ASSESSING THE QUALITY OF *Jatropha curcas* L. SEEDS AS PLANTING MATERIAL IN SARAWAK

Sivasangari A/P Jagatheeswaran

Master of Science
2012
ASSESSING THE QUALITY OF *Jatropha curcas* L. SEEDS AS PLANTING MATERIAL IN SARAWAK

Sivasangari A/P Jagatheeswaran

A thesis submitted
In fulfillment of the requirements for the
Master of Science
(Botany)

FACULTY OF RESOURCE SCIENCE AND TECHNOLOGY
UNIVERSITI MALAYSIA SARAWAK

2012
DECLARATION

I hereby declare that no portion of the work referred to this thesis have been submitted in support of an application for another degree of qualification to this or any other university of institution of higher learning.

(Sivasangari A/P Jagatheeswaran)

Date:
I am grateful to the God for His grace, blessings, and the strength granted to me to complete this study. I would like to express my sincere appreciation and gratitude to my family and also to Prof Madya Dr Petrus Bulan, for his supervision, guidance, support, and tolerance throughout this study. His understanding and patience in this study were most comforting.

I would also like to acknowledge the contribution made by Dr. Siti Rubiah Zainudin for her meticulous and constructive comments on the dissertation.

Special thanks to all the staff at Faculty of Resource Science and Technology, UNIMAS, especially M. Nurfazillah and Fatimah Daud for their assistance. I also wish to extend my appreciation to Carbon Capitol Sdn Bhd, Sadong Jaya Kota Samarahan, Sarawak, for providing me with the seed materials and information for my study.

Thank you so much to all my friends for their help in one way or another also aided in the successful completion of this study.
ABSTRACT

A study was conducted to evaluate the quality of *Jatropha curcas* seeds collected from two different accessions in Sarawak. A significant seed source variation was observed in seed morphology (colour, size and weight), seed viability, germination, moisture content, seeds storability, priming treatments, accelerated ageing, seed oil percentage and early growth performance of seedling. The seeds from Bintulu, Samarahan and control were dehydrated in silica gel for 0, 24, 48, 72, 96 and 120 hours then stored in six different environments for the basic seed storage; ambient room (28–30 °C), air-conditioned room (22–24 °C), refrigerator (3–5 °C), incubator (35–40 °C), freezer (0–4 °C) and liquid nitrogen (-196 °C) for 4 months. Three types of priming treatment used were the hydroperving, osmopriming and thermopriming. The average fresh weights of 10 seeds were 8.02 g, 5.94 g, 7.55 g respectively, for Bintulu, Samarahan and Control seeds. Oil content was 36.75% in Bintulu, 30.37% in Samarahan and 35.49% in Control. Preliminary evaluation conducted indicated that moisture content was 18.92% for Bintulu, for 13.91% Samarahan and 17.07% for Control. Germination was 74.88, 50.10, and 70.5% for Bintulu, Samarahan and Control respectively. Viability for Bintulu, Samarahan and Control seeds were 80, 60 and 82% respectively. The dehydrated seeds at 48 hours were found successful after storing at all types of environment. The highest germination and viability percentage was obtained with seeds stored in liquid nitrogen. Seeds of *J. curcas* in liquid nitrogen can be stored for 163, 159, 177 days for Bintulu, Samarahan and control seeds respectively. The germination and viability percentages of *J. curcas* seeds from Bintulu were highest when the seeds were thermoprimed in water at 40 °C as compared to other priming treatments. At 24 hour ageing the germination percentage was the highest for both accessions. Photosynthesis rates (*A*), stomatal conductance (*g*ₜ), transpiration (*E*), and Chlorophyll content in Bintulu plant
higher than its water stress counterpart. The seeds from Bintulu responded better germination, viability, moisture content and also with greater seed weight and size as compared to the seeds from other accessions. Overall, the seeds from Bintulu are better in its seed quality, morphologically and physiologically as compared to other accessions. The positive effect has been very favorable in terms of its quality due to the plant’s potential to produce biofuel.

Keywords: *Jatropha curcas* L, storability, priming, accelerate ageing, germination, photosynthesis, moisture content.
MENILAI KUALITI BIJI BENIH JATROPHA CURCAS L SEBAGAI SUMBER PENANAMAN DI SARAWAK

ABSTRAK

Satu kajian telah dijalankan untuk mengkaji kesan penyimpanan, rawatan 'priming', penuaan buatan dan peratusan minyak terhadap kualiti biji benih Jatropha curcas Linnaeus, serta menilai ciri-ciri fizikal biji benih J. curcas. Biji benih dari Bintulu, Samarahan dan kawalan telah dehidrasi selama 0, 24, 48, 72, 96 dan 120 sebelah disimpan dalam enam persekitaran berbeza seperti suhu bilik (28-30°C), bilik berhawa dingin (22-24°C), peti sejuk (3-5°C), inkubator (35-40°C), penyelat beku (0-4°C) dan ceccair nitrogen (-196°C) selama 4 bulan. Tiga jenis rawatan 'priming' telah dijalankan iaitu 'hydropriming', 'osmopriming', dan 'thermopriming'. Berat bersih 10 biji benih adalah 8.02, 5.94, 7.55 g masing masingnya bagi biji benih dari Bintulu, Samarahan dan kawalan. Kandungan minyak dalam biji benih J. curcas adalah 36.75% di Bintulu, 30.37% di Samarahan dan 35.49% di Control. Kajian awal mendapati kandungan kelembapan biji benih adalah 18.92% bagi Bintulu, 13.91% bagi Samarahan dan 17.07% bagi kawalan. Percambahan adalah, 74.88, 50.10 dan 70.5% masing masingnya, untuk Bintulu, Samarahan dan kawalan. Keboleh-hidupan bagi biji benih Bintulu, Samarahan dan kawalan adalah 80, 60, and 82% masing masingnya. Biji benih J. curcas dapat disimpan dalam ceccair nitrogen selama 163, 159, 177 hari masing masingnya untuk sampel dari Bintulu, Samarahan dan kawalan. Percambahan dan keboleh-hidupan dalam 'thermoprimed' pada 40°C mencatat peratus tertinggi dibandingkan dengan rawatan 'priming' yang lain. Percambahan pada 24 jam penuaan buatan mencatat peratus yang tertinggi bagi semua kawasan. Kajian menunjukkan kadar fotosintesis (A), konduksi stomata (gs), transpirasi (E) dan kadar klorofil bagi biji benih dari Bintulu adalah tinggi...

Kata Kunci: Jatropha curcas L, penyimpanan, rawatan priming, penuaan buatan, fotosintesis, percambahan, kelembapan.
TABLE OF CONTENTS

DECLARATION i
ACKNOWLEDGEMENTS ii
ABSTRACT iii
ABSTRAK v
TABLE OF CONTENTS vii
LIST OF TABLES xii
LIST OF FIGURES xiv
LIST OF ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION

1.1 Background 1
1.2 Biofuel production 2
 1.2.1 Biofuel worldwide 2
 1.2.2 Biofuel production in Malaysia 3
1.3 Problem statement 4
1.4 Objectives 6

CHAPTER 2 LITERATURE REVIEW

2.1 Botanical description 8
2.2 Cultivation 9
2.3 Utilization and uses
2.4 Seed moisture content
2.5 Seed viability
2.6 Seed germination
2.7 Seed storage
2.8 Cryopreservation
2.9 Accelerated ageing
2.10 Seed deterioration
2.11 Seed priming
 2.11.1 Hydropriming
 2.11.2 Termopriming
 2.11.3 Osmopriming
2.12 Seed oil content
2.13 Response of plants to water stress
 2.13.1 Photosynthesis
 2.13.2 Chlorophyll content

CHAPTER 3 MATERIALS AND METHODS
3.1 Material
3.2 Methods
 3.2.1 Measurement of seed size
 3.2.2 Moisture content test
 3.2.3 Seed viability (TZ) test
 3.2.3.1 Preliminary viability test
 3.2.3.2 Viability test
3.2.4 Germination test
3.2.5 Seed storage
3.2.6 Accelerated ageing of seed
3.2.7 Priming of seeds
 3.2.7.1 Hydropriming
 3.2.7.2 Moisturization
 3.2.7.3 Thermostoring
 3.2.8.4 Osmopriming
3.2.9 Seed oil extraction
3.2.9 Photosynthesis measurement
 3.2.9.1 Measurement of chlorophyll content
3.3 Statistical analysis

CHAPTER 4 RESULTS

4.1 Site and soil characteristics
4.2 Physical properties of J. curcas seed
 4.2.1 Length, width and thickness of seed
 4.2.2 Weight of J. curcas seed
4.3 Seed oil content
4.4 Seed quality
 4.4.1 Seed initial germination
 4.4.2 Seed initial moisture content
 4.4.3 Seed initial viability
 4.4.3.1 Initial viability test
4.5 Seed desiccation

4.5.1 Seed moisture content

4.5.2 Seed germination

4.5.3 Seed viability

4.6 Seed Storage

4.6.1 Seed stored in ambient room

4.6.1.1 Germination

4.6.1.2 Viability

4.6.2 Seed stored in air conditioned room

4.6.2.1 Germination

4.6.2.2 Viability

4.6.3 Seed stored in freezer

4.6.3.1 Germination

4.6.3.2 Viability

4.6.4 Seed stored in liquid nitrogen

4.6.4.1 Germination

4.6.4.2 Viability

4.6.5 Seed stored in incubator

4.6.5.1 Germination

4.6.5.2 Viability

4.6.6 Seed stored in refrigerator

4.6.6.1 Germination

4.6.6.2 Viability

4.7 Statistical analysis for storage

4.8 Regression analysis
4.8.1 Ambient room 75
4.8.2 Air conditioned room 76
4.8.3 Freezer 77
4.8.4 Liquid nitrogen 78
4.8.5 Incubator 79
4.8.6 Refrigerator 80

4.9 Seed priming 81
 4.9.1 Germination 81
 4.9.1.1 Hydropriming 81
 4.9.1.2 Osmopriming 83
 4.9.1.3 Thermopriming 84
 4.9.2 Viability 86
 4.9.2.1 Hydropriming 86
 4.9.2.2 Osmopriming 87
 4.9.2.3 Thermopriming 90
 4.9.3 Moisture content 92
 4.9.3.1 Hydropriming 92
 4.9.3.2 Osmopriming 93
 4.9.3.3 Thermopriming 96

4.10 Statistical analysis for priming treatments 98

4.11 Accelerated ageing of seed 98
 4.11.1 Germination of aged seed 98
 4.11.2 Viability of aged seed 99

4.12 Statistical analysis for accelerated ageing 100

4.13 Gas exchange measurements 100
4.13.1 Leaf photosynthesis rate (A) 100
4.13.2 Leaf transpiration rate (E) 101
4.13.3 Water use efficiency (WUE) 101
4.13.4 Leaf stomatal conductance (gs) 102
4.13.5 Chlorophyll absorption 102

CHAPTER 5 DISCUSSION 105

CHAPTER 6 SUMMARY AND CONCLUSIONS 122

REFERENCE 125

APPENDIX 142
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Leaf gas exchange rate responds of different drought tolerant plants to water stress.</td>
</tr>
<tr>
<td>Table 2</td>
<td>Site and soil characteristics.</td>
</tr>
<tr>
<td>Table 3</td>
<td>Weight of J. curcas seeds from Bintulu, Samarahan and Control.</td>
</tr>
<tr>
<td>Table 4</td>
<td>Means of germination for Bintulu, Samarahan and Control J. curcas seeds in six different storage environments.</td>
</tr>
<tr>
<td>Table 5</td>
<td>Effect of different duration of accelerated ageing on germination of J. curcas seeds from Bintulu, Samarahan and Control.</td>
</tr>
<tr>
<td>Table 6</td>
<td>Effect of different duration of accelerated ageing on viability of J. curcas seeds from Bintulu, Samarahan and Control.</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Length, width and thickness of J. curcas seeds from Bintulu, Samarahan and Control. Vertical bars indicate the value of standard error.</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Oil content in whole seed of J. curcas from Samarahan, Bintulu and Control. Vertical bars indicate the value of standard error.</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Initial moisture content, germination and viability of J. curcas seeds from Bintulu, Samarahan and Control. Vertical bars indicate the value of standard error.</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Germination of J. curcas seeds from Bintulu, Samarahan and Control. Vertical bars indicate the value of standard error.</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Moisture content of J. curcas seeds from Bintulu, Samarahan and Control. Vertical bars indicate the value of standard error.</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Viability percentages of J. curcas seeds for Bintulu, Samarahan and Control. Vertical bars indicate the value of standard error.</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Viability of J. curcas seeds at different concentration of tetrazolium solution for 6 hours at 35 °C.</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Moisture content of J. curcas seeds after dehydrated up to 120 hours. Vertical bars indicate the value of standard error.</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Germination of J. curcas seed after dehydrated up to 120 hours. Vertical bars indicate the value of standard error.</td>
</tr>
</tbody>
</table>
Figure 10 Viability of *J. curcas* seed after dehydrated up to 120 hours. Vertical bars indicate the value of standard error.

Figure 11 Germination of *J. curcas* seeds stored in ambient room (28-30 °C) after dehydrated in silica gel (A) Bintulu, (B) Samarahan and (C) Control.

Figure 12 Viability of *J. curcas* seeds stored in ambient room (28-30 °C) after dehydrated in silica gel (A) Bintulu, (B) Samarahan and (C) Control.

Figure 13 Germination of *J. curcas* seeds stored in air-conditioned (22-24 °C) after dehydrated in silica gel (A) Bintulu, (B) Samarahan and (C) Control.

Figure 14 Viability of *J. curcas* seeds stored in air-conditioned (22-24 °C) after dehydrated in silica gel (A) Bintulu, (B) Samarahan and (C) Control.

Figure 15 Germination of *J. curcas* seeds stored in freezer (0-4 °C) after dehydrated in silica gel (A) Bintulu, (B) Samarahan and (C) Control.

Figure 16 Viability of *J. curcas* seeds after stored in freezer (0-4 °C) after dehydrated in silica gel (A) Bintulu, (B) Samarahan and (C) Control.

Figure 17 Germination of *J. curcas* seeds after stored in Liquid nitrogen (-196 °C) after dehydrated in silica gel (A) Bintulu, (B) Samarahan and (C) Control.

Figure 18 Viability of *J. curcas* seeds after stored in Liquid nitrogen (196 °C).
Viability of *J. curcas* seeds after stored in Liquid nitrogen (196 °C) after dehydrated in silica gel (A) Bintulu, (B) Samarahan and (C) Control.

Figure 19

Viability of *J. curcas* seeds after stored in incubator (40 °C) after dehydrated in silica gel (A) Bintulu, (B) Samarahan and (C) Control.

Figure 20

Germination of *J. curcas* seeds after stored in refrigerator (3-5 °C) after dehydrated in silica gel (A) Bintulu, (B) Samarahan and (C) Control.

Figure 21

Viability of *J. curcas* seeds after stored in refrigerator (3-5 °C) after dehydrated in silica gel (A) Bintulu, (B) Samarahan and (C) Control.

Figure 22

Regression analysis for germination of *J. curcas* seeds from Bintulu, Samarahan and Control stored in ambient room (28-30 °C; 70-80% RH) for 16 weeks after 48 hours desiccation.

Figure 23

Regression analysis for germination of *J. curcas* seeds from Bintulu, Samarahan and Control stored in air-conditioned room (22-24 °C; 45-50% RH) for 16 weeks after 48 hours desiccation.

Figure 24

Regression analysis for germination of *J. curcas* seeds from Bintulu, Samarahan and Control stored in freezer (0-4°C; 35% RH) for 16 weeks after 48 hours desiccation.

Figure 25

Regression analysis for the germination of *J. curcas* from Bintulu, Samarahan and Control stored in ambient room (28-30 °C; 70-80% RH) for 16 weeks after 48 hours desiccation.

Figure 26
Bintulu, Samarahan and Control seeds kept in the in liquid nitrogen (196 °C: 80-90% RH) for 16 weeks after 48 hours desiccation.

Figure 27 Regression analysis for germination of desiccation *J. curcas* seeds from Bintulu, Samarahan and Control stored in incubator (40 °C; 40% RH) for 16 weeks after 48 hours desiccation.

Figure 28 Regression analysis for germination of *J. curcas* seeds from Bintulu, Samarahan and Control stored in refrigerator (3-5 °C; 42% RH) for 16 weeks after 48 hours desiccation.

Figure 29 Germination of *J. curcas* seeds of different period of (A), hydration and (B) moisturization. Vertical bars indicate the value of standard error.

Figure 30 Germination of *J. curcas* seeds at different periods of osmoprimering concentrations of PEG 8000 (A), 1.0 (B), 0.5 and (C) 0.1. Vertical bars indicate the value of standard error.

Figure 31 Germination of *J. curcas* seeds at different periods of thermoprimering (A), 28 °C (B), 35 °C and (C) 40 °C. Vertical bars indicate the value of standard error.

Figure 32 Viability of *J. curcas* seeds at different period of (A), hydration and (B) moisturization. Vertical bars indicate the value of standard error.

Figure 33 Viability of *J. curcas* seeds at different periods of osmoprimering concentrations of PEG 8000 (A), 1.0 (B), 0.5 and (C) 0.1. Vertical bars indicate the value of standard error.

Figure 34 Viability of *J. curcas* seeds at different periods of
thermopriming (A), 28 °C (B), 35 °C and (C) 40 °C. Vertical bars indicate the value of standard error.

Figure 35 Moisture content of *J. curcas* seeds of different period of (A), hydration and (B) moisturization. Vertical bars indicate the value of standard error.

Figure 36 Moisture content of *J. curcas* seeds at different periods of osmopriming concentrations of PEG 8000 (A), 1.0 (B), 0.5 and (C) 0.1. Vertical bars indicate the value of standard error.

Figure 37 Moisture content of *J. curcas* seeds at different periods of thermopriming (A), 28 °C (B), 35 °C and (C) 40 °C. Vertical bars indicate the value of standard error.

Figure 38 *Jatropha curcas* seedlings from different accession under different level of water stress for 3 months, and the parameters measured are photosynthesis (A): A and B, transpiration rates (E): C and D, water use efficiency (WUE): E and F, leaf stomatal conductance (gs): G and H, Chlorophyll (SPAD): I and J. Data for *Jatropha* grown in pots represent the means ± standard error of 4 replicate plants. Vertical bars indicate the value of standard error.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Photosynthesis rate</td>
</tr>
<tr>
<td>AEOE</td>
<td>Aqueous enzymatic oil extraction</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>AOSO</td>
<td>Association of official seed analysts</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>E</td>
<td>Transpiration rate</td>
</tr>
<tr>
<td>gs</td>
<td>Stomatal conductance rate</td>
</tr>
<tr>
<td>KOH</td>
<td>Potassium hydroxide</td>
</tr>
<tr>
<td>MANOVA</td>
<td>Multivariate Analysis of Variance</td>
</tr>
<tr>
<td>PEG</td>
<td>Polyethylene glycol</td>
</tr>
<tr>
<td>RuBP</td>
<td>Ribulose-1,5-biphosphate</td>
</tr>
<tr>
<td>SPAD</td>
<td>Soil-plant analysis development</td>
</tr>
<tr>
<td>W1</td>
<td>Well water</td>
</tr>
<tr>
<td>W2</td>
<td>Water stress treatment</td>
</tr>
<tr>
<td>WUE</td>
<td>Water use efficiency</td>
</tr>
<tr>
<td>TZ</td>
<td>Tetrazolium</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Jatropha curcas L. have the potential in bioenergy sources replace biodiesel can be used as diesel engines as pure fuel or in blends (Mathiyazhagan *et al*., 2008). *Jatropha curcas* L. belongs to family Euphorbiaceae. The botanist Carl Von Linne first classified the plant in 1753, and gave a name from the Greek word 'Jatros' means 'Doctor' and 'trophe' means 'Nutrition'. The common name for *J. curcas* is Physic Nut and in Malaysia is Jarak Pagar and the classification for this plant is under the division of Spermatophyta; sub division Angiospermae; class Dicotyledonae; order Euphorbiales; Family Euphorbiaceae; genes Jatropha; species *curcas* (Rama and Roy, 2006). It is a native of tropical America but now it is widely distributed in many tropical and sub-tropical regions especially in Asia and Africa (Keith, 2000; Jongschaap *et al*., 2007). *J. curcas* is a valuable hedge plant to Africa and Asia brought by the Portuguese traders (Heller, 1996).

J. curcas grows best on well-drained soils with good aeration and is well adapted to marginal soils with low nutrient content. It is found in the tropics and subtropics and likes heat, and it grows well even in lower temperatures of light frost. Physic nut is able to grow in areas with unsuitable soil and climate conditions, (Becker and Makkar, 2008; Jongschaap *et al*., 2007). Its water requirement is extremely low and it can stand long periods of drought by shedding most of its leaves. The current distribution shows its introduction in the drier regions of the tropics with annual rainfall of 300-1000 mm (Achten *et al*., 2008; Kumar and Sharma, 2005).
This plant presents itself as a large shrub or small tree, growing up to 5m to five to seven meters in height. The life-span of *J. curcas* may be more than 50 years (Kumar and Sharma, 2005). It has unisexual flowers and is deciduous; shedding its big leaves in the rainy season. Flowering time takes place during the hotter seasons. The exocarp maintains moisture content until the three black ovoid oily seeds mature. At this point the fruit color changes from green to yellow (Sunder, 2006). Seeds contain several toxic substances, such as a lectin named curcin, phorbol esters and trypsin inhibitor. Secondary metabolites variety seems to depend on genetics or the environment (Makkar *et al.*, 1997).

Plate 1: Seeds of *Jatropha curcas* Linn.

1.2 Biofuel Production

1.2.1 Biofuel Worldwide

High oil prices in Asian countries have resulted in searching for alternative biodiesel plants that were economical and sustainable. As an alternative, *J. curcas* seeds had been identified as a very potential source of biodiesel. Jongschaap *et al.* (2007) analyzed that the seed of *J. curcas* contains viscous oil, highly suitable for production of biodiesel. Unlike petroleum, biofuels are a renewable energy source and its feedstock is inexhaustible if
produced sustainably. Domestic production of biofuels helps reducing countries' dependence on foreign fossil oil supply and protects their economies from the fluctuating oil prices (Sims, 2002).

J. curcas has its own economic values, because it produces seeds with an oil content of approximately 37% which is used for making biofuel. Plantation of *J. curcas* primarily focuses on producing green bio-diesel as an alternate source of fuel that can propel engines, generators and transportation as well as power generation in the future to replace existing fuel sources (Ramesh and Sampatharajan, 2008). Several projects have concentrated on the production of *J. curcas* oil as a diesel substitute for engines and as a kerosene substitute for cooking and lighting. In many developing countries, diesel is taxed less than petrol and kerosene, sometimes it is subsidized. Thus, as a general rule, the present day costs of diesel and kerosene do not make it attractive to produce plant oil as a substitute for these petroleum based fuels (Oppenshaw, 2000).

Oil crisis of the 1970's and recognition of world oil resources, vegetable oil has received special attention (Heller 1996; Hening 2000a). Special interest has been shown in the cultivation of the physic nut *J. curcas* for oil extraction, especially since it is drought resistant and can be cultivated on marginal land. United States is also producing corn for biodiesel, there will be shortage of food for animal and mankind. However, because Jatropha is inedible, it will not cause food shortage (Heller, 1996; Rintos, 2007a).

1.2.2 Biofuel in Malaysia

In the present scenario, Malaysia is seriously making an effort on cultivation of *J. curcas* on a large scale to produce biofuel. In 2007, BIONAS Agropolitan Technology Corridor Development (BATC Development Bhd) as non-governmental organization (NGOs) has prompted into this cultivation programme. In December 2008, Bionas Group executive