SIMILARITY REASONING-DRIVEN EVOLUTIONARY FUZZY SYSTEM FOR MONOTONIC-PRESERVING MODELS

Jee Tze Ling

Master of Engineering
(Electronic and Computer) 2013
ACKNOWLEDGEMENTS

This thesis and the research work presented herein would not have been possible without the support of many people. I wish to express my gratitude to my supervisor, Dr. Tay Kai Meng, who has been helpful with his invaluable assistance, support, and guidance for this research. Not to forget my co-supervisor, Prof. Dr. Ng Chee Khoon for his support and guidance too.

Last but not least, I would like to thanks to my beloved family for their understanding, support, encouragements and endless love.
SISTEM EVOLUSI KABUR BERTERASKAN PENAAKULAN KESERUPAAN UNTUK MEMENUHI MODEL BERSIFAT MONOTONIK

ABSTRAK

ABSTRACT

(Fuzzy Inference System (FIS) is a popular computing paradigm which has been identified as a solution for various application domains, e.g. control, assessment, decision making, and approximation. However, it suffers from two major shortcomings, i.e., the "curse of dimensionality" and the "tomato classification" problem. The former suggests that the number of fuzzy rules increases in an exponential manner while the number of input increases. The later is an important fuzzy reasoning problem while a fuzzy rule base is incomplete. The focus of this thesis is on fuzzy rule base reduction techniques, fuzzy rule selection techniques, Approximate Analogical Reasoning Schema (AARS), evolutionary computation techniques and monotonicity property of an FIS, in order to overcome these two shortcomings. The main contribution of this thesis is to formulate the fuzzy rule selection problems to facilitate the AARS and FIS modeling as an optimization problem. An optimization tool, i.e., genetic algorithm (GA), is further implemented. The applicability of the proposed framework is demonstrated and evaluated with two real problems, i.e., education assessment problem and failure analysis problem. The empirical results show the effectiveness of the proposed framework in selecting fuzzy rules and reconstruct a complete rule base with the selected fuzzy rules. However, it is observed that the results obtained do not always fulfill the monotonicity property. Hence, the proposed framework is further extended, and a set of mathematical conditions are adopted as governing equation. Again, the applicability of the extended framework is demonstrated and evaluated with an education assessment problem and a failure analysis problem.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>ii</td>
</tr>
<tr>
<td>Abstrak</td>
<td>iii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iv</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables</td>
<td>x</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xii</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xviii</td>
</tr>
<tr>
<td>List of Publications</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Background of Research 1
1.2 Problem Statements 2
1.3 Research Methodology 5
1.4 Objectives of the Research 7
1.5 Scope of the Research 7
1.6 Organization of the Thesis 8

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction ... 10
2.2 Fuzzy Rule Base Models 10
 2.2.1 Fuzzy Sets Theory 10
 2.2.2 Fuzzy Production Rule 11
 2.2.3 Fuzzy Reasoning 12
 2.2.4 Fuzzy Inference System 12
2.3 The “Tomato Classification” Problem and Similarity Reasoning Scheme

2.3.1 The “Tomato Classification” Problem

2.3.2 Similarity Reasoning Schemes

2.4 Optimization Theory

2.4.1 Derivative Based

2.4.2 Meta-heuristic

2.5 Fuzzy Rule Reduction

2.6 Fuzzy Rule Selection and Optimization with Evolutionary Computation

2.7 Monotonicity Property

2.7.1 Findings from Wu and Sung (1994, 1996) and Wu (1997)

2.7.2 Findings from Zhao and Zhu (2000)

2.7.3 Findings from Lindskog and Ljung (2000)

2.7.4 Findings from Won et al. (2001, 2002)

2.7.5 Findings from Broekhoven and Baets (2008, 2009)

2.7.6 Findings from Kouikoglou and Phillis (2009)

2.7.7 Findings from Tay and Lim (2008a)

2.8 Summary

CHAPTER 3 METHODOLOGY

3.1 Introduction

3.2 Motivations and The Proposed Framework

3.3 Problem Formulation

3.3.1 A Fuzzy Inference System
3.3.2 Similarity Measure ... 42
3.3.3 A Proposed Fuzzy Rules Reduction Approach 43
3.3.4 A GA-based Fuzzy Rules Reduction Approach 44
3.3.5 Approximate Analogical Reasoning Schema (AARS) 48
3.4 Simulated Example .. 49
 3.4.1 $\tau = 0.15$... 49
 3.4.2 Other Threshold Values .. 53
3.5 Summary .. 57

CHAPTER 4 AN IMPROVED FUZZY INFERENCE SYSTEM-BASED
 EDUCATION ASSESSMENT MODEL

4.1 Introduction .. 58
4.2 A Review on Education Assessment 58
 4.2.1 Scoring Rubrics ... 59
 4.2.2 Criterion Reference Assessment (CRA) 62
4.3 Recent Advances in Education Assessment with Technology 63
 4.3.1 Computer-based Assessment Approach 63
 4.3.2 Web-based Approach ... 64
 4.3.3 Computational Intelligence Models-based Approach 65
 4.3.4 An FIS-based CRA ... 66
4.4 A Proposed FIS-based Education Assessment and a Case Study 68
 4.4.1 Problem statements ... 68
 4.4.2 An FIS-based Education Assessment Model with the Proposed Framework. 69
CHAPTER 5 AN IMPROVED FUZZY INFERENCE SYSTEM BASED FAILURE MODE AND EFFECT ANALYSIS METHODOLOGY

5.1 Introduction ... 84

5.2 A Review on Failure Mode and Effect Analysis (FMEA) 84

5.2.1 A FMEA Methodology ... 85

5.2.2 Weakness of the Conventional FMEA .. 87

5.2.3 Applicability of Computation Intelligent Models to FMEA 88

5.2.4 A FMEA with an FIS-based RPN Model ... 88

5.3 A Proposed FIS-based FMEA Methodology ... 91

5.3.1 Problem Statements ... 91

5.3.2 An Enhanced FIS-based FMEA with Rule Selection and SR 91

5.3.3 Background of Experimental Study ... 98

5.3.4 Experimental Results and Discussion .. 100

5.4 Summary ... 114

CHAPTER 6 BUILDING FUZZY MODELS WITH FUZZY RULE SELECTION AND MONOTONICITY PRESERVING – APPROXIMATE ANALOGICAL REASONING SCHEMA

6.1 Introduction ... 115

6.2 Background and Motivations ... 116

6.2.1 Background .. 116

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Technical terms used in GA</td>
<td>23</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Number of rules selected with different τ values</td>
<td>54</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Scoring rubric for System Design</td>
<td>72</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Scoring rubric for System Building</td>
<td>72</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Scoring rubric for Presentation Skill</td>
<td>73</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>The total-scores using the proposed optimization rule base reduction of a FIS-based CRA using GA</td>
<td>79</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Scale table for severity</td>
<td>94</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Scale table for occurrence</td>
<td>95</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Scale table for detect</td>
<td>95</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>The wafer mounting RPN score with and without using the proposed optimization rule base reduction of a FIS-based FMEA model using GA</td>
<td>105</td>
</tr>
<tr>
<td>Table 5.5</td>
<td>The underfill dispensing RPN score with and without using the proposed optimization rule base reduction of a FIS-based FMEA model using GA</td>
<td>109</td>
</tr>
<tr>
<td>Table 5.6</td>
<td>The test handler RPN score with and without using the proposed optimization rule base reduction of a FIS-based FMEA model using GA</td>
<td>113</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>The total-scores using the proposed optimization rule base reduction of a FIS-based CRA using NLP – AARS technique</td>
<td>132</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>The wafer mounting RPN using the proposed optimization rule base</td>
<td>139</td>
</tr>
</tbody>
</table>
reduction of a FIS-based FMEA model using NLP – AARS technique

Table 6.3 The underfill dispensing RPN using the proposed optimization rule base 141

Table 6.4 The test handler RPN using the proposed optimization rule base 143

reduction of a FIS-based FMEA model using NLP – AARS technique
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Research methodology</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Mamdani-FIS based model</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Fuzzy reasoning assumption of the “tomato classification”</td>
<td>15</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>The AARS algorithm</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Depiction of antecedents overlapping area</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>FRI technique</td>
<td>20</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>The process flow of GA</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Flowchart of PSO process</td>
<td>26</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Similarity reasoning paradigm</td>
<td>38</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>The proposed framework between human and computer</td>
<td>39</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>A two inputs FIS-based model with grid partition strategy</td>
<td>41</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Membership functions for x_1</td>
<td>41</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Membership functions for x_2</td>
<td>42</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Similarity measure between an observation and an antecedent of a fuzzy rule</td>
<td>43</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Pseudo-code of the proposed GA based rule reduction</td>
<td>45</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Genetic coding for the proposed GA-based MFs optimization method</td>
<td>45</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>The crossover process</td>
<td>48</td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>Candidates for the simulated example</td>
<td>49</td>
</tr>
<tr>
<td>Figure 3.11</td>
<td>GA optimizing rule selection for simulated example with $\tau = 0.15$</td>
<td>49</td>
</tr>
</tbody>
</table>
Figure 3.12 The best Candidate obtained from the GA optimizing simulation for $\tau = 0.15$

Figure 3.13 Selected fuzzy rules

Figure 3.14 Predicted conclusions for non selected rules

Figure 3.15 Surface plot for y versus x_1 versus x_2 with the proposed framework with predicted conclusions while $\tau = 0.15$

Figure 3.16 Surface plot for y versus x_1 versus x_2 with the proposed framework without predicted conclusions while $\tau = 0.15$

Figure 3.17 GA optimizing rule selection for simulated example with $\tau = 0.05$

Figure 3.18 GA optimizing rule selection for simulated example with $\tau = 0.25$

Figure 3.19 Surface plot for y versus x_1 and x_2 using the predicted conclusions while $\tau = 0.05$

Figure 3.20 Surface plot for y versus x_1 and x_2 without the predicted conclusions while $\tau = 0.05$

Figure 3.21 Surface plot for y versus x_1 and x_2 using the predicted conclusions while $\tau = 0.25$

Figure 3.22 Surface plot for y versus x_1 and x_2 without the predicted conclusions while $\tau = 0.25$

Figure 4.1 Types of scoring instruments for performance assessments

Figure 4.2 Template for analytic rubrics

Figure 4.3 Template for holistic rubrics

Figure 4.4 Examples of the membership functions for assessment criteria of a test item

Figure 4.5 Examples of the membership functions of the total-score

Figure 4.6 An example of a FIS-based education assessment rule base
Figure 4.7 Proposed optimizing rule base reduction using GA for a FIS-based criterion-referenced assessment procedure

Figure 4.8 Membership functions for System Design

Figure 4.9 Membership functions for System Building

Figure 4.10 Membership functions for Presentation Skill

Figure 4.11 Part of the rule base

Figure 4.12 Objective function versus generation of GA optimization rule selection for an FIS-based CRA model while $\tau = 0.05$

Figure 4.13 Objective function versus generation of GA optimization rule selection for an FIS-based CRA model while $\tau = 0.15$

Figure 4.14 Project built by Student #3

Figure 4.15 Surface Plot of SD and PS versus Total-Score at SB = 10 with predicted conclusions while $\tau = 0.05$

Figure 4.16 Surface Plot of SD and PS versus Total-Score at SB = 10 without predicted conclusions while $\tau = 0.05$

Figure 4.17 Surface Plot of SD and PS versus Total-Score at SB = 10 with predicted conclusion while $\tau = 0.15$

Figure 4.18 Surface Plot of SD and PS versus Total-Score at SB = 10 without predicted conclusions while $\tau = 0.15$

Figure 5.1 The operation of conventional FMEA

Figure 5.2 FMEA with FIS-based RPN model

Figure 5.3 The proposed optimizing rule base reduction using GA for a FIS-based FMEA procedure

Figure 5.4 The membership function of severity

Figure 5.5 The membership function of occurrence

Figure 5.6 The membership function of detect
Figure 5.7 An example of two fuzzy production rules for FMEA FIS-based RPN model

Figure 5.8 Objective function versus generation of GA optimization rule selection for an FIS-based CRA model while $\tau = 0.05$

Figure 5.9 Objective function versus generation of GA optimization rule selection for an FIS-based CRA model while $\tau = 0.15$

Figure 5.10 Wafer mounting surface plot of RPN versus S and D at $O = 2$ when conclusions are predicted while $\tau = 0.05$

Figure 5.11 Wafer mounting surface plot of RPN versus S and D at $O = 2$ when conclusions are not predicted while $\tau = 0.05$

Figure 5.12 Wafer mounting surface plot of RPN versus S and D at $O = 2$ when conclusions are predicted while $\tau = 0.15$

Figure 5.13 Wafer mounting surface plot of RPN versus S and D at $O = 2$ when conclusions are not predicted while $\tau = 0.15$

Figure 5.14 Underfill dispensing surface plot of RPN versus S and D at $O = 2$ when conclusions are predicted while $\tau = 0.05$

Figure 5.15 Underfill dispensing surface plot of RPN versus S and D at $O = 2$ when conclusions are not predicted while $\tau = 0.05$

Figure 5.16 Underfill dispensing surface plot of RPN versus S and D at $O = 2$ when conclusions are predicted while $\tau = 0.15$

Figure 5.17 Underfill dispensing surface plot of RPN versus S and D at $O = 2$ when conclusions are not predicted while $\tau = 0.15$

Figure 5.18 Test handler surface plot of RPN versus S and D at $O = 2$ when conclusions are predicted while $\tau = 0.05$

Figure 5.19 Test handler surface plot of RPN versus S and D at $O = 2$ when conclusions are not predicted while $\tau = 0.05$

Figure 5.20 Test handler surface plot of RPN versus S and D at $O = 2$ when conclusions are predicted while $\tau = 0.15$

Figure 5.21 Test handler surface plot of RPN versus S and D at $O = 2$ when conclusions are not predicted while $\tau = 0.15$

Figure 6.1 Membership functions for x_1
Figure 6.2 Projection of membership functions for x_1
Figure 6.3 The proposed framework in Chapter 3 coupled with monotonicity preserving – AARS technique between human and computer
Figure 6.4 Membership functions for x_2
Figure 6.5 Projection of membership functions x_2
Figure 6.6 Rule matrix for the simulated example with $\tau = 0.15$
Figure 6.7 Surface plot for y versus x_1 and x_2 using NLP – AARS technique while $\tau = 0.15$
Figure 6.8 Surface plot for y versus x_1 and x_2 using NLP – AARS technique while $\tau = 0.05$
Figure 6.9 Membership functions of System Design after tuning
Figure 6.10 Projection of membership functions for System Design
Figure 6.11 Membership functions of System Building after tuning
Figure 6.12 Projection of membership functions for System Building
Figure 6.13 Membership functions of Presentation Skill after tuning
Figure 6.14 Projection of membership functions for Presentation Skills
Figure 6.15 Objective function versus generation of GA optimization rule selection for a monotonicity preserving FIS-based CRA model while $\tau = 0.05$
Figure 6.16 Objective function versus generation of GA optimization rule selection for a monotonicity preserving FIS-based CRA model while $\tau = 0.15$
Figure 6.17 Surface Plot of SD and PS versus total-score at $SB = 10$ with predicted conclusions using NLP – AARS technique while $\tau = 0.05$
Figure 6.18 Surface Plot of SD and PS versus total-score at $SB = 10$ with predicted conclusion while using NLP – AARS technique $\tau = 0.15$
Figure 6.19 Membership functions of Severity after tuning
Figure 6.20 Projection of membership functions for Severity
Figure 6.21 Membership functions of \textit{Occurrence} after tuning
Figure 6.22 Projection of membership functions for \textit{Occurrence}
Figure 6.23 Membership functions of \textit{Detect} after tuning
Figure 6.24 Projection of membership functions for \textit{Detect}
Figure 6.25 Objective function versus generation of GA optimization rule selection for a monotonicity preserving FIS-based FMEA model while $\tau = 0.05$
Figure 6.26 Objective function versus generation of GA optimization rule selection for a monotonicity preserving FIS-based FMEA model while $\tau = 0.15$
Figure 6.27 Wafer mounting surface plot RPN versus X_S and X_D at $X_O = 2$ when conclusions are predicted using NLP – AARS technique while $\tau = 0.05$
Figure 6.28 Wafer mounting surface plot RPN versus X_S and X_D at $X_O = 2$ when conclusions are predicted using NLP – AARS technique while $\tau = 0.15$
Figure 6.29 Underfill dispensing surface plot RPN versus X_S and X_D at $X_O = 2$ when conclusions are predicted using NLP – AARS technique while $\tau = 0.05$
Figure 6.30 Underfill dispensing surface plot RPN versus X_S and X_D at $X_O = 2$ when conclusions are predicted using NLP – AARS technique while $\tau = 0.15$
Figure 6.31 Test handler surface plot RPN versus X_S and X_D at $X_O = 2$ when conclusions are predicted using NLP – AARS technique while $\tau = 0.05$
Figure 6.32 Test handler surface plot RPN versus X_S and X_D at $X_O = 2$ when conclusions are predicted using NLP – AARS technique while $\tau = 0.15$
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AARS</td>
<td>Approximate analogical reasoning schema</td>
</tr>
<tr>
<td>AR</td>
<td>Analogical reasoning</td>
</tr>
<tr>
<td>CBA</td>
<td>Computer-based assessment</td>
</tr>
<tr>
<td>CRA</td>
<td>Criterion-reference assessment</td>
</tr>
<tr>
<td>EC</td>
<td>Evolutionary computation</td>
</tr>
<tr>
<td>FATI</td>
<td>First aggregate then inference</td>
</tr>
<tr>
<td>FERI</td>
<td>Fundamental equation of rule interpolation</td>
</tr>
<tr>
<td>FIS</td>
<td>Fuzzy inference system</td>
</tr>
<tr>
<td>FITA</td>
<td>First inference then aggregate</td>
</tr>
<tr>
<td>FMEA</td>
<td>Failure mode and effect analysis</td>
</tr>
<tr>
<td>FPR</td>
<td>Fuzzy production rule</td>
</tr>
<tr>
<td>FRI</td>
<td>Fuzzy rule interpolation</td>
</tr>
<tr>
<td>GA</td>
<td>Genetic algorithm</td>
</tr>
<tr>
<td>HS</td>
<td>Harmony search</td>
</tr>
<tr>
<td>MOEA</td>
<td>Multi-objective evolutionary algorithm</td>
</tr>
<tr>
<td>MOI</td>
<td>Mean-of-inversion</td>
</tr>
<tr>
<td>NLP</td>
<td>Non-linear programming</td>
</tr>
<tr>
<td>PSO</td>
<td>Particle swarm optimization</td>
</tr>
<tr>
<td>SQP</td>
<td>Sequential quadratic programming</td>
</tr>
<tr>
<td>SR</td>
<td>Similarity Reasoning</td>
</tr>
<tr>
<td>SVD</td>
<td>Singular value decomposition</td>
</tr>
<tr>
<td>τ</td>
<td>Threshold value</td>
</tr>
</tbody>
</table>
LIST OF PUBLICATIONS

Journal papers

1. Tze Ling Jee, Kai Meng Tay & Chee Khoon Ng (2011), Enhancing a fuzzy failure mode and effect analysis methodology with an analogical reasoning technique, *Journal of Advanced Computational Intelligence and Intelligent Informatics*, vol. 15, no. 9, pp. 1-8. (SCOPUS)

Book chapter

Conference

8. Tze Ling Jee, Kai Meng Tay & Chee Khoon Ng (2010), A fuzzy inference system based FMEA methodology with case study, ENCON 2010.

CHAPTER 1

INTRODUCTION

1.1 Background of Research

An inference technique is a method that attempts to derive answers from a knowledge base. It can be viewed as the "brain" that reasons about the information in the knowledge base for the ultimate purpose of formulating new conclusions (Russell & Norvig, 2003). From the literatures, various inference techniques have been reported, e.g. automatic logical inference (Harrison, 2009), Bayesian inference (Box & Tiao, 1992), probabilistic inference (Pearl, 1988), and fuzzy inference (Jang et al., 1997).

Fuzzy inference system (FIS) is a popular computing framework based on the concepts of fuzzy set theory, fuzzy production rules, and fuzzy reasoning (Jang et al., 1997). It has found successful applications in a variety of problems such as control (Jang et al., 1997), decision (Kouikoglou & Phillis, 2009), selection (Broekhoven & Baets, 2008), assessment (Tay & Lim, 2008a, 2008b), and approximation (Jang et al., 1997) problems. The twofold identity of FIS is their strength (Guillaume, 2001). On one hand, they are able to handle linguistic behavior which can be understood by human. The ability to incorporate human/expert knowledge where information is described by vague and imprecise statements is one of the success key factors. Furthermore, the behaviour of an FIS is also expressed in a language that could be easily interpreted by humans. On the other hand, they play the role as universal approximator that are able to perform non-linear mappings between inputs and
outputs. The mapping is accomplished by a rule base; which consists of a number of If-Then rules, each of which describes the local behavior of the mapping. FIS is widely applied in many application domains, for example, it has been applied to calculate the resonant frequencies of rectangular microstrip antenna (MSAs) with thin and thick substrates (Guney & Sarikaya, 2009). Besides, it was applied to failure mode and effect analysis (FMEA) methodology, i.e., fuzzy FMEA methodology (Tay & Lim, 2006, 2008a, 2008b, 2010).

1.2 Problem Statements

Despite FISs' popularity, they suffer from a number of weaknesses, i.e., it is a tedious work to obtain a complete fuzzy rule base, especially for multi-input FIS models (Jang et al., 1997). With the use of grid partition, the number of fuzzy rules required increases in an exponential manner and this phenomenon is known as the "curse of dimensionality" (Jang et al., 1997). For an example, an FIS model that has three inputs and each input has five partitions, the number of fuzzy rules in the rule base is 125 (5 x 5 x 5).

Besides, some of the fuzzy rules may not be available, i.e., incomplete rule base. For an incomplete rule base, some consequents are unknown or missing. The unknown consequents are denoted as conclusion throughout this thesis, and the antecedents for unknown consequents are denoted as observations. In a conventional FIS model, it is normally assumed that the unknown consequents as zero. However, this assumption may not always be appropriate because this may lead to the "tomato classification" problem (Hsiao et al., 1998).

In order to solve the "curse of dimensionality" and "tomato classification" problem, similarity reasoning (SR) techniques, such as Approximate Analogical Reasoning Schema (AARS) (Turksen & Zhao, 1988) and Fuzzy Rule Interpolation (FRI) (Kóczy & Hirota, 1997) were developed. SR could be used to construct the conclusion of an observation with refer to
the incomplete fuzzy rules. Besides, it allows the fuzzy rules required to be reduced, and a complete fuzzy rule base reconstructed from the incomplete fuzzy rules.

Despite of the popularity of SR techniques, it is not sure how these techniques could be practically and systematically implemented in an FIS modeling problem. Thus, in this thesis, a new fuzzy rule selection approach to facilitate AARS and FIS modeling that is based on an optimization theory (i.e., genetic algorithm (GA)) is developed. The proposed GA-based fuzzy rule selection approach highlights a set of important fuzzy rules to experts for information/fuzzy rules gathering. AARS allows the unknown fuzzy rules to be reconstructed, based on the available fuzzy rules. The practicality of the proposed framework is demonstrated with two real world problems.

Another recent trend in FIS modeling is the fulfillment of the monotonicity property. Consider an FIS model, \(y = f(x_1, x_2, \ldots, x_i, \ldots, x_n) \), that satisfies the monotonicity condition between its output, \(y \), with respect to its \(i^{th} \) input, \(x_i \). Output \(y \) monotonically increases or decreases as \(x_i \) increases, i.e. \(f(x_1, x_2, \ldots, x_i, \ldots, x_n) \leq f(x_1, x_2, \ldots, x_i', \ldots, x_n) \) or \(f(x_1, x_2, \ldots, x_i', \ldots, x_n) \geq f(x_1, x_2, \ldots, x_i, \ldots, x_n) \), respectively, for \(x_i' < x_i \). The importance of this line of study has been highlighted in a number of recent publications (Broekhoven & Baets, 2009; Kouikoglou & Phillis, 2009; Seki et al., 2010; Tay & Lim, 2008a, 2008b, 2011a; Won et al., 2002). Among the important aspects include: (i) many real world systems and control problems obey the monotonicity property (Kouikoglou & Phillis, 2009; Seki et al., 2010; Won et al., 2002; Tay & Lim, 2011a; Lindskog & Ljung, 2000); (ii) the validity of the FIS output needs to be ensured for undertaking comparison, selection, and decision making problems (Kouikoglou & Phillis, 2009; Tay & Lim, 2008a, 2008b); (iii) in the case when the number of data samples is small or the fuzzy rule set is incomplete, it is important to fully exploit the available qualitative information/knowledge (Broekhoven & Baets, 2009); (iv)
taking the additional qualitative information/knowledge of the system into consideration makes the model identification process less vulnerable to noise and inconsistencies in data samples, as well as mitigates the over-fitting phenomenon (Broekhoven & Baets, 2009). However, there are only a few articles that address the issues on how to design monotonicity-preserving FIS models (Kouikoglou & Phillis, 2009).

Generally, theoretical proof of the exact monotonicity in FIS is difficult (Seki et al., 2010). However, there are some mathematical conditions that are useful to preserve monotonicity in FIS models. In Won et al. (2002), a set of mathematical conditions (i.e., the sufficient conditions) have been derived with the assumption that the first derivative of a Sugeno FIS is always greater than or equal to zero, or less than or equal to zero, for a monotonically increasing or decreasing function, respectively. The sufficient conditions suggest that two mathematical conditions (at the antecedent and consequent parts) are essential to obtain a monotonicity-preserving FIS model. For a fuzzy partition (at rule antecedent), maintaining a monotonically-ordered rule base can preserve the monotonicity property. This condition has been used and extended in (Kouikoglou & Phillis, 2009; Tay & Lim, 2008a, 2008b, 2011a). In Broekhoven and Baets (2009), it has been verified that for three basic T-norms (minimum, product, and Lukasiewicz), a monotonic input-output behavior is obtained for any monotonic rule bases. Some useful guidelines have also been proposed (Broekhoven & Baets, 2009). The relationships among the monotonicity property, monotonic rule base, and comparable fuzzy sets for single-input-rule-modules-connected FIS model are discussed in (Seki et al., 2010). Another recent enhancement in this line of studies is the development of monotonicity index for FIS models (Tay & Lim, 2011a).

As extension of this work, a new monotonicity-preserving framework which comprise of fuzzy rule selection, similarity reasoning (i.e., AARS) and evolutionary computation for FIS