STUDIES ON MEDICINAL PLANTS OF THE IBAN COMMUNITIES IN HULU SAMARAHAN, SERIAN

Nastassia binti Denis

This project is submitted in partial fulfillment of the requirement for the degree of Bachelor of Science with Honors

Faculty of Resource Science and Technology
UNIVERSITY MALAYSIA SARAWAK
2004
Medicinal Plants of the Iban communities in Hulu Samarahan, Serian

Nastassia binti Denis

Plant Resource Science and Management Programme
Faculty of Science and Technology
Universiti Malaysia Sarawak
94300 Kota Samarahan

ABSTRAK

Kata kunci: Tumbuhan ubatan, masyarakat Iban, Daerah Serian, fitokimia.

ABSTRACT

A study on medicinal plants was carried out in Hulu Samarahan, Serian involving 3 villages to review its uses among the Iban communities in Serian district. 43 species of medicinal plants from 29 families were collected and documented. The specimens collected were preserved in and kept at Universiti Malaysia Sarawak Herbarium (HUMS). Out of 43 species, 10 species were selected for three preliminary phytochemical analysis to test the presence of alkaloid, flavonoid and saponin. Among the species that showed positive presence of alkaloid are Murraya koenigii, Hibiscus rosa-sinensis, Lycopodium scandens, Mischocarpus sp., Derris elliptica, Labisia pumila, Melastoma malabathricum and Citrus hystrix. In saponin testing, Hibiscus rosa-sinensis, Derris elliptica, Labisia pumila and Melastoma malabathricum exhibited a high content of saponin component (+4). Achasma sp. has a lesser rate of saponin content (+1). On flavonoid screening, all the tested species showed a positive result for the presence of flavonoid.

Key words: Medicinal plants, Iban communities, Serian district, phytochemical.
INTRODUCTION

Plants have been used across the globe for thousand of years to treat man’s illnesses and injuries (Soepadmo, 1998). The World Health Organization (WHO) has compiled 21,000 medicinal plant species used in the world (Chadha and Singh, 1980; cited from Wijesekera, 1999). In 1978, the World Health Organization (WHO) has compiled an inventory of medicinal plants from only ninety members countries, contained 20 000 species, of which only 250 were of widespread use. In Malaysia, plants have been used as food, ornamental, medicine, supernatural element and religious cultures. Ethnic groups who live in the interior depend on the knowledge of medicinal plants to survive and usually, traditional medicine are practiced by the native medicine men and women, known as bomoh, pawang and bidan (Soepadmo, 1998). According to Muhamad (1991), there are 6000 species of flowering plants in tropical areas reported to have medicinal properties and 1230 species of plants in Malaysia have been used in traditional medicine. Out of 7000 species of angiosperms and 600 species of ferns, 1082 and 76 species are reported to have medicinal properties (Kanta et al., 1998). The number of medicinal plants used in Malaysia ranges from 12% to 18% (Sabariah, 1989; cited from Kanta et al., 1998).

Plants that are commonly used for medicinal purposes are those belonging to the family of Annonaceae, Apocynaceae, Arecaceae, Compositae, Dioscoreaceae, Ebenaceae, Euphorbiaceae, Flacourtiaceae, Lauraceae, Leguminosae, Menispermaceae, Myrsinaceae, Myrtaceae, Rubiaceae, Rutaceae, Simaroubaceae, Thymelaceae and Zingiberaceae (Soepadmo, 1991).
There were a few specific ethnobotanical studies been carried out in Malaysia. Chai (1975, 1978) recorded 41 species known to be used by the ethnic groups in Sarawak and Pearce et al. (1987) conducted an ethnobotanical study of an Iban community of the Pantu Sub-District, Sri Aman. Christensen (1997) did a study on uses of plants in two indigenous communities in Sarawak. Fasihuddin (1993) documented a phytochemical survey on medicinal plants used by the Kadayan community in Sarawak and the usage of traditional medicine by the indigenous people in Sabah.

The Iban represents the biggest population in Sarawak. Even though the Ibans are scattered at every division in the state, they share a common origin, a common language and formerly, a common way of life (Pearce et al., 1987). Before exposure to modernization, the Ibans were and most are still very attach with the forests whereby they skillfully make use of their surrounding to provide them everything they need. With their extensive knowledge on their skills, therefore be assumed that indigenous community possesses a comprehensive ethnobotanical knowledge (Christensen, 1997).

An ethnobotanical survey was conducted in Hulu Samarahan involving the Iban communities to study the usage of medicinal plants in their daily lives. The study includes three Iban villages located at Hulu Samarahan area, Serian District. Forty species of medicinal plants from different families and species were collected and documented with the help of a villager, Sulau anak Racha (50) who has a deep knowledge in traditional medicine. Some of the villages in Hulu Samarahan do not have dukun or manang. Each family in the villages possessed the knowledge of healing and curing illness or diseases from their ancestors.
OBJECTIVE

This research is a continuation of a general botanical documentation on medicinal plants used by the Iban communities previously documented in Kota Samarahan by Camillus Benno (2000) and Abdul Gani (2003). The main purpose of this study is to document the traditional local preparations and the utilization of traditional medicinal plants that are frequently used by the Iban community in Hulu Samarahan, Serian. Other objectives of this research are:

i) To identify the plants which have been used for medicinal purposes by the Iban community at Hulu Samarahan, Serian.

ii) To make a botanical description on the medicinal plants.

iii) To determine the secondary metabolites in the selected species. Examples of secondary metabolites are alkaloid, flavonoid and saponin.

LITERATURE REVIEW

Before the discovery of modern medicine, illness was thought to be cause by mystical agents. Treatments and cures for mental and physical diseases were sought among plants and animals. Curative agents were discovered by trial and error. Based on the Doctorine of Signatures, founded by Vinci’s Paracelsus (1493-1541), which believes that a plant’s appearance contains clues to its use (Simpson & Ogorzaly, 2001). Then this knowledge will be passed down through verbal and based on historic tales. According to Simpson and Ogorzaly (2001), discovery of natural products led to discovery of some of the most effective modern drugs. They point out that natural products were less studied because traditional medicine was thought to be old-fashioned and ancient. Even pharmaceutical companies are reluctant to take screening and
testing programs due to the low returns on investment. In addition, easy accessibility to modern drugs and advances in biochemistry have proven that producing synthetic drug is easier without having to rely on natural products.

Traditional medicine includes all range of treatments which are entwined with religious believes, philosophical and spiritual elements. According to WHO, traditional medicine is a term used to distinguish ancient and culture bond health care practices which existed before the application of science to health matters in official modern scientific medicine (Farnsworth, 1990). The term ‘medicinal plants’ used in this study includes herbal products, herbal foods, natural products but excluding traditional religious and spiritual practices (Kanta et al., 1998). The knowledge of medicinal plants helps the ethnic groups in the interior to survive from diseases and illness (Latiff, 1991).

Indigenous people have discovered plants with medicinal value though the possession of conservative ethnobotanical tradition with established cultural mechanism, residence in an area with a diverse flora and continuity to stay in the area for over many generations (Cox, 1990). The knowledge of traditional medicine was passed on by word of mouth from generation to generation (Simpson & Ogorzaly, 2001). Medical practitioners attain their skills informally, often through extended apprenticeship of many years. Eastern medicine believes that good health is the result of harmonious relationship with nature. Spirits seem to be the cause of an illness or diseases (Anderson, 1993).

Lately, the resurgence of interest in traditional medicine spreads among the developing countries and developed countries. The importance of biodiversity conservation has proven the needs to protect potential medicinal plants from becoming extinct in their natural habitats. Also, the realization to preserve traditional knowledge from disappearing due to the lack of
documentation and declining number of people involving in learning traditional medicine. The new generation has strong reliance on modern drugs and treatments, prior to that, they have lost interest in reviving knowledge of traditional medicine.

Drugs are derived from many sources but during the early days, drugs were extracted from plants. There are 119 drugs are known structure that are still extracted from higher plants and used globally in allopathic medicine (Farnsworth, 1990). Plants are very useful as medicines due to the existence of the secondary compounds. Examples of plant derived drugs are atropine, bromelain, caffeine, codeine, digoxin, digitoxin, emetine, ephedrine, morphine, physostigmine, pilocarpine, pseudoephrine, quinine, reserpine, vinblastine and vincristine (Farnsworth, 1990). Plant secondary compounds serve as basic ingredients in the production of substances ranging from pharmaceuticals to flavorings (Aziz et al., 2001). These secondary compounds evolve as chemical defenses against insect predation. Coincidentally, science has exploited the same properties for therapeutic purposes. The secondary metabolites, which are often mentioned, are alkaloid, saponin, and flavonoid. These compounds are biologically active in animals and humans. Generally, two methods are used to extract biological active agents from plants - biological screening and phytochemical screening.

Majority of drugs derived from natural compounds. Alkaloids provide mankind with a wealth of medicines, poisons and portions for thousand of years (Rathbone et al., 2001). According to Ikan (1991), alkaloids are nitrogenous compounds occurring in plants. These nitrogenous compounds are found in the seeds, roots and bark of plants. Some alkaloids are present in plants in combination with sugars (solanine), while other occurs as acid amides (piperine) or esters (cocaine and atropine). A few examples of colorless, crystalline alkaloids are coniine, nicotine and hygrine while some are colored such as berberine which is yellow. Aside
from that, Ikan (1991) claims that this bitter taste product possess curative properties, for example morphine has narcotic action, cocaine is a local anesthetic and reserpine is a tranquilizer. He also points out that alkaloid functions as byproducts of plant metabolism, as reserve materials for protein synthesis and as plant stimulants or regulators. Precipitants or color reagents which, mostly contains dehydrating or oxidizing agents or a combination of both, are used to detect the presence of alkaloids. Examples of color reagents are Mayer, Wagner, Dragendorff and Bertrand (Ikan, 1991). These alkaloids form precipitates in acid solution with heavy metal reagents such as Dragendorff’s reagent and Mayer’s reagent (Houghton & Raman, 1998). In addition, alkaloids have been studied extensively due to its useful biological properties (Leonard, 1993).

Flavonoid is a chemical constituent of many medicinal plants, herbs and economic crops (Siti Mahyuni et al., 1999). Flavonoid compounds act as antioxidant, enzyme inhibitors, and precursor of toxic substances, pigments and light screens that prevent UV light. Many flavonoid compounds have been found to have antiviral, antibacterial and antifungal properties. Aside from that, flavonoid compounds has the potential medicinal agents against human diseases including malaria and HIV (Bohm, 1998). Flavonoid is another large groups of phenolic compounds and a number has been proven to be allelopathic (Mandava, 1985). This secondary compound occurs in plants, including the fruit, pollen, roots and heartwood, whereby it acts as glycosides in which one or more phenolic hydroxyl groups are combined with sugar residues.

Another chemical compound that tastes bitter is saponin. Saponin is a kind of steroid (Simpson & Ogorzaly, 2001) and normally creates bubbles after been shaken vigorously. This reaction indicates one of the most significant characters of saponin.
Natural products are constituents to new drugs. According to Thompson (1985), natural products act as new drugs that can be used in unmodified state (for example, vincristine), provide chemical ‘building blocks’ used to synthesize more complex compounds and indicate new modes of pharmacological action that allow the complete synthesis of novel analogues.
RESEARCH METHODOLOGY

The study was carried out in the Serian district, specifically at Hulu Samarahan area. The total population in Hulu Samarahan is 2,067 with Iban as the majority. There are about 13 villages comprising of 385 houses distributed widely in Hulu Samarahan (Figure 1). Only three villages were selected for this ethnobotanical survey (Table 1).

Table 1: List of selected villages

<table>
<thead>
<tr>
<th>No</th>
<th>Names of the Villages</th>
<th>Number of Villagers</th>
<th>Head of Villagers</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kpg. Soh</td>
<td>185</td>
<td>Jawa ak Jali (62 years old)</td>
<td>N 1°30'48.0" E 110°30'54.0"</td>
</tr>
<tr>
<td>2</td>
<td>Kpg. Seruit</td>
<td>175</td>
<td>Jarop ak Ngadan (75 years old)</td>
<td>N 1°30'46.0" E 110°30'53.0"</td>
</tr>
<tr>
<td>3</td>
<td>Kpg. Segenam</td>
<td>158</td>
<td>Abong ak Mangku (73 years old)</td>
<td>N 1°30'44" E 110°30'55"</td>
</tr>
</tbody>
</table>

The distance from one village to another village took at least 15 minutes ride on a four-wheel vehicle. However, not all the villages are accessible on road. Kampung Segenam is located across Samarahan river which requires around 5 minute sampan ride. The journey from the villages to the nearest town, Serian takes at least 40 minutes on a car ride. There are two primary schools provided for the children in the area. Each of the villages has one small church. No clinics are available around the area. Most of the elder villagers are farmers and some of the new generation chooses to earn their living in Kuching.
The map below shows the location of the research site, Hulu Samarahan.

Figure 1: Hulu Samarahan in Serian District.

The necessary information such as the traditional uses on the collected samples were recorded from Mr. Sulau ak Racha (50 years old) and Mdm. Ilam ak. Tengaling (45 years old). The morphological features and the medicinal uses were recorded during the field survey. The collected samples must be complete with flowers or fruits. However, sterile specimens were also collected due to the unavailability of fertile specimens.
Sample preparation

The fresh samples were preserved in 70% alcohol for at least one or two nights to make sure the samples were free from fungal contamination. The preserved samples will be taken back to Universiti Malaysia Sarawak (Unimas) laboratory for identification of its family and genus based on references done by local botanist (Whitmore, 1972 & 1973). In addition, references were also being done based on available herbarium specimens at Universiti Malaysia Sarawak Herbarium and Herbarium Sarawak Forest Department. Before being identified, the samples were dried in the oven at 60°C for two weeks. Then, the samples were mounted on acid free herbarium sheet (42.0cm x 29.0cm) with herbarium glue (Bridson, 1992). After the glue has dried, the samples are sewn so that the samples are completely attached to the herbarium sheets. The mounted samples were deposited at Herbarium University Malaysia Sarawak (HUMS) for references.
Phytochemical Screening

Phytochemical Screening is one of the methods to determine the presence of chemical compounds such as secondary metabolites like alkaloids, saponins and flavonoid in the selected plant samples. Ten samples were tested for the presence of alkaloid, flavonoid and saponin based on the information obtained.

Below are the methods for alkaloid, flavonoid and saponin testing:

i) **Alkaloid Screening**

According to Culvenor and Fitzgerald (1963), 5 g of dried and pounded leaves were put in 250ml beaker. Then 30ml chloroform (CHCl₃) and 3ml ammonia (NH₃) were added into the beaker. The mixture was shaked for 10 minutes, and filtered by using Whatman Paper No. 1™ into a funnel flask. Ten drops of 2 M sulphuric acid (H₂SO₄) were added into the funnel flask and mixed well. The extracts were filtered from the funnel flask in order to separate the chloroform by using Buchner flask. The filtered extracts were then poured into 3 test tubes labeled A, B and C. Test tube A was used to conduct Mayer test, test tube B for conducting Wagner test while test tube C acted as a control.

For Mayer test, the emergence of white deposits indicates the presence of alkaloid compounds whereas for Wagner test, the formation of brown sendiments showed the presence of alkaloid.
ii) Flavonoid Screening

Ten samples namely *Murraya koenigii*, *Hibiscus rosa-sinensis*, *Lycopodium scandens*, *Mischocarpus* sp., *Derris elliptica*, *Achasma* sp., *Labisia pumila*, *Melastoma malabathricum*, *Citrus hystrix* and *Breynia racemosa* were selected for the flavonoid screening. The dried leaves were crushed and placed into 250ml beaker and 100ml of 70% ethanol was added into the beaker. The solution was left for overnight. The solution was filtered by using Whatman Paper No. 1™. The extract was concentrated by placing it onto watch glasses for 2 days to evaporate. In order to dissolve the dried extract, few drops of 80% ethanol were added.

a) Paper Chromatography Preparation

A piece of chromatography paper was cut into a square with the measurement of 20cm × 20cm. Two lines were drawn, with 1.5cm of length at the edges of the paper. The meeting point of the two lines was marked ‘X’. By using a capillary tube, the previous solution will be dropped on the point ‘X’ and the spot will be left to dry.

b) Running and Identification of Spots from the Chromatogram

The chromatography paper with the extract stain was left to stand in BAW solution and for 3 to 5 hours or more. Then, the chromatography paper was left to dry. A colored spot on the chromatography paper indicated the presence of flavonoid was detected clearly under the UV light. Secondly, the same chromatography paper was placed in a straight position in 15% acetic acid for 1 or 2 hours. Later, the paper was left to dry. Most of the flavonoid derivatives are not detectable in visible light, therefore, the presence of flavonoid compounds are detected under UV light because flavonoid has the capacity to adsorb UV radiation (Bohm, 1998). Fumming the chromatogram with
ammonia vapors caused certain phenolic groups to ionize, hence encouraged the reaction (Bohm, 1998). Flavonoid compounds were identified based on Rf reading and the changes of the color under the UV light. Tentative identification of the compounds were based on the standard reference.

iii) **Saponin Testing**

Five gram of grinded leaves were put into 250ml beaker and 50ml ethanol with the concentration of 80% was added. The beaker was heated in water for 15 minutes at 90°c. After 15 minutes, the solvent was left to cool before filtering it using Whatman Paper No. 1TM. The extract was poured on watch glass and left for overnight. The dried extract was diluted with 5ml distilled juice. Then the dilution was poured into the test tube and mix thoroughly for 30 seconds. The formation of bubbles showed the sample contains saponin after being left for 30 minutes. The height of the bubbles were measured.
RESULTS

A total of forty three species from thirty families of medicinal plants used by the Iban communities were recorded from the ethnobotanical survey conducted at the three villages at Serian district. The information on the medicinal uses and preparation of the plants was obtained from three persons. The three informants were 45 years to 69 years old. From the survey conducted, it was evident that the knowledge of using medicinal plants in traditional medicine only acquired by the elders and not the younger generation. Samples collected were preserved as herbarium species and were kept at Herbarium Universiti Malaysia Sarawak (HUMS).

Below are the full descriptions of the forty three species of common medicinal plants being used by the Iban communities in Serian district:

Description of Medicinal Plants

1) Family : Acanthaceae
Botanical name : Andrographis paniculata Nees
Vernacular name : Daun cahaya (Iban), hempedu bumi, pokok cerita, hempedu pahit (Malay), pokok cerita (Malay), bidara, sachilata, sambiloto (Jawa), kalmegh (India), kirata (Sanskrit), fatalnijun (Thailand)
Sample number : ND 29
Locality : Kampung Segenam, Serian
Habitat : Home garden (can be found growing wildly in grassland)
Plant description

It is an erect, annual herb growing to height 60-70cm (Jaganath and Teik, 2000). Leaves simple, opposite, dark green, bitter, apex acute and base tapering (Wiart, 2000). Flowers bilaterally, set in clusters, calyx with 5 sepals often joined in a cup. Corolla with a long tube and 4-5 lobes, generally 2-lipped, stamens 4 or 2; ovary superior, with 1 style and 2 cavities. Fruit as a capsule, generally rather long (Corner, 1988).

Uses in traditional medicine

According to Sulau anak Racha, the whole plant is boiled and drank to cure headache. Jaganath and Teik (2000) stated that this herb can also be used for treating diabetes, fever, worm infections, chronic bronchitis, leprosy, pruritis, flatulence, colic, dysentery, diarrhea infestation and skin diseases (eg. burns, wounds, ulcers). The Chinese and Ayuverdic believes that this herb cures liver troubles, dysentery, skin diseases, boils, snakebites and swellings (Wiart, 2000).

Chemical constituents (with commercial potential)

Andrographiside, andrographolide, neoandrographolide (Jaganath and Ng, 2000).

The leaves contain dipterpene; andrographolide. The root contains flavone (Wiart, 2000).
Andrographis paniculata

2) Family : **Amaranthaceae**

Botanical name : *Amaranthus spinosis*

Vernacular name : Bayam (Iban / Malay)

Sample number : ND 25

Locality : Kampung Soh, Serian

Habitat : Lowland area (normally planted by the local people in the home garden)

Plant description

Herb 1m tall. Leaves simple, whorl, deltoid 8.0-13.5cm x 3.2-9.4cm. Upper and lower surface glabrous. Midrib prominent lower and upper surface.

Uses in traditional medicine

The whole plant is being cooked just like any other spinach. To reduce high blood pressure

(Informant : Sulau anak Racha, 50).
3)

Family : **Arecaceae**

Botanical name : *Areca catechu*

Vernacular name : Pinang (Iban / Malay)

Sample number : ND 01

Locality : Kampung Segenam, Serian

Habitat : Lowland areas (Normally planted by the villagers in the fruit orchard)

Plant description

A tree with annulate stem. The stem is surrounded by a crown of pinnate leaves. The leaflets are numerous, the petioles expanded into a broad, tough, sheath-like growth at the lower end; the inflorescence is spathe which is compressed and glabrous; the spadiceous are much branched, bearing ebracteate male and female flowers. The male flowers are small and numerous; the female flowers are solitary or in groups of 2 or 3 or much larger than the male. The fruits are ovoid, smooth and orange or scarlet when ripe. They are single seeded and the endosperm and seed kernel is grayish brown and minute, with reddish brown lines.
Uses in traditional medicine

The ripe nut is eaten raw and act as stimulants (Informant: Sulau anak Racha, 50).

Chemical constituents

The nuts contain the alkaloids, arecoline, arecaidine and arecolidine, isoguvacine, guvacine and guvacoline, tannins, fats, choline, catechin, saccharose, mannan, galactan, proteins and some Vitamin A (Duke, 1958).
4)

Family : Annonacea

Botanical name : Goniothalamus malayanus

Vernacular name : Lukai (Iban)

Sample number : ND 22

Locality : Kampung Segenam, Serian

Habitat : Secondary forest

Plant Description

Leaves simple, alternate, oblong, drooping 16.8-19.0cm x 6.0-7.0cm, apex mucronate, base attenuate, margin undulate, lower and upper surface glabrous, midrib raised upper surface, midrib channeled below surface, secondary veins ascending, 9 pairs. Petiole swollen, 1.5cm long. No stipules. Flower solitary, hanging or facing down, rather large, fragrant. Fruit typically a bunch of round, oblong or pod-like, stalked fruits (ripe carpels) radiating from a short woody stalk. Fruits with 1-3 seeds (Corner, 1998).

Uses in traditional medicine

The wood of the plant is burnt and used as mosquito repellent. In addition, the wood is believed to scare evil spirits away (Informant : Sulau anak Racha, 50).
5)

Family : *Caricaceae*

Botanical name : *Carica papaya* Linn.

Vernacular name : Betik (Iban / Malay)

Sample number : ND 36

Locality : Kampung Segenam, Serian

Habitat : Lowland area (Planted by the villagers in the fruit orchard)

Plant description

A small soft-wooded, fast growing and short lived tree, with large glabrous palmatifid and palmate leaves. Across on long hollow petioles, forming a round tuft at the top of the stem. Flowers on axillary panicles, pale yellow, fragrant, generally dioecious but occasionally a few female flowers on a male plant. Male flowers in long drooping panicles. Female flowers in short clusters. Ovary 1-celled. Stigma sessile, 5-lobed. Fruit succulent, indehiscent, 1-celled. Seeds
numerous, black, enclosed in sweet mucous pulp and covered with a loose hyaline skin, testa thick, brittle.

Uses in traditional medicine

The seeds are used to treat digestive disorder while the leaves are eaten raw with chili paste to increase appetite (Informant: Sulau anak Racha, 50). Besides that, the latex of the papaya can be used to treat pimples (Zainatul Suhaida, 2003).

Chemical constituent

Papain and chymopapain, proteolytic enzymes extracted from the latex, have a wealth of industrial uses. Papain breaks down proteins, therefore has been used as commercial meat tenderizers. (Simpson & Ogorzaly, 2001).

The ripe fruit is tasty and used as an appetizer.

Carica papaya
6)

Family : Convolvulaceae

Botanical name : Merremia peltata (L) Merr.

Vernacular name : Daun salang (Iban / Malay)

Sample number : ND 13

Locality : Kampung Segenam, Serian

Habitat : Lowland areas (can be found along the roadside)

Plant description

Creeping plant, can reach to 5 m long. Leaves simple, spiral, deltoid, 7.5-10 cm x 6.0-7.5 cm, apex cuspidate, base peltate, margin undulate, lower surface glabrous, upper surface tormentose, midrib prominent below surface, channeled upper surface, secondary veins ascending.

Uses in traditional medicine

The latex of the leaves is being applied to boils (Informant : Sulau anak Racha, 50). In addition, this plant is used to cure sharp body pain by warming the leaves over fire and applying them on the affected parts.