Evolution of endemism on a young tropical mountain

Vincent S. F. T. Merckx1,2, Kasper P. Hendriks1,2, Kevin K. Beentjies1, Constantijn B. Mennes1, Leontine E. Becking1,4,5, Katja T. C. A. Peijnenburg6,7, Aqilah Afendy7, Nivaarani Arumugam7,8, Hugo de Boer9,10, Alim Biun11, Matsain M. Buang11, Renee Geurts13, Barbara Gravendeel1,2,14, Peter Hovenkamp1, Paul Imbun11, Isa Ip015, Steven B. Janssens16, Melrijn Jocques17,18, Heike Kappes1,19, Eynn Kho02, Peter Koomen02, Frederic Lens1,2, Richard J. Majapun02, Luis N. Morgado1, Suman Neupane21, Nico Niesser1, Joan T. Pereira12, Homathiyeh Rahman12, Suzana Sabran12, Anati Sawang12, Rachel M. Schwallier1, Phuyau Soon Shimb11, Harry Smit1, Nicolien Sol1, Maipul Srait11, Michael Stech1, Frank Stokvis1, John B. Sugau12, Monica Suleiman7, Sukaiaini Sumail1, Daniel C. Thomas1,22,23, Jan van Tol1, Fred Y. Y. Tuh1, Bakhtiar E. Yahya7, Jamili Nais11, Rimi Repin11, Maklarkin Lakin11 & Menno Schilthuizen1,2,7

Tropical mountains are hot spots of biodiversity and endemism1–4, but the evolutionary origins of their unique biotas are poorly understood. In varying degrees, local and regional extinction, long-distance colonization, and local recruitment may all contribute to the exceptional character of these communities. Also, it is debated whether mountain endemics mostly originate from local lowland taxa, or from lineages that reach the mountain by long-range dispersal from cool localities elsewhere. Here we investigate the evolutionary routes to endemism by sampling an entire tropical mountain biota on the 4,095-metre-high Mount Kinabalu in Sabah, East Malaysia. We discover that most of its unique biodiversity is younger than the mountain itself (6 million years), and comprises a mix of immigrant pre-adapted lineages and descendants from local lowland ancestors, although substantial shifts from lower to higher vegetation zones in this latter group were rare. These insights could improve forecasts of the likelihood of extinction and evolutionary rescue in montane biodiversity hot spots under climate change scenarios.

In mountainous areas of the humid tropics, steep environmental gradients coincide with high primary productivity and relative climatic stability to sustain large numbers of species, often with striking degrees of endemism at higher elevations. It has therefore been recognized that tropical mountains are biodiversity hot spots of great conservation value, especially because endemics on mountain tops are vulnerable to becoming trapped and then annihilated as a result of global warming.

The evolutionary origins of these unique biotas, however, are poorly understood. Like other insular habitats, the endemic biota of an isolated mountain results from complex dynamics among colonization, in situ speciation, and local extinction. Each of these factors is dependent on the age and size of the habitat, and on the environmental contrast between the insular habitat and its matrix. In the case of a tropical mountain top, an added complication is the fact that climate fluctuations may have widened and restricted the geographic range over which the montane conditions have extended in the past, meaning that parts of the endemic biota may be relicts, and other components may be novel in character.

Disentangling these possibilities for a single tropical montane biodiversity hot spot requires molecular phylogenetic study of a large number of fauna and flora elements. However, with only few exceptions, evolutionary studies in such hot spots have been limited to single taxa. This precludes broad understanding of the evolutionary and biogeographic origins of an endemic biota as a whole.

We investigated the evolutionary routes to endemism by sampling an entire tropical mountain biota on the UNESCO World Heritage site of Gunung Kinabalu in Sabah, East Malaysia. We demonstrate that most of its unique biodiversity is younger than the mountain itself and comprises a mix of immigrant pre-adapted lineages as well as descendants from local lowland ancestors.

At 4,095 m, Kinabalu is the tallest mountain between the Himalayas and New Guinea. It is a solitary ‘sky island’, having emerged during the Pliocene and early Pleistocene as a granite pluton within the surrounding sandstone of the Crocker Range, the latter having formed much earlier, between the Eocene and the early Miocene. Because of the area’s tectonic activity, as well as Pleistocene sea level changes, the exact historical progression of its elevation above sea level is not known, but it is likely that a major rise, even beyond today’s elevation, of Kinabalu, as well as the central spine of the Crocker Range, took place between 6 million years ago and today (for more geological background see Methods). Since the early days of its exploration, Kinabalu has been famous for its extremely high biological diversity, especially its richness in endemic species, with endemism proportions reaching 25–30% for some taxa.

To unravel the origins of the exceptionally rich Kinabalu biota, we mounted a Malaysian–Dutch expedition in which 47 taxonomists worked at 37 localities, spanning the full range of elevations (Fig. 1). We used Sanger sequencing to sequence one or more fast-evolving loci for 1,852 individuals, belonging to 18 genera representing gastropods, annelids, insects, arachnids, vertebrates, pteridophytes, bryophytes, and angiosperms. We also obtained 3.7 million basidiomycete sequencings.

---

1Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands. 2Institute of Biology Leiden, Leiden University, Sylvisweg 72, 2333 BE Leiden, The Netherlands. 3Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborg 7, 9747 AG Groningen, The Netherlands. 4Wageningen University & Research centre, Marine Animal Ecology Group, PO Box 338, 6700 AH Wageningen, The Netherlands. 5Department of Environmental Science, Policy, & Management, University of California Berkeley, 130 Mulford Hall #3114, Berkeley, California 94720, USA. 6Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands. 7Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia. 8Faculty of Earth Science, Universiti Malaysia Kelantan, Jeli Campus, Locked bag No.100, 17600 Jeli, Kelantan Darul Naim, Malaysia. 9Faculty of Environmental Science, Policy, and Management, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands. 10Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia. 11Royal Belgian Institute of Natural Sciences, Aquatic and Terrestrial Ecology, Vautierstraat 29, 1000 Brussels, Belgium. 12Forest Research Centre, Sabah Forestry Department, P.O. Box 1407, 90175 Sandakan, Sabah, Malaysia. 13Wageningen University, Department of Plant Sciences, Laboratory of Molecular Biology, 6700AP Wageningen, The Netherlands. 14University of Applied Sciences Leiden, Zernikelaan 11, 2333 CK Leiden, The Netherlands. 15Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia. 16Botanic Garden Meise, Nieuwelaan 38, 1860 Meise, Belgium. 17Royal Belgian Institute of Natural Sciences, Aquatic and Terrestrial Ecology, Vautierstraat 29, 1000 Brussels, Belgium. 18Rutgers, The State University of New Jersey, Department of Biological Sciences, 195 University Avenue, Boyden Hall, Newark, New Jersey 07102, USA. 19Zoological Institute, University of Cologne, Zülpicher Strasse 47b, D-50674 Cologne, Germany. 20Naturalmuseum Fryslân, Schoenmakersperrk 2, 8911 EM Leeuwarden, The Netherlands. 21EEB Department, University of Connecticut, 75 N. Eagleville Road, Storrs, Connecticut 06269-3043, USA. 22School of Biological Sciences, University of Hong Kong, Pok Fu Lam Road, Hong Kong, China. 23Singapore Botanic Gardens, 1 Cluny Road, 259569 Singapore, Republic of Singapore. 24Deceased.