SYNTHESIS AND CHARACTERIZATION OF ORGANOTIN(IV) COMPLEXES WITH TRIDENTATE SCHIFF BASE LIGANDS CONTAINING ONN/ONS-DONOR ATOMS

JENNIFER HENRY

This project is submitted in partial fulfillment of the requirements for the Degree of Bachelor of Science with Honours (Chemistry Department)

Faculty of Resource Science and Technology
UNIVERSITI MALAYSIA SARAWAK
2008
DECLARATION

No portion of the work referred to in this dissertation has been submitted in support of an application for another degree of qualification of this or any other university or institution of higher learning.

Jennifer Henry

Chemistry Department

Faculty of Resource Science and Technology

Universiti Malaysia Sarawak
ACKNOWLEDGEMENTS

I would like to express my greatest gratitude primarily to my supervisor, Assoc. Prof. Dr. Md. Abu Affan who has assisted me a lot in my research and all the other staff of Chemistry Department, Faculty of Resource Science and Technology, and all the other relevant people, who have directly or indirectly, technically or non-technically assisted and advised me throughout my final year research work.
TABLE OF CONTENTS

DECLARATION ii
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES vii
ABSTRACT viii

CHAPTER ONE INTRODUCTION 1
1.1 Schiff base ligands and their organotin(IV) complexes 1
1.2 Objectives 2

CHAPTER TWO LITERATURE REVIEW 3
2.1 Schiff base ligands containing ONN/ONS-donor atoms 3
2.2 Organotin(IV) complexes with Schiff base ligands containing ONN/ONS-donor atoms 7

CHAPTER THREE MATERIALS AND METHODS 11
3.1 Physical measurements 11
3.2 Synthesis of Schiff base ligand (1) and its organotin(IV) complexes (3-6) 12
 3.2.1 Synthesis of salicylaldehyde-2-aminothiophenol (1) containing ONN-donor atoms 12
 3.2.2 Synthesis of [Me₂Sn(C₁₃H₉NOS)] (3) 12
 3.2.3 Synthesis of [Bu₂Sn(C₁₃H₉NOS)] (4) 13
 3.2.4 Synthesis of [Ph₂Sn(C₁₃H₉NOS)] (5) 14
 3.2.5 Synthesis of [BuSnCl(C₁₃H₉NOS)] (6) 14
3.3 Synthesis of Schiff base ligand (2) and its organotin(IV) complexes (7-9) 16
 3.3.1 Synthesis of 2-benzoylpyridinebenzyhydrazone ligand (2) containing ONN-donor atoms 16
 3.3.2 Synthesis of [Me₂SnCl(C₁₉H₁₄N₅O)] (7) 16
 3.3.3 Synthesis of [Bu₂SnCl(C₁₉H₁₄N₅O)] (8) 17
 3.3.4 Synthesis of [Ph₂SnCl(C₁₉H₁₄N₅O)] (9) 18

CHAPTER FOUR RESULTS AND DISCUSSION 20
4.1 Physical and analytical data 21
4.2 UV-Visible and IR spectra studies of ligand (1) and its organotin(IV) complexes (3-6) 23
 4.2.1 UV-Visible analyses of ligand (1) and its organotin(IV) complexes (3-6) 24
 4.2.2 IR spectroscopic studies of ligand (1) and its organotin(IV) complexes (3-6) 25
4.3 UV-Visible analyses of ligand (2) and its organotin(IV) complexes (7-9)

4.3.1 UV-Visible analyses of ligand (2) and its organotin(IV) complexes (7-9) 31

4.3.2 IR spectroscopic studies of ligand (2) and its organotin(IV) complexes (7-9) 33

4.4 1H NMR studies of 2-benzoylpyridinebenzhydrazone ligand (2) and its dimethyltin(IV) complex (7) 38

CHAPTER FIVE CONCLUSION 43

CHAPTER SIX SUGGESTIONS FOR FUTURE RESEARCH 43

REFERENCES 44

APPENDIX 49
LIST OF FIGURES

Figure 1: Structures of 2-acetylpyridine-N(4)-phenylthiosemicarbazone, HAP4P and 2-hydroxyacetophenone-N(4)-phenylthiosemicarbazone, H2DAP4P. 3
Figure 2: Formation of Schiff base ligand containing ONO-donor atoms. 4
Figure 3: Schiff base ligand having ONS-donor atoms. 4
Figure 4: N-(2-salicylidene)-N'-benzoylhydrazone. 5
Figure 5: General scheme of Schiff base ligands. 5
Figure 6: Structure of the tridentate Schiff base ligands containing ONO-donor atoms. 6
Figure 7: Proposed structures for the di- and tri-organotin(IV) complexes. 7
Figure 8: Structure of the diorganotin(IV) complexes. 7
Figure 9: Geometry of the organotin(IV) complexes with NS-donor atoms. 8
Figure 10: Possible structures of organotin(IV) complexes containing Schiff base ligands. 9
Figure 11: Structures of the diorganotin(IV) complexes. 10
Figure 12: Structure of salicylaldehyde-2-aminothiophenol ligand (1). 12
Figure 13: Proposed structure of dimethyltin(IV) complex (3). 13
Figure 14: Proposed structure of organotin(IV) complex (4). 13
Figure 15: Proposed structure of diphenyltin(IV) complex (5). 14
Figure 16: Proposed structure of butyltin(IV) complex (6). 15
Figure 17: Structure of 2-benzoylpyridinebenzhydrazone ligand (2). 16
Figure 18: Proposed structure of dimethyltin(IV) complex (7). 17
Figure 19: Proposed structure of dibutyltin(IV) complex (8). 18
Figure 20: Proposed structure of diphenyltin(IV) complex (9). 19
Figure 21: UV spectra of ligand (1) and its dimethyltin(IV) complex (3) in chloroform (1 x 10^{-4} M). 24
Figure 22: IR spectrum of salicylaldehyde-2-aminothiophenol ligand [C_{13}H_{11}NOS] (1) (As KBr disc). 28
Figure 23: IR spectrum of [Me_2Sn(C_{13}H_{14}NOS)] (3) (As KBr disc). 29
Figure 24: IR spectrum of [Ph_2Sn(C_{13}H_{14}NOS)] (5) (As KBr disc). 30
Figure 25: UV spectra of ligand (2) and its dimethyltin(IV) complex (7) in chloroform (1 x 10^{-4} M). 32
Figure 26: UV spectra of ligand (2) and its dibutyltin(IV) complex (8) in chloroform (1 x 10^{-4} M). 32
Figure 27: IR spectrum of 2-benzoylpyridinebenzhydrazone ligand [C_{19}H_{15}N_3O] (2) (As KBr disc). 36
Figure 28: IR spectrum of [Me_2SnCl(C_{19}H_{14}N_3O)] (7) (As KBr disc). 37
Figure 29: IR spectrum of [Bu_2SnCl(C_{19}H_{14}N_3O)] (8) (As KBr disc). 38
Figure 30: ^1H NMR spectrum of 2-benzoylpyridinebenzhydrazone ligand [C_{19}H_{15}N_3O] (2) (In CDCl_3). 41
Figure 31: ^1H NMR spectrum of [Me_2SnCl(C_{19}H_{14}N_3O)] (7) (In CDCl_3). 42
LIST OF TABLES

Table 1: Physical and analytical data of Schiff base ligands (1-2) and their organotin(IV) complexes (3-9). 21
Table 2: Molar conductance values of organotin(IV) complexes (3-9). 22
Table 3: The λ_{max} (nm) peaks of Schiff base ligand (1) and its organotin(IV) complexes (3-6). 23
Table 4: Main IR data of Schiff base ligand (1) and its organotin(IV) complexes (3-6) (cm$^{-1}$)a. 27
Table 5: The λ_{max} (nm) peaks of Schiff base ligand (2) and its organotin(IV) complexes (7-9). 31
Table 6: Main IR data of Schiff base ligand (2) and its organotin(IV) complexes (7-9) (cm$^{-1}$)a 35
Table 7: The 1H NMR data of 2-benzoylpyridinebenzhydrazone ligand (2) and its dimethyltin(IV) complex (7) (δ ppm)b. 40
Synthesis and characterization of organotin(IV) complexes with tridentate Schiff base ligands containing ONN/ONS-donor atoms

Jennifer Henry
Chemistry Department
Faculty of Resource Science and Technology
Universiti Malaysia Sarawak

ABSTRACT

Two tridentate Schiff base ligands, containing a donor set of ONN and ONS were prepared by the reaction of salicylaldehyde with 2-aminothiophenol and benzhydrazide with 2-benzoylpyridine. Four organotin(IV) complexes (3-6) of salicylaldehyde-2-aminothiophenol ligand (1) with RₙSnCl₄ₙ (n = 1, 2, 3) have been synthesized in the presence of base in absolute chloroform in 1:1 mole ratio under nitrogen atmosphere. Another three organotin(IV) complexes (7-9) of 2-benzoylpyridinebenzhydrazone ligand (2) with RₙSnCl₄ₙ (n = 1, 2, 3) have also been synthesized in the presence of base in absolute methanol in 1:1 mole ratio. Schiff base ligands (1-2) and their organotin(IV) complexes (3-9) have been characterized by CHN analyses, UV-visible, molar conductance and FTIR spectral analyses. Among them, ligand (2) and complex (7) have also been determined by ¹H NMR spectral studies. All organotin(IV) complexes (3-9) are non-electrolytic in nature. Based on the FTIR and ¹H NMR analyses, ligand (1) acts as dinegative tridentate ligand in the organotin(IV) complexes (3-6). Whereas the ligand (2) acts as uninegative tridentate nature in its organotin(IV) complexes (6-9). A five-coordinated molecular structure has been proposed for the organotin(IV) complexes (3-6) of ligand (1) while a six-coordinated molecular structure has been proposed for organotin(IV) complexes (7-9) of ligand (2).

Keywords: Salicylaldehyde-2-aminothiophenol; 2-benzoylpyridinebenzhydrazone; organotin(IV) complexes; spectroscopic studies.

ABSTRAK

Empat organotin(IV) kompleks (3-6) dengan RₙSnCl₄ₙ (n = 1, 2, 3) bagi ligand salisilaldehid-2-aminotiofenol (1) telah disintesis dengan kehadiran bes dan pelarut klorofom dengan nisbah kemolaran 1:1. Tiga lagi organotin(IV) kompleks (7-9) dengan RₙSnCl₄ₙ (n = 1, 2, 3) bagi ligand 2-benzoilpiridinbenzihidrazon (2) juga telah disintesis dengan kehadiran bes di dalam pelarut metanol dengan nisbah kemolaran 1:1. Semua organotin(IV) kompleks telah dicirikan melalui kaedah analisis CHN, UV-visible, kemolaran kondoktandan dan FTIR. Hanya ligand (2) dan kompleks (7) ditentukan dengan ¹H NMR. Kesemua kompleks organotin(IV) tidak adalah berelektolitik. Berdasarkan analisis FTIR dan ¹H NMR, ligand (1) bertindak sebagai ligand dinegatif tridentat dalam kompleks organotin(IV) (3-6). Manakala ligand (2) pula bertindak sebagai ligand uninegatif tridentat dalam kompleks organotin(IV) (7-9).

Kata kunci: Salisilaldehid-2-aminotiofenol; 2-benzoilpiridinbenzihidrazon; organotin(IV) Kompleks; kajian spektroskopik.
1.0 Introduction

1.1 Schiff base ligands and their organotin(IV) complexes

Schiff base which is a compound that contains a carbon-nitrogen double bond. Schiff base is synthesized by condensation reaction of primary amine and aldehyde or ketone (Yazici and Akgun, 2005; Anora and Sharma, 2000).

Schiff base may form stable complexes with transition metals (Rabie et al., 2007). Schiff bases and their metal complexes have diverse applications such as play an important role in the development of coordination chemistry and act as catalyst to many reactions (Chai et al., 2001; El-Hendaway et al., 1993; Battacharya, 1990; Henrici-Olive and Olive, 1977).

Organotin(IV) complexes which have five- and six-coordinated geometry and +4 oxidation states (Singh and Varshney, 2005). They must at least contain a tin-carbon bond. They were also screened for antitumor activity (Dey et al., 2002; Shahid et al., 2002) and also shown effective antiviral and antineoplastic agents (Dey et al., 2002). The dialkyltin(IV) derivatives showed a better antitumor activity than the mono-, tri- and tetraalkyl derivatives due to the activity of the diorganotin(IV), \(R_2SnX_2 \) which is controlled by the nature of the \(R_2Sn \) moiety (Abd-Alla, 2003). Organotin(IV) complexes also showed therapeutic effects on various tumor cells but the mode action is not known yet (Szorcsik et al., 2002). Besides that, they may be used as catalysts, stabilizers, biocides, antifouling agents as well as for wood preservers (Rehman et al., 2005). Schiff base ligands and organotin complexes also showed antibacterial and antifungal activities (Singh and Varshney, 2005).

In view of this, the present project discussed mainly on the synthesis and characterization of organotin(IV) complexes with tridentate Schiff base ligands containing ONN/ONS-donor atoms.
1.2 Objectives

The objectives of this research are:

i. to synthesize tridentate Schiff base ligands containing ONN/ONS-donor atoms.

ii. to synthesize organotin(IV) complexes with tridentate Schiff base ligands (ONN/ONS).

iii. to characterize the Schiff base ligands (ONN/ONS) and their organotin(IV) complexes by CHN analyses, UV-Visible, FTIR and 1H NMR spectra analyses.

iv. to determine the molar conductivity of the synthesized organotin(IV) complexes containing ONN/ONS-donor atoms.
2.0 Literature Review

2.1 Schiff base ligands containing ONN/ONS-donor atoms

Two ligands, 2-acetylpyridine-N(4)-phenylthiosemicarbazone, HAP4P, and 2-hydroxyacetophenone-N(4)-phenylthiosemicarbazone, H$_2$DAP4P, with R_4mSnX$_m$ (m = 2, 3; R = Me, "Bu, Ph and X = Cl, Br) (Figure 1) have been synthesized by Sousa and his co-workers (2001). The reactions between these two ligands led to the formation of hexa- and penta-coordinated organotin(IV) complexes.

![HAP4P](image1.png)
![H$_2$DAP4P](image2.png)

Figure 1: Structures of 2-acetylpyridine-N(4)-phenylthiosemicarbazone, HAP4P and 2-hydroxyacetophenone-N(4)-phenylthiosemicarbazone, H$_2$DAP4P.

Another tridentate ligand (Figure 2) has been reported by Yin and Chen (2006). This Schiff base has been prepared from 3-hydroxy-2-naphthoic acid hydrazide with pyruvic acid in ethanol with good yield.
Figure 2: Formation of Schiff base ligand containing ONO-donor atoms.

Pramanik and his co-workers (2004) have synthesized the Schiff base ligands (Figure 3) by condensation reaction of benzyl and methyl dithiocarbazates with salicylaldehyde in ethanol.

Another type of Schiff base ligand containing ONO-donor atoms has been reported (Figure 4). The Schiff base ligand has been synthesized condensation reaction of salicylaldehyde and 1-benzoylhydrazide in methanol in high yields (Dey et al., 2003).
New type of Schiff base ligands has been synthesized and characterized (Figure 5) by condensing S-benzylthiocarbazate (NH₂NHCS₂CH₂C₆H₅) with heterocyclic aldehydes (Singh and Varshney, 2005).

Recently, a new Schiff base ligand (Figure 6) has been synthesized by condensing acetyldehyde with 2-hydroxybenzaldehyde (H₂L¹) or 2-hydroxyacetophenone (H₂L²) (Ghosh, 2006).
Figure 6: Structure of the tridentate Schiff base ligands containing ONO-donor atoms.
2.2 Organotin(IV) complexes with Schiff base ligands containing ONN/ONS-donor atoms

Rehman and his co-workers (2005) have synthesized a series of di- and tri- organotin(IV) complexes of monomethyl glutarate (Figure 7). These complexes have been synthesized from monomethyl glutarate in methanol.

\[
\begin{align*}
\text{MeO} & \quad \text{O} \\
\text{O} & \quad \text{Sn} \\
\text{R} & \quad \text{R} \\
\end{align*}
\]

where \(R = -\text{CH}_3, \text{CH}_3\text{CH}_2\text{CH}_2\text{-}, \).

![Figure 7: Proposed structures for the di- and tri-organotin(IV) complexes.](image)

A report on the synthesis and characterization of two diorganotin(IV) complexes derived from the \(N\)-(2-Salicydene)-\(N'\)-benzoylhydrazone ligand have been reported (Figure 8). These two complexes have been characterized by X-ray crystallography (Dey \textit{et al.}, 2003).

\[
\begin{align*}
\text{O} & \quad \text{Sn} \\
\text{R} & \quad \text{R} \\
\text{CH} & \quad \text{C} \\
\text{N} & \quad \text{N} \\
\text{CH} & \quad \text{N} \\
\text{O} & \quad \text{O} \\
\text{R} & = -\text{[complex structure]} \\
\end{align*}
\]

where \(R = -\text{[complex structure]}, \text{CH}_3 \).

![Figure 8: Structure of the diorganotin(IV) complexes.](image)
Singh and Varshney (2005) have been synthesized and characterized organotin(IV) complexes with three bidentate Schiff bases containing NS-donor atoms (Figure 9).

\[\text{Figure 9: Formula structure of the organotin(IV) complexes with NS-donor atoms.} \]

Yin and Chen (2006) have synthesized a series of organotin(IV) complexes with Schiff base ligand pyruvic acid 3-hydroxy-2-naphthoyl hydrazone \([R_2SnLY]_2\), \(L = 3\text{-HO-C}_{10}H_6\text{-2-CONHN=CH(C}_3\text{H})\text{COOH, } R = n\text{-C}_4H_9; Y = \text{N (2), } R = \text{PhCH}_2\text{ (3), } R = \text{Ph; } Y = \text{CH}_3\text{OH (4), } R = \text{Me (5) and } [R_3SnLY], L = 3\text{-HO-C}_{10}H_6\text{-2-CONHNC(CH}_3\text{)COOH, } R = n\text{-C}_4H_9, Y = \text{H}_2\text{O (6), } R = \text{Ph (7), } R = \text{Me (8) (Figure 10).} \]
Figure 10: Proposed structures of organotin(IV) complexes containing Schiff base ligands.

Affan and co-workers (2007) have been synthesized and characterized three new diorganotin(IV) complexes by direct reaction of the diorganotin(IV) halide(s) with carbohydrazone-\textit{bis}(salicylaldehyde) ligand (H$_4$CBS)[C$_{15}$H$_{14}$N$_4$O$_3$] (Figure 11) in good yields. These complexes have also been characterized by X-ray crystallography. All compounds were also showed moderate biological activity with various types of microorganisms.
From the literature review, studies on the synthesis and characterization of Schiff base ligands containing ONN/ONS-donor atoms and their organotin(IV) complexes have not sufficient and requires more and deeper researches. In view of the various interaction possibilities of the Schiff base ligands containing ONN/ONS-donor atoms with organotin(IV) chloride(s), the author has undertaken this project for the purpose of synthesizing and characterizing organotin(IV) complexes with the proposed Schiff base ligands containing ONN/ONS-donor atoms.
3.0 Materials and Methodologies

3.1 Physical measurements

The main research has been conducted in Inorganic Research Laboratory at UNIMAS. All chemicals have been purchased from Fluka, Aldrich or J. T. Baker. All solvents have been dried and purified by standard methods. All the reactions have been carried out under nitrogen atmosphere by using Schlenk Vacuum line techniques. Schiff base ligands and their organotin(IV) complexes have been characterized by elemental analysis namely CHN analyses, UV-Visible and FTIR. Among them, only ligand (2) and complex (7) and have been determined by 1H NMR spectra analysis. IR spectral analysis has been recorded as KBr disc using Perkin Elmer Spectrum GX Fourier-Transform Spectrometer (4000–370 cm$^{-1}$). 1H NMR spectra have been recorded in CDCl$_3$ solution on a Jeol 500 NMR spectrophotometer at UNIMAS. Electronic spectra have been recorded with chloroform on a Perkin Elmer Lamda 25 UV-Visible Spectrophotometer. Molar conductances have been measured at room temperature using Jenway 4510 conductivity meter at UNIMAS. Elemental analyses have been recorded by using FlashEA 1112 series elemental analysers at UNIMAS. Most of the organotin(IV) halide(s) and their organotin(IV) Schiff base complexes have been preserved in freezer for long-term storage and stability.
3.2 Synthesis of Schiff base ligand (1) and its organotin(IV) complexes (3-6)

3.2.1 Synthesis of salicylaldehyde-2-aminothiophenol (1) containing ONS-donor atoms

A mixture of salicylaldehyde (1.22 g, 0.01 mole) and 2-aminothiophenol (1.25 g, 0.01 mole) in absolute ethanol (30 mL) were stirred and heated under refluxed for 5 hours. The reaction mixture was allowed to cool to room temperature for 30 minutes. The white precipitate formed was filtered off, and washed several times using absolute methanol. The crystalline white solid obtained was purified by recrystallization from hot ethanol and dried in vacuo over silica gel. Yield 1.75 g, 70.9 %, m.p. 122-123 °C.

\[
\text{CHO} + \text{NH}_2 \text{SH} \xrightarrow{\text{Abs. methanol, Stirred and refluxed 5 hrs}} \text{C} = \text{N} \text{OH} + \text{H}_2\text{O}
\]

Salicylaldehyde 2-aminothiophenol Salicylaldehyde-2-aminothiophenol

Figure 12: Structure of salicylaldehyde-2-aminothiophenol ligand (1).

3.2.2 Synthesis of [Me$_2$Sn(C$_{13}$H$_9$NOS)] (3)

The Schiff base ligand (1) (0.23 g, 0.001 mole) was dissolved in chloroform containing triethylamine solution (0.20 g, 0.002 mole) with constant stirring under nitrogen atmosphere. The colour of the solution changed from off-white to orange. The resulting mixture was stirred with constant stirring and refluxed for one hour. A solution of Me$_2$SnCl$_2$ (0.22 g, 0.001 mole) in chloroform (10 mL) was added dropwise. The resulting solution was gently refluxed for 4-5 hours and allowed it to cool to room temperature. The resulting solution was evaporated in fume cupboard. The solid dimethyltin(IV) complex (3) was filtered off, washed with absolute ethanol, recrystallized from absolute ethanol and dried in vacuo. Yield 1.46 g, 86.4 %, m.p. 101-103 °C.
3.2.3 Synthesis of [Bu₂Sn(C₁₃H₉NOS)] (4)

Complex (4) was prepared similarly to complex (3), dibutyltin(IV) dichloride (0.30 g, 0.001 mole) was used instead of dimethyltin(IV) dichloride. The dibutyltin(IV) complex (4) was obtained as light brown colour. Finally, it was recrystallized from ethanol and dried in vacuo. Yield 0.56 g, 76.4 %, m.p. 77-78 °C.
3.2.4 Synthesis of [Ph₂Sn(C₁₃H₉NOS)] (5)

Complex (5) was prepared from diphenyltin(IV) dichloride (0.34 g, 0.001 mole). The diphenyltin(IV) complex (5) was washed with ethanol and recrystallized from ethanol. Yield 0.66 g, 80.0 %, m.p. 103-104 °C.

3.2.5 Synthesis of [BuSnCl(C₁₃H₉NOS)] (6)

To a chloroform solution (10 mL) of the ligand (1) were added with triethylamine (0.20 g, 0.002 mole) and butyltin(IV) trichloride (0.28 g, 0.001 mole). The mixture was gently refluxed for 3-4 hours. After cooling, the resulting complex (6) was filtered off and recrystallized with ethanol. Yield 0.71 g, 80.0 %, m.p. 115-117 °C.
Figure 16: Proposed structure of butyltin(IV) complex (6).
3.3 Synthesis of Schiff base ligand (2) and its organotin(IV) complexes (7-9).

3.3.1 Synthesis of 2-benzoylpyridinebenzhydrazone ligand (2) containing ONN-donor atoms

A mixture of benzyhydrazide (0.36 g, 0.010 mole) and 2-benzoylpyridine (1.83 g, 0.010 mole) in absolute ethanol (10 mL) were stirred and heated under refluxed for 6 hours. The reaction mixture was allowed to cool to room temperature for 30 minutes. The white color precipitate was obtained by filtration, washed several times with ethanol and dried in vacuo over silica gel. Yield 1.35 g, 84.0 %, m.p. 134-135 °C.

\[\text{Benzyhydrazide} + \text{2-benzoylpyridine} \rightarrow \text{2-benzoylpyridinebenzhydrazone} \]

Figure 17: Structure of 2-benzoylpyridinebenzhydrazone ligand (2).

3.3.2 Synthesis of [Me₂SnCl(C_{19}H_{14}N_{3}O)] (7)

Ligand (2) (0.30 g, 0.001 mole) was dissolved in absolute methanol (10 mL) by stirring and added with a potassium hydroxide solution (0.056 g, 0.001 mole) under nitrogen atmosphere. The resulting mixture was stirred with constant stirring and refluxed for one hour. A methanolic solution (10 mL) of dimethyltin(IV) dichloride (0.22 g, 0.001 mole) was added dropwise with constant stirring to the potassium salt of the ligand (2). The resulting solution was refluxed for 4-5 hours and allowed to cool to room temperature. Potassium chloride (KCl) was removed by filtration. The clear filtrate removed using a rotavapor. The dimethyltin(IV)