MOLECULAR GENETIC ANALYSIS OF COLORECTAL CARCINOMA: GENE EXPRESSION PROFILING AND ANALYSIS OF THE TUMOUR SUPPRESSOR GENES APC AND DCC

Ivyna Bong Pau Ni

Master of Science
(Medical Biotechnology)
2005
MOLECULAR GENETIC ANALYSIS OF COLORECTAL CARCINOMA: GENE EXPRESSION PROFILING AND ANALYSIS OF THE TUMOUR SUPPRESSOR GENE, DCC

IVYNA BONG PAU NI

A thesis submitted
in fulfillment of the requirements for the degree of Master of Science

Faculty of Resource Science and Technology
UNIVERSITI MALAYSIA SARAWAK
2005
ACKNOWLEDGEMENT

Firstly, I would like to thank my supervisor, Dr Edmund Sim Ui Hang for his extensive supervision throughout the completion of my MSc. Degree. In the most critical part of this study, his advises and guidance is truly appreciated.

My greatest appreciation to Prof. Rahman Jamal (UKM) for providing the colorectal carcinomas tissues, and Dr Patricia Lim and Pauline Balraj (IMR) for isolating total RNAs from these tissues. Without these specimens, this study would not be possible.

Sincere thanks to Prof Jane Cardosa (IHCM) for her permission to let me used the facilities in her laboratory. Special thanks to friends in IHCM for dedicated time to assist and advice me on the gene expression data analysis. I would like to extend my appreciation to my lab-mates and friends for their warmest support and encouragement throughout this study.

I also thank National Biotechnology Directorate – Medical Biotechnology Cooperative Centre Top-down research grant in funding of this project.

Finally, I would like to thank God for giving me the opportunity to further my study, and to my parents and brothers who have always love and support me.
ABSTRACT

Colorectal carcinoma (CRC) ranks third among the ten leading causes of cancers in Malaysia (Annual Report of Cancer Incidence in Malaysia, 2002). The CRC tumourigenesis involved the inactivation of tumour suppressor genes, and activation of proto-oncogenes. Generally, colorectal adenoma is initiated by genetic aberrations in adenomatous polyposis coli (APC) gene, which cause the stabilization of β-catenin via activation of Wnt transduction pathway. These events will eventually lead to over-expression of its downstream target genes such as Cyclin D1, e-myc, e-jun and Matrilysin, which function as cell cycle regulators, apoptotic genes and transcription factors.

In this study, we report the simultaneous evaluation of gene expression profiles of Caucasian and Malaysian CRC patients using DNA microarray. The data on gene expression patterns revealed a total of 831 up-regulated genes and 103 down-regulated genes. Among the differentially expressed genes, 12 of them were verified by RT-PCR assay. They are Wnt2, Apo3, OSF-2p1, immunoglobulin lambda heavy chain, immunoglobulin heavy chain, V region, glutathione peroxidase, Tyl, Bbl, Mpvl7, Tsg101, ribosomal protein L7a (surf3) large subunit, ribosomal protein L32 and MLC-2. Most of the differentially expressed transcripts represented novel findings (OSF-2P1, Apo3, TSG101, MPV17, MLC-2 and TYL) while some of them are coincided with existing literature (Wnt, and ribosomal protein L7). Apart from that, analysis of Deleted in Colorectal Carcinoma (DCC) gene, which plays an important role in the initiation and progression of CRC, was performed in this study. Mutational analysis of DCC gene in Asian CRC is still very limited. By using novel DCC exonic primers, mutational analysis of DCC mRNA regions in CRC was successfully carried out and results obtained revealed several mutation sites in the CRC samples examined.
ABSTRAK

Di Malaysia, kanser kolon dan rektum (CRC) menduduki tempat ketiga antara sepuluh jenis kanser yang terutama (berpandukan laporan tahunan kejadian kanser di Malaysia, 2002). Faktor-faktor yang menyebabkan ketumbuhan CRC melibatkan ketidakaktifan gen-gen perencat kanser dan pengaktifan proto-onkogen. Secara umum, CRC dicetuskan oleh perubahan genetik dalam gen adenomatous polyposis coli (APC) di mana perubahan ini menyebabkan penstabilan β-catenin melalui perangsangan lintasan Wnt. Kejadian semua ini akan membawa kepada pengekspresan lebihan gen-gen sasaran seperti Cyclin D1, c-myc, c-jun dan Matrilysin yang berfungsi sebagai pengawal, kitaran sel, gen-gen apoptotik dan faktor-faktor transkripsi. Dalam penyelidikan ini, kami melaporkan penilaian kesamaan bagi profil ekspresi gen daripada tiga eksperimen mikroarray (peringkat I, II dan III). Data yang diperolehi daripada profil pengekspresan gen menunjukkan sejumlah 831 atas-regulasi gen dan 103 bawah-regulasi gen. Sebanyak 12 gen di antara gen yang diekspres secara berbeza telah disahkan oleh RT-PCR. Gen-gen ini ialah Wnt2, Apo3, OSF-2p1, immunoglobulin lambda heavy chain, immunoglobulin heavy chain, V region, glutathione peroxidase, TYL, BB1, Mpv17, TSG101, ribosomal protein L7a (surf3) large subunit, ribosomal protein L32 and MLC-2. kebanyakkan transkrip yang diekspres secara berbeza mewakili penemuan baru (OSF-2p1, Apo3, TSG101, MPV17, MLC-2 and TYL) manakala sebahagian gen-gen adalah selaras dengan hasil penyelidikan penyelidik yang lain (Wnt, and ribosomal protein L7). Selain itu, DCC gen analisis yang memainkan peranan penting dalam pencetusan dan perkembangan CRC telah dijalankan dalam penyelidikan ini. Analisis susunan asid nukleik bagi mRNA DCC dalam CRC telah dijalankan dengan menggunakan primer-primer exonik DCC telah berjaya diperolehi, dan keputusan yang dihasilkan telah menunjukkan beberapa tapak mutasi dalam sampel CRC yang dikaji.
TABLE OF CONTENTS

ACKNOWLEDGEMENT ... i
ABSTRACT .. ii
ABSTRAK ... iii
TABLE OF CONTENTS .. iv
LIST OF TABLES AND FIGURES ... x
LIST OF ABBREVIATIONS .. xiii

CHAPTER ONE ... 1
Introduction .. 1

CHAPTER TWO ... 3
Literature Review .. 3
2.1 Structure of Colorectal Tissue ... 3
2.2 Colorectal Organogenesis .. 3
2.3 Functions and Development of Colonic Tissue 4
2.4 Duke's Classification of Colorectal Carcinoma 5
2.5 Incidence of Colorectal Carcinoma ... 5
2.6 Colonic Polyps/Adenomas and Carcinomas .. 9
2.7 Types of Colonic Polyps/Adenomas ... 9
2.7.1 Neoplastic Polyps ... 9
2.7.1.1 Adenomas ... 10
2.7.1.1.1 Tubular Adenomas .. 10
2.7.1.1.2 Villous Adenomas ... 11

CHAPTER THREE ... 56
Materials and Methods.. 56
3.1 Chemicals, Enzymes, Reagents and Their Sources................................. 56
3.2 Preparation of Competent Cells... 59
3.3 Methods of DNA Cloning... 59
3.4 Selection of Recombinant DNA with Colony PCR Method.................... 60
3.5 Restriction Digest of Plasmid DNA... 60
3.6 Selection of Recombinant DNA by PCR.. 61
3.7 Preparation of Bacterial Glycerol Stock... 61
3.8 Agarose Gel Electrophoresis... 61
3.9 General Microarray Preparation and Analysis.. 62
 3.9.1 Labeling of cDNA as Fluorescent Probes... 62
 3.9.2 cDNA Purification.. 63
 3.9.3 Determination of Probes Concentrations.. 63
 3.9.4 Hybridization of Probes on Microarray Slide.. 64
 3.9.5 Washing of Microarray Slide... 64
 3.9.6 Microarray Data Analysis.. 65
3.10 Isolation of DNA.. 65
 3.10.1 Isolation of Plasmid DNA... 65
 3.10.2 Preparation of Genomic DNA from Human Whole Blood................ 66
3.11 Total RNA.. 67
3.12 Oligonucleotides.. 68
3.13 Amplification of DNA by Polymerase Chain Reaction (PCR)............ 69
3.14 Reverse Transcriptase PCR (RT-PCR)... 73
3.15 Gel Extraction of PCR-generated Fragments ... 73
3.16 PCR Purification ... 74
3.17 Automated DNA Sequencing .. 75

CHAPTER FOUR ... 76
Analysis of Tumour Suppressor Gene, DCC in Colorectal Tissue and Tumour 76
4.1 Introduction .. 76
4.2 General Methodology .. 77
4.3 Sequence Analysis Results of human DCC mRNA and Genomic Region 77
 4.3.1 Qualitative and Quantitative assessment of human Colon Total RNA 77
 4.3.2 Isolation of DCC mRNA ... 78
 4.3.3 Results of Mutation Analysis of Human DCC mRNA 80
 4.3.4 Genomic DNA and PCR-generated Fragments of Human DCC Genomic Elements 81
4.4 Discussion .. 87

CHAPTER FIVE .. 89
In Vivo Gene Expression Profiles of Commercially Available Colorectal Carcinoma
Total RNAs ... 89
5.1 Introduction .. 89
 5.1.1 Microarray Stage I (Oncogenes and Tumour Suppressor Genes Array) 90
 5.1.2 Microarray Stage II (Human cDNA I Array) .. 90
5.2 Materials and Methods ... 91
 5.2.1 Microarray Stage I (Oncogenes and Tumour Suppressor Genes Array) 91
 5.2.1.1 Probes for Hybridization ... 91
 5.2.2 Microarray Stage II (Human cDNA I Array) .. 92
 5.2.2.1 Probes for Hybridization ... 92
CHAPTER FIVE

5.3 Results of Gene Expression Analysis

- **5.3.1 Microarray Stage I**
- **5.3.2 Microarray Stage II**

5.4 Semi-quantitative RT-PCR Confirmation

- **5.4.1 Microarray Stage I**
- **5.4.2 Microarray Stage II**

5.5 Discussion

- **5.5.1 Microarray Stage I**
- **5.5.2 Microarray Stage II**

CHAPTER SIX

In Vivo Gene Expression Profile of Local Colorectal Carcinoma Case

- **6.1 Introduction**
- **6.2 Materials and Methods**
 - **6.2.1 Concentration of probes used for hybridization**
- **6.3 Results of Gene Expression Profiles**
- **6.4 Persistently Differentially Expressed Genes**
- **6.5 Semi-qualitative RT-PCR Confirmation**
- **6.6 Discussion**

CHAPTER SEVEN

General Discussion

- **7.1 The *DCC* gene in Mutational Studies of Colorectal Carcinoma**
- **7.2 Assessing the *In Vivo* Gene Expression Profiles of Colorectal Carcinoma**
- **7.3 Future Direction**
APPENDICES

Appendix 4.3.2

Appendix 5.3

Appendix 5.4
List of Tables and Figures

Tables

Table 1 List of chemicals, enzymes and reagents..56
Table 2 List of total RNAs and their sources...68
Table 3 List of DCC intronic primers (flanking specific exon) and their annealing
 temperatures, and expected PCR product sizes.......................................70
Table 4 List of DCC full mRNA primers (6 fragments), annealing temperatures
 and expected PCR product sizes...71
Table 5 List of primers for semi-quantitative confirmatory tests and their
 annealing temperatures and expected PCR product sizes......................72
Table 6 List of PCR conditions used...72
Table 7 Summary of the results of DCC mutational analysis in tumour colon total
 RNA from sample CT...84
Table 8 Mutational analysis of DCC codons 201 and 951 in HMGL 004-008.............86
Table 9 Absorbance of Cy5 at 650 nm and Cy3 at 550 nm in experiments 1- 4............94
Table 10 Results of up-regulated genes in tumour colon (CT) relative to the normal
 colon (CN)...96
Table 11 Results of down-regulated genes in tumour colon (CT) relative to the normal
 colon (CN)...97
Table 12 Upregulated genes in colon tumour (CT) relative to the normal colon (CN).....98
Table 13 Down-regulated genes in colon tumour (CT) relative to the normal
 colon (CN)...101
Table 14 Absorbance of cy5 at 650 nm and cy3 at 550 nm in experiments 5 and 6...119

Table 15 List of up-regulated transcripts by 20-folds and higher in tumour model (019T) compared with its normal counterpart (019N).122

Table 16 List of down-regulated transcripts in tumour model (019T) relative to its normal counterpart (019N).123

Table 17 Persistently down-regulated gene in microarray stages II and III...124

Table 18 Persistently up-regulated genes in microarray stages I, II and III...124

Table 19 Number of differentially expressed genes and persistent differentially expressed genes (by 2-folds and above) in microarray stages I, II and III...137

Figures

Figure 1 Structure of human colon and rectum...7

Figure 2 Ranking of the global cancer deaths by site...8

Figure 3 Ten most frequent cancers in males and females...8

Figure 4 Diagrams of colonic tumourigenesis...15

Figure 5 Genetic model of colorectal carcinoma...16

Figure 6 Structural features of APC protein...33

Figure 7 Wingless/Wnt signaling pathway...34

Figure 8 The DCC protein structure...38

Figure 9 Colorectal tumourigenesis pathways...44

Figure 10 Results of resolved fragments from CRC (019T and CT) and normal colon tissues (019N and CN)...79

Figure 11 Results of RT-PCR fragments of DCC mRNA of CN, CT and 019T...79

Figure 12 Results of DCC mutations analysis in CT...83

Figure 13 Results of DCC mutation analysis in sample 019T...84

Figure 14 DCC gene variants as demonstrated in samples CN and CT...84
Figure 15 Genomic DNA isolated from HMGL 004-008.................85
Figure 16 Results of HMGL 004 generated PCR fragments for DCC genomic region......85
Figure 17 The DCC genomic (exons 3 and 9) analysis of HMGL 004-008...............86
Figure 18 Scatter plot of intensity of Cy3 (CT) vs intensity of Cy5 (CN)...............96
Figure 19 Scatter plot of intensity of Cy3 (CT) vs median intensity of Cy5 (CN).....97
Figure 20 Part of human cDNA I array image (spots for OSF-2p1, glutathione
peroxidase and TALLAI)...102
Figure 21 Part of human cDNA I array image (spots for TYL, IGH@ and cytokine
inducible nuclear protein)..103
Figure 22 Part of human cDNA I array image (spots for osteopontin and immunoglobulin
lambda heavy chain)..104
Figure 23 Part of human cDNA I array image (spots for A1 adenosine receptor
and NSP)..105
Figure 24 Results of semi-quantitative RT-PCR confirmatory tests of Wnt2, Apo-3,
OSF-2p1, IGH@, Immunoglobulin lambda heavy chain, glutathione peroxidase,
TYL in CN and CT...109
Figure 25 Scatter plot of intensity of Cy5 (019T) vs intensity of Cy3 (019N)...........122
Figure 26 Results of semi-quantitative RT-PCR verification of Mvp17, BBI, MLC-2,
TSG101, surf3, and ribosomal protein L32 in 019N/019T, CN/CT and
056N/056T..127
Figure 27 Groups of genes identified in our colorectal carcinoma cases..............138
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A<sub>260</sub></td>
<td>absorbance at wavelength 260</td>
</tr>
<tr>
<td>A<sub>280</sub></td>
<td>absorbance at wavelength 280</td>
</tr>
<tr>
<td>A or a</td>
<td>adenine</td>
</tr>
<tr>
<td>aa</td>
<td>amino acid</td>
</tr>
<tr>
<td>ABI</td>
<td>Applied Biosystem Inc.</td>
</tr>
<tr>
<td>AMV</td>
<td>avian myeloblastosis virus</td>
</tr>
<tr>
<td>APC</td>
<td>adenomatous polyposis coli</td>
</tr>
<tr>
<td>bp</td>
<td>base pairs</td>
</tr>
<tr>
<td>C or c</td>
<td>cytosine</td>
</tr>
<tr>
<td>CaCl<sub>2</sub></td>
<td>calcium chloride</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>CRC</td>
<td>colorectal carcinoma</td>
</tr>
<tr>
<td>Cy3</td>
<td>cyanine 3</td>
</tr>
<tr>
<td>Cy5</td>
<td>cyanine 5</td>
</tr>
<tr>
<td>DCC</td>
<td>deleted in colorectal carcinoma</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>dinucleotide triphosphate</td>
</tr>
<tr>
<td>dUTP</td>
<td>deoxyuracil triphosphate</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediamine tetra-acetic acid</td>
</tr>
<tr>
<td>EST</td>
<td>expressed sequence taq</td>
</tr>
<tr>
<td>EtBr</td>
<td>ethidium bromide</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>FAP</td>
<td>familial adenomatous polyposis</td>
</tr>
<tr>
<td>g</td>
<td>gravity</td>
</tr>
<tr>
<td>G or g</td>
<td>guanine</td>
</tr>
<tr>
<td>HNPCC</td>
<td>hereditary non-polyposis colorectal cancer</td>
</tr>
<tr>
<td>hr(s)</td>
<td>hour(s)</td>
</tr>
<tr>
<td>IPTG</td>
<td>isopropyl-β-D-thiogalactoside</td>
</tr>
<tr>
<td>kb</td>
<td>kilobases</td>
</tr>
<tr>
<td>KCl</td>
<td>potassium chloride</td>
</tr>
<tr>
<td>kDa</td>
<td>kilo Daltons</td>
</tr>
<tr>
<td>LB</td>
<td>Luria-Bertoni broth</td>
</tr>
<tr>
<td>LOH</td>
<td>loss of heterozygosity</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>magnesium chloride</td>
</tr>
<tr>
<td>min(s)</td>
<td>minute(s)</td>
</tr>
<tr>
<td>MMR</td>
<td>mismatch repair</td>
</tr>
<tr>
<td>MRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>NaOH</td>
<td>sodium hydroxide</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center for Biological Information</td>
</tr>
<tr>
<td>NH₄Oac</td>
<td>ammonium acetate</td>
</tr>
<tr>
<td>°C</td>
<td>degree of Celsius</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>RBI</td>
<td>Retinoblastoma</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>RT</td>
<td>room temperature</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>reverse transcriptase - PCR</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulfate</td>
</tr>
<tr>
<td>sec(s)</td>
<td>second(s)</td>
</tr>
<tr>
<td>SOB</td>
<td>Salt-optimized broth</td>
</tr>
<tr>
<td>SOC</td>
<td>Salt-optimized medium</td>
</tr>
<tr>
<td>SSC</td>
<td>sodium chloride / sodium citrate</td>
</tr>
<tr>
<td>T or t</td>
<td>thymidine</td>
</tr>
<tr>
<td>TAE</td>
<td>tris-acetate EDTA</td>
</tr>
<tr>
<td>TCF</td>
<td>T-cell factor</td>
</tr>
<tr>
<td>Tris</td>
<td>tris (hydroxymethyl) aminomethane</td>
</tr>
<tr>
<td>UV</td>
<td>ultra violet</td>
</tr>
<tr>
<td>V or v</td>
<td>volts</td>
</tr>
<tr>
<td>Ver</td>
<td>version</td>
</tr>
<tr>
<td>X-gal</td>
<td>5-bromo-4-chloro-3-indolyl- β-D-thiogalactoside</td>
</tr>
</tbody>
</table>
CHAPTER ONE

Introduction

Tumours of the colon and rectum can be divided into adenomas and carcinomas (Corman, 1993). Colorectal adenoma is a benign tumour that is derived from the glandular while colorectal carcinoma (CRC) is a malignant tumour that arises from the epithelium (Corman, 1993). Colorectal adenomas can be divided into tubular, villous and tubulovillous adenomas according to the morphology of the glandular arrangement within the polyps (Jass and Sobin, 1989). CRC has neoplastic potential, whereby the cells would penetrate into the muscularis mucosa layer of the colon and metastasize to the distant organ such as liver if left untreated (Paluszkieiczka et al., 2004).

Colorectal carcinomas can be classified into sporadic and germ-line colorectal carcinomas. More than 70% of cancers of the colorectal are sporadic adenomatous polyps (Hardy et al., 2000). Sporadic CRC is caused by genetic abnormalities in somatic cells, which happens during cell growth and development. Unlike sporadic CRC, germ-line CRC is a result of genetic aberrations, which are inherited from the parents. The examples of germ-line CRC are familial adenomatous polyposis coli (FAP) and hereditary non-polyposis colorectal cancer (HNPCC). HNPCC is caused by deficiency in mismatch repair (MMR) genes, such as MLH1, MSH2, PMS1 and PMS2 (Nicolaides et al., 1994; Vasen et al., 1996; Aarnio et al., 1999) whereas FAP is a disease initiated by mutation in adenomatous polyposis coli (APC) gene. According to Fodde (2002), mutation in APC gene is sufficient to initiate colorectal adenomas, while accumulation of the other genetic disorders are needed to transform the adenomas to carcinoma. In 1996, Vogelstein
and Kinzler proposed a genetic model of colorectal tumourigenesis. This genetic model is applied for FAP and some sporadic colorectal carcinoma cases. In this model, mutation in \textit{APC}, \textit{K-ras}, \textit{SMAD2/4} or \textit{DCC} or \textit{DPC4} and \textit{p53} genes are involved in the transformation of normal epithelial to CRC. Activation of Wnt signaling is thought to cause accumulation of \(\beta\)-catenin in the nucleus and transcriptional activation of Wnt downstream target genes. To date, the mutation cluster region (MCR) of \textit{APC} has been identified but mutations in \textit{DCC}, \textit{K-ras} and \textit{p53} genes are still poorly understood.

Gene expression profiling of colorectal carcinomas revealed genes that are involved in the CRC tumourigenesis pathways, for example, \textit{c-myc} and \textit{Cyclin D1} genes (Erisman \textit{et al.}, 1985 & 1988; Sikora \textit{et al.}, 1987; Finley \textit{et al.}, 1989; Rowley \textit{et al.}, 1990; Hur \textit{et al.}, 2000; Fodde \textit{et al.}, 2001). However, the information obtained from the endogenous gene expression profiling of CRC is still not sufficient to completely delineate the CRC tumourigenesis pathways. More expression studies on CRC are needed to solve this problem.

In our project, we aim at identifying gene expression profiles of colorectal carcinomas in the Malaysian context by using cDNA microarray approach. Apart from that, we will perform mutational analysis of mRNA and genomic regions of the \textit{DCC} gene. We would then link the mutation data with the gene expression pattern. If we have identified mutation(s) in the \textit{DCC} gene, we would investigate whether genes involved in the pathways or other associated pathways show differential expression. By this, we would know whether mutations in these genes have any impact or relationship with the differential expression genes in our CRC cases. This would provide us possible clues on the delineation of CRC tumourigenesis pathways.
CHAPTER TWO

Literature Review

2.1 Structure of Colorectal Tissue

Human colon and rectum are organs of the digestive system. The colon is a tube-shaped, muscular and about four feet long organ. It is twisting and turning from the end of the small bowel to the anus. The colon can be divided into 4 main regions, which are transverse colon, ascending colon, descending colon and sigmoid colon (Corman, 1993) (Figure 1). Cecum and ascending colon play a major role in the water and electrolyte absorption and fermentation of the undigested sugars while the descending colon, sigmoid colon and rectum are predominantly responsible for the storage and evacuation of the faeces.

2.2 Colorectal Organogenesis

The digestive tube of the human embryo consists of fore-gut and hind-gut. Fore-gut is located within the cephalic flexure whereas hind-gut is situated within the caudal flexure.

About the 4th week, the fore-gut of the embryo opens freely into the yolk-sac and the opening is gradually narrowed into the yolk stalk (vitelline duct). The gut undergoes further elongation to form a V-shaped loop that passes from the vitelline duct to the umbilicus. In the 6th week, the diverticulum of the gut is developed behind the vitelline duct. Part of the loop on the distal part of the cecal diverticulum then increases in diameter and forms the ascending and transverse portions
of the colon. After 5 months, the proximal part of the cecal diverticulum expands and forms the cecum.

Apart from fore-gut, the hind-gut is lengthened backwards into the body stalk as a tube of Allantois. The body stalk, with the Allantois is then carried forward to the ventral aspect of the body and forms a bend at the junction of the hind-gut and Allantois. Subsequently, the bend dilates and becomes a pouch that contains the entodermal cloaca. The entodermal cloaca is then divided into dorsal and ventral parts by urorectal septum. The dorsal part of the cloaca finally forms the rectum.

2.3 Functions and Development of Colonic Tissue

The colon itself consists of four layers. Starting from the inner layer to the outer layer, the colon is composed of lumen, mucosa, submucosa, muscularis externa and serosa. Mucosa is built up by a smooth muscle, which consists of 3 layers. They are known as surface epithelium, lamina propria and muscularis mucosae. The surface of epithelium consists of goblet cells and crypts, which are oriented as straight tubular glands that extend down into the muscularis mucosae. Crypts excrete mucus to facilitate the passage of faeces along the colon. Apart from that, lamina propria and muscularis mucosae contain blood and lymph vessels, nerves and cells of the immune system. Hence, when the tumour cells invade muscularis mucosae, they would become more aggressive and metastasize to the distant organs via blood vessels and lymph nodes after a period of time (Kerr, 1999).

The submucosa layer is comprises of fibroelastic loose connective tissue. It contains blood vessels, leukocytes, nerve cells and fat. Besides that, muscularis externa can be further divided into inner and outer layers. The inner layer is formed by circular fibers whereas the outer layer is
formed by longitudinal fibers. There are three longitudinal strips known as teniae colis in the outer layer. Teniae colis functions in the contraction of colon, faecal compaction and distal transport of luminal contents. The last layer, serosa or adventitia layer is a thin loose connective tissue (Kerr, 1999).

2.4 Duke’s Classification of Colorectal Carcinoma

Duke’s staging classifies CRC into 4 different stages, with 90-100%, 75-85%, 30-40% & <5% five years survival rate in stages I, II, III and IV, respectively. Stage I refers to the tumour that is confined to the submucosa or muscularis propria. Tumours that invade the subserosa layer are classified as Stage II. Tumour is classified as Stage III when the cancerous cells invade the lymph nodes, while Stage IV represents malignant tumour that causes distant metastasis.

2.5 Incidence of Colorectal Carcinoma

Colorectal carcinoma is one of the most common cancer-related deaths for men and women worldwide. Globally, CRC is the third leading caused of human cancers for both sexes, it accounted for 10% of new cases and 8.7% of total cancer mortality in 2000 (Shibuya et al., 2002).

In Malaysia, approximately 26,089 cases of cancers were diagnosed in 2002. CRC ranks third after lung and nasopharynx cancers in males while in females, CRC ranks the third with breast and cervix uteri cancers as the leading causes (Figure 2 and Figure 3) (According to the annual report of cancer incidence in Malaysia, 2002). The CRC incidence occurs at all ages with a marked increase from 50 years and 70 years onwards for males and females, respectively.
According to Corman et al. (1979), most of the colonic lesions such as benign tumours or adenomas were detected in the rectum and sigmoid colon. They account for 43% and 25% in rectum and sigmoid colon, respectively. Further, 18% of the colonic lesions were detected in ascending colon, 9% in transverse colon and 5% in descending colon. This finding indicated that most of the colorectal carcinomas were distributed in the distal colon and they arise more frequently in the left side of the colon (ascending) when compared to the right side (descending).
Figure 1: Structure of the human colon and rectum. Colon is divided into 4 regions. They are transverse colon, ascending colon, descending colon and sigmoid colon (Adapted from Corman, 1993).