AN OFFLINE EMAIL IMPLEMENTATION BASED ON DELAY TOLERANT NETWORK (DTN)

Mohd Khairun Nasir Bin Sa’adi

Master of Advanced Information Technology
2013
UNIVERSITI MALAYSIA SAWARAK

Grade: ____________

Please tick (✓)
Final Year Project Report
Masters
PhD

DECLARATION OF ORIGINAL WORK

This declaration is made on the 09 day of September 2013.

Student’s Declaration:

I, MOHD. KHAIRUN NASIR BIN SA’ADI, (10031651), FACULTY OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY

(PLEASE INDICATE STUDENT’S NAME, MATRIC NO. AND FACULTY) hereby declare that the work entitled, AN OFFLINE EMAIL IMPLEMENTATION BASED ON DTN

(giene the text, nor has any part been written for me by another person.

09/09/2013
Date submitted

MOHD. KHAIRUN NASIR BIN SA’ADI (10031651)
Name of the student (Matric No.)

Supervisor’s Declaration:

KARTINAH BT. ZEN

(SUPERVISOR’S NAME) hereby certifies that the work entitled, AN OFFLINE EMAIL IMPLEMENTATION BASED ON DTN

(TITLE) was prepared by the above named student, and was submitted to the “FACULTY” as a partial/fulfillment for the conferment of MASTER OF ADVANCED IT (MAIT)

(PLEASE INDICATE THE DEGREE), and the aforementioned work, to the best of my knowledge, is the said student’s work

Received for examination by: KARTINAH BT. ZEN

(Name of the supervisor)

Date: 10/9/2013
I declare this Project/Thesis is classified as (Please tick (✓)):

☐ CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)*
☐ RESTRICTED (Contains restricted information as specified by the organisation where research was done)*
✓ OPEN ACCESS

Validation of Project/Thesis

I therefore duly affirmed with free consent and willingness declared that this said Project/Thesis shall be placed officially in the Centre for Academic Information Services with the abide interest and rights as follows:

- This Project/Thesis is the sole legal property of Universiti Malaysia Sarawak (UNIMAS).
- The Centre for Academic Information Services has the lawful right to make copies for the purpose of academic and research only and not for other purpose.
- The Centre for Academic Information Services has the lawful right to digitise the content to for the Local Content Database.
- The Centre for Academic Information Services has the lawful right to make copies of the Project/Thesis for academic exchange between Higher Learning Institute.
- No dispute or any claim shall arise from the student itself neither third party on this Project/Thesis once it becomes sole property of UNIMAS.
- This Project/Thesis or any material, data and information related to it shall not be distributed, published or disclosed to any party by the student except with UNIMAS permission.

Student's signature: [Signature] 09/09/13
Supervisor's signature: [Signature] 10/09/2013

Current Address:
LOT 5496, TAMAN INTI 2, BANDAR BARU SEMARIANG, JALAN SULTAN TENGAR, 92050, KUCHING, SARAWAK

Notes: * If the Project/Thesis is CONFIDENTIAL or RESTRICTED, please attach together as annexure a letter from the organisation with the period and reasons of confidentiality and restriction.

[The instrument was duly prepared by The Centre for Academic Information Services]
AN OFFLINE EMAIL IMPLEMENTATION BASED ON DELAY TOLERANT NETWORK (DTN)

MOHD KHAIRUN NASIR BIN SA'ADI

A thesis submitted

In fulfillment of the requirements for the Master of Advanced Information Technology

Faculty of Computer Science and Information Technology

UNIVERSITI MALAYSIA SARAWAK

2013
"This thesis is dedicated to my mom and dad, who was giving the infinite support and also to my wife, brothers and sisters who always giving encouragement"
ACKNOWLEDGEMENTS

Firstly, thanks to the project supervisor, Dr. Kartinah Zen for the guidance on matters related to Offline Email based on Delay Tolerant Network project and her encouragement to complete this project.

Advice and support from families also help in the completion of this thesis as well as help from friends who incessantly give guidance and knowledge to me.
ABSTRACT

This thesis focuses on extending offline email system in a local area network environment to the internet connected email system in online environment based on delay tolerant network. This offline email system will allow the rural users to have an access to the internet connected email system. It allows the user to read, write and send email in an offline local network environment. This offline email system will be able to connect to online email system via infomediary device based on delay tolerant network concept. Even though in an offline environment, user also able to read, write and send email as if he or she is in an online environment. This offline email system will allow the email flow through the offline environment to the online environment and vice versa. The most important part of this offline email system is an implementation of email database synchronization between offline mail server and infomediary device and between online mail server and infomediary device. Another part is an implementation of offline and online email system consist of mail server and mail client for both sides. This offline email system will be using operating system Windows XP 32bit, wireless local area network, and internet connection 1MB/s TMnet Streamyx Dynamic IP with the conjunction of Uniform Server for personal home server. This offline email system consists of offline mail client, offline mail server, database synchronization at offline server, infomediary device, online mail client, online mail server and database synchronization at online server.
ABSTRAK

TABLE OF CONTENTS

1. INTRODUCTION ... 1
 1.1 Overview .. 1
 1.2 Problem Statement ... 4
 1.3 Objective .. 5
 1.4 The Proposed System .. 6
 1.5 System Implications ... 8
 1.6 System Advantages .. 9
 1.7 Summary of chapters ... 11

2. LITERATURE REVIEW .. 13
 2.1 Transmission Control Protocol and Internet Protocol (TCP/IP) 13
 2.1.1 Detailed explanation in each TCP/IP Layers ... 14
 2.1.2 Internet Addressing .. 20
 2.1.3 TCP/IP Operation ... 22
 2.2 Delay Tolerant Network (DTN) .. 24
 2.2.1 Reason to use DTN ... 24
 2.2.2 Architecture of DTN ... 26
 2.3 Comparison of TCP/IP and DTN .. 32
 2.3.1 DTN vs. TCI/IP: Protocol Architecture ... 32
 2.3.2 DTN Router vs. TCP/IP Router ... 36
 2.3.3 Naming and addressing mechanism: Endpoint IDs ... 38
 2.4 Network Architecture: Emails ... 40
 2.5 Similar Works .. 43
 2.5.1 Bytewalla 5 ... 43
 2.5.2 Offline Gmail ... 44
 2.6 Summary .. 45

3. METHODOLOGY .. 46

4. OFFLINE EMAIL SYSTEM DESIGN ARCHITECTURE ... 49
 4.1 TCP/IP Mail System works as a DTN Mail System... 49
LIST OF FIGURES

Figure 1.1: Offline email system overview ... 4
Figure 1.2: Offline email system components ... 7
Figure 2.1: TCP/IP Protocol Architecture ... 14
Figure 2.2: TCP/IP Layer ... 15
Figure 2.3: Hypertext Transfer Protocol (HTTP) .. 15
Figure 2.4: Simple Mail Transfer Protocol (SMTP) .. 16
Figure 2.5: Address Classes [5] ... 21
Figure 2.6: Subnet Address .. 22
Figure 2.7: TCP/IP operation of accessing a website ... 23
Figure 2.8: Store and forward delivery ... 26
Figure 2.9: Bundles .. 27
Figure 2.10: Bundle Space ... 28
Figure 2.11: Bundle Overlay .. 30
Figure 2.12: Bundle Routing .. 31
Figure 2.13: Bundle Authentication Block (BAB) .. 31
Figure 2.14: Comparison Internet Protocol Layers with DTN Protocol Layers 33
Figure 2.15: Bundle Encapsulation [9] ... 34
Figure 2.16: Minimal conversational lower layer protocols [9] 35
Figure 2.17: Class of Bundle Service [9] ... 36
Figure 2.18: Internet Router [9] ... 37
Figure 2.19: DTN Router [9] .. 37
Figure 2.20: DTN Naming and addressing mechanism [9] ... 40
Figure 2.21: Internet Mail ... 41
Figure 2.22: DTN Mail .. 42
Figure 3.1: Iterative Approach .. 46
Figure 4.1: IMAP vs POP .. 50
Figure 4.2: Offline Email System Architecture ... 60
Figure 4.3: Networking Protocol flow ... 62
Figure 4.4: Store and Forward ... 63
Figure 4.5: Offline Email System Network Protocol layout 64
Figure 4.6: Online Email System Network Protocol layout 66
Figure 5.1: Uniform Server Binary Codes ... 80
Figure 5.2: TMnet SMTP relayer .. 83
Figure 5.3: Process of database synchronization ... 88
Figure 5.4: Database Synchronization Path ... 91
Figure 5.5: Realtime Synchronize Setting ... 93
LIST OF TABLES

Table 1.1: Estimated Cost for Offline Email System based on DTN ... 10
Table 1.2: Cost for DANAWA Wi-Fi Hotspot implementation ... 11
Table 2.1: Private addressing ... 21
Table 2.2: Reserved and available IP addresses [5] ... 22
Table 2.3: TCP/IP Endpoint ID .. 38
Table 2.4: DTN Endpoint ID .. 39
Table 4.1: Store, Carry and Forward Scenario ... 50
Table 4.2: Comparison of DTN Email ... 55
Table 4.3: Comparison of Web server .. 56
Table 4.4: Comparison of Mail Server software .. 57
Table 4.5: Comparison of Mail Client .. 57
Table 4.6: Comparison of File Synchronize software .. 58
Table 4.7: Comparison of Infomediary Device .. 59
Table 5.1: D-Link DWL-2100AP indoors and outdoors coverage range 70
Table 5.2: Hardware Requirements ... 73
Table 5.3: Software Requirements ... 75
Table 5.4: Enable Web server External Access Script ... 76
Table 5.5: Enable Cron.. 80
Table 5.6: Enable Cron automatic update on Uniserver .. 81
Table 5.7: Apache, MySQL and Cron startup script configuration ... 81
Table 5.8: Enable Mail Client External Access Script ... 85
Table 5.9: Enable New User Registration Page Script ... 86
Table 5.10: hMailServer SQL Database driver name setting ... 86
Table 5.11: Domain name setting ... 86
Table 5.12: Infomediary Device Data Synchronization Folder ... 91
Table 5.13: Mail Server Data Synchronization Folder .. 91
Table 5.14: StartFFS.bat Script .. 94
Table 5.15: Offline Server Computer Start script (Start_Server.bat) ... 98
Table 5.16: Offline Server Computer Stop script (Stop_Server.bat) ... 99
Table 5.17: Mail Server Start and Stop script .. 100
Table 6.1: Send and receive email test result on each node ... 107
Table 6.2: Delay Period Test Result ... 109
Table 6.3 Transfer rate, read speed and write speed comparisons ... 112
Table 6.4: Testing email data size .. 115
Table 6.5: Testing types of data attachment ... 116
Table 6.6: Multiple sender and receiver test result .. 118
List of Equations

Equation 6.1 Infomediary device movement speed .. 112
1. INTRODUCTION

1.1 Overview

Email application has been commonly used as one of the communication tools which are cheap and easy to use as long as the person has internet connection. Email application is tolerant to delay and the email sender and recipient not required to be online at the same time. Email is suitable especially for those who not in urgency and delay in sending and receiving is acceptable. For those who live in the rural area without the Internet connection, even the application such as an email application is impossible. Rural area such as Bario has a telecentre which is built with the Internet facilities only offer the Internet connection in four kilometers diameter around the telecentre [1]. Therefore, the best approach to provide email services for users who has no internet connection at other areas is by introducing an offline email system. This offline email system using Transmission Control Protocol and Internet Protocol (TCP/IP) with the database synchronization application as a data mule where it works as a network bridge by bringing the pending emails from offline server computer to the online server computer.

TCP/IP has been used widely in the email application as well as in World Wide Web (WWW), File Transfer Protocol (FTP) and Voice-over-IP (VoIP). TCP/IP fundamental assumption is, there is always end-to-end communication between sender and receiver. End-to-end communication means that the network provides a reliable transport layer with immediate data transmission to the receiver and to provide data integrity, delivery guarantees, delivery acknowledgement, duplicate message suppression, per packet encryption and transaction management [2]. However, end-to-end communications cannot be applied in this offline email system because of the rural area is
lack of continuous connection from sender to receiver. TCP/IP drops the packets if the next connection cannot be found immediately. Delay tolerant network (DTN) protocol is used in this thesis to solve this problem. DTN used store and forward operation and introduced a bundle protocol in between the application layer and the transport layer.

Delay tolerant network (DTN) is an approach to computer network to overcome the lack of end-to-end network connectivity. DTN tolerates delay and disruption with acceptable performance in high loss and delay error environments. DTN tries to solve some of the issues by relaxing some of the TCP/IP end-to-end communication assumptions by introducing bundle protocol. The bundle protocol defines a series of data blocks as a bundle. Bundles are routed in Store and Forward operation from source node to the destination node. Store and Forward operation is a DTN fundamentals where it is designed to use storage within the network and perform incremental progress before proceeding to another path.

This thesis focuses on an offline email system implementation in a rural area with some modification to the protocol because it is designed as such the email needs to be transferred to another different device before it can be transmitted. This offline email system is designed for rural users with no internet connection to allow them to access their email account and compose new messages or check the last reply as shown in Figure 1.1. Village A and Village B are located very far from the telecentre, from three kilometers to 40 kilometers. Rural villagers send their emails using their laptop or handphone and send it to the nearby offline mail server. From this offline mail server, the appointed person with infomediary device will collect all the emails from the offline mail server by positioning his infomediary device close to the offline mail server so that the transmission
takes place wirelessly based on wireless local area network (WLAN) based on IEEE 802.11 standards. Conventionally, there is a need of a more internet hotspot datacenter at each village to stay connected which will require a higher cost.

Email application is asynchronous in nature and do not need end-to-end connectivity. Therefore, DTN store and forward fundamental is suitable for use to implement an offline email system in a rural area. In this thesis work, the store and forward process implemented by using file synchronization method. Store and forward process is a technique in which data is sent to an intermediate station and kept temporarily before sent to the final destination or to another intermediate station [3]. The file synchronization process is critical because the offline email on the offline mail server should capable to synchronize its database with the intermediate device and the online mail server. The intermediate device, known as an infomediary device is a temporary storage for the email database. This device collects the emails from the offline environment and brings them to the online environment.
This offline email system is working in two different environments which is an offline local area network (LAN) environment and online internet environment. Both offline and online mail server running on operating system Windows XP 32bit. Smartphone android 2.3.5 conjunction with Samba File sharing application working as an infomediary device to allow receiving and sending files between both mail servers. Only one online mail server is connected to regular Streamyx ISP (Dynamic IP) internet connection instead of the need of a more internet hotspot datacenter at each village.

1.2 Problem Statement

TCP/IP does not fully support this offline email system because it requires immediate end-to-end path between sender and receiver. This means the connection must
exist at the same time sender send the email because the email packets will travel through the transport layer and finally to the destination. The email client is disconnected from email server if there is no end-to-end path and the user cannot access their email account. However, if the Gmail offline application is used, the user has to bring their device to the connected area. In rural area, this seems not practical. Delay tolerant network (DTN) is designed to overcome this limitation by implementing store and forward message switching by overlaying a new protocol layer called the bundle layer. DTN use storage within the network to support the store and forward operation over networking paths. The problem arises when the emails have to be collected into another device before it is brought physically to the connected area. The store and forward process of DTN is integrated using the file synchronization method because it involves the third device and the third person to bring the emails to the connected area.

1.3 Objective

The objective of this thesis is to provide an offline email system at rural area that has no internet connection. There are three research questions in this thesis as below:

1) Implementation: How the user registration page should be implemented and how the store and forward process in delay tolerant network (DTN) supports the offline email system in terms of email connectivity from the offline environment network to online environment network?

2) Functionality: Can the email data maintain in the mail server for a very long time delay until it synchronized with infomediary device? What is the limitation size of email data which include email content and file attachment?
What are the types of data supported when uploading an attachment? Can the email data synchronization process avoid conflict when the email sent and replied from multiple sender and receiver or when the email sent and replied through multiple communications?

3) Performance: What is the limitation movement speed of an infomediary device when moving through a mail server and performing a database synchronization?

1.4 The Proposed System

An offline mail server in the rural area local area network (LAN) is where rural users can read, send and receive email locally in the LAN. Meanwhile the external email content to be sent online will be stored temporarily until it is transferred to infomediary device. The database synchronization system in the offline server computer will transfer and receive new database from the infomediary device as shown in Figure 1.2. Infomediary device working as a temporary storage and can be accessible via Wi-Fi or wireless local area network (WLAN). Then the database synchronization system in the online server computer will transfer and receive new email data from this infomediary device. Online mail server has all the features as offline mail server where the user in that area can use the offline email system locally through LAN. Online mail server is connected to the internet. This offline email system can be access from the internet through the online mail server. The external email content to be sent offline will be stored temporarily until it is being transferred to infomediary device and then to the offline mail server at rural area.
Figure 1.2: Offline email system components

Store and forward process between mail server and infomediary device provide the ability of connection between offline email system and online email system. This will enable the email content to flow through the offline environment to the internet environment and vice versa. It is critical to develop a suitable subsystem that can fulfill the need of this offline email system because there is a challenge in the email database synchronization. This synchronization system should have the ability to synchronize the database between the offline mail server and the infomediary device. It is also responsible to synchronize the database in the online mail server and database in the infomediary device. Infomediary device is a temporary storage for the email database operates wirelessly to collect the email data between the offline environment and the online
environment. It should be portable, secured and has a long life battery. There are two different environments for this offline email system which is offline and online. Both sides consist of mail server and mail client for their respective environment. At the online side, the online mail system is connected to the internet using a personal home server. This mail server is running on Streamyx dynamic IP conjunction with Uniform Server. The Uniform Server is a Windows Apache, MySQL and PHP, Perl or Python (WAMP) package that allows the user to run a server on any Microsoft Windows Operating System based computer.

1.5 System Implications

At offline mail server, users have a local mail access. They can manage, read, send or receive email locally to another person in the local area network. Infomediary device allows email data to be sent from offline network to online network and vice versa. This extends the offline email system network by allowing user to read, send and receive email in an offline environment or in an online environment. At the online mail server, users also have a local mail access. Since the online mail server is connected to the internet, users able to send and receive email from other Internet Mail such as Gmail and Hotmail directly. With the help of infomediary device, online users can receive or send email to the rural users at the offline mail server. This offline email system is not using native DTN protocol but applies a DTN store and forward fundamentals in TCP/IP by using a database synchronization process.