A MORPHOLIGICAL AND MOLECULAR PHYLOGENETIC ANALYSIS OF MALAYSIAN Kerivoula (Chiroptera: Vespertilionidae)

Noor Haliza binti Hassan @ Ahmad

Master of Science
2009
A Morphological and Molecular Phylogenetic Analysis of Malaysian Kerivoula (Chiroptera: Vespertilionidae)

NOOR HALIZA BINTI HASAN

A thesis submitted
in fulfillment of the requirement for the degree of
Master of Science

Faculty of Resource Science and Technology
UNIVERSITI MALAYSIA SARAWAK
2009
DECLARATION

I hereby declare that no portion of the work referred to this thesis has been submitted in support of an application for another degree or qualification to this or any other university or institute of higher learning.

(Noor Haliza binti Hasan @ Ahmad)

JUNE 2009
Acknowledgements

Bismillahirrahmanirrahim. Alhamdulillah and grace the Allah Almighty to have given me strength and determination, for have given me the health and faith to finally complete my work for my master's degree. My deep appreciation goes to my supervisor, Prof. Dr. Mohd Tajuddin Abdullah (MTA) and co-supervisor, Assoc. Prof. Dr. Edmund Sim for their guidance, advice, constructive comments, concern and support throughout this study. This study would not have been possible without various administrative and financial support from UNIMAS. I would like to thank UNIMAS for granting me the Zamalah UNIMAS 2007/09 scholarship. This study was also funded by three grants; the Ministry of Science, Technology and Innovation IRPA grant number 09-02-09-1022-AE001 lead by MTA with co-researchers, Yuzine Esa and Awg Ahmad Sallehin Awg Husaini; grant FRGS 06(08)6602007(25) and UNIMAS Small Grant Scheme awarded to MTA. I would also like to thank Sarawak Forestry Corporation and Sarawak Forestry Department for granting permission with license number 07775 under the State Wild Life Protection Rules 1998; for research permit number NPW.907.4.2(II)-54 and permit to enter park number 45/2007. My thanks also go to the Institute of Biological Diversity (IBD) Krau Pahang, Department of Wildlife and National Park (DWNP) Kuala Lumpur and Museum of Sabah, Kota Kinabalu, Sabah.

I wish to thank members of the Department of Zoology; Mr Besar Ketol, Mr. Isa Sait, Mr. Huzal Irwan Husin, Mr. Wahab Mami and Mr. Mohd Jalani Mortada for their hard work and assistances throughout this study. To Molecular Ecology Laboratory (MEL) seniors; Andy Kho Han Guan, Jayaraj Vijaya Kumaran, Fong Pooi Har and Siti Nurlydia Sazali, I wish to thank them for being the steady mentors for me since 2005 until the very end of this study. My thanks
also go especially for Mr. Faisal Anwarali Khan for sharing his samples, ideas and thoughts throughout these years, and Ms. Ratnawati Hazali, for being a steady supporter and a big sister whom I can always turn to for advice. I thank my MEL colleagues; Hung Tze Mau, Roberta Chaya Tawie Tingga, Eileen Lit, Mohd Ridwan Abd Rahman, Anang Setiawan Achmadi, Sigit Wiantoro, Muhd Ikhwan Idris, Mohd Fizl Sidq Mohd Ramji, Eric Pui Yong Meng and Nur Salmizar Azmi for their wonderful friendship, for the great times, shared knowledge and support. Never forgotten, to my best friends, Shamsyah Hamid, Rohanie Bohan, Ahmad Farizzulkhairi Ahmad Sobri, Khairul Anwar Othman and to my good friends, Nur Hafizah Azizan, Ida Nivina Pathe, Aminah Imat and Pang Sing Tyan; thanks for all the wonderful memories, friendship, support and encouragement.

I would like to thank my beloved parents, Hasan @ Ahmad bin Anis and Jama’yah binti Kedri for their never ending encouragement, support and prayers. To my siblings, Muhammad Najib bin Hasan, Muhammad Fakhri bin Hasan, Muhammad Al-Hadi Akmal bin Hasan, Muhammad Fakhrul Aiman bin Hasan and Muhammad Fakhrul Izzat bin Hasan; always have faith and always be thankful. And to Omu, thank you for always being there and always being supportive.
Abstract

(Morphometric and phylogenetic analyses were done on six species of Kerivoula from Malaysia.)

(Morphological studies could only be done on five out of the six Kerivoula species available for this research, namely K. papillosa, K. lenis, K. pellucida, K. hardwickii and K. minuta.) No sample of K. intermedia was available for morphological analysis.

(Thirty-one characters of the external body, skull and dentition were taken from 47 adult individuals of Kerivoula.)

(Three separate analyses were done on the morphological data; (1) clustering analysis, (2) principal component analysis (PCA) and (3) discriminant function analysis (DFA) were applied to the data.)

(The findings from all the three analyses supported the groupings of the Kerivoula samples into six different groups; namely, K. minuta, K. hardwickii, K. pellucida, K. lenis and K. papillosa.) Cryptic samples of K. papillosa were further separated into two types; K. papillosa type small (K. papillosa type S) and K. papillosa type large (K. papillosa type L). Phylogenetic analysis was done on six available Kerivoula samples utilising three mitochondrial genes; 409 basepair (bp) of cytochrome b (cyt b), 478 bp of cytochrome oxidase I (COI) and 1044 bp of NADH dehydrogenase subunit 2 gene (ND2). This was followed by another analysis utilising one nuclear gene - 1054 bp of recombinant activating gene subunit 2 (Rag2). The reconstructions of phylogenetic trees depicting the relationship of Kerivoula were retrieved using all four inferring methods through three analyses namely, neighbor-joining (NJ), maximum parsimony (MP) and maximum likelihood (ML). All analyses consistently resulted in seven groups, namely K. minuta, K. pellucida, K. hardwickii, K. lenis and K. papillosa, with K. papillosa further separated into two different subgroups which were congruent with those of morphological analyses, and also the addition of K. intermedia samples. The same samples were used in both analyses and out of 17 samples identified as K. papillosa, five were classified as K.
papillosa type L (forearm length of 44.5 mm to 49.0 mm); with one sample from the Madai Cave in Sabah and the other four from the Niah National Park of Sarawak. Another 12 samples were classified as K. papillosa type S (forearm length of 40.0 mm to 44.5 mm) with their distribution scattered around Sarawak and Peninsular Malaysia. The separation of these two types of K. papillosa were also supported by a notable genetic distance of >10% which was comparable to those of biologically different species. This suggested the presence of cryptic species within the K. papillosa groups. It was also noted that K. hardwickii samples were separated into the Eastern and the Western Borneo samples with 100% support of bootstrap for the cyt b and the ND2 genes analyses. The existence of a potential phylogroup was suggested with a genetic distance of 4.6% to 6.0% in the cyt b as >5% was the value proposed by Baker and Bradley (2006) for such definition. Separation of K. minuta samples into two subgroups was also observed using at least three analyses and the existence of a subspecies was suggested. It was concluded that the analysis using ND2 gene gave the best tree in depicting the phylogenetic relationship of Kerivoula. The comparison of the K. papillosa type S and the K. papillosa type L identified in this study to the type specimen would justify the taxonomic revision of the cryptic species within the genus. Population studies of K. papillosa, K. hardwickii and K. minuta were suggested to further verify the findings of the present study. Further analysis onto both forms of K. papillosa together with the other nine Kerivoula species occurring in Malaysia would provide better insights into the phylogenetic relationship of genus Kerivoula. (The findings of this study were expected to aid in the taxonomy and future management and conservation plans for this genus.)

Keywords: Kerivoula, Malaysia, morphology, molecular phylogenetic, cryptic species
Analisis morfologi dan filogenetik molekul *Kerivoula* (Chiroptera: Vespertilionidae) dari Malaysia

Abstrak

Kata kunci: Kerivoula, Malaysia, morfologi, filogenetik molekul, spesies kriptik
Table of Contents

Declaration i
Acknowledgement ii
Abstract iv
Abstrak vi
Table of content ix
List of Figures xviii
List of Tables xxiii
Abbreviations xxvi

CHAPTER ONE General Introduction

1.1 Chiroptera (Bats) 1

1.1.1 Classifications of Chiroptera
 (i) Megachiroptera 3
 (ii) Microchiroptera 4

1.1.2 Taxonomic Studies of Chiroptera 5

1.1.3 New Classifications of Bats 7

1.2 Study Taxa: The Wooly Bats (Kerivoula sp.) 9

1.2.1 New Species in Kerivoula 10

1.2.2 Distribution and Conservation Status 12
1.3 Morphology Analysis

1.3.1 Cluster Analysis
1.3.2 Principal Component Analysis
1.3.3 Discriminant Function Analysis
1.3.4 Other Statistical Analysis

1.4 Molecular Approaches

1.4.1 Mitochondrial DNA
 (i) Cytochrome b
 (ii) Cytochrome Oxidase I
 (iii) NADH Dehydrogenase gene subunit 2

1.4.2 Nuclear Gene
 (i) Recombinant Activating Gene 2

1.4.3 Inferring Methods

1.5 Rationale

1.6 Aims of Study

1.6.1 Morphological Analysis
1.6.2 Molecular Phylogenetic Analysis
1.6.3 Morphological and Phylogenetic Analysis
CHAPTER TWO Material and Methodologies

2.1 Specimen Collections
 2.1.1 Collecting Methods and Sites of Study 34
 2.1.2 Specimen Identification 34
 2.1.3 Specimen Preservation 35
 2.1.4 Museum Voucher Samples 35

2.2 Morphological Study Materials
 2.2.1 Skull Extraction and Measurements 39

2.3 Morphological Analysis
 2.3.1 Cluster Analysis 41
 2.3.2 Basic Statistical Test 41
 2.3.3 Principal Component Analysis (PCA) 42
 2.3.4 Discriminant Function Analysis (DFA) 43

2.4 Molecular Study
 2.4.1 Sources of DNA 43
 2.4.2 Laboratory Materials 44
2.5 Molecular Methodologies

2.5.1 DNA Extraction

2.5.2 DNA Visualization

2.5.3 Amplification using Polymerase Chain Reaction

(a) Mitochondrial Gene

(b) Nuclear Gene

2.5.4 Purification and Sequencing

2.6 Molecular Analysis

2.6.1 Distance-based Method

2.6.2 Character-based Methods

CHAPTER THREE Morphology Analysis Results

3.1 Morphological Data and Cluster Analysis

3.2 Statistical Tests

3.2.1 Multiple Regression

3.2.2 Normality Test and Data Transformation

3.2.3 Homogeneity of Variance Test

3.2.4 Multicolinearity Test

3.3 Principal Component Analysis
3.4 Discriminant Function Analysis

CHAPTER FOUR Molecular Analysis Results

4.1 Mitochondrial Gene Analysis
 4.1.1 Cytochrome b
 4.1.2 NADH Dehydrogenase gene subunit 2
 4.1.3 Cytochrome Oxidase I

4.2 Nuclear Gene Analysis
 4.2.1 Recombinant Activating Gene subunit 2

CHAPTER FIVE Discussion

5.1 Morphological Analysis of Kerivoula

5.2 Phylogenetic Relationship of Kerivoula
 5.2.1 Mitochondrial Gene Analysis
 5.2.2 Nuclear Gene Analysis in Comparison with the mtDNA Gene Analysis
5.3 Comparison of Morphology and Molecular Results

CHAPTER SIX General Conclusions and Recommendations

REFERENCES

List of Publications

APPENDIX A Samples used for morphometrics analysis.

APPENDIX B Multiple regression for testing sex dimorphism for each species.

APPENDIX C1 P-values of Kolmogorov-Smirnov goodness-of-fit test for all characters in *K. papillosa* type S.

APPENDIX C2 P-values of Kolmogorov-Smirnov goodness-of-fit test for all characters in *K. papillosa* type L.

APPENDIX C3 P-values of Kolmogorov-Smirnov goodness-of-fit test for all characters in *K. pellucida*.
APPENDIX C4 P-values of Kolmogorov-Smirnov goodness-of-fit test for all characters in *K. hardwickii*.

APPENDIX C5 P-values of Kolmogorov-Smirnov goodness-of-fit test for all characters in *K. minuta*.

APPENDIX D Box’s M test results for standardised characters.

APPENDIX E Variables in the analysis and not in the analysis for normally distributed character and all characters.

APPENDIX F1 Scree plot describing the eigenvalue for each component in the analysis.

APPENDIX F2 Total variance explained by each factor. Extracted factor used in analysis are being bold.

APPENDIX F3 Communalities tables for the extracted component in the analysis.

APPENDIX F4 KMO and Bartlett’s test.
APPENDIX F5 Component score coefficient matrix for all 31 variables used in the analysis.

APPENDIX F6 Descriptive statistics for the variables used in the analysis.

APPENDIX G1 Classification results for all characters in analysis.

APPENDIX G2 Statistical test used at each step of the stepwise analysis (Wilk's lambda) for all characters.

APPENDIX G3 Wilk's Lambda test of functions and eigenvalues for all functions.

APPENDIX H The aligned sequences of the 409 bp of partial cyt b sequences for each species used in Chapter Four.

APPENDIX I The aligned sequences of the complete ND2 sequences for each species used in Chapter Four.

APPENDIX J The aligned sequences of the partial COI sequences for each species used in Chapter Four.
APPENDIX K The aligned sequences of the partial Rag2 sequences for each species used in Chapter Four.

List of Figures

Figure 2.1 Sampling sites for Kerivoula samples used in present study, namely as the following; 1-Kubah National Park, Swk; 2-Batang Ai National Park, Swk; 3-Bau, Swk; 4-Bintulu, Swk; 4-Niah National Park, Swk; 5-Loagan Bunut National Park, Swk; 6- Lambir Hills National Park, Swk; 7-Similajau National Park, Swk; 8-Gua Madai, Sbh; 9-Taman Negara Pahang, PM; 10-Kelantan, PM; 11-Perak, PM; 12-Johor, PM and 13-Terengganu, PM.*Swk=Sarawak; Sbh=Sabah and PM=Peninsular Malaysia.

Figure 2.2 Thirty-one characters used for measurements and analysis in Kerivoula. Drawing is not to scale.

Figure 3.1 Figure above showed the dendogram for cluster analysis result using UPGMA analysis and average Euclidean distance method. K. papillosa S1=Sarawak (SWK) locality; K. papillosa S2=Peninsular Malaysia (PM) locality; K. pellucida 1=SWK locality; K. pellucida 2=PM locality; K. minuta 1=SWK locality; K. minuta 2=PM locality; FA=forearm length; mm=millimeter.

Figure 3.2 Regression factor plot for species grouping for Factor 1 versus Factor 2.
Figure 3.3 Regression factor plot for species grouping for Factor 1 versus Factor 3.

Figure 3.4 Canonical variate analysis for all characters using pooled covariance matrix.

Figure 3.5 Canonical variate analysis for all characters using separate covariance matrix.

Figure 4.1 Plot of transition and transversion against divergence using Kimura (1980) distance method onto the third codon position shows no saturation occurrence in cyt b gene region.

Figure 4.2 Phylogenetic relationships of six species of Kerivoula under study based on 409 bp partial cyt b mtDNA gene sequences. The phylogeny is a single tree recovered using NJ analysis. Values on the branches represent NJ bootstrap estimates, based on 1000 replicates. Only bootstrap values >50% are shown.

Figure 4.3 Unweighted and rooted MP tree based on nucleotide data set of 409 bp partial cyt b mtDNA gene (tree length=440; CI=0.4295; RI=0.7794). Values on the branches represent MP bootstrap estimates, based on 1000 replicates. Only bootstrap values >50% are shown.
Figure 4.4 Rooted ML tree (-Ln likelihood= 2652.61175) generated based on nucleotide data set of 409 bp partial cyt b mtDNA gene. Values on the branches represent ML bootstrap estimates, based on 100 replicates. Only bootstrap values >50% are shown.

Figure 4.5 Plot of transition and transversion against divergence using Kimura (1980) distance method onto the third codon position shows no saturation occurrence of the ND2 gene region.

Figure 4.6 Phylogenetic relationships of six species of Kerivoula under study based on 1044 bp complete ND2 mtDNA gene sequences. The phylogeny is a single tree recovered using NJ analysis. Values on the branches represent NJ bootstrap estimates, based on 1000 replicates. Only bootstrap values >50% are shown.

Figure 4.7 Unweighted and rooted MP tree based on nucleotide data set of 1044 bp complete ND2 mtDNA gene (tree length=1256; CI=0.5645; RI=0.7760). Values on the branches represent MP bootstrap estimates, based on 1000 replicates. Only bootstrap values >50% are shown.
Figure 4.8 Rooted ML tree (-Ln likelihood= 7256.95353) generated based on nucleotide data set of 409 bp partial cyt b mtDNA gene. Values on the branches represent ML bootstrap estimates, based on 100 replicates. Only bootstrap values >50% are shown.

Figure 4.9 Plot of transition and transversion against divergence using Kimura (1980) distance method onto the third codon position shows no saturation occurrence of COI gene region.

Figure 4.10 Phylogenetic relationships of six species of Kerivoula under study based on 478 bp partial COI mtDNA gene sequences. The phylogeny is a single tree recovered using NJ analysis. Values on the branches represent NJ bootstrap estimates, based on 1000 replicates. Only bootstrap values >50% are shown.

Figure 4.11 Unweighted and rooted MP tree based on nucleotide data set of 478 bp partial COI mtDNA gene (tree length=339; CI=0.6077; RI=0.8222). Values on the branches represent MP bootstrap estimates, based on 1000 replicates. Only bootstrap values >50% are shown.

Figure 4.12 Rooted ML tree (-Ln likelihood= 2250.21816) generated based on nucleotide data set of 478 bp partial COI mtDNA gene. Values on the branches represent ML bootstrap estimates, based on 100 replicates.
Only bootstrap values >50% are shown.

Figure 4.13 Plot of transition and transversion against divergence using Kimura (1980) distance method shows no saturation occurrence in the Rag2 gene region.

Figure 4.14 Phylogenetic relationships of six species of Kerivoula under study based on 1054 bp partial Rag2 nuclear gene sequences. The phylogeny is a single tree recovered using NJ analysis. Values on the branches represent NJ bootstrap estimates, based on 1000 replicates. Only bootstrap values >50% are shown.

Figure 4.15 Unweighted and rooted MP tree based on nucleotide data set of 1054 bp partial Rag2 nuclear gene (tree length=118; Cl=0.7542; RI=0.8564). Values on the branches represent MP bootstrap estimates, based on 1000 replicates. Only bootstrap values >50% are shown.

Figure 4.16 Rooted ML tree (-Ln likelihood= 2228.30394) generated based on nucleotide data set of 1054 bp partial Rag2 nuclear gene. Values on the branches represent ML bootstrap estimates, based on 100 replicates. Only bootstrap values >50% are shown.