morphosis has been recorded for *N. centralis* with metamorphosis taking as little as 17–40 days (Read 1999). This rapid development is comparable with the North American pelobatids living in similar environments (Bragg 1967). The benefits of fast metamorphosis include maximizing recruitment (Newman 1989; Wilbur 1987), and enhanced survival when early developers can attain larger sizes and mature earlier than slow developers (Berven 1990; Smith 1987). It is also an advantage to species living in environments with unpredictable rainfall and areas where water is only available for short periods of time (Bentley 1966). Many species of *Neobatrachus*, including *N. pictus*, may overwinter as tadpoles and develop in the spring (Anstis 2002). However, flexibility in the breeding strategy, as shown by *N. pictus*, may also be present in congeners, possibly allowing breeding or larval development to take place at any time of year if conditions are suitable. Further studies would need to be conducted to fully understand the factors that trigger the accelerated larval development in *N. pictus*.

In my study, there was no apparent difference in the rate of larval development in the dams in natural grasslands and ploughed fields, or between large and small dams. However, I only measured dam depth and size. Other studies have found differences between development rates due to water levels, water temperature, food availability and competition (Bragg 1967; Morey and Reznick 2000; Pfennig 1990; Semlitsch and Caldwell 1982). These factors should be considered in future studies.

Acknowledgments.—I thank C. M. Bull and M. N. Hutchinson for reading and commenting on the early version of this manuscript. I also thank the reviewers M. Tyler, J. D. Roberts, and D. H. Olson for their valuable comments for the revised manuscript. I would also like to thank the landholders R. Sawers and G. & R. Strachn for access to their properties. A museum incidental collection permit (M253661) was issued by the South Australian Department for Environment and Heritage, to M. N. Hutchinson (South Australian Museum), with A. Fenner as an affiliate.

Literature Cited

Some Forgotten Descriptions of Nasikabatrachus (Anura: Sooglossidae)

INDRANEIL DAS

Institute of Biodiversity and Environmental Conservation
Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia

e-mail: idas@ibec.unimas.my

Much excitement was justifiably generated in the recent past in association with the description of a purported new family of amphibians (the Nasikabatrachidae) by Biju and Bossuyt (2003). Dubbed ‘the coelacanth of frogs’ (Hedges 2003), its sole described member, *Nasikabatrachus sahyadrensis*, is restricted to the Western Ghats complex of Southwestern India, a known biological diversity hotspot (see also Aggarwal 2004; Gadagkar 2004). Another research group described its tadpole and added details of adult morphology and confirmed a relationship with the African Helophrynidae and the Seychellian Sooglossidae (Dutta et al. 2004). Most recently, Frost et al. (2006) synonymized *Nasikabatrachus* under Sooglossidae. Two recent papers have discussed the distribution of this enigmatic frog (Andrews et al. 2005; Das 2006).

These recent papers, however, make no mention of several early papers that described in detail (for the first time), the tadpoles and post-larval stages of *Nasikabatrachus*, including osteological details of adults, and inference to an African relationship.

The first report of tadpoles that are clearly *Nasikabatrachus* is in Annandale and Rao (“1916” 1917), who provided a brief de-