data source for this application.

1.2.2 Image Source

With the advantages of the satellite images in term of the oil palm tree enumeration application, over aerial images, satellite image has been chosen as the source of input data for this research. Image resolution can be defined as the smallest area that the satellite sensors can distinguish from areas around it on the image (Canadian Avalanche Association, 2002). For tree crown delineation and enumeration application, which