OPTIMIZATION OF A FLEXIBLE MANUFACTURING SYSTEM (FMS) FOR HIGH TECHNOLOGY PRODUCT PRODUCING FACTORY VIA THE MODULARIZATIONS OF PRODUCTION SYSTEMS

Prashobh Kumar Karunakaran

Doctor of Philosophy
2012
Optimization of a Flexible Manufacturing System (FMS) for High Technology Product Producing Factory via the Modularization of Production Systems

PRASHOBH KARUNAKARAN

A thesis submitted in fulfillment of the requirements for the degree of PhD in Engineering

Faculty of Engineering
University Malaysia Sarawak
2011
Dedication

I would like to dedicate this research to my parents, Mr and Ms Karunakaran.

Acknowledgement

I would like to thank Ir. Dr Mohammad Shahril Osman for his great effort in guiding me in this thesis. I would like to thank the management of Universiti Malaysia Sarawak (UNIMAS) for the financial assistance in the purchase of the parts necessary to conduct the experiments necessary to achieve the objective of this thesis.

In addition, I would like to thank wife, Sreeja Haridas and my children, Prashanth, Shanthi and Arjun for putting up with my absence while I worked on this research for five years. I would also like to thank Pradeep Karunakaran, Lim Siaw Ling, Sanny Lehe, Alexon Jong and Chai Ko Chen for the help they gave me while doing this research.
Abstract

The objective of this research is to justify the utilization of buffers in High Technology Product Producing Factories (HTPPF) especially in the hard disk industry. This is significantly different from the trend in other industries such as canned food or car, where machines are joined and the process are continuous from start to end. In the latter industries, buffers are counted as stock and a waste, but in HTPPF, buffers are critically important to enable research activities to achieve daily upgrade of the Key Quality Characteristics (KQC) of the product. This has enabled the hard disk industry to increase the data capacity of a 95mm diameter Al-NiP disk from 1 GB in 1995 to 800 GB in 2012. A common trend among hard disk manufacturers, especially in Japan, Taiwan and also the Western Digital factory in Johor, was to join up all the production machines, which is preventing research activities. The assumption made by HTPPF is that dedicated research lines should be a good enough test bed for research activities required to achieve the technological improvements to the products. This is a wrong assumption because research lines are not always running and it is a fact that upon startup of a line, the yield is bad and this has to stabilize before any research changes can be made. Therefore the best test bed for research is a production line, which already has a good yield and a small change in chemical for example, can show up at the final test point to indicate if improvement to the KQC has occurred. Lack of awareness of this technique has caused a number of HTPPF to have decreased market share or close down. The few successful HTPPF that utilizes buffers operates them manually. This introduces human made defects, contamination and also a decreased throughput. In this research, designs were developed to automate these buffers such that humans need not handle the products, while at
the same time enabling researchers to stop the production line to test out their hypotheses. Having designed these improvements, the next problem to solve is the throughput of HTPPF. So designs were made to solve the defect detection system (DDS) which is always the bottleneck in HTPPF. The next problem is to solve the wastage in the current system due to the inaccurate demand predictions at the factory, wholesaler and supermarket. To solve this problem a feasibility study was made to enable a customer ordering a product with a credit card to initiate factory machines to immediately manufacture it.
Objektif kajian ini adalah untuk mewajarkan penggunaan penampan dalam kilang yang menghasilkan Produk Teknologi Tinggi (HTPPF) terutama dalam industri cakera keras. Ia adalah berbeza daripada trend dalam industri lain seperti makanan dalam tin atau kereta yang, mana mesin-mesin di sambung dan proses adalah berterusan dari mula hingga akhir. Dalam industri yang terkemudian, penampan dikira sebagai stok dan pembaziran, tetapi di HTPPF, penampan adalah amat penting untuk membolehkan aktiviti penyelidikan untuk mencapai kenaikan taraf harian “Key Quality Characteristics (KQC)” produk. Hal ini membolehkan industri cakera keras meningkatkan keupayaan data cakera diameter 95mm Al-NiP daripada 1 GB pada tahun 1995 kepada 800 GB pada tahun 2012. Trend yang biasa amalkan di kalangan pengeluar cakera keras terutamanya di Jepun, Taiwan dan juga kilang Western Digital di Johor, adalah menyambung semua mesin pengeluaran bertujuan menghalang aktiviti penyelidikan. Andaian yang dibuat oleh HTPPF adalah bahawa penyelidikan dibuat ke atas mesin yang ditetapkan untuk membuat aktiviti penyelidikan yang diperlukan untuk mencapai peningkatan teknologi kepada produk. Ia adalah andaian yang salah kerana mesin-mesin yang ditetapkan untuk penyelidikan tidak selalu berjalan. Apabila mesin-mesin tersebut startup, hasilnya salalu buruk dan ia mesti distabilkan sebelum apa-apa perubahan penyelidikan boleh dibuat. Oleh yang demikian medan ujian yang terbaik bagi penyelidikan adalah mesin-mesin yang serdang menjalankan pengeluaran, yang sudah mempunyai hasil yang baik dan perubahan yang kecil dalam kimia contohnya, boleh muncul di pusat ujian akhir untuk menunjukkan sama terdapat peningkatan kepada KQC telah berlaku. Kurangnya kesedaran teknik ini telah menyebabkan beberapa HTPPF mengurangkan saham pasaran atau menutup...
Contents

Title i

Dedication ii

Acknowledgement ii

Abstract iii

Abstrak v

Contents vii

List of figures xii

List of tables xvii

List of abbreviations, symbols and specialized nomenclature xviii

1.0 Introduction 1

1.1 Summary 8

2.0 Literature Review 9

2.1 The overall status of the automation engineering 14
2.2 Current deficiencies in High Technology Product Producing Factories (HTPPF)

2.3 Details of machines, robots and software in the UNIMAS FMS

2.3.1 The overall UNIMAS FMS system

2.3.2 Adept robot

2.3.2.1 Classifications of robot arms

2.3.3 Csimplicity HMI and GE PLC software

2.3.4 Omron PLC

2.4 The development of automation technology

2.4.1 Robots

2.4.2 Robots in factories

2.4.3 Concepts in optimizing manpower in factories

2.4.4 The extent robots are used worldwide

2.4.5 Japan’s Robot usage and justification

2.4.6 Underwater robots

2.4.7 Robots in bioscience

2.4.8 Miniature medical robots

2.4.9 Remote Presence Robot or Telepresence robots

2.4.10 Fully autonomous car race
2.4.11 Engineering developments in robot technology

2.4.11.1 The current state of the automation industry and future projections 58

2.4.11.2 Hardware developments 60

2.4.11.3 Artificial muscles 61

2.4.11.4 Wireless Sensor Network (WSN) 62

2.4.11.5 Power sources for robots 66

2.4.11.6 Step logic software 69

2.4.11.7 Microsoft Robotic Developer Studio 70

2.4.11.8 Other developments in robot software 72

2.4.11.9 Artificial Intelligence 72

2.4.11.10 Nano-factories 75

2.5 Robot activation over the internet 75

2.5.1 Overall description 75

2.5.2 Protocols 88
2.5.3 PPP (Point to Point Protocol)

2.5.4 POP and IMAP

2.6 Summary

3.0 Methods and materials
3.1 Buffers to facilitate continuous research in HTPPF
3.2 Improved factory machine stopping method to facilitate research
3.3 Methodology for higher throughput disk defect detection
3.4 Methodology for feasibility of triggering factory robots over the internet
3.4.1 Methodological activities for triggering the robots over the internet using GE PLC
3.4.2 Adept robot in FMS operation methodological activities
3.4.3 Omron PLC hub of the FMS methodological activities
3.4.4 GE PLC methodological activities
3.4.5 GE Cimplicity HMI methodological activities
3.5 Summary

4.0 Results and discussion
4.1 Design for the buffer system in-between all factory machines
4.2 Machine Stop (MS) a solution to stopping machines for research initiatives
4.2.1 Stopping with memory (button i is pressed)
4.2.2 Stopping after the current process (button ii is pressed)

4.2.3 Clearing all the existing products from the machine before stopping (button iii is pressed)

4.3 Results for higher throughput disk defect detection system equipment utilizing fiber optics

4.4 Feasibility study of triggering factory robots over the internet

4.4.1 Design of GE PLC triggering robot over the internet

4.4.1 GE PLC over the internet operation results

4.4.2 ADEPT robot operation results

4.4.3 Omron CPMII PLC operation results

4.4.4 GE PLC operation results

4.4.5 GE Cimplicity HMI operation results

4.5 Summary

5.0 Conclusion and Future Work

5.1 Future Work

6.0 Citations

Appendix 1

Appendix 2

Appendix 3

Appendix 4

Appendix 5

Appendix 6
List of Figures

Figure 1.1: A comparison of Research initiatives generated by two factories, the Western Digital factory in Kuching and Johor, Malaysia.

Figure 2.1: Flowchart of a possible optimum manufacturing purchasing protocol

Figure 2.2: A view of the FMS lab at UNIMAS

Figure 2.3: Another view of the FMS

Figure 2.4: The initial compressor used to provide Compressed Dry Air (CDA) to the pneumatic valves of the FMS

Figure 2.5: The current compressor source of CDA for the FMS

Figure 2.6: Electrical isolators which must be switched on to energize the FMS

Figure 2.7: The main control panel to start the FMS

Figure 2.8: The I/O Matrix which is the product’s raw material and finished goods storage

Figure 2.9: The Mitutoyo CMM used to verify the dimensional accuracy of the product produced

Figure 2.10: Dimensions that affect the lifting power of a Ball Screw
Figure 2.11: The black arrows indicate the six axis of a robot’s motion
Figure 2.12: Controller (blue) and Amplifier unit (looks like a typical CPU)
Figure 2.13: The robot arm of the Adept Viper series
Figure 2.14: Two different End-Effectors which the robot can choose from according to the software
Figure 2.15: Adept Cobra i600 is a SCARA robot. It is the first Adept robot with the amplifier unit built into the robot arm (beyond the black heat sink)
Figure 2.16: Adept Viper S650 is a vertical multi-joint robot
Figure 2.17: Adept python is a cartesian Coordinate robot
Figure 2.18: The four layers of the Cimplicity software
Figure 2.19: A Mazak Integrex Model 200 III
Figure 2.20: Chart shows communication equipment used for data now far exceeds voice
Figure 2.21: Figure shows how to determine the latest IP configuration of a computer
Figure 3.1: The plan view layout of the DPCL
Figure 3.2: The schematic indicates how a laser beam moves through a fiber optic cable with a cladding and core from the sides
Figure 3.3: Shows a light beam K_i (i for incident) passing through medium with refractive n1, and being reflected as K_r (r for reflected) at the junction between the two mediums, some of the light beam
is refracted as K_t (t for transmitted)

Figure 3.4: Sample conversation with GE (Cimplicity) representative in Beijing

Figure 3.5: IP addresses categorization

Figure 3.6: The list of IP addresses in the laptop computer

Figure 3.7: Schematic depicting the system for remote ordering of products

Figure 3.8: The teach pendant of the Adept robot

Figure 3.9: The layout of the Omron PLC, part number is CPM1A-40CDR-A-V1

Figure 3.10: The adapter to enable the Omron PLC to use a RS232 jack, part number CPM1-C1F0

Figure 3.11: The MOXA UPORT 1110 USB to RS232 converter

Figure 3.12: The layout of the GE PLC

Figure 4.1: Comparison of the Research Initiatives generated by a two Western Digital factories.

Figure 4.2a: A CAD drawing of the automated buffer system in-between machines which will facilitate research initiatives

Figure 4.2b: Side view of the automated buffer

Figure 4.3: Schematic of the forces in action in the ball screw system

Figure 4.4: Cable chain to carry wires or air pipes which need to be flexed

Figure 4.5: Picture depicting the internal workings of the ball screw

Figure 4.6: Schematic of the ball screw elevator and Adept robot

Figure 4.7: Basic DPCL wiring schematic to enable Machine Stop (MS).
The bigger bold letters represent changes

Figure 4.8: The overall experimental setup

Figure 4.9: The overall experimental setup

Figure 4.10: Laser beam striking the stripped fiber optic cable

Figure 4.11: The principle of laser beam formation

Figure 4.12: Top view of the disk Defect Detection System

Figure 4.13: Off-side view of the disk Defect Detection System

Figure 4.14: This is the printscreen of the remote computer.
As the button is clicked, the output pin #9 of the PLC connected to the server computer is toggled.

Figure 4.15: Wiring diagram for laptop to RS232

Figure 4.16: Circuit for USB to COM converter to PLC

Figure 4.17: Communication setting according to CPM1A manual

Figure 4.18: Omron wiring diagram

Figure 4.19: Omron wiring diagram with sensor

Figure 4.20: Shows the wiring diagram for the Omron PLC

Figure 4.21: Shows the GE PLC connected to the laptop

Figure 4.22: Shows the output pin’s related LED according to the software command given

Figure 4.23: As the buttons above are clicked the respective output # 4 is toggled
Figure A2.1: This is the printscreen of the remote computer. As the button is clicked, the output pin #9 of the PLC connected to the server computer is toggled.

Figure A3.1: Screen shots to enable file backup using V+ software
Figure A3.2: Screen shots to enable file backup using V+ software
Figure A3.3: Screen shots to enable file backup using V+ software
Figure A3.4: Screen shots to enable Adept software backup in desktop

Figure A4.1: Wiring diagram for laptop to RS232
Figure A4.2: Circuit for USB to COM converter to PLC
Figure A4.3: Communication setting according to CPM1A manual

Figure A4.4: Omron wiring diagram
Figure A4.5: Omron wiring diagram with sensor
Figure A4.6: Shows the wiring diagram for the Omron PLC

Figure A5.1: Shows the GE PLC connected to the laptop
Figure A5.2: Shows the output pin's related LED according to the software command given

Figure A6.1: As the buttons above are clicked the respective output #4 is toggled

Figure A7.1: Sample conversation with GE (Cimplicity) representative in Beijing
Figure A7.2: More sample conversation with GE representative in Beijing as he remoted to this researcher's computer in Kuching
Figure A7.3: Wiring of communication cable from Omron manual versus Cimplicity

Figure A7.4: Defining an output in Omron CPM1A

Figure A7.5: Defining the parity bit in Omron CPM1A

Figure A7.6: Test running a written software in Omron CPM1A

Figure A7.7: Downloading the software to the Omron PLC

Figure A7.8: Results of running the Omron CPM1A

Figure A7.9: Conveyor system in UMIMAS FMS lab

Figure A7.10: Conveyor system in FMS

Figure A7.11: The different end-effectors that Adept robots can utilize

Figure A7.12: The EMCO milling machine

Figure A7.13: The EMCO turning machine

Figure A7.14: The Automatic Guided Vehicle (AGV) used in the FMS lab

Figure A7.15: The end effector of the AGV

Figure A7.16: The hub that sends wireless instruction signals to the AGV

List of Tables

Table 2.1: The available configurations of existing robot arms

Table 2.2: The result of the DARPA fully autonomous robot car race depicts the progress achieved over the years

Table 2.3: Description of Class A, B and C of communication addresses

Table 2.4: Contents of a PPP frame or packet

Table 4.1: Below is the technical specification for the Adept Viper s650
Table 4.2: Angle at which the laser beam strikes the fiber optic cable versus the percentage brightness observed at the end of the fiber optic cable

List of Abbreviations, Symbols & Specialized Nomenclature

HTPPF High Technology Product Producing Factory
FIFO First In First Out
CDA Compressed Dry Air
Adept The company that manufactures Adept robots
HMI Human Machine Interface
FMS Flexible Manufacturing System lab of UNIMAS
GE General Electric company a large USA based company which is pioneering much of robotic controls including the software in the FM
Fanuc A manufacturer of robots in Japan
GEFanuc The name of the products made by the combination of GE and Fanuc
Cimplicity The name of the HMI made by General Electric company of USA
V+ The software used to run the Adept robots
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLC</td>
<td>Programmable Logic Controller</td>
</tr>
<tr>
<td>Omron</td>
<td>The company that makes the PLC used to control the Adept robots in the FMS lab</td>
</tr>
<tr>
<td>Sysmac</td>
<td>The software used by Omron PLCs.</td>
</tr>
<tr>
<td>CPM1A</td>
<td>The model of the Omron PLC purchased by UNIMAS to simulate control of the Adept robots in the FMS lab</td>
</tr>
<tr>
<td>CTC</td>
<td>Control Technology Coporation - an American company that makes microcontrollers</td>
</tr>
<tr>
<td>MEMS</td>
<td>Microelectromechanical Systems</td>
</tr>
<tr>
<td>NEMS</td>
<td>Nanoelectromechanical Systems</td>
</tr>
<tr>
<td>Honeywell</td>
<td>An American company that makes high technology products</td>
</tr>
<tr>
<td>DCS</td>
<td>Distributed Control Systems; a control system for machines or process developed by Honeywell</td>
</tr>
<tr>
<td>MSRS</td>
<td>Microsoft Robotic Studio</td>
</tr>
<tr>
<td>SCADA</td>
<td>Supervisory Control And Data Acquisition – a control and monitor system used in factories all the way up to a grid of an electric company</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>EMI</td>
<td>Electromagnetic Interference – electromagnetic disturbance of electronic signals</td>
</tr>
<tr>
<td>OEM</td>
<td>Original Equipment Makers which makes a small part of a complete unit like a computer</td>
</tr>
<tr>
<td>DARPA</td>
<td>Defense Advanced Research Projects Agency, USA</td>
</tr>
<tr>
<td>DELL</td>
<td>A computer manufacturer in USA</td>
</tr>
<tr>
<td>AUV</td>
<td>Autonomous Underwater Vehicles</td>
</tr>
<tr>
<td>MIT</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>Protocols</td>
<td>Procedures and methods used to achieve a communication</td>
</tr>
<tr>
<td>POP</td>
<td>Post Office Protocol</td>
</tr>
<tr>
<td>PPP</td>
<td>Point to Point Protocol</td>
</tr>
<tr>
<td>IMAP</td>
<td>Internet Message Access Protocol</td>
</tr>
<tr>
<td>WDM</td>
<td>Wavelength Division Multiplexing</td>
</tr>
<tr>
<td>DWDM</td>
<td>Dense Wavelength Division Multiplexing</td>
</tr>
<tr>
<td>TDM</td>
<td>Time Division Multiplexing</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>DDS</td>
<td>Defect Detection System</td>
</tr>
<tr>
<td>PPH</td>
<td>Parts per hour</td>
</tr>
<tr>
<td>PM</td>
<td>Preventive Maintenance</td>
</tr>
</tbody>
</table>
1.0 Introduction

This research is timely because many High Technology Product Producing Factories (HTPPF) are still following the trend of factories that produces the likes of canned food or even cars [1] where all machines are jointed from start to end. These HTPPF have not realized that improvements to product must be done everyday to keep market share. This is why a number of hard disk manufacturers are closing down, especially in Japan and Taiwan (notably Sony, NEC, Matsushita and Trace), which are leaders in joining up production lines from start to end. Currently 90% of hard disks are produced by Western Digital and Seagate, with Toshiba having 10% market share. HTPPF can best be run with buffers in-between production machines to enable research initiatives.

Explanation has been made in this thesis of why researchers prefer to test their hypotheses on a running production line rather than a dedicated research line. It is an accepted fact in the production of hard disks, for example, that upon start-up of a line there is a yield drop and this yield picks up after a while. Therefore on a research line that is not always running, it takes from one to five hours before the yield stabilizes. This discourages researchers from performing research tests on the research line. In a production line, where the yield is already at around 98%, a small change in say a chemical in one particular machine can more easily be examined. Also by using production lines as test beds, many lines can be used. This way more sampling of research can be done, providing a consistent data base to validate results. Research lines are still
available for major changes especially where mechanical changes to machines are involved, but for quick validation of results, the running production line is used [2].

While developing new strategies for increasing research in HTPPF, other major problems were encountered, one being the bottleneck caused by the defect detection system (DDS) and the other being the wastage in the current system, of customer ordering products, factories manufacturing them and how it is finally delivered to customers. These are the empirical problems seen in hard disk factories that try to continuously improve Key Quality Characteristics (KQC), where this researcher has 14 years of working experience.

![Comparison of Research Initiatives generated by two real factories](image)

Figure 1.1: A comparison of Research initiatives generated by two factories, the Western Digital factory in Kuching and Johor, Malaysia.

Western Digital (WD) factory in Johor is fully automated without buffers while the Kuching factory has humans operating the buffers in-between automated production machines. In the current hard disk industry, companies are still bent on full automation (without buffers)