SHORT COMMUNICATION

Synthesis and Antibacterial Study of Aspirin-Chalcone Derivatives

ZAINAB NGAINI1, DORIS HO AI HUI1, HASNAIN HUSSAIN2, WAN SHARIFATUN HANADAYANI WAN ZULKIPLEE3, MENG GUAN TAY1, NORHASNAN SAHARI1 & NORSYAFIKAH ASYILLA NORDIN1

1Department of Chemistry; 2Department of Molecular Biology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
3Universiti Teknologi MARA Sarawak, Jalan Meranek, 94300 Kota Samarahan, Sarawak, Malaysia

ABSTRACT

The chemistry of aspirin and chalcone derivatives has been extensively studied and developed as one of the pharmaceutically important molecules. In this study, new aspirin-chalcone derivatives have been successfully synthesized and characterized via FTIR, 1H and 13C NMR spectroscopy. The antibacterial activities of synthesized compounds were investigated towards *Escherichia coli* ATCC 8739 via turbidimetric kinetic method. The newly synthesized aspirin-chalcone derivatives, however showed poor antibacterial activity against *E. coli* ATCC 8739 at the concentration of 50, 80 and 100 ppm. The effect of the molecular structure of the synthesized compounds on the antibacterial activity is discussed.

Keywords: Aspirin, chalcone, antimicrobial, *E. coli*

Aspirin is a well-known salicylate drug, which has been used as an analgesic and anti-inflammatory medication. Modifications of aspirin have been carried out widely and many aspirin derivatives were reported to show various biological activities such as antibacterial (Al-Bakri et al., 2009), antithrombic and antiplatelet (Lechi et al., 1996) and also anticancer properties (Lechi et al., 1996; Zheng et al., 2007).

Our group has recently reported on the incorporation of aspirin with thiourea moiety with excellent antibacterial property against *E. coli* (Ngaini et al., 2012). Besides thiourea, chalcones which belong to the flavonoid family has also been identified as an interesting compound to display a diverse array of pharmacological activities. Chalcones show many biological properties including anticancer, antimalaria, antimicrobial, anti-inflammatory and antibacterial (Hsieh et al., 1998; Ram et al., 2000). Novel 2,4,2'-trihydroxy-5-methylchalcone, for instance, was reported to inhibit the growth of different Gram-positive bacteria (Sato et al., 1996).

This finding has stimulated our interest in the synthesis of a series of chalcone compounds containing aspirin moiety. In this paper, we report on the synthesis of aspirin-chalcone compounds 2a-b via incorporation of hydroxychalcone onto aspirin moiety. The hydroxychalcones 1a-b were earlier prepared via Claisen-Schmidt condensation prior to incorporation onto aspirin derivatives. The antibacterial property of the synthesized aspirin-chalcone derivatives were also studied against wild-typed *E. coli* ATCC8739.

Aspirin, oxalyl chloride, 4-hydroxybenzaldehyde, acetophenone, benzaldehyde and 4-hydroxyacetophenone were obtained from Merck and used without further purification. All the other reagents and solvents were used as received.

Measurements: Melting points were determined by the open tube capillary method and are uncorrected. Infrared (IR) spectra (ν/cm⁻¹) were recorded as KBr pellets on a Perkin Elmer 1605 FTIR spectrophotometer. 1H and 13C NMR spectra were recorded on a JEOL ECA 500 spectrometer at 300 MHz (1H)