PHYTOCHEMICAL AND BIOLOGICAL STUDIES ON
CINNAMOMUM GRIFFITHII

HUSNA A. HAMID

This project is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science with Honours (Resource Chemistry)

Faculty of Resource Science and Technology
UNIVERSITI MALAYSIA SARAWAK
2006
ACKNOWLEDGEMENT

I owe my sincere thanks to Assoc. Prof. Dr. Fasihuddin Ahmad who has gave many valuable information, suggestions and guidance throughout my research studies for my final year project titled 'Phytochemical and Biological Studies on Cinnamomum griffithii.'

This special acknowledgement also dedicated to all personal persons who helping me in order to carry out my research especially Assoc. Prof. Dr. Zaini Asim, Mr. Hafiz, Miss Haza and Miss Diana for the full gave of help, commitments and supports to the improvements of my project.

Not forgotten, my sincere thank also goes up to my beloved family whom always stand with me and lastly, for all every single person involved in towards my success. Anyways, thank you very much and all of your contributions I am really appreciated.
TABLE OF CONTENTS

DECLARATION ii

ACKNOWLEDGEMENT iii

TABLE OF CONTENTS iv

LIST OF TABLES vii

LIST OF APPENDIXES viii

ABSTRACT xi

ABSTRAK xii

CHAPTER 1: INTRODUCTION 1
1.1 Lauraceae 1
1.2 Cinnamomum 7
1.3 Cinnamomum griffithii 18
1.4 Objective 19
CHAPTER 2: MATERIALS AND METHODS

2.1 Plant Material

2.2 General Procedure

2.3 Extraction

2.4 Isolation and Purification

2.4.1 Thin Layer Chromatography (TLC)

2.4.2 Column Chromatography (CC)

2.4.3 Gas Chromatography-Flame Ionization Detector (GC-FID)

2.5 Structural Elucidation

2.5.1 Gas Chromatography-Mass Spectroscopy (GC/MS)

2.5.2 Fourier Transform Infrared Spectrometer (FTIR)

2.6 Brine Shrimp Toxicity Test

CHAPTER 3: RESULTS AND DISCUSSIONS

3.1 Extraction

3.2 Isolation and Purification

3.2.1 Hexane Partition

3.2.2 Ethyl Acetate Partition

3.3 Structure Elucidation

3.3.1 Spectroscopy Analysis

3.4 Brine Shrimp Toxicity Test
LIST OF TABLES

Table 1.1: *Cinnamomum* species found in Malaysia and their local names (Burkill, 1966; Mat Salleh and Latiff, 2002; Wiart, 2002).

Table 1.2: The uses of some *Cinnamomum* species found in Malaysia.

Table 3.1: The weights, percentage yields and colors of the *Cinnamomum griffithii*’s crude extract partitioned with different solvent of increasing polarity.

Table 3.2: R$_f$ values and colors of separated spots for each partition from *Cinnamomum griffithii*.

Table 3.3: The weights and properties of combined fractions from hexane partition.

Table 3.4: R$_f$ values and solvent systems of some combined fractions from hexane partition.

Table 3.5: The colors and weights of combined fraction from H15.

Table 3.6: The colors and weights of combined fraction from ethyl acetate partition.

Table 3.7: The colors and weights of combined fraction from E5.

Table 3.8: The average number of deaths of *Artemia salina* as a function of concentrations from crude extract and partitions of *Cinnamomum griffithii*.
LIST OF APPENDICES

Appendix 1: The separation of hexane partition, dichloromethane partition and ethyl acetate partition in solvent systems of hexane, CH₂Cl₂-EtOAC (15:1) and CH₂Cl₂-EtOAc (18:1) respectively.

Appendix 2a: Hexane partition (fractions 0-17) in solvent system of hexane-CH₂Cl₂ (9:1).

Appendix 2b: Hexane partition (fractions 17-34) in solvent system of hexane-CH₂Cl₂ (2:3).

Appendix 2c: Hexane partition (fractions 34-51) in solvent system of CH₂Cl₂-CHCl₃ (3:2).

Appendix 2d: Hexane partition (fractions 51-68) in solvent system of CHCl₃-EtOAc (3:2).

Appendix 2e: Hexane partition (fractions 68-85) in solvent system of CHCl₃-EtOAc (4:1).

Appendix 2f: Hexane partition (fractions 85-102) in solvent system of CHCl₃-EtOAc (7:3).

Appendix 2g: Hexane partition (fractions 102-119) in solvent system of CHCl₃-EtOAc (2:3).

Appendix 2h: Hexane partition (fractions 119-136) in solvent system of CHCl₃-EtOAc (1:4).

Appendix 2i: Hexane partition (fractions 136-151) in solvent system of CHCl₃-EtOAc (1:4).
Appendix 3: Combined fractions of H15 named as H15a, H15b, H15c, H15d and H15e in hexane-CHCl₃ as suitable solvent system.

Appendix 4a: Ethyl acetate partition (fractions 0-17) in solvent system of CH₂Cl₂-EtOAc (18:1).

Appendix 4b: Ethyl acetate partition (fractions 17-34) in solvent system of EtOAc-MeOH (4:1).

Appendix 4c: Ethyl acetate partition (fractions 34-46) in solvent system of EtOAc-MeOH (1:4).

Appendix 5: E5 combined fraction (fractions 0-14) in solvent system of EtOAc-MeOH (4:1).

Appendix 6a: Chromatogram of H15 combined fraction.

Appendix 6b: Mass spectrum of peaks from H15 at retention time of 15.38 min.

Appendix 6c: Mass spectrum of peaks from H15 which detected at retention time of 15.88 min.

Appendix 6d: Chromatogram of H15b detected at retention times of 12.91 min and 13.16 min.

Appendix 6e: Mass spectrum of major peaks at retention time of 12.91 min.

Appendix 6f: Mass spectrum of peak in H15b at retention time of 13.16 min.

Appendix 7a: Chromatogram of H16, which shows several peaks with a major peak at retention time of 15.78 min.

Appendix 7b: Mass spectrum of H16.

Appendix 8a: Chromatogram of H25.

Appendix 8b: Mass spectrum of major peak of H25.
Appendix 9a : Chromatogram of pure compound from H27.
Appendix 9b : Mass spectrum of H27.
Appendix 9c : Infrared spectrum of H27.
Appendix 10a: Chromatogram of H38.
Appendix 10b: Mass spectrum of H38.
Appendix 10c: Infrared spectrum of H38.
Appendix 11 : Mass spectrum for peak E1 appeared at retention time of 31.53 min.
Appendix 12a: Chromatogram of E2 combined fraction.
Appendix 12b: Mass spectrum for E2.
Appendix 12c: Infrared spectrum of E2.
Appendix 13a: Chromatogram of E3 combined fraction.
Appendix 13b: Mass spectrum for major peak at retention time 15.30 min.
Appendix 13c: Mass spectrum for peak at retention time of 15.76 min.
Appendix 14 : Chromatogram of E5b.
ABSTRACT

The stem barks of *Cinnamomum griffithii* was extracted using methanol, filtered and evaporated to dryness to give 552.84 g (23.03 % weight / dry weight) crude extract. Solvent partition was performed using solvent with increasing polarities and resulted in four partitions which are hexane (8.12 g), dichloromethane (0.76 g), ethyl acetate (5.91 g) and methanol partition (10.4 g). Further purification of hexane partition and ethyl acetate partition were resulted in one pure compound (greenish crystal from H27 combined fraction) and four semi pure compounds (isolated from H15, H15b, H16, E2 and E5b). The pure compound showed the Rf value of 0.8 in chloroform-ethyl acetate (3:2) and exhibited the molecular mass of 256 g/mol corresponded to molecular formula of C15H11O4 with melting point of 195.0°C - 195.8°C. Infrared spectra showed an absorbance bands at 3390 cm⁻¹ (OH group), 1629 cm⁻¹ (C=O group), 1603cm⁻¹ (C=C aromatic) and 1300 cm⁻¹ (presence of C-O). Based on information from the mass spectrum, infrared, melting point and comparison with published data, the pure compound has been identified as pinocembrin. Meanwhile, the semi pure compounds were identified as 1, 2-dimethoxy-4-(2-propenyl)-benzene, 3-phenylmethyl-2-propanoic acid, 5-ethyl-3, 5-dimethylloxazolidione and 1, 2-benzenedicarboxylic acid. Toxicity test against larvae of *Artemia salina* was performed and hexane partition showed inhibitory activity against the larvae of *Artemia salina* with LC₅₀ value of 82.54 µg/mL.

Keywords: *Cinnamomum griffithii*; chromatography analyses; spectroscopy analyses; pinocembrin; 1,2-dimethoxy-4-(2-propenyl)-benzene; 3-phenylmethyl-2-propanoic acid; *Artemia salina*
ABSTRAKS

Bahagian kulit batang pokok Cinnamomum griffithii telah diekstrak dengan menggunakan pelarut metanol, dituras dan dikeringkan bagi memberikan 552.84 g (23.03 % berat kering) ekstrak kasar. Pempartisan pelarut menggunakan pertambahan kepolaran pelarut telah dijalankan dan proses ini telah menghasilkan empat partisi dengan nilai berat hasil tertentu iaitu partisi heksana sebanyak 8.12 g, partisi diklorometana sebanyak 0.76 g, partisi etil asetat sebanyak 5.91 g dan partisi metanol sebanyak 10.4 g. Pemisahan ke atas partisi heksana dan partisi etil acetat telah berjaya memisahkan satu sebatian tenu (kristal kehijauan dari fraksi H27) dan empat sebatian hampir tenu (dari fraksi H15, H15b, H16, E2 dan E5b). Sebatian tenu yang telah berjaya dipisahkan memberikan nilai R, 0.8 dalam sistem pelarut kloroform-etil asetat (3:2) dan memberikan berat molekul 256 g/mol berpadanan dengan jisim formula C17H22O3 dan takat lebunya berada dalam julat 195.0°C-195.8°C. Maklumat sinar infra merah memunjukkan penyerapan yang kuat pada frekuensi 3390 cm\(^{-1}\) (kumpulan OH), 1629 cm\(^{-1}\) (kumpulan C=O), 1603 cm\(^{-1}\) (C=C aromatik berkonjugat) dan frekuensi 1300 cm\(^{-1}\) (kumpulan C-O). Berdasarkan maklumat spektroskopi, sinar inframerah, takat lebur dan perbandingan dengan data yang pernah diterbitkan, kemungkinan besar sebatian tenu ini adalah pinosembrin. Sebatian separa tenu yang diperolehi telah dienalpasti sebagai 1, 2-dimetoksi-4-(propenil)-benzena, asid 3-fenilmetyl-2-propanoik, 5-etil, 5-dimetiloxalidiona dan asid 1,2-dibenzenakarbosilik. Ujian ketoksikan terhadap larva Artemia salina telah dijalankan dan partisi heksana telah menunjukkan kesan perencatan ke atas larva Artemia salina iaitu dengan nilai LC\(_{50}\) sebanyak 82.54 µg/mL manakala partisi-partisi lain tidak menunjukkan sebarang kesan ketoksikan.

Katakunci: Cinnamomum griffithii, analisa kromatografi, analisa spektroskopi, pinosembrin, 1,2-dimetoksi-4-(propenil)-benzena, asid 3-fenilmetyl-2-propanoik, ujian ketoksikan Artemia salina.
CHAPTER 1
INTRODUCTION

1.1 Lauraceae

The Lauraceae family is a green medium size tree found in the tropics especially in India, China, East Africa and South Asian Countries like Malaysia, Indonesia and the Philippines. It is a big family consisting of more than 32 genus and 2000 to 2500 species (Thomson, 1993; Wiart, 2000, 2002). Some of the genuses in Lauraceae family are Cinnamomum, Litsea, Aniba, Lindera, Cryptocarya and Nathaphoea (Burkill, 1966; Davies-Coleman and Revett, 1989). The members of Lauraceae family can be found in tropical rain forest and grow at various altitudes from highlands slopes to lowland forest and occurs in both marshy places and on well-drained soils. However, in latitudes with seasonal climatic conditions, they become exceedingly rare (Lawrence, 1967; Kochummen, 1989).

The Lauraceae families, which are commercially used in traditional medicine, have drawn attention by natural product chemists and medicinal clinicians as they have been used for treatment of various ailments (Burkill, 1966; Mat Salleh and Latiff, 2002). Various biologically active compounds have been isolated from the Lauraceae family for example alkaloids, terpenes, flavanoids, polyphenol, and others (Hanaraka et al., 1985; Zhang et al., 2003; Chen et al., 2005; Fang et al., 2005; Kuo et al., 2005; Lee et al., 2005; Simic et al., 2004; Wang et al., 2005). These secondary metabolite shows numerous biological activities such as anti-diabetic agent, anti-inflammatory agent, anti-tumor, anti-virus, anti-fungal, anti-helmentic activities and other biological activities.
(Hanaraka et al., 1985; Zhang et al., 2003; Yang et al., 2004; Chen et al., 2005; Fang et al., 2005; Kuo et al., 2005; Lee et al., 2005; Simic et al., 2004; Verspohl et al., 2005; Wang et al., 2005).

Some of the biologically active compounds isolated from Lauraceae family includes litseaverticillols A (1), litseaverticillols B (2), litseaverticillols C (3), litseaverticillols D (4), litseaverticillols E (5), litseaverticillols G (6) and litseaverticillols H (7) which belongs to the sesquiterpenes and were isolated by bioassay directed fractionation from the leaves of *Litsea verticillata*. All of the compounds inhibited HIV-1 replication in HOG R5 cells (Zhang et al., 2003).
Riparin III (8) isolated from the unripe fruit of *Aniba riparia* showed broad-spectrum anti-microbial activity, effects on central nervous system and has potent smooth muscle relaxant activity. It also produces an inhibition of Ca$^{2+}$ influx and release of intracellular Ca$^{2+}$ (Sousa *et al.*, 2004).
Various butanolide (γ-lactone) such as akalactone A (9), akalactone B (10), litseakolide A (11) and litseakolide B (12) have been isolated from the stem bark of *Litsea akoensia*. These butanolides showed *in-vitro* cytotoxic activity against P-388, KB 16, A 549 and HT-29 cancer cell lines (Chen *et al.*, 1998).

![Chemical structure of Butanolides](image)

Studies on the constituents from the leaves of *Dehaasia triandra* resulted in the isolation of five novel alkaloid which were identified as socoxanthoplanine (13), dehydroisocorydione (14), (8, 8'-R)-bisisocorydine (15), (8, 8'-S)- bisisocorydine (16) and 11, 8'-O- bisisocorydine (17) (Lee *et al.*, 1996).
Naturally occurring 6-[ω-arylalkenyl]-5,6-dihydro-α-pyrones, cryptomoscatones D2, E1, E2, E3 and F1 and cryptopyranmoscatones A1, A2, A3, B1, B2 and B4, including goniothalamin (18) and cryptofolione (19) have been isolated from stem bark of Cryptocarya moschata, Cryptocarya latifolia and Cryptocarya myrtifolia (Sehlapelo et al., 1994; Cavalheiro and Yoshida, 2000).

The discovery of large number of natural bioactive compounds from the tree of Lauraceae family give large impact to the medicinal purposes in order to further research and study to reveal and discovered the natural drug resources.
1.2 Cinnamomum

Cinnamomum is one of the most well known genera in Lauraceae family. It contains about 250 species and distributed throughout China, India, East Africa and South Asian Country like Malaysia, Indonesia and Philippine (Ridley, 1924; Kochummen, 1989; Ibrahim et al., 1995). According to Ibrahim et al., (1995), *C. verum* J.S Presl, *C. pubescens* Kochummen, *C. javanicum* Bl, *C. iners* Reinw., *C. impressicostatum* Kosterm., *C. moliissimim* Hk.f., *C. porrectum* (Roxb.) koster., *C. camphora* (L.) J.S Presi., *C. sintoc* Bl., *C. aureofulvum* Gamb., *C. microphyllum* Ridl., *C. scortechinii* Gamb., *C. subavanim* Miq. and *C. altissimum* Kosterm are the most well known species. In Malaysia, 30 species of *Cinnamomum* have been recorded (Mawardi et al., 2000) and *C. inners*, *C. moliissimim* and *C. sintoc* are widely distributed (Burkill, 1966). Table 1.1 shows the *Cinnamomum* species found in Malaysia and their local names (Burkill, 1966; Mat Salleh and Latiff, 2002; Wiart, 2002).
Table 1.1: *Cinnamomum* species found in Malaysia and their local names (Burkill, 1966; Mat Salleh and Latiff, 2002; Wiart, 2002).

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Local Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. altissimum Kosterm</td>
<td>Not known</td>
</tr>
<tr>
<td>C. burmanni</td>
<td>Not known</td>
</tr>
<tr>
<td>C. camphora (L.) J.S. Presl</td>
<td>Not known</td>
</tr>
<tr>
<td>C. cassia J.S. Presl</td>
<td>Not known</td>
</tr>
<tr>
<td>C. celebicum Miq</td>
<td>Not known</td>
</tr>
<tr>
<td>C. culitlawan (L.) Kosterm</td>
<td>Not known</td>
</tr>
<tr>
<td>C. deschampsii Gamble</td>
<td>Not known</td>
</tr>
<tr>
<td>C. eugenoliferum Kosterm</td>
<td>Not known</td>
</tr>
<tr>
<td>C. grandiflorum Kosterm</td>
<td>Not known</td>
</tr>
<tr>
<td>C. grandis Kosterm</td>
<td>Not known</td>
</tr>
<tr>
<td>C. iners Reinw. ex Blume</td>
<td>Teja, Teja Lawang, Medang Teja, Kemangi, Teja Badak, Abau</td>
</tr>
<tr>
<td>C. japonicum Sieb ex Nees.</td>
<td>Not known</td>
</tr>
<tr>
<td>C. javanicum Blume</td>
<td>Medang Kayu Manis, Kura Bengkak, Lawang</td>
</tr>
<tr>
<td>C. loureirii Nees</td>
<td>Not known</td>
</tr>
<tr>
<td>C. mercadoi S. Vidal</td>
<td>Medang, Kalinngag, Samiling, Tagalog, Kaningag</td>
</tr>
<tr>
<td>C. mollissimum Hook.f.</td>
<td>Medang Lawang, Medang Wangi, Pialu</td>
</tr>
<tr>
<td>C. nees ex Blume</td>
<td>Not known</td>
</tr>
<tr>
<td>C. pendulum Cammerl.</td>
<td>Not known</td>
</tr>
<tr>
<td>C. politum Miq.</td>
<td>Not known</td>
</tr>
<tr>
<td>C. poirectum (Roxb.) Kosterm</td>
<td>Medang serai, Medang Gatal, Kayu Gadis, Medang Benar, Medang Losoh, medang Lilin, Medang Lawas</td>
</tr>
<tr>
<td>C. puberulum Ridley</td>
<td>Not known</td>
</tr>
<tr>
<td>C. rhynchophyllum Miquel</td>
<td>Not known</td>
</tr>
<tr>
<td>C. scortechinii Gamble</td>
<td>Not known</td>
</tr>
<tr>
<td>C. sintoc Blume</td>
<td>Kayu Sintok, Teja Lawang</td>
</tr>
</tbody>
</table>
Table 1.1: (continued).

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Local Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. subavenium Miq</td>
<td>Not known</td>
</tr>
<tr>
<td>C. subcuneatum Miq.</td>
<td>Not known</td>
</tr>
<tr>
<td>C. subtetramerum Miq.</td>
<td>Not known</td>
</tr>
<tr>
<td>C. schaeffer</td>
<td>Not known</td>
</tr>
<tr>
<td>C. verum J.S. Presl</td>
<td>Kayu Manis</td>
</tr>
<tr>
<td>C. zeylanicum Blume</td>
<td>Kayu Manis, Pattai</td>
</tr>
</tbody>
</table>

In Malay communities, the **Cinnamomum** species are well known as Kayu Manis and Tejur. It has been used as medicinal plants in order to treat the health problems (Cornel, 1951). For examples the roots of C. *iners* or commonly known as Teja, Teja Lawang, Medang Teja, Kemangi, Teja Badak or Abau by the Bidayuh community is used to reduce and calm down fever, cough, asthma and as a tonic which used by women after giving birth (Mat Salleh and Latiff, 2002). Meanwhile the leaves, strip and bark are used to reduce toxin and painful in body and as tonic by women after giving birth (Mat Salleh and Latiff, 2002; Wiart, 2002). Besides, the root of C. *javanicum* or locally known as Medang Kayu Manis, Kura Bengkak, Lawang Kecil, Kayu Kapur and Kerak Bengkah is used to treat the spleen problem and ‘meroyan’ (Burkill 1966; Mat Salleh and Latiff, 2002).

The bark of C. *mercadai* or a locally known as Medang, Kalinngag, Samiling (Tagalog) and Kaningag is used to reduce headache and treat intestinal problem such as diarrhea and stomachache while the root and bark of C. *mollissimum* or known as Medang Lawang, Medang Wangi or Pialu by the Malay’s community is used by
‘Temuan’ people to reduce fever and eaten with *Piper betle* and tobacco as a tonic (Burkill 1966; Mat Salleh and Latiff, 2002).

In addition, the barks and seeds of *C. porrectum* is used as tonic especially for female teenagers during menstrual or after giving birth or to improve an internal energy and to reduce and treat rheumatism (Ridley, 1924; Burkill 1966; Mat Salleh and Latiff, 2002). The dried bark of *C. sintoc* or locally known as Sintok or Teja Lawang is used as an antiseptic and to treat gastrointestinal problem such as stomachache and diarrhea (Ridley, 1924; Burkill 1966; Mat Salleh and Latiff, 2002; Wiart, 2002). It also used as a tonic by women after giving birth (Burkill, 1966; Wiart, 2002). Meanwhile, the barks and leaves of *C. verum* and *C. zeylanicum* or known as Kayu Manis and Pattai by Tamil’s community are used as tonic, anti-toxin and also used to treat skin problem caused by fungal infection (Ridley, 1924; Burkill 1966; Mat Salleh and Latiff, 2002; Wiart, 2002). It also used in order to reduce scar, menstrual and as a flavoring agents in food, perfume and pharmaceutical industry (Burkill, 1966; Mat Salleh and Latiff, 2002). Table 1.2 shows the summary of some of the uses of some *Cinnamomum* species found in Malaysia.
Table 1.2: The uses of some *Cinnamomum* species found in Malaysia.

<table>
<thead>
<tr>
<th>Species</th>
<th>Medicinal Use(s)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. iners</td>
<td>Fever, cough and asthma</td>
<td>Mat Salleh and Latiff, 2002;</td>
</tr>
<tr>
<td></td>
<td>Tonic and anti-toxin</td>
<td>Wiart, 2002</td>
</tr>
<tr>
<td>C. javanicum</td>
<td>Spleen problem</td>
<td>Burkill 1966; Mat Salleh and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Latiff, 2002</td>
</tr>
<tr>
<td>C. mercadai</td>
<td>Headache and intestinal problem</td>
<td>Burkill 1966; Mat Salleh and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Latiff, 2002</td>
</tr>
<tr>
<td>C. mollissimum</td>
<td>Fever and as tonic (eaten with Piper betle and tobacco)</td>
<td>Burkill 1966; Mat Salleh and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Latiff, 2002</td>
</tr>
<tr>
<td>C. porrectum</td>
<td>Tonic and rheumatism</td>
<td>Burkill 1966; Mat Salleh and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Latiff, 2002; Wiart, 2002</td>
</tr>
<tr>
<td>C. sintoc</td>
<td>Tonic and stomachache</td>
<td>Burkill 1966; Mat Salleh and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Latiff, 2002</td>
</tr>
<tr>
<td>C. verum</td>
<td>Antiseptic, intestinal problem and constipation</td>
<td>Burkill 1966; Mat Salleh and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Latiff, 2002</td>
</tr>
<tr>
<td>C. zeylanicum</td>
<td>Tonic and anti-toxin, skin and scar treatment, intestinal problem,</td>
<td>Burkill 1966; Mat Salleh and</td>
</tr>
<tr>
<td></td>
<td>constipation, insomnia and flavoring agent</td>
<td>Latiff, 2002; Wiart, 2002</td>
</tr>
</tbody>
</table>

Cinnamomum species are the source of cinnamon bark which has been used since ancient time. For instead, the barks of *C. zeylanicum*, *C. loureirii*, *C. burmanni*, and *C. cassia* are the four principal *Cinnamomum* species entering the trade market as cinnamon. Cinnamon has been known in Southern Europe for well over a thousand years, but become more widely known in other parts of Europe during the Middle Ages when the Islamic World extended its influence to the Orient and East to the Siberia starting in the eighth century A.D. (Smith *et al.*, 1992).
In mediaval times, cinnamon was distilled to produce cordials, ostensibly to aid in digestion. In the Orient, cinnamon and its near relatives are still widely used for local remedies, particularly for gastrointestinal and respiratory disorders. Meanwhile, in Philipine and the Pacific, cinnamon is taken to relieve headaches while in the West, it is used mainly for flavouring food, as an ingredient in perfumes and in the case of Mexico, to enhance the flavour of coffee. In Columbia, however, cinnamon sticks are chewed to speed parturition (Smith et al., 1992).

The studies on phytochemical and biologically active compounds on a wide number of Cinnamomum species have resulted in the isolation and characterization of valuable biological active compounds. The Cinnamomum species are rich in essential oils, tannin (Morimoto et al., 1986; Namba, 1986; Yazaki and Okuda, 1990; Buckingham, 1992), alkaloids (Kretovitch, 1966; Gellert and Summuns, 1969; Kechummen, 1972), terpenoids and terpene (Yang et al., 2005), lignans (Wu et al., 1994), flavanoids (Pesry and Metzger, 1950; Chopra et al., 1956; Said, 1969; Egan et al., 1981; Nohara et al., 1985; Vincieri et al., 1988; Evans, 1989; Fang et al., 2005) and benzylic compounds (Thomson, 1993).

These various compound especially phenolics, terpenoids and alkaloids, which existed in plants shows repellent activities to animals (Harding, 1985; Hansson, 1988; Harbone, 1993). Cinnamaldehyde is the main compounds which responsible for the aroma of the cinnamomum species and other aromatic plants (Ibrahim et al., 1995) and it also known for the anti-fungal properties (Thompson, 1989), anti-bacterial properties (Lee and Ahn, 1998) and anti-mutagenic effects (Kakinuma et al., 1984).
Cinnamophilin (20), a natural compound isolated from *C. philipinense* (Wu *et al.*, 1994), possesses both thromboxane A_2_ synthesis inhibitory and thromboxane A_2_ receptor antagonist properties (Wu *et al.*, 1994; Yu *et al.*, 1994). Cinnamophilin is also effective in the reduction of reperfusion-induced arrhythmia (Su *et al.*, 1999) and it also acts as a novel antioxidant and cytoprotectant against oxidative damage (Hsiao *et al.* 2001).

![Chemical structure of Cinnamophilin (20)](image)

Studies on *C. osmophlocrum* (Taiwan endemic tree) has resulted in the isolation of four kaempferol glycosides named as kaempferitrin (21), kaempferol 3-0-β-D-glucopyranosyl-(1,4)-α-l-rhamnopyranosyl-7-0-α-l-rhamnopyranoside, kaempferol 3-0-β-D-apiofuranosyl-(1,2)-α-l-arabinofuranosyl-7-0-α-l-rhamnopyranoside and kaempferol 3-0-β-D-apiofuranosy-(1,4)-α-l-rhamnopyranosyl-7-0-α-l-rhamnopyranoside. These compounds were evaluated as inhibitors of some macrophage functions involved in the inflammatory process and inhibited lipopolysaccharide (LPS) and interferon (IFN)-γ-induced nitric oxide (NO). Besides, they also inhibited cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-12 in a dose-dependent manner. However, kaempferol 3-0-β-D-glucopyranosyl-(1,4)-α-l-rhamnopyranosyl-7-0-