DIVERSITY, STRATIFICATION AND TEMPORAL DYNAMICS OF GEOMETRID MOTHs (LEPIDOPTERA: GEOMETRIDAE) IN KUBAH LOWLAND MIXED DIPTEROCARP FOREST, SARAWAK

Irene Christianus

Master of Science
2012
DIVERSITY, STRATIFICATION AND TEMPORAL DYNAMICS OF GEOMETRID MOTHS (LEPIDOPTERA: GEOMETRIDAe) IN KUBAH LOWLAND MIXED DIPTEROCARP FOREST, SARAWAK

IRENE CHRISTIANUS

A thesis submitted in fulfillment of the requirement for the Degree of Master of Science (Entomology)

Faculty of Resource Science and Technology
UNIVERSITI MALAYSIA SARAWAK
2012
DECLARATION

I declare that, except as acknowledged in the text, the work presented in the thesis is entirely my own work and has not been submitted, either in part or in whole, for a degree at this or any other university.

(Irene Christianus)

Date:
Dedicated to my beloved parents, supervisor, family and friends
Foremost, I am extremely grateful to my supervisor, Professor Dr. Fatimah Abang, for giving me the confidence to explore my research interests. I am intellectually indebted for her inexhaustible advice and guidance throughout my postgraduate study. I would have been lost without her.

To Professor Dr. Mohd Tajuddin Abdullah, thank you for offering sound advice and scientific comments on my thesis writing. Special thanks are also dedicated to Mr. Mohamad Jalani Mortada, Mr. Wahap Marni and Mr. Raymond Atet for their assistance, especially during fieldwork.

I would also like to acknowledge my best buddy, notably Christharina Saurin for her cooperation and companionship for all this time. I can’t thank this exceptional friendship enough. I also want to say a big thank you to my so-called big bro Ikhwan Idris and Goldie for being so helpful throughout field sampling. To Zulkifli, thank you so much for your help in the fieldwork.

The road of my postgraduate study has been long and winding, so my heartfelt thanks also dedicated to Zahirunnisa Abd Rahim, Siti Zuriani Ismail, Nur Ashikeen Ab. Razak and Nur Aida Tamrin for their wonderful friendship, keeping me sane and happy. To Mohd Fizl Sidq Ramji, thank you so much for the laptop adapter. To all other PG colleagues: Madinah Adrus, Debby Lim, Pang Sing Tyan, Roberta Chaya Tawie Tingga, Eileen Lit, Mohd Ridwan Rahman, Pui Yong Min, Siti Mariam Jamaludin, Siti Hasmah Taha, Noor Haliza Hassan, and
Nor Salmizar Azmi, thanks for the wonderful friendship. To Aizat Japar and KCK, thank you for the ride! Thanks especially Mohd Hanif Ridzuan Mat Daud for always being there, the one who ensured I was constantly engaged and entertained along the way.

Despite the geographical distance, my family was always nearby. I owe my loving thanks to my beloved parents, Christianus Majinal and Catherine Glasius, and not forgotten to my lovely big sisters and brothers, for their ceaseless encouragements through every step of the way. Their advice was consistently timely and useful and it will always remain the compass of my life.

This study would not have been possible without various administrative and financial supports from UNIMAS. I am indeed grateful to UNIMAS for granting me the MOSTI 2009/2011 scholarship. I thank SFC for granting permission and research permits (No. NCCD.907.4 (IV)-20 & 21) to collect samples in Kubah National Park. Special thanks also due to Kubah Park Warden, Ms. Yolande Direp, and not forgotten to their helpful staffs. Last but definitely not least, I also seize this medium to extend my thanks to those who directly or indirectly helped make the completion of my postgraduate study possible.
Abstract

The diversity and stratification of the geometrid moths was investigated in a mixed dipterocarp forest, Kubah National Park, Sarawak. Modified Pennsylvanian light traps illuminated with a 160 Watt mercury vapour lamp were used to sample moths in the understorey (1 m) and canopy (32 m) strata. From a total of 336 samples, 916 individuals representing 173 species of geometrid moths were recorded. A total of 149 species and 675 individuals of geometrids were sampled in the understorey while 100 species and 241 individuals in the canopy stratum. Overall, species diversity of geometrid moth in Kubah mixed dipterocarp forest was found to be considerably high ($\alpha = 63.09 \pm 3.41$) for a single moth family and fell in the range of previously reported diversity score in Bornean rain forests. Results from the present study unequivocally showed that both understorey ($\alpha = 59.17 \pm 3.66$) and canopy ($\alpha = 64.09 \pm 6.7$) strata did not differ significantly in terms of diversity, however species richness and abundance tend to be numerically high in the understorey stratum. Kubah lowland mixed dipterocarp forest was characterised by the dominance of Ennominae and the presence of the least diverse Bornean geometrid subfamily Oenochrominae. A unimodal pattern with a peak of abundance in the understorey stratum was detected in Ennominae and ground specialists were represented from the tribes Hypochrosini, Boarmiini and Baptini. Markedly, data from the present study revealed that geometrid moth populations fluctuate through time, particularly the subfamily Ennominae and Geometrinae. Yet, the fluctuations in geometrid moth populations in response to meteorological factors and moonlight illumination were insignificant.

Keywords: moths, Geometridae, diversity, stratification, temporal, Sarawak.
Kepelbagaian, Stratifikasi dan Dinamik Masa Kupu-kupu Geometrid
(Lepidoptera:Geometridae) di Hutan Tanah Rendah Dipterokarp Campuran Kubah, Sarawak.

Abstrak

Kajian kepelbagaian dan stratifikasi kupu-kupu geometrid telah dijalankan di hutan tanah rendah dipterokarp campuran, Kubah National Park, Sarawak. Perangkap cahaya Pennsylvania yang telah diubahsuai diterangi dengan lampu raksa 160 Watt digunakan untuk menangkap kupu-kupu di paras permukaan tanah (1 m) dan kanopi (32 m) hutan. Daripada sejumlah 336 sampel, 916 individu yang mewakili 173 spesies kupu-kupu geometrid telah direkodkan. Sebanyak 149 spesies dan 675 individu kupu-kupu geometrid telah direkod di paras permukaan tanah sementara 100 spesies dan 241 individu direkod di kanopi. Secara keseluruhan, indeks kepelbagaian spesies kupu-kupu geometrid di hutan campuran dipterokarp Kubah yang direkodkan adalah cukup tinggi (α = 63.09 ± 3.41) bagi sebuah famili kupu-kupu dan jatuh dalam skor indeks kepelbagaian yang pernah dilaporkan di hutan hujan Borneo sebelum ini. Hasil daripada kajian ini juga menunjukkan bahawa kedua-dua sampel dari atas permukaan tanah (α = 59.17 ± 3.66) dan kanopi (α = 64.09 ± 6.7) tidak berbeza secara signifikan dari segi indeks kepelbagaian spesies Namun kekayaan dan kelimpahan spesies cenderung lebih tinggi di atas paras permukaan tanah. Hasil daripada kajian juga mendapati hutan tanah rendah dipterokarp campuran ini didominasi oleh subfamili Ennominae dan kehadiran Oenochrominae iaitu subfamili yang mempunyai jumlah spesies paling sedikit di Borneo. Pola taburan unimodal dengan kemuncak kelimpahan spesies di permukaan tanah diwakili oleh Ennominae dan beberapa spesies dari suku Hypochrosini, Boarmiini dan Baptini menunjukkan kecenderungan untuk berada di
paras permukaan tanah. Data yang diperolehi juga menunjukkan bahawa taburan kekayaan
dan kelimpahan kupu-kupu geometrid berubah-ubah mengikut masa. Namun, perubahan
kekayaan dan kelimpahan kupu-kupu geometrid tidak berkaitan secara signifikan dengan
taburan hujan dan juga cahaya bulan.

Kata kunci: kupu-kupu, Geometridae, kepelbagaian, stratifikasi, masa, Sarawak.
TABLE OF CONTENTS

Title Page i
Declaration ii
Acknowledgements iv
Abstract vi
Abstrak vii
Table of Contents ix
List of Figures xiv
List of Tables xvii
Abbreviations xix

CHAPTER ONE
General Introduction
1.1 Research Overview 1
1.2 Objectives 6
1.3 Thesis Organisation 7

CHAPTER TWO
Literature Review
2.1 Bornean Geometrid Moths Diversity 8
2.2 Taxonomic Classification of Geometrid Moths 9
2.3 Morphology of Geometridae 9
2.3.1 Larvae 9
2.3.2 Adult 10
2.4 Lowland Mixed Dipterocarp Forest 14
2.5 Forest Stratification 16
2.6 Vertical Stratification 17
CHAPTER THREE
General Materials and Methods

3.1 Study Area

3.2 Field Methods and Laboratory Works

3.3 Statistical Analyses

3.3.1 Diversity Index

3.3.2 Analysis of Variance

3.3.3 Species Similarity Coefficient

3.3.4 Cluster Analysis

3.3.5 Linear Regression

3.3.6 Species accumulation curve

3.3.7 Singletons and doubletons curve

CHAPTER FOUR
Diversity and Faunal Composition of Geometrid Moths in a Mixed Dipterocarp Forest, Sarawak.

4.1 Introduction

4.2 Materials and Methods

4.2.1 Study Area

4.2.2 Sampling and Identification

4.2.3 Statistical Analyses

4.3 Results

4.3.1 Species richness, abundance and diversity of geometrid moths

4.3.2 Taxonomic composition

4.3.3 Rare and abundant species in tropical geometrid moth communities

4.4 Discussion

4.4.1 Diversity

4.4.2 Taxonomic composition

4.4.3 Rare and abundant species in tropical geometrid moth communities
CHAPTER FIVE
Understorey versus Canopy: Patterns of Vertical Stratification of Geometrid Moths in Kubah Lowland Mixed Dipterocarp Forest, Sarawak.

5.1 Introduction
5.2 Materials and Methods
5.2.1 Study Area
5.2.2 Sampling and Identification
5.2.3 Statistical Analyses
5.3 Results
5.3.1 Overall geometrid moth species richness, abundance and diversity along a vertical dimension
5.3.2 Patterns of stratification along the vertical gradient
5.3.3 Understorey and canopy specialists among the geometrid moths
5.3.4 Analysis of species association (R-mode)
5.4 Discussion
5.4.1 Species richness, abundance and diversity of geometrid moth along a vertical dimension
5.4.2 Stratification patterns of geometrid moths
5.4.3 Understorey and canopy specialists among the geometrid moths
5.5 Conclusion

CHAPTER SIX
Temporal Dynamics of a Species-Rich Moth Taxon in Kubah Lowland Dipterocarp Forest, Sarawak.

6.1 Introduction
6.2 Materials and Methods
6.2.1 Study Area
6.2.2 Sampling and Identification
6.2.3 Statistical Analyses

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3 Results</td>
<td>87</td>
</tr>
<tr>
<td>6.3.1 Temporal dynamics of species richness, abundance and diversity of geometrid moths</td>
<td>87</td>
</tr>
<tr>
<td>6.3.2 Contribution of individual species to temporal assemblage dynamics</td>
<td>96</td>
</tr>
<tr>
<td>6.3.3 Temporal dynamics in faunal composition</td>
<td>100</td>
</tr>
<tr>
<td>6.3.4 Species richness and abundance fluctuation in relation to monthly rainfall, temperature and relative humidity</td>
<td>104</td>
</tr>
<tr>
<td>6.3.5 Nocturnal illumination and night-flying geometrid moths</td>
<td>109</td>
</tr>
<tr>
<td>6.4 Discussion</td>
<td>111</td>
</tr>
<tr>
<td>6.4.1 Temporal dynamics of geometrid moth species richness, abundance and diversity in relation to rainfall</td>
<td>111</td>
</tr>
<tr>
<td>6.4.2 Effects of moonlight on light trap catches of geometrid moths</td>
<td>113</td>
</tr>
<tr>
<td>6.5 Conclusion</td>
<td>114</td>
</tr>
</tbody>
</table>

CHAPTER SEVEN

General Discussion and Conclusion

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 General Discussion</td>
<td>116</td>
</tr>
<tr>
<td>7.1.1 Geometrid moth diversity</td>
<td>116</td>
</tr>
<tr>
<td>7.1.2 Stratification of geometrid moths</td>
<td>117</td>
</tr>
<tr>
<td>7.1.3 Temporal dynamics of geometrid moth populations</td>
<td>118</td>
</tr>
<tr>
<td>7.1.4 The use of light-trap in biodiversity assessment</td>
<td>119</td>
</tr>
<tr>
<td>7.2 Conclusion</td>
<td>121</td>
</tr>
</tbody>
</table>

REFERENCES 124

APPENDICES 144
LIST OF FIGURES

Figure 2.1	The adult moth from dorsal view minus wings. (modified from Barlow, 1982)	10
Figure 2.2	The typical (a) forewing and (b) hindwing venation of an adult moth with the main elements of the wing pattern. (modified from Common, 1990)	11
Figure 2.3	The adult moth head from side view. (modified from Barlow, 1982)	12
Figure 2.4	The eye of an adult moth: (a) hairy and (b) lashed eye. (modified from Barlow, 1982)	12
Figure 2.5	Different types of antenna: (a) lamellate, (b) unipectinate, (c) ciliate, (d) doubly bipectinate, (e) setose ciliate and (f) bipectinate. (modified from Barlow, 1982)	13
Figure 2.6	The legs structure of an adult moth. (modified from Barlow, 1982)	13
Figure 2.7	Map showing the distribution of mixed dipterocarp forest in Sarawak.	14
Figure 2.8	Vegetation layer in the tropical rain forest. (source: Pearson Education, Inc)	17
Figure 3.1	Map of Sarawak showing the location of Kubah National Park and trails within Kubah National Park. (modified from Sarawak Forestry Department)	21
Figure 3.2	A modified Pennsylvanian light-trap operated in the understorey stratum (1 m) of Kubah mixed dipterocarp forest.	23
Figure 4.1	Cumulative diversity measurements (Fisher's α) over six months light-trapping.	35
Figure 4.2	Randomised species accumulation curve (solid line) for the observed species richness against total cumulative individuals (based on Sobs (Mao Tau) with an infinite number of randomisations). Dashed line shows 95% upper and lower confidence limits.	35
Figure 4.3	Percentage representation of species and individuals of the geometrid subfamilies sampled in Kubah mixed dipterocarp forest.	40
Figure 4.4 Percentage representation of species and individuals of the Geometridae tribes sampled in Kubah mixed dipterocarp forest, Sarawak.

Figure 4.5 Singletons and doubletons in Kubah mixed dipterocarp geometrid moth samples.

Figure 4.6 Relative abundance of geometrid moths sampled in a light trap at Kubah mixed dipterocarp forest, Sarawak.

Figure 5.1 Expected species numbers at the understorey and canopy level based on the calculation with the Chao1 species richness estimator.

Figure 5.2 Randomised species accumulation curve (solid line) for the observed species richness against total cumulative individuals (based on Sobs (Mao Tau) with an infinite number of randomisations) at the understorey and canopy.

Figure 5.3 Singletons and doubletons in the understorey (U) and canopy (C) of Kubah mixed dipterocarp geometrid moth samples.

Figure 5.4 Species overlap among the understorey (U) and canopy (C) of Kubah MDF: (a) all species including rare species; (b) Species with ≥5 individuals.

Figure 5.5 Vertical stratification patterns in species richness of the Geometridae subfamilies.

Figure 5.6 Vertical stratification patterns of the Geometridae subfamilies abundance.

Figure 5.7 Single-link dendrogram for 22 species with 10 or more individuals.

Figure 5.8 Linkage diagram for 22 species with 10 or more individuals with histograms showing the mean percentage of individuals at each level for each cluster of species. Points representing each species, numbered as in Table 5.3, are joined by lines where coefficients between two species are 90% or higher.

Figure 6.1 Fluctuations patterns in the (a) overall communities, (b) understorey, and (c) canopy species richness and abundance of the Geometridae subfamilies.

Figure 6.2 Singletons in the (a) overall communities, (b) understorey, and (c) canopy of Kubah mixed dipterocarp geometrid moths over six sampling occasions.
Figure 6.3 Single-link dendrogram derived from Preston’s resemblance coefficients.

Figure 6.4 Single-link dendrogram derived from Morisita’s resemblance coefficients.

Figure 6.5 Temporal trends of the understorey and canopy combined (U + C), understorey (U) and canopy (C) in terms of (a) species richness and (b) individual abundance in relation to monthly rainfall.

Figure 6.6 Temporal trends of the understorey and canopy combined (U + C), understorey (U) and canopy (C) in terms of (a) species richness and (b) individual abundance in relation to monthly average temperature.

Figure 6.7 Temporal trends of the understorey and canopy combined (U + C), understorey (U) and canopy (C) in terms of (a) species richness and (b) individual abundance in relation to monthly average relative humidity.

Figure 6.8 Correlation between rainfall and geometrid moth abundance by linear regression: (a) overall, (b) understorey and (c) canopy strata. Formulae of the regression lines are shown in Table 2.

Figure 6.9 Fluctuation of geometrid moth abundance in relation to moon phase (first quarter, full moon, last quarter and new moon).

Figure 6.10 Fluctuation of geometrid moth abundance in relation to moonlight brightness: (a) May; (b) June; (c) July; (d) August; (e) September and (f) November.

Figure 6.11 Linear regression of the geometrid moth abundance associated with percentage illuminated area of moon disc.
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.1</td>
<td>Periods for every sampling occasion.</td>
<td>22</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Taxonomic comparison of geometrid moths sampled in Kubah mixed dipterocarp forest Sarawak (present study), Kubah National Park (Idris, 2010) and Poring hill dipterocarp forest Sabah (Karim, 2002).</td>
<td>34</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Comparative taxonomic compositions of the Geometrid moth fauna of Kubah mixed dipterocarp forest in relation to the recorded Bornean geometrids (Holloway, 1984; Chey, 2000; Abang and Karim, 2005).</td>
<td>36</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Taxonomic list of geometrid moths sampled in the understorey and canopy of mixed dipterocarp forest, Kubah National Park, Sarawak.</td>
<td>62</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Parameters of species richness and diversity of geometrid moths in the understorey and canopy of Kubah mixed dipterocarp forest, Sarawak.</td>
<td>66</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>The number of species and P values from the Mann-Whitney test analysis of geometrid subfamilies at the understorey and canopy stratum of Kubah MDF.</td>
<td>69</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>The number of individuals and P value from the Mann-Whitney test analysis of geometrid moth subfamilies at the understorey and canopy stratum of Kubah MDF.</td>
<td>69</td>
</tr>
<tr>
<td>Table 5.5</td>
<td>The 22 species, in descending order of abundance, used in the cluster analysis giving the number of individuals at each level and the total.</td>
<td>72</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Distribution of geometrid moth species and their abundance (in parentheses) for total communities, understorey and canopy samples.</td>
<td>90</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>The (a) overall, (b) understorey, and (c) canopy species distribution and P values from the Kruskal-Wallis test analysis of geometrid subfamilies in Kubah MDF, Sarawak.</td>
<td>93</td>
</tr>
<tr>
<td>Table 6.3</td>
<td>The (a) overall, (b) understorey, and (c) canopy individual abundance distribution and P values from the Kruskal-Wallis test analysis of geometrid subfamilies in Kubah MDF, Sarawak.</td>
<td>94</td>
</tr>
</tbody>
</table>

xvii
Table 6.4 Mann-Whitney test for the pairwise comparisons of the (a) overall, (b) understorey (lower triangle) and canopy (upper triangle) monthly geometrid moth abundance sampled in Kubah mixed dipterocarp forest.

Table 6.5 Distribution of geometrid moth species and their percentage relative proportions (in parentheses) among six sampling occasions (May to November 2009).

Table 6.6 The seven species of geometrid moths with ≥20 individuals subjected to Kruskal-Wallis analysis for even distribution across six sampling occasions.

Table 6.7 Pairwise diversity t-test between six months sampling replicates for overall geometrid moth communities.

Table 6.8 Pairwise diversity t-test between six months sampling replicates in the understorey and canopy samples of geometrid moth communities. Upper triangle denotes diversity t-test for the understorey, lower triangle for the canopy.

Table 6.9 Preston’s coefficient of faunal resemblance for moth samples collected over six months sampling occasions. Upper triangle denotes number of shared species, lower triangle Preston’s coefficients.

Table 6.10 Morisita’s coefficient of faunal resemblance for geometrid moth samples collected over the six months sampling occasions.

Table 6.11 Regressions of monthly catches in geometrid moths upon monthly rainfall.
ABBREVIATIONS

a.s.l. above sea level
ca approximately
e.g. for examples
ft feet
i.e. that is
km Kilometer
m Meter
MDF Mixed Dipterocarp Forest
mm millimeter
Mt Mount
spp. Species
sq. Square
UNIMAS Universiti Malaysia Sarawak
vs versus
W Watt
°C degree Celcius
α alpha
CHAPTER ONE

General Introduction

1.1 Research Overview

The magnitude of the entomofauna diversity in tropical forest canopies remains largely unknown and has been the subject of much controversy among entomologists and ecologists (Basset et al., 2003a). Erwin (1982) estimated that the global number of insect species was at around 30 million and tropical forest canopies were pointed as being a repository of extremely high biodiversity. However, Erwin’s theory was highly disputed by most entomologists claiming that the estimated figure was far too high. Nevertheless, Erwin’s work was immensely useful in endorsing scientific interest on the canopy of tropical forests as what he called the ‘last biotic frontier’ in the entomological study.

Tropical rainforest is noted for high diversity of flora and fauna compared to the forest in the temperate region. Ecologically, it often includes a structurally complex dimension, both vertically and horizontally. The architecture of the vegetation has an important influence on the co-existing animal biodiversity due to the structure of leaves, flowers, plants and branches of trees that have greatly influence the composition of the associated arthropod communities from the top to the bottom of the canopy (Stork et al., 1997). Basset (1992) mentioned that the estimation of absolute population size often involves stratified sampling of the insect population. Vertical stratification represents the distribution of organisms along the vertical plane (Basset et al., 2003b). Typically, observers were usually limited to ground level, with few opportunities to study canopy organisms directly. However, the increase availability forms of access into the tallest rainforest trees has enabled researchers to study the structure
and ecology of these communities, the extent to which they vary in space and time, and their interactions with host plants. Moreover, the development of single rope techniques in rainforest environments by Perry (1978) has produced interesting sampling opportunities for tropical entomologists, which, at present, remain under-exploited.

In tropical rainforest, insects account for a major proportion of arthropod diversity and within the insects, the herbivores dominate in terms of species numbers (Basset et al., 2001). Apart from the Coleoptera, Lepidoptera is among the most species-rich of phytophagous insects. Interest in using Lepidoptera as bioindicators of environmental quality has blossomed in recent years. Lepidoptera are often termed as indicator taxa because they are critical to the functioning of many ecosystems, with species having functional roles as selective herbivores, pollinators and prey for migratory passerines and small mammals (Summerville et al., 2004). Summerville et al. (2004) also mentioned that although butterflies have been advocated as indicator taxa in tropical forests, they account for only 15% of lepidopteran species diversity worldwide.

Tropical forests, however, are rich in moth species and several studies suggest that certain moth assemblages show promise as indicators of overall lepidopteran biodiversity and forest composition (e.g. Kitching et al., 2000). In addition, macromoths are also rich in species and they have direct response to vegetation (Barlow and Woiwod, 1990). During their early stage (larvae), they are herbivores, which mainly consume leaves of trees. Some macromoths are host specific and restricted to certain habitats while others are polyphagous and widespread generalists (Chey, 2000).
Since sampling effort is necessarily limited in any field study, investigations have to be restricted either to guilds or taxonomic units. Many previous studies have restricted investigations to taxonomic units such as certain groups of Lepidoptera or Coleoptera (e.g. Schulze et al., 2001; Beck et al., 2002; Charles and Basset, 2005).

In this study, geometrid moths which are one of the highly dependent group of insects was chosen as a target group because it is one of the most species-rich families of moths. Geometrids have been frequently targeted as model organisms for diversity studies in the tropical rainforests (e.g. Intachat et al., 1999; Intachat and Holloway, 2000; Brehm, 2006; Hilt et al., 2006). Over 1000 species occur on Borneo (Holloway, 1997) and tropical geometrid communities are taxonomically quite well known compared to most other large groups of herbivorous insects in the tropics.

Furthermore, moths are usually sampled during the most mobile, adult phase of their life history by light-trapping method. The vast majority of the macro- as well as micromoth species are nocturnal in their behaviour and their response to the light provides a very convenient method of sampling by using ultraviolet or mercury vapour light trap (Holloway, 1985). Light-trapping method is also practical in monitoring general temporal trends of insect abundance (Kato et al., 1995). However, samples obtained from the light trap catches often include many heterochthonous taxa or ‘tourist’ (e.g. Chey et al., 1997) and thus moth assemblages collected are not purely represent the biotope where sample is made (Kato et al., 1995). This may be true for certain moth assemblages such as the Sphingidae and Noctuidae which are known for their powerful flight ability. Nevertheless, bias can be minimised by
choosing a group that has low mobility and thus high habitat fidelity (Holloway, 1984). Therefore, moths from the family Geometridae are such a group (Intachat et al., 1997).

Since vertical stratification is an optimal sampling methodology, geometrid moths were sampled vertically, from the understorey (1 m) up to the canopy (32 m) of Kubah mixed dipterocarp forest. Of all the forest types in Sarawak, mixed dipterocarp forest is the richest, estimated to contain over 2000 tree species, and the most extensive (Hazebroek and Abang Kashim, 2000). The structure of mixed dipterocarp forests is unique, with a multi-layered forest canopy structure. The high canopy reaches a height of 40 m, with emergent trees occasionally exceeding 70 m (Whitemore, 1984). It is estimated that, a century ago, mixed dipterocarp forest covered about 80% of Sarawak’s land surface (Hazebroek and Abang Kashim, 2000). At present, small areas of mixed dipterocarp forest are protected in Kubah National Park. Pristine habitats including mixed dipterocarp forest which cover most of the Borneo lowland have been threatened with deforestation and fragmentation. Thus, an understanding of these threatened ecosystems and assessment of the faunal diversity is inevitably essential to their preservation.

In Sarawak, macromoth diversity has been intensively accomplished by Holloway (1984), encompassing from various lowland and montane areas, ranging in altitudes from 50 to 2360 m a.s.l. In Borneo, few studies on the geometrid moth diversity in various vegetation types and altitude have been studied (e.g. Beck et al., 2002; Beck et al., 2006; Beck and Chey, 2008). As documented by Beck and Chey (2008), a marked peak of geometrid moth diversity was at ca 650 a.s.l. However, at present, information on the macromoths composition in Kubah National Park is still lacking. The scarcity of scientific documentation on macromoths
diversity in Kubah mixed dipterocarp forest would therefore make the present study valuable for generating baseline data on the selected moth communities.

Previous studies on faunal vertical stratification was documented for a wide range of taxa including mammals (e.g. Francis, 1994; Bernard, 2001; Hodgkinson et al., 2004), avifauna (e.g. Vasquez et al., 2009) and entomofauna (e.g. De Vries et al., 1997; Abang and Karim, 2005). All these studies highlight the importance to take into account both the understorey and canopy stratum in assessing the faunal diversity in a stratified rainforest or otherwise some fauna would be merely subsampled and thus underestimated. Additionally, the analysis of vertical stratification patterns of the macromoths, geometrid moths in this case, could underpin the knowledge of their segregation along the multi-layered forest habitats (Schulze et al., 2001) and thus help to understand how high species richness can be maintained in such ecosystems (Brehm, 2006).

It appears to be plausible that there is an equal segregation of mobile flying insects in the understorey and canopy of a rainforest because the direct flight distance between the two strata (less than 40 m) can be covered even by a small insect (Brehm, 2006). Nonetheless, there is evidence that some herbivorous insects, for instance butterflies and moths, have a height preference within tropical forests that reflects the occurrence of their host-plants or other resources (e.g. De Vries et al., 1997; Schulze et al., 2001). A study by Intachat and Holloway (2000) on geometroid moths’ stratification in Pasoh Forest Reserve gave an insight into geometrid vertical distribution in the tropical rainforests. Results from the study revealed that there was no consistent significant difference in species richness, abundance and