The epidemiology and molecular characterization of
Burkholderia pseudomallei

in

Malaysian Borneo

By

Yuwana Podin

(B.Sc, M.Sc.)

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

Menzies School of Health Research

Institute of Advanced Studies

Charles Darwin University

March 2014
DECLARATION

I hereby declare that the work herein, now submitted as a thesis for the degree of Doctor of Philosophy of the Charles Darwin University, is the result of my own investigations, and all references to ideas and work of other researchers have been specifically acknowledged. I hereby certify that the work embodied in this thesis has not already been accepted in substance for any degree, and is not being currently submitted in candidature for any other degree.

Yuwana Podin

December 2014
ACKNOWLEDGMENTS

I would like to thank those who have contributed directly or indirectly in making my PhD journey more pleasant and at times, more bearable.

My deepest gratitude to my supervisors: Prof. Bart Currie for introducing me to the world of melioidosis as well as for his wisdoms and insights; Prof. Phil Giffard for his critical inputs which often pushed me to aim higher and for his musical guidance in our ukulele band which kept me sane through tough times; Dr. Mirjam Kaestli for her patience and for her help in connecting the dots, especially when it comes to the statistical analyses for my thesis.

My heartfelt thanks to the Melioid Mob: Mark Mayo the Team Manager, the pillar of strength for the team, who was always looking out for me and everyone else; Dr. Derek Sarovich and Dr. Erin Price for their mentoring as well as for their help especially with the whole genome sequence analysis of the samples used for this study; Vanessa Theobald (Ness) for being ever so helpful and cheerful; Leisha Richardson for showing me a lot of the laboratory techniques when I first started at Menzies and for the shared random laughter in the laboratory; Glenda Harrington for being the ever so caring colleague; Audrey Hill for the insightful conversations and ideas; Evan for being a sport.

Thank you to the collaborators from the hospitals and health offices in Belaga, Bintulu, Kapit, Kuching, Miri, Sibu and Kota Kinabalu who helped in the sample collection especially Dr. MongHow Ooi, Dr. Anand Mohan, Dr. SeeChang Wong, Dr. Timothy William, Dr. HengGee Lee, Beatrice, Dr. Jack Wong, Dr. TemLom Fam, Mr. Charles, Mdm. SuLin Chien, Mdm. Irene Tan, Mr. Alexander Juing, Ms. Suriya, Ms. Desiree Wong, to all the environmental health officers and nurses of the Sarawak Health Department whom I cannot possibly mention, and to all the patients, their guardians and the property owners for consenting to be part of the study.

Thank you Prof. Paul Keim and Assist. Prof. Apichai Tuanyok for the technical support in the whole genome sequencing of the isolates for my thesis; Jann
Hennesy, Nicole McMahon and Rob Baird for their assistance with the E-test and Vitek 2 test of the Malaysian Borneo isolates at the Royal Darwin Hospital pathology laboratory.

A huge thank you to the laboratory support team (Jo Bex, Bronwyn Kennard, Rebecca Watson), Operations (Sue Hutton, Jo Bex, Julie Green, Julianne Giffard) and the Menzies IT support team via Area 9.

The Spin Doctors of the Centrifugation Room (which was where we were seated): Dr. Robin Marsh, Dr. Wajahat Mahmood, Dr. Tegan Harris, soon-to-be Dr. Jacklyn Ng, Grennady, Zuly, Evan who shared the office space, laughers and crazy moments. My other friends at Menzies; Ammar, Irene, Shez, Anna Stephen, Kim, the Strum Pets (Brooke, Robyn, Anna Nicholson, Jutta, Julie, Tegan, Phil) and everyone else at Menzies for the ever-so-entertaining tearam conversations.

My friends in Darwin; the Jollys (Peter, Teresa, Ione, Sarah,) who took me in as one of theirs, Ian Crawshaw for allowing me to escape to your tropical haven on the weekends, Sarah (Hobgen) for being my kitchen buddy at the student accommodation during the early days of our PhD, Sharon for the conversations on the morning bus rides and other friends whom I cannot possibly mention all of your names here.

A big thank you to M&M, my neighbours during the final 2 years of my PhD; Marlene for the Twin Peak DVDs that got me through my writer’s block moments and for letting me conquer the gardens; and Mark for your music which kept me entertained. Thank you Bruno the cat who at times was my only form of interaction with another life form for up to 2 weeks straight! (RIP Bruno).

And because you are so special, you get mentioned twice, Jacklyn Ng and husband HG Lim; for being with me through thick and thin, and for those yummy Malaysian cuisines.
My friends in UNIMAS; Andrew for being a very good friend and confidante; Kathy for being the sister I never had; my colleagues at IHCM for their support in whatever way.

Finally, the biggest thank you to my family for their undying love and support despite my constant absence in many of our family gatherings; my older brother Irwan, my sister-in-law Ervina, my younger brother Nikman, my nieces Ira and Mira. Love you all to bits.

Dedication
This thesis is dedicated to both my departed parents. I will not be what or where I am without your love and sacrifices. Thank you Papa and Mummy for being the wind beneath my wings.
DECLARATION OF AUTHOR’S CONTRIBUTION IN THE PUBLICATIONS ARISEN FROM THIS THESIS

This thesis is substantially my own work including developing the research questions, designing the methodology, applications of research permits, collecting and analysing data and interpreting the results, performed under the guidance of my supervisors Prof. Phil Giffard, Prof. Bart Currie and Dr. Mirjam Kaestli. I have written all the chapters in this thesis and the papers where I am the first author arisen from this thesis with contribution of wordings by my supervisors.

I hereby acknowledge the following contributions of co-authors in the publications arisen from this thesis:

Chapter 3: Automated biochemical characterization of *Burkholderia pseudomallei* from Malaysian Borneo

I applied for research permits and ethics approval from the various government agencies in Malaysia and Sarawak state for the collection of *B. pseudomallei* isolates used in this study, visited the hospitals that provided the clinical isolates, prepared and coordinated for the isolates to be transported from the various hospitals to the collaborative centre at Universiti Malaysia Sarawak and eventually to Menzies School of Health Research, conducted all the laboratory tests on the isolates, performed the data analysis and wrote the manuscript for publication and the chapter for this thesis. Dr. Mirjam Kaestli assisted in statistical analysis of the work in this chapter and provided critical input in the writing process of the manuscript. Ms. Nicole McMahon, Ms. Jann Hennessy and Mr. Robert Baird assisted in performing tests on the isolates using the Vitek 2 machine at different times. Dr. HieUng Ngian, Dr. JinShyan Wong, Dr. Anand Mohana, Dr. SeeChang Wong and Dr. Timothy William recruited the patients and provided clinical data of the patients whose isolates were used in this study. Mr. Mark Mayo assisted in re-culturing of the isolates at Menzies School of Health Research PC3 laboratory. Prof. Bart Currie conceived the idea and contributed in providing critical input as well as wording of some parts of the manuscript.
Chapter 4: Characterization of aminoglycoside and macrolide susceptible \textit{B. pseudomallei} from Malaysian Borneo

I applied for research permits and ethics approval from the various government agencies in Malaysia and Sarawak state for the collection of \textit{B. pseudomallei} isolates used in this study, visited the hospitals that provided the clinical isolates, prepared and coordinated for the isolates to be transported from the various hospitals to the collaborative centre at Universiti Malaysia Sarawak and eventually to Menzies School of Health Research, designed the reversion assay experiments, conducted all the laboratory tests and experiments on the isolates, performed the data analysis and wrote the manuscript for publication and the chapter for this thesis. Dr. Derek Sarovich assisted in the analysis of the whole genome sequence, provided intellectual input into the design of the experiments and provided critical input into the manuscript and chapter arisen from this work. Dr. Erin Price assisted in the analysis of the whole genome sequence of the isolates used in the study and provided critical input during the preparation of the manuscript and the chapter arisen from this work. Dr. Mirjam Kaestli assisted in the molecular testing of the isolates and provided critical input during the preparation of the manuscript and the chapter arisen from this work. Mr. Mark Mayo assisted in the culture of the isolates and provided critical input during the preparation of the manuscript and the chapter arisen from this work. Dr. KingChing Hii, Dr. HieUng Ngian, Dr. SeeChang Wong, Dr. IngTien Wong, Dr. JinShyan Wong, Dr. Anand Mohan, Dr. MongHow Ooi, Dr. TemLom Fam and Dr. Jack Wong recruited the patients and provided clinical data of the patients whose isolates were used in this study. Assist. Prof. Apichai Tuanyok and Prof. Paul Keim provided support in the whole genome sequencing of the isolates used in this study. Prof. Phil Giffard and Prof. Bart Currie conceived the idea and contributed in providing critical input and wordings into the manuscript preparation as well as the chapter arisen from this work.
TABLE OF CONTENTS

Acknowledgments..i
Declaration of author’s contributions..iv
Table of contents...vi
Table of figures...xi
Table of tables..xii
Abstract..xiii
Abbreviations..xv

Chapter 1: General introduction and literature review..................1
1.1 General introduction: *Burkholderia pseudomallei* and melioidosis.........1
 1.1.1 *Burkholderia* genus..1
 1.1.2 *Burkholderia pseudomallei*..1
 1.1.3 Melioidosis...3
 1.1.4 Melioidosis in animals..6
1.2 Literature review: Melioidosis in Malaysia...................................9
 1.2.1 Epidemiology of melioidosis in Malaysia.................................9
 1.2.2 Melioidosis in animals in Malaysia...15
 1.2.3 Scientific interests on melioidosis in Malaysia.........................16
1.3 Summary and implications of literature review..........................27
1.4 *B. pseudomallei* and melioidosis in Malaysian Borneo................28
1.5 Study aims..32
1.6 Thesis outline..33

Chapter 2: Phenotypic characterization and molecular epidemiology of clinical *B. pseudomallei* isolates from Malaysian Borneo........35
2.1 Introduction..35
 2.1.1 Culture methods...35
 2.1.2 Confirmation methods..37
 2.1.3 Methods of characterizing *B. pseudomallei*............................39
 2.1.4 Study hypothesis...44
 2.1.5 Study objectives...44
2.2 Materials and methods...45
 2.2.1 Ethics...45
 2.2.2 Collection of *B. pseudomallei* clinical isolates from hospitals...45
 2.2.3 Movement of *B. pseudomallei* clinical isolates....................45
 2.2.4 Revival of *B. pseudomallei* clinical isolates transport from UNIMAS to Menzies School of Health Research.........................47
 2.2.5 Morphological identification of *B. pseudomallei* from culture...47
Chapter 2: Bacterial typing of B. pseudomallei from Kuala Lumpur, Malaysia

2.2.6 *B. pseudomallei* culture confirmation by antigen detection using latex agglutination test ... 47
2.2.7 Antibiotic susceptibility testing (E-test) ... 49
2.2.8 Testing of colistin susceptibility of GEN sensitive *B. pseudomallei* isolates and modification of Ashdown’s agar ... 50
2.2.9 DNA extraction using QIAamp DNA mini kit 51
2.2.10 Type III secretion system real-time PCR ... 51
2.2.11 Detection of the *B. thailandensis*-like flagellum and chemotaxis biosynthesis (BTFC) and the *Yersinia*-like fimbrial (YLF) gene clusters ... 52
2.2.12 *bimA* ‚ and *bimA*   allele real-time PCR methods ... 52
2.2.13 Multilocus sequencing typing ... 53
2.2.14 Multiple-locus VNTR analysis methods ... 54
2.2.15 Analysis of MLVA-4 results ... 55
2.2.16 Whole genome sequencing ... 55

2.3 Results and discussions ... 57
2.3.1 Morphotypes ... 57
2.3.2 Latex agglutination test ... 57
2.3.3 Antibiotic susceptibility testing (E-test) ... 59
2.3.4 Colistin susceptibility experiment ... 59
2.3.5 TTS1, BTFC/YLF gene cluster, *bimA* ‚ / *bimA*   alleles real-time PCR assays ... 65
2.3.6 MLST results ... 66
2.3.7 MLVA-4 results ... 75
2.3.8 Whole genome sequencing ... 80

2.4 Conclusions ... 84

Chapter 3: Automated biochemical characterization of *B. pseudomallei* from Malaysian Borneo ... 86

3.1 Introduction ... 87

3.2 Materials and methods ... 88
3.2.1 Clinical isolates used for the study ... 88
3.2.2 VITEK 2 system ... 88
3.2.3 Confirmation of *B. pseudomallei* isolates by PCR ... 89
3.2.4 Confirmation of *B. pseudomallei* isolates by latex agglutination test ... 89
3.2.5 Statistical analysis ... 89

3.3 Results and discussions ... 90

3.4 Conclusions ... 94
Chapter 4: Characterization of aminoglycoside and macrolide susceptible
B. pseudomallei from Malaysian Borneo..95

4.1 Introduction..96

4.2 Materials and methods...97
 4.2.1 Ethics...97
 4.2.2 Bacterial strains..97
 4.2.3 MLST..97
 4.2.4 Antibiotic susceptibility testing...99
 4.2.5 WGS and analysis...99
 4.2.6 Allele-specific PCR...99
 4.2.7 Restoration of aminoglycoside resistance..............................99
 4.2.8 Di-deoxy sequencing...100
 4.2.9 Primer design...100

4.3 Results and discussions..103
 4.3.1 MLST of Sarawak isolates indicates restricted geographical
distribution..103
 4.3.2 ST881 and ST997 isolates are susceptible to the aminoglycosides
and macrolides..104
 4.3.3 Reversion of the C1102G mutation restored aminoglycoside and
macrolide resistance..105
 4.3.4 Clinical and environmental significance of aminoglycoside and
macrolide sensitive *B. pseudomallei* in Sarawak............................105

4.4 Conclusions..106

Chapter 5: Environmental investigation of *B. pseudomallei* and other
Burkholderia spp. in Sarawak..111

5.1 Introduction..111
 5.1.1 *Burkholderia cepacia* complex..111
 5.1.2 Ecology of *B. pseudomallei*..112
 5.1.3 Environmental surveys of *B. pseudomallei*..........................114
 5.1.4 Unchlorinated water supply harbouring *B. pseudomallei*......115
 5.1.5 Landscape use in central Sarawak...116
 5.1.6 Statement of working hypothesis..116

5.2 Isolation and epidemiology of environmental *B. pseudomallei* and
Burkholderia spp. in Sarawak..119
 5.2.1 Materials and methods...119
 5.2.1.1 Environmental sampling strategies..................................119
 5.2.1.2 Sample size power calculation.......................................119
 5.2.1.3 First environmental sampling.......................................120
 5.2.1.4 Second environmental sampling....................................120
 5.2.1.5 Permission and consent..122
 5.2.1.6 Soil sample collection..122
5.2.1.7 Water sample collection .. 122
5.2.1.8 Recovery of *B. pseudomallei* from soil samples 123
5.2.1.9 Recovery of *B. pseudomallei* from water samples 123
5.2.1.10 Use of Ashdown’s agar with gentamicin and with colistin 124
5.2.1.11 Morphological identification of *B. pseudomallei* from culture .. 126
5.2.1.12 Transport of isolates from UNIMAS laboratory to Menzies School of Health Research .. 126
5.2.1.13 Revival of sweeps and isolates transported from UNIMAS to Menzies School of Health Research .. 126
5.2.1.14 Storage of bacterial isolates .. 127
5.2.1.15 DNA extraction of sweeps of bacterial culture using Chelex ® 100 .. 127
5.2.1.16 Type III secretion system real-time PCR 127
5.2.1.17 *recA* PCR ... 128
5.2.1.18 *recA* sequencing .. 128
5.2.1.19 16S ribosomal DNA sequencing ... 129
5.2.1.20 Analysis of DNA sequences ... 129

5.2.2 Results and discussions .. 130

5.3 Soil inoculation experiment .. 140
5.3.1 Materials and methods .. 140
5.3.1.1 Modified Ashdown’s agar with 50 μg/ml colistin 140
5.3.1.2 Sterilization of soil and quality control .. 140
5.3.1.3 Preparation of *B. pseudomallei* isolates .. 140
5.3.1.4 Soil inoculation with selective *B. pseudomallei* isolates 141
5.3.1.5 Soil DNA extraction .. 141
5.3.1.6 PCR of *B. pseudomallei* inoculums into soil 141
5.3.1.7 Recovery of viable *B. pseudomallei* from inoculated soil samples .. 142
5.3.1.8 DNA extraction and TTS1 real-time of sweeps from plates A, B and C .. 142
5.3.1.9 Experimental limitations .. 142

5.3.2 Results and discussions .. 143

5.4 Antibiosis activities of *Burkholderia* spp. towards aminoglycoside susceptible *B. pseudomallei* from Sarawak .. 147
5.4.1 Materials and methods .. 147
5.4.1.1 Antagonism screening .. 147
5.4.1.2 Bacterial isolates used .. 147
5.4.1.3 Preparation of bacterial culture ... 149

5.4.2 Results and discussions .. 150

5.5 Summarized discussions and conclusions for Chapter 5 156
Chapter 6: Concluding chapter
6.1 General discussions
6.2 Future directions
References
Appendix A: Summary of research permits and ethics approval for melioidosis study in Malaysian Borneo
Appendix B: Soil sampling form for B. pseudomallei
Appendix C: Published papers from this thesis
TABLE OF FIGURES

Figure 1.1 Map of the states in Malaysia...14
Figure 1.2 Melioidosis in average annual rate per 100 000 population in Sarawak from 2007-2010 ...31
Figure 2.1 Latex agglutination test for B. pseudomallei..48
Figure 2.2 B. pseudomallei isolates from Malaysian Borneo regrown on Ashdown’s agar showing different morphotypes ..58
Figure 2.3 Illustration of colistin susceptibility test on GENs B. pseudomallei from Sarawak (MSHR5097&MSHR5104) with controls P. aeruginosa and MSHR668 from the NT..64
Figure 2.4 Agar plate layout of colistin susceptibility test showing the positions of discs impregnated with different concentrations of colistin..............................64
Figure 2.5 Map of Malaysian Borneo showing the different STs from hospitals in Kota Kinabalu, Bintulu, Kapit and Sibu ...68
Figure 2.6 eBURST of all Malaysian isolates ..71
Figure 2.7 eBURST of Malaysian and other Asian strains72
Figure 2.8 eBURST of Australian and Asian isolates ...74
Figure 2.9 Morphotype variants in isolates from patient SBU-1 having the same MLVA-4 type 374 ..78
Figure 2.10 Different morphotypes from isolates of patient SBH-5 with the same MLVA-type 360 ..79
Figure 2.11 Radial genetic relatedness tree constructed using ~91,000 SNPs across 23 B. pseudomallei including selected isolates from Sarawak82
Figure 2.12 Map showing the demarcation of the Wallace’s Line83
Figure 3.1 Nonmetric multidimensional scaling (nMDS) ordination on the Euclidean distance resemblance matrix of the Vitek-2 biochemical profile of 235 B. pseudomallei and B. cepacia isolates from Australia and Malaysian Borneo ...93
Figure 4.1 Map of study sites ..98
Figure 4.2 Amplification plot of GENs allelic-specific real-time PCR108
Figure 4.3 Alignment of the amrB hyperconserved membrane spanning domain in selected B. pseudomallei isolates ...108
Figure 5.1 Mean annual rainfall for the years 1995-2009 in Sarawak districts selected for the environmental survey for B. pseudomallei ..121
Figure 5.2 Map showing the environmental sampling sites121
Figure 5.3 ‘Sandak’, a locally available tool that was used to dig holes124
Figure 5.4 Procedures for culturing B. pseudomallei from soil samples125
Figure 5.5 Procedures for culturing B. pseudomallei from water samples125
Figure 5.6 Map of Sarawak overlaid with human activities132
Figure 5.7 Comparison of different morphologies of selected non-B. pseudomallei environmental and B. pseudomallei isolates ..138
Figure 5.8 Set-up of plates for antagonism experiment ..149
Figure 5.9 Zones of inhibition around the producers (arrows)154
Figure 5.10 Lysis of inoculated producers ...154
Figure 5.11 Other forms of antibiosis. Panels B and C show no antibiosis activities by either the target cells or the challengers. Panels A and D show that the producers were taken over by the indicator ...155
TABLE OF TABLES

Table 1.1 Animal melioidosis cases reported thus far...8
Table 1.2 Studies on melioidosis conducted in Malaysia..18
Table 1.3 Summary of clinical presentations in melioidosis cases reported in Malaysia...22
Table 1.4 Clinical risk factors for melioidosis cases reported in Malaysia..................24
Table 1.5 Occupations of melioidosis patients in Sarawak from years 2007 to 2010..30
Table 2.1 Number of B. pseudomallei Malaysian Borneo isolates collected and information on the hospitals...46
Table 2.2 B. pseudomallei MLST loci..53
Table 2.3 B. pseudomallei isolates from Sarawak subjected to WGS..........................56
Table 2.4 Minimum inhibitory concentrations results for B. pseudomallei isolates used in this study..60
Table 2.5 STs found in Malaysian Borneo...70
Table 2.6 MLVA-4 types and VNTR allelic profiles of selected patients..................77
Table 3.1 Number of isolates tested with VITEK 2 system.......................................92
Table 4.1 Accession numbers of partial amrB gene sequences deposited in GenBank..101
Table 4.2 B. pseudomallei isolates used in this study..101
Table 4.3 Minimum inhibitory concentrations for B. pseudomallei isolates obtained in this study..109
Table 5.1 Number of soil samples collected from the different districts in Sarawak.................................130
Table 5.2 Comparison of culture yields using Ashdown’s agar with gentamicin and colistin...135
Table 5.3 Soil samples positive for Burkholderia spp. by culture...............................135
Table 5.4 Type of Burkholderia spp. isolated from the different types of sampling sites...136
Table 5.5 Ct values of TTS1 real-time PCR of soil extracts and plates A, B and C...136
Table 5.6 Isolates used for antagonistic screening..146
Table 5.7 Overall results of antagonistic experiment...148
ABSTRACT

Melioidosis is a potentially fatal disease caused by *Burkholderia pseudomallei* which is endemic in Malaysian Borneo. The general aim of this study is to elucidate the molecular epidemiology of *B. pseudomallei* in Malaysian Borneo. Consistent with the Wallace line theory of separation, genotyping showed Malaysian Borneo clinical *B. pseudomallei* isolates were more related to Southeast Asian strains than to Australian strains. Whole genome sequencing demonstrated that *B. pseudomallei* from Sarawak were very closely related to each other. Biochemical testing using VITEK 2 revealed that 25% of *B. pseudomallei* from Malaysian Borneo were misidentified as *B. cepacia*, suggesting that specificity of that identification system is regionally dependent. A major and unexpected finding was that 88% of Sarawak *B. pseudomallei* were gentamicin susceptible, with these *B. pseudomallei* being restricted to multilocus sequence type ST881 and its single locus variant ST997. A novel non-synonymous mutation was identified within *amrB*, an essential component of the AmrAB-OprA multi-drug efflux pump. Reversion of the mutation to the wild-type sequence confirmed the role of this mutation in conferring aminoglycoside and macrolide sensitivity. No environmental *B. pseudomallei* were isolated from Sarawak but other *Burkholderia* species were isolated, prompting the formulation of hypotheses to explain the lack of environmental *B. pseudomallei*. Although inconclusive, experiments showed antagonistic activities by other environmental *Burkholderia* spp. recovered from environmental sampling studies towards *B. pseudomallei* and also that gentamicin susceptible *B. pseudomallei* were slightly
less robust than gentamicin resistant strains in competing with other soil microorganisms. This thesis contributed to the understanding of the population structure of _B. pseudomallei_ in Malaysian Borneo, Southeast Asia and globally. The discovery of gentamicin susceptibility in Sarawak _B. pseudomallei_ has significant implications for laboratory diagnosis and environmental sampling of _B. pseudomallei_ in Malaysian Borneo and potentially in other melioidosis endemic regions. Although the exact distributions, quantification and potential environmental hazards and implications of _B. pseudomallei_ in Malaysian Borneo remain uncertain, these studies have led to important research questions now to be explored. Most immediate is further searching for the proposed existence of an as yet unidentified localized niche of _B. pseudomallei_ in Malaysian Borneo.
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>amrB-C1102G</td>
<td>Cytosine to guanine transition at 1102 nucleotide position of the amrB gene</td>
</tr>
<tr>
<td>AMX</td>
<td>Amoxicillin-clavulanic acid</td>
</tr>
<tr>
<td>ANOSIM</td>
<td>Analysis of similarities</td>
</tr>
<tr>
<td>AQIS</td>
<td>Australian Quarantine and Inspection Service</td>
</tr>
<tr>
<td>AS-PCR</td>
<td>Allelic-specific PCR</td>
</tr>
<tr>
<td>AZM</td>
<td>Azithromycin</td>
</tr>
<tr>
<td>Bcc</td>
<td>Burkholderia cepacia complex</td>
</tr>
<tr>
<td>bimA<sub>Bm</sub></td>
<td>B. mallei-like BimA allele</td>
</tr>
<tr>
<td>bimA<sub>Bp</sub></td>
<td>B. pseudomallei BimA allele</td>
</tr>
<tr>
<td>BNAG</td>
<td>β-N-acetyl-glucosaminidase</td>
</tr>
<tr>
<td>bp</td>
<td>Base-pairs</td>
</tr>
<tr>
<td>BPSA</td>
<td>B. pseudomallei selective agar</td>
</tr>
<tr>
<td>BTFC</td>
<td>B. thailandensis-like flagellum and chemotaxis biosynthesis gene cluster</td>
</tr>
<tr>
<td>C</td>
<td>Cytosine</td>
</tr>
<tr>
<td>C→G</td>
<td>Cytosine to guanine transition</td>
</tr>
<tr>
<td>CAZ</td>
<td>Ceftazidime</td>
</tr>
<tr>
<td>CF</td>
<td>Cystic fibrosis</td>
</tr>
<tr>
<td>CLSI</td>
<td>Clinical and Laboratory Standard Institute, USA.</td>
</tr>
<tr>
<td>Ct</td>
<td>Threshold cycle</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxynucleoside triphosphates</td>
</tr>
<tr>
<td>DOX</td>
<td>Doxycycline</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assays</td>
</tr>
<tr>
<td>EPS</td>
<td>Exopolysaccharide</td>
</tr>
<tr>
<td>FAM</td>
<td>FAM blue reporter dye</td>
</tr>
<tr>
<td>G</td>
<td>Guanine</td>
</tr>
<tr>
<td>GEN</td>
<td>Gentamicin</td>
</tr>
<tr>
<td>GEN<sup>r</sup></td>
<td>Gentamicin resistance</td>
</tr>
<tr>
<td>GEN<sup>s</sup></td>
<td>Gentamicin sensitive</td>
</tr>
<tr>
<td>HBA</td>
<td>Horse blood agar</td>
</tr>
<tr>
<td>IFAT</td>
<td>Immunofluorescent assay test</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunoglobulin G</td>
</tr>
<tr>
<td>IgM</td>
<td>Immunoglobulin M</td>
</tr>
<tr>
<td>IHA</td>
<td>Indirect hemagglutination assay</td>
</tr>
<tr>
<td>KAN</td>
<td>Kanamycin</td>
</tr>
<tr>
<td>kb</td>
<td>Kilo base-pairs</td>
</tr>
<tr>
<td>LGT</td>
<td>Lateral gene transfer</td>
</tr>
<tr>
<td>MALDI-TOF MS</td>
<td>Matrix-assisted laser desorption ionization-time of flight mass spectrometry</td>
</tr>
<tr>
<td>Mbp</td>
<td>Mega base-pairs</td>
</tr>
<tr>
<td>MEM</td>
<td>Meropenem</td>
</tr>
<tr>
<td>MH</td>
<td>Mueller- Hinton’s agar</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimal inhibition concentration</td>
</tr>
<tr>
<td>MLST</td>
<td>Multilocus sequence typing</td>
</tr>
<tr>
<td>MLVA</td>
<td>Multilocus VNTR analysis</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>MGBNFQ</td>
<td>Molecular-groove binding non-fluorescence quencher</td>
</tr>
<tr>
<td>NAGA</td>
<td>β-N-acetyl-galactosaminidase</td>
</tr>
<tr>
<td>NED</td>
<td>NED yellow reporter dye</td>
</tr>
<tr>
<td>NGS</td>
<td>Next-generation sequencing</td>
</tr>
<tr>
<td>nMDS</td>
<td>Nonmetric multidimensional scaling</td>
</tr>
<tr>
<td>NT</td>
<td>Northern Territory</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>orf2</td>
<td>Open reading frame 2</td>
</tr>
<tr>
<td>PC2</td>
<td>Physical Containment Level 2 (equivalent of BSL-2)</td>
</tr>
<tr>
<td>PET</td>
<td>PET red reporter dye</td>
</tr>
<tr>
<td>PFGE</td>
<td>Pulsed-field gel electrophoresis</td>
</tr>
<tr>
<td>PNAG</td>
<td>Poly-β-(1-6)-N-acetyl-glucosamine</td>
</tr>
<tr>
<td>R</td>
<td>Arginine</td>
</tr>
<tr>
<td>RAPD</td>
<td>Randomly amplified polymorphic DNA</td>
</tr>
<tr>
<td>RDH</td>
<td>Royal Darwin Hospital</td>
</tr>
<tr>
<td>rDNA</td>
<td>Ribosomal DNA</td>
</tr>
<tr>
<td>RFLP</td>
<td>Restriction fragment length polymorphism</td>
</tr>
<tr>
<td>RND</td>
<td>Resistance-nodulation-division</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>SIMPER</td>
<td>Similarity percentages</td>
</tr>
<tr>
<td>SLV</td>
<td>Single locus variant</td>
</tr>
<tr>
<td>SNP</td>
<td>Single nucleotide polymorphism</td>
</tr>
<tr>
<td>spp.</td>
<td>Species</td>
</tr>
<tr>
<td>ST</td>
<td>Sequence type</td>
</tr>
<tr>
<td>SXT</td>
<td>Trimethoprim-sulfamethoxazole</td>
</tr>
<tr>
<td>T</td>
<td>Threonine</td>
</tr>
<tr>
<td>T367R</td>
<td>Threonine to arginine substitution at amino acid position 367</td>
</tr>
<tr>
<td>TSA</td>
<td>Tryptic soy agar</td>
</tr>
<tr>
<td>TTS1</td>
<td>Type III secretion system</td>
</tr>
<tr>
<td>UMMC</td>
<td>University Malaya Medical Centre</td>
</tr>
<tr>
<td>UNIMAS</td>
<td>Universiti Malaysia Sarawak</td>
</tr>
<tr>
<td>US CDC</td>
<td>United States Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>USAMRU</td>
<td>United States of America Medical Research Unit</td>
</tr>
<tr>
<td>VNTR</td>
<td>Variable numbers tandem repeat</td>
</tr>
<tr>
<td>WGS</td>
<td>Whole genome sequencing</td>
</tr>
<tr>
<td>YLF</td>
<td>Yersinia-like fimbrial gene cluster</td>
</tr>
<tr>
<td>ΔCt</td>
<td>Threshold cycle difference</td>
</tr>
</tbody>
</table>
Chapter 1

General Introduction

and

Literature Review
Chapter 1: General introduction and literature review

1.1 General introduction: Burkholderia pseudomallei and melioidosis

1.1.1 Burkholderia genus
The Burkholderia genus was formed in 1992 when seven members of the Pseudomonas species were transferred over to the newly formed Burkholderia genus (Yabuuchi et al., 1992). The name “Burkholderia” was coined to honour Walter Burkholder who discovered Pseudomonas cepacia which caused onion diseases in the 1940s and 1950s (Yabuuchi et al., 1992, Coenye and Vandamme, 2007). To date, the Burkholderia genus has over 60 species residing in diverse ecologies including environmental and biological niches (http://www.bacterio.net/burkholderia.html)(Coenye and Vandamme, 2003, Vandamme and Dawyndt, 2011). Most Burkholderia species (spp.) are considered plant pathogens, plant commensals and soil bacteria, but some have the ability to cause infections in humans and animals (Coenye et al., 2001, Coenye and Vandamme, 2003, Coenye and Vandamme, 2007, Mahenthiralingam et al., 2005). There are 17 closely related Burkholderia spp. that are categorised as Burkholderia cepacia complex (Bcc). While some Bcc members are considered plant pathogens, others are plant commensals and also bioremediation agents which degrade environmental pollutants (Mahenthiralingam et al., 2005). In addition to their roles in plants and environments, some Bcc have been reported to cause opportunistic infection in both immunocompromised and cystic fibrosis (CF) patients (Coenye and Vandamme, 2003, Coenye and Vandamme, 2007, Vandamme and Dawyndt, 2011).

1.1.2 Burkholderia pseudomallei
Burkholderia pseudomallei is the bacterium that causes melioidosis which was first described by Whitmore and Krishnaswami in Rangoon, Burma in 1911 (Whitmore and Krishnaswami, 1912). Due to the resemblance of the bacterium to Bacillus mallei which causes glanders disease, it was named Bacillus pseudomallei. Over the years, the bacterium was also known by different names such as Bacillus whitmorii (Bacille de Whitmore in French), Malleomyces
Pseudomonas pseudomallei and finally *B. pseudomallei* in 1992 (Yabuuchi et al., 1992). It is a non-spore forming motile gram-negative bacillus with bipolar staining, often described as resembling a safety pin in a Gram stain (Cheng and Currie, 2005). The genome of *B. pseudomallei* is comprised of two circular chromosomes with a combined length of 7.2 mega base-pairs (Mbp), encompassing approximately 5800 genes (Holden et al., 2004, Nandi et al., 2010). Chromosome 1 contains housekeeping genes for macromolecular biosynthesis, amino acid metabolism, cofactor and carrier synthesis, nucleotide and protein biosynthesis, chemotaxis, and mobility. Chromosome 2 contains genes for accessory functions such as adaptations to atypical conditions, iron homeostasis, secondary metabolism, regulation and horizontal gene transfer (Holden et al., 2004). Due in part to the high virulence of this organism and increased concerns for transmission by aerosolization, *B. pseudomallei* was classified as a Tier 1 select agent by the U.S. Centres for Disease Control and Prevention (US CDC) in 2012 (http://www.selectagents.gov/).

B. pseudomallei is closely related to two other *Burkholderia* spp. namely *Burkholderia thailandensis* and *Burkholderia mallei* (Brett et al., 1998, Nierman et al., 2004). Despite its high genomic similarities to *B. pseudomallei*, *B. thailandensis* is an avirulent soil bacterium that is able to utilize arabinose as a sole energy source (Brett et al., 1998, Trakulsomboon et al., 1999). *B. mallei* is a zoonotic host-adapted pathogen affecting mainly equines and causes glanders disease (Nierman et al., 2004). Studies showed that *B. mallei* evolved from a single strain of *B. pseudomallei* ancestor through erosion of nonessential genomes responsible for environmental survival and became completely host-adapted. It was also shown that the genome of *B. mallei* is approximately 1.5 Mbp smaller than that of its ancestor (Godoy et al., 2003, Nierman et al., 2004, Losada et al., 2010).

B. pseudomallei is commonly found in the soil and water of melioidosis endemic regions, which include Southeast Asian countries, northern Australia and other tropical regions (White, 2003, Cheng and Currie, 2005). As more melioidosis areas are discovered, the knowledge on global distribution will keep expanding over time (Currie et al., 2008, Wiersinga et al., 2012).
1.1.3 Melioidosis

Coined by Stanton and Fletcher in 1921, melioidosis was derived from Greek which means ‘distemper of asses’ (Stanton and Fletcher, 1921). Patients with melioidosis can present with a spectrum of clinical presentations including localized skin abscess, acute or chronic pneumonia, genitourinary, bone, and joint infections and severe systemic sepsis (with or without foci of multiple abscesses in internal organs). Patients with septic shock may have a mortality of >90% (White, 2003, Cheng and Currie, 2005). Asymptomatic and chronic infections have been reported where the organism has been shown to evolve within the host (Price et al., 2010, Price et al., 2013a).

Mode of acquisition

The mode of acquisition of melioidosis is via percutaneous inoculation, inhalation or ingestion of *B. pseudomallei* contaminated wet soil or surface water or aerosols (Puthucheary and Vadivelu, 2002, Cheng and Currie, 2005, Wiersinga et al., 2012).

Inoculation has been suggested to be the main mode of acquisition. Individuals with occupational risks such as farmers and construction workers were reportedly exposed to *B. pseudomallei* through open wound or penetrating injuries (Chaowagul et al., 1989, Cheng and Currie, 2005, Kaestli et al., 2009, Wiersinga et al., 2012). In a study in the Top End, Australia, 25% of melioidosis patients were shown to have some history of inoculation via skin breakage prior to disease. Despite being acquired through skin inoculation, the range of disease in the patients in this study was not confined to merely subcutaneous symptoms as many patients presented with more severe illnesses (Currie et al., 2000b).

Inhalation was implicated as the primary mode of acquisition for melioidosis cases amongst helicopter crews of the United States armies in Vietnam in the 1960s (Howe et al., 1971). Since then, inhalation has been considered to be an important mode of acquisition especially during increased heavy rainfall and during extreme weather events such as strong winds, cyclones or typhoons (Puthucheary and Vadivelu, 2002, Currie and Jacups, 2003, Ko et al., 2007, Lo et al., 2009, Su et al., 2011).
The first implication of ingestion as a mode of acquisition was by Stanton and Fletcher in 1925 (Stanton and Fletcher, 1925). Although this route has not been described much in detail, reports of melioidosis outbreaks due to contaminated water supply have implicated ingestion as a mode of acquisition (Inglis et al., 1999, Currie et al., 2001). The high incidence of suppurative parotitis amongst paediatric patients mainly in South East Asia has been suggested to be associated with ingestion (Dance et al., 1989a) and a recent case control study from Thailand has supported this, together with the high rates of recovery of *B. pseudomallei* from domestic water supplies in that study (Limmmathurotsakul et al., 2013b).

B. pseudomallei acquisition has also been associated with tsunami where survivors of the disaster in affected countries were presented with various symptoms including cutaneous infection, pulmonary involvement and septicaemia (Allworth, 2005, Athan et al., 2005, Chierakul et al., 2005, Nieminen and Vaara, 2005, Svensson et al., 2006, Othman et al., 2007, Currie et al., 2008, Arzola et al., 2007).

Other modes of acquisition are via laboratory-acquired infection (Green and Tuffnell, 1968, Schlech et al., 1981), contaminated detergent and other medical supplies (Punyagupta, 1989, Gal et al., 2004), breast milk (Ralph et al., 2004), person-to-person transmission (McCormick et al., 1975, Holland et al., 2002), possible sexual transmission (McCormick et al., 1975, Webling, 1980) and intra-uterine transmission (Abbink et al., 2001). Although rare, zoonotic human infections have also been reported (Low Choy et al., 2000).

Treatment of melioidosis

Due to both the intracellular nature of the organism after infection and its potential for latency, there are two phases in melioidosis treatment; a short-term intensive acute phase and a long-term oral eradication phase (Wiersinga et al., 2012). In general, the intensive acute phase treatment involves bactericidal drugs with or without post-antibiotic effect, while the eradication phase treatment involves bacteriostatic drugs (Estes et al., 2010, Wiersinga et al., 2012). The current recommended treatment of melioidosis consists of an intensive phase of at least 10 to 14 days of intravenous ceftazidime, meropenem, or imipenem,
followed by oral eradication therapy of trimethoprim–sulfamethoxazole for three to six months (Wiersinga et al., 2012).

Drug susceptibility and resistance

B. pseudomallei is intrinsically resistant to numerous antibiotics including first-generation and second-generation quinolones, all narrow-spectrum cephalosporins, all macrolides, most penicillins, all polymyxins, and aminoglycosides (Livermore et al., 1987, Dance et al., 1989c, Dance et al., 1989b, Jenney et al., 2001, Estes et al., 2010, Wuthiekanun et al., 2011), which limits treatment options for melioidosis. Although rare, aminoglycosides and macrolides sensitivity has been reported (Simpson et al., 1999, Trunck et al., 2009, Podin et al., 2014). *B. pseudomallei* is generally susceptible to carbapenems, some fluoroquinolones, and amoxicillin-β-lactamase inhibitor combinations, chloramphenicol, tetracyclines and trimethoprim-sulfonamides in vitro (Ashdown, 1988, Dance et al., 1989c, Wuthiekanun et al., 2011). However, clinical studies have shown that fluoroquinolones are associated with higher treatment failure rates (Chaowagul et al., 1997, Chetchotisakd et al., 2001, Steward et al., 2005, Wuthiekanun et al., 2011). Although uncommon, acquired resistance to ceftazidime during therapy has been documented and genetically characterised (Jenney et al., 2001, Chantratita et al., 2011, Sarovich et al., 2012a, Sarovich et al., 2012b).

Relapse of melioidosis

Relapse in melioidosis upon completion of treatment has been well documented (Puthucheary and Vadivelu, 2002, White, 2003, Cheng and Currie, 2005, Sarovich et al., 2014b). There have also been reports of reactivation of melioidosis for as long as 62 years after primary exposure to the causative agent (Ngauy et al., 2005). The propensity for relapse is caused by factors such as poor adherence to treatment, severe diseases, inadequate use of drug type during the intensive and eradication phase, and eradication phase of less than eight weeks (Chaowagul et al., 1993, Currie et al., 2000a). While most of the relapse cases were associated with reactivation of the original infecting strain, re-infection with a different strain has also been reported (Desmarchelier et al., 1993, Vadivelu et al., 1998, Currie et al., 2000a, Sarovich et al., 2014b).